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Preface

This book belongs to a series of online books summarizing the recent state Topological Geometro-
dynamics (TGD) and its applications. TGD can be regarded as a unified theory of fundamental
interactions but is not the kind of unified theory as so called GUTs constructed by graduate stu-
dents at seventies and eighties using detailed recipes for how to reduce everything to group theory.
Nowadays this activity has been completely computerized and it probably takes only a few hours to
print out the predictions of this kind of unified theory as an article in the desired format. TGD is
something different and I am not ashamed to confess that I have devoted the last 32 years of my life
to this enterprise and am still unable to write The Rules.

I got the basic idea of Topological Geometrodynamics (TGD) during autumn 1978, perhaps it
was October. What I realized was that the representability of physical space-times as 4-dimensional
surfaces of some higher-dimensional space-time obtained by replacing the points of Minkowski space
with some very small compact internal space could resolve the conceptual difficulties of general rela-
tivity related to the definition of the notion of energy. This belief was too optimistic and only with
the advent of what I call zero energy ontology the understanding of the notion of Poincare invariance
has become satisfactory.

It soon became clear that the approach leads to a generalization of the notion of space-time with
particles being represented by space-time surfaces with finite size so that TGD could be also seen as
a generalization of the string model. Much later it became clear that this generalization is consistent
with conformal invariance only if space-time is 4-dimensional and the Minkowski space factor of
imbedding space is 4-dimensional.

It took some time to discover that also the geometrization of also gauge interactions and elementary
particle quantum numbers could be possible in this framework: it took two years to find the unique
internal space providing this geometrization involving also the realization that family replication
phenomenon for fermions has a natural topological explanation in TGD framework and that the
symmetries of the standard model symmetries are much more profound than pragmatic TOE builders
have believed them to be. If TGD is correct, main stream particle physics chose the wrong track leading
to the recent deep crisis when people decided that quarks and leptons belong to same multiplet of the
gauge group implying instability of proton.

There have been also longstanding problems.

• Gravitational energy is well-defined in cosmological models but is not conserved. Hence the
conservation of the inertial energy does not seem to be consistent with the Equivalence Princi-
ple. Furthermore, the imbeddings of Robertson-Walker cosmologies turned out to be vacuum
extremals with respect to the inertial energy. About 25 years was needed to realize that the sign
of the inertial energy can be also negative and in cosmological scales the density of inertial energy
vanishes: physically acceptable universes are creatable from vacuum. Eventually this led to the
notion of zero energy ontology which deviates dramatically from the standard ontology being
however consistent with the crossing symmetry of quantum field theories. In this framework the
quantum numbers are assigned with zero energy states located at the boundaries of so called
causal diamonds defined as intersections of future and past directed light-cones. The notion of
energy-momentum becomes length scale dependent since one has a scale hierarchy for causal
diamonds. This allows to understand the non-conservation of energy as apparent. Equivalence
Principle generalizes and has a formulation in terms of coset representations of Super-Virasoro
algebras providing also a justification for p-adic thermodynamics.

• From the beginning it was clear that the theory predicts the presence of long ranged classical
electro-weak and color gauge fields and that these fields necessarily accompany classical electro-
magnetic fields. It took about 26 years to gain the maturity to admit the obvious: these fields
are classical correlates for long range color and weak interactions assignable to dark matter.
The only possible conclusion is that TGD physics is a fractal consisting of an entire hierarchy
of fractal copies of standard model physics. Also the understanding of electro-weak massivation
and screening of weak charges has been a long standing problem, and 32 years was needed to
discover that what I call weak form of electric-magnetic duality gives a satisfactory solution of
the problem and provides also surprisingly powerful insights to the mathematical structure of
quantum TGD.
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I started the serious attempts to construct quantum TGD after my thesis around 1982. The
original optimistic hope was that path integral formalism or canonical quantization might be enough
to construct the quantum theory but the first discovery made already during first year of TGD was that
these formalisms might be useless due to the extreme non-linearity and enormous vacuum degeneracy
of the theory. This turned out to be the case.

• It took some years to discover that the only working approach is based on the generalization
of Einstein’s program. Quantum physics involves the geometrization of the infinite-dimensional
”world of classical worlds” (WCW) identified as 3-dimensional surfaces. Still few years had
to pass before I understood that general coordinate invariance leads to a more or less unique
solution of the problem and implies that space-time surfaces are analogous to Bohr orbits. Still
a coupled of years and I discovered that quantum states of the Universe can be identified as
classical spinor fields in WCW. Only quantum jump remains the genuinely quantal aspect of
quantum physics.

• During these years TGD led to a rather profound generalization of the space-time concept.
Quite general properties of the theory led to the notion of many-sheeted space-time with sheets
representing physical subsystems of various sizes. At the beginning of 90s I became dimly
aware of the importance of p-adic number fields and soon ended up with the idea that p-adic
thermodynamics for a conformally invariant system allows to understand elementary particle
massivation with amazingly few input assumptions. The attempts to understand p-adicity from
basic principles led gradually to the vision about physics as a generalized number theory as
an approach complementary to the physics as an infinite-dimensional spinor geometry of WCW
approach. One of its elements was a generalization of the number concept obtained by fusing real
numbers and various p-adic numbers along common rationals. The number theoretical trinity
involves besides p-adic number fields also quaternions and octonions and the notion of infinite
prime.

• TGD inspired theory of consciousness entered the scheme after 1995 as I started to write a book
about consciousness. Gradually it became difficult to say where physics ends and consciousness
theory begins since consciousness theory could be seen as a generalization of quantum measure-
ment theory by identifying quantum jump as a moment of consciousness and by replacing the
observer with the notion of self identified as a system which is conscious as long as it can avoid
entanglement with environment. ”Everything is conscious and consciousness can be only lost”
summarizes the basic philosophy neatly. The idea about p-adic physics as physics of cognition
and intentionality emerged also rather naturally and implies perhaps the most dramatic gener-
alization of the space-time concept in which most points of p-adic space-time sheets are infinite
in real sense and the projection to the real imbedding space consists of discrete set of points.
One of the most fascinating outcomes was the observation that the entropy based on p-adic
norm can be negative. This observation led to the vision that life can be regarded as something
in the intersection of real and p-adic worlds. Negentropic entanglement has interpretation as
a correlate for various positively colored aspects of conscious experience and means also the
possibility of strongly correlated states stable under state function reduction and different from
the conventional bound states and perhaps playing key role in the energy metabolism of living
matter.

• One of the latest threads in the evolution of ideas is only slightly more than six years old.
Learning about the paper of Laurent Nottale about the possibility to identify planetary orbits
as Bohr orbits with a gigantic value of gravitational Planck constant made once again possible to
see the obvious. Dynamical quantized Planck constant is strongly suggested by quantum classical
correspondence and the fact that space-time sheets identifiable as quantum coherence regions can
have arbitrarily large sizes. During summer 2010 several new insights about the mathematical
structure and interpretation of TGD emerged. One of these insights was the realization that
the postulated hierarchy of Planck constants might follow from the basic structure of quantum
TGD. The point is that due to the extreme non-linearity of the classical action principle the
correspondence between canonical momentum densities and time derivatives of the imbedding
space coordinates is one-to-many and the natural description of the situation is in terms of local
singular covering spaces of the imbedding space. One could speak about effective value of Planck
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constant coming as a multiple of its minimal value. The implications of the hierarchy of Planck
constants are extremely far reaching so that the significance of the reduction of this hierarchy to
the basic mathematical structure distinguishing between TGD and competing theories cannot
be under-estimated.

From the point of view of particle physics the ultimate goal is of course a practical construction
recipe for the S-matrix of the theory. I have myself regarded this dream as quite too ambitious taking
into account how far reaching re-structuring and generalization of the basic mathematical structure
of quantum physics is required. It has indeed turned out that the dream about explicit formula
is unrealistic before one has understood what happens in quantum jump. Symmetries and general
physical principles have turned out to be the proper guide line here. To give some impressions about
what is required some highlights are in order.

• With the emergence of zero energy ontology the notion of S-matrix was replaced with M-matrix
which can be interpreted as a complex square root of density matrix representable as a diagonal
and positive square root of density matrix and unitary S-matrix so that quantum theory in zero
energy ontology can be said to define a square root of thermodynamics at least formally.

• A decisive step was the strengthening of the General Coordinate Invariance to the requirement
that the formulations of the theory in terms of light-like 3-surfaces identified as 3-surfaces at
which the induced metric of space-time surfaces changes its signature and in terms of space-like
3-surfaces are equivalent. This means effective 2-dimensionality in the sense that partonic 2-
surfaces defined as intersections of these two kinds of surfaces plus 4-D tangent space data at
partonic 2-surfaces code for the physics. Quantum classical correspondence requires the coding
of the quantum numbers characterizing quantum states assigned to the partonic 2-surfaces to
the geometry of space-time surface. This is achieved by adding to the modified Dirac action a
measurement interaction term assigned with light-like 3-surfaces.

• The replacement of strings with light-like 3-surfaces equivalent to space-like 3-surfaces means
enormous generalization of the super conformal symmetries of string models. A further general-
ization of these symmetries to non-local Yangian symmetries generalizing the recently discovered
Yangian symmetry of N = 4 supersymmetric Yang-Mills theories is highly suggestive. Here the
replacement of point like particles with partonic 2-surfaces means the replacement of conformal
symmetry of Minkowski space with infinite-dimensional super-conformal algebras. Yangian sym-
metry provides also a further refinement to the notion of conserved quantum numbers allowing
to define them for bound states using non-local energy conserved currents.

• A further attractive idea is that quantum TGD reduces to almost topological quantum field
theory. This is possible if the Kähler action for the preferred extremals defining WCW Kähler
function reduces to a 3-D boundary term. This takes place if the conserved currents are so called
Beltrami fields with the defining property that the coordinates associated with flow lines extend
to single global coordinate variable. This ansatz together with the weak form of electric-magnetic
duality reduces the Kähler action to Chern-Simons term with the condition that the 3-surfaces
are extremals of Chern-Simons action subject to the constraint force defined by the weak form
of electric magnetic duality. It is the latter constraint which prevents the trivialization of the
theory to a topological quantum field theory. Also the identification of the Kähler function of
WCW as Dirac determinant finds support as well as the description of the scattering amplitudes
in terms of braids with interpretation in terms of finite measurement resolution coded to the
basic structure of the solutions of field equations.

• In standard QFT Feynman diagrams provide the description of scattering amplitudes. The
beauty of Feynman diagrams is that they realize unitarity automatically via the so called
Cutkosky rules. In contrast to Feynman’s original beliefs, Feynman diagrams and virtual parti-
cles are taken only as a convenient mathematical tool in quantum field theories. QFT approach
is however plagued by UV and IR divergences and one must keep mind open for the possibility
that a genuine progress might mean opening of the black box of the virtual particle.

In TGD framework this generalization of Feynman diagrams indeed emerges unavoidably. Light-
like 3-surfaces replace the lines of Feynman diagrams and vertices are replaced by 2-D partonic



vi

2-surfaces. Zero energy ontology and the interpretation of parton orbits as light-like ”wormhole
throats” suggests that virtual particle do not differ from on mass shell particles only in that
the four- and three- momenta of wormhole throats fail to be parallel. The two throats of the
wormhole defining virtual particle would contact carry on mass shell quantum numbers but
for virtual particles the four-momenta need not be parallel and can also have opposite signs of
energy. Modified Dirac equation suggests a number theoretical quantization of the masses of the
virtual particles. The kinematic constraints on the virtual momenta are extremely restrictive
and reduce the dimension of the sub-space of virtual momenta and if massless particles are
not allowed (IR cutoff provided by zero energy ontology naturally), the number of Feynman
diagrams contributing to a particular kind of scattering amplitude is finite and manifestly UV
and IR finite and satisfies unitarity constraint in terms of Cutkosky rules. What is remarkable
that fermionic propagatos are massless propagators but for on mass shell four-momenta. This
gives a connection with the twistor approach and inspires the generalization of the Yangian
symmetry to infinite-dimensional super-conformal algebras.

What I have said above is strongly biased view about the recent situation in quantum TGD and
I have left all about applications to the introductions of the books whose purpose is to provide a
bird’s eye of view about TGD as it is now. This vision is single man’s view and doomed to contain
unrealistic elements as I know from experience. My dream is that young critical readers could take
this vision seriously enough to try to demonstrate that some of its basic premises are wrong or to
develop an alternative based on these or better premises. I must be however honest and tell that 32
years of TGD is a really vast bundle of thoughts and quite a challenge for anyone who is not able to
cheat himself by taking the attitude of a blind believer or a light-hearted debunker trusting on the
power of easy rhetoric tricks.

Matti Pitkänen

Hanko,
September 15, 2010
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Chapter 1

Introduction

1.1 Background

T(opological) G(eometro)D(ynamics) is one of the many attempts to find a unified description of basic
interactions. The development of the basic ideas of TGD to a relatively stable form took time of about
half decade [2]. The great challenge is to construct a mathematical theory around these physically
very attractive ideas and I have devoted the last twenty-three years for the realization of this dream
and this has resulted in seven online books about TGD and eight online books about TGD inspired
theory of consciousness and of quantum biology.

Quantum T(opological) G(eometro)D(ynamics) as a classical spinor geometry for infinite-dimensional
configuration space, p-adic numbers and quantum TGD, and TGD inspired theory of consciousness
and of quantum biology have been for last decade of the second millenium the basic three strongly
interacting threads in the tapestry of quantum TGD.

For few years ago the discussions with Tony Smith initiated a fourth thread which deserves the
name ’TGD as a generalized number theory’. The basic observation was that classical number fields
might allow a deeper formulation of quantum TGD. The work with Riemann hypothesis made time
ripe for realization that the notion of infinite primes could provide, not only a reformulation, but a
deep generalization of quantum TGD. This led to a thorough and extremely fruitful revision of the
basic views about what the final form and physical content of quantum TGD might be. Together with
the vision about the fusion of p-adic and real physics to a larger coherent structure these sub-threads
fused to the ”physics as generalized number theory” th

A further thread emerged from the realization that by quantum classical correspondence TGD
predicts an infinite hierarchy of macroscopic quantum systems with increasing sizes, that it is not at
all clear whether standard quantum mechanics can accommodate this hierarchy, and that a dynam-
ical quantized Planck constant might be necessary and certainly possible in TGD framework. The
identification of hierarchy of Planck constants whose values TGD ”predicts” in terms of dark matter
hierarchy would be natural. This also led to a solution of a long standing puzzle: what is the proper
interpretation of the predicted fractal hierarchy of long ranged classical electro-weak and color gauge
fields. Quantum classical correspondences allows only single answer: there is infinite hierarchy of p-
adically scaled up variants of standard model physics and for each of them also dark hierarchy. Thus
TGD Universe would be fractal in very abstract and deep sense.

Every updating of the books makes me frustrated as I see how badly the structure of the repre-
sentation reflects my bird’s eye of view as it is at the moment of updating. At this time I realized
that the chronology based identification of the threads is quite natural but not logical and it is much
more logical to see p-adic physics, the ideas related to classical number fields, and infinite primes
as sub-threads of a thread which might be called ”physics as a generalized number theory”. In the
following I adopt this view. This reduces the number of threads to four! I am not even sure about
the number of threads! Be patient!

TGD forces the generalization of physics to a quantum theory of consciousness, and represent TGD
as a generalized number theory vision leads naturally to the emergence of p-adic physics as physics
of cognitive representations. The seven online books [94, 72, 61, 55, 73, 83, 80] about TGD and eight
online books about TGD inspired theory of consciousness and of quantum biology [87, 15, 67, 13, 38,
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47, 50, 79] are warmly recommended to the interested reader.

1.2 Basic Ideas of TGD

The basic physical picture behind TGD was formed as a fusion of two rather disparate approaches:
namely TGD is as a Poincare invariant theory of gravitation and TGD as a generalization of the
old-fashioned string model.

1.2.1 TGD as a Poincare invariant theory of gravitation

The first approach was born as an attempt to construct a Poincare invariant theory of gravitation.
Space-time, rather than being an abstract manifold endowed with a pseudo-Riemannian structure, is
regarded as a surface in the 8-dimensional space H = M4

×CP2, where M4 denotes Minkowski space
and CP2 = SU(3)/U(2) is the complex projective space of two complex dimensions [128, 92, 111, 86].

The identification of the space-time as a submanifold [78, 125] of M4 × CP2 leads to an ex-
act Poincare invariance and solves the conceptual difficulties related to the definition of the energy-
momentum in General Relativity.

It soon however turned out that submanifold geometry, being considerably richer in structure
than the abstract manifold geometry, leads to a geometrization of all basic interactions. First, the
geometrization of the elementary particle quantum numbers is achieved. The geometry of CP2 explains
electro-weak and color quantum numbers. The different H-chiralities of H-spinors correspond to the
conserved baryon and lepton numbers. Secondly, the geometrization of the field concept results. The
projections of the CP2 spinor connection, Killing vector fields of CP2 and of H-metric to four-surface
define classical electro-weak, color gauge fields and metric in X4.

1.2.2 TGD as a generalization of the hadronic string model

The second approach was based on the generalization of the mesonic string model describing mesons
as strings with quarks attached to the ends of the string. In the 3-dimensional generalization 3-
surfaces correspond to free particles and the boundaries of the 3- surface correspond to partons in
the sense that the quantum numbers of the elementary particles reside on the boundaries. Various
boundary topologies (number of handles) correspond to various fermion families so that one obtains
an explanation for the known elementary particle quantum numbers. This approach leads also to a
natural topological description of the particle reactions as topology changes: for instance, two-particle
decay corresponds to a decay of a 3-surface to two disjoint 3-surfaces.

This decay vertex does not however correspond to a direct generalization of trouser vertex of
string models. Indeed, the important difference between TGD and string models is that the analogs
of string world sheet diagrams do not describe particle decays but the propagation of particles via
different routes. Particle reactions are described by generalized Feynman diagrams for which 3-D
light-like surface describing particle propagating join along their ends at vertices. As 4-manifolds the
space-time surfaces are therefore singular like Feynman diagrams as 1-manifolds.

1.2.3 Fusion of the two approaches via a generalization of the space-time
concept

The problem is that the two approaches to TGD seem to be mutually exclusive since the orbit of a
particle like 3-surface defines 4-dimensional surface, which differs drastically from the topologically
trivial macroscopic space-time of General Relativity. The unification of these approaches forces a
considerable generalization of the conventional space-time concept. First, the topologically trivial 3-
space of General Relativity is replaced with a ”topological condensate” containing matter as particle
like 3-surfaces ”glued” to the topologically trivial background 3-space by connected sum operation.
Secondly, the assumption about connectedness of the 3-space is given up. Besides the ”topological
condensate” there could be ”vapor phase” that is a ”gas” of particle like 3-surfaces (counterpart of
the ”baby universies” of GRT) and the nonconservation of energy in GRT corresponds to the transfer
of energy between the topological condensate and vapor phase.
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What one obtains is what I have christened as many-sheeted space-time. One particular aspect
is topological field quantization meaning that various classical fields assignable to a physical system
correspond to space-time sheets representing the classical fields to that particular system. One can
speak of the field body of a particular physical system. Field body consists of topological light rays,
and electric and magnetic flux quanta. In Maxwell’s theory system does not possess this kind of
field identity. The notion of magnetic body is one of the key players in TGD inspired theory of
consciousness and quantum biology.

This picture became more detailed with the advent of zero energy ontology (ZEO). The basic notion
of ZEO is causal diamond (CD) identified as the Cartesian product of CP2 and of the intersection
of future and past directed light-cones and having scale coming as an integer multiple of CP2 size is
fundamental. CDs form a fractal hierarchy and zero energy states decompose to products of positive
and negative energy parts assignable to the opposite boundaries of CD defining the ends of the space-
time surface. The counterpart of zero energy state in positive energy ontology is in terms of initial
and final states of a physical event, say particle reaction.

General Coordinate Invariance allows to identify the basic dynamical objects as space-like 3-
surfaces at the ends of space-time surface at boundaries of CD: this means that space-time sur-
face is analogous to Bohr orbit. An alternative identification is as light-like 3-surfaces at which the
signature of the induced metric changes from Minkowskian to Euclidian and interpreted as lines of
generalized Feynman diagrams. Also the Euclidian 4-D regions would have similar interpretation. The
requirement that the two interpretations are equivalent, leads to a strong form of General Coordinate
Invariance. The outcome is effective 2-dimensionality stating that the partonic 2-surfaces identified
as intersections of the space-like ends of space-time surface and light-like wormhole throats are the
fundamental objects. That only effective 2-dimensionality is in question is due to the effects caused by
the failure of strict determinism of Kähler action. In finite length scale resolution these effects can be
neglected below UV cutoff and above IR cutoff. One can also speak about strong form of holography.

There is a further generalization of the space-time concept inspired by p-adic physics forcing a
generalization of the number concept through the fusion of real numbers and various p-adic number
fields. Also the hierarchy of Planck constants forces a generalization of the notion of space-time.

A very concise manner to express how TGD differs from Special and General Relativities could
be following. Relativity Principle (Poincare Invariance), General Coordinate Invariance, and Equiva-
lence Principle remain true. What is new is the notion of sub-manifold geometry: this allows to realize
Poincare Invariance and geometrize gravitation simultaneously. This notion also allows a geometriza-
tion of known fundamental interactions and is an essential element of all applications of TGD ranging
from Planck length to cosmological scales. Sub-manifold geometry is also crucial in the applications
of TGD to biology and consciousness theory.

1.3 The threads in the development of quantum TGD

The development of TGD has involved several strongly interacting threads: physics as infinite-
dimensional geometry; TGD as a generalized number theory, the hierarchy of Planck constants inter-
preted in terms of dark matter hierarchy, and TGD inspired theory of consciousness. In the following
these threads are briefly described.

1.3.1 Quantum TGD as spinor geometry of World of Classical Worlds

A turning point in the attempts to formulate a mathematical theory was reached after seven years
from the birth of TGD. The great insight was ”Do not quantize”. The basic ingredients to the new
approach have served as the basic philosophy for the attempt to construct Quantum TGD since then
and have been the following ones:

1. Quantum theory for extended particles is free(!), classical(!) field theory for a generalized
Schrödinger amplitude in the configuration space CH consisting of all possible 3-surfaces in
H. ”All possible” means that surfaces with arbitrary many disjoint components and with
arbitrary internal topology and also singular surfaces topologically intermediate between two
different manifold topologies are included. Particle reactions are identified as topology changes
[107, 131, 133]. For instance, the decay of a 3-surface to two 3-surfaces corresponds to the decay
A→ B+C. Classically this corresponds to a path of configuration space leading from 1-particle
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sector to 2-particle sector. At quantum level this corresponds to the dispersion of the gener-
alized Schrödinger amplitude localized to 1-particle sector to two-particle sector. All coupling
constants should result as predictions of the theory since no nonlinearities are introduced.

2. During years this naive and very rough vision has of course developed a lot and is not anymore
quite equivalent with the original insight. In particular, the space-time correlates of Feynman
graphs have emerged from theory as Euclidian space-time regions and the strong form of General
Coordinate Invariance has led to a rather detailed and in many respects un-expected visions.
This picture forces to give up the idea about smooth space-time surfaces and replace space-
time surface with a generalization of Feynman diagram in which vertices represent the failure of
manifold property. I have also startd introduced the word ”world of classical worlds” (WCW)
instead of rather formal ”configuration space”. I hope that ”WCW” does not induce despair in
the reader having tendency to think about the technicalities involved!

3. WCW is endowed with metric and spinor structure so that one can define various metric related
differential operators, say Dirac operator, appearing in the field equations of the theory. The
most ambitious dream is that zero energy states correspond to a complete solution basis for the
Dirac operator of WCW so that this classical free field theory would dictate M-matrices which
form orthonormal rows of what I call U-matrix. Given M-matrix in turn would decompose to a
product of a hermitian density matrix and unitary S-matrix.

M-matrix would define time-like entanglement coefficients between positive and negative energy
parts of zero energy states (all net quantum numbers vanish for them) and can be regarded as a
hermitian quare root of density matrix multiplied by a unitary S-matrix. Quantum theory would
be in well-defined sense a square root of thermodynamics. The orthogonality and hermiticity
of the complex square roots of density matrices commuting with S-matrix means that they
span infinite-dimensional Lie algebra acting as symmetries of the S-matrix. Therefore quantum
TGD would reduce to group theory in well-defined sense: its own symmetries would define the
symmetries of the theory. In fact the Lie algebra of Hermitian M-matrices extends to Kac-
Moody type algebra obtained by multiplying hermitian square roots of density matrices with
powers of the S-matrix. Also the analog of Yangian algebra involving only non-negative powers
of S-matrix is possible.

4. By quantum classical correspondence the construction of WCW spinor structure reduces to the
second quantization of the induced spinor fields at space-time surface. The basic action is so
called modified Dirac action in which gamma matrices are replaced with the modified gamma
matrices defined as contractions of the canonical momentum currents with the imbedding space
gamma matrices. In this manner one achieves super-conformal symmetry and conservation of
fermionic currents among other things and consistent Dirac equation. This modified gamma
matrices define as anticommutators effective metric, which might provide geometrization for
some basic observables of condensed matter physics. The conjecture is that Dirac determinant
for the modified Dirac action gives the exponent of Kähler action for a preferred extremal
as vacuum functional so that one might talk about bosonic emergence in accordance with the
prediction that the gauge bosons and graviton are expressible in terms of bound states of fermion
and antifermion.

The evolution of these basic ideas has been rather slow but has gradually led to a rather beautiful
vision. One of the key problems has been the definition of Kähler function. Kähler function is Kähler
action for a preferred extremal assignable to a given 3-surface but what this preferred extremal is?
The obvious first guess was as absolute minimum of Kähler action but could not be proven to be right
or wrong. One big step in the progress was boosted by the idea that TGD should reduce to almost
topological QFT in which braids wold replace 3-surfaces in finite measurement resolution, which could
be inherent property of the theory itself and imply discretization at partonic 2-surfaces with discrete
points carrying fermion number.

1. TGD as almost topological QFT vision suggests that Kähler action for preferred extremals
reduces to Chern-Simons term assigned with space-like 3-surfaces at the ends of space-time
(recall the notion of causal diamond (CD)) and with the light-like 3-surfaces at which the
signature of the induced metric changes from Minkowskian to Euclidian. Minkowskian and
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Euclidian regions would give at wormhole throats the same contribution apart from coefficients
and in Minkowskian regions the

√
g4 factor would be imaginary so that one would obtain sum of

real term identifiable as Kähler function and imaginary term identifiable as the ordinary action
giving rise to interference effects and stationary phase approximation central in both classical
and quantum field theory. Imaginary contribution - the presence of which I realized only after
33 years of TGD - could also havetopological interpretation as a Morse function. On physical
side the emergence of Euclidian space-time regions is something completely new and leads to a
dramatic modification of the ideas about black hole interior.

2. The manner to achieve the reduction to Chern-Simons terms is simple. The vanishing of Coulom-
bic contribution to Kähler action is required and is true for all known extremals if one makes a
general ansatz about the form of classical conserved currents. The so called weak form of electric-
magnetic duality defines a boundary condition reducing the resulting 3-D terms to Chern-Simons
terms. In this manner almost topological QFT results. But only ”almost” since the Lagrange
multiplier term forcing electric-magnetic duality implies that Chern-Simons action for preferred
extremals depends on metric.

3. A further quite recent hypothesis inspired by effective 2-dimensionality is that Chern-Simons
terms reduce to a sum of two 2-dimensional terms. An imaginary term proportional to the total
area of Minkowskian string world sheets and a real tem proportional to the total area of partonic
2-surfaces or equivalently strings world sheets in Euclidian space-time regions. Also the equality
of the total areas of strings world sheets and partonic 2-surfaces is highly suggestive and would
realize a duality between these two kinds of objects. String world sheets indeed emerge naturally
for the proposed ansatz defining preferred extremals. Therefore Kähler action would have very
stringy character apart from effects due to the failure of the strict determinism meaning that
radiative corrections break the effective 2-dimensionality.

1.3.2 TGD as a generalized number theory

Quantum T(opological)D(ynamics) as a classical spinor geometry for infinite-dimensional configu-
ration space, p-adic numbers and quantum TGD, and TGD inspired theory of consciousness, have
been for last ten years the basic three strongly interacting threads in the tapestry of quantum TGD.
The fourth thread deserves the name ’TGD as a generalized number theory’. It involves three sep-
arate threads: the fusion of real and various p-adic physics to a single coherent whole by requiring
number theoretic universality discussed already, the formulation of quantum TGD in terms of hyper-
counterparts of classical number fields identified as sub-spaces of complexified classical number fields
with Minkowskian signature of the metric defined by the complexified inner product, and the notion
of infinite prime.

p-Adic TGD and fusion of real and p-adiuc physics to single coherent whole

The p-adic thread emerged for roughly ten years ago as a dim hunch that p-adic numbers might be
important for TGD. Experimentation with p-adic numbers led to the notion of canonical identification
mapping reals to p-adics and vice versa. The breakthrough came with the successful p-adic mass
calculations using p-adic thermodynamics for Super-Virasoro representations with the super-Kac-
Moody algebra associated with a Lie-group containing standard model gauge group. Although the
details of the calculations have varied from year to year, it was clear that p-adic physics reduces not
only the ratio of proton and Planck mass, the great mystery number of physics, but all elementary
particle mass scales, to number theory if one assumes that primes near prime powers of two are in a
physically favored position. Why this is the case, became one of the key puzzless and led to a number
of arguments with a common gist: evolution is present already at the elementary particle level and
the primes allowed by the p-adic length scale hypothesis are the fittest ones.

It became very soon clear that p-adic topology is not something emerging in Planck length scale
as often believed, but that there is an infinite hierarchy of p-adic physics characterized by p-adic
length scales varying to even cosmological length scales. The idea about the connection of p-adics
with cognition motivated already the first attempts to understand the role of the p-adics and inspired
’Universe as Computer’ vision but time was not ripe to develop this idea to anything concrete (p-adic
numbers are however in a central role in TGD inspired theory of consciousness). It became however
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obvious that the p-adic length scale hierarchy somehow corresponds to a hierarchy of intelligences and
that p-adic prime serves as a kind of intelligence quotient. Ironically, the almost obvious idea about
p-adic regions as cognitive regions of space-time providing cognitive representations for real regions
had to wait for almost a decade for the access into my consciousness.

There were many interpretational and technical questions crying for a definite answer.

1. What is the relationship of p-adic non-determinism to the classical non-determinism of the
basic field equations of TGD? Are the p-adic space-time region genuinely p-adic or does p-adic
topology only serve as an effective topology? If p-adic physics is direct image of real physics,
how the mapping relating them is constructed so that it respects various symmetries? Is the
basic physics p-adic or real (also real TGD seems to be free of divergences) or both? If it is both,
how should one glue the physics in different number field together to get The Physics? Should
one perform p-adicization also at the level of the configuration space of 3-surfaces? Certainly
the p-adicization at the level of super-conformal representation is necessary for the p-adic mass
calculations.

2. Perhaps the most basic and most irritating technical problem was how to precisely define p-adic
definite integral which is a crucial element of any variational principle based formulation of the
field equations. Here the frustration was not due to the lack of solution but due to the too large
number of solutions to the problem, a clear symptom for the sad fact that clever inventions
rather than real discoveries might be in question. Quite recently I however learned that the
problem of making sense about p-adic integration has been for decades central problem in the
frontier of mathematics and a lot of profound work has been done along same intuitive lines
as I have proceeded in TGD framework. The basic idea is certainly the notion of algebraic
continuation from the world of rationals belonging to the intersection of real world and various
p-adic worlds.

Despite these frustrating uncertainties, the number of the applications of the poorly defined p-adic
physics growed steadily and the applications turned out to be relatively stable so that it was clear
that the solution to these problems must exist. It became only gradually clear that the solution of
the problems might require going down to a deeper level than that represented by reals and p-adics.

The key challenge is to fuse various p-adic physics and real physics to single larger structures.
This has inspired a proposal for a generalization of the notion of number field by fusing real numbers
and various p-adic number fields and their extensions along rationals and possible common algebraic
numbers. This leads to a generalization of the notions of imbedding space and space-time concept and
one can speak about real and p-adic space-time sheets. The quantum dynamics should be such that
it allows quantum transitions transforming space-time sheets belonging to different number fields to
each other. The space-time sheets in the intersection of real and p-adic worlds are of special interest
and the hypothesis is that living matter resides in this intersection. This leads to surprisingly detailed
predictions and far reaching conjectures. For instance, the number theoretic generalization of entropy
concept allows negentropic entanglement central for the applications to living matter.

The basic principle is number theoretic universality stating roughly that the physics in various
number fields can be obtained as completion of rational number based physics to various number
fields. Rational number based physics would in turn describe physics in finite measurement resolution
and cognitive resolution. The notion of finite measurement resolution has become one of the basic
principles of quantum TGD and leads to the notions of braids as representatives of 3-surfaces and
inclusions of hyper-finite factors as a representation for finite measurement resolution.

The role of classical number fields

The vision about the physical role of the classical number fields relies on the notion of number theoretic
compactifiction stating that space-time surfaces can be regarded as surfaces of either M8 or M4×CP2.
As surfaces of M8 identifiable as space of hyper-octonions they are hyper-quaternionic or co-hyper-
quaternionic- and thus maximally associative or co-associative. This means that their tangent space
is either hyper-quaternionic plane of M8 or an orthogonal complement of such a plane. These surface
can be mapped in natural manner to surfaces in M4×CP2 [86] provided one can assign to each point
of tangent space a hyper-complex plane M2(x) ⊂M4. One can also speak about M8 −H duality.
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This vision has very strong predictive power. It predicts that the extremals of Kähler action
correspond to either hyper-quaternionic or co-hyper-quaternionic surfaces such that one can assign
to tangent space at each point of space-time surface a hyper-complex plane M2(x) ⊂ M4. As a
consequence, the M4 projection of space-time surface at each point contains M2(x) and its orthogonal
complement. These distributions are integrable implying that space-time surface allows dual slicings
defined by string world sheets Y 2 and partonic 2-surfaces X2. The existence of this kind of slicing
was earlier deduced from the study of extremals of Kähler action and christened as Hamilton-Jacobi
structure. The physical interpretation of M2(x) is as the space of non-physical polarizations and the
plane of local 4-momentum.

One can fairly say, that number theoretical compactification is responsible for most of the under-
standing of quantum TGD that has emerged during last years. This includes the realization of Equiv-
alence Principle at space-time level, dual formulations of TGD as Minkowskian and Euclidian string
model type theories, the precise identification of preferred extremals of Kähler action as extremals
for which second variation vanishes (at least for deformations representing dynamical symmetries)
and thus providing space-time correlate for quantum criticality, the notion of number theoretic braid
implied by the basic dynamics of Kähler action and crucial for precise construction of quantum TGD
as almost-topological QFT, the construction of configuration space metric and spinor structure in
terms of second quantized induced spinor fields with modified Dirac action defined by Kähler action
realizing automatically the notion of finite measurement resolution and a connection with inclusions
of hyper-finite factors of type II1 about which Clifford algebra of configuration space represents an
example.

The two most important number theoretic conjectures relate to the preferred extremals of Kähler
action. The general idea is that classical dynamics for the preferred extremals of Kähler action should
reduce to number theory: space-time surfaces should be either associative or co-associative in some
sense.

1. The first meaning for associativity (co-associativity) would be that tangent (normal) spaces of
space-time surfaces are quaternionic in some sense and thus associative. This can be formu-
lated in terms of octonionic representation of the imbedding space gamma matrices possible in
dimension D = 8 and states that induced gamma matrices generate quaternionic sub-algebra at
each space-time point. It seems that induced rather than modified gamma matrices must be in
question.

2. Second meaning for associative (co-associativity) would be following. In the case of complex
numbers the vanishing of the real part of real-analytic function defines a 1-D curve. In oct-
nionic case one can decompose octonion to sum of quaternion and quaternion multiplied by an
octonionic imaginary unit. Quaternionicity could mean that space-time surfaces correspond to
the vanishing of the imaginary part of the octonion real-analytic function. Co-quaternionicity
would be defined in an obvious manner. Octonionic real analytic functions form a function field
closed also with respect to the composition of functions. Space-time surfaces would form the
analog of function field with the composition of functions with all operations realized as algebraic
operations for space-time surfaces. Co-associaty could be perhaps seen as an additional feature
making the algebra in question also co-algebra.

3. The third conjecture is that these conjectures are equivalent.

Infinite primes

The discovery of the hierarchy of infinite primes and their correspondence with a hierarchy defined by a
repeatedly second quantized arithmetic quantum field theory gave a further boost for the speculations
about TGD as a generalized number theory. The work with Riemann hypothesis led to further ideas.

After the realization that infinite primes can be mapped to polynomials representable as surfaces
geometrically, it was clear how TGD might be formulated as a generalized number theory with infinite
primes forming the bridge between classical and quantum such that real numbers, p-adic numbers, and
various generalizations of p-adics emerge dynamically from algebraic physics as various completions of
the algebraic extensions of rational (hyper-)quaternions and (hyper-)octonions. Complete algebraic,
topological and dimensional democracy would characterize the theory.
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What is especially satisfying is that p-adic and real regions of the space-time surface could emerge
automatically as solutions of the field equations. In the space-time regions where the solutions of
field equations give rise to in-admissible complex values of the imbedding space coordinates, p-adic
solution can exist for some values of the p-adic prime. The characteristic non-determinism of the p-
adic differential equations suggests strongly that p-adic regions correspond to ’mind stuff’, the regions
of space-time where cognitive representations reside. This interpretation implies that p-adic physics
is physics of cognition. Since Nature is probably an extremely brilliant simulator of Nature, the
natural idea is to study the p-adic physics of the cognitive representations to derive information about
the real physics. This view encouraged by TGD inspired theory of consciousness clarifies difficult
interpretational issues and provides a clear interpretation for the predictions of p-adic physics.

1.3.3 Hierarchy of Planck constants and dark matter hierarchy

By quantum classical correspondence space-time sheets can be identified as quantum coherence regions.
Hence the fact that they have all possible size scales more or less unavoidably implies that Planck
constant must be quantized and have arbitrarily large values. If one accepts this then also the idea
about dark matter as a macroscopic quantum phase characterized by an arbitrarily large value of
Planck constant emerges naturally as does also the interpretation for the long ranged classical electro-
weak and color fields predicted by TGD. Rather seldom the evolution of ideas follows simple linear
logic, and this was the case also now. In any case, this vision represents the fifth, relatively new thread
in the evolution of TGD and the ideas involved are still evolving.

Dark matter as large ~ phase

D. Da Rocha and Laurent Nottale [27] have proposed that Schrödinger equation with Planck constant
~ replaced with what might be called gravitational Planck constant ~gr = GmM

v0
(~ = c = 1). v0 is

a velocity parameter having the value v0 = 144.7± .7 km/s giving v0/c = 4.6× 10−4. This is rather
near to the peak orbital velocity of stars in galactic halos. Also subharmonics and harmonics of v0

seem to appear. The support for the hypothesis coming from empirical data is impressive.
Nottale and Da Rocha believe that their Schrödinger equation results from a fractal hydrodynamics.

Many-sheeted space-time however suggests astrophysical systems are not only quantum systems at
larger space-time sheets but correspond to a gigantic value of gravitational Planck constant. The
gravitational (ordinary) Schrödinger equation would provide a solution of the black hole collapse (IR
catastrophe) problem encountered at the classical level. The resolution of the problem inspired by
TGD inspired theory of living matter is that it is the dark matter at larger space-time sheets which
is quantum coherent in the required time scale [77] .

TGD predicts correctly the value of the parameter v0 assuming that cosmic strings and their decay
remnants are responsible for the dark matter. The harmonics of v0 can be understood as corresponding
to perturbations replacing cosmic strings with their n-branched coverings so that tension becomes
n2-fold: much like the replacement of a closed orbit with an orbit closing only after n turns. 1/n-
sub-harmonic would result when a magnetic flux tube split into n disjoint magnetic flux tubes. Also
a model for the formation of planetary system as a condensation of ordinary matter around quantum
coherent dark matter emerges [77] .

The values of Planck constants postulated by Nottale are gigantic and it is natural to assign them
to the space-time sheets mediating gravitational interaction and identifiable as magnetic flux tubes
(quanta). The magnetic energy of these flux quanta would correspond to dark energy and magnetic
tension would give rise to negative ”pressure” forcing accelerate cosmological expansion. This leads
to a rather detailed vision about the evolution of stars and galaxies identified as bubbles of ordinary
and dark matter inside magnetic flux tubes identifiable as dark energy.

Hierarchy of Planck constants from the anomalies of neuroscience biology

The quantal effects of ELF em fields on vertebrate brain have been known since seventies. ELF em
fields at frequencies identifiable as cyclotron frequencies in magnetic field whose intensity is about 2/5
times that of Earth for biologically important ions have physiological effects and affect also behavior.
What is intriguing that the effects are found only in vertebrates (to my best knowledge). The energies
for the photons of ELF em fields are extremely low - about 10−10 times lower than thermal energy
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at physiological temperatures- so that quantal effects are impossible in the framework of standard
quantum theory. The values of Planck constant would be in these situations large but not gigantic.

This inspired the hypothesis that these photons correspond to so large value of Planck constant
that the energy of photons is above the thermal energy. The proposed interpretation was as dark
photons and the general hypothesis was that dark matter corresponds to ordinary matter with non-
standard value of Planck constant. If only particles with the same value of Planck constant can appear
in the same vertex of Feynman diagram, the phases with different value of Planck constant are dark
relative to each other. The phase transitions changing Planck constant can however make possible
interactions between phases with different Planck constant but these interactions do not manifest
themselves in particle physics. Also the interactions mediated by classical fields should be possible.
Dark matter would not be so dark as we have used to believe.

Also the anomalies of biology support the view that dark matter might be a key player in living
matter.

Does the hierarchy of Planck constants reduce to the vacuum degeneracy of Kähler
action?

This starting point led gradually to the recent picture in which the hierarchy of Planck constants
is postulated to come as integer multiples of the standard value of Planck constant. Given integer
multiple ~ = n~0 of the ordinary Planck constant ~0 is assigned with a multiple singular covering
of the imbedding space [30]. One ends up to an identification of dark matter as phases with non-
standard value of Planck constant having geometric interpretation in terms of these coverings providing
generalized imbedding space with a book like structure with pages labelled by Planck constants or
integers characterizing Planck constant. The phase transitions changing the value of Planck constant
would correspond to leakage between different sectors of the extended imbedding space. The question
is whether these coverings must be postulated separately or whether they are only a convenient
auxiliary tool.

The simplest option is that the hierarchy of coverings of imbedding space is only effective. Many-
sheeted coverings of the imbedding space indeed emerge naturally in TGD framework. The huge
vacuum degeneracy of Kähler action implies that the relationship between gradients of the imbedding
space coordinates and canonical momentum currents is many-to-one: this was the very fact forcing to
give up all the standard quantization recipes and leading to the idea about physics as geometry of the
”world of classical worlds”. If one allows space-time surfaces for which all sheets corresponding to the
same values of the canonical momentum currents are present, one obtains effectively many-sheeted
covering of the imbedding space and the contributions from sheets to the Kähler action are identical.
If all sheets are treated effectively as one and the same sheet, the value of Planck constant is an integer
multiple of the ordinary one. A natural boundary condition would be that at the ends of space-time
at future and past boundaries of causal diamond containing the space-time surface, various branches
co-incide. This would raise the ends of space-time surface in special physical role.

Dark matter as a source of long ranged weak and color fields

Long ranged classical electro-weak and color gauge fields are unavoidable in TGD framework. The
smallness of the parity breaking effects in hadronic, nuclear, and atomic length scales does not however
seem to allow long ranged electro-weak gauge fields. The problem disappears if long range classical
electro-weak gauge fields are identified as space-time correlates for massless gauge fields created by
dark matter. Also scaled up variants of ordinary electro-weak particle spectra are possible. The
identification explains chiral selection in living matter and unbroken U(2)ew invariance and free color
in bio length scales become characteristics of living matter and of bio-chemistry and bio-nuclear
physics. A possible solution of the matter antimatter asymmetry is based on the identification of also
antimatter as dark matter.

1.3.4 TGD as a generalization of physics to a theory consciousness

General coordinate invariance forces the identification of quantum jump as quantum jump between
entire deterministic quantum histories rather than time=constant snapshots of single history. The
new view about quantum jump forces a generalization of quantum measurement theory such that
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observer becomes part of the physical system. Thus a general theory of consciousness is unavoidable
outcome. This theory is developed in detail in the books [87, 15, 67, 13, 38, 47, 50, 79] .

Quantum jump as a moment of consciousness

The identification of quantum jump between deterministic quantum histories (configuration space
spinor fields) as a moment of consciousness defines microscopic theory of consciousness. Quantum
jump involves the steps

Ψi → UΨi → Ψf ,

where U is informational ”time development” operator, which is unitary like the S-matrix charac-
terizing the unitary time evolution of quantum mechanics. U is however only formally analogous to
Schrödinger time evolution of infinite duration although there is no real time evolution involved. It is
not however clear whether one should regard U-matrix and S-matrix as two different things or not: U -
matrix is a completely universal object characterizing the dynamics of evolution by self-organization
whereas S-matrix is a highly context dependent concept in wave mechanics and in quantum field
theories where it at least formally represents unitary time translation operator at the limit of an in-
finitely long interaction time. The S-matrix understood in the spirit of superstring models is however
something very different and could correspond to U-matrix.

The requirement that quantum jump corresponds to a measurement in the sense of quantum field
theories implies that each quantum jump involves localization in zero modes which parameterize also
the possible choices of the quantization axes. Thus the selection of the quantization axes performed
by the Cartesian outsider becomes now a part of quantum theory. Together these requirements imply
that the final states of quantum jump correspond to quantum superpositions of space-time surfaces
which are macroscopically equivalent. Hence the world of conscious experience looks classical. At
least formally quantum jump can be interpreted also as a quantum computation in which matrix U
represents unitary quantum computation which is however not identifiable as unitary translation in
time direction and cannot be ’engineered’.

The notion of self

The concept of self is absolutely essential for the understanding of the macroscopic and macro-temporal
aspects of consciousness. Self corresponds to a subsystem able to remain un-entangled under the
sequential informational ’time evolutions’ U . Exactly vanishing entanglement is practically impossible
in ordinary quantum mechanics and it might be that ’vanishing entanglement’ in the condition for
self-property should be replaced with ’subcritical entanglement’. On the other hand, if space-time
decomposes into p-adic and real regions, and if entanglement between regions representing physics in
different number fields vanishes, space-time indeed decomposes into selves in a natural manner.

It is assumed that the experiences of the self after the last ’wake-up’ sum up to single average
experience. This means that subjective memory is identifiable as conscious, immediate short term
memory. Selves form an infinite hierarchy with the entire Universe at the top. Self can be also
interpreted as mental images: our mental images are selves having mental images and also we represent
mental images of a higher level self. A natural hypothesis is that self S experiences the experiences
of its subselves as kind of abstracted experience: the experiences of subselves Si are not experienced
as such but represent kind of averages 〈Sij〉 of sub-subselves Sij . Entanglement between selves, most
naturally realized by the formation of join along boundaries bonds between cognitive or material space-
time sheets, provides a possible a mechanism for the fusion of selves to larger selves (for instance, the
fusion of the mental images representing separate right and left visual fields to single visual field) and
forms wholes from parts at the level of mental images.

An attractive possibility suggested by zero energy ontology is that the notions of self and quantum
jump reduce to each other and that a fractal hierarchy of quantum jumps within quantum jumps
is enough. CDs would serve as imbedding space correlates of selves and quantum jumps would be
followed by cascades of state function reductions beginning from given CD and proceeding downwards
to the smaller scales (smaller CDs). State function reduction cascades could also take place in parallel
branches of the quantum state. One ends up with concrete ideas about how the arrow of geometric
time is induced from that of subjective time defined by the experiences induced by the sequences
of quantum jumps for sub-selves of self. One ends also ends up with concrete ideas about how the
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localization of the contents of sensory experience and cognition to the upper boundaries of CD could
take place.

Relationship to quantum measurement theory

The third basic element relates TGD inspired theory of consciousness to quantum measurement theory.
The assumption that localization occurs in zero modes in each quantum jump implies that the world
of conscious experience looks classical. It also implies the state function reduction of the standard
quantum measurement theory as the following arguments demonstrate (it took incredibly long time
to realize this almost obvious fact!).

1. The standard quantum measurement theory a la von Neumann involves the interaction of brain
with the measurement apparatus. If this interaction corresponds to entanglement between mi-
croscopic degrees of freedom m with the macroscopic effectively classical degrees of freedom M
characterizing the reading of the measurement apparatus coded to brain state, then the reduc-
tion of this entanglement in quantum jump reproduces standard quantum measurement theory
provide the unitary time evolution operator U acts as flow in zero mode degrees of freedom and
correlates completely some orthonormal basis of configuration space spinor fields in non-zero
modes with the values of the zero modes. The flow property guarantees that the localization is
consistent with unitarity: it also means 1-1 mapping of quantum state basis to classical variables
(say, spin direction of the electron to its orbit in the external magnetic field).

2. Since zero modes represent classical information about the geometry of space-time surface
(shape, size, classical Kähler field,...), they have interpretation as effectively classical degrees
of freedom and are the TGD counterpart of the degrees of freedom M representing the reading
of the measurement apparatus. The entanglement between quantum fluctuating non-zero modes
and zero modes is the TGD counterpart for the m−M entanglement. Therefore the localization
in zero modes is equivalent with a quantum jump leading to a final state where the measurement
apparatus gives a definite reading.

This simple prediction is of utmost theoretical importance since the black box of the quantum
measurement theory is reduced to a fundamental quantum theory. This reduction is implied by the
replacement of the notion of a point like particle with particle as a 3-surface. Also the infinite-
dimensionality of the zero mode sector of the configuration space of 3-surfaces is absolutely essential.
Therefore the reduction is a triumph for quantum TGD and favors TGD against string models.

Standard quantum measurement theory involves also the notion of state preparation which reduces
to the notion of self measurement. Each localization in zero modes is followed by a cascade of self
measurements leading to a product state. This process is obviously equivalent with the state prepa-
ration process. Self measurement is governed by the so called Negentropy Maximization Principle
(NMP) stating that the information content of conscious experience is maximized. In the self mea-
surement the density matrix of some subsystem of a given self localized in zero modes (after ordinary
quantum measurement) is measured. The self measurement takes place for that subsystem of self for
which the reduction of the entanglement entropy is maximal in the measurement. In p-adic context
NMP can be regarded as the variational principle defining the dynamics of cognition. In real context
self measurement could be seen as a repair mechanism allowing the system to fight against quantum
thermalization by reducing the entanglement for the subsystem for which it is largest (fill the largest
hole first in a leaking boat).

Selves self-organize

The fourth basic element is quantum theory of self-organization based on the identification of quantum
jump as the basic step of self-organization [74] . Quantum entanglement gives rise to the generation
of long range order and the emergence of longer p-adic length scales corresponds to the emergence of
larger and larger coherent dynamical units and generation of a slaving hierarchy. Energy (and quantum
entanglement) feed implying entropy feed is a necessary prerequisite for quantum self-organization.
Zero modes represent fundamental order parameters and localization in zero modes implies that the
sequence of quantum jumps can be regarded as hopping in the zero modes so that Haken’s classical
theory of self organization applies almost as such. Spin glass analogy is a further important element:
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self-organization of self leads to some characteristic pattern selected by dissipation as some valley of
the ”energy” landscape.

Dissipation can be regarded as the ultimate Darwinian selector of both memes and genes. The
mathematically ugly irreversible dissipative dynamics obtained by adding phenomenological dissipa-
tion terms to the reversible fundamental dynamical equations derivable from an action principle can be
understood as a phenomenological description replacing in a well defined sense the series of reversible
quantum histories with its envelope.

Classical non-determinism of Kähler action

The fifth basic element are the concepts of association sequence and cognitive space-time sheet. The
huge vacuum degeneracy of the Kähler action suggests strongly that the absolute minimum space-time
is not always unique. For instance, a sequence of bifurcations can occur so that a given space-time
branch can be fixed only by selecting a finite number of 3-surfaces with time like(!) separations on the
orbit of 3-surface. Quantum classical correspondence suggest an alternative formulation. Space-time
surface decomposes into maximal deterministic regions and their temporal sequences have interpre-
tation a space-time correlate for a sequence of quantum states defined by the initial (or final) states
of quantum jumps. This is consistent with the fact that the variational principle selects preferred
extremals of Kähler action as generalized Bohr orbits.

In the case that non-determinism is located to a finite time interval and is microscopic, this sequence
of 3-surfaces has interpretation as a simulation of a classical history, a geometric correlate for contents
of consciousness. When non-determinism has long lasting and macroscopic effect one can identify it as
volitional non-determinism associated with our choices. Association sequences relate closely with the
cognitive space-time sheets defined as space-time sheets having finite time duration and psychological
time can be identified as a temporal center of mass coordinate of the cognitive space-time sheet. The
gradual drift of the cognitive space-time sheets to the direction of future force by the geometry of the
future light cone explains the arrow of psychological time.

p-Adic physics as physics of cognition and intentionality

The sixth basic element adds a physical theory of cognition to this vision. TGD space-time decomposes
into regions obeying real and p-adic topologies labelled by primes p = 2, 3, 5, .... p-Adic regions obey
the same field equations as the real regions but are characterized by p-adic non-determinism since
the functions having vanishing p-adic derivative are pseudo constants which are piecewise constant
functions. Pseudo constants depend on a finite number of positive pinary digits of arguments just like
numerical predictions of any theory always involve decimal cutoff. This means that p-adic space-time
regions are obtained by gluing together regions for which integration constants are genuine constants.
The natural interpretation of the p-adic regions is as cognitive representations of real physics. The
freedom of imagination is due to the p-adic non-determinism. p-Adic regions perform mimicry and
make possible for the Universe to form cognitive representations about itself. p-Adic physics space-
time sheets serve also as correlates for intentional action.

A more more precise formulation of this vision requires a generalization of the number concept
obtained by fusing reals and p-adic number fields along common rationals (in the case of algebraic
extensions among common algebraic numbers). This picture is discussed in [85] . The application
this notion at the level of the imbedding space implies that imbedding space has a book like structure
with various variants of the imbedding space glued together along common rationals (algebraics). The
implication is that genuinely p-adic numbers (non-rationals) are strictly infinite as real numbers so
that most points of p-adic space-time sheets are at real infinity, outside the cosmos, and that the
projection to the real imbedding space is discrete set of rationals (algebraics). Hence cognition and
intentionality are almost completely outside the real cosmos and touch it at a discrete set of points
only.

This view implies also that purely local p-adic physics codes for the p-adic fractality characterizing
long range real physics and provides an explanation for p-adic length scale hypothesis stating that
the primes p ' 2k, k integer are especially interesting. It also explains the long range correlations
and short term chaos characterizing intentional behavior and explains why the physical realizations
of cognition are always discrete (say in the case of numerical computations). Furthermore, a concrete
quantum model for how intentions are transformed to actions emerges.
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The discrete real projections of p-adic space-time sheets serve also space-time correlate for a logical
thought. It is very natural to assign to p-adic pinary digits a p-valued logic but as such this kind
of logic does not have any reasonable identification. p-Adic length scale hypothesis suggest that the
p = 2k−n pinary digits represent a Boolean logic Bk with k elementary statements (the points of the
k-element set in the set theoretic realization) with n taboos which are constrained to be identically
true.

p-Adic and dark matter hierarchies and hierarchy of moments of consciousness

Dark matter hierarchy assigned to a spectrum of Planck constant having arbitrarily large values brings
additional elements to the TGD inspired theory of consciousness.

1. Macroscopic quantum coherence can be understood since a particle with a given mass can in
principle appear as arbitrarily large scaled up copies (Compton length scales as ~). The phase
transition to this kind of phase implies that space-time sheets of particles overlap and this makes
possible macroscopic quantum coherence.

2. The space-time sheets with large Planck constant can be in thermal equilibrium with ordinary
ones without the loss of quantum coherence. For instance, the cyclotron energy scale associated
with EEG turns out to be above thermal energy at room temperature for the level of dark matter
hierarchy corresponding to magnetic flux quanta of the Earth’s magnetic field with the size scale
of Earth and a successful quantitative model for EEG results [27] .

Dark matter hierarchy leads to detailed quantitative view about quantum biology with several
testable predictions [27] . The general prediction is that Universe is a kind of inverted Mandelbrot
fractal for which each bird’s eye of view reveals new structures in long length and time scales rep-
resenting scaled down copies of standard physics and their dark variants. These structures would
correspond to higher levels in self hierarchy. This prediction is consistent with the belief that 75 per
cent of matter in the universe is dark.

1. Living matter and dark matter

Living matter as ordinary matter quantum controlled by the dark matter hierarchy has turned out
to be a particularly successful idea. The hypothesis has led to models for EEG predicting correctly
the band structure and even individual resonance bands and also generalizing the notion of EEG [27]
. Also a generalization of the notion of genetic code emerges resolving the paradoxes related to the
standard dogma [48, 27] . A particularly fascinating implication is the possibility to identify great
leaps in evolution as phase transitions in which new higher level of dark matter emerges [27] .

It seems safe to conclude that the dark matter hierarchy with levels labelled by the values of
Planck constants explains the macroscopic and macro-temporal quantum coherence naturally. That
this explanation is consistent with the explanation based on spin glass degeneracy is suggested by
following observations. First, the argument supporting spin glass degeneracy as an explanation of
the macro-temporal quantum coherence does not involve the value of ~ at all. Secondly, the failure
of the perturbation theory assumed to lead to the increase of Planck constant and formation of
macroscopic quantum phases could be precisely due to the emergence of a large number of new degrees
of freedom due to spin glass degeneracy. Thirdly, the phase transition increasing Planck constant has
concrete topological interpretation in terms of many-sheeted space-time consistent with the spin glass
degeneracy.

2. Dark matter hierarchy and the notion of self

The vision about dark matter hierarchy leads to a more refined view about self hierarchy and
hierarchy of moments of consciousness [26, 27] . The larger the value of Planck constant, the longer
the subjectively experienced duration and the average geometric duration T (k) ∝ ~ of the quantum
jump.

Quantum jumps form also a hierarchy with respect to p-adic and dark hierarchies and the geometric
durations of quantum jumps scale like ~. Dark matter hierarchy suggests also a slight modification of
the notion of self. Each self involves a hierarchy of dark matter levels, and one is led to ask whether
the highest level in this hierarchy corresponds to single quantum jump rather than a sequence of
quantum jumps. The averaging of conscious experience over quantum jumps would occur only for
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sub-selves at lower levels of dark matter hierarchy and these mental images would be ordered, and
single moment of consciousness would be experienced as a history of events. The quantum parallel
dissipation at the lower levels would give rise to the experience of flow of time. For instance, hadron
as a macro-temporal quantum system in the characteristic time scale of hadron is a dissipating system
at quark and gluon level corresponding to shorter p-adic time scales. One can ask whether even entire
life cycle could be regarded as a single quantum jump at the highest level so that consciousness would
not be completely lost even during deep sleep. This would allow to understand why we seem to know
directly that this biological body of mine existed yesterday.

The fact that we can remember phone numbers with 5 to 9 digits supports the view that self corre-
sponds at the highest dark matter level to single moment of consciousness. Self would experience the
average over the sequence of moments of consciousness associated with each sub-self but there would
be no averaging over the separate mental images of this kind, be their parallel or serial. These mental
images correspond to sub-selves having shorter wake-up periods than self and would be experienced as
being time ordered. Hence the digits in the phone number are experienced as separate mental images
and ordered with respect to experienced time.

3. The time span of long term memories as signature for the level of dark matter hierarchy

The basic question is what time scale can one assign to the geometric duration of quantum jump
measured naturally as the size scale of the space-time region about which quantum jump gives con-
scious information. This scale is naturally the size scale in which the non-determinism of quantum
jump is localized. During years I have made several guesses about this time scales but zero energy
ontology and the vision about fractal hierarchy of quantum jumps within quantum jumps leads to a
unique identification.

Causal diamond as an imbedding space correlate of self defines the time scale τ for the space-
time region about which the consciousness experience is about. The temporal distances between the
tips of CD as come as integer multiples of CP2 length scales and for prime multiples correspond to
what I have christened as secondary p-adic time scales. A reasonable guess is that secondary p-adic
time scales are selected during evolution and the primes near powers of two are especially favored.
For electron, which corresponds to Mersenne prime M127 = 2127 − 1 this scale corresponds to .1
seconds defining the fundamental time scale of living matter via 10 Hz biorhythm (alpha rhythm).
The unexpected prediction is that all elementary particles correspond to time scales possibly relevant
to living matter.

Dark matter hierarchy brings additional finesse. For the higher levels of dark matter hierarchy τ
is scaled up by ~/~0. One could understand evolutionary leaps as the emergence of higher levels at
the level of individual organism making possible intentionality and memory in the time scale defined
τ .

Higher levels of dark matter hierarchy provide a neat quantitative view about self hierarchy and
its evolution. Various levels of dark matter hierarchy would naturally correspond to higher levels in
the hierarchy of consciousness and the typical duration of life cycle would give an idea about the
level in question. The level would determine also the time span of long term memories as discussed
in [27] . The emergence of these levels must have meant evolutionary leap since long term memory is
also accompanied by ability to anticipate future in the same time scale. This picture would suggest
that the basic difference between us and our cousins is not at the level of genome as it is usually
understood but at the level of the hierarchy of magnetic bodies [48, 27]. In fact, higher levels of dark
matter hierarchy motivate the introduction of the notions of super-genome and hyper-genome. The
genomes of entire organ can join to form super-genome expressing genes coherently. Hyper-genomes
would result from the fusion of genomes of different organisms and collective levels of consciousness
would express themselves via hyper-genome and make possible social rules and moral.

1.4 Bird’s eye of view about the topics of the book

This book tries to give an overall view about quantum TGD as it stands now. The topics of this book
are following.

1. In the first part of the book I will try to give an overall view about the evolution of TGD and
about quantum TGD in its recent form. I cannot avoid the use of various concepts without
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detailed definitions and my hope is that reader only gets a bird’s eye of view about TGD. Two
visions about physics are discussed. According to the first vision physical states of the Universe
correspond to classical spinor fields in the world of the classical worlds identified as 3-surfaces
or equivalently as corresponding 4-surfaces analogous to Bohr orbits and identified as special
extrema of Kähler action. TGD as a generalized number theory vision leading naturally also to
the emergence of p-adic physics as physics of cognitive representations is the second vision.

2. The second part of the book is devoted to the vision about physics as infinite-dimensional
configuration space geometry. The basic idea is that classical spinor fields in infinite-dimensional
”world of classical worlds”, space of 3-surfaces in M4 ×CP2 describe the quantum states of the
Universe. Quantum jump remains the only purely quantal aspect of quantum theory in this
approach since there is no quantization at the level of the configuration space. Space-time
surfaces correspond to special extremals of the Kähler action analogous to Bohr orbits and
define what might be called classical TGD discussed in the first chapter. The construction of
the configuration space geometry and spinor structure are discussed in remaining chapters.

3. The third part of the book describes physics as generalized number theory vision. Number
theoretical vision involves three loosely related approaches: fusion of real and various p-adic
physics to a larger whole as algebraic continuations of what might be called rational physics;
space-time as a hyper-quaternionic surface of hyper-octonion space, and space-time surfaces as
a representations of infinite primes.

4. The first chapter in fourth part of the book summarizes the basic ideas related to Neumann
algebras known as hyper-finite factors of type II1 about which configuration space Clifford
algebra represents canonical example. Second chapter is devoted to the basic ideas related to
the hierarchy of Planck constants and related generalization of the notion of imbedding space
to a book like structure.

5. The physical applications of TGD are the topic of the fifth part of the book. The cosmo-
logical and astrophysical applications of the many-sheeted space-time are summarized and the
applications to elementary particle physics are discussed at the general level. TGD explains
particle families in terms of generation genus correspondences (particle families correspond to
2-dimensional topologies labelled by genus). The notion of elementary particle vacuum func-
tional is developed leading to an argument that the number of light particle families is three
is discussed. The general theory for particle massivation based on p-adic thermodynamics is
discussed at the general level. The detailed calculations of elementary particle masses are not
however carried out in this book.

The seven online books about TGD [94, 72, 73, 83, 61, 55, 80] and eight online books about TGD
inspired theory of consciousness and quantum biology [87, 15, 67, 13, 38, 47, 50, 79] are warmly
recommended for the reader willing to get overall view about what is involved.

1.5 The contents of the book

1.5.1 PART I: General Overview

Topological Geometrodynamics: Three Visions

In this chapter I will discuss three basic visions about quantum Topological Geometrodynamics (TGD).
It is somewhat matter of taste which idea one should call a vision and the selection of these three in
a special role is what I feel natural just now.

1. The first vision is generalization of Einstein’s geometrization program based on the idea that
the Kähler geometry of the world of classical worlds (WCW) with physical states identified as
classical spinor fields on this space would provide the ultimate formulation of physics.

2. Second vision is number theoretical and involves three threads. The first thread relies on the
idea that it should be possible to fuse real number based physics and physics associated with
various p-adic number fields to single coherent whole by a proper generalization of number
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concept. Second thread is based on the hypothesis that classical number fields could allow to
understand the fundamental symmetries of physics and and imply quantum TGD from purely
number theoretical premises with associativity defining the fundamental dynamical principle
both classically and quantum mechanically. The third threadrelies on the notion of infinite
primes whose construction has amazing structural similarities with second quantization of super-
symmetric quantum field theories. In particular, the hierarchy of infinite primes and integers
allows to generalize the notion of numbers so that given real number has infinitely rich number
theoretic anatomy based on the existence of infinite number of real units.

3. The third vision is based on TGD inspired theory of consciousness, which can be regarded as
an extension of quantum measurement theory to a theory of consciousness raising observer from
an outsider to a key actor of quantum physics.

TGD Inspired Theory of Consciousness

The basic ideas and implications of TGD inspired theory of consciousness are briefly summarized.
The notions of quantum jump and self can be unified in the recent formulation of TGD relying on
dark matter hierarchy characterized by increasing values of Planck constant. Negentropy Maximiza-
tion Principle serves as a basic variational principle for the dynamics of quantum jump. The new
view about the relation of geometric and subjective time leads to a new view about memory and
intentional action. The quantum measurement theory based on finite measurement resolution and
realized in terms of hyper-finite factors of type II1 justifies the notions of sharing of mental images
and stereo-consciousness deduced earlier on basis of quantum classical correspondence. Qualia reduce
to quantum number increments associated with quantum jump. Self-referentiality of consciousness
can be understood from quantum classical correspondence implying a symbolic representation of con-
tents of consciousness at space-time level updated in each quantum jump. p-Adic physics provides
space-time correlates for cognition and intentionality.

Overall View About Evolution of TGD

This chapter provides a bird’s eye view about evolution of TGD with the hope that this kind of
summary might make it easier to follow the more technical representation provided by sub-sequent
chapters. The geometrization of fundamental interactions assuming that space-times are representable
as 4-surfaces of H = M4

+ × CP2 is wherefrom everything began. The two manners to understand
TGD is TGD as a Poincare invariant theory of gravitation obtained by fusing special and general
relativities, and TGD as a generalization of string model obtained my replacing 1-dimensional strings
with 3-surfaces. The fusion of these approaches leads to the notion of the many-sheeted space-time.

The evolution of quantum TGD involve five threads which have become more and more entan-
gled with each other. The first great vision was the reduction of the entire quantum physics (apart
from quantum jump) to the geometry of classical spinor fields of the infinite-dimensional space of
3-surfaces in H, the great idea being that infinite-dimensional Kähler geometric existence and thus
physics is unique from the requirement that it is free of infinities. The outcome is geometrization and
generalization of the known structures of the quantum field theory and of string models.

The second thread is p-adic physics. p-Adic physics was initiated by more or less accidental
observations about reduction of basic mass scale ratios to the ratios of square roots of Mersenne
primes and leading to the p-adic thermodynamics explaining elementary particle mass scales and
masses with an unexpected success. p-Adic physics turned eventually to be the physics of cognition
and intentionality. Consciousness theory based ideas have led to a generalization of the notion of
number obtained by gluing real numbers and various p-adic number fields along common rationals to
a more general structure and implies that many-sheeted space-time contains also p-adic space-time
sheets serving as space-time correlates of cognition and intentionality. The hypothesis that real and
p-adic physics can be regarded as algebraic continuation of rational number based physics provides
extremely strong constraints on the general structure of quantum TGD.

TGD inspired theory of consciousness can be seen as a generalization of quantum measurement
theory replacing the notion of observer as an outsider with the notion of self. The detailed analysis of
what happens in quantum jump have brought considerable understanding about the basic structure
of quantum TGD itself. It seems that even quantum jump itself could be seen as a number theoretical
necessity in the sense that state function reduction and state preparation by self measurements are
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necessary in order to reduce the generalized quantum state which is a formal superposition over
components in different number fields to a state which contains only rational or finitely-extended
rational entanglement identifiable as bound state entanglement. The number theoretical information
measures generalizing Shannon entropy (always non-negative) are one of the important outcomes of
consciousness theory combined with p-adic physics.

Physics as a generalized number theory is the fourth thread. The key idea is that the notion of
divisibility could make sense also for literally infinite numbers and perhaps make them useful from the
point of view of physicist. The great surprise was that the construction of infinite primes corresponds
to the repeated quantization of a super-symmetric arithmetic quantum field theory. This led to the
vision about physics as a generalized number theory involving infinite primes, integers, rationals and
reals, as well as their quaternionic and octonionic counterparts. A further generalization is based on
the generalization of the number concept already mentioned. Space-time surfaces could be regarded
in this framework as concrete representations for infinite primes and integers, whereas the dimensions
8 and 4 for imbedding space and space-time surface could be seen as reflecting the dimensions of
octonions and quaternions and their hyper counterparts obtained by multiplying imaginary units by√
−1. Also the dimension 2 emerges naturally as the maximal dimension of commutative sub-number

field and relates to the ordinary conformal invariance central also for string models.
By quantum classical correspondence space-time sheets can be identified as quantum coherence

regions. Hence the fact that they have all possible size scales more or less unavoidably implies that
Planck constant must be quantized and have arbitrarily large values. If one accepts this then also
the idea about dark matter as a macroscopic quantum phase characterized by an arbitrarily large
value of Planck constant emerges naturally as does also the interpretation for the long ranged classical
electro-weak and color fields predicted by TGD. Rather seldom the evolution of ideas follows simple
linear logic, and this was the case also now. In any case, this vision represents the fifth, relatively new
thread in the evolution of TGD and the ideas involved are still evolving.

This chapter represents a overall view about evolution of classical TGD and of p-adic concepts, a
summary of the ideas generated by TGD inspired theory of consciousness, the vision about physics as
a generalized number theory.

Overall View About Quantum TGD: Part I

This chapter is the first one of the two chapters providing a summary about evolution of quantum TGD
in nearly chronological order. By their nature these chapters are dynamical and I cannot guarantee
internal consistency since the ideas discussed are those under most vigorous development. The dis-
cussions are based on the general vision that quantum states of the Universe correspond to the modes
of classical spinor fields in the ”world of the classical worlds” identified as the infinite-dimensional
configuration space of 3-surfaces of H = M4 × CP2 (more or less-equivalently, the corresponding
4-surfaces defining generalized Bohr orbits). The following topics are discussed on basis of this vision
in this chapter

In this chapter the discussion is mostly concentrated on general ideas whereas the topics related to
the construction of M-matrix are discussed on the second chapter. TGD relies heavily on geometric
ideas and number theoretical ideas, which have gradually generalized during the years.

1. The basic vision is that it is possible to reduce quantum theory to configuration space geometry
and spinor structure. The geometrization of loop spaces inspires the idea that the mere exis-
tence of Riemann connection fixes configuration space Kähler geometry uniquely. Accordingly,
configuration space can be regarded as a union of infinite-dimensional symmetric spaces la-
belled by zero modes labelling classical non-quantum fluctuating degrees of freedom. The huge
symmetries of the configuration space geometry deriving from the light-likeness of 3-surfaces
and from the special conformal properties of the boundary of 4-D light-cone would guarantee
the maximal isometry group necessary for the symmetric space property. Quantum criticality
is the fundamental hypothesis allowing to fix the Kähler function and thus dynamics of TGD
uniquely. Quantum criticality leads to surprisingly strong predictions about the evolution of
coupling constants.

2. Configuration space spinors correspond to Fock states and anti-commutation relations for fermionic
oscillator operators correspond to anti-commutation relations for the gamma matrices of the con-
figuration space. Configuration space spinors define a von Neumann algebra known as hyper-
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finite factor of type II1 (HFFs). This has led to a profound understanding of quantum TGD.
The outcome of this approach is that the exponents of Kähler function and Chern-Simons action
are not fundamental objects but reduce to the Dirac determinant associated with the modified
Dirac operator assigned to the light-like 3-surfaces.

3. p-Adic mass calculations relying on p-adic length scale hypothesis led to an understanding of
elementary particle masses using only super-conformal symmetries and p-adic thermodynamics.
The need to fuse real physics and various p-adic physics to single coherent whole led to a
generalization of the notion of number obtained by gluing together reals and p-adics together
along common rationals and algebraics. The interpretation of p-adic space-time sheets is as
correlates for cognition and intentionality. p-Adic and real space-time sheets intersect along
common rationals and algebraics and the subset of these points defines what I call number
theoretic braid in terms of which both configuration space geometry and S-matrix elements
should be expressible. Thus one would obtain number theoretical discretization which involves
no adhoc elements and is inherent to the physics of TGD.

4. The work with HFFs combined with experimental input led to the notion of hierarchy of Planck
constants interpreted in terms of dark matter. The hierarchy is realized via a generalization of
the notion of imbedding space obtained by gluing infinite number of its variants along common
lower-dimensional quantum critical sub-manifolds. This leads to the identification of number
theoretical braids as points of partonic 2-surface which correspond to the minima of generalized
eigenvalue of Dirac operator, a scalar field to which Higgs vacuum expectation is proportional
to. Higgs vacuum expectation has thus a purely geometric interpretation. This leads to an
explicit formula for the Dirac determinant. What is remarkable is that the construction gives
also the 4-D space-time sheets associated with the light-like orbits of partonic 2-surfaces: they
should correspond to preferred extremals of Kähler action. Thus hierarchy of Planck constants
is now an essential part of construction of quantum TGD and of mathematical realization of the
notion of quantum criticality.

5. HFFs lead also to an idea about how entire TGD emerges from classical number fields, actu-
ally their complexifications. In particular, CP2 could be interpreted as a structure related to
octonions. This would mean that TGD could be seen also as a generalized number theory.

Overall View About Quantum TGD: Part II

This chapter is the second one of two chapters providing a summary about evolution of quantum TGD
in nearly chronological order. By their nature these chapters are dynamical and I cannot guarantee
internal consistency since the ideas discussed are those under most vigorous development. In this
chapter ideas related to the construction of S-matrix and coupling constant evolution are discussed.

The construction of S-matrix involves several ideas that have emerged during last years.

1. Zero energy ontology motivated originally by TGD inspired cosmology means that physical
states have vanishing net quantum numbers and are decomposable to positive and negative en-
ergy parts separated by a temporal distance characterizing the system as space-time sheet of
finite size in time direction. The particle physics interpretation is as initial and final states of
a particle reaction. S-matrix and density matrix are unified to the notion of M-matrix express-
ible as a product of square root of density matrix and of unitary S-matrix. Thermodynamics
becomes therefore a part of quantum theory. One must distinguish M-matrix from U-matrix
defined between zero energy states and analogous to S-matrix and characterizing the unitary
process associated with quantum jump. U-matrix is most naturally related to the description of
intentional action since in a well-defined sense it has elements between physical systems corre-
sponding to different number fields.

2. The notion of measurement resolution represented in terms of inclusions of HFFs is an essen-
tial element of the picture. Measurement resolution corresponds to the action of the included
sub-algebra creating zero energy states in time scales shorter than the cutoff scale. This alge-
bra effectively replaces complex numbers as coefficient fields and the condition that its action
commutes with the M-matrix implies that M-matrix corresponds to Connes tensor product.
Together with super-conformal symmetries this fixes possible M-matrices to a very high degree.
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3. Zero energy ontology leads to profoundly new view about the notion of virtual particle allowing
to prove that the M-matrix is finite and that the number of Feynman diagrams contributing to
given reaction is finite if particles have p-adic thermal mass.

4. The symmetric space property of world of classical worlds (WCW) allows to reduce WCW
functional integral to Fourier analysis in WCW having a direct generalization to p-adic context
so that the great dream about algebraic universality can be realized.

TGD and M-Theory

In this chapter a critical comparison of M-theory and TGD as two competing theories is carried out.
Dualities and black hole physics are regarded as basic victories of M-theory.

a) The counterpart of electric magnetic duality plays an important role also in TGD and it has
become clear that it might change the sign of Kähler coupling strength rather than leaving it invariant.
The different signs would be related to different time orientations of the space-time sheets. This option
is favored also by TGD inspired cosmology but unitarity seems to exclude it.

b) The AdS/CFT duality of Maldacena involved with the quantum gravitational holography has a
direct counterpart in TGD with 3-dimensional causal determinants serving as holograms so that the
construction of absolute minima of Kähler action reduces to a local problem.

c) The attempts to develop further the nebulous idea about space-time surfaces as quaternionic
sub-manifolds of an octonionic imbedding space led to the realization of duality which could be called
number theoretical spontaneous compactification. Space-time can be regarded equivalently as a hyper-
quaternionic 4-surface in M8 with hyper-octonionic structure or as a 4-surface in M4 × CP2.

d) The duality of string models relating Kaluza-Klein quantum numbers with YM quantum num-
bers could generalize to a duality between 7-dimensional light like causal determinants of the imbed-
ding space (analogs of ”big bang”) and 3-dimensional light like causal determinants of space-time
surface (analogs of black hole horizons).

e) The notion of cotangent bundle of configuration space of 3-surfaces suggests the interpretation
of the number-theoretical compactification as a wave-particle duality in infinite-dimensional context.
Also the duality of hyper-quaternionic and co-hyper-quaternionic 4-surfaces could be understood anal-
ogously. These ideas generalize at the formal level also to the M-theory assuming that stringy config-
uration space is introduced. The existence of Kähler metric very probably does not allow dynamical
target space.

In TGD framework black holes are possible but putting black holes and particles in the same
basket seems to be mixing of apples with oranges. The role of black hole horizons is taken in TGD
by 3-D light like causal determinants, which are much more general objects. Black hole-elementary
particle correspondence and p-adic length scale hypothesis have already earlier led to a formula for
the entropy associated with elementary particle horizon.

The recent findings from RHIC have led to the realization that TGD predicts black hole like
objects in all length scales. They are identifiable as highly tangled magnetic flux tubes in Hagedorn
temperature and containing conformally confined matter with a large Planck constant and behaving
like dark matter in a macroscopic quantum phase. The fact that string like structures in macroscopic
quantum states are ideal for topological quantum computation modifies dramatically the traditional
view about black holes as information destroyers.

The discussion of the basic weaknesses of M-theory is motivated by the fact that the few predictions
of the theory are wrong which has led to the introduction of anthropic principle to save the theory.
The mouse as a tailor history of M-theory, the lack of a precise problem to which M-theory would be
a solution, the hard nosed reductionism, and the censorship in Los Alamos archives preventing the
interaction with competing theories could be seen as the basic reasons for the recent blind alley in
M-theory.

1.5.2 PART II: Physics as Infinite-dimensional Geometry and Generalized
Number Theory: Basic Visions

The geometry of the world of classical worlds

The topics of this chapter are the purely geometric aspects of the vision about physics as an infinite-
dimensional Kähler geometry of the ”world of classical worlds”, with ” classical world” identified either
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as 3-D surface of the unique Bohr orbit like 4-surface traversing through it. The non-determinism of
Kähler action forces to generalize the notion of 3-surfaces so that unions of space-like surfaces with
time like separations must be allowed. The considerations are restricted mostly to real context and
the problems related to the p-adicization are discussed later.

There are two separate tasks involved.

1. Provide configuration space of 3-surfaces with Kähler geometry which is consistent with 4-
dimensional general coordinate invariance so that the metric is Diff4 degenerate. General co-
ordinate invariance implies that the definition of metric must assign to a give 3-surface X3 a
4-surface as a kind of Bohr orbit X4(X3).

2. Provide the configuration space with a spinor structure. The great idea is to identify config-
uration space gamma matrices in terms of super algebra generators expressible using second
quantized fermionic oscillator operators for induced free spinor fields at the space-time surface
assignable to a given 3-surface. The isometry generators and contractions of Killing vectors with
gamma matrices would thus form a generalization of Super Kac-Moody algebra.

From the experience with loop spaces one can expect that there is no hope about existence of
well-defined Riemann connection unless this space is union of infinite-dimensional symmetric spaces
with constant curvature metric and simple considerations requires that Einstein equations are satisfied
by each component in the union. The coordinates labeling these symmetric spaces are zero modes
having interpretation as genuinely classical variables which do not quantum fluctuate since they do
not contribute to the line element of the configuration space.

The construction of the Kähler structure involves also the identification of complex structure.

1. Direct construction of Kähler function as action associated with a preferred Bohr orbit like
extremal for some physically motivated action action leads to a unique result.

2. Second approach is group theoretical and is based on a direct guess of isometries of the infinite-
dimensional symmetric space formed by 3-surfaces with fixed values of zero modes. The group
of isometries is generalization of Kac-Moody group obtained by replacing finite-dimensional Lie
group with the group of symplectic transformations of δM4

+×CP2, where δM4
+ is the boundary

of 4-dimensional future light-cone.

3. Third approach is based on the conjecture that yhr vacuum functional of the theory identifiable
as an exponent of Kähler function is expressible as a Dirac determinant. This approach leads
to an explicit expression of configuration space metric in terms of finite number of eigenvalues
assignable to the modified Dirac operator defined by Kähler action. The notion of number
theoretical compactification and the known properties of extremals of Kähler action play key
role in this approach.

Classical TGD

In this chapter the classical field equations associated with the Kähler action are studied. The study
of the extremals of the Kähler action has turned out to be extremely useful for the development of
TGD. Towards the end of year 2003 quite dramatic progress occurred in the understanding of field
equations and it seems that field equations might be in well-defined sense exactly solvable. Years later
the understanding of quantum TGD at fundamental level deepened the understanding.

1. Preferred extremals and quantum criticality

The identification of preferred extremals of Kähler action defining counterparts of Bohr orbits
has been one of the basic challenges of quantum TGD. By quantum classical correspondence the
non-deterministic space-time dynamics should mimic the dissipative dynamics of the quantum jump
sequence. It should also represent space-time correlate for quantum criticality.

The solution of the problem through the understanding of the implications number theoretical
compactification and the realization of quantum TGD at fundamental level in terms of second quanti-
zation of induced spinor fields assigned to the modified Dirac action defined by Kähler action. Noether
currents assignable to the modified Dirac equation are conserved only if the first variation of the modi-
fied Dirac operator DK defined by Kähler action vanishes. This is equivalent with the vanishing of the
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second variation of Kähler action -at least for the variations corresponding to dynamical symmetries
having interpretation as dynamical degrees of freedom which are below measurement resolution and
therefore effectively gauge symmetries.

The vanishing of the second variation in interior of X4(X3
l ) is what corresponds exactly to quantum

criticality so that the basic vision about quantum dynamics of quantum TGD would lead directly to
a precise identification of the preferred extremals. Something which I should have noticed for more
than decade ago! The question whether these extremals correspond to absolute minima remains
however open. The vanishing of second variations of preferred extremals suggests a generalization
of catastrophe theory of Thom, where the rank of the matrix defined by the second derivatives of
potential function defines a hierarchy of criticalities with the tip of bifurcation set of the catastrophe
representing the complete vanishing of this matrix. In the recent case this theory would be generalized
to infinite-dimensional context.

The space-time representation for dissipation comes from the interpretation of regions of space-time
surface with Euclidian signature of induced metric as generalized Feynman diagrams (or equivalently
the light-like 3-surfaces defining boundaries between Euclidian and Minkowskian regions). Dissipation
would be represented in terms of Feynman graphs representing irreversible dynamics and expressed
in the structure of zero energy state in which positive energy part corresponds to the initial state
and negative energy part to the final state. Outside Euclidian regions classical dissipation should be
absent and this indeed the case for the known extremals.

2. Hamilton-Jacobi structure

Most known extremals share very general properties. One of them is Hamilton-Jacobi structure
meaning the possibility to assign to the extremal so called Hamilton-Jacobi coordinates. This means
dual slicings of M4 by string world sheets and partonic 2-surfaces. Number theoretic compactifica-
tion led years later to the same condition. This slicing allows a dimensional reduction of quantum
TGD to Minkowksian and Euclidian variants of string model and allows to understand how Equiv-
alence Principle is realized at space-time level. Also holography in the sense that the dynamics of
3-dimensional space-time surfaces reduces to that for 2-D partonic surfaces in a given measurement
resolution follows. The construction of quantum TGD relies in essential manner to this property. CP2

type vacuum extremals do not possess Hamilton-Jaboci structure but this can be understood in the
picture provided by number theoretical compactification.

3. Physical interpretation of extremals

The vanishing of Lorentz 4-force for the induced Kähler field means that the vacuum 4-currents
are in a mechanical equilibrium and dissipation is absent except in the sense that the super-position of
generalized Feynman graphs representing the zero energy state represents dissipation. Lorentz 4-force
vanishes for all known solutions of field equations.

1. The vanishing of the Lorentz 4-force in turn implies local covariant conservation of the ordinary
energy momentum tensor. The corresponding condition is implied by Einstein’s equations in
General Relativity.

2. The hypothesis would mean that the solutions of field equations are what might be called
generalized Beltrami fields. The condition implies that vacuum currents can be non-vanishing
only provided the dimension DCP2

of the CP2 projection of the space-time surface is less than
four so that in the regions with DCP2

= 4, Maxwell’s vacuum equations are satisfied.

3. The hypothesis that Kähler current is proportional to a product of an arbitrary function ψ of
CP2 coordinates and of the instanton current generalizes Beltrami condition and reduces to it
when electric field vanishes. Kähler current has vanishing divergence for DCP2

< 4, and Lorentz
4-force indeed vanishes. The remaining task would be the explicit construction of the imbeddings
of these fields and the demonstration that field equations can be satisfied.

4. Under additional conditions magnetic field reduces to what is known as Beltrami field. Beltrami
fields are known to be extremely complex but highly organized structures. The natural con-
jecture is that topologically quantized many-sheeted magnetic and Z0 magnetic Beltrami fields
and their generalizations serve as templates for the helical molecules populating living matter,
and explain both chirality selection, the complex linking and knotting of DNA and protein
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molecules, and even the extremely complex and self-organized dynamics of biological systems at
the molecular level.

5. Beltrami fields appear in physical applications as asymptotic self organization patterns for which
Lorentz force and dissipation vanish. Preferred extremal property abstracted to purely algebraic
generalized Beltrami conditions would make sense also in the p-adic context as it should by
number theoretic universality.

6. As a consequence field equations can be reduced to algebraic conditions stating that energy
momentum tensor and second fundamental form have no common components (this occurs
also for minimal surfaces in string models) and only the conditions stating that Kähler current
vanishes, is light-like, or proportional to instanton current, remain and define the remaining
field equations. The conditions guaranteing topologization to instanton current can be solved
explicitly. Solutions can be found also in the more general case when Kähler current is not
proportional to instanton current. On basis of these findings there are strong reasons to believe
that classical TGD is exactly solvable.

4. The dimension of CP2 projection as classifier for the fundamental phases of matter

The dimension DCP2 of CP2 projection of the space-time sheet encountered already in p-adic mass
calculations classifies the fundamental phases of matter.

1. For DCP2
= 4 empty space Maxwell equations would hold true. This phase is chaotic and

analogous to de-magnetized phase. There is also a CP breaking associated with this phase. At
least CP2 type vacuum extremals and their deformations represent this phase.

2. DCP2
= 2 phase is analogous to ferromagnetic phase: highly ordered and relatively simple.

In fact, this phase as such does not correspond to preferred extremals but only their small
deformations obtained by topological condensation of CP2 type vacuum extremals representing
elementary fermions at these extremals and by topological condensation of these extremals at
larger space-time sheets creating wormhole contacts representing elementary bosons.

3. DCP2 = 3 is the analog of spin glass and liquid crystal phases, extremely complex but highly
organized by the properties of the generalized Beltrami fields. Also these extremals would repre-
sents ground states whose small deformations represent the phase. This phase is the boundary
between chaos and order and corresponds to life emerging in the interaction of magnetic bodies
with bio-matter. It is possible only in a finite temperature interval (note however the p-adic
hierarchy of critical temperatures) and characterized by chirality just like life.

5. Specific extremals of Kähler action

The study of extremals of Kähler action represents more than decade old layer in the development
of TGD.

1. The huge vacuum degeneracy is the most characteristic feature of Kähler action (any 4-surface
having CP2 projection which is Legendre sub-manifold is vacuum extremal, Legendre sub-
manifolds of CP2 are in general 2-dimensional). This vacuum degeneracy is behind the spin
glass analogy and leads to the p-adic TGD. As found in the second part of the book, various
particle like vacuum extremals also play an important role in the understanding of the quantum
TGD.

2. The so called CP2 type vacuum extremals have finite, negative action and are therefore an
excellent candidate for real particles whereas vacuum extremals with vanishing Kähler action
are candidates for the virtual particles. These extremals have one dimensional M4 projection,
which is light like curve but not necessarily geodesic and locally the metric of the extremal is that
of CP2: the quantization of this motion leads to Virasoro algebra. Space-times with topology
CP2#CP2#...CP2 are identified as the generalized Feynmann diagrams with lines thickened
to 4-manifolds of ”thickness” of the order of CP2 radius. The quantization of the random
motion with light velocity associated with the CP2 type extremals in fact led to the discovery of
Super Virasoro invariance, which through the construction of the configuration space geometry,
becomes a basic symmetry of quantum TGD.
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3. There are also various non-vacuum extremals.

(a) String like objects, with string tension of same order of magnitude as possessed by the
cosmic strings of GUTs, have a crucial role in TGD inspired model for the galaxy formation
and in the TGD based cosmology.

(b) The so called massless extremals describe non-linear plane waves propagating with the
velocity of light such that the polarization is fixed in given point of the space-time surface.
The purely TGD:eish feature is the light like Kähler current: in the ordinary Maxwell
theory vacuum gauge currents are not possible. This current serves as a source of coherent
photons, which might play an important role in the quantum model of bio-system as a
macroscopic quantum system.

(c) In the so called Maxwell’s phase, ordinary Maxwell equations for the induced Kähler field
are satisfied in an excellent approximation. A special case is provided by a radially symmet-
ric extremal having an interpretation as the space-time exterior to a topologically condensed
particle. The sign of the gravitational mass correlates with that of the Kähler charge and
one can understand the generation of the matter antimatter asymmetry from the basic
properties of this extremal. The possibility to understand the generation of the matter
antimatter asymmetry directly from the basic equations of the theory gives strong support
in favor of TGD in comparison to the ordinary EYM theories, where the generation of the
matter antimatter asymmetry is still poorly understood.

Physics as a generalized number theory

There are two basic approaches to the construction of quantum TGD. The first approach relies on the
vision of quantum physics as infinite-dimensional Kähler geometry for the ”world of classical worlds”
identified as the space of 3-surfaces in in certain 8-dimensional space. Essentially a generalization of
the Einstein’s geometrization of physics program is in question. The second vision is the identifica-
tion of physics as a generalized number theory. This program involves three threads: various p-adic
physics and their fusion together with real number based physics to a larger structure, the attempt
to understand basic physics in terms of classical number fields (in particular, identifying associativity
condition as the basic dynamical principle), and infinite primes whose construction is formally anal-
ogous to a repeated second quantization of an arithmetic quantum field theory. In this article brief
summaries of physics as infinite-dimensional geometry and generalized number theory are given to be
followed by more detailed articles.

1. p-Adic physics and their fusion with real physics

The basic technical problems of the fusion of real physics and various p-adic physics to single
coherent whole relate to the notion of definite integral both at space-time level, imbedding space level
and the level of WCW (the ”world of classical worlds”). The expressibility of WCW as a union of
symmetric spacesleads to a proposal that harmonic analysis of symmetric spaces can be used to define
various integrals as sums over Fourier components. This leads to the proposal the p-adic variant
of symmetric space is obtained by a algebraic continuation through a common intersection of these
spaces, which basically reduces to an algebraic variant of coset space involving algebraic extension
of rationals by roots of unity. This brings in the notion of angle measurement resolution coming as
∆φ = 2π/pn for given p-adic prime p. Also a proposal how one can complete the discrete version
of symmetric space to a continuous p-adic versions emerges and means that each point is effectively
replaced with the p-adic variant of the symmetric space identifiable as a p-adic counterpart of the real
discretization volume so that a fractal p-adic variant of symmetric space results.

If the Kähler geometry of WCW is expressible in terms of rational or algebraic functions, it can
in principle be continued the p-adic context. One can however consider the possibility that that
the integrals over partonic 2-surfaces defining flux Hamiltonians exist p-adically as Riemann sums.
This requires that the geometries of the partonic 2-surfaces effectively reduce to finite sub-manifold
geometries in the discretized version of δM4

+ × CP2. If Kähler action is required to exist p-adically
same kind of condition applies to the space-time surfaces themselves. These strong conditions might
make sense in the intersection of the real and p-adic worlds assumed to characterized living matter.

2. TGD and classical number fields
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The basis vision is that the geometry of the infinite-dimensional WCW (”world of classical worlds”)
is unique from its mere existence. This leads to its identification as union of symmetric spaces whose
Kähler geometries are fixed by generalized conformal symmetries. This fixes space-time dimension
and the decomposition M4 × S and the idea is that the symmetries of the Kähler manifold S make
it somehow unique. The motivating observations are that the dimensions of classical number fields
are the dimensions of partonic 2-surfaces, space-time surfaces, and imbedding space and M8 can be
identified as hyper-octonions- a sub-space of complexified octonions obtained by adding a commuting
imaginary unit. This stimulates some questions.

Could one understand S = CP2 number theoretically in the sense that M8 and H = M4 × CP2

be in some deep sense equivalent (”number theoretical compactification” or M8 −H duality)? Could
associativity define the fundamental dynamical principle so that space-time surfaces could be regarded
as associative or co-associative (defined properly) sub-manifolds of M8 or equivalently of H.

One can indeed define the associativite (co-associative) 4-surfaces using octonionic representation
of gamma matrices of 8-D spaces as surfaces for which the modified gamma matrices span an associate
(co-associative) sub-space at each point of space-time surface. Also M8 −H duality holds true if one
assumes that this associative sub-space at each point contains preferred plane of M8 identifiable as a
preferred commutative or co-commutative plane (this condition generalizes to an integral distribution
of commutative planes in M8). These planes are parametrized by CP2 and this leads to M8 − H
duality.

WCW itself can be identified as the space of 4-D local sub-algebras of the local Clifford algebra
of M8 or H which are associative or co-associative. An open conjecture is that this characterization
of the space-time surfaces is equivalent with the preferred extremal property of Kähler action with
preferred extremal identified as a critical extremal allowing infinite-dimensional algebra of vanishing
second variations.

3. Infinite primes

The construction of infinite primes is formally analogous to a repeated second quantization of
an arithmetic quantum field theory by taking the many particle states of previous level elementary
particles at the new level. Besides free many particle states also the analogs of bound states appear.
In the representation in terms of polynomials the free states correspond to products of first order
polynomials with rational zeros. Bound states correspond to nth order polynomials with non-rational
but algebraic zeros.

The construction can be generalized to classical number fields and their complexifications obtained
by adding a commuting imaginary unit. Special class corresponds to hyper-octonionic primes for which
the imaginary part of ordinary octonion is multiplied by the commuting imaginary unit so that one
obtains a sub-space M8 with Minkowski signature of metric. Also in this case the basic construction
reduces to that for rational or complex rational primes and more complex primes are obtained by
acting using elements of the octonionic automorphism group which preserve the complex octonionic
integer property.

Can one map infinite primes/integers/rationals to quantum states? Do they have space-time
surfaces as correlates? Quantum classical correspondence realized in terms of modified Dirac operator
implies that if infinite rationals can be mapped to quantum states then the mapping of quantum
states to space-time surfaces automatically gives the map to space-time surfaces. The question is
therefore whether the mapping to quantum states defined by WCW spinor fields is possible. A natural
hypothesis is that number theoretic fermions can be mapped to real fermions and number theoretic
bosons to WCW (”world of classical worlds”) Hamiltonians. The crucial observation is that one can
construct infinite hierarchy of hyper-octonionic units by forming ratios of infinite integers such that
their ratio equals to one in real sense: the integers have interpretation as positive and negative energy
parts of zero energy states. One can construct also sums of these units with complex coefficients using
commuting imaginary unit and these sums can be normalized to unity and have interpretation as
states in Hilbert space. These units can be assumed to possess well defined standard model quantum
numbers. It is possible to map the quantum number combinations of WCW spinor fields to these
states. Hence the points of M8 can be said to have infinitely complex number theoretic anatomy so
that quantum states of the universe can be mapped to this anatomy. One could talk about algebraic
holography or number theoretic Brahman=Atman identity.

One can also ask how infinite primes relate to the p-adicization program and to the hierarchy
of Planck constants. The key observation is that infinite primes are in one-one correspondence with
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rational numbers at the lower level of hierarchy. At the first level of hierarchy the p-adic norm with
respect to p-adic prime for this rational gives power p−n so that one has two powers of p - pn+

andpn− - since two infinite primes corresponding to fermionic vacua X ± 1, where X is the product
of all primes at given level of hierarchy, characterize the partonic 2-surface. The proposal inspired
by the p-adicization program is that ∆φ = 2π/pn defines angle measurement resolution crucial in
the construction of p-adic variants of WCW (”world of classical world”) as a union of symmetric
coset spaces by starting from discrete variants of the real counterpart of symmetric space having
common points with tis p-adic variant. The two measurement resolutions correspond to CD and CP2

degrees of freedom. The hierarchy of Planck constants generalizes imbedding space to a book like
structure with pages identified in terms of singular coverings and factor spaces of CD and CP2. There
are good arguments suggesting that only coverings characterized by integers na and nb are realized.
The identifications na = n+ and nb = n− lead to highly non-trivial physical predictions and allow
sharpen the view about the hierarchy of Planck constants. Therefore the notion of finite measurement
resolution becomes the common denominator for the three threads of the number theoretic vision
and give also a connection with the physics as infinite-dimensional geometry program and with the
inclusions of hyper-finite factors defined by WCW spinor fields and proposed to characterize finite
measurement resolution at quantum level.

1.5.3 PART III: Hyperfinite factors of type II1 and hierarchy of Planck
constants

Was von Neumann right after all?

The work with TGD inspired model for quantum computation led to the realization that von Neumann
algebras, in particular hyper-finite factors, could provide the mathematics needed to develop a more
explicit view about the construction of M-matrix generalizing the notion of S-matrix in zero energy
ontology. In this chapter I will discuss various aspects of hyper-finite factors and their possible
physical interpretation in TGD framework. The original discussion has transformed during years
from free speculation reflecting in many aspects my ignorance about the mathematics involved to a
more realistic view about the role of these algebras in quantum TGD.

1. Hyper-finite factors in quantum TGD

The following argument suggests that von Neumann algebras known as hyper-finite factors (HFFs)
of type III1 appearing in relativistic quantum field theories provide also the proper mathematical
framework for quantum TGD.

1. The Clifford algebra of the infinite-dimensional Hilbert space is a von Neumann algebra known
as HFF of type II1. There also the Clifford algebra at a given point (light-like 3-surface) of world
of classical worlds (WCW) is therefore HFF of type II1. If the fermionic Fock algebra defined
by the fermionic oscillator operators assignable to the induced spinor fields (this is actually not
obvious!) is infinite-dimensional it defines a representation for HFF of type II1. Super-conformal
symmetry suggests that the extension of the Clifford algebra defining the fermionic part of a
super-conformal algebra by adding bosonic super-generators representing symmetries of WCW
respects the HFF property. It could however occur that HFF of type II∞ results.

2. WCW is a union of sub-WCWs associated with causal diamonds (CD) defined as intersections
of future and past directed light-cones. One can allow also unions of CDs and the proposal is
that CDs within CDs are possible. Whether CDs can intersect is not clear.

3. The assumption that the M4 proper distance a between the tips of CD is quantized in powers
of 2 reproduces p-adic length scale hypothesis but one must also consider the possibility that
a can have all possible values. Since SO(3) is the isotropy group of CD, the CDs associated
with a given value of a and with fixed lower tip are parameterized by the Lobatchevski space
L(a) = SO(3, 1)/SO(3). Therefore the CDs with a free position of lower tip are parameterized
by M4 × L(a). A possible interpretation is in terms of quantum cosmology with a identified as
cosmic time [?] Since Lorentz boosts define a non-compact group, the generalization of so called
crossed product construction strongly suggests that the local Clifford algebra of WCW is HFF
of type III1. If one allows all values of a, one ends up with M4 ×M4

+ as the space of moduli for
WCW.
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4. An interesting special aspect of 8-dimensional Clifford algebra with Minkowski signature is that it
allows an octonionic representation of gamma matrices obtained as tensor products of unit matrix
1 and 7-D gamma matrices γk and Pauli sigma matrices by replacing 1 and γk by octonions.
This inspires the idea that it might be possible to end up with quantum TGD from purely
number theoretical arguments. This seems to be the case. One can start from a local octonionic
Clifford algebra in M8. Associativity condition is satisfied if one restricts the octonionic algebra
to a subalgebra associated with any hyper-quaternionic and thus 4-D sub-manifold of M8. This
means that the modified gamma matrices associated with the Kähler action span a complex
quaternionic sub-space at each point of the sub-manifold. This associative sub-algebra can be
mapped a matrix algebra. Together with M8−H duality [?]his leads automatically to quantum
TGD and therefore also to the notion of WCW and its Clifford algebra which is however only
mappable to an associative algebra and thus to HFF of type II1.

4. Hyper-finite factors and M-matrix

HFFs of type III1 provide a general vision about M-matrix.

1. The factors of type III allow unique modular automorphism ∆it (fixed apart from unitary inner
automorphism). This raises the question whether the modular automorphism could be used to
define the M-matrix of quantum TGD. This is not the case as is obvious already from the fact
that unitary time evolution is not a sensible concept in zero energy ontology.

2. Concerning the identification of M-matrix the notion of state as it is used in theory of factors is a
more appropriate starting point than the notion modular automorphism but as a generalization
of thermodynamical state is certainly not enough for the purposes of quantum TGD and quantum
field theories (algebraic quantum field theorists might disagree!). Zero energy ontology requires
that the notion of thermodynamical state should be replaced with its ”complex square root”
abstracting the idea about M-matrix as a product of positive square root of a diagonal density
matrix and a unitary S-matrix. This generalization of thermodynamical state -if it exists- would
provide a firm mathematical basis for the notion of M-matrix and for the fuzzy notion of path
integral.

3. The existence of the modular automorphisms relies on Tomita-Takesaki theorem, which assumes
that the Hilbert space in which HFF acts allows cyclic and separable vector serving as ground
state for both HFF and its commutant. The translation to the language of physicists states that
the vacuum is a tensor product of two vacua annihilated by annihilation oscillator type algebra
elements of HFF and creation operator type algebra elements of its commutant isomorphic to it.
Note however that these algebras commute so that the two algebras are not hermitian conjugates
of each other. This kind of situation is exactly what emerges in zero energy ontology: the two
vacua can be assigned with the positive and negative energy parts of the zero energy states
entangled by M-matrix.

4. There exists infinite number of thermodynamical states related by modular automorphisms.
This must be true also for their possibly existing ”complex square roots”. Physically they
would correspond to different measurement interactions giving rise to Kähler functions of WCW
differing only by a real part of holomorphic function of complex coordinates of WCW and
arbitrary function of zero mode coordinates and giving rise to the same Kähler metric of WCW.

The concrete construction of M-matrix utilizing the idea of bosonic emergence (bosons as fermion
anti-fermion pairs at opposite throats of wormhole contact) meaning that bosonic propagators reduce
to fermionic loops identifiable as wormhole contacts leads to generalized Feynman rules for M-matrix
in which modified Dirac action containing measurement interaction term defines stringy propagators.
This M-matrix should be consistent with the above proposal.

5. Connes tensor product as a realization of finite measurement resolution

The inclusions N ⊂ M of factors allow an attractive mathematical description of finite mea-
surement resolution in terms of Connes tensor product but do not fix M-matrix as was the original
optimistic belief.
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1. In zero energy ontology N would create states experimentally indistinguishable from the origi-
nal one. Therefore N takes the role of complex numbers in non-commutative quantum theory.
The space M/N would correspond to the operators creating physical states modulo measure-
ment resolution and has typically fractal dimension given as the index of the inclusion. The
corresponding spinor spaces have an identification as quantum spaces with non-commutative
N -valued coordinates.

2. This leads to an elegant description of finite measurement resolution. Suppose that a universal
M-matrix describing the situation for an ideal measurement resolution exists as the idea about
square root of state encourages to think. Finite measurement resolution forces to replace the
probabilities defined by the M-matrix with their N ”averaged” counterparts. The ”averaging”
would be in terms of the complex square root of N -state and a direct analog of functionally or
path integral over the degrees of freedom below measurement resolution defined by (say) length
scale cutoff.

3. One can construct also directly M-matrices satisfying the measurement resolution constraint.
The condition that N acts like complex numbers on M-matrix elements as far as N -”averaged”
probabilities are considered is satisfied if M-matrix is a tensor product of M-matrix in M(N
interpreted as finite-dimensional space with a projection operator to N . The condition that
N averaging in terms of a complex square root of N state produces this kind of M-matrix
poses a very strong constraint on M-matrix if it is assumed to be universal (apart from variants
corresponding to different measurement interactions).

6. Quantum spinors and fuzzy quantum mechanics

The notion of quantum spinor leads to a quantum mechanical description of fuzzy probabilities. For
quantum spinors state function reduction cannot be performed unless quantum deformation parameter
equals to q = 1. The reason is that the components of quantum spinor do not commute: it is however
possible to measure the commuting operators representing moduli squared of the components giving
the probabilities associated with ’true’ and ’false’. The universal eigenvalue spectrum for probabilities
does not in general contain (1,0) so that quantum qbits are inherently fuzzy. State function reduction
would occur only after a transition to q=1 phase and decoherence is not a problem as long as it does
not induce this transition.

Does TGD predict the spectrum of Planck constants?

The quantization of Planck constant has been the basic them of TGD since 2005. The basic idea was
stimulated by the finding of Nottale that planetary orbits could be seen as Bohr orbits with enormous
value of Planck constant given by ~gr = GM1M2/v0, v0 ' 2−11 for the inner planets. This inspired the
ideas that quantization is due to a condensation of ordinary matter around dark matter concentrated
near Bohr orbits and that dark matter is in macroscopic quantum phase in astrophysical scales. The
second crucial empirical input were the anomalies associated with living matter. The revised version
of the chapter represents the vision about quantization of Planck constants from a perspective given
by almost five years work with the idea. A very concise summary about the situation is as follows.

1. The hierarchy of Planck constants cannot be realized without generalizing the notions of imbed-
ding space M4 × CP2 and space-time since particles with different values of Planck constant
cannot appear in the same interaction vertex. This suggests some kind of book like structure
for both M4 and CP2 factors of the generalized imbedding space is suggestive.

2. Schrödinger equation suggests that Planck constant corresponds to a scaling factor of M4 metric
whose value labels different pages of the book. The scaling of M4 coordinate so that original
metric results in M4 factor is possible so that the scaling of ~ corresponds to the scaling of the
size of causal diamond CD defined as the intersection of future and past directed light-cones.
The light-like 3-surfaces having their 2-D and light-boundaries of CD are in a key role in the
realization of zero energy states. The infinite-D spaces formed by these 3-surfaces define the
fundamental sectors of the configuration space (world of classical worlds). Since the scaling of
CD does not simply scale space-time surfaces, the coding of radiative corrections to the geometry
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of space-time sheets becomes possible and Kähler action can be seen as expansion in powers of
~/~0.

3. Quantum criticality of TGD Universe is one of the key postulates of quantum TGD. The most
important implication is that Kähler coupling strength is analogous to critical temperature.
The exact realization of quantum criticality would be in terms of critical sub-manifolds of M4

and CP2 common to all sectors of the generalized imbedding space. Quantum criticality would
mean that the two kinds of number theoretic braids assignable to M4 and CP2 projections of
the partonic 2-surface belong by the definition of number theoretic braids to these critical sub-
manifolds. At the boundaries of CD associated with positive and negative energy parts of zero
energy state in given time scale partonic two-surfaces belong to a fixed page of the Big Book
whereas light-like 3-surface decomposes into regions corresponding to different values of Planck
constant much like matter decomposes to several phases at thermodynamical criticality.

4. The connection with Jones inclusions was originally a purely heuristic guess based on the ob-
servation that the finite groups characterizing Jones inclusion characterize also pages of the
Big Book. The key observation is that Jones inclusions are characterized by a finite subgroup
G ⊂ SU(2) and that this group also characterizes the singular covering or factor spaces asso-
ciated with CD or CP2 so that the pages of generalized imbedding space could indeed serve
as correlates for Jones inclusions. The elements of the included algebra M are invariant under
the action of G and M takes the role of complex numbers in the resulting non-commutative
quantum theory.

5. The understanding of quantum TGD at parton level led to the realization that the dynamics
of Kähler action realizes finite measurement resolution in terms of finite number of modes of
the induced spinor field. This automatically implies cutoffs to the representations of various
super-conformal algebras typical for the representations of quantum groups closely associated
with Jones inclusions. The Clifford algebra spanned by the fermionic oscillator operators would
provide a realization for the factor space N/M of hyper-finite factors of type II1 identified
as the infinite-dimensional Clifford algebra N of the configuration space and included algebra
M determining the finite measurement resolution. The resulting quantum Clifford algebra has
anti-commutation relations dictated by the fractionization of fermion number so that its unit
becomes r = ~/~0. SU(2) Lie algebra transforms to its quantum variant corresponding to the
quantum phase q = exp(i2π/r).

6. Jones inclusions appear as two variants corresponding to N : M < 4 and N : M = 4. The
tentative interpretation is in terms of singular G-factor spaces and G-coverings of M4 or CP2 in
some sense. The alternative interpretation in terms of two geodesic spheres of CP2 would mean
asymmetry between M4 and CP2 degrees of freedom.

7. Number theoretic Universality suggests an answer why the hierarchy of Planck constants is
necessary. One must be able to define the notion of angle -or at least the notion of phase and
of trigonometric functions- also in p-adic context. All that one can achieve naturally is the
notion of phase defined as root of unity and introduced by allowing algebraic extension of p-adic
number field by introducing the phase if needed. In the framework of TGD inspired theory
of consciousness this inspires a vision about cognitive evolution as the gradual emergence of
increasingly complex algebraic extensions of p-adic numbers and involving also the emergence of
improved angle resolution expressible in terms of phases exp(i2π/n) up to some maximum value
of n. The coverings and factor spaces would realize these phases geometrically and quantum
phases q naturally assignable to Jones inclusions would realize them algebraically. Besides p-adic
coupling constant evolution based on hierarchy of p-adic length scales there would be coupling
constant evolution with respect to ~ and associated with angular resolution.

1.5.4 PART IV: Some Applications

Cosmology and Astrophysics in Many-Sheeted Space-Time

This chapter is devoted to the applications of TGD to astrophysics and cosmology are discussed. In
a well-defined sense classical TGD defined as the dynamics of space-time surface determining them
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as kind of generalized Bohr orbits can be regarded as an exact part of quantum theory and assuming
quantum classical correspondence has served as an extremely valuable guideline in the attempts to
interpret TGD, to form a view about what TGD really predicts, and to to guess what the underlying
quantum theory could be and how it deviates from standard quantum theory. Also TGD inspired
cosmology and astrophysics relies on this general picture.

1. Many-sheeted cosmology

The many-sheeted space-time concept, the new view about the relationship between inertial and
gravitational four-momenta, the basic properties of the paired cosmic strings, the existence of the
limiting temperature, the assumption about the existence of the vapor phase dominated by cosmic
strings, and quantum criticality imply a rather detailed picture of the cosmic evolution, which differs
from that provided by the standard cosmology in several respects but has also strong resemblances
with inflationary scenario.

The most important differences are following.
a) Many-sheetedness implies cosmologies inside cosmologies Russian doll like structure with a

spectrum of Hubble constants.
b) TGD cosmology is also genuinely quantal: each quantum jump in principle recreates each sub-

cosmology in 4-dimensional sense: this makes possible a genuine evolution in cosmological length
scales so that the use of anthropic principle to explain why fundamental constants are tuned for life
is not necessary.

c) The new view about energy means that inertial energy is negative for space-time sheets with
negative time orientation and that the density of inertial energy vanishes in cosmological length scales.
Therefore any cosmology is in principle creatable from vacuum and the problem of initial values of
cosmology disappears. The density of matter near the initial moment is dominated by cosmic strings
approaches to zero so that big bang is transformed to a silent whisper amplified to a relatively big
bang.

d) Dark matter hierarchy with dynamical quantized Planck constant implies the presence of dark
space-time sheets which differ from non-dark ones in that they define multiple coverings of M4.
Quantum coherence of dark matter in the length scale of space-time sheet involved implies that even
in cosmological length scales Universe is more like a living organism than a thermal soup of particles.

e) Sub-critical and over-critical Robertson-Walker cosmologies are fixed completely from the imbed-
dability requirement apart from a single parameter characterizing the duration of the period after
which transition to sub-critical cosmology necessarily occurs. The fluctuations of the microwave back-
ground reflect the quantum criticality of the critical period rather than amplification of primordial
fluctuations by exponential expansion. This and also the finite size of the space-time sheets predicts
deviations from the standard cosmology.

2. Cosmic strings

Cosmic strings belong to the basic extremals of the Kähler action. The string tension of the cosmic
strings is T ' .2 × 10−6/G and slightly smaller than the string tension of the GUT strings and this
makes them very interesting cosmologically. Concerning the understanding of cosmic strings a decisive
breakthrough came through the identification of gravitational four-momentum as the difference of
inertial momenta associated with matter and antimatter and the realization that the net inertial
energy of the Universe vanishes. This forced to conclude cosmological constant in TGD Universe is
non-vanishing. p-Adic length fractality predicts that Λ scales as 1/L2(k) as a function of the p-adic
scale characterizing the space-time sheet. The recent value of the cosmological constant comes out
correctly. The gravitational energy density described by the cosmological constant is identifiable as
that associated with topologically condensed cosmic strings and of magnetic flux tubes to which they
are gradually transformed during cosmological evolution.

p-Adic fractality and simple quantitative observations lead to the hypothesis that pairs of cosmic
strings are responsible for the evolution of astrophysical structures in a very wide length scale range.
Large voids with size of order 108 light years can be seen as structures containing knotted and linked
cosmic string pairs wound around the boundaries of the void. Galaxies correspond to same structure
with smaller size and linked around the supra-galactic strings. This conforms with the finding that
galaxies tend to be grouped along linear structures. Simple quantitative estimates show that even
stars and planets could be seen as structures formed around cosmic strings of appropriate size. Thus
Universe could be seen as fractal cosmic necklace consisting of cosmic strings linked like pearls around
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longer cosmic strings linked like...

3. Dark matter and quantization of gravitational Planck constant

The notion of gravitational Planck constant having gigantic value is perhaps the most radical idea
related to the astrophysical applications of TGD. D. Da Rocha and Laurent Nottale have proposed
that Schrödinger equation with Planck constant ~ replaced with what might be called gravitational
Planck constant ~gr = GmM

v0
(~ = c = 1). v0 is a velocity parameter having the value v0 = 144.7± .7

km/s giving v0/c = 4.6 × 10−4. This is rather near to the peak orbital velocity of stars in galactic
halos. Also subharmonics and harmonics of v0 seem to appear. The support for the hypothesis coming
from empirical data is impressive.

Nottale and Da Rocha believe that their Schrödinger equation results from a fractal hydrodynamics.
Many-sheeted space-time however suggests astrophysical systems are not only quantum systems at
larger space-time sheets but correspond to a gigantic value of gravitational Planck constant. The
gravitational (ordinary) Schrödinger equation would provide a solution of the black hole collapse (IR
catastrophe) problem encountered at the classical level. The resolution of the problem inspired by
TGD inspired theory of living matter is that it is the dark matter at larger space-time sheets which
is quantum coherent in the required time scale.

TGD predicts correctly the value of the parameter v0 assuming that cosmic strings and their decay
remnants are responsible for the dark matter. The harmonics of v0 can be understood as corresponding
to perturbations replacing cosmic strings with their n-branched coverings so that tension becomes
n2-fold: much like the replacement of a closed orbit with an orbit closing only after n turns. 1/n-
sub-harmonic would result when a magnetic flux tube split into n disjoint magnetic flux tubes. An
attractive solution of the matter antimatter asymmetry is based on the identification of also antimatter
as dark matter.

Overall View About TGD from Particle Physics Perspective

Topological Geometrodynamics is able to make rather precise and often testable predictions. In this
and two other articles I want to describe the recent over all view about the aspects of quantum TGD
relevant for particle physics.

In the first chapter I concentrate the heuristic picture about TGD with emphasis on particle
physics.

• First I represent briefly the basic ontology: the motivations for TGD and the notion of many-
sheeted space-time, the concept of zero energy ontology, the identification of dark matter in terms
of hierarchy of Planck constant which now seems to follow as a prediction of quantum TGD, the
motivations for p-adic physics and its basic implications, and the identification of space-time
surfaces as generalized Feynman diagrams and the basic implications of this identification.

• Symmetries of quantum TGD are discussed. Besides the basic symmetries of the imbedding space
geometry allowing to geometrize standard model quantum numbers and classical fields there are
many other symmetries. General Coordinate Invariance is especially powerful in TGD framework
allowing to realize quantum classical correspondence and implies effective 2-dimensionality real-
izing strong form of holography. Super-conformal symmetries of super string models generalize
to conformal symmetries of 3-D light-like 3-surfaces and one can understand the generalization
of Equivalence Principle in terms of coset representations for the two super Virasoro algebras as-
sociated with lightlike boundaries of so called causal diamonds defined as intersections of future
and past directed lightcones (CDs) and with light-like 3-surfaces. Super-conformal symmetries
imply generalization of the space-time supersymmetry in TGD framework consistent with the
supersymmetries of minimal supersymmetric variant of the standard model. Twistorial approach
to gauge theories has gradually become part of quantum TGD and the natural generalization of
the Yangian symmetry identified originally as symmetry of N = 4 SYMs is postulated as basic
symmetry of quantum TGD.

• The so called weak form of electric-magnetic duality has turned out to have extremely far
reaching consequences and is responsible for the recent progress in the understanding of the
physics predicted by TGD. The duality leads to a detailed identification of elementary particles as
composite objects of massless particles and predicts new electro-weak physics at LHC. Together
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with a simple postulate about the properties of preferred extremals of Kähler action the duality
allows also to realized quantum TGD as almost topological quantum field theory giving excellent
hopes about integrability of quantum TGD.

• There are two basic visions about the construction of quantum TGD. Physics as infinite-
dimensional Kähler geometry of world of classical worlds (WCW) endowed with spinor structure
and physics as generalized number theory. These visions are briefly summarized as also the prac-
tical constructing involving the concept of Dirac operator. As a matter fact, the construction
of TGD involves three Dirac operators. The Kähler Dirac equation holds true in the interior
of space-time surface and its solutions havea natural interpretation in terms of description of
matter, in particular condensed matter. Chern-Simons Dirac action is associated with the light-
like 3-surfaces and space-like 3-surfaces at ends of space-time surface at light-like boundaries
of CD. One can assign to it a generalized eigenvalue equation and the matrix valued eigen-
values correspond to the the action of Dirac operator on momentum eigenstates. Momenta are
however not usual momenta but pseudo-momenta very much analogous to region momenta of
twistor approach. The third Dirac operator is associated with super Virasoro generators and
super Virasoro conditions define Dirac equation in WCW. These conditions characterize zero
energy states as modes of WCW spinor fields and code for the generalization of S-matrix to
a collection of what I call M -matrices defining the rows of unitary U -matrix defining unitary
process.

• Twistor approach has inspired several ideas in quantum TGD during the last years and it
seems that the Yangian symmetry and the construction of scattering amplitudes in terms of
Grassmannian integrals generalizes to TGD framework. This is due to ZEO allowing to assume
that all particles have massless fermions as basic building blocks. ZEO inspires the hypothesis
that incoming and outgoing particles are bound states of fundamental fermions associated with
wormhole throats. Virtual particles would also consist of on mass shell massless particles but
without bound state constraint. This implies very powerful constraints on loop diagrams and
there are excellent hopes about their finiteness. Twistor approach also inspires the conjecture
that quantum TGD allows also formulation in terms of 6-dimensional holomorphic surfaces in
the product CP3×CP3 of two twistor spaces and general arguments allow to identify the partial
different equations satisfied by these surfaces.

Particle Massivation in TGD Universe

This chapter represents the most recent view about particle massivation in TGD framework. This topic
is necessarily quite extended since many several notions and new mathematics is involved. Therefore
the calculation of particle masses involves five chapters. In the following my goal is to provide an
up-to-date summary whereas the chapters are unavoidably a story about evolution of ideas.

The identification of the spectrum of light particles reduces to two tasks: the construction of
massless states and the identification of the states which remain light in p-adic thermodynamics. The
latter task is relatively straightforward. The thorough understanding of the massless spectrum requires
however a real understanding of quantum TGD. It would be also highly desirable to understand why
p-adic thermodynamics combined with p-adic length scale hypothesis works. A lot of progress has
taken place in these respects during last years.

Zero energy ontology providing a detailed geometric view about bosons and fermions, the general-
ization of S-matrix to what I call M -matrix, the notion of finite measurement resolution characterized
in terms of inclusions of von Neumann algebras, the derivation of p-adic coupling constant evolution
and p-adic length scale hypothesis from the first principles, the realization that the counterpart of
Higgs mechanism involves generalized eigenvalues of the modified Dirac operator: these are represent
important steps of progress during last years with a direct relevance for the understanding of particle
spectrum and massivation although the predictions of p-adic thermodynamics are not affected.

During 2010 a further progress took place. These steps of progress relate closely to zero energy
ontology, bosonic emergence, the realization of the importance of twistors in TGD, and to the discovery
of the weak form of electric-magnetic duality. Twistor approach and the understanding of the Chern-
Simons Dirac operator served as a midwife in the process giving rise to the birth of the idea that all
particles at fundamental level are massless and that both ordinary elementary particles and string like
objects emerge from them. Even more, one can interpret virtual particles as being composed of these
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massless on mass shell particles assignable to wormhole throats so that four-momentum conservation
poses extremely powerful constraints on loop integrals and makes them manifestly finite.

The weak form of electric-magnetic duality led to the realization that elementary particles corre-
spond to bound states of two wormhole throats with opposite Kähler magnetic charges with second
throat carrying weak isospin compensating that of the fermion state at second wormhole throat. Both
fermions and bosons correspond to wormhole contacts: in the case of fermions topological condensa-
tion generates the second wormhole throat. This means that altogether four wormhole throats are
involved with both fermions, gauge bosons, and gravitons (for gravitons this is unavoidable in any
case). For p-adic thermodynamics the mathematical counterpart of string corresponds to a wormhole
contact with size of order CP2 size with the role of its ends played by wormhole throats at which
the signature of the induced 4-metric changes. The key observation is that for massless states the
throats of spin 1 particle must have opposite three-momenta so that gauge bosons are necessarily
massive, even photon and other particles usually regarded as massless must have small mass which in
turn cancels infrared divergences and give hopes about exact Yangian symmetry generalizing that of
N = 4 SYM. Besides this there is weak ”stringy” contribution to the mass assignable to the magnetic
flux tubes connecting the two wormhole throats at the two space-time sheets.

1. Physical states as representations of super-symplectic and Super Kac-Moody algebras

Physical states are assumed to belong to the representation of super-symplectic algebra and Super
Kac-Moody algebra assignable SO(2)× SU(3)× SU(2)rot × U(2)ew associated with the 2-D surfaces
X2 defined by the intersections of light-like 3-surfaces with δM4

± × CP2. These 2-surfaces have
interpretation as partons.

Yangian algebras associated with the super-conformal algebras and motivated by twistorial ap-
proach generalize the super-conformal symmetry and make it multi-local in the sense that generators
can act on several partonic 2-surfaces simultaneously. These partonic 2-surfaces generalize the ver-
tices for the external massless particles in twistor Grassmann diagrams [?] The implications of this
symmetry are yet to be deduced but one thing is clear: Yangians are tailor made for the description of
massive bound states formed from several partons identified as partonic 2-surfaces. The preliminary
discussion of what is involved can be found in [?]

2. Particle massivation

Particle massivation can be regarded as a generation of thermal conformal weight identified as
mass squared and due to a thermal mixing of a state with vanishing conformal weight with those
having higher conformal weights. The observed mass squared is not p-adic thermal expectation of
mass squared but that of conformal weight so that there are no problems with Lorentz invariance.

One can imagine several microscopic mechanisms of massivation. The following proposal is the
winner in the fight for survival between several competing scenarios.

1. Instead of energy, the Super Kac-Moody Virasoro (or equivalently super-symplectic) generator
L0 (essentially mass squared) is thermalized in p-adic thermodynamics (and also in its real
version assuming it exists). The fact that mass squared is thermal expectation of conformal
weight guarantees Lorentz invariance. That mass squared, rather than energy, is a fundamental
quantity at CP2 length scale is also suggested by a simple dimensional argument (Planck mass
squared is proportional to ~ so that it should correspond to a generator of some Lie-algebra
(Virasoro generator L0!)).

2. By Equivalence Principle the thermal average of mass squared can be calculated either in terms
of thermodynamics for either super-symplectic of Super Kac-Moody Virasoro algebra and p-adic
thermodynamics is consistent with conformal invariance.

3. There is also a modular contribution to the mass squared, which can be estimated using elemen-
tary particle vacuum functionals in the conformal modular degrees of freedom of the partonic
2-surface. It dominates for higher genus partonic 2-surfaces. For bosons both Virasoro and
modular contributions seem to be negligible and could be due to the smallness of the p-adic
temperature.

4. A long standing problem has been whether coupling to Higgs boson is needed to explain gauge
boson masses via a generation of Higgs vacuum expectation having possibly interpretation in
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terms of a coherent state. The deviation ∆h of the total ground state conformal weight from
negative integer gives rise to Higgs type contribution to the thermal mass squared and dominates
in case of gauge bosons for which p-adic temperature is small. In the case of fermions this
contribution to the mass squared is small. It is natural to relate ∆h to the generalized eigenvalues
of Chern-Simons Dirac operator.

5. A natural identification of the non-integer contribution to the conformal weight is as Higgsy
and stringy contributions to the vacuum conformal weight (strings are now ”weak strings”).
In twistor approach the generalized eigenvalues of Chern-Simons Dirac operator for external
particles indeed correspond to light-like momenta and when the three-momenta are opposite
this gives rise to non-vanishing mass. Higgs is necessary to give longitudinal polarizations
for gauge bosons and also gauge bosons usually regarded as exactly massless particles would
naturally receive small mass in this manner so that Higgs would disappear completely from the
spectrum. The theoretetical motivation for a small mass would be exact Yangian symmetry.
Higgs vacuum expectation assignable to coherent state of Higgs bosons is not needed to explain
the boson masses. Twistorial consideration suggest that Higgs disappears completely from the
spectrum and this might happen also for its super counterpart.

6. Hadron massivation requires the understanding of the CKM mixing of quarks reducing to dif-
ferent topological mixing of U and D type quarks. Number theoretic vision suggests that the
mixing matrices are rational or algebraic and this together with other constraints gives strong
constraints on both mixing and masses of the mixed quarks.

p-Adic thermodynamics is what gives to this approach its predictive power.

1. p-Adic temperature is quantized by purely number theoretical constraints (Boltzmann weight
exp(−E/kT ) is replaced with pL0/Tp , 1/Tp integer) and fermions correspond to Tp = 1 whereas
Tp = 1/n, n > 1, seems to be the only reasonable choice for gauge bosons.

2. p-Adic thermodynamics forces to conclude that CP2 radius is essentially the p-adic length scale
R ∼ L and thus of order R ' 103.5

√
~G and therefore roughly 103.5 times larger than the naive

guess. Hence p-adic thermodynamics describes the mixing of states with vanishing conformal
weights with their Super Kac-Moody Virasoro excitations having masses of order 10−3.5 Planck
mass.

New Physics Predicted by TGD

TGD predicts a lot of new physics and it is quite possible that this new physics becomes visible at
LHC. Although the calculational formalism is still lacking, p-adic length scale hypothesis allows to
make precise quantitative predictions for particle masses by using simple scaling arguments.

The basic elements of quantum TGD responsible for new physics are following.

1. The new view about particles relies on their identification as partonic 2-surfaces (plus 4-D
tangent space data to be precise). This effective metric 2-dimensionality implies generalizaton
of the notion of Feynman diagram and holography in strong sense. One implication is the
notion of field identity or field body making sense also for elementary particles and the Lamb
shift anomaly of muonic hydrogen could be explained in terms of field bodies of quarks.

2. The topological explanation for family replication phenomenon implies genus generation cor-
respondence and predicts in principle infinite number of fermion families. One can however
develop a rather general argument based on the notion of conformal symmetry known as hyper-
ellipticity stating that only the genera g = 0, 1, 2 are light. What ”light” means is however an
open question. If light means something below CP2 mass there is no hope of observing new
fermion families at LHC. If it means weak mass scale situation changes.

For bosons the implications of family replication phenomenon can be understood from the fact
that they can be regarded as pairs of fermion and antifermion assignable to the opposite worm-
hole throats of wormhole throat. This means that bosons formally belong to octet and singlet
representations of dynamical SU(3) for which 3 fermion families define 3-D representation. Sin-
glet would correspond to ordinary gauge bosons. Also interacting fermions suffer topological
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condensation and correspond to wormhole contact. One can either assume that the resulting
wormhole throat has the topology of sphere or that the genus is same for both throats.

3. The view about space-time supersymmetry differs from the standard view in many respects.
First of all, the super symmetries are not associated with Majorana spinors. Super generators
correspond to the fermionic oscillator operators assignable to leptonic and quark-like induced
spinors and there is in principle infinite number of them so that formally one would have N =∞
SUSY. I have discussed the required modification of the formalism of SUSY theories and it turns
out that effectively one obtains just N = 1 SUSY required by experimental constraints. The
reason is that the fermion states with higher fermion number define only short range interactions
analogous to van der Waals forces. Right handed neutrino generates this super-symmetry broken
by the mixing of the M4 chiralities implied by the mixing of M4 and CP2 gamma matrices for
induced gamma matrices. The simplest assumption is that particles and their superpartners
obey the same mass formula but that the p-adic length scale can be different for them.

4. The new view about particle massivation involves besides p-adic thermodynamics also Higgs but
there is no need to assume that Higgs vacuum expectation plays any role. The most natural
option favored by the assumption that elementary bosons are bound states of massless elementary
fermions, by twistorial considerations, and by the fact that both gauge bosons and Higgs form
SU(2) triplet and singlet, predicts that also photon and other massless gauge bosons develop
small mass so that all Higgs particles and their colored variants would disappear from spectrum.
Same could happen for Higgsinos.

5. One of the basic distinctions between TGD and standard model is the new view about color.

(a) The first implication is separate conservation of quark and lepton quantum numbers im-
plying the stability of proton against the decay via the channels predicted by GUTs. This
does not mean that proton would be absolutely stable. p-Adic and dark length scale hierar-
chies indeed predict the existence of scale variants of quarks and leptons and proton could
decay to hadons of some zoomed up copy of hadrons physics. These decays should be slow
and presumably they would involve phase transition changing the value of Planck constant
characterizing proton. It might be that the simultaneous increase of Planck constant for
all quarks occurs with very low rate.

(b) Also color excitations of leptons and quarks are in principle possible. Detailed calculations
would be required to see whether their mass scale is given by CP2 mass scale. The so called
leptohadron physics proposed to explain certain anomalies associated with both electron,
muon, and τ lepton could be understood in terms of color octet excitations of leptons.

6. Fractal hierarchies of weak and hadronic physics labelled by p-adic primes and by the levels of
dark matter hierarchy are highly suggestive. Ordinary hadron physics corresponds to M107 =
2107 − 1 One especially interesting candidate would be scaled up hadronic physics which would
correspond to M89 = 289−1 defining the p-adic prime of weak bosons. The corresponding string
tension is about 512 GeV and it might be possible to see the first signatures of this physics at
LHC. Nuclear string model in turn predicts that nuclei correspond to nuclear strings of nucleons
connected by colored flux tubes having light quarks at their ends. The interpretation might be
in terms of M127 hadron physics. In biologically most interesting length scale range 10 nm-2.5
µm there are four Gaussian Mersennes and the conjecture is that these and other Gaussian
Mersennes are associated with zoomed up variants of hadron physics relevant for living matter.
Cosmic rays might also reveal copies of hadron physics corresponding to M61 and M31

7. Weak form of electric magnetic duality implies that the fermions and antifermions associated
with both leptons and bosons are Kähler magnetic monopoles accompanied by monopoles of
opposite magnetic charge and with opposite weak isospin. For quarks Kähler magnetic charge
need not cancel and cancellation might occur only in hadronic length scale. The magnetic flux
tubes behave like string like objects and if the string tension is determined by weak length scale,
these string aspects should become visible at LHC. If the string tension is 512 GeV the situation
becomes less promising.

In this chapter the predicted new physics and possible indications for it are discussed.
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[109] S. Okubo. Angular momentum, quaternion, octonion, and Lie-super algebra Osp(1, 2). http:

//arxiv.org/pdf/physics/9710038, 1997.

[110] A. Kent P. Goddard and D. Olive. Unitary representations of the Virasoro and super-Virasoro
algebras. Comm. Math. Phys., 103(1), 1986.

[111] N. Pope, C. Eigenfunctions and Spinc Structures on CP2, 1980.

[112] M. Rainer. Algebraic Quantum Field Theory on Manifolds: A Haag-Kastler Setting for Quantum
Geometry. http://arxiv.org/abs/gr-qc/9911076, 2000.
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GENERAL OVERVIEW
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Chapter 2

Topological Geometrodynamics:
Three Visions

2.1 Introduction

Originally Topological Geometrodynamics (TGD) was proposed as a solution of the problems related
to the definition of conserved four-momentum in General Relativity. It was assumed that physical
space-times are representable as 4-D surfaces in certain higher-dimensional space-time having sym-
metries of the empty Minkowski space of Special Relativity. This is guaranteed by the decomposition
H = M4 × S, where S is some compact internal space. It turned out that the choice S = CP2 is
unique in the sense that it predicts the symmetries of the standard model and provides a realiza-
tion for Einstein’s dream of geometrizing of fundamental interactions at classical level. TGD can be
also regarded as a generalization of super string models obtained by replacing strings with light-like
3-surfaces or equivalently with space-like 3-surfaces: the equivalence of these identification implies
quantum holography.

The construction of quantum TGD turned out to be much more than mere technical problem
of deriving S-matrix from path integral formalism. A new ontology of physics (many-sheeted space-
time, zero energy ontology, generalization of the notion of number, and generalization of quantum
theory based on spectrum of Planck constants giving hopes to understand what dark matter and
dark energy are) and also a generalization of quantum measurement theory leading to a theory of
consciousness and model for quantum biology providing new insights to the mysterious ability of
living matter to circumvent the constraints posed by the second law of thermodynamics were needed.
The construction of quantum TGD involves a handful of different approaches consistent with a similar
overall view, and one can say that the construction of M-matrix, which generalizes the S-matrix of
quantum field theories, is understood to a satisfactory degree although it is not possible to write even
in principle explicit Feynman rules except at quantum field theory limit [65, 32] .

In this chapter I will discuss three basic visions about quantum Topological Geometrodynamics
(TGD). It is somewhat matter of taste which idea one should call a vision and the selection of these
three in a special role is what I feel natural just now.

1. The first vision is generalization of Einstein’s geometrization program based on the idea that
the Kähler geometry of the world of classical worlds (WCW) with physical states identified as
classical spinor fields on this space would provide the ultimate formulation of physics [72] .

2. Second vision is number theoretical [83] and involves three threads.

(a) The first thread [85] relies on the idea that it should be possible to fuse real number based
physics and physics associated with various p-adic number fields to single coherent whole
by a proper generalization of number concept.

(b) Second thread [86] is based on the hypothesis that classical number fields could allow to
understand the fundamental symmetries of physics and and imply quantum TGD from
purely number theoretical premises with associativity defining the fundamental dynamical
principle both classically and quantum mechanically.
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(c) The third thread [84] relies on the notion of infinite primes whose construction has amazing
structural similarities with second quantization of super-symmetric quantum field theories.
In particular, the hierarchy of infinite primes and integers allows to generalize the notion
of numbers so that given real number has infinitely rich number theoretic anatomy based
on the existence of infinite number of real units. This implies number theoretical Brah-
man=Atman identity or number theoretical holography when one consider hyper-octonionic
infinite primes.

(d) The third vision is based on TGD inspired theory of consciousness [87] , which can be
regarded as an extension of quantum measurement theory to a theory of consciousness
raising observer from an outsider to a key actor of quantum physics. The basic notions
at quantum jump identified as as a moment of consciousness and self. Negentropy Max-
imization Principle (NMP) defines the fundamental variational principle and reproduces
standard quantum measurement theory and predicts second law but also some totally new
physics in the intersection of real and p-adic worlds where it is possible to define a hier-
archy of number theoretical variants of Shannon entropy which can be also negative. In
this case NMP favors the generation of entanglement and state function reduction does not
mean generation of randomness anymore. This vision has obvious almost applications to
biological self-organization.

My aim is to provide a bird’s eye of view and my hope is that reader would take the attitude that
details which cannot be explained in this kind of representation are not essential for the purpose of
getting a feeling about the great dream behind TGD.

2.2 Quantum physics as infinite-dimensional geometry

The first vision in its original form is a the generalization of Einstein’s program for the geometrization
of physics by replacing space-time with the WCW identified roughly as the space of 4-surfaces in
H = M4 ×CP2. Later generalization due to replacement of H with book like structures from by real
and p-adic variants of H emerged. A further book like structure of imbedding space emerged via the
introduction of the hierarchy of Planck constants. These generalizations do not however add anything
new to the basic geometric vision.

2.2.1 World of the classical worlds as the arena of quantum physics

Physics as the classical spinor field geometry of WCW consisting of light-like 3-surfaces in 8-D imbed-
ding space H = M4 × CP2 (to be referred as configuration space CH or WCW in the sequel) is
the oldest and best developed approach to TGD and means generalization of Einstein’s program of
geometrizing classical physics so that it applies to entire quantum physics [72] . There are two natural
identifications for the 3-surfaces.

1. By general coordinate invariance light-like 3-surfaces can be identified as wormhole throats at
which the signature of the induced metric changes from a Minkowskian signature of space-time
sheet to that of deformed CP2 type vacuum extremal representing elementary particle. One can
interpret so called CP2 type vacuum extremals as lines of generalized Feynman diagrams so that
geometrization and generalization of the notion of Feynman diagram emerges.

2. In zero energy ontology causal diamonds (CDs) of M4 defined as intersection of future and
past directed light-cones become define basic building bricks of WCW. The space-time surfaces
belonging to CD having their 3-D future and past ends at the light-like boundaries of CD
become the basic objects. The ends are 3-surfaces are space-like and come in pairs. WCW
decomposes into a union over sub-WCWs associated with various CDs and their unions and
the space-like ends of the space-time sheets at future and past boundaries of CD become very
natural fundamental objects.

The condition that the two identifications of 3-surfaces are equivalent implies that all information
about the geometry of WCW and quantum physics is coded by the 2-dimensional intersections of the
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space-like and light-like 3-surfaces at the boundaries of CDs plus the information about the distri-
bution of 4-D tangent spaces of the space-time sheet at these surfaces. I have christened partonic
2-surfaces since they are carriers of various quantum numbers. Therefore 4-D General Coordinate in-
variance implies efffective 2-dimensionality and quantum holography. The effective two-dimensionality
is implies also by general consistency conditions related to conformal symmetries: this became obvious
much before the emergence of zero energy ontology and led to interpretational difficulties at that time.
The non-determinism of Kähler action defining space-time dynamics in the standard sense of the worl
implies that effective 2-dimensionality holds only locally.

WCW is endowed with Kähler metric guaranteing the geometrization of hermitian conjugation of
quantum theory.

1. The conjecture inspired by the geometry of loop spaces [85] is that H is fixed from the mere
requirement that the infinite-dimensional Kähler geometry exists. WCW must reduce to a
union of symmetric spaces having infinite-dimensional isometry groups and labeled by zero
modes having interpretation as classical dynamical variables. This requires infinite-dimensional
symmetry groups. At space-time level super-conformal symmetries are possible only if the basic
dynamical objects can be identified as light-like or space-like 3-surfaces. At imbedding space
level there are extended super-conformal symmetries assignable to the light-cone of H if the
Minkowski space factor is four-dimensional.

The recent progress in the understanding of the representations of super-conformal symmetries
leads to a beautiful generalization of Equivalence Principle in terms of Super Virasoro conditions
for the coset construction involving the super-symplectic algebras associated with conformal
symmetries of the light-cone of Minkowski space and super Kac-Moody symmetries associated
with light-like 3-surfaces [23] . Einstein’s equations result at long length scale limit [91] . A
string model type description emerges in a finite measurement resolution when light-like 3-
surfaces are replaced by braids. This means also quantum holography. General Coordinate
Invariance implies that classical space-time physics becomes an exact part of quantum theory
in the sense that space-time sheets are analogous to Bohr orbits.

2. The condition that the symmetries of standard model are realized geometrically and that one
can understand the known quantum numbers characterizing elementary particles in terms of
the geometry of the imbedding space, leads to a unique choice for the imbedding space as H =
M4×CP2. The challenge is to understand what makes this choice so special and number theoretic
approach based on classical number fields allows to interpret this choice number theoretically so
that the standard model symmetries find a number theoretical interpretation.

2.2.2 Geometrization of fermionic statistics in terms of configuration space
spinor structure

The great vision has been that the second quantization of the induced spinor fields can be under-
stood geometrically in terms of the configuration space spinor structure in the sense that the anti-
commutation relations for configuration space gamma matrices require anti-commutation relations for
the oscillator operators for free second quantized induced spinor fields defined at space-time surface.

1. One must identify the counterparts of second quantized fermion fields as objects closely related
to the configuration space spinor structure. Ramond model [73] has as its basic field the anti-
commuting field Γk(x), whose Fourier components are analogous to the gamma matrices of the
configuration space and which behaves like a spin 3/2 fermionic field rather than a vector field.
This suggests that the are analogous to spin 3/2 fields and therefore expressible in terms of the
fermionic oscillator operators so that their naturally derives from the anti-commutativity of the
fermionic oscillator operators.

Configuration space spinor fields can have arbitrary fermion number and there are good hopes
of describing the whole physics in terms of configuration space spinor field. Clearly, fermionic
oscillator operators would act in degrees of freedom analogous to the spin degrees of freedom of
the ordinary spinor and bosonic oscillator operators would act in degrees of freedom analogous to
the ’orbital’ degrees of freedom of the ordinary spinor field. One non-trivial implication is bosonic
emergence: elementary bosons correspond to fermion antifermion bound states associated with
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the wormhole contacts (pieces of CP2 type vacuum extremals) with throats carrying fermion
and antifermion numbers. Fermions correspond to single throats associated with topologically
condensed CP2 type vacuum extremals.

2. The classical theory for the bosonic fields is an essential part of the configuration space geometry.
It would be very nice if the classical theory for the spinor fields would be contained in the
definition of the configuration space spinor structure somehow. The properties of the associated
with the induced spinor structure are indeed very physical. The modified massless Dirac equation
for the induced spinors predicts a separate conservation of baryon and lepton numbers. The
differences between quarks and leptons result from the different couplings to the CP2 Kähler
potential. In fact, these properties are shared by the solutions of massless Dirac equation of the
imbedding space.

3. Since TGD should have a close relationship to the ordinary quantum field theories it would
be highly desirable that the second quantized free induced spinor field would somehow appear
in the definition of the configuration space geometry. This is indeed true if the complexified
configuration space gamma matrices are linearly related to the oscillator operators associated
with the second quantized induced spinor field on the space-time surface and its boundaries.
There is actually no deep reason forbidding the gamma matrices of the configuration space to
be spin half odd-integer objects whereas in the finite-dimensional case this is not possible in
general. In fact, in the finite-dimensional case the equivalence of the spinorial and vectorial
vielbeins forces the spinor and vector representations of the vielbein group SO(D) to have same
dimension and this is possible for D = 8-dimensional Euclidian space only. This coincidence
might explain the success of 10-dimensional super string models for which the physical degrees
of freedom effectively correspond to an 8-dimensional Euclidian space.

4. It took a long time to realize that the ordinary definition of the gamma matrix algebra in terms
of the anti-commutators {γA, γB} = 2gAB must in TGD context be replaced with

{γ†A, γB} = iJAB ,

where JAB denotes the matrix elements of the Kähler form of the configuration space. The
presence of the Hermitian conjugation is necessary because configuration space gamma matrices
carry fermion number. This definition is numerically equivalent with the standard one in the
complex coordinates. The realization of this delicacy is necessary in order to understand how
the square of the configuration space Dirac operator comes out correctly.

2.2.3 Construction of the configuration space Clifford algebra in terms of
second quantized induced spinor fields

The construction of WCW spinor structure must have a direct relationship to quantum physics as it
is usually understood. The second quantization of the space-time spinor fields is needed to define the
anticommutative gamma matrices of WCW: this means a geometrization of Fermi statistics [20] in the
sense that free fermionic quantum fields at space-time surface correspond to purely classical Clifford
algebra of WCW. This is in accordance with the idea that physics at WCW level is purely classical
apart from the notion of quantum jump.

The identification of the correct variational principle for the dynamics of space-time spinor fields
identified as induced spinor fields has involved many trials. Ironically, the final outcome was almost
the most obvious gess. The so called modified Dirac action (the obvious guess) with measurement
interaction term (required by quantum classical correspondence) added defines the fundamental dy-
namics providing space-time representation of quantum physics via classical space-time physics [31] .
One can identify the vacuum functional -exponent of Kähler function of WCW- as a Dirac determi-
nant. The conjecture is that Kähler function equals to Kähler action for a preferred extrema, which by
internal consistency conditions must be critical in the sense that it allows infinite number of vanishing
second variations. This realizes the notion of quantum criticality-one of guiding principles of quantum
TGD-at space-time level.
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Number theoretical approach in turn leads to the conclusion that space-time surfaces are either
associative or co-associative in the sense that the modified gamma matrices at each point of space-
time surface in their octonionic representation reduces to a quaternionic or co-quaternionic algebra
and therefore have matrix representation. The conjecture is that these identifications of space-time
dynamics are consistent or even equivalent.

The recent understanding of the modified Dirac action has emerged through a painful process and
has strong physical implications.

1. Stringy propagators and emerge naturally thanks to the measurement interaction term in the
modified Dirac action coupling to four-momentum and color hyper-charge and isospin.

2. The space-time super-symmetry generalizes to what might be called N = ∞ supersymmetry
which however effectively reduces to N = 1 broken super-symmetry [32]. The generators of
the super-symmetry correspond to the modes of the induced spinor field at space-time sheet.
Bosonic emergence means dramatic simplications in the formulation of QFT limit of TGD. This
formulation should generalize also to the level of the fundamental theory.

3. It is also possible to generalize the twistor program to TGD framework if one accepts the use
ofoctonionic representation of the gamma matrices of imbedding space and hyper-quaternionicity
of space-time surfaces [96] .

2.2.4 Zero energy ontology and WCW geometry

In the zero energy ontology quantum states have vanishing net values of conserved quantum numbers
and decompose to superposition of pairs of positive and negative energy states defining counterparts
of initial and final states of a physical event in standard ontology.

Zero energy ontology

Zero energy ontology was forced by the interpretational problems created by the vacuum extremal
property of Robertson-Walker cosmologies imbedded as 4-surfaces in M4 × CP2 meaning that the
density of inertial mass (but not gravitational mass) for these cosmologies was vanishing meaning a
conflict with Equivalence Principle. In zero energy ontology physical states are replaced by pairs of
positive and negative energy states assigned to the past resp. future boundaries of causal diamonds
defined as pairs of future and past directed light-cones (δM4

± ×CP2). The net values of all conserved
quantum numbers of zero energy states vanish. Zero energy states are interpreted as pairs of initial
and final states of a physical event such as particle scattering so that only events appear in the new
ontology. It is possible to speak about the energy of the system if one identifies it as the average
positive energy for the positive energy part of the system. Same applies to other quantum numbers.

The matrix (”M-matrix”) representing time-like entanglement coefficients between positive and
negative energy states unifies the notions of S-matrix and density matrix since it can be regarded as a
complex square root of density matrix expressible as a product of real squared of density matrix and
unitary S-matrix. The system can be also in thermal equilibrium so that thermodynamics becomes
a genuine part of quantum theory and thermodynamical ensembles cease to be practical fictions of
the theorist. In this case M-matrix represents a superposition of zero energy states for which positive
energy state has thermal density matrix.

Zero energy ontology combined with the notion of quantum jump resolves several problems. For
instance, the troublesome questions about the initial state of universe and about the values of con-
served quantum numbers of the Universe can be avoided since everything is in principle creatable
from vacuum. Communication with the geometric past using negative energy signals and time-like
entanglement are crucial for the TGD inspired quantum model of memory and both make sense in
zero energy ontology. Zero energy ontology leads to a precise mathematical characterization of the
finite resolution of both quantum measurement and sensory and cognitive representations in terms of
inclusions of von Neumann algebras known as hyperfinite factors of type II1. The space-time correlate
for the finite resolution is discretization which appears also in the formulation of quantum TGD.
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Causal diamonds

The imbedding space correlates for zero energy ontology are causal diamonds (CDs) CD serves as the
correlate zero energy state at imbedding space-level whereas space-time sheets having their ends at
the light-like boundaries of CD are the correlates of the system at the level of 4-D space-time. Zero
energy state can be regarded as a quantum superposition of space-time sheets with fermionic and
other quantum numbers assignable to the partonic 2-surfaces at the ends of the space-time sheets.

1. The basic construct in the zero energy ontology is the space CD×CP2, where the causal diamond
CD is defined as an intersection of future and past directed light-cones with time-like separation
between their tips regarded as points of the underlying universal Minkowski space M4. In zero
energy ontology physical states correspond to pairs of positive and negative energy states located
at the boundaries of the future and past directed light-cones of a particular CD.

2. CDs form a fractal hierarchy and one can glue smaller CDs within larger CDs. Also unions of
CDs are possible.

3. Without any restrictions CDs would be parametrized by the position of say lower tip of CD
and by the relative M4 coordinates of the upper tip with respect to the lower one so that the
moduli space would be M4×M4

+. p-Adic length scale hypothesis follows if the values of temporal
distance T between tips of CD come in powers of 2n: T = 2nT0. This would reduce the future
light-cone M4

+ reduces to a union of hyperboloids with quantized value of light-cone proper time.
A possible interepretation of this distance is as a quantized cosmic time. Also the quantization
of the hyperboloids to a lattices of discrete points classified by discrete sub-groups of Lorentz
group is an attractive proposal and the quantization of cosmic redshifts provides some support
for it.

Zero energy ontology forces to replaced the original WCW by a union of WCWs associated with
CDs and their unions. This does not however mean any problems of principle since Clifford algebras
are simply tensor products of the Clifford algebras of CDs for the unions of CDs.

2.2.5 Hierarchy of Planck constants and WCW geometry

The motivations for introducing the hierarchy of Planck constants interpreted in terms of phases of
dark matter came from astrophysics [77, 63] , [27] and biology [69] and led to a generalization of the
imbedding space to a book like structure [30] . This implies additional richness of structure at the
level of geometry of WCW. In the following the recent view about structure of imbedding space forced
by the quantization of Planck constant is summarized.

The evolution of physical ideas about hierarchy of Planck constants

The evolution of the physical ideas related to the hierarchy of Planck constants and dark matter as a
hierarchy of phases of matter with non-standard value of Planck constants was much faster than the
evolution of mathematical ideas and quite a number of applications have been developed during last
five years [77, 30, 66] .

1. The starting point was the proposal of Nottale [27] that the orbits of inner planets correspond
to Bohr orbits with Planck constant ~gr = GMm/v0 and outer planets with Planck constant
~gr = 5GMm/v0, v0/c ' 2−11. The basic proposal [77] was that ordinary matter condenses
around dark matter which is a phase of matter characterized by a non-standard value of Planck
constant whose value is gigantic for the space-time sheets mediating gravitational interaction.
The interpretation of these space-time sheets could be as magnetic flux quanta or as massless
extremals assignable to gravitons.

2. Ordinary particles possibly residing at these space-time sheet have enormous value of Compton
length meaning that the density of matter at these space-time sheets must be very slowly vary-
ing. The string tension of string like objects implies effective negative pressure characterizing
dark energy so that the interpretation in terms of dark energy might make sense [78] . TGD
predicted a one-parameter family of Robertson-Walker cosmologies with critical or over-critical
mass density and the ”pressure” associated with these cosmologies is negative.
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3. The quantization of Planck constant does not make sense unless one modifies the view about
standard space-time is. Particles with different Planck constant must belong to different worlds
in the sense local interactions of particles with different values of ~ are not possible. This inspires
the idea about the book like structure of the imbedding space obtained by gluing almost copies
of H together along common ”back” and partially labeled by different values of Planck constant.

4. Darkness is a relative notion in this framework and due to the fact that particles at different
pages of the book like structure cannot appear in the same vertex of the generalized Feynman
diagram. The phase transitions in which partonic 2-surface X2 during its travel along X3

l leaks
to another page of book are however possible and change Planck constant. Particle (say photon
-) exchanges of this kind allow particles at different pages to interact. The interactions are
strongly constrained by charge fractionization and are essentially phase transitions involving
many particles. Classical interactions are also possible. It might be that we are actually ob-
serving dark matter via classical fields all the time and perhaps have even photographed it [89]
.

5. The realization that non-standard values of Planck constant give rise to charge and spin fraction-
ization and anyonization led to the precise identification of the prerequisites of anyonic phase [66]
. If the partonic 2-surface, which can have even astrophysical size, surrounds the tip of CD, the
matter at the surface is anyonic and particles are confined at this surface. Dark matter could
be confined inside this kind of light-like 3-surfaces around which ordinary matter condenses. If
the radii of the basic pieces of these nearly spherical anyonic surfaces - glued to a connected
structure by flux tubes mediating gravitational interaction - are given by Bohr rules, the find-
ings of Nottale [27] can be understood. Dark matter would resemble to a high degree matter in
black holes replaced in TGD framework by light-like partonic 2-surfaces with a minimum size
of order Schwartschild radius rS of order scaled up Planck length lPl =

√
~grG = GM . Black

hole entropy is inversely proportional to ~ and predicted to be of order unity so that dramatic
modification of the picture about black holes is implied.

6. Perhaps the most fascinating applications are in biology. The anomalous behavior ionic currents
through cell membrane (low dissipation, quantal character, no change when the membrane is
replaced with artificial one) has a natural explanation in terms of dark supra currents. This
leads to a vision about how dark matter and phase transitions changing the value of Planck
constant could relate to the basic functions of cell, functioning of DNA and aminoacids, and to
the mysteries of bio-catalysis. This leads also a model for EEG interpreted as a communication
and control tool of magnetic body containing dark matter and using biological body as motor
instrument and sensory receptor. One especially amazing outcome is the emergence of genetic
code of vertebrates from the model of dark nuclei as nuclear strings [6, 89] , [6] .

The most general option for the generalized imbedding space

Simple physical arguments pose constraints on the choice of the most general form of the imbedding
space.

1. The fundamental group of the space for which one constructs a non-singular covering space or
factor space should be non-trivial. This is certainly not possible for M4, CD, CP2, or H. One
can however construct singular covering spaces. The fixing of the quantization axes implies a
selection of the sub-space H4 = M2 × S2 ⊂ M4 × CP2, where S2 is geodesic sphere of CP2.
M̂4 = M4\M2 and ĈP 2 = CP2\S2 have fundamental group Z since the codimension of the
excluded sub-manifold is equal to two and homotopically the situation is like that for a punctured
plane. The exclusion of these sub-manifolds defined by the choice of quantization axes could
naturally give rise to the desired situation.

2. CP2 allows two geodesic spheres which left invariant by U(2 resp. SO(3). The first one is homo-
logically non-trivial. For homologically non-trivial geodesic sphere H4 = M2 × S2 represents a
straight cosmic string which is non-vacuum extremal of Kähler action (not necessarily preferred
extremal). One can argue that the many-valuedness of ~ is un-acceptable for non-vacuum ex-
tremals so that only homologically trivial geodesic sphere S2 would be acceptable. One could go
even further. If the extremals in M2×CP2 can be preferred non-vacuum extremals, the singular
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coverings of M4 are not possible. Therefore only the singular coverings and factor spaces of
CP2 over the homologically trivial geodesic sphere S2 would be possible. This however looks a
non-physical outcome.

(a) The situation changes if the extremals of type M2×Y 2, Y 2 a holomorphic surface of CP3,
fail to be hyperquaternionic. The tangent space M2 represents hypercomplex sub-space
and the product of the modified gamma matrices associated with the tangent spaces of Y 2

should belong to M2 algebra. This need not be the case in general.

(b) The situation changes also if one reinterprets the gluing procedure by introducing scaled
up coordinates for M4 so that metric is continuous at M2 × CP2 but CDs with different
size have different sizes differing by the ratio of Planck constants and would thus have only
piece of lower or upper boundary in common.

3. For the more general option one would have four different options corresponding to the Cartesian
products of singular coverings and factor spaces. These options can be denoted by C−C, C−F ,
F − C, and F − F , where C (F ) signifies for covering (factor space) and first (second) letter
signifies for CD (CP2) and correspond to the spaces (ĈD×̂Ga) × ( ˆCP2×̂Gb), (ĈD×̂Ga) ×

ˆCP2/Gb, ĈD/Ga × ( ˆCP2×̂Gb), and ĈD/Ga × ˆCP2/Gb.

4. The groups Gi could correspond to cyclic groups Zn. One can also consider an extension by
replacing M2 and S2 with its orbit under more general group G (say tedrahedral, octahedral, or
icosahedral group). One expects that the discrete subgroups of SU(2) emerge naturally in this
framework if one allows the action of these groups on the singular sub-manifolds M2 or S2. This
would replace the singular manifold with a set of its rotated copies in the case that the subgroups
have genuinely 3-dimensional action (the subgroups which corresponds to exceptional groups in
the ADE correspondence). For instance, in the case of M2 the quantization axes for angular
momentum would be replaced by the set of quantization axes going through the vertices of
tedrahedron, octahedron, or icosahedron. This would bring non-commutative homotopy groups
into the picture in a natural manner.

About the phase transitions changing Planck constant

There are several non-trivial questions related to the details of the gluing procedure and phase tran-
sition as motion of partonic 2-surface from one sector of the imbedding space to another one.

1. How the gluing of copies of imbedding space at M2 × CP2 takes place? It would seem that the
covariant metric of CD factor proportional to ~2 must be discontinuous at the singular manifold
since only in this manner the idea about different scaling factor of CD metric can make sense.
On the other hand, one can always scale the M4 coordinates so that the metric is continuous
but the sizes of CDs with different Planck constants differ by the ratio of the Planck constants.

2. One might worry whether the phase transition changing Planck constant means an instantaneous
change of the size of partonic 2-surface in M4 degrees of freedom. This is not the case. Light-
likeness in M2 × S2 makes sense only for surfaces X1 ×D2 ⊂ M2 × S2, where X1 is light-like
geodesic. The requirement that the partonic 2-surface X2 moving from one sector of H to
another one is light-like at M2 × S2 irrespective of the value of Planck constant requires that
X2 has single point of M2 as M2 projection. Hence no sudden change of the size X2 occurs.

3. A natural question is whether the phase transition changing the value of Planck constant can
occur purely classically or whether it is analogous to quantum tunneling. Classical non-vacuum
extremals of Chern-Simons action have two-dimensional CP2 projection to homologically non-
trivial geodesic sphere S2

I . The deformation of the entire S2
I to homologically trivial geodesic

sphere S2
II is not possible so that only combinations of partonic 2-surfaces with vanishing total

homology charge (Kähler magnetic charge) can in principle move from sector to another one,
and this process involves fusion of these 2-surfaces such that CP2 projection becomes single
homologically trivial 2-surface. A piece of a non-trivial geodesic sphere S2

I of CP2 can be
deformed to that of S2

II using 2-dimensional homotopy flattening the piece of S2 to curve. If this
homotopy cannot be chosen to be light-like, the phase transitions changing Planck constant take
place only via quantum tunnelling. Obviously the notions of light-like homotopies (cobordisms)
are very relevant for the understanding of phase transitions changing Planck constant.



2.2. Quantum physics as infinite-dimensional geometry 59

How one could fix the spectrum of Planck constants?

The question how the observed Planck constant relates to the integers na and nb defining the covering
and factors spaces, is far from trivial and I have considered several options. The basic physical inputs
are the condition that scaling of Planck constant must correspond to the scaling of the metric of CD
(that is Compton lengths) on one hand and the scaling of the gauge coupling strength g2/4π~ on the
other hand.

1. One can assign to Planck constant to both CD and CP2 by assuming that it appears in the
commutation relations of corresponding symmetry algebras. Algebraist would argue that Planck
constants ~(CD) and ~(CP2) must define a homomorphism respecting multiplication and divi-
sion (when possible) by Gi. This requires r(X) = ~(X)~0 = n for covering and r(X) = 1/n for
factor space or vice versa.

2. If one assumes that ~2(X), X = M4, CP2 corresponds to the scaling of the covariant metric
tensor gij and performs an over-all scaling of H-metric allowed by the Weyl invariance of Kähler
action by dividing metric with ~2(CP2), one obtains the scaling of M4 covariant metric by
r2 ≡ ~2/~2

0 = ~2(M4)/~2(CP2) whereas CP2 metric is not scaled at all.

3. The condition that ~ scales as na is guaranteed if one has ~(CD) = na~0. This does not fix
the dependence of ~(CP2) on nb and one could have ~(CP2) = nb~0 or ~(CP2) = ~0/nb. The
intuitive picture is that nb- fold covering gives in good approximation rise to nanb sheets and
multiplies YM action action by nanb which is equivalent with the ~ = nanb~0 if one effectively
compresses the covering to CD×CP2. One would have ~(CP2) = ~0/nb and ~ = nanb~0. Note
that the descriptions using ordinary Planck constant and coverings and scaled Planck constant
but contracting the covering would be alternative descriptions.

This gives the following formulas r ≡ ~/~0 = r(M4)/r(CP2) in various cases.

C − C F − C C − F F − F

r nanb
na
nb

nb
na

1
nanb

Preferred values of Planck constants

Number theoretic considerations favor the hypothesis that the integers corresponding to Fermat
polygons constructible using only ruler and compass and given as products nF = 2k

∏
s Fs, where

Fs = 22s + 1 are distinct Fermat primes, are favored. The reason would be that quantum phase
q = exp(iπ/n) is in this case expressible using only iterated square root operation by starting from
rationals. The known Fermat primes correspond to s = 0, 1, 2, 3, 4 so that the hypothesis is very
strong and predicts that p-adic length scales have satellite length scales given as multiples of nF of
fundamental p-adic length scale. nF = 211 corresponds in TGD framework to a fundamental constant
expressible as a combination of Kähler coupling strength, CP2 radius and Planck length appearing in
the expression for the tension of cosmic strings, and the powers of 211 seem to be especially favored
as values of na in living matter [27] .

How Planck constants are visible in Kähler action?

~(M4) and ~(CP2) appear in the commutation and anticommutation relations of various supercon-
formal algebras. Only the ratio of M4 and CP2 Planck constants appears in Kähler action and is due
to the fact that the M4 and CP2 metrics of the imbedding space sector with given values of Planck
constants are proportional to the corresponding Planck constants [30] . This implies that Kähler
function codes for radiative corrections to the classical action, which makes possible to consider the
possibility that higher order radiative corrections to functional integral vanish as one might expect
at quantum criticality. For a given p-adic length scale space-time sheets with all allowed values of
Planck constants are possible. Hence the spectrum of quantum critical fluctuations could in the ideal
case correspond to the spectrum of ~ coding for the scaled up values of Compton lengths and other
quantal lengths and times. If so, large ~ phases could be crucial for understanding of quantum critical
superconductors, in particular high Tc superconductors.
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Implications for the construction WCW geometry

1. In the realization of the hierarchy of Planck constants CD × CP2 is replaced with a Cartesian
product of book like structures formed by almost copies of CDs and CP2s defined by singular
coverings and factors spaces of CD and CP2 with singularities corresponding to intersection
M2∩CD and homologically trivial geodesic sphere S2 of CP2 for which the induced Kähler form
vanishes. The coverings and factor spaces of CDs are glued together along common M2 ∩ CD.
The coverings and factors spaces of CP2 are glued together along common homologically non-
trivial geodesic sphere S2. The choice of preferred M2 as subspace of tangent space of X4 at all
its points and interpreted as space of non-physical polarizations, brings M2 into the theory also
in different manner. S2 in turn defines a subspace of the much larger space of vacuum extremals
as surfaces inside M4 × S2.

2. Configuration space (the world of classical worlds, WCW) decomposes into a union of sub-
WCWs corresponding to different choices of M2 and S2 and also to different choices of the
quantization axes of spin and energy, color isospin and hyper-charge for each choice of this kind.
This means breaking down of the isometries to a subgroup. This can be compensated by the
fact that the union can be taken over the different choices of this subgroup.

3. This means extension of the moduli space of CDs from M4 ×X, where X ⊂ M4
+ is suggested

to be identifiable as a discrete lattice for the relative positions of the tips of CD. What is added
is the space characterizing the choice of the quantization axes for energy and spin on one hand
and color hypercharge and isospin on the other hand. This choice is part of a statefunction
reduction process and means localization in this space. In the case of color charges the moduli
space is the flag-manifold SU(3)/U(1)× U(1).

2.2.6 Hyper-finite factors and the notion of measurement resolution

The work with TGD inspired model [95, 29] for topological quantum computation [50] led to the
realization that von Neumann algebras [76] , in particular so called hyper-finite factors of type II1 [96]
, seem to provide the mathematics needed to develop a more explicit view about the construction of S-
matrix. Later came the realization that the Clifford algebra of WCW defines a canonical representation
of hyper-finite factors of type II1 and that WCW spinor fields give rise to HFFs of type III1 encountered
also in relativistically invariant quantum field theories [97] .

Philosophical ideas behind von Neumann algebras

The goal of von Neumann was to generalize the algebra of quantum mechanical observables. The basic
ideas behind the von Neumann algebra are dictated by physics. The algebra elements allow Hermitian
conjugation ∗ and observables correspond to Hermitian operators. Any measurable function f(A) of
operator A belongs to the algebra and one can say that non-commutative measure theory is in question.

The predictions of quantum theory are expressible in terms of traces of observables. Density
matrix defining expectations of observables in ensemble is the basic example. The highly non-trivial
requirement of von Neumann was that identical a priori probabilities for a detection of states of infinite
state system must make sense. Since quantum mechanical expectation values are expressible in terms
of operator traces, this requires that unit operator has unit trace: tr(Id) = 1.

In the finite-dimensional case it is easy to build observables out of minimal projections to 1-
dimensional eigen spaces of observables. For infinite-dimensional case the probably of projection to
1-dimensional sub-space vanishes if each state is equally probable. The notion of observable must thus
be modified by excluding 1-dimensional minimal projections, and allow only projections for which the
trace would be infinite using the straightforward generalization of the matrix algebra trace as the
dimension of the projection.

The non-trivial implication of the fact that traces of projections are never larger than one is
that the eigen spaces of the density matrix must be infinite-dimensional for non-vanishing projection
probabilities. Quantum measurements can lead with a finite probability only to mixed states with a
density matrix which is projection operator to infinite-dimensional subspace. The simple von Neumann
algebras for which unit operator has unit trace are known as factors of type II1 [96] .
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The definitions of adopted by von Neumann allow however more general algebras. Type In algebras
correspond to finite-dimensional matrix algebras with finite traces whereas I∞ associated with a
separable infinite-dimensional Hilbert space does not allow bounded traces. For algebras of type III
non-trivial traces are always infinite and the notion of trace becomes useless being replaced by the
notion of state which is generalization of the notion of thermodynamical state. The fascinating feature
of this notion of state is that it defines a unique modular automorphism of the factor defined apart
from unitary inner automorphism and the question is whether this notion or its generalization might
be relevant for the construction of M-matrix in TGD.

Von Neumann, Dirac, and Feynman

The association of algebras of type I with the standard quantum mechanics allowed to unify matrix
mechanism with wave mechanics. Note however that the assumption about continuous momentum
state basis is in conflict with separability but the particle-in-box idealization allows to circumvent this
problem (the notion of space-time sheet brings the box in physics as something completely real).

Because of the finiteness of traces von Neumann regarded the factors of type II1 as fundamental
and factors of type III as pathological. The highly pragmatic and successful approach of Dirac [31]
based on the notion of delta function, plus the emergence of s [84] , the possibility to formulate the
notion of delta function rigorously in terms of distributions [95, 122] , and the emergence of path
integral approach [114] meant that von Neumann approach was forgotten by particle physicists.

Algebras of type II1 have emerged only much later in conformal and topological quantum field
theories [120, 136] allowing to deduce invariants of knots, links and 3-manifolds. Also algebraic
structures known as bi-algebras, Hopf algebras, and ribbon algebras [99] relate closely to type II1
factors. In topological quantum computation [50] based on braid groups [62] modular S-matrices they
play an especially important role.

In algebraic quantum field theory [34] defined in Minkowski space the algebras of observables
associated with bounded space-time regions correspond quite generally to the type III1 hyper-finite
factor [72, 17] .

Hyper-finite factors in quantum TGD

The following argument suggests that von Neumann algebras known as hyper-finite factors (HFFs) of
type II1 and III1- the latter appearing in relativistic quantum field theories provide also the proper
mathematical framework for quantum TGD.

1. The Clifford algebra of the infinite-dimensional Hilbert space is a von Neumann algebra known
as HFF of type II1. There also the Clifford algebra at a given point (light-like 3-surface) of WCW
is therefore HFF of type II1. If the fermionic Fock algebra defined by the fermionic oscillator
operators assignable to the induced spinor fields (this is actually not obvious!) is infinite-
dimensional it defines a representation for HFF of type II1. Super-conformal symmetry suggests
that the extension of the Clifford algebra defining the fermionic part of a super-conformal algebra
by adding bosonic super-generators representing symmetries of WCW respects the HFF property.
It could however occur that HFF of type II∞ results.

2. WCW is a union of sub-WCWs associated with causal diamonds (CD) defined as intersections
of future and past directed light-cones. One can allow also unions of CDs and the proposal is
that CDs within CDs are possible. Whether CDs can intersect is not clear.

3. The assumption that the M4 proper distance a between the tips of CD is quantized in powers
of 2 reproduces p-adic length scale hypothesis but one must also consider the possibility that
a can have all possible values. Since SO(3) is the isotropy group of CD, the CDs associated
with a given value of a and with fixed lower tip are parameterized by the Lobatchevski space
L(a) = SO(3, 1)/SO(3). Therefore the CDs with a free position of lower tip are parameterized
by M4 × L(a). A possible interpretation is in terms of quantum cosmology with a identified as
cosmic time [78] . Since Lorentz boosts define a non-compact group, the generalization of so
called crossed product construction strongly suggests that the local Clifford algebra of WCW
is HFF of type III1. If one allows all values of a, one ends up with M4 ×M4

+ as the space of
moduli for WCW.
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Hyper-finite factors and M-matrix

HFFs of type III1 provide a general vision about M-matrix [97] .

1. The factors of type III allow unique modular automorphism ∆it (fixed apart from unitary inner
automorphism). This raises the question whether the modular automorphism could be used to
define the M-matrix of quantum TGD. This is not the case as is obvious already from the fact
that unitary time evolution is not a sensible concept in zero energy ontology.

2. Concerning the identification of M-matrix the notion of state as it is used in theory of factors is a
more appropriate starting point than the notion modular automorphism but as a generalization
of thermodynamical state is certainly not enough for the purposes of quantum TGD and quantum
field theories (algebraic quantum field theorists might disagree!). Zero energy ontology requires
that the notion of thermodynamical state should be replaced with its ”complex square root”
abstracting the idea about M-matrix as a product of positive square root of a diagonal density
matrix and a unitary S-matrix. This generalization of thermodynamical state -if it exists- would
provide a firm mathematical basis for the notion of M-matrix and for the fuzzy notion of path
integral.

3. The existence of the modular automorphisms relies on Tomita-Takesaki theorem [129] , which
assumes that the Hilbert space in which HFF acts allows cyclic and separable vector serving as
ground state for both HFF and its commutant. The translation to the language of physicists
states that the vacuum is a tensor product of two vacua annihilated by annihilation oscillator
type algebra elements of HFF and creation operator type algebra elements of its commutant
isomorphic to it. Note however that these algebras commute so that the two algebras are not
hermitian conjugates of each other. This kind of situation is exactly what emerges in zero energy
ontology: the two vacua can be assigned with the positive and negative energy parts of the zero
energy states entangled by M-matrix.

4. There exists infinite number of thermodynamical states related by modular automorphisms.
This must be true also for their possibly existing ”complex square roots”. Physically they
would correspond to different measurement interactions giving rise to Kähler functions of WCW
differing only by a real part of holomorphic function of complex coordinates of WCW and
arbitrary function of zero mode coordinates and giving rise to the same Kähler metric of WCW.

The concrete construction of M-matrix utilizing the idea of bosonic emergence (bosons as fermion
anti-fermion pairs at opposite throats of wormhole contact) meaning that bosonic propagators reduce
to fermionic loops identifiable as wormhole contacts leads to generalized Feynman rules for M-matrix in
which modified Dirac action containing measurement interaction term defines stringy propagators [23]
. This M -matrix should be consistent with the above proposal.

Connes tensor product as a realization of finite measurement resolution

The inclusions N ⊂M of factors allow an attractive mathematical description of finite measurement
resolution in terms of Connes tensor product [69] but do not fix M-matrix as was the original optimistic
belief.

1. In zero energy ontology N would create states experimentally indistinguishable from the origi-
nal one. Therefore N takes the role of complex numbers in non-commutative quantum theory.
The space M/N would correspond to the operators creating physical states modulo measure-
ment resolution and has typically fractal dimension given as the index of the inclusion. The
corresponding spinor spaces have an identification as quantum spaces with non-commutative
N -valued coordinates.

2. This leads to an elegant description of finite measurement resolution. Suppose that a universal
M-matrix describing the situation for an ideal measurement resolution exists as the idea about
square root of state encourages to think. Finite measurement resolution forces to replace the
probabilities defined by the M-matrix with their N ”averaged” counterparts. The ”averaging”
would be in terms of the complex square root of N -state and a direct analog of functionally or
path integral over the degrees of freedom below measurement resolution defined by (say) length
scale cutoff.
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3. One can construct also directly M-matrices satisfying the measurement resolution constraint.
The condition that N acts like complex numbers on M-matrix elements as far as N -”averaged”
probabilities are considered is satisfied if M-matrix is a tensor product of M-matrix in M(N
interpreted as finite-dimensional space with a projection operator to N . The condition that
N averaging in terms of a complex square root of N state produces this kind of M-matrix
poses a very strong constraint on M-matrix if it is assumed to be universal (apart from variants
corresponding to different measurement interactions).

Number theoretical braids as space-time correlates for finite measurement resolution

Finite measurement resolution has discretization as a space-time counterpart. In the intersection of
real and p-adic worlds defines as partonic 2-surfaces with a mathematical representation allowing
interpretation in terms of real or p-adic number fields one can identify points common to real and
p-adic worlds as rational points and common algebraic points (in preferred coordinates dictated by
symmetries of imbedding space). Quite generally, one can identify rational points and algebraic points
in some extension of rationals as points defining the initial points of what might be called number
theoretical braid beginning from the partonic 2-surface at the past boundary of CD and connecting
it with the future boundary of CD. The detailed definition of the braid inside light-like 3-surface is
not relevant if only the information at partonic 2-surface is relevant for quantum physics.

Number theoretical braids are especially relevant for topological QFT aspect of quantum TGD.
The topological QFT associated with braids accompanying light-like 3-surfaces having interpretation
as lines of generalied Feynman diagrams should be important part of the definition of amplitudes
assigned to generalized Feynman diagrams. The number theoretic braids relate also closely to a
symplectic variant of conformal field theory emerges very naturally in TGD framework (symplectic
symmetries acting on δM4

± × CP2 are in question) and this leads to a concrete proposal for how to
to construct n-point functions needed to calculate M-matrix [23] . The mechanism guaranteing the
predicted absence of divergences in M-matrix elements can be understood in terms of vanishing of
symplectic invariants as two arguments of n-point function coincide.

Quantum spinors and fuzzy quantum mechanics

The notion of quantum spinor leads to a quantum mechanical description of fuzzy probabilities [97] .
For quantum spinors state function reduction to spin eigenstates cannot be performed unless quantum
deformation parameter q = exp(i2π/n) equals to q = 1. The reason is that the components of quan-
tum spinor do not commute: it is however possible to measure the commuting operators representing
moduli squared of the components giving the probabilities associated with ’true’ and ’false’. Therefore
the probability for either spin state becomes a quantized observable. The universal eigenvalue spec-
trum for probabilities does not in general contain (1,0) so that quantum qbits are inherently fuzzy.
State function reduction would occur only after a transition to q=1 phase and decoherence is not a
problem as long as it does not induce this transition.

2.3 Physics as a generalized number theory

Physics as a generalized number theory vision involves actually three threads: p-adic ideas [85] , the
ideas related to classical number fields [86] , and the ideas related to the notion of infinite prime [84] .

2.3.1 Fusion of real and p-adic physics to a coherent whole

p-Adic number fields were not present in the original approach to TGD. The success of the p-adic
mass calculations (summarized in the first part of [55] ) made however clear that one must generalize
the notion of topology also at the infinitesimal level from that defined by real numbers so that the
attribute ”topological” in TGD gains much more profound meaning than intended originally. It took
a decade to get convinced that the identification of p-adic physics as a correlate of cognition and
intentionality is the most plausible interpretation discovered hitherto [59] , and that p-adic topology
of p-adic space-time sheets somehow induces the effective p-adic topology of real space-time sheets.
The discovery of the properties of number theoretic variants of Shannon entropy led to the idea that
living matter could be seen as as something in the intersection of real and p-adic worlds and gave
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additional support for this interpretation. If even elementary particles reside in this intersection and
effective p-adic topology applies for real partonic 2-surfaces, the success of p-adic mass calculations
can be understood.

The original view about physics as the geometry of WCW is not enough to meet the challenge of
unifying real and p-adic physics to a single coherent whole. This inspired ”physics as a generalized
number theory” approach [83] .

1. The first element is a generalization of the notion of number obtained by ”gluing” reals and var-
ious p-adic number fields and their algebraic extensions along common rationals and algebraics
to form a larger structure.

2. At the level of imbedding space this gluing corresponds to a gluing of real and p-adic variants
of the imbedding space together along rational and common algebraic points (the number of
which depends on algebraic extension of p-adic numbers used) to what could be seen as a book
like structure. General Coordinate Invariance restricted to rationals or their extension requires
preferred coordinates for CD × CP2 and this kind coordinates can be fixed by isometries of H.
The coordinates are however not completely unique since non-rational isometries produce new
equally good choices. Whether this can be seen as an objection against the approach is not
clear.

3. The analogous gluing of real and various p-adic physics to a larger structure forces to ask what
are the common points of WCWs associated with real and various p-adic worlds. What it is to
be a partonic 2-surface belonging to the intersection of real and p-adic variants of WCW? The
natural answer is that partonic 2-surfaces which have a mathematical representation making
sense both for real numbers and p-adic numbers or their algebraic extensions can be regarded
as ”common points” or identifiable points of p-adicity and reality. This of course applies also
to partonic 2-surfaces corresponding to two different p-adic number fields. This mathematical
property means a representability in terms of ratios of polynomials with rational (or possibily
even algebraic) coefficients in the preferred imbedding space coordinates.

4. The intersections of WCWs and partonic 2-surfaces in different number fields are involved.
An attractive idea is that only the information about common points of surfaces belonging to
different number fields code for physics so that number-theoretically universal part of physics is
number theoretical physics relying only on rationals and their algebraic extensions. For instance,
the transition amplitudes between p-adic and real variants of partonic 2-surface can involve only
the data at these points. This suggests the existence of what might be called number theoretical
QFT. At space-time level this extension of introduce a discretization at space-time level in terms
of rational and algebraic points common to real space-time sheets and their p-adic variants. The
number of these points is in general finite for a given CD and the proposed interpretation is
in terms of cognitive representations. The discrete intersections would define the initial and
final points of number theoretical braids central for the formulation of the theory in finite
measurement resolution.

5. Much later came the realization that living matter or what makes living matter living could be
interpreted as something in this intersection of real and p-adic worlds so that number theoretic
QFT might apply to crucial aspects of living matter.

The interpretation for discretization could be in terms of cognitive, sensory, and measurement res-
olutions rather than fundamental discreteness of the space-time. What looks rather counter intuitive
first is that transcendental points of p-adic space-time sheets are at spatiotemporal infinity in real
sense so that the correlates of cognition and intentionality cannot be localized to any finite spatiotem-
poral volume unlike those of sensory experience. The description of intentionality and cognition in
this manner predicts p-adic fractality of real physics meaning chaos in short scales combined with long
range correlations: p-adic mass calculations represent one example of p-adic fractality.

The realization of this program at the level of WCW is far from trivial. Modified Dirac equation
and classical field equations make sense but quantities expressible as space-time integrals - in particular
Kähler action- do not make sense p-adically. Therefore one can ask whether only the partonic surfaces
in the intersection of real and p-adic worlds should be allowed. Also this restricted theory would be
highly non-trivial physically.



2.3. Physics as a generalized number theory 65

2.3.2 Classical number fields and associativity and commutativity as fun-
damental law of physics

The dimensions of classical number fields appear as dimensions of basic objects in quantum TGD.
Imbedding space has dimension 8, space-time has dimension 4, light-like 3-surfaces are orbits of 2-
D partonic surfaces. If conformal QFT applies to 2-surfaces (this is questionable), one-dimensional
structures would be the basic objects. The lowest level would correspond to discrete sets of points
identifiable as intersections of real and p-adic space-time sheets. This suggests that besides p-adic
number fields also classical number fields (reals, complex numbers, quaternions, octonions [52] ) are
involved [86] and the notion of geometry generalizes considerably. In the recent view about quantum
TGD the dimensional hierarchy defined by classical number field indeed plays a key role. H =
M4 ×CP2 has a number theoretic interpretation and standard model symmetries can be understood
number theoretically as symmetries of hyper-quaternionic planes of hyper-octonionic space.

The associativity condition A(BC) = (AB)C suggests itself as a fundamental physical law of both
classical and quantum physics. Commutativity can be considered as an additional condition. In confor-
mal field theories associativity condition indeed fixes the n-point functions of the theory. At the level of
classical TGD space-time surfaces could be identified as maximal associative (hyper-quaternionic) sub-
manifolds of the imbedding space whose points contain a preferred hyper-complex plane M2 in their
tangent space and the hierarchy finite fields-rationals-reals-complex numbers-quaternions-octonions
could have direct quantum physical counterpart [86] . This leads to the notion of number theoretic
compactification analogous to the dualities of M-theory: one can interpret space-time surfaces either
as hyper-quaternionic 4-surfaces of M8 or as 4-surfaces in M4×CP2. As a matter fact, commutativity
in number theoretic sense is a further natural condition and leads to the notion of number theoretic
braid naturally as also to direct connection with super string models.

At the level of modified Dirac action the identification of space-time surface as a hyper-quaternionic
submanifold of H means that the modified gamma matrices of the space-time surface defined in terms
of canonical momentum currents of Kähler action using octonionic representation for the gamma ma-
trices of H span a hyper-quaternionic sub-space of hyper-octonions at each point of space-time surface
(hyper-octonions are the subspace of complexified octonions for which imaginary units are octonionic
imaginary units multiplied by commutating imaginary unit). Hyper-octonionic representation leads
to a proposal for how to extend twistor program to TGD framework [31, 96] .

2.3.3 Infinite primes and quantum physics

The hierarchy of infinite primes (and of integers and rationals) [84] was the first mathematical notion
stimulated by TGD inspired theory of consciousness. The construction recipe is equivalent with a
repeated second quantization of a super-symmetric arithmetic quantum field theory with bosons and
fermions labeled by primes such that the many-particle states of previous level become the elementary
particles of new level. At a given level there are free many particles states plus counterparts of many
particle states. There is strong structural analogy with polynomial primes. For polynomials with
rational coefficients free many-particle states would correspond to products of first order polynomials
and bound states to irreducible polynomials with non-rational roots.

The hierarchy of space-time sheets with many particle states of space-time sheet becoming elemen-
tary particles at the next level of hierarchy. For instance, the description of proton as an elementary
fermion would be in a well defined sense exact in TGD Universe. Also the hierarchy of n:th order
logics are possible correlates for this hierarchy.

This construction leads also to a number theoretic generalization of space-time point since a given
real number has infinitely rich number theoretical structure not visible at the level of the real norm of
the number a due to the existence of real units expressible in terms of ratios of infinite integers. This
number theoretical anatomy suggest a kind of number theoretical Brahman=Atman identity stating
that the set consisting of number theoretic variants of single point of the imbedding space (equivalent
in real sense) is able to represent the points of WCW or maybe even quantum states assignable to
causal diamond. One could also speak about algebraic holography.

The correspondence between the quantum states defined by WCW spinor fields and wave functions
in the infinite-dimensional discrete space of hyper-octonionic units can be made more concrete [84]
. These wave functions must transforming irreducibly under discrete subgroup SU(3) of octonion
automorpisms transforming ordinary hyper-octonionic prime to a new hyper-octonionic prime. SU(3)
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has interpretation as color group. One can assign standard model quantum numbers to these wave
functions and prime property in principle fixes the spectrum of possible quantum states- in particular
the spectrum of masses. Therefore the extremely esoteric looking notion of infinite prime might turn
out to be very practical calculational tool.

2.4 Physics as extension of quantum measurement theory to
a theory of consciousness

TGD inspired theory of consciousness could be seen as a generalization of quantum measurement
theory to make observer, which in standard quantum measurement theory remains an outsider, a
genuine part of physical system subject to laws of quantum physics. The basic notions are quantum
jump identified as moment of consciousness and the notion of self [51] : in zero energy ontology these
notions might however reduce to each other. Negentropy Maximization Principle [52] defines the
dynamics of consciousness and as a special case reproduces standard quantum measurement theory.

2.4.1 Quantum jump as moment of consciousness

TGD suggests that the quantum jump between quantum histories could identified as moment of
consciousness and could therefore be for consciousness theory what elementary particle is for physics
[51] .

This means that subjective time evolution corresponds to the sequence of quantum jumps Ψi →
UΨi → Ψf consisting of unitary process followed by state function process. Originally U was thought
to be the TGD counterpart of the unitary time evolution operator U(−t, t), t → ∞, associated with
the scattering solutions of Schrödinger equation. It seems however impossible to assign any real
Scrödinger time evolution with U . In zero energy ontology U defines a unitary matrix between zero
energy states and is naturally assignable to intentional actions whereas the ordinary S-matrix telling
what happens in particle physics experiment (for instance) generalizes to M-matrix defining time-like
entanglement between positive and negative energy parts of zero energy states. One might say that U
process corresponds to a fundamental act of creation creating a quantum superposition of possibilities
and the remaining steps generalizing state function reduction process select between them.

2.4.2 Negentropy Maximization Principle and the notion of self

U -process is followed by a sequence of state function reductions. Negentropy Maximization Principle
(NMP [52] ) states that in a given quantum state the most quantum entangled subsystem-complement
pair can perform the quantum jump. More precisely: the reduction of the entanglement entropy in
the quantum jump is as large as possible. This selects the pair in question and in case of ordinary
entanglement entropy leads the selected pair to a product state. The interpretation of the reduc-
tion of the entanglement entropy as conscious information gain makes sense. The sequence of state
function reductions decomposes at first step the entire system to two parts in such a manner that
the reduction entanglement entropy is maximal. This process repeats itself for subsystems. If the
subsystem in question cannot be divided into a pair of entangled free system the process stops since
energy conservation does not allow it to occur (binding energy).

The original definition of self was as a subsystem able to remain unentangled under state function
reductions associated with subsequent quantum jumps. Everything is consciousness but consciousness
can be lost if self develops bound state entanglement during U process so that state function reduction
to smaller un-entangled pieces is impossible.

The existence of number theoretical entanglement entropies in the intersection of real and various
p-adic worlds force to modify this picture. The reduction process can stop also if the self in question
allows only decompositions to pairs systems with negentropic entanglement. This does not require
that that the system forms a bound state for any pair of subsystems so that the systems decomposing
it can be free (no binding energy). This defines a new kind of bound state not describable as a jail
defined by the bottom of a potential well. Subsystems are free but remain correlated by negentropic
entanglement.

The ordinary state function reductions imply dissipation crucial for self organization and quantum
jump could be regarded as the basic step of an iteration like process leading to the asympotic self-
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organization patterns. One could regard dissipation as a Darwinian selector as in standard theories of
self-organization. NMP thus predicts that self organization and hence presumably also fractalization
can occur inside selves. NMP would favor the generation of negentropic entanglement. This notion
is highly attractive since it could allow to understand how quantum selforganization generates larger
coherent structures. Note that state function reduction for negentropic entanglement is highly deter-
ministic since the number of degenerate states with same negative entanglement entropy is expected
to be small. This could allow to understand how living matter is able to develop almost deterministic
cellular automaton like behaviors.

2.4.3 Life as islands of rational/algebraic numbers in the seas of real and
p-adic continua?

The observation that Shannon entropy allows an infinite number of number theoretic variants for
which the entropy can be negative in the case that probabilities are algebraic numbers leads to the
idea that living matter in a well-defined sense corresponds to the intersection of real and p-adic worlds.
This would mean that the mathematical expressions for the space-time surfaces (or at least 3-surfaces
or partonic 2-surfaces and their 4-D tangent planes) make sense in both real and p-adic sense for some
primes p. Same would apply to the expressions defining quantum states. In particular, entanglement
probabilities would be rationals or algebraic numbers so that entanglement can be negentropic and
the formation of bound states in the intersection of real and p-adic worlds generates information and
is thus favored by NMP.

This picture has also a direct connection with consciousness [52] .

1. Algebraic entanglement is a prerequisite for the realization of intentions as transformations of
p-adic space-time sheets to real space-time sheets representing actions. Essentially a leakage
between p-adic and real worlds is in question and makes sense only in zero energy ontology.
Since various quantum numbers in real and p-adic sectors are not in general comparable in
positive energy ontology so that conservation laws would be broken in positive energy ontology.
Algebraic entanglement could be also called cognitiv-that is between real and p-adic worlds. The
transformation can occur if the partonic 2-surfaces and their 4-D tangent space-distributions are
representable using rational functions with rational coefficients in preferred coordinates for the
imbedding space dictated by symmetry considerations. Intentional systems must live in the
intersection of real and p-adic worlds. For the minimal option life would be also effectively
2-dimensional phenomenon and essentially a boundary phenomenon as also number theoretical
criticality suggests.

2. The generation of non-rational (non-algebraic) bound state entanglement between the system
and external world means that the system loses consciousness during the state function reduction
process following the U -process generating the entanglement. What happens that the Universe
corresponding to given CD decomposes to two un-entangled subsystems, which in turn decom-
pose, and the process continues until all subsystems have only entropic bound state entanglement
or negentropic algebraic entanglement with the external world.

3. If the sub-system generates entropic bound state entanglement in the the process, it loses con-
sciousness. Note that the entanglement entropy of the sub-system is a sum over entanglement
entropies over all subsystems involved. This hierarchy of subsystems corresponds to the hierar-
chy if sub-CDs so that the survival without a loss of consciousness depends on what happens
at all levels below the highest level for a given self. In more concrete terms, ability to stay
conscious depends on what happens at cellular level too. The stable evolution of systems having
algebraic entanglement is expected to be a process proceeding from short to long length scales
as the evolution of life indeed is.

4. U -process generates a superposition of states in which any sub-system can have both real and
algebraic entanglement with the external world. This would suggest that the choice of the type
of entanglement is a volitional selection. A possible interpretation is as a choice between good
and evil. The hedonistic complete freedom resulting as the entanglement entropy is reduced to
zero on one hand, and the algebraic bound state entanglement implying correlations with the
external world and meaning giving up the maximal freedom on the other hand. The hedonistic
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option is risky since it can lead to non-algebraic bound state entanglement implying a loss of
consciousness. The second option means expansion of consciousness - a fusion to the ocean of
consciousness as described by spiritual practices.

5. This formulation means a sharpening of the earlier statement ”Everything is conscious and
consciousness can be only lost” with the additional statement ”This happens when non-algebraic
bound state entanglement is generated”. Clearly, the quantum criticality of TGD Universe seems
has very many aspects and life as a critical phenomenon in the number theoretical sense is only
one of them besides the criticality of the space-time dynamics and the criticality with respect
to phase transitions changing the value of Planck constant and other more familiar criticalities.
How closely these criticalities relate remains an open question [74] .

A good guess is that algebraic entanglement is essential for quantum computation, which therefore
might correspond to a conscious process. Hence cognition could be seen as a quantum computation
like process, a more approriate term being quantum problem solving. Living-dead dichotomy could
correspond to rational-irrational or to algebraic-transcendental dichotomy: this at least when life is
interpreted as intelligent life. Life would in a well defined sense correspond to islands of rational-
ity/algebraicity in the seas of real and p-adic continua.

The view about the crucial role of rational and algebraic numbers as far as intelligent life is
considered, could have been guessed on very general grounds from the analogy with the orbits of a
dynamical system. Rational numbers allow a predictable periodic decimal/pinary expansion and are
analogous to one-dimensional periodic orbits. Algebraic numbers are related to rationals by a finite
number of algebraic operations and are intermediate between periodic and chaotic orbits allowing an
interpretation as an element in an algebraic extension of any p-adic number field. The projections of
the orbit to various coordinate directions of the algebraic extension represent now periodic orbits. The
decimal/pinary expansions of transcendentals are un-predictable being analogous to chaotic orbits.
The special role of rational and algebraic numbers was realized already by Pythagoras, and the fact
that the ratios for the frequencies of the musical scale are rationals supports the special nature of
rational and algebraic numbers. The special nature of the Golden Mean, which involves

√
5, conforms

the view that algebraic numbers rather than only rationals are essential for life.

2.4.4 Two times

The basic implication of the proposed view is that subjective time and geometric time of physicist
are not the same [51] . This is not a news actually. Geometric time is reversible, subjective time
irreversible. Geometric future and past are in completely democratic position, subject future does
not exist at all yet. One can say that the non-determinism of quantum jump is completely outside
space-time and Hilbert space since quantum jumps replaces entire 4-D time evolution (or rather, their
quantum superposition) with a new one, re-creates it. Also conscious existence defies any geometric
description. This new view resolves the basic problem of quantum measurement theory due to the
conflict between determinism of Schödinger equation and randomness of quantum jump. The challenge
is to understand how these two times correlate so closely as to lead to their erratic identification.

With respect to geometric time the contents of conscious experience is naturally determined by
the space-time region inside CD in zero energy ontology. This geometro-temporal integration should
have subjecto-temporal counterpart. The experiences of self are determined by the mental images
assignable to subselves (having sub-CDs as imbedding space correlates) and the quantum jump se-
quences associated with sub-selves define a sequence of mental images. The hypothesis is that self
experiences these sequences of mental images as a continuous time flow. In absence of mental images
self would have experience of ”timelessness” in accordance with the reports of practitioners of various
spiritual practices. Self would lose consciousness in quantum jump generating entropic entangelement
and experience expansion of consciousness if the resulting entanglement is negentropic. The assump-
tion that the integration of experiences of self involves a kind of averaging over sub-selves of sub-selves
guarantees that the sensory experiences are reliable despite the fact that quantum nondeterminism is
involved with each quantum jump.

Thus the measurement of density matrix defined by the MM†, where M is the M-matrix between
positive and negative energy parts of the zero energy state would correspond to the passive aspects
of consciousness such as sensory experiencing. U would represent at the fundamental level volition as
a creation of a quantum superposition of possibilities. What follows it would be a selection between
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them. The volitional choice between macroscopically differing space-time sheets representing different
maxima of Kähler function could be basically responsible for the active aspect of consciousness. The
fundamental perception-reaction feedback loop of biosystems would result from the combination of
the active and passive aspects of consciousness represented by U and M .

2.4.5 General view about psychological time and intentionality

The recent TGD inspired attempts to understand the arrow of psychological time and the localization
of the contents of conscious sensory experience and experienced volition to a rather narrow time
interval of .1 seconds rely on zero energy ontology. The most argument below summarizes the most
recent view [6] .

Why sensory experience is about so short time interval?

The picture based on CDs implies automatically the 4-D character of conscious experience and mem-
ories form part of conscious experience even at elementary particle level. Amazingly, the secondary
p-adic time scale of electron characterizing the time scale of electronic CD is T = 0.1 seconds defining
a fundamental time scale in living matter. The problem is to understand why the sensory experience is
about a short time interval of geometric time rather than about the entire personal CD with temporal
size of order life-time. The explanation would be that sensory input corresponds to subselves (mental
images) with T ' .1 s at the upper light-like boundary of CD in question. This requires a strong
asymmetry between upper and lower light-like boundaries of CDs.

The localization of the contents of the sensory experience to the upper light-cone boundary and
local arrow of time could emerge as a consequence of self-organization process involving conscious
intentional action. Sub-CDs would be in the interior of CD and self-organization process would lead
to a distribution of CDs concentrated near the upper or lower boundary of CD. The local arrow of
geometric time would depend on CD and even differ for CD and sub-CDs.

1. The localization of contents of sensory experience to a narrow time interval would be due to
the concentration of sub-CDs representing mental images near the either boundary of CD
representing self.

2. Phase conjugate signals identifiable as negative energy signals to geometric past are important
when the arrow of time differs from the standard one in some time scale. If the arrow of time
establishes itself as a phase transition, this kind of situations are rare. Negative energy signals
as a basic mechanism of intentional action and transfer of metabolic energy would explain why
living matter is so special.

3. Geometric memories would correspond to subselves in the interior of CD, the oldest of them
to the regions near ”lower” boundaries of CD. Since the density of sub-CDs is small there
geometric memories would be rare and not sharp. A temporal sequence of mental images, say
the sequence of digits of a phone number, would correspond to a temporal sequence of sub-CDs.

4. Sharing of mental images corresponds to a fusion of sub-selves/mental images to single sub-self
by quantum entanglement: the space-time correlate could be flux tubes connecting space-time
sheets associated with sub-selves represented also by space-time sheets inside their CDs.

Arrow of time

TGD forces a new view about the relationship between experienced and geometric time. Although the
basic paradox of quantum measurement theory disappears the question about the arrow of geometric
time remains. There are actually two times involved. The geometric time assignable to the space-time
sheets and the M4 time assignable to the imbedding space.

Consider first the the geometric time assignable to the space-time sheets.

1. Selves correspond to CDs. The CDs and their projections to the imbedding space do not move
anywhere. Therefore the standard explanation for the arrow of geometric time cannot work.
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2. The only plausible interpretation at classical level relies on quantum classical correspondence and
the fact that space-times are 4-surfaces of the imbedding space. If quantum jump corresponds
to a shift for a quantum superposition of space-time sheets towards geometric past in the first
approximation (as quantum classical correspondence suggests), one can understand the arrow
of time. Space-time surfaces simply shift backwards with respect to the geometric time of the
imbedding space and therefore to the 8-D perceptive field defined by the CD. This creates in the
materialistic mind a temporal variant of train illusion. Space-time as 4-surface and macroscopic
and macro-temporal quantum coherence are absolutely essential for this interpretation to make
sense.

Why this shifting should always take place to the direction of geometric past of the imbedding
space? Does it so always? The proposed mechanism for the localization of sensory experience to a
short time interval suggests an explanation in terms of intentional action.

1. CD defines the perceptive field for self. Selves are curious about the space-time sheets outside
their perceptive field and perform quantum jumps tending to shift the superposition of the
space-time sheets so that unknown regions of space-time sheets emerge to the perceptive field.
Either the upper or lower boundary of CD wins in the competition and the arrow of time results
as a spontaneous symmetry breaking. The arrow of time can depend on CD but tends to be the
same for CD and its sub-CDs. Global arrow of time could establish itself by a phase transitions
establishing the same arrow of time globally by a mechanism analogous to percolation phase
transition.

2. Since the news come from the upper boundary of CD, self concentrates its attention to this re-
gion and improves the resolution of sensory experience. The sub-CDs generated in this manner
correspond to mental images with contents about this region. Hence the contents of conscious
experience, in particular sensory experience, tends to be about the region near the upper bound-
ary.

The emergence of the arrow of time at the level of imbedding space reduces to a modification of
the oldest TGD based argument for the arrow of time which is wrong as such. If physical objects
correspond to 3-surfaces inside future directed light-cone then the sequence of quantum jumps implies
a diffusion to the direction of increasing value of light-cone propert time. The modification of the
argument goes as follows.

1. CDs are characterized by their moduli. In particular, the relative coordinate for the tips of CD
has values in past light cone M4

− if the future tip is taken as the reference point. An attractive
interpretation for the proper time of M4

− is as cosmic time having quantized values. Quantum
states correspond to wave functions in the modular degrees of freedom and each U process
creates a non-localized wave function of this kind. Suppose that state function reduction implies
a localization in the modular degrees of freedom so that CD is fixed completely apart from its
center of mass position to which zero four-momentum constant plane wave is assigned. One can
expect that in average sense diffuction occurs in M4

− so that the size of CD tends to increase
and that the most distant geometric past defined by the past boundary of CD recedes. This is
nothing but cosmic expansion. This provides a formulation for the flow of time in terms of a
cosmic redshift. This argument applies also to the positions of the sub-CDs inside CD. Also
their proper time distance from the tip of CD is expected to increase.

2. One can argue that one ends up with contradiction by changing the roles of upper and lower
tips. In the case of CD itself is only the proper time distance between the tips which increases
and speaking about ”future” and ”past” tips is only a convention. For sub-CDs of CD the
argument would imply that the sub-CDs drifting from the opposite tips tend to concentrate in
the middle region of CD unless either tip is in a preferred position. This requires a spontaneous
selection of the arrow of time. One could say that the cosmic expansion implied by the drift in
M4
− ”draws” the space-time sheet with it to the geometric past. The spontaneous generation of

the asymmetry between the tips might require the ”curious” conscious entities.
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Chapter 3

TGD Inspired Theory of
Consciousness

3.1 Introduction

The conflict between the non-determinism of state function reduction and determinism of time evolu-
tion of Schrödinger equation is serious enough a problem to motivate the attempt to extend physics
to a theory of consciousness by raising the observer from an outsider to a key notion also at the level
of physical theory. Further motivations come from the failure of the materialistic and reductionistic
dogmas in attempts to understand consciousness in neuroscience context. There are reasons to doubt
that standard quantum physics could be enough to achieve this goal and the new physics predicted
by TGD is indeed central in the proposed theory.

3.1.1 Quantum jump as moment of consciousness and the notion of self

If quantum jump occurs between two different time evolutions of Schrödinger equation (understood
here in very metaphoral sense) rather than interfering with single deterministic Schrödinger evolution,
the basic problem of quantum measurement theory finds a resolution. The interpretation of quantum
jump as a moment of consciousness means that volition and conscious experience are outside space-
time and state space and that quantum states and space-time surfaces are ”zombies”. Quantum jump
would have actually a complex anatomy corresponding to unitary process U , state function reduction
and state preparation at least.

Quantum jump has a complex anatomy since it must include state preparation, state function
reduction, and also unitary process characterized by U -matrix. Zero energy ontology means that one
must distinguish between M -matrix and U -matrix. M -matrix characterizes the time like entanglement
between positive and negative energy parts of zero energy state and is measured in particle scattering
experiments. M -matrix need not be unitary and can be identified as a ”complex” square root of density
matrix representable as a product of its real and positive square root and of unitary S-matrix so that
thermodynamics becomes part of quantum theory with thermodynamical ensemble being replaced
with a zero energy state. The unitary U -matrix describes quantum transitions between zero energy
states and is therefore something genuinely new. It is natural to assign the statistical description of
intentional action with U -matrix since quantum jump occurs between zero energy states.

Negentropy Maximization Principle (NMP) codes for the dynamics of standard state function
reduction and states that the state function reduction process following U -process gives rise to maximal
reduction of entanglement entropy at each step. In the generic case this implies decomposition of the
system to unique unentangled systems and the process repeats itself for these systems. The process
stops when the resulting subsystem cannot be decomposed to a pair of free systems since energy
conservation makes the reduction of entanglement kinematically impossible in the case of bound
states.

Intuitively self corresponds to a sequence of quantum jumps which somehow integrates to a larger
unit much like many-particle bound state is formed from more elementary building blocks. It also
seems natural to assume that self stays conscious as long as it can avoid bound state entanglement
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with the environment in which case the reduction of entanglement is energetically impossible. One
could say that everything is conscious and consciousness can be only lost when the system forms
bound state entanglement with environment.

There is an important exception to this vision based on ordinary Shannon entropy. There exists
an infinite hierarchy of number theoretical entropies making sense for rational or even algebraic entan-
glement probabilities. In this case the entanglement negentropy can be negative so that NMP favors
the generation of negentropic entanglement, which need not be bound state entanglement in standard
sense. Negentropic entanglement might serve as a correlate for emotions like love and experience of
understanding. The reduction of ordinary entanglement entropy to random final state implies second
law at the level of ensemble. For the generation of negentropic entanglement the outcome of the
reduction is not random: the prediction is that second law is not universal truth holding true in all
scales. Since number theoretic entropies are natural in the intersection of real and p-adic worlds, this
suggests that life resides in this intersection. The existence effectively bound states with no binding
energy might have important implications for the understanding the stability of basic bio-polymers
and the key aspects of metabolism [33] . A natural assumption is that self experiences expansion of
consciousness as it entangles in this manner. Quite generally, an infinite self hierarchy with the entire
Universe at the top is predicted.

Self is assumed to experience sub-selves as mental images identifiable as ”averages” of their mental
images. This implies the notion of ageing of mental images as being due to the growth of ensemble
entropy as the ensemble consisting of quantum jumps (sub-sub-subselves) increases.

If one accepts the hierarchy of Planck constants [30] , it might be un-necessary to distinguish
between self and quantum jump. The hierarchy of Planck constants interpreted in terms of dark
matter hierarchy predicts a hierarchy of quantum jumps such that the size of space-time region
contributing to the contents of conscious experience scales like ~. Also the hierarchy of space-time
sheets labeled by p-adic primes suggests the same. That sequence of sub-selves/sub-quantum jumps
are experienced as separate mental images explains why we can distinguish between digits of phone
number. The irreducible component of self (pure awareness) would correspond to the highest level
in the ”personal” hierarchy of quantum jumps and the sequence of lower level quantum jumps would
be responsible for the experience of time flow. Entire life cycle would correspond to single quantum
jump at the highest(?) level of the personal self hierarchy and pure awareness would prevail during
sleep: this would make it possible to experience directly that I existed yesterday.

There are thus two definitions of self. The first definition introduces self as a notion separate from
quantum jump. Second definition reduces the notion of self to a fractal hierarchy of quantum jumps.
The equivalence between two definitions of the notion of self will be proposed.

3.1.2 Sharing and fusion of mental images

The standard dogma about consciousness is that it is completely private. It seems that this can-
not be the case in TGD Universe. Von Neumann algebras known as hyper-finite factors of type
II1 (HFF) [97, 30] provide the basic mathematical framework for quantum TGD and this suggests
important modifications of the standard measurement theory besides those implied by the zero en-
ergy ontology predicting that all physical states have vanishing net quantum numbers and are creat-
able from vacuum. The notion of measurement resolution characterized in terms of Jones inclusions
N ⊂ M of HFFs implies that entanglement is defined always modulo some resolution characterized
by infinite-dimensional sub-Clifford algebra N playing a role analogous to that of gauge algebra.

This modification has also important implications for consciousness. For ordinary quantum mea-
surement theory separate selves are by definition unentangled and the same applies to their sub-selves
so that they cannot entangle and thus fuse and shared mental images are impossible: consciousness
would be completely private.

Space-time sheets as correlates for selves however suggests that space-time sheets topologically
condensed at larger space-time sheets and serving as space-time correlates for mental images can be
connected by join along boundaries bonds so that mental images could fuse and be shared.

HFFs allow to realize mathematically this intuitive picture. The entanglement in N degrees of
freedom between selves corresponding toM is below the measurement resolution so that these selves
can be regarded as separate conscious entities. These selves can be said to be unentangled although
their sub-selves corresponding to N (mental images at upper level) can entangle. Fusion and sharing
of mental images becomes possible. For instance, in stereo vision right and left visual fields would fuse
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together. More generally, a pool of shared stereo mental images might be fundamental for evolution
of social structures and development of social and moral rules and language (shared mental images
make possible common meaning for symbols of language). A concrete realization for this would be in
terms of hyper-genome making possible collective gene expression [39, 48] .

3.1.3 Qualia

Since physical states are labeled by quantum numbers, various qualia correspond naturally to the
increments of quantum numbers in quantum jump which leads to a general classification of qualia in
terms of the fundamental symmetries [37] . One can speak also about geometric qualia assignable
to the increments of zero modes which correspond to the classical variables in ordinary quantum
measurement theory and non-quantum fluctuating degrees of freedom which do not contribute to
the metric of world of classical worlds (WCW) in TGD framework. Dark matter hierarchy suggests
that also qualia form a hierarchy with larger values of Planck constant identifiable as more refined
qualia. Rather amusingly, visual colors would correspond to increments of color quantum numbers
assignable to quarks and gluons in standard model physics. The term ”color”, originally introduced
as an algebraic joke, would directly relate to visual color.

3.1.4 Self-referentiality of consciousness

Quantum classical correspondence is the basic guiding principle of quantum TGD. Thanks to the
failure of a complete determinism of classical dynamics, space-time surface can provide symbolic
representations not only for quantum states (as maximal deterministic regions) but also for quantum
jump sequences (sequences of quantum states) and thus for the contents of consciousness. These
representations are regenerated in each quantum jump, and make possible the self referentiality of
consciousness: self can be conscious of what it was conscious of.

3.1.5 Hierarchy of Planck constants and consciousness

The hierarchy of Planck constants is realized in terms of a generalization of the causal diamond
CD × CP2, where CD is defined as an intersection of the future and past directed light-cones of 4-D
Minkowski space M4. CD×CP2 is generalized by gluing singular coverings and factor spaces of both
CD and CP2 together like pages of book along common back, which is 2-D sub-manifold which is M2

for CD and homologically trivial geodesic sphere S2 for CP2 [30] . The value of the Planck constant
characterizes partially given page and arbitrary large values of ~ are predicted so that macroscopic
quantum phases are possible since the fundamental quantum scales scale like ~. All particles in the
vertices of Feynman diagrams have the same value of Planck constant so that particles at different
pages cannot have local interactions. Thus one can speak about relative darkness in the sense that
only the interactions mediated by the exchange of particles and by classical fields are possible between
different pages. Dark matter in this sense can be observed, say through the classical gravitational and
electromagnetic interactions. It is in principle possible to photograph dark matter by the exchange
of photons which leak to another page of book, reflect, and leak back. This leakage corresponds to
~ changing phase transition occurring at quantum criticality and living matter is expected carry out
these phase transitions routinely in bio-control. This picture leads to no obvious contradictions with
what is really known about dark matter and to my opinion the basic difficulty in understanding of
dark matter (and living matter) is the blind belief in standard quantum theory.

Dark matter hierarchy and p-adic length scale hierarchy would provide a quantitative formulation
for the self hierarchy. To a given p-adic length scale one can assign a secondary p-adic time scale
as the temporal distance between the tips of the causal diamond (pair of future and past directed
light-cones in H = M4 ×CP2). For electron this time scale is .1 second, the fundamental biorhythm.
For a given p-adic length scale dark matter hierarchy gives rise to additional time scales coming as
~/~0 multiples of this time scale. These two hierarchies could allow to get rid of the notion of self
as a primary concept by reducing it to a quantum jump at higher level of hierarchy. Self would in
general consists of quantum jumps inside quantum jumps inside... and thus experience the flow of
time through sub-quantum jumps.
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3.1.6 Zero energy ontology and consciousness

Zero energy ontology was forced by the interpretational problems created by the vacuum extremal
property of Robertson-Walker cosmologies imbedded as 4-surfaces in M4 × CP2 meaning that the
density of inertial mass (but not gravitational mass) for these cosmologies was vanishing meaning a
conflict with Equivalence Principle. In zero energy ontology physical states are replaced by pairs of
positive and negative energy states assigned to the past resp. future boundaries of causal diamonds
defined as pairs of future and past directed light-cones (δM4

± ×CP2). The net values of all conserved
quantum numbers of zero energy states vanish. Zero energy states are interpreted as pairs of initial
and final states of a physical event such as particle scattering so that only events appear in the new
ontology.

Zero energy ontology combined with the notion of quantum jump resolves several problems. For
instance, the troublesome questions about the initial state of universe and about the values of con-
served quantum numbers of the Universe can be avoided since everything is in principle creatable
from vacuum. Communication with the geometric past using negative energy signals and time-like
entanglement are crucial for the TGD inspired quantum model of memory and both make sense in
zero energy ontology. Zero energy ontology leads to a precise mathematical characterization of the
finite resolution of both quantum measurement and sensory and cognitive representations in terms of
inclusions of von Neumann algebras known as hyperfinite factors of type II1. The space-time correlate
for the finite resolution is discretization which appears also in the formulation of quantum TGD.

At the imbedding space-level CD is the correlate of self whereas space-time sheets having their ends
at the light-like boundaries of CD are the correlates at the level of 4-D space-time. The hierarchy of
CDs within CDs corresponds to the hierarchy of selves. Zero energy ontology leads also an argument
explaining why the arrow of subjective time induces an apparent arrow of geometric time as a result
if intentional action and why the contents of sensory consciousness is restricted to such a narrow time
interval (located near the future boundary of CD).

3.2 Negentropy Maximization Principle

Negentropy Maximization Principle (NMP [52] ) stating that the reduction of entanglement entropy
is maximal at a given step of state function reduction process following U -process is the basic varia-
tional principle for TGD inspired theory of consciousness and says that the information contents of
conscious experience is maximal. Although this principle is diametrically opposite to the second law
of thermodynamics it is structurally similar to the second law. NMP does not dictate the dynamics
completely since in state function reduction any eigen state of the density matrix is allowed as final
state. NMP need not be in contradiction with second law of thermodynamics which might relate as
much to the ageing of mental images as to physical reality.

3.2.1 Basic form of NMP

Negentropy Maximization Principle (NMP) in its original form codes for the basic rules of the standard
state function reduction and implies that system ends up to an eigenstate of the density matrix
identified as observable. In TGD framework must ask whether NMP should be restricted only to the
entanglement between zero modes of WCW representing classical degrees of freedom and quantum
fluctuating degrees of freedom or generalize it to apply to any pair of subsystems so that state function
reduction sequence could be regarded as a sequence of self measurements. I have chosen the latter
option as a working hypothesis.

NMP that the state function reduction process following U -process gives rise to a maximal re-
duction of entanglement entropy at each step of the process. State function process could proceed
at the level of all CDs. It is not clear whether one can assign any geometric time duration to this
process or whether there is any need for this. If the ubsystem allows entangled pairs of free systems
(no binding energy) there is more or less unique pair with the maximal entanglement entropy and
NMP therefore implies a decomposition to a unique pair of unentangled systems. The process repeats
itself for these systems and stops when the resulting subsystem cannot be decomposed to a pair of free
systems since energy conservation makes the reduction of entanglement kinematically impossible in
the case of bound states. Number theoretic entanglement entropies mean an important modification
of this picture.
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3.2.2 Number theoretic Shannon entropy as information

The notion of number theoretic entropy obtained by can be defined by replacing in Shannon entropy the
logarithms of probabilities pn by the logarithms of their p-adic norms |pn|p. This replacement makes
sense for algebraic entanglement probabilities if appropriate algebraic extension of p-adic numbers is
used. What is new that entanglement entropy can be negative, so that algebraic entanglement can
carry information and NMP can force the generation of bound state entanglement so that evolution
could lead to the generation of larger coherent bound states rather than only reducing entanglement.
A possible interpretation for algebraic entanglement is in terms of experience of understanding or
some positive emotion like love.

Standard formalism of physics lacks a genuine notion of information and one can speak only about
increase of information as a local reduction entropy. It seems strange that a system gaining wisdom
should increase the entropy of the environment. Hence number theoretic information measures could
have highly non-trivial applications also outside the theory consciousness.

NMP combined with number theoretic entropies leads to an important exception to the rule that
the generation of bound state entanglement between system and its environment during U process
leads to a loss of consciousness. When entanglement probabilities are rational (or even algebraic)
numbers, the entanglement entropy defined as a number theoretic variant of Shannon entropy can
be non-positive (actually is) so that entanglement carries information. NMP favors the generation of
algebraic entanglement. The attractive interpretation is that the generation of algebraic entanglement
leads to an expansion of consciousness (”fusion into the ocean of consciousness”) instead of its loss.

State function reduction period of the quantum jumps involves much more than in wave mechan-
ics. For instance, the choice of quantization axes realized at the level of geometric delicacies related
to CDs is involved. U -process generates a superposition of states in which any sub-system can have
both real and algebraic entanglement with the external world. If state function reduction involves
also a choice between generic and negentropic entanglement (between real world, a particular p-adic
world, or their intersection) it might be possible to identify a candidate for the physical correlate for
the choice between good and evil. The hedonistic complete freedom resulting as the entanglement
entropy is reduced to zero on one hand, and the algebraic bound state entanglement implying cor-
relations with the external world and meaning giving up the maximal freedom on the other hand.
The hedonistic option is risky since it can lead to non-algebraic bound state entanglement implying
a loss of consciousness. The second option means expansion of consciousness - a fusion to the ocean
of consciousness as described by spiritual practices. Note that if the total entanglement negentropy
defined as sum of contributions from various levels of CD hierarchy up to the highest matters in NMP
then also subselves should develop negentropic entanglement. For instance, the generation of entropic
entanglement at cell level can lead to a loss of consciousness also at higher levels. Life would evolve
from short to long scales.

3.2.3 Life as islands of rational/algebraic numbers in the seas of real and
p-adic continua?

Rational and even algebraic entanglement coefficients make sense in the intersection of real and p-adic
words, which suggests that life and conscious intelligence reside in the intersection of the real and
p-adic worlds. This would mean that the mathematical expressions for the space-time surfaces (or
at least 3-surfaces or partonic 2-surfaces and their 4-D tangent planes) make sense in both real and
p-adic sense for some primes p. Same would apply to the expressions defining quantum states. In
particular, entanglement probabilities would be rationals or algebraic numbers so that entanglement
can be negentropic and the formation of bound states in the intersection of real and p-adic worlds
generates information and is thus favored by NMP.

The identification of intentionality as the basic aspect of life seems to be consistent with this idea.

1. The proposed realization of the intentional action has been as a transformation of p-adic space-
time sheet to a real one. Also transformations of real space-time sheets to p-adic space-time
sheets identifiable as cognitions are possible. Algebraic entanglement is a prerequisite for the
realization of intentions in this manner. Essentially a leakage between p-adic and real worlds is
in question and makes sense only in zero energy ontology. The reason is that various quantum
numbers in real and p-adic sectors are not in general comparable in positive energy ontology so
that conservation laws would be broken or even cease to make sense.
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2. The transformation of intention to action can occur if the partonic 2-surfaces and their 4-D
tangent space-distributions are representable using rational functions with rational (or even
algebraic) coefficients in preferred coordinates for the imbedding space dictated by symmetry
considerations. Intentional systems must live in the intersection of real and p-adic worlds.

3. For the minimal option life would be also effectively 2-dimensional phenomenon and essentially a
boundary phenomenon as also number theoretical criticality suggests. There are good reasons to
expect that only the data from the intersection of real and p-adic partonic two-surfaces appears
in U -matrix so that only the data from rational and some algebraic points of the partonic 2-
surface dictate U -matrix. This means discretization at parton level and something which might
be called number theoretic quantum field theory should emerge as a description of intentional
action.

A good guess is that algebraic entanglement is essential for quantum computation, which therefore
might correspond to a conscious process. Hence cognition could be seen as a quantum computation
like process, a more approriate term being quantum problem solving [29] . Living-dead dichotomy
could correspond to rational-irrational or to algebraic-transcendental dichotomy: this at least when
life is interpreted as intelligent life. Life would in a well defined sense correspond to islands of rational-
ity/algebraicity in the seas of real and p-adic continua. Life as a critical phenomenon in the number
theoretical sense would be one aspect of quantum crticality of TGD Universe besides the criticality
of the space-time dynamics and the criticality with respect to phase transitions changing the value of
Planck constant and other more familiar criticalities. How closely these criticalities relate remains an
open question [74] .

The view about the crucial role of rational and algebraic numbers as far as intelligent life is
considered, could have been guessed on very general grounds from the analogy with the orbits of a
dynamical system. Rational numbers allow a predictable periodic decimal/pinary expansion and are
analogous to one-dimensional periodic orbits. Algebraic numbers are related to rationals by a finite
number of algebraic operations and are intermediate between periodic and chaotic orbits allowing an
interpretation as an element in an algebraic extension of any p-adic number field. The projections of
the orbit to various coordinate directions of the algebraic extension represent now periodic orbits. The
decimal/pinary expansions of transcendentals are un-predictable being analogous to chaotic orbits.
The special role of rational and algebraic numbers was realized already by Pythagoras, and the fact
that the ratios for the frequencies of the musical scale are rationals supports the special nature of
rational and algebraic numbers. The special nature of the Golden Mean, which involves

√
5, conforms

the view that algebraic numbers rather than only rationals are essential for life.

3.2.4 Hyper-finite factors of type II1 and NMP

Hyper-finite factors of type II1 bring in additional delicacies to NMP. The basic implication of finite
measurement resolution characterized by Jones inclusion is that state function reduction can never
reduce entanglement completely so that entire universe can be regarded as an infinite living organism.
It would seem that entanglement coefficients become N valued and the same is true for eigen states
of density matrix. For quantum spinors associated with M/N entanglement probabilities must be
defined as traces of the operatorsN . An open question is whether entanglement probabilities defined in
this manner are algebraic numbers always (as required by the notion of number theoretic entanglement
entropy) or only in special cases.

3.3 Time, memory, and realization of intentional action

Quantum classical correspondence requires that the flow of subjective time identified as a sequence of
quantum jumps should have the flow of geometric time as a space-time correlate. The understanding
of the detailed relationship between these two times has however remained a long standing problem,
and only the emergence of zero energy ontology allows an ad hoc free model for how the flow and
arrow of geometric time emerge, and answers why the relationship between geometric past and future
is so asymmetric and why sensory experience is about so narrow interval of geometric time. Also the
notion of self reduces in well-defined sense to the notion of quantum jump with fractal structure.
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3.3.1 Two times

The basic implication of the proposed view is that subjective time and geometric time of physicist
are not the same [51] . This is not a news actually. Geometric time is reversible, subjective time
irreversible. Geometric future and past are in completely democratic position, subject future does
not exist at all yet. One can say that the non-determinism of quantum jump is completely outside
space-time and Hilbert space since quantum jumps replaces entire 4-D time evolution (or rather, their
quantum superposition) with a new one, re-creates it. Also conscious existence defies any geometric
description. This new view resolves the basic problem of quantum measurement theory due to the
conflict between determinism of Schödinger equation and randomness of quantum jump. The challenge
is to understand how these two times correlate so closely as to lead to their erratic identification.

With respect to geometric time the contents of conscious experience is naturally determined by
the space-time region inside CD in zero energy ontology. This geometro-temporal integration should
have subjecto-temporal counterpart. The experiences of self are determined by the mental images
assignable to subselves (having sub-CDs as imbedding space correlates) and the quantum jump se-
quences associated with sub-selves define a sequence of mental images. The hypothesis is that self
experiences these sequences of mental images as a continuous time flow. In absence of mental images
self would have experience of ”timelessness” in accordance with the reports of practitioners of various
spiritual practices. Self would lose consciousness in quantum jump generating entropic entangelement
and experience expansion of consciousness if the resulting entanglement is negentropic. The assump-
tion that the integration of experiences of self involves a kind of averaging over sub-selves of sub-selves
guarantees that the sensory experiences are reliable despite the fact that quantum nondeterminism is
involved with each quantum jump.

Thus the measurement of density matrix defined by the MM†, where M is the M-matrix between
positive and negative energy parts of the zero energy state would correspond to the passive aspects
of consciousness such as sensory experiencing. U would represent at the fundamental level volition as
a creation of a quantum superposition of possibilities. What follows it would be a selection between
them. The volitional choice between macroscopically differing space-time sheets representing different
maxima of Kähler function could be basically responsible for the active aspect of consciousness. The
fundamental perception-reaction feedback loop of biosystems would result from the combination of
the active and passive aspects of consciousness represented by U and M .

The fact that the contents of conscious experience is about 4-D rather than 3-D space-time region,
motivates the notions of 4-D brain, body, and even society. In particular, conscious existence continues
after biological death since 4-D body and brain continue to exist.

3.3.2 About the arrow of psychological time

Quantum classical correspondence predicts that the arrow of subjective time is somehow mapped to
that for the geometric time. The detailed mechanism for how the arrow of psychological time emerges
has however remained open. Also the notion of self is problematic.

Two earlier views about how the arrow of psychological time emerges

The basic question how the arrow of subjective time is mapped to that of geometric time. The
common assumption of all models is that quantum jump sequence corresponds to evolution and that
by quantum classical correspondence this evolution must have a correlate at space-time level so that
each quantum jump replaces typical space-time surface with a more evolved one.

1. The earliest model assumes that the space-time sheet assignable to observer (”self”) drifts along
a larger space-time sheet towards geometric future quantum jump by quantum jump: this is
like driving car in a landscape but in the direction of geometric time and seeing the changing
landscape. There are several objections.

i) Why this drifting?

ii) If one has a large number of space-time sheets (the number is actually infinite) as one has in
the hierarchy the drifting velocity of the smallest space-time sheet with respect to the largest
one can be arbitrarily large (infinite).
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iii) It is alarming that the evolution of the background space-time sheet by quantum jumps,
which must be the quintessence of quantum classical correspondence, is not needed at all in the
model.

2. Second model relies on the idea that intentional action -understood as p-adic-to-real phase
transition for space-time sheets and generating zero energy states and corresponding real space-
time sheets - proceeds as a kind of wave front towards geometric future quantum jump by
quantum jump. Also sensory input would be concentrated on this kind of wave front. The
difficult problem is to understand why the contents of sensory input and intentional action are
localized so strongly to this wave front and rather than coming from entire life cycle.

There are also other models but these two are the ones which represent basic types for them.

The third option

The third explanation for the arrow of psychological time - which I have considered earlier but only
half-seriously - looks to me the most elegant at this moment. This option is actually favored by
Occam’s razor since it uses only the assumption that space-time sheets are replaced by more evolved
ones in each quantum jump. Also the model of topological quantum computation favors it. A more
detailed discussion of this option can be found in [6] . Here only a rough summary of the basic ideas
is given.

1. In standard picture the attention would gradually shift towards geometric future and space-
time in 4-D sense would remain fixed. Now however the fact that quantum state is quantum
superposition of space-time surfaces allows to assume that the attention of the conscious observer
is directed to a fixed volume of 8-D imbedding space. Quantum classical correspondence is
achieved if the evolution in a reasonable approximation means shifting of the space-time sheets
and corresponding field patterns backwards backwards in geometric time by some amount per
quantum jump so that the perceiver finds the geometric future in 4-D sense to enter to the
perceptive field. This makes sense since the shift with respect to M4 time coordinate is an exact
symmetry of extremals of Kähler action. It is also an excellent approximate symmetry for the
preferred extremals of Kähler action and thus for maxima of Kähler function spoiled only by the
presence of light-cone boundaries. This shift occurs for both the space-time sheet that perceiver
identifies itself and perceived space-time sheet representing external world: both perceiver and
percept change.

2. Both the landscape and observer space-time sheet remain in the same position in imbedding
space but both are modified by this shift in each quantum jump. The perceiver experiences this
as a motion in 4-D landscape. Perceiver (Mohammed) would not drift to the geometric future
(the mountain) but geometric future (the mountain) would effectively come to the perceiver
(Mohammed)!

3. There is an obvious analogy with Turing machine: what is however new is that the tape effectively
comes from the geometric future and Turing machine can modify the entire incoming tape by
intentional action. This analogy might be more than accidental and could provide a model for
quantum Turing machine operating in TGD Universe. This Turing machine would be able to
change its own program as a whole by using the outcomes of the computation already performed.

4. The concentration of the sensory input and the effects of conscious motor action to a narrow
interval of time (.1 seconds typically, secondary p-adic time scale associated with the largest
Mersenne M127 defining p-adic length scale which is not completely super-astronomical) can be
understood as a concentration of sensory/motor attention to an interval with this duration: the
space-time sheet representing sensory ”me” would have this temporal length and ”me” definitely
corresponds to a zero energy state.

5. The fractal view about topological quantum computation strongly suggests an ensemble of al-
most copies of sensory ”me” scattered along my entire life cycle and each of them experiencing
my life as a separate almost copy.
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6. The model of geometric and subjective memories would not be modified in an essential manner:
memories would result when ”me” is connected with my almost copy in the geometric past by
braid strands or massless extremals (MEs) or their combinations (ME parallel to magnetic flux
tube is the analog of Alfwen wave in TGD).

This argument leaves many questions open. What is the precise definition for the volume of
attention? Is the attention of self doomed to be directed to a fixed volume or can quantum jumps
change the volume of attention? What distinguishes between geometric future and past as far as
contents of conscious experience are considered? How this picture relates to p-adic and dark matter
hierarchies? Does this framework allow to formulate more precisely the notion of self? Zero energy
ontology allows to give tentative answers to these questions.

3.3.3 Questions related to the notion of self

I have proposed two alternative notions of self and have not been able to choose between them.
A further question is what happens during sleep: do we lose consciousness or is it that we cannot
remember anything about this period? The work with the model of topological quantum computation
has led to an overall view allowing to select the most plausible answer to these questions. But let us
be cautious!

Can one choose between the two variants for the notion of self or are they equivalent?

I have considered two different notions of ”self” and it is interesting to see whether the new view
about time might allow to choose between them or to show that they are actually equivalent.

1. In the original variant of the theory ”self” corresponds to a sequence of quantum jumps. ”Self”
would result through a binding of quantum jumps to single ”string” in close analogy and actually
in a concrete correspondence with the formation of bound states. Each quantum jump has a
fractal structure: unitary process is followed by a sequence of state function reductions and
preparations proceeding from long to short scales. Selves can have sub-selves and one has self
hierarchy. The questionable assumption is that self remains conscious only as long as it is able
to avoid entanglement with environment.

Even slightest entanglement would destroy self unless on introduces the notion of finite measure-
ment resolution applying also to entanglement. This notion is indeed central for entire quantum
TGD also leads to the notion of sharing of mental images: selves unentangled in the given mea-
surement resolution can experience shared mental images resulting as fusion of sub-selves by
entanglement not visible in the resolution used.

2. According to the newer variant of theory, quantum jump has a fractal structure so that there are
quantum jumps within quantum jumps: this hierarchy of quantum jumps within quantum jumps
would correspond to the hierarchy of dark matters labeled by the values of Planck constant.
Each fractal structure of this kind would have highest level (largest Planck constant) and this
level would corresponds to the self. What might be called irreducible self would corresponds
to a quantum jump without any sub-quantum jumps (no mental images). The quantum jump
sequence for lower levels of dark matter hierarchy would create the experience of flow of subjective
time.

It would be nice to reduce the original notion of self hierarchy to the hierarchy defined by quantum
jumps. There are some objections against this idea. One can argue that fractality is a purely geometric
notion and since subjective experience does not reduce to the geometry it might be that the notion of
fractal quantum jump does not make sense. It is also not quite clear whether the reasonable looking
idea about the role of entanglement as destroyer of self can be kept in the fractal picture.

These objections fail if one can construct a well-defined mathematical scheme allowing to under-
stand what fractality of quantum jump at the level of space-time correlates means and showing that
the two views about self are equivalent. The following argument represents such a proposal. Let us
start from the causal diamond model as a lowest approximation for a model of zero energy states and
for the space-time region defining the contents of sensory experience.

Let us make the following assumptions.
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1. Assume the hierarchy of causal diamonds within causal diamonds in a sense to be specified more
precisely below. Causal diamonds would represent the volumes of attention. Assume that the
highest level in this hierarchy defines the quantum jump containing sequences of lower level
quantum jumps in some sense to be specified. Assume that these quantum jumps integrate
to single continuous stream of consciousness as long as the sub...-sub-self in question remains
unentangled and that entangling means loss of consciousness or at least that it is not possible
to remember anything about contents of consciousness during entangled state.

2. Assume that the contents of conscious experience come from the interior of the causal diamond.
A stronger condition would be that the contents come from the boundaries of the two light-cones
involved since physical states are defined at these in the simplest picture. In this case one could
identify the lower light-cone boundary as giving rise to memory.

3. The time span characterizing the contents of conscious experience associated with a given quan-
tum jump would correspond to the temporal distance T between the tips of the causal diamond.
T would also characterize the average and approximate shift of the superposition of space-time
surfaces backwards in geometric time in single quantum jump at a given level of hierarchy. This
time scale naturally scales as Tn = 2nTCP2 so that p-adic length scale hypothesis follows as a con-
sequence. T would be essentially the secondary p-adic time scale T2,p =

√
pTp for p ' 2k. This

assumption - absolutely essential for the hierarchy of quantum jumps within quantum jumps -
would differentiate the model from the model in which T corresponds to either CP2 time scale
or p-adic time scale Tp. One would have hierarchy of quantum jumps with increasingly longer
time span for memory and with increasing duration of geometric chronon at the highest level of
fractal quantum jump. Without additional restrictions, the quantum jump at nth level would
contain 2n quantum jumps at the lowest level of hierarchy. Note that in the case of sub-self - and
without further assumptions which will be discussed next - one would have just two quantum
jumps: mental image appears, disappears or exists all the time. At the level of sub-sub-selves 4
quantum jumps and so on. Maybe this kind of simple predictions might be testable.

4. We know that the contents of sensory experience comes from a rather narrow time interval of
duration about .1 seconds, which corresponds to the time scale T127 associated with electron.
We also know that there is asymmetry between positive and negative energy parts of zero energy
states both physically and at the level of conscious experience. This asymmetry must have some
space-time correlate. The simplest correlate for the asymmetry between positive and negative
energy states would be that the upper light-like boundaries in the structure formed by light-
cones within light-cones intersect along light-like radial geodesic. No condition of this kind
would be posed on lower light-cone boundaries. The scaling invariance of this condition makes
it attractive mathematically and would mean that arbitrarily long time scales Tn can be present
in the fractal hierarchy of light cones. At all levels of the hierarchy all contribution from upper
boundary of the causal diamond to the conscious experience would come from boundary of the
same past directed light-cone so that the conscious experience would be sharply localized in
time in the manner as we know it to be. The new element would be that content of conscious
experience would come from arbitrarily large region of Universe and seing Milky Way would
mean direct sensory contact with it.

5. These assumptions relate the hierarchy of quantum jumps to p-adic hierarchy. One can also
include also dark matter hierarchy into the picture. For dark matter hierarchy the time scale
hierarchy {Tn} is scaled by the factor r = ~/~0 which can be also rational number. For r = 2k

the hierarchy of causal diamonds generalizes without difficulty and there is a kind of resonance
involved which might relate to the fact that the model of EEG favors the values of k = 11n,
where k = 11 also corresponds in good approximation to proton-electron mass ratio. For more
general values of ~/~0 the generalization is possible assuming that the position of the upper tip
of causal diamond is chosen in such a manner that their positions are always the same whereas
the position of the lower light-cone boundary would correspond to {rTn} for given value of
Planck constant. Geometrically this picture generalizes the original idea about fractal hierarchy
of quantum jumps so that it contains both p-adic hierarchy and hierarchy of Planck constants.

The contributions from lower the boundaries identifiable in terms of memories would correspond to
different time scales and for a given value of time scale T the net contribution to conscious experience
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would be much weaker than the sensory input in general. The asymmetry between geometric now
and geometric past would be present for all contributions to conscious experience, not only sensory
ones. What is nice that the contents of conscious experience would rather literally come from the
boundary of the past directed light-cone along which the classical signals arrive. Hence the mystic
feeling about telepathic connection with a distant object at distance of billions of light years expressed
by an astrophysicist, whose name I have unfortunately forgotten, would not be romantic self deception.

This framework explains also the sharp distinction between geometric future and past (not surpris-
ingly since energy and time are dual): this distinction has also been a long standing problem of TGD
inspired theory of consciousness. Precognition is not possible unless one assumes that communications
and sharing of mental images between selves inside disjoint causal diamonds is possible. Physically
there seems to be no good reason to exclude the interaction between zero energy states associated
with disjoint causal diamonds.

The mathematical formulation of this intuition is however a non-trivial challenge and can be used
to articulate more precisely the views about what configuration space and configurations space spinor
fields actually are mathematically.

1. Suppose that the causal diamonds with tips at different points of H = M4×CP2 and character-
ized by distance between tips T define sectors CHi of the full configuration space CH (”world
of classical worlds”). Precognition would represent an interaction between zero energy states
associated with different sectors CHi in this scheme and tensor factor description is required.

2. Inside given sector CHi it is not possible to speak about second quantization since every quantum
state correspond to a single mode of a classical spinor field defined in that sector.

3. The question is thus whether the Clifford algebras and zero energy states associated with different
sectors CHi combine to form a tensor product so that these zero energy states can interact.
Tensor product is required by the vision about zero energy insertions assignable to CHi which
correspond to causal diamonds inside causal diamonds. Also the assumption that zero energy
states form an ensemble in 4-D sense - crucial for the deduction of scattering rates from M -matrix
- requires tensor product.

4. The argument unifying the two definitions of self requires that the tensor product is restricted
when CHi correspond to causal diamonds inside each other. The tensor factors in shorter time
scales are restricted to the causal diamonds hanging from a light-like radial ray at the upper end
of the common past directed light-cone. If the causal diamonds are disjoint there is no obvious
restriction to be posed, and this would mean the possibility of also precognition and sharing of
mental images.

This scenario allows also to answers the questions related to a more precise definition of volume of
attention. Causal diamond - or rather - the associated light-like boundaries containing positive and
negative energy states define the primitive volume of attention. The obvious question whether the
attention of a given self is doomed to be fixed to a fixed volume can be also answered. This is not
the case. Selves can delocalize in the sense that there is a wave function associated with the position
of the causal diamond and quantum jumps changing this position are possible. Also many-particle
states assignable to a union of several causal diamonds are possible. Note that the identification of
magnetic flux tubes as space-time correlates of directed attention in TGD inspired quantum biology
makes sense if these flux tubes connect different causal diamonds. The directedness of attention in
this sense should be also understood: it could be induced from the ordering of p-adic primes and
Planck constant: directed attention would be always from longer to shorter scale.

What after biological death?

Could the new option allow to speculate about the course of events at the moment of death? Certainly
this particular sensory ”me” would effectively meet the geometro-temporal boundary of the biological
body: sensory input would cease and there would be no biological body to use anymore. ”Me” might
lose its consciousness (if it can!). ”Me” has also other mental images than sensory ones and these
could begin to dominate the consciousness and ”me” could direct its attention to space-time sheets
corresponding to much longer time scale, perhaps even to that of life cycle, giving a summary about
the life.
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What after that? The Tibetan Book of Dead gives some inspiration. A western ”me” might hope
(and even try use its intentional powers to guarantee) that quantum Turing tape sooner later brings
into the volume of attention (which might also change) a living organism, be it human or cat or dog
or at least some little bug. If this ”me” is lucky, it could direct its attention to it and become one
of the very many sensory ”me’s” populating this particular 4-D biological body. There would be
room for a newcomer unlike in the alternative models. A ”me” with Eastern/New-Ageish traits could
however direct its attention permanently to the dark space-time sheets and achieve what she might
call enlightment.

Does sleep state involve a loss of consciousness?

The ability to avoid entropic entanglement with environment is essential for the original notion of
self and in the case of sub-selves it would explain the finite life-time of mental images. Algebraic
entanglement can be however negentropic and the idea that its generation does not lead to a loss of
consciousness is attractive. If sleep really means a loss of consciousness it must lead to a generation of
entropic entanglement. But does this really happen? Could sleep only lead to a loss of consciousness at
those levels of self hiererachy responsible for conscious memories, which correspond to mental images
and thus sub-CDs located in those space-time regions of CD, where the sleeping occurs?

Is the assumption about the loss of consciousness during sleep really necessary? Can one imagine
good reasons for why we should remain conscious during sleep?

1. One could argue that if consciousness is really lost during sleep, we could not have the deep
conviction that we existed yesterday.

2. Second argument is based on the assumption that brains are acting as topological quantum com-
puters during sleep. During an ideal topological quantum computation the entanglement with
the surrounding world is absent and thus topological quantum computation should correspond
to a conscious experience with a vanishing entanglement entropy. Night time is the best time for
topological quantum computation since sensory input and motor action do not take metabolic
resources and we certainly do problem solving during sleep. Thus we should be conscious at
some level during sleep and perform quite a long topological quantum computation. The prob-
lem with this argument is that the ideal topological quantum computation could be performed
by a larger system than brain so that ability to perform topological quantum computation does
not allow to conclude whether we are conscious during sleep or not. In fact, the idea that large
number of brains entangle to a larger unit giving rise to a stereo consciousness about what it
is to be human besides performing topological quantum computation like processes, is rather
attractive.

Could it then be that we do not remember anything about the period of sleep because our attention
is directed elsewhere and memory recall uses only copies of ”me” assignable to brain manufacturing
standardized mental images? Perhaps the communication link to the mental images during sleep
experienced at dark matter levels of existence is lacking or sensory input and motor activities of busy
westeners do not allow to use metabolic energy to build up this kind of communications. Hence one
can at least half-seriously ask, whether self is actually eternal with respect to the subjective time and
whether entangling with some system means only diving into the ocean of consciousness as someone
has expressed it. Could we be Gods as also quantum classical correspondence in the reverse direction
suggests (p-adic cognitive space-time sheets have literally infinite size in both temporal and spatial
directions)?

3.3.4 Do declarative memories and intentional action involve communica-
tions with geometric past?

Communications with geometric past using time mirror mechanism in which phase conjugate photons
propagating to the geometric past are reflected back as ordinary photons (typically dark photons with
energies above thermal threshold) make possible realization of declarative memories in the brain of
the geometric past [71] .

This mechanism makes also possible realization of intentional actions as a process proceeding from
longer to shorter time scales and inducing the desired action already in geometric past. This kind
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of realization would make living systems extremely flexible and able to react instantaneously to the
changes in the environment. This model explains Libet’s puzzling finding that neural activity seems
to precede volition [11] .

Also a mechanism of remote metabolism (”quantum credit card”) based on sending of negative
energy signals to geometric past becomes possible [45] : this signal could also serve as a mere control
signal inducing much larger positive energy flow from the geometric past. For instance, population
inverted system in the geometric past could allow this kind of mechanism. Remote metabolism could
also have technological implications.

3.3.5 Episodal memories as time-like entanglement

Time-like entanglement explains episodal memories as sharing of mental images with the brain of
geometric past [71] . An essential element is the notion of magnetic body which serves as an intentional
agent ”looking” the brain of geometric past by allowing phase conjugate dark photons with negative
energies to reflect from it as ordinary photons. The findings of Libet about time delays related to the
passive aspects of consciousness [6] support the view that the part of the magnetic body corresponding
to EEG time scale has the same size scale as Earth’s magnetosphere. The unavoidable conclusion
would be that our field/magnetic bodies contain layers with astrophysical sizes.

p-Adic length scale hierarchy and number theoretically preferred hierarchy of values of Planck
constants, when combined with the condition that the frequencies f of photons involved with the
communications in time scale T satisfy the condition f ∼ 1/T and have energies above thermal
energy, lead to rather stringent predictions for the time scales of long term memory. The model for
the hierarchy of EEGs relies on the assumption that these time scales come as powers n = 211k,
k = 0, 1, 2,, and predicts that the time scale corresponding to the duration of human life cycle is ∼ 50
years and corresponds to k = 7 (amusingly, this corresponds to the highest level in chakra hierarchy).

3.4 Cognition and intentionality

3.4.1 Fermions and Boolean cognition

Fermionic Fock state basis defines naturally a quantum version of Boolean algebra. In zero energy
ontology predicting that physical states have vanishing net quantum numbers, positive and negative
energy components of zero energy states with opposite fermion numbers define realizations of Boolean
functions via time-like quantum entanglement. One can also consider an interpretation of zero energy
states in terms of rules of form A → B with the instances of A and B represented as elements Fock
state basis fixed by the diagonalization of the density matrix defined by M−-matrix. Hence Boolean
conciousness would be basic aspect of zero energy states. Physical states would be more like memes
than matter. Note also that the fundamental super-symmetric duality between bosonic degrees of
freedom (size and shape of the 3-surface) and fermionic degrees of freedom would correspond to the
sensory-cognitive duality.

This would explain why Boolean and temporal causalities are so closely related. Note that zero
energy ontology is certainly consistent with the usual positive energy ontology if unitary process U
associated with the quantum jump is more or less trivial in the degrees of freedom usually assigned
with the material world. There are arguments suggesting that U is tensor product of of factoring
S-matrices associated with 2-D integrable QFT theories [23] : these are indeed almost trivial in
momentum degrees of freedom. This would also imply that our geometric past is rather stable so that
quantum jump of geometric past does not suddenly change your profession from that of musician to
that of physicist. The maximal diagonality of U -matrix for p-adic-to-real transitions would in turn
favor precise realization of intentions as actions. One must however take this kind of arguments with
extreme caution.

3.4.2 Fuzzy logic, quantum groups, and Jones inclusions

Matrix logic [126] emerges naturally when one calculates expectation values of logical functions de-
fined by the zero energy states with positive energy fermionic Fock states interpreted as inputs and
corresponding negative energy states interpreted as outputs. Also the non-commutative version of the
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quantum logic, with spinor components representing amplitudes for truth values replaced with non-
commutative operators, emerges naturally. The finite resolution of quantum measurement generalizes
to a finite resolution of Boolean cognition and allows description in terms of Jones inclusions N ⊂M
of infinite-dimensional Clifford algebras of the world of classical worlds (WCW) identifiable in terms
of fermionic oscillator algebras. N defines the resolution in the sense that quantum measurement and
conscious experience does not distinguish between states differing from each other by the action of N .

The finite-dimensional quantum Clifford algebra M/N creates the physical states modulo the
resolution. This algebra is non-commutative which means that corresponding quantum spinors have
non-commutative components. The non-commutativity codes for the that the spinor components
are correlated: the quantized fractal dimension for quantum counterparts of 2-spinors satisfying d =
2cos(π/n) ≤ 2 expresses this correlation as a reduction of effective dimension.

The moduli of spinor components however commute and have interpretation as eigenvalues of
truth and false operators or probabilities that the statement is true/false. They have quantized
spectrum having also interpretation as probabilities for truth values and this spectrum differs from
the spectrum {1, 0} for the ordinary logic so that fuzzy logic results from the finite resolution of
Boolean cognition [97] .

3.4.3 p-Adic physics as physics of cognition and intentionality

p-Adic physics as physics of cognition and intentionality provides a further element of TGD inspired
theory of consciousness. At the fundamental level light-like 3-surfaces are basic dynamical objects
in TGD Universe and have interpretation as orbits of partonic 2-surfaces. The generalization of the
notion of number concept by fusing real numbers and various p-adic numbers to a more general
structure makes possible to assign to real parton a p-adic prime p and corresponding p-adic partonic
3-surface obeying same algebraic equations. The almost topological QFT property of quantum TGD
is an essential prerequisite for this. The intersection of real and p-adic 3-surfaces would consists of a
discrete set of points with coordinates which are algebraic numbers. p-Adic partons would relate to
both intentionality and cognition.

The transformation of p-adic variant of the partonic 3-surface with bosonic quantum numbers to
its real counterpart in quantum jump would represent a transformation of intention to action and
the unitary matrix U would govern this process. The larger the number of algebraic points in the
intersection, the more precise the realization of intention as action would be.

Real fermion and its p-adic counterpart forming a pair would represent matter and its cognitive
representation being analogous to a fermion-hole pair resulting when fermion is kicked out from Dirac
sea. The larger the number of points in the intersection of real and p-adic surfaces, the better the
resolution of the cognitive representation would be. This would explain why cognitive representations
in the real world are always discrete (discreteness of numerical calculations represent the basic example
about this fundamental limitation).

All transcendental p-adic integers are infinite as real numbers and one can say that most points
of p-adic space-time sheets are at spatial and temporal infinity in the real sense so that intentionality
and cognition would be literally cosmic phenomena. If the intersection of real and p-adic space-time
sheet contains large number of points, the continuity and smoothness of p-adic physics should directly
reflect itself as long range correlations of real physics realized as p-adic fractality. It would be possible
to measure the correlates of cognition and intention and in the framework of zero energy ontology [23]
the success of p-adic mass calculations can be seen as a direct evidence for the role of intentionality
and cognition even at elementary particle level: all matter would be basically created by intentional
action as zero energy states.

3.4.4 Algebraic Brahman=Atman identity

The proposed view about cognition and intentionality emerges from the notion of infinite primes [84] ,
which was actually the first genuinely new mathematical idea inspired by TGD inspired consciousness
theorizing. Infinite primes, integers, and rationals have a precise number theoretic anatomy. For
instance, the simplest infinite primes correspond to the numbers P± = X±1, where X =

∏
k pk is the

product of all finite primes. Indeed, P± mod p = 1 holds true for all finite primes. The construction
of infinite primes at the first level of the hierarchy is structurally analogous to the quantization of
super-symmetric arithmetic quantum field theory with finite primes playing the role of momenta
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associated with fermions and bosons. Also the counterparts of bound states emerge. This process can
be iterated: at the second level the product of infinite primes constructed at the first level replaces X
and so on.

The structural similarity with repeatedly second quantized quantum field theory strongly suggests
that physics might in some sense reduce to a number theory for infinite rationals M/N and that
second quantization could be followed by further quantizations. As a matter fact, the hierarchy of
space-time sheets could realize this endless second quantization geometrically and have also a direct
connection with the hierarchy of logics labeled by their order. This could have rather breathtaking
implications.

1. One is forced to ask whether this hierarchy corresponds to a hierarchy of realities for which level
below corresponds in a literal sense infinitesimals and the level next above to infinity.

2. Second implication is that there is an infinite number of infinite rationals behaving like real units
(M/N ≡ 1 in real sense) so that space-time points could have infinitely rich number theoretical
anatomy not detectable at the level of real physics. Infinite integers would correspond to positive
energy many particle states and their inverses (infinitesimals with number theoretic structure)
to negative energy many particle states and M/N ≡ 1 would be a counterpart for zero energy
ontology to which oneness and emptiness are assigned in mysticism.

3. Single space-time point, which is usually regarded as the most primitive and completely irre-
ducible structure of mathematics, would take the role of Platonia of mathematical ideas being
able to represent in its number theoretical structure even the quantum state of entire Universe.
Algebraic Brahman=Atman identity and algebraic holography would be realized in a rather
literal sense.

This number theoretical anatomy should relate to mathematical consciousness in some manner.
For instance, one can ask whether it makes sense to speak about quantum jumps changing the number
theoretical anatomy of space-time points and whether these quantum jumps give rise to mathematical
ideas. In fact, the identifications of Platonia as spinor fields in WCW on one hand and as the set
number theoretical anatomies of point of imbedding space force the conclusion that configuration space
spinor fields (recall also the identification as correlates for logical mind) can be realized in terms of the
space for number theoretic anatomies of imbedding space points. Therefore quantum jumps would be
correspond to changes in anatomy of the space-time points. Imbedding space would be experiencing
genuine number theoretical evolution. The whole physics would reduce to the anatomy of numbers.
All mathematical notions which are more than mere human inventions would be imbeddable to the
Platonia realized as the number theoretical anatomies of single imbedding space point.

In [24, 84] a concrete realization of this vision is discussed by assuming hyper-octonionic infinite
primes as a starting point. In this picture associativity and commutativity are assigned only to infinite
integers representing many particle states but not necessarily to infinite primes themselves: this
guarantees the well-definedness of the space-time surface assigned to the infinite rational. Quantum
states are required to be associative in the sense that they correspond to quantum super-positions of
all possible associations for the products of (infinite) primes (say |A(BC)〉 + |(AB)C〉). The ground
states of super conformal representations would correspond to infinite primes mappable to space-time
surfaces (quantum classical correspondence). The excited states of super-conformal representations
would be represented as quantum entangled states in the tensor product of state spaces Hhk formed
from Schrödinger amplitudes in discrete subsets of the space of 8 real units associated with imbedding
space 8 coordinates at point hk: the interpretation is in terms of a 8-fold tensor power of basic
super-conformal representation. Although the representations are not completely local at the level
of imbedding space, they involve only a discrete set of points identifiable as arguments of n-point
function. The basic symmetries of the standard model reduce to number theory if hyper-octonionic
infinite rationals are allowed. Color confinement reduces to rationality of infinite integers representing
many particle states.

3.5 Quantum information processing in living matter

The notion of magnetic body leads to a dramatic modification of the views about functions of brain. In
the following the discussion the the new vision about life as number theoretically critical phenomenon
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is not discussed separately.

3.5.1 Magnetic body as intentional agent and experiencer

In TGD Universe brain would be basically a builder of symbolic representations assigning a meaning to
the sensory input by decomposing sensory field to objects and making possible effective motor control
by magnetic body containing dark matter. A concrete model for how magnetic controls biological
body and receives information from it is discussed in the model for the hierarchy of EEGs [27] .

Also magnetic body could have sensory qualia, which should be in a well-defined sense more refined
than ordinary sensory qualia [37] . The quantum number increments associated with cyclotron phase
transitions of dark ion cyclotron condensates at magnetic body could correspond to emotional and
cognitive content of sensory input and would indeed have interpretation as higher level sensory qualia.
Right brain sings – left brain talks metaphor would characterize this emotional-cognitive distinction
for higher level qualia and would correspond to coding of sensory input from brain by frequency
patterns resp. temporal patterns (analogs of phonemes). These qualia would be somatosensory qualia
at the level of magnetic body.

Remote mental interactions between magnetic body and biological body are a key element of this
picture. Remote mental interactions in the usual sense of the world would occur between magnetic
body and some other, not necessary biological, body. This would include receival of sensory input
from and motor control of other than own body. Also ”dead” matter possesses magnetic bodies so that
also psychokinesis would be based on the same mechanism. Magnetic body for which dissipation is
much smaller than for ordinary matter (proportional to 1/~, would presumably continue its conscious
existence after biological death and find another biological body and use it as a tool of sensory
perception and intentional action.

3.5.2 Summary about the possible role of the magnetic body in living
matter

The notion of magnetic/field body is probably the feature of TGD inspired theory of quantum biology
which creates strongest irritation in standard model physicist. A ridicule as some kind of Mesmerism
might be the probable reaction. The notion of magnetic/field body has however gradually gained
more and more support and it is now an essential element of TGD based view about living matter. In
the following I list the basic applications in the hope that the overall coherency of the picture might
force some readers to take this notion seriously. I will talk only about magnetic body although it is
clear that field body has also electric parts as well as radiative parts realized in terms of ”massless
extremals” or topological light rays.

In the following discussion the possible implications of the idea that living matter resides in the
intersection of real and p-adic worlds is not taken into account. An attractive working hypothesis is
that negentropic entanglement can be assigned to the magnetic bodies. For instance, the ends of the
magnetic flux tubes connecting (say) biomolecules could be entangled negentropically. This idea has
been already applied to explain the stability of high energy phosphate bond and of DNA polymers,
which are highly charged [33] .

Anatomy of magnetic body

Consider first the anatomy of the magnetic body.

1. Magnetic body has a fractal onion like structure with decreasing magnetic field strengths and
the highest layers can have astrophysical sizes. Cyclotron wave length gives an estimate for the
size of particular layer of magnetic body. B = .2 Gauss is the field strength associated with a
particular layer of the magnetic body assignable to vertebrates and EEG. This value is not the
same as the nominal value of the Earth’s magnetic field equal to .5 Gauss. It is quite possible
that the flux quanta of the magnetic body correspond to those of wormhole magnetic field and
thus consist of two parallel flux quanta which have opposite time orientation. This is true for
flux tubes assigned to DNA in the model of DNA as a topological quantum computer.
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2. The layers of the magnetic body are characterized by the values of Planck constant and the
matter at the flux quanta can be interpreted as macroscopically quantum coherent dark matter.
This picture makes sense only if one accepts the generalization of the notion of imbedding space.

3. In the case of wormhole magnetic fields it is natural to assign a definite temporal duration to
the flux quanta and the time scales defined by EEG frequencies are natural. In particular, the
inherent time scale .1 seconds assignable to electron as a duration of zero energy space-time sheet
having positive and negative energy electron at its ends would correspond to 10 Hz cyclotron
frequency for ordinary value of Planck constant. For larger values of Planck constants the time
scale scales as ~. Quite generally, a connection between p-adic time scales of EEG and those of
electron and lightest quarks is highly suggestive since light quarks play key role in the model of
DNA as topological quantum computer.

4. TGD predicts also hierarchy of scaled variants of electro-weak and color physics so that ZXG,
QXG, and GXG corresponding to Z0 boson, W boson, and gluons appearing effectively as
massless particles below some biologically relevant length scale suggest themselves. In this phase
quarks and gluons are unconfined and electroweak symmetries are unbroken so that gluons, weak
bosons, quarks and even neutrinos might be relevant to the understanding of living matter. In
particular, long ranged entanglement in charge and color degrees of freedom becomes possible.
For instance, TGD based model of atomic nucleus as nuclear string suggests that biologically
important fermionic could be actually chemically equivalent bosons and form cyclotron Bose-
Einstein condensates.

Functions of the magnetic body

The list of possible functions of the magnetic body is already now rather impressive.

1. Magnetic body controls biological body and receives sensory data from it. Together with zero
energy ontology and new view about time explains Libet’s strange findings about time lapses
of consciousness. EEG, or actually fractal hierarchy of EXGs assignable to various body parts
makes possible communications to and control by the various layers of the magnetic body. WXG
could induce charge density gradients by the exchange of W boson.

2. The flux sheets of the magnetic body traverse through DNA strands. The hierarchy of Planck
constants and quantization of magnetic flux predicts that the flux sheets can have arbitrarily
large width. This leads to the idea that there is hierarchy of genomes corresponding to ordinary
genome, supergenome consisting of genomes of several cell nuclei arranged along flux sheet like
lines of text, and hypergenomes involving genomes of several organisms arranged in a similar
manner. The prediction is coherent gene expression at the level of organ, and even of population.
In this picture the big jumps in evolution, in particular, the emergence of EEG, could be seen as
the emergence of a new larger layer of magnetic body characterized by a larger value of Planck
constant. For instance, this would allow to understand why the quantal effects of ELF em fields
requiring so large value of Planck constant that cyclotron energies are above thermal energy at
body temperature are observed for vertebrates only.

3. Magnetic body makes possible information process in a manner highly analogous to topological
quantum computation. The model of DNA as topological quantum computer assumes that flux
tubes of wormhole magnetic field connect DNA nucleotides with the lipids of the lipid layer
of nuclear or cell membrane. The flux tubes would continue through the membrane and split
during topological quantum computation. The time-like braiding of flux tubes makes possible
topological quantum computation via timelike braiding and space-like braiding makes possible
the representation of memories. The model allows general vision about the deeper meaning of
the structure of cell and makes testable predictions about DNA.

One prediction is the coloring of braid strands realized by an association of quark or antiquark
to nucleotide. Color and spin of quarks and antiquarks would thus correspond to the quantum
numbers assignable to braid ends. Color isospin could replace ordinary spin as a representation of
qubit and quarks would naturally give rise to qutrit, with third quark would have interpretation
as unspecified truth value. Fractionization of these quantum numbers takes place which increases
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the number of degrees of freedom. This prediction would relate closely to the discovery of
topologist Barbara Shipman that the model for the honeybee dance suggests that quarks are
in some manner involved with cognition. Also microtubules associated with axons connected
to a space-time sheet outside axonal membrane via lipids could be involved with topological
quantum computation and actually define an analog of a higher level programming language.

4. The strange findings about the behavior of cell membrane, in particular the finding that metabolic
deprivation does not lead to the death of cell, the discovery that ionic currents through the cell
membrane are quantal, and that these currents are essentially similar than those through an
artificial membrane, suggest that the ionic currents are dark ionic Josephson currents along mag-
netic flux tubes. A high percent of biological ions would be dark and ionic channels and pumps
would be responsible only for the control of the flow of ordinary ions through cell membrane.

5. These findings together with the discovery that also nerve pulse seems to involve only low
dissipation lead to a model of nerve pulse in which dark ionic currents automatically return
back as Josephson currents without any need for pumping. This does not exclude the possibility
that ionic channels might be involved with the generation of nerve pulse so that the original view
about quantal currents as controllers of the generation of nerve pulse would be turned upside
down. Nerve pulse would result as a perturbation of kHz soliton sequence mathematically
equivalent to a situation in which a sequence of gravitational penduli rotates with constant
phase difference between neighbors except for one pendulum which oscillates and oscillation
moves along the sequence with the same velocity as the kHz wave. The oscillation would be
induced by a ”kick” for which one can imagine several mechanisms.

The model explains features of nerve pulse not explained by Hodkin-Huxley model. These
include the mechanical changes associated with axon during nerve pulse, the outwards force
generated by nerve pulse with a correct prediction for its order of magnitude, the adiabatic
character of nerve pulse, and the small rise of temperature of membrane during pulse followed
by a reduction slightly below the original temperature.

The model predicts that the time taken to travel along any axon is a multiple of time dictated
by the resting potential so that synchronization is an automatic prediction. Not only kHz waves
but also a fractal hierarchy of EEG (and EXG) waves are induced as Josephson radiation by
voltage waves along axons and microtubules and by standing waves assignable to neuronal (cell)
soma. The value of Planck constant involved with flux tubes determines the frequency scale
of EXG so that a fractal hierarchy results. A hierarchy of preferred values of Planck constant
coming as powers of 211 suggests itself and would correspond also a hierarchy of time scales of
memory recall and of planned action. Ordinary EEG would correspond to 2k11, k = 4, but also
shorter and longer time scales are predicted.

The model forces to challenge the existing interpretation of nerve pulse patterns and the function
of neural transmitters. Neural transmitters need not represent actual/only) signal but could be
more analogous to links in quantum web. The transmitter would coding the address of the
receiver, which could be gene inside neuronal nucleus. Nerve pulses would build a connection
line between sender and receiver of nerve pulse along which actual signals would propagate. Also
quantum entanglement between receiver and sender can be considered.

6. Acupuncture points, meridians, and Chi are key notions of Eastern medicine and find a natural
identification in terms of magnetic body lacking from the western medicine. Also a connection
with well established notions of DC currents and potentials discovered by Becker and with TGD
based view about universal metabolic currencies as differences of zero point energies for pairs of
space-time sheets with different p-adic length scale emerges.

Chi would correspond to these fundamental metabolic energy quanta to which ordinary chemi-
cally stored metabolic energy would be transformed. Meridians would most naturally correspond
to flux tubes with large ~ along which dark supra currents flow without dissipation and transfer
the metabolic energy between distant cells. Acupuncture points would correspond to points
between which metabolic energy is transferred and their high conductivity and semiconductor
like behavior would conform with the interpretation in terms of metabolic energy storages. The
energy gained in the potential difference between the points would help to kick the charge carrier
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to a smaller space-time sheet. It is possible that the main contribution to the of charge at mag-
netic flux tube is magnetic energy and slightly below the metabolic energy quantum and that
the voltage difference gives only the lacking small energy increment making the transfer possible.
Also direct kicking of charge carriers to smaller space-time sheets by photons is possible and
the observed action spectrum for IR and red photons corresponds to the predicted increments
of zero point kinetic energies.

7. Magnetic flux tubes could also play key role in bio-catalysis and explain the magic ability of
biomolecules to find each other. The model of DNA as topological quantum computer [29] sug-
gest that not only DNA and its conjugate but also some amino-acid sequences acting as catalysts
could be connected to DNA and other amino-acids sequences or more general biomolecules by
flux tubes acting as colored braid strands. The shortening of the flux tubes in a phase transition
reducing the value of Planck constant would make possible extremely selective mechanisms of
catalysis allowing precisely defined locations of reacting molecules to attach to each other. With
recently discovered mechanism for programming sequences of biochemical reactions this would
make possible to understand the miraculous looking feats of bio-catalysis.

8. The ability to construct ”stories”, temporally scaled down or possible also scaled up represen-
tations about the dynamical processes of external world, might be one of the key aspects of
intelligence. There is direct empirical evidence for this activity in hippocampus. The phase
transitions reducing or increasing the value of Planck constant would indeed allow to achieve
this by scaling the time duration of the zero energy space-time sheets providing cognitive repre-
sentations.

Direct experimental evidence for the notion of magnetic body carrying dark matter

The list of nice things made possible by the magnetic body is impressive and one can ask whether
there is any experimental support for this notion. The findings of Peter Gariaev and collaborators
give evidence for the representation of DNA sequences based on the coding of nucleotide to a rotation
angle of the polarization direction as photon travels through the flux tube and for the decoding of this
representation to gene activation [7], for the transformation of laser light to light at various radio-wave
frequencies having interpretation in terms of phase transitions increasing ~ [6, 1] , and even for the
possibility to photograph magnetic flux tubes containing dark matter by using ordinary light in UV-IR
range scattered from DNA [12] .

3.5.3 Brain and consciousness

In the proposed vision the role of brain for consciousness is not so central than in neuroscience view.
Brain is not the seat of sensory mental images but builder of symbolic representations and magnetic
body replaces brain as an intentional agent and higher level experiencer. Furthermore, p-adic view
about cognition means that only cognitive representations but not cognition itself can be localized in
a finite space-time region.

The simplest sensory qualia would be realized at the level of sensory organs so that one can avoid
the problematic assignment of sensory qualia to the sensory pathways. The new view about time would
allow to resolve the objections against this view. For instance, phantom leg phenomenon would result
by sharing of sensory mental images of the geometric past by time like quantum entanglement. For
instance, visual colors would correspond to increments of color quantum numbers in quantum jumps
at the level of retina. Our sensory mental images do not correspond to the sensory input as such.
Rather, the feedback from brain (or from magnetic body via brain) to sensory organs is an essential
element in the construction of sensory mental images. For instance, during REM sleep rapid eye
movements would reflect the presence of this feedback. The feedback would be also very important in
the case of hearing. Visual mental images in absence of eye movements could be interpreted as sharing
of visual mental images by quantum entanglement (in particular, time-like entanglement giving rise
to episodal memories).
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Chapter 4

Overall View About Evolution of
TGD

4.1 Introduction

Topological Geometrodynamics was born for twenty five years ago as an attempt to construct a
Poincare invariant theory of gravitation by assuming that physically allowed space-times are repre-
sentable as surfaces in the space H = M4 × CP2, where M4 denotes Minkowski space and CP2 is
complex projective space having real dimension four (see the appendix of the book).Poincare group
was identified as the isometry group of M4 rather than of the space-time surface itself. The isome-
tries of CP2 were identified as color group and the geometrization of electro-weak gauge fields and
elementary particle quantum numbers was achieved in terms of the spinor structure of CP2. Rather
remarkably, for a quarter century after this discovery one can still say that CP2 codes the known
elementary particle quantum numbers and interactions in its geometry. The construction of quantum
theory suggests the replacement of M4 with M4

+, the interior of the future light cone of Minkowski
space so that Poincare invariance is broken by the global geometry of the light cone but not locally.

It took almost half decade to develop the new view about space-time implied by the basic hy-
pothesis: this is summarized in my PhD thesis [31] . The construction of a mathematical theory
around these physically very attractive ideas became the basic challenge and I have devoted my pro-
fessional life to the realization of this dream. The great idea was that quantum physics reduces to the
construction of Kähler metric and spinor structure for the infinite-dimensional space CH of all pos-
sible 3-surfaces of H. Physical states correspond to classical spinor fields in this space and a natural
geometrization of fermionic statistics in terms of gamma matrices emerges [41, 21] .

p-Adic number fields Rp [59] (one number field for each prime obtained as a completion of the
rational numbers) emerged for about ten years ago as a separate thread only loosely related to quantum
TGD. What made them so attractive was that, with certain additional assumptions about physically
favored p-adic primes, it became possible to understand the basic elementary particle mass scales
number theoretically. This led to a successful calculation of the elementary particle masses using p-
adic thermodynamics assuming that Super Virasoro algebra and related Kac Moody algebras, which
are also basic algebraic structures of string models, act as symmetries of TGD [49, 57, 58, 53] . The
success of the mass calculations in turn forced the attempts to understand how Super Virasoro and
related symmetries might emerge from basic TGD. Several trials led finally to the realization that
these super algebras (or actually the proper generalizations of them) are the basic symmetries of
quantum TGD. One of the most dramatic predictions is the uniqueness of the space H: quantum
TGD exists mathematically (cancellation of various infinities occurs) only for the space M4

+ × CP2,
the choice which is forced also by the cosmological and symmetry considerations. One can say that
infinite-dimensional Kähler geometric existence and thus physics is unique.

A third thread to the development emerged when I started systematic development of TGD inspired
theory of consciousness [87] . This work has led to dramatic increase of understanding also at the
level of basic quantum TGD and allowed to develop quantum measurement theory in which conscious
observer is not anymore Cartesian outsider but an essential part of quantum physics. The need
to understand the mechanism making bio-systems macroscopic quantum systems led to a dramatic
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progress in the understanding of the new physics implied by the notion of many-sheeted space-time.
Dramatic change in views about the relation between subjectively experienced and geometric time of
physicist emerges and leads to the solution of the basic paradoxes of quantum physics. It became also
clear that p-adic numbers are indeed an absolutely essential element of the mathematical formulation
of quantum TGD proper and that the general properties of quantum TGD force the introduction
of the p-adic numbers. One can say that physics involves both real and p-adic number fields with
real numbers describing the topology of the real world and various p-adic number fields serving as
correlates of cognition with the prime p labelling the p-adic topology serving as kind of intelligence
quotient.

A further thread into the development of ideas came from the realization that physics might be
basically number theory in generalized sense. TGD more or less forces the notion of infinite primes [84]
, and it turned out that their construction reduces to a repeated second quantization of arithmetic
quantum field theory. Generalization of the concept of integer and real number emerges implying that
the configuration space and state space of TGD could be imbedded into the field of generalized reals
which is infinite-dimensional algebraic extension of ordinary reals. Physics could be basically theory of
generalized reals! The dimensions of space-time resp. imbedding space correspond to the dimensions
of quaternion resp. octonion fields as well as the dimensions of algebraic extensions of p > 2- resp.
2-adics allowing square root of ordinary p-adic number. The discussions with Tony Smith suggested
that one can endow space-time and imbedding space with what might be called local quaternion and
octonion structures.

This stimulated a development, which led to the notion of number theoretic compactification.
Space-time surfaces can be regarded either as hyper-quaternionic , and thus maximally associative,
4-surfaces in M8 or as surfaces in M4 × CP2 [86] . What makes this duality possible is that CP2

parameterizes different quaternionic planes of octonion space containing a fixed imaginary unit. Hyper-
quaternions/-octonions form a sub-space of complexified quaternions/-octonions for which imaginary
units are multiplied by

√
−1: they are needed in order to have a number theoretic norm with Minkowski

signature.

Further important number theoretical ideas emerged from the attempt to construct a model for
how intentions are transformed to actions. The process was interpreted as a quantum jump in which
p-adic space-time sheet representing intention is transformed to a real one. This model led to a bundle
of ideas and conjectures.

1. The core idea is the generalization of the notion of number obtained by gluing all number
number fields together along rationals and algebraic numbers common to them. This means a
generalization of the notion of manifold. In particular, imbedding space is obtained by gluing
real and p-adic imbedding spaces together along rational points. This picture also justifies the
decomposition of space-time surface to real and p-adic space-time sheets. Also finite-dimensional
algebraic extensions, even extensions involving transcendentals like e are needed.

2. p-Adic space-time sheets are identified as correlates of intentionality and cognition. The differ-
ences between real and p-adic topologies (two rationals near to each other as p-adic numbers
are very far in real sense) have deep implications concerning the understanding of cognitive
consciousness. The evolution of cognition corresponds naturally to the increase of the p-adic
prime and dimension of the extension of p-adic numbers.

3. Real physics and various p-adic physics are obtained from finitely extended rational physics
by algebraic continuation to p-adic number fields and their extensions analogous to analytic
continuation in complex analysis. This algebraic continuation is performed both at space-time
level, state space level, and configuration space level. One can also generalize the notion of
unitarity and the generalization poses extremely strong conditions on S-matrix.

This chapter represents a overall view of classical TGD, a discussion of the p-adic concepts, a
summary of the ideas generated by TGD inspired theory of consciousness, and the vision about
physics as generalized number theory.
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4.2 Evolution of classical TGD

The TGD based space-time concept means a radical generalization of standard views already in the
real context. Many-sheetedness means a hierarchy of space-time sheets of increasing size making
possible to understand the emergence of structures in terms of the macroscopic space-time topology.
The non-determinism of the Kähler action forces the notion of the association sequence defined as a
union of space-like 3-surfaces with time-like separations: association sequence provides a geometric
correlate for thought as simulation of the classical history. Non-determinism forces also the notion
of mind like space-time sheet defined as a space-time sheet having finite temporal duration, which is
an attractive candidate for the geometric correlate of self. Topological field quantization means that
space-time topology provides classical correlates for the basic notions of the quantum field theory.
The decomposition of space-time surface into real and p-adic regions brings in besides the matter also
cognitive representations of material world.

4.2.1 Quantum classical correspondence and why classical TGD is so im-
portant?

In standard quantum physics classical theory is seen as a result of some kind of approximation pro-
cedure, say stationary phase approximation. In TGD framework classical physics is an exact part of
quantum physics, and even more of configuration space geometry since, apart from the complications
caused by the classical non-determinism of the Kähler action, the definition of the Kähler geometry
in terms of Kähler action assigns to a given 3-surface X3 a unique space-time surface X4(X3).

The evolution of TGD inspired theory of consciousness has gradually led to the notion of quantum
classical correspondence which states that every quantum aspect of existence has space-time correlate.
The correspondence is certainly not faithful but rather like the representation of contents of conscious-
ness provided by spoken or written language. Space-time surface can be indeed seen as a symbolic
representation, kind of written language. Not only the characteristics of quantum states, but also
quantum jumps and their sequences defining the contents of conscious experience, have space-time
correlates made possible by the classical determinism of the Kähler action, and the inherent p-adic
non-determinism of p-adic counterparts of the field equations. In fact, there are reasons to believe that
classical non-determinism of the Kähler action and a p-adic non-determinism have close relationship
in the sense that the effective topology of the real space-time sheets is expected to correspond to
p-adic topology in some length scale range.

4.2.2 Classical fields

In TGD framework the physics of classical fields are an essential part of the quantum theory and
the study of classical fields has provided the easiest manner to get grasp about the physics of TGD
Universe.

Geometrization of classical fields and of quantum numbers

The basic motivation for TGD was provided by the finding that known interactions at classical level
and quantum number spectrum of known particles could be readily understood from the assumption
that space-time is a 4-surface in H = M4 × CP2.

The geometrization of classical gauge fields is based on the following identifications.

1. The classical gravitational field is identified as the induced metric. The still open question
is whether the classical gravitational fields couple to matter with the gravitational constant
G ' kR2, k ' 10−8, where R is CP2 size (the length of CP2 geodesic line). There is however
an argument leading to a precise and correct prediction for k, and fixing the value of the Kähler
coupling strength αK at electron length scale to a value rather near to that of the fine structure
constant.

2. The geometrization of electro-weak gauge fields reduces to the curvature of CP2 just like the ge-
ometrization of gravitation reduces to the curvature of the space-time surface. Classical electro-
weak fields are identified as components of CP2 spinor connection projected to the space-time
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surface. The holonomy group of CP2 spinor connection is U(2) and naturally identifiable as
electro-weak gauge group.

3. Color symmetries correspond to the isometries of CP2 so that there is deep and unexpected
connection between electro-weak and color interactions. Color gauge potentials are identified in
the spirit of Kaluza-Klein theory as projections of the Killing vector fields of color isometries
to the space-time surface. Color gauge fields are of form FAαβ ∝ HA × Jαβ , where HA is the
Hamiltonian of the color isometry and J denotes the induced Kähler form. Therefore the vacuum
extremals of Kähler action carry also non-vanishing color gauge fields.

Also elementary particle quantum numbers can be understood in terms of the induced spinor
structure and simple 3-topology.

1. CP2 does not allow ordinary spinor structure and it is necessary to couple CP2 spinors to the
Kähler potential of CP2. The couplings are different for different H-chiralities identifiable as
leptonic and quark like spinors. Baryon and lepton numbers are separately conserved for both
the ordinary massless Dirac action and modified Dirac action. The modified Dirac action is fixed
uniquely by requiring that it has the vacuum degeneracy of Kähler action. The modified Dirac
action allows local super-symmetries generated by the right-handed neutrino.

2. At the fundamental level color quantum numbers are not spin like quantum numbers but can
be said to correspond to the color partial waves in CP2 center of mass degrees of freedom of
the 3-surface representing the elementary particle. Ordinary Dirac equation for CP2 predicts
wrong correlations between electro-weak and color quantum numbers of the color partial waves
associated with the spinor harmonics. This was a longstanding problem of TGD approach but
the construction of physical states as representations of the Super Kac Moody algebra allows
to obtain correct correlations and an interpretation in terms of electro-weak symmetry breaking
coded already into the CP2 geometry.

3. The first guess was that the genus of the two-dimensional boundary associated with the 3-
surface representing particle explains family replication phenomenon. The identification of the
super-conformal symmetries as symmetries associated with light like effectively 2-dimensional
3-surfaces X3

l acting as causal determinants suggests a more concrete identification.

Quaternion conformal invariance allows to assign to X3
l a highly unique 2-dimensional surface X2 as a

surface at which superconformal structure reduces to ordinary conformal structure and thus becomes
Abelian. The genus of this surface telling whether the surface is sphere, torus, etc... determines the
particle family. X3

l could correspond to either a boundary of 3-surface or to an elementary particle
horizon. Elementary particle horizon would surround the wormhole contact connecting CP2 extremal
with an Euclidian signature of the induced metric to a larger space-time sheet with a Minkowskian
signature of metric. The induced metric is degenerate at the elementary particle horizon so that this
surface is indeed metrically 2-dimensional.

More concretely, sphere, torus, and sphere with two handles would correspond to (e, νe), (µ, νµ),
(τ, ντ ) in the leptonic sector and and (u, d), (c, s), and (t, b) in the quark sector respectively. The
experimental absence of heavier particle families would be most naturally due to the fact that they
are extremely heavy. The 3 lowest particle families differ from the higher genera in the sense that 2-
surfaces with genus g < 3 are always hyper-elliptic, that is they allow always Z2 conformal symmetry,
whereas higher genera generically do not allow any conformal symmetries. Hyper-ellipticity is an
excellent candidate for an explanation of the lightness of g < 3 genera. The construction of elementary
particle functionals as functionals in the conformal equivalence classes of the 2-surface X2 associated
with X3

l allows to formulate this argument more precisely.
The explanation of Cabibbo mixing as being due to the mixing of boundary topologies, and number

theoretic arguments (complex rationality of CKM matrix ) lead to a highly unique CKM matrix for
quarks and also leptonic mixings can be fixed highly uniquely. Also bosons are predicted to possess
family replication phenomenon.

The new physics associated with classical gauge fields

Long range electro-weak, in particular Z0, vacuum gauge fields are unavoidable in TGD: this is a
necessary outcome of the induced gauge field concept reducing the number of the primary bosonic
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field variables to four (CP2 coordinates)! The interpretation of this puzzling prediction has been a
long standing challenge of TGD. There are three alternative options to consider.

Option I: Classical gauge fields are space-time correlates for gauge bosons with mass scale deter-
mined by the p-adic length scale of the space-time sheet in question. The electro-weak charges of
elementary particles are screened by vacuum gauge charges (possible in TGD) in a region of size LW
of order intermediate boson length scale. This option does not explain the presence of long range
electro-weak gauge fields unavoidably present if the dimension of CP2 projection of space-time sheet
is higher than 2 nor classical color gauge fields present for non-vacuum extremals.

Option II: Electro-weak gauge charges are not screened in the length scale LW and the gauge
fluxes of elementary particles flow to larger space-time sheets via # throats within region of size LW
and elementary particles have the quantized values of em Z0 charges. The problem for this option are
anomalously large Rutherford cross sections in condensed matter and large parity breaking effects in
hadronic, nuclear, and atomic length scales. Despite this I regarded this option as the most realistic
one until the realization that the mysterious long ranged weak fields could be assigned to dark matter
particles at various space-time sheets.

Option III: There is a hierarchy of color electro-weak physics such that weak bosons are massless
below the p-adic length scale determining the mass scale of weak bosons. Classical long range gauge
fields serve as space-time correlates for gauge bosons below the p-adic length scale in question.

The unavoidable long ranged electro-weak and color gauge fields are created by dark matter and
dark particles can screen dark nuclear electro-weak charges below the weak scale above which vacuum
screening occurs as for ordinary weak interactions. Dark gauge bosons are massless below the appro-
priate p-adic length scale but massive above it and U(2)ew is broken only in the fermionic sector. For
dark copies of ordinary fermions masses are essentially identical with those of ordinary fermions.

This option is consistent with the standard elementary particle physics for visible matter apart
from predictions such as the possibility of p-adically scaled up versions of ordinary quarks predicted to
appear already in ordinary low energy hadron physics. The most interesting implications are seen in
longer length scales. Dark quarks and gluons and a scaled up copy of ordinary gluons emerge already
in ordinary nuclear physics [82] and explain some recently discovered anomalies such as neutron halos
and tetraneutron. The field bodies associated with are predicted to have sizes of order atom size.
Also scaled down versions of weak bosons giving to interactions between exotic quarks with a range
of order atomic length scale are predicted.

The new nuclear physics has deep implications for chemistry and condensed matter where color
bonds between neighboring atoms might be part of the chemical bonding [28] . Long ranged repulsive
weak force behind exotic quarks compensated by color force would contribute to the repulsive force
assumed in van der Waals equations of state for condensed matter. No strong isotopic dependence is
predicted.

Classical long range weak and color forces become also key players at the level of molecular physics
and biophysics. Chiral selection of bio-molecules can be seen as one direct signature of the long ranged
weak force which suggests that non-broken U(2)ew symmetry and and free color in bio length scales
become characteristics of living matter and of bio-chemistry and bio-nuclear physics. The central role
of the long ranged weak forces in bio-systems and in pre-biotic evolution is discussed in [67, 38, 27] .

Classical em fields and Z0 fields are not invariant under color rotations acting as exact symmetries
and are accompanied by classical color gauge fields. This implies new physics potentially important
for TGD inspired theory of consciousness. For instance, in TGD Universe the original joke like term
”quark color” inspired by certain algebraic similarities ceases to be a joke since it is possible to reduce
the 3+3 primary colors in color vision to the 3+3 different increments of color quantum numbers
induced by the absorption or emission of color octet gluon.

4.2.3 Many-sheeted space-time concept

The detailed study of TGD led to a further generalization of the space-time concept and the end
result is what I have used to call topological condensate or many-sheeted space-time. The 3-space
is many-sheeted such that the sheets of 3-space have finite size and outer boundary. The physical
interpretation of a given space-time sheet of a finite size is as a ’particle’. Depending on their size,
these particles correspond to elementary particles, nucleons, atomic nuclei, atoms, molecules, cells,
ourselves, stars, galaxies, etc. For instance, my skin corresponds to the outer boundary of a 3-surface
glued to a larger 3-surface identifiable as the room in which I sit! I am a small Universe glued to a



132 Chapter 4. Overall View About Evolution of TGD

larger one, the 3-space associated with me literally ends on my skin just as string ends at its end! The
surface of earth, the outer surfaces of trees, etc...: everywhere I can see nontrivial 3-topology.

Important new physics is associated with the extremely tiny wormholes contacts with size of order
CP2 length needed to perform the gluing operation. Join along boundaries bonds serving as space-
time correlates for the bound state formation is second important notion. The larger sheets of the
many-sheeted space-time are ideal for carrying various macroscopic quantum phases. Topological field
quantization allows to define precisely the notions of coherence and de-coherence and also means that
one can assign to a given material system what might be called field body or magnetic body.

Figure 4.1: Charged wormholes feed the electromagnetic gauge flux to the ’lower’ space-time sheet.

Figure 4.2: The two throats of wormhole behave as classical charges of opposite sign.

Obviously the outcome is a thorough-going generalization of the space-time concept and means
that TGD has highly nontrivial consequences in all length scales rather than in particle physics only,
as one might naively expect.

Join along boundaries contacts and join along boundaries condensate

The recipe for constructing the 3-space of TGD Universe is simple. Take 3-surfaces with bound-
aries, glue them by topological sum to larger 3-surfaces, glue these 3-surfaces in turn on even larger
3-surfaces, etc.. The smallest 3-surfaces correspond to CP2 type extremals that is elementary par-
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Figure 4.3: Many-sheeted space-time structure results from the requirement of gauge flux conservation.

ticles and they are at the top of hierarchy. In this manner You get quarks, hadrons, nuclei, atoms,
molecules,... cells, organs, ..., stars, ..,galaxies, etc...

Besides this, one can also glue different 3-surfaces together by tubes connecting their boundaries:
this is just connected sum operation for boundaries. Take disks D2 on the boundaries of two objects
and connect these disks by cylinder D2xD1 having D2:s as its ends. Or more concretely: let the two
3-surfaces just touch each other.

Figure 4.4: Join along boundaries bond a): in two dimensions and b): in 3-dimensions for solid balls.

Depending on the scale join along boundaries bonds are identified as color flux tubes connecting
quarks, bonds giving rise to strong binding between nucleons inside nuclei, bonds connecting neutrons
inside neutron star, chemical bonds between atoms and molecules, gap junctions connecting cells, the
bond which is formed when You touch table with Your finger, etc.

One can construct from a group of nearby disjoint 3-surfaces so called join along boundaries
condensate by allowing them to touch each other here and there.

The formation of join along boundaries condensates creates clearly strong correlation between
two quantum systems and it is assumed that the formation of join along boundaries condensate
is necessary prerequisite for the formation of macroscopic quantum systems. Crucially important
examples in biology are gap junctions connecting cells and MAPs (micro-tubule associated proteins)
connecting micro-tubules.

Quantum classical correspondence inspires the hypothesis that quite generally join along bound-
aries bonds are space-time correlates for the formation of the bound state entanglement. Since join



134 Chapter 4. Overall View About Evolution of TGD

Figure 4.5: Join along boundaries condensate in 2 dimensions.

along boundaries bonds between space-time sheets condensed on larger space-time sheets having no
join along boundaries bonds between them is possible, one is forced to conclude that entanglement be-
tween sub-systems of un-entangled systems is possible in the many-sheeted space-time. The paradox
disappears when entanglement is understood as a length scale dependent notion so that the bound
state entanglement of sub-systems is not visible in the length and time scales of the systems.

Wormhole contacts

The gauge and gravitational fluxes at the boundary of a given space-time sheet must go somewhere by
gauge flux conservation. This forces the existence of a larger space-time sheet and of tiny wormhole
contacts connecting the two space-time sheets and feeding the gauge fluxes from the smaller sheet
to the larger one. Wormhole contacts (# contacts) are elementary particle like objects (actually
deformed pieces of so called CP2 type extremals) having size of order CP2 size about 104 Planck
lengths and, being sources and sinks of gauge field lines, wormhole throats effectively like classical
charges, the charges of throats at the two space-time sheets being of opposite sign. Hence wormhole
contacts look like dipoles and couple to the difference of the classical gauge potentials associated with
the two space-time sheets. Also the coupling to the difference of the gauge potentials serving as order
parameters for the coherent states of photons is possible.

The crucial experiment would be the one demonstrating the existence of the wormholes.

1. There are good reasons to expect that wormhole gauge flux is quantized. The reason for quanti-
zation would be that the extremals of the Kähler action are critical in the sense that they allow
infinite number of vanishing second variations, which is mathematically a condition very similar
to the Bohr’s quantization condition. In the usual initial value problem one would fix only the
imbedding space coordinates of 4-surface for given value of time and allow their time derivatives
be arbitrary. Now absolute minimization fixes the values of the time derivatives just like Bohr’s
quantization rules fix the momenta. The most aesthetic possibility is that the unit of wormhole
em charge is the smallest possible elementary particle charge 1/3 associated with d quarks but
also integer charge could be considered.

2. If wormhole charge is quantized then the gauge flux of an external em field running from a
larger space-time sheet to a smaller one is quantized. The experimental arrangement should
demonstrate that this flux indeed can change by a multiple of the elementary flux only. One
could also try to detect wormhole currents. It must be emphasized that wormhole current is a
pseudo current in the sense that two space-time sheets carry opposite classical currents. These
currents are created, when magnetic field penetrates from space-time sheet to another. The
detection of charge 1/3 for the charge carriers of this current would be a triumph.

3. One cannot exclude the possibility that the recently found evidence for 1/3 charge in condensed
matter systems (quantum Hall effect) could be interpreted in terms of an em gauge flux quantized
in this manner. Electron current flowing inside a planar layer like structure is studied. Strong
magnetic field, which could lead to a generation of wormhole currents is present! Evidence
for some quasi particles in current flow possessing this charge has been found. The anyon
interpretation of quasi particles as bound states of magnetic flux quanta and electrons explains
the effect (McLaughlin wave function). The prediction is however that also fluxes of m/5,
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m/7,... , m integer, should be observed. Only 1/3 has been detected hitherto and it is not
understood why higher charges have not been observed. The question is whether the quasi
particles are actually wormholes created by the penetration of magnetic field and flowing along
the boundaries of the arrangement.

One application of the new space-time concept is a model of brain. The basic idea is that brain
can be regarded as a macroscopic quantum system and that our experiences of free will correspond
to quantum jumps which are unpredictable as also is the end result of a free choice. The idea
that quantum theory might provide some light in the problem of consciousness has become popular
during the last years and a serious building of quantum theories of consciousness has begun. The
bottleneck problem is how the brain can be a macroscopic quantum system. Some kind of super
conductivity looks a promising idea but standard physics does not provide promising candidates for
a super conductor like system. Womholes might provide one such system besides high Tc electronic
and protonic superconductors and Bose-Einstein condensates of bosonic ions.

To see what is involved, consider in more precise manner how many sheeted 3-space is constructed.
When one glues a sheet of 3-space to a larger sheet of 3-space one does it by constructing extremely
tiny elementary particle sized wormholes connecting the two sheets of 3-space.

These wormholes serve important function. For instance, the flux of the electric field (usually it is
unlucky space traveller) flows to this kind of wormhole on the smaller sheet of 3-space and and comes
back from it to the larger sheet of 3-space. Since the field lines of the electric field flow to the wormhole
on the smaller sheet of 3-space, the wormhole looks like a charge since it acts as a sink of field lines.
Same applies on the larger sheet of 3-space except that the sign of the charge is opposite. Hence, on
both space-time sheets wormhole looks classically like a charged particle. Shortly, wormholes behave
like particles and represent a new exotic form of matter. More generally, it seems that many-sheeted
nature of the space-time is crucial for the understanding of a bio-system as a macroscopic quantum
system.

The interaction between space-time sheets is mediated by these wormholes having size of order CP2

radius R and located near the boundaries of the smaller space-time sheet. Wormholes feed various
gauge fluxes from the smaller space-time sheet to the larger one (say from the atomic sheet to some
molecular sheet). p-Adic considerations suggest that wormholes are light having mass of order 1/Lp:
this implies that they suffer Bose-Einstein condensation on the ground state. One could even say that
space-time sheets ”perceive” the external world and act on it with the help of the charged wormhole BE
condensates near their boundaries. Wormholes provide a very general mechanism making possible the
transfer of classical electromagnetic fields and various quantum numbers such as energy, momentum
and angular momentum, between different space-time sheets and bio-systems are especially promising
as far as applications are considered.

Topological field quantization

Topological field quantization [46] implies that various notions of quantum field theory have rather
precise classical analogies. Topological field quantization is basically implied by the compactness of
CP2, which typically implies that a given Maxwell field allows only a partial imbedding as a space-time
surface in H. One can say that magnetic fields, electric fields and radiation fields decompose into field
quanta.

The energies and other classical charges of the topological field quanta are quantized by the crit-
icality of the extremals of the Kähler action making classical space-time surfaces the counterparts of
the Bohr orbits. Feynman diagrams become classical space-time surfaces with lines thickened to 4-
manifolds. For instance, ”massless extremals” representing topologically quantized classical radiation
fields are the classical counterparts of gravitons and photons. Topologically quantized non-radiative
nearby fields give rise to various geometric structures such as magnetic and electric flux tubes.

Topological field quantization provides the correspondence between the abstract Fock space de-
scription of elementary particles and the description of the elementary particles as concrete geometric
objects detected in the laboratory. In standard quantum field theory this kind of correspondence is
lacking since classical fields are regarded as a phenomenological concept only.

Topological field quanta define coherence regions for the classical gauge fields and induced spinor
fields and classical coherence is the prerequisite of the quantum coherence. Whether and how macro-
scopic and macro-temporal quantum coherence are possible in living matter is the basic question of
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quantum consciousness theories and quantum biology. In TGD this question is even more difficult since
the first estimate for de-coherence time is CP2 time which is about 104 Planck times. The length scale
hierarchy of space-time sheets allows immediately to understand at the level of space-time correlates
how macroscopic and macro-temporal quantum coherence are possible. A good order of magnitude
guess for the zero point energy of a particle at a space-time sheet of size L is given by E = π2/2mL2.
T ≤ π2/2mL2 gives an estimate for the temperature of the space-time sheet populated by particles of
mass m: the larger the size of the space-time sheet, the lower the temperature. Superconductivity and
various macroscopic phenomena become thus possible at larger space-time sheets. TGD based model
of living matter is based on the hypothesis that large space-time sheets are responsible for quantum
control.

The virtual particles of quantum field theory have also classical counterparts. In particular, the
virtual particles of quantum field theory can have negative energies: this is true also for the TGD
counterparts of the virtual particles. The fundamental difference between TGD and GRT is that in
TGD the sign of energy depends on the time orientation of the space-time sheet: this is due to the
fact that in TGD energy current is vector field rather than part of tensor field. Therefore space-time
sheets with negative energies are possible.

One can criticize the notion of time orientation. A more precise definition of the time orientation
requires the realization that configuration space of 3-surfaces, call it CH, can be understood as a union
of corresponding configuration spaces associated with unions of arbitrary many light cones, both future
and past light cones with positive/negative energies assignable to to future/past lightcones. This brings
in in a natural manner also the super-symplectic symmetries associated with the boundaries of the
lightcones.

Negative energies would have quite dramatic technological consequences: consider only the pos-
sibility of generating energy from vacuum and classical signalling backwards in time along negative
energy space-time sheets [10] . Also bio-systems might have invented negative energy space-time
sheets: in fact, they define the basic mechanism for the realization of intentional action, long term
memory, and metabolism [64] .

Quantum classical correspondence suggests that quantum entanglement has the formation of the
join along boundaries bonds as its geometric correlate. The superposition of the topologically quan-
tized space-time surfaces in the state UΨ could be regarded as a geometric correlate for quantum fields:
creation/annihilation operators would correspond to positive/negative energy space-time sheets. This
hypothesis, together with the expansion of the interacting quantum field in terms of creation and
annihilation operators, would make it possible to make quantitative estimates about the fraction of
energy density carried by the negative energy space-time sheets, in particular, about the energy density
associated with the massless extremals.

In TGD Universe topological field quanta serve as templates for the formation of the bio-structures.
Thus topologically quantized classical electromagnetic fields associated with the material objects, field
bodies or more concretely, magnetic bodies, could be equally important for the functioning of the living
systems as the structures formed by the visible bio-matter and the visible part of bio-system might
represent only a dip of an ice berg. For instance, in [39] the implications of the notion of field body
for the understanding of bio-systems and pre-biotic evolution are discussed in detail.

Negative energy space-time sheets and new view about energy

Negative energy space-time sheets represents an important distinction between TGD and standard
physics. They are possible because energy momentum tensor is replaced by a collection of conserved
currents associated with various components of four momentum. This resolves the energy problem of
general relativity but, since the sign of the conserved charged depends on the time orientation of the
space-time sheet, the sign of energy is not positive definite anymore.

Quantum classical correspondence implies that also elementary particles can have negative energies
and this means a new kind of physics. It seems that this physics has been already discovered: the
strange properties of phase conjugate laser waves can be understood if they consist of negative energy
photons.

Negative energy space-time sheets have far reaching implications for TGD inspired theory of con-
sciousness. The so called time mirror mechanism involves the reflection of negative energy signals sent
to the geometric past from population inverted lasers as amplified positive energy signals propagating
to the geometric future. Time mirror mechanism provides the holy grail to the understanding of the
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mechanisms of brain functioning and also of the workings of the living matter. There are obvious
implications for communication and energy technologies since negative energy signals could make pos-
sible instantaneous remote sensing and quantum control over arbitrarily long distances so that light
velocity would cease to be a restriction forcing us to be habitants of 3-space instead of space-time.

If Kähler action were strictly deterministic, the only possible choice for H would be M4
+ × CP2.

Together with negative energies the classical non-determinism of the Kähler action it is possible to
assume that imbedding space is M4 × CP2 meaning exact Poincare invariance. The point is that
generation of pairs of positive and negative energy space-time sheet at light-like 7-surfaces X3

l ×CP2

means emergence of new kind of causal determinants generalizing the light cone boundary δM4
+ ×

CP2 as a fundamental causal determinant. All states of the Universe have vanishing net quantum
numbers and everything in the Universe would have been pair-created from vacuum. Future light
cones containing positive energy could also be created when negative energy radiation (in particular
gravitons) is generated and propagates to the geometric past and leaks from the future light cone.
This vision can be applied also to the second quantization of fermions by giving fermions and anti-
fermions opposite energies. Depending on time orientation either fermions or anti-fermions have
negative energy.

By crossing symmetry the assumption that the net quantum numbers of the Universe vanish
is not in conflict with elementary particle physics. In macroscopic length scales the identification
of the gravitational energy as the difference of inertial (Poincare) energies of positive and negative
energy matter plus the possibility that negative and positive energy matter interact weakly allows to
understand why western view about objective reality with conserved positive total energy is so good
an approximation. The non-conservation of the gravitational energy can be understood, and vacuum
extremals, of which Robertson-Walker cosmologies, are most important examples find interpretation.
The non-determinism of Kähler action explains naturally the fact that Universe is to some extended
an outcome of engineering. The notion of gravitational energy generalizes to that of gravitational
quantum numbers and the inertial-gravitational dichotomy is a direct correlate for the geometric-
subjective dichotomy for time discovered while developing TGD inspired theory of consciousness.
Indeed, positive and negative energy space-time sheets correspond to initial and final states of quantum
jump so that gravitational quantum numbers characterize changes.

This vision would resolve the unpleasant philosophical questions like ”What is the total fermion
number of the Universe”. One could see entire universe as a result of intentional actions in which
intentions represented by p-adic space-time sheets are transformed to actions represented by real
space-time sheets. Everyone knows the anecdotes about yogis and gurus creating material objects
from nothing and very few ”scientifically thinking” westerner can take these stories really seriously.
Whether or not these stories are true, they might however express a deep truth about reality.

More precise view about topological condensate

The challenge is to define precisely the concepts like classical gauge charge, gauge flux, wormhole
contacts, join along boundaries bonds, topological condensation and evaporation, etc... Number
theoretical vision allows to achieve this goal [35, 35] .

The crucial ingredients in the model are so called CP2 type vacuum extremals. The realization that
# contacts (topological sum contacts and #B contacts (join along boundaries bonds) are accompanied
by causal horizons which carry quantum numbers and allow identification as partons leads to a more
detailed articulation of these notions.

The partons associated with topologically condensed CP2 type extremals carry elementary particle
vacuum numbers whereas the parton pairs associated with # contacts connecting two space-time
sheets with Minkowskian signature of induced metric define parton pairs. These parton pairs do not
correspond to ordinary elementary particles. Gauge fluxes through # contacts can be identified as
gauge charges of the partons. Gauge fluxes between space-time sheets can be transferred through #
and #B contacts concentrated near the boundaries of the smaller space-time sheet. The dynamics of
topological condensation and evaporation can be formulated in terms of gauge interactions of partons
and splitting and fusion of CP2 type extremals. This picture generalizes to the case of gravitational
flux which need not be well-defined purely classically.

Number theoretical vision and p-adic length scale hypothesis allow to quantify this picture and
lead to an overall view about interactions of particles in many-sheeted space-time. A far reaching
generalization of standard physics results predicting an infinite hierarchy of dark matters besides
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ordinary elementary particles of standard model. In particular, the partons associated with # and
#B contacts represent dark matter.

4.2.4 Classical non-determinism of Kähler action

The classical non-determinism of Kähler action has been deep source of inspiration and challenges and
guided the evolution of TGD inspired theory of consciousness and finally also of quantum TGD proper.
In nut-shell, classical non-determinism makes possible quantum-classical correspondence in the sense
that space-time surface becomes a symbolic representation for the quantum states and quantum jump
sequences defining conscious experience.

Matter-mind duality geometrically

The non-determinism of Kähler action implies huge vacuum degeneracy: any 4-surface whose projec-
tion belongs to M4

+ × Y 2, where Y 2 is so called Lagrange manifold of CP2 (has vanishing induced
Kähler form), is a vacuum extremal. This suggests that one must radically generalize the concept
of space-time. It seems that the correct picture is roughly like follows. Space-time is many-sheeted.
Each sheet can be regarded as a slightly deformed piece of M4 in H containing smaller sheets glued to
it and being itself glued to a larger space-time sheet. Gluing means the formation of topological sum
contacts between the space-time sheets. There are reasons to believe that topological sum contacts,
”wormhole contacts” are located near the boundaries of the smaller space-time sheet.

Material space-time sheets have infinitely long time duration if they possess non-vanishing energy
(and provided that they do feed their energy to some other space-time sheets). ”Mind like” space-time
sheets can be regarded as obtained by gluing space-time sheets with finite time duration to material
space-time sheets. The gluing operation implies that tiny amounts of energy and momenta and other
conserved quantities flow to the mind like space-time sheet when it begins and back to the material
space-time sheets when mind like space-time sheet ends. Mind like space-time sheets are space-time
correlates for contents of consciousness. In particular, they form symbolic representations for material
space-time sheets. For instances, the frequencies of various oscillatory processes are mapped also to
frequencies of processes occurring in mind like space-time sheets. The possibility of mind like space-
time sheets implies that the absolute minima of Kähler action (or more general preferred extremals
defining analogs of Bohr orbits [86] ) are degenerate: one can glue mind like space-time sheets to
given absolute minimum to get new absolute minima. This conforms with the fact that contents of
consciousness are defined by a sequence of non-deterministic quantum jumps.

This picture must of course be taken with strong reservations, and one should actually state more
precisely what ”mind like” means. The interpretation of p-adic space-time sheets as correlates of
intentions and cognitions gives some ideas about what aspects of consciousness mind like space-time
sheets correlate with. The model for how intentions are realized as actions in quantum jump assumes
that p-adic ”topological light rays” representing intentions are transformed to real topological light
rays with negative energy serving as correlates of desires, which in turn induce the action initiated in
the geometric past. Thus it would seem that real ”mind like” space-time sheets with negative energy
would serve as correlates for desires.

The precise definition of p-adic space-time sheets is a separate question and requires a precise vision
about how real and various p-adic physics integrate to a coherent whole. This requires a generalization
of the number concept based on the fusion of real and p-adic number number fields to a larger book
like structure along common rationals. The precise definition of p-adic space-time sheets is discussed
in [86] . The surprising outcome, basically due to the difference between real and p-adic notions of
distance, is that most points of p-adic space-time sheets can be said to reside at infinity of the real
imbedding space and the projection to real space-time consists of a discrete set of rational points.
Thus cognition can be said to look material cosmos from outside.

Association sequence concept and a mind like space-time sheets

The vacuum degeneracy of the Kähler action defining quantum TGD solves the difficulty. The vacuum
degeneracy implies spin glass analogy and strongly suggests that the Bohr orbit like space-time surface
defined as a preferred extremal of Kähler action and going through a given space-like 3-surface, cannot
be unique in general. To achieve uniqueness one must generalize the concept of 3-surface to what might
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be called association sequence . In order to specify uniquely one of the degenerate absolute minimum
space-times going through a given 3-surface one must fix some minimum number, say N, of 3-surfaces
on a given preferred extremal. These sequences of disjoint 3-surfaces with time-like separations can
be regarded as a simulations of the classical time development and hence as a geometric correlate of
conscious experience localized temporally. It seems that in real case geometric correlates of sensory
experiences are in question whereas in p-adic case correlates of thoughts are in question.

Figure 4.6: ’Association sequence’: a geometric model for thought as a sequence of disjoint 3-surfaces
with time-like separations.

Association sequences are very probably not all that is needed to overcome the complications caused
by the non-determinism of Kähler action. The enormous vacuum degeneracy of Kähler action suggests
strongly that the classical non-determinism does not reduce to simple sequences of bifurcations. Hence
it seems that must give up the idea of identifying space-like 3-surfaces given value of geometric time
as causal determinants which are possibly degenerate because of the bifurcations.

Vacuum degeneracy and spin glass analogy

Kähler action determines configuration space geometry and is hence a cornerstone of quantum TGD.
Kähler action can be regarded as a Maxwell action for the Kähler form of CP2 induced to space-time
surface and defining nonlinear Maxwell field. Kähler action possesses enormous vacuum degeneracy.
Any space-time surface in M4

+ ×CP2, where Y 2 is so called Lagrange sub-manifold of CP2 having by
definition vanishing induced Kähler form, is vacuum extremal. In canonical coordinates (Pi, Qi) for
CP2 Lagrange sub-manifolds correspond to functions

Pi = ∇if(Qj) .

This means that there is infinite number of vacuum sectors since all 4-surfaces in any six-dimensional
space M4

+ × Y 2 are vacua.
Also non-vacuum configurations are almost degenerate. Only the gravitational effects caused by

the presence of the induced metric in the Maxwell action for the induced Kähler form of CP2 on
space-time surface breaks the canonical invariance of the Kähler action. Canonical transformations
of CP2 act as U(1) gauge transformations and in the absence of gravitation one would have ordinary
U(1) gauge invariance. Gravitation however changes the situation. Various canonically related con-
figurations are physically non-equivalent. This means a characteristic degeneracy analogous to the
degeneracy of the states for spin glass rather than to the physically uninteresting gauge degeneracy.
The effective breaking of U(1) gauge invariance makes possible vacuum charge densities, scalar wave
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pulses propagating with light velocity and carrying longitudinal electric field parallel to the propaga-
tion direction, and topological light rays carrying light like vacuum current and transversal electric
and magnetic fields are predicted.

Contrary to the original beliefs, p-adic physics does not seem to follow from vacuum degeneracy
alone. Rather, p-adic space-time topology is a genuine rather than only effective space-time topology
and emerges independently from the vacuum degeneracy. p-Adic topology seems however to serve
as effective topology for the real space-time sheets in the sense that the non-determinism implied by
the vacuum degeneracy mimics the inherent non-determinism of p-adic field equations for some value
of p so that one can indeed assign a definite p-adic prime to a given real space-time sheet. Vacuum
degeneracy has a wide spectrum of implications. For instance, the spin glass degeneracy implied by
it allows to understand at quantum level generation of macroscopic and macro-temporal quantum
coherence. The same mechanism explains also color confinement.

The p-adic fractality of real space-time sheets is in turn implied by the fact that p-adic and real
space-time sheets have common rational points which implies that the purely local p-adic physics sets
constraints on the long ranged real physics because rational points close to each other p-adically are
very distant in real sense.

Connection with catastrophe theory and Haken’s theory of self-organization for spin
glass

If the effects related to the induced metric (classical gravitation) are neglected, canonical transforma-
tions of CP2 act as U(1) gauge symmetries and all canonically related surfaces are physically equiv-
alent. Classical gravitation however breaks this gauge invariance but due to the extreme weakness
of the gravitational interaction one has good reasons to expect that the maxima of Kähler function
for given values of the zero modes are highly degenerate. The hypothesis that single maximum of
Kähler function with respect to fiber degrees of freedom is selected in quantum jump, means huge
simplification of the mathematical theory.

Besides the degeneracy resulting from the non-determinism, there is also the spin glass degener-
acy related to zero modes. The nonphysical U(1) gauge degeneracy is transformed to physical spin
glass degeneracy. The energies of various absolute minima differ only by the classical gravitational
energy. Zero modes serve as coordinates for the ”energy” landscape of quantum spin glass and the en-
ergy landscape of non-equilibrium thermodynamics is fractal containing valleys inside valleys...inside
valleys.

One naturally ends up with a generalization of the catastrophe theory [131] to the infinite-
dimensional configuration space context. Zero modes play the role of the control parameters form-
ing master slave-hierarchy and non-zero modes characterizing various degenerate absolute minima
of Kähler action correspond to the state variables [74] . There is natural connection with the non-
equilibrium thermodynamics of Haken [35] . Since time development by quantum jumps means hop-
ping in the zero modes characterizing the macroscopic space-time surfaces associated with the final
states of the quantum jumps, Haken’s classical theory applies almost as such. Asymptotically the self-
organizing quantum jumping system (self) ends up to a fixed point, limiting cycle, strange attractor,
etc. near the bottom of some valley of the energy landscape. The bottom of a valley corresponds to
a maximum of the Kähler function rather than minimum of free energy as in thermodynamics since
vacuum functional is exponent of Kähler function. Self-organization in spin glass energy landscape by
quantum jumps is extremely powerful notion allowing to understand general features of living systems.

4.2.5 Quantum classical correspondence as an interpretational guide

The overall view about interpretation of TGD can be deduced from the general properties of space-
time surfaces, the notion of induced gauge field, the general properties of Kähler action, and the known
extremals using quantum classical correspondence. The most dramatic predictions follow without even
considering field equations in detail by using quantum classical correspondence.

The implications deriving from the topology of space-time surface and from the proper-
ties of induced gauge fields

The notions of many-sheeted space-time, topological field quantization and the notion of field/magnetic
body, follow from simple topological considerations. The observation that space-time sheets can have



4.3. Evolution of p-adic ideas 141

arbitrarily large sizes and their interpretation as quantum coherence regions forces to conclude that
in TGD Universe macroscopic and macro-temporal quantum coherence are possible in arbitrarily long
scales. It took relatively long time to realize that perhaps the only manner to understand this is a gen-
eralization of the quantum theory itself by allowing Planck constant to be dynamical and quantized.
TGD leads indeed to a ”prediction” for the spectrum of Planck constants and macroscopic quantum
phases with large value of Planck constant allow an identification as a dark matter hierarchy.

Also long ranged classical color and electro-weak fields are an unavoidable prediction and it took
a considerable time to make the obvious conclusion: TGD Universe is fractal containing fractal copies
of standard model physics at various space-time sheets and labelled by the collection of p-adic primes
assignable to elementary particles and by the level of dark matter hierarchy defines as ~ = λk~0,
kd = 0, 1, .... λ depends logarithmically on p-adic length scale L(k) and satisfies λ ' 211 in atomic
length scale L(k = 137). Dark space-time sheets are identifiable as space-time sheets defining locally
λk-fold covering of M4 factor of imbedding space.

The new view about energy and time means that the sign of inertial energy depends on the time
orientation of the space-time sheet and that negative energy space-time sheets serve as correlates for
communications to the geometric past. This alone leads to profoundly new views about metabolism,
long term memory, and realization of intentional action.

A further important fact is that the holonomy group of induced color gauge field is Abelian.
Together with quantum classical correspondences this suggests a weak form of color confinement in
the sense that only color neutral states of color multiplets are realized as physical states. This would
mean a weak form of color confinement.

4.3 Evolution of p-adic ideas

It took quite a long time to end up with the recent picture how p-adic numbers emerge as a basic
aspect of quantum TGD and what p-adicization of TGD might mean. Of course, recent picture need
not be the final yet and there are several unsolved problems. In the following the basic properties
of the p-adic numbers are described shortly and then it is demonstrated how p-adic numbers might
emerge from TGD and how one should formulate p-adic version of quantum TGD formalism.

4.3.1 p-Adic numbers

Like real numbers, p-adic numbers can be regarded as completions of the rational numbers to a larger
number field allowing the generalization of differential calculus. Each prime p defines a p-adic number
field allowing the counterparts of the usual arithmetic operations. The basic difference between real
and p-adic numbers is that p-adic topology is ultra-metric. Ultrametricity means that the distance
function d(x, y) (the counterpart of |x− y| in the real context) satisfies the inequality

d(x, z) ≤Max{d(x, y), d(y, z)} ,

(Max(a,b) denotes maximum of a and b) rather than the usual triangle inequality

d(x, z) ≤ d(x, y) + d(y, z) .

p-Adic numbers have expansion in powers of p analogous to the decimal expansion

x =
∑
n≥0

xnp
n ,

and the number of terms in the expansion can be infinite so that p-adic number need not be finite as
a real number. The norm of the p-adic number (counterpart of |x| for real numbers) is defined as

Np(x =
∑
n≥0

xnp
n) = p−n0 ,

and depends only very weakly on p-adic number. The ultra-metric distance function can be defined
as dp(x, y) = Np(x− y).

p-Adic numbers allow the generalization of the differential calculus and of the concept of analytic
function f(x) =

∑
fnx

n. The basic rules of the p-adic differential calculus are the same as those of the
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ordinary differential calculus. There is however one important new element: the set of the functions
having vanishing p-adic derivative consists of so called pseudo constants, which depend on a finite
number of positive pinary digits of x only so that one has

fN (x =
∑
n

xnp
n) = f(xN =

∑
n<N

xnp
n) .

In the real case only constant functions have vanishing derivative. This implies that p-adic differential
equations are non-deterministic.

An essential element is the map of the p-adic numbers to the positive real numbers by the so called
canonical identification I:

I :
∑

xnp
n ∈ Rp →

∑
n

xnp
−n ∈ R .

Canonical identification has inverse, which is single valued for the real numbers having infinite number
of pinary digits but two-valued for real numbers having finite number of pinary digits (the reason is
that real number with finite number or pinary digits has two equivalent pinary expansions: (x =
1 = .999999... in case of decimal expansion and x = 1 = 0yyyy..., y = p − 1, in the case of pinary
expansion).

Canonical identification in its basic form cannot map real space-time surface to p-adic ones or vice
versa because it is not a general coordinate invariant notion. A variant of canonical identification,
call it IQ, maps defined only for rationals is given by I(q = m/n) = I(m)/I(n), where q = m/n is the
unique representation of rational q in terms of integers [85] .

IQ can be applied to map rational points of p-adic CP2 to their real counterparts whereas the
points of p-adic M4 are mapped as such to real points as such [85] . General coordinate invariance
is not lost since the projection of p-adic space-time sheet to real imbedding space is discrete and
genuinely p-adic points are at infinite real distance, ”outside the real cosmos”. This means a deep
number theoretic difference between M4 and CP2 and gives one reason for the product decomposition
of the imbedding space. OQ makes it also possible to map the predictions of the p-adic probability
theory and thermodynamics to real numbers so that probability is conserved.

4.3.2 Evolution of physical ideas

In the sequel the evolution of physical ideas related to p-adic numbers is summarized.

p-Adic length scale hypothesis

p-Adic length scale hypothesis [55] states that to a given p-adic prime p there corresponds a primary p-
adic length scale Lp =

√
pl, l ' 1.288×104

√
G (
√
G denotes Planck length) and that physically favored

primes correspond to p ' 2k, k power of prime. The corresponding p-adic time scale is obtained as
Tp = Lp/c. The justification for the first part of the hypothesis comes from Uncertainty Principle and
from the p-adic mass calculations [55] predicting that the mass of elementary particle, resulting from
the mixing of massless states with 10−4mPlanck mass states described by p-adic thermodynamics, is
of order 1/Lp for the light states.

The first principle explanation for p-adic length scale hypothesis derives from the fusion of real
and p-adic physics to a single larger framework. The fact that real and p-adic space-time sheets can
have common points implies that local p-adic physics give rise to p-adic fractality of real physics.
Also multi-p p-adic fractality is possible. p ' 2k would reflect the presence of 2-adic fractality besides
p > 2-adic fractality.

A heuristic justification for the preferred values of p comes from elementary particle black hole
analogy [60] generalizing the Bekenstein-Hawking area-entropy law to apply to the elementary particle
horizon defined as the surface at which the Euclidian signature for the so called CP2 type extremal
describing elementary particle changes to the Minkowskian signature of the background space-time at
which elementary particle has suffered topological condensation.

The hypothesis is especially interesting above the elementary particle length scales p > M127 and
has testable implications in nuclear physics, atomic physics and condensed matter length scales. The
most convincing support for this hypothesis are provided by the elementary particle mass calculations:
if one assumes that the p-adic primes associated with elementary particles are primes near prime
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powers of two, one can predict lepton and gauge boson masses with accuracy better than one per
cent. Also quark masses can be predicted but the calculation of the hadron masses requires some
modelling (CKM matrix, color force, etc...). The existing empirical information about neutrino mass
squared differences suggests that the allowed values of k are indeed powers of prime rather than primes.

It is natural to postulate that space-time sheets form a hierarchy with respect to p in the sense
that the lower bound for the size of the space-time sheets at level p is of order Lp and that p1 < p2

sheets condensed on p2 sheets behave like particles on sheet p2.

The following table lists the p-adic length scales Lp, p ' 2k, k power or prime, which might be
interesting as far as condensed matter is considered (the notation L(k) will be used instead of Lp).
It must be emphasized that the definition of the length scale is bound to contain some unknown
numerical factor K: the requirement that the thickness of cell membrane corresponds to L(151) fixes
the proportionality coefficient K to K ' 1.1.

k 127 131 137 139 149
Lp/10−10m .025 .1 .8 1.6 50

k 151 157 163 167 169
Lp/10−8m 1 8 64 256 512

k 173 179 181 191 193
Lp/10−4m .2 1.6 3.2 100 200

k 197 199 211 223 227
Lp/m .08 .16 10 640 2560

Table 1. Primary p-adic length scales Lp = 2k−151L151, p ' 2k, k prime, possibly relevant to
bio physics. The last 3 scales are included in order to show that twin pairs are very frequent in the
biologically interesting range of length scales. The length scale L(151) is take to be thickness of cell
scale, which is 10−8 meters in good approximation.

The assumption that p-adic space-time regions provide cognitive representations of the real space-
time regions forces to conclude that cognition is present in all length scales and that the properties of
the p-adic space-time regions reflect those of the real space-time regions. p-adic–real phase transitions
and identifiable as transformation of intentions to actions [59] occurring even at elementary particle
length scales would explain this elegantly.

Besides primary p-adic length scales also n-ary p-adic length scales defined as Lp(n) = p(n−1)/2Lp
and corresponding time scales are possible and form a fractal hierarchy coming as powers of

√
p.

Accepting these scales means that all length scales L(n) coming as powers of 2n/2, n a positive integer,
should have a preferred physical role. The TGD inspired model for living matter lends support for
the hypothesis that biologically important length and time scales indeed appear as half octaves. A
possible explanation for this is the existence of a hierarchy of cognitive codes associated with the time
scales T (n). Any prime power factor ki in the decomposition of the integer n to a product of prime
power factors defines a candidate for a cognitive code. The duration of code word would be T (n) and
the number of bits would be ki. For prime values of n the information content of the code word is
maximal so that one could understand why prime values of n are especially important.

CP2 type extremals and elementary particle black hole analogy

CP2 type extremals are vacuum extremals having a finite negative action so that one can lower the
action of the ordinary vacuum extremals by gluing CP2 type extremals to them. CP2 type extremals
have one-dimensional M4

+ projection which is light like random curve. Light likeness condition leads to
classical Virasoro algebra constraints. M4×SO(3, 1)×SU(3)×SU(2)ew Super-Kac-Moody algebra acts
as symmetries and the spectrum of elementary particles is precisely known. The obvious interpretation
of the CP2 type extremals is as a model of elementary particle.

CP2 type extremals are much like black holes in the sense that they possess elementary particle
horizon: this is the surface at which the Euclidian signature of the metric of the CP2 type extremal
changes to the Minkowskian signature of the background space-time. One can indeed generalize
Bekenstein-Hawking law to a statement saying that the real counterpart of the p-adic entropy predicted
by the p-adic thermodynamics is proportional to the surface area of the elementary particle horizon. In
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particular, for primes p ∼ 2k, where k is power of prime, the radius of the elementary particle horizon
is itself a p-adic length scale. This suggests a double p-adicization associated with p and k and an
additional cognitive degeneracy due to the k-adic non-determinism, and hence also the dominance
of the final states of quantum jump for which p ' 2k holds true: there would be simply very many
physically equivalent physical states for these values of p.

p-Adic thermodynamics and particle massivation

The underlying idea of TGD based description of particle massivation is following. Due to the interac-
tion of a topologically condensed 3-surface describing elementary particle with the background space-
time, massless ground states are thermally mixed with the excitations with mass of order m0 ∼ 1/R
(R is CP2 length scale, 1/R of order 10−4 Planck masses) created by the Super Virasoro generators.
Instead of energy, the Virasoro generator L0 (essentially mass squared) is thermalized. This guaran-
tees Lorentz invariance automatically. p-Adic temperature is quantized by purely number theoretical
constraints (the Boltzmann weight exp(−E/kT ) is replaced with pL0/Tp , 1/Tp integer) and fermions
correspond to Tp = 1 whereas Tp = 1/2 seems to be the only reasonable choice for bosons. That mass
squared, rather than energy, is a fundamental quantity at CP2 length scale is also suggested by a
simple dimensional argument (Planck mass squared is proportional to ~ so that it should correspond
to a generator of some Lie-algebra (Virasoro generator L0 representing scaling!)).

Optimal lowest order predictions for the charged lepton masses are obtained and photon, gluon and
graviton appear as essentially massless particles. The calculations support the existence of massless
gluons and electro-weak quanta associated with so called massless extremals (MEs). One important
prediction is that p-adic thermodynamics cannot explain the masses of the intermediate gauge bosons
although the predictions for the fermion masses are excellent. This observation led to the identification
of the TGD counterpart of Higgs field whose vacuum expectation provides the dominating contribution
to the bosonic masses and only shifts bosonic masses [49] .

p-Adic coupling constant evolution

The original hypothesis was that Kähler coupling strength αK is completely fixed by quantum critical-
ity implying that αK is analogous to critical temperature. p-Adic considerations led to the view that
there is infinite number of critical values of αK labelled by p-adic primes. In many-sheeted space-time
one can indeed consider the possibility that αK is not a universal constant. This would mean that
space-time sheets joined only by wormhole contacts and surrounded by light like elementary particle
horizons would be characterized by different values of Kähler coupling strength.

Since p-adic primes correspond to p-adic length scales this inspires the idea that the ordinary
coupling constant evolution is replaced by a discrete coupling constant evolution. This view is also
consistent with the criticality of the Kähler coupling constant. The assumption that gravitational
constant is invariant under critical temperature-adic coupling constant evolution fixes highly unique
the evolution of Kähler coupling strength. This picture makes sense if one can assign to a given
3-surface a unique p-adic prime and there are good reasons to believe that this is indeed the case.

The progress in the understanding of the spectrum of Planck constants predicted by TGD however
forced to question the idea about p-adic evolution of the Kähler coupling strength and consider
the possibility that the original vision is correct after all. Assume that gauge bosons and graviton
correspond to Mersenne primes and that graviton, or more generally, the space-time sheets mediating
gravitational interaction, corresponds to the largest Mersenne prime for which the p-adic length scale is
non-super-astronomical. This Mersenne is M127 defining the p-adic length scale of electron. If only p =
M127 is experimentally relevant, one can tolerate the proportionality G = exp(SK(CP2))L2

p following
from simple dimensional considerations (SK(CP2) denotes Kähler action for CP2 type extremals
representing elementary particles) and meaning a rapid increase of G as a function of Lp if αK is RG
invariant. This leads to a highly predictive scenario reproducing the basic features of electro-weak and
color coupling constant evolution and also allowing to deduce the value of R2/CP2 with electro-weak
coupling αU(1)(M127).

Vacuum degeneracy of the Kähler action and spin glass analogy

The space of minima of free energy for spin glass is known to have ultra-metric topology. p-Adic
topology is also ultra-metric and this motivated the hypothesis that quantum average space-time,
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’topological condensate’, defined as a maximum of Kähler function can be obtained by gluing together
regions characterized by various values of the p-adic prime p. It must be emphasized that this hy-
pothesis is just a guess and not even correct as such, and it seems that TGD as a generalized number
theory vision gives the real justification for the p-adics. A good guess is however that the ultra-metric
topology of the reduced configuration space consisting of the maxima of the Kähler function is induced
from the p-adic norm and that there is a close connection between the two p-adicities. The following
arguments tries to make this idea more precise.

The unique feature of the Kähler action is its enormous vacuum degeneracy: any space-time
surface, whose CP2 projection is a so called Lagrange manifold (having dimension D ≤ 2) is vacuum
extremal. This is expected to imply a large degeneracy of the absolute minimum space-times: for
instance, several absolute minima with the same action are possible for single 3-surface (this forces to a
generalization of space-time concept obtained by introducing ’association sequences’). The degeneracy
means an obvious analogy with the spin glass phase characterized by ’frustration’ implying a large
number of degenerate ground states. In the construction of the configuration space geometry the
analogy between quantum TGD and spin glass becomes precise.

Spin glass consists of magnetized regions such that the direction of the magnetization varies ran-
domly in the spatial degrees of freedom but is frozen in time. What is peculiar that, although there
are large gradients on the boundaries of the regions with a definite direction of magnetization, no large
surface energies are generated. An obvious p-adic explanation suggests itself: p-adic magnetization
could be pseudo constant and hence piecewise constant with a vanishing derivative on the boundaries
of the magnetized regions so that no p-adic surface energy would be generated.

In the description of the spin glass phase also ultra-metricity, which is the basic property of the
p-adic topology, emerges in a natural manner. The energy landscape describing the free energy of spin
glass as a function of various parameters characterizing spin glass, is fractal like function and there
are infinite number of energy minima. In this case there is a standard manner to endow the space of
the free energy minima with an ultra-metric topology [124] .

The counterpart of the energy landscape in TGD can be constructed as follows. The configuration
space of TGD (the space of 3-surfaces in H) has fiber-space like structure deriving from the decom-
position CH = ∪zeromodesG/H. The fiber is the coset space G/H such that G is the group of the
canonical transformation of the light cone boundary. In particular, the canonical transformations of
CP2 act in the fiber as isometries. The base space is the infinite-dimensional space of the zero modes
characterizing the size and shape as well as the classical Kähler field at the 3-surface.

To calculate S-matrix element, one must form Fock space inner product as a functional of 3-surface
X3 multiplied with the vacuum functional exp(K) and integrate it over the entire configuration space:

Si→f =

∫
〈Ψf ,Ψi〉(X3)exp(K(X3)

√
GDX3 .

The integration over the fiber degrees of freedom reduces to a Gaussian integration around the maxima
of the Kähler function with respect to the fiber coordinates. The equally poorly defined Gaussian
and metric determinants cancel each other in this integration and one obtains a well defined end
result. Canonical transformations are ’almost gauge symmetries’ since only classical gravitational
fields destroy canonical symmetries acting as U(1) gauge transformations. This means that the action
for several canonically related configurations can be degenerate and several maxima are expected for
given values of the zero modes. This means that the subset CH0 of the configuration space consisting
of the maxima of the Kähler function has many sheets parameterized by the zero modes and that
generalized catastrophe theory is obtained.

If a localization in the zero modes occurs in the quantum jump, one can circumvent the integration
over the zero modes in practice. The exponent for the maximum of the Kähler action is expected
to have maxima as a function of the zero modes too. The maxima of exp(Kmax) as function of zero
modes define the counterpart of the energy landscape and exp(Kmax) is the counterpart of the energy
serving as a height function of the energy landscape. It could quite well be that this height function
can be induced from a p-adic norm. If so, the allowed values of p define a decomposition of the space
of zero modes to sectors Dp. For ’full’ CP2 type extremals representing virtual gravitons the exponent
is indeed proportional to 1/p if one takes seriously the argument determining the possible values of
the Kähler coupling strength. Thus cognitive p-adicity and spin glass p-adicity would be related to
each other. The connection with gravitons is especially interesting since also classical gravitation is
closely related to the spin glass degeneracy.
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4.3.3 Evolution of mathematical ideas

The evolution of mathematical ideas has been driven by the following frequently asked questions.

1. Is p-adicity realized at space-time level or only at the level of p-adic thermodynamics which was
the first application of p-adic numbers? If p-adic space-time regions really make sense, what is
their physical interpretation?

2. Physics seems to require correspondence between p-adic and real numbers. What is the role of
canonical identification: does it only map p-adic probabilities to their real counterparts or could
it be applied also at space-time level despite the obvious difficulties with general coordinate
invariance? What about correspondence defined by rational numbers which can be regarded as
numbers common to all number fields. Is it possible to assign to a real space-time surface a
p-adic counterpart by procedure respecting general coordinate invariance?

3. Does the notion of p-adicization of real physics make sense? How one might achieve the p-
adicization in general coordinate invariance manner? What should one p-adicize: only probabil-
ity calculus and thermodynamics? Or should one include also Hilbert space level? What about
p-adicization at space-time level and perhaps even configuration space-level?

4. What is the origin of p-adicity? What is the origin of p-adic length scale hypothesis? How it is
possible to assign p-adic prime to a given real space-time sheet as required by the p-adic mass
calculations?

5. There have been also technical problems. Besides differential calculus also integral calculus is
basic element of classical physics since all variational principles involve integrals over space-
time. Also the functional integral over configuration space is needed in order to define S-matrix
elements. How one could circumvent the difficulties caused by the non-existence of a p-adic
valued define integral based on Riemann sum.

p-Adic physics as physics of cognition and intentionality and generalization of number
concept

The identification of p-adic physics as physics of cognition and intention suggests strongly connec-
tions between cognition, intentionality, and number theory. The new idea is that also real tran-
scendental numbers can appear in the extensions of p-adic numbers which must be assumed to be
finite-dimensional at least in the case of human cognition.

The basic ingredient is the new view about numbers: real and p-adic number fields are glued
together like pages of a book along common rationals representing the rim of the book. Also the
rational multiples of algebraic numbers existing p-adically are shared in this manner so that the pages
of the book can be stuck together along these lines. This generalizes to the extensions of p-adic number
fields and the outcome is a complex fractal book like structure containing books within books. This
holds true also for manifolds and one ends up to the view about many-sheeted space-time realized as
4-surface in 8-D generalized imbedding space and containing both real and p-adic space-time sheets.
The transformation of intention to action corresponds to a quantum jump in which p-adic space-time
sheet is replaced with a real one.

One implication is that the rationals having short distance p-adically are very far away in the
real sense. This implies that p-adically short temporal and spatial distances correspond to long
real distances and that the evolution of cognition proceeds from long to short temporal and spatial
scales whereas material evolution proceeds from short to long scales. Together with p-adic non-
determinism due the fact that the integration constants of p-adic differential equations are piecewise
constant functions this explains the long range temporal correlations and apparent local randomness
of intentional behavior. The failure of the real statistics and its replacement by p-adic fractal statistics
for time series defined by varying number N of measurements performed during a fixed time interval
T allows very general tests for whether the system is intentional and what is the p-adic prime p
characterizing the ”intelligence quotient” of the system. The replacement of log(pn) in the formula
S = −

∑
n pnlog(pn) of Shannon entropy with the logarithm of the p-adic norm |pn|p of the rational

valued probability allows to define a hierarchy of number theoretic information measures which can
have both negative and positive values.
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Since p-adic numbers represent a highly number theoretical concept one might expect that there
are deep connections between number theory and intentionality and cognition. The discussions with
Uwe Kämpf in CASYS′2003 conference in Liege indeed stimulated a bundle of ideas allowing to develop
a more detailed view about intention-to-action transformation and to disentangle these connections.
These discussions made me aware of the fact that my recent views about the role of extensions of
p-adic numbers are perhaps too limited. To see this consider the following arguments.

1. Pure p-adic numbers predict only p-adic length scales proportional to pn/2l, l CP2 length scale
about 104 Planck lengths, p ' 2k, k prime or power of prime. As a matter fact, all positive
integer values of k are possible. This is however not enough to explain all known scale hierarchies.
Fibonacci numbers Fn : Fn + 1 = Fn +Fn−1 behave asymptotically like Fn = kFn−1, k solution
of the equation k2 = k+1 given by k = Φ = (1+

√
5)/2 ' 1.6. Living systems and self-organizing

systems represent a lot of examples about scale hierarchies coming in powers of the Golden Mean
Φ = (1 +

√
5)/2.

By allowing the extensions of p-adics by algebraic numbers one ends up to the idea that also
the length scales coming as powers of x, where x is a unit of algebraic extension analogous
to imaginary unit, are possible. One would however expect that the generalization of the p-
adic length scale hypothesis alone would predict only the powers

√
xpn/2 rather than xkpn/2,

k = 1, 2, .... Perhaps the purely kinematical explanation of these scales is not possible and
genuine dynamics is needed. For sinusoidal logarithmic plane waves the harmonics correspond
to the scalings of the argument by powers of some scaling factor x. Thus the powers of Golden
Mean might be associated with logarithmic sinusoidal plane waves.

2. Physicist Hartmuth Mueller has developed what he calls Global Scaling Theory [4] based on
the observation that powers of e (Neper number) define preferred length scales. These powers
associate naturally with the nodes of logarithmic sinusoidal plane waves and correspond to
various harmonics (matter tends to concentrate on the nodes of waves since force vanishes at
the nodes). Mueller talks about physics of number line and there is great temptation to assume
that deep number theory is indeed involved. What is troubling from TGD point of view that
Neper number e is not algebraic. Perhaps a more general approach allowing also transcendentals
must be adopted.

3. Classical mathematics, such as the theory of elementary functions, involves few crucially im-
portant transcendentals such as e and π. This might reflect the evolution of cognition: these
numbers should be cognitively and number theoretically very special. The numbers e and π
appear also repeatedly in the basic formulas of physics. They however look p-adically very trou-
blesome since it has been very difficult to imagine a physically acceptable generalization of such
simple concepts as exponent function, trigonometric functions, and logarithm resembling its real
counterpart by allowing only the extensions of p-adic numbers based on algebraic numbers.

These considerations stimulate the question whether, besides the extensions of p-adics by algebraic
numbers, also the extensions of p-adic numbers involving π and e and other transcendentals might
be needed. The intuitive expectation motivated by the finiteness of human intelligence is that these
extensions should have finite algebraic dimensions, and it indeed turns out that this is possible under
some conditions which can be formulated as very general number theoretical conjectures. Since ep

exists p-adically, the powers e, ..., ep−1 define a p-dimensional extension as do also the roots of polyno-
mials with coefficients which are in an extension of rationals containing e and its powers. Contrary to
the original conjecture, π however cannot belong to a finite-dimensional extension of p-adics. It is an
open question whether one should allow infinite-dimensional extension of p-adic numbers containing π.
In any case, the special role of π however becomes an extremely strong constraint for the p-adicization
of quantum TGD by algebraic continuation from the realm of rationals to real and p-adic number
fields.

Second question is whether there might be some dynamical mechanism allowing to understand
the hierarchy of scalings coming in powers of some preferred transcendentals and algebraic numbers
like Golden Mean. Conformal invariance implying that the system is characterized by a universal
spectrum of scaling momenta for the logarithmic counterparts of plane waves seems to provide this
mechanism. This spectrum is determined by the requirement that it exists for both reals and all
p-adic number fields assuming that finite-dimensional extensions are allowed in the latter case. The
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spectrum corresponds to the zeros of the Riemann Zeta if Zeta is required to exist for all number fields
in the proposed sense, and a lot of new understanding related to Riemann hypothesis emerges and
allows to develop further the previous TGD inspired ideas about how to prove Riemann hypothesis [1]
, [1] .

Algebraic continuation as a basic principle

One general idea which results as an outcome of the generalized notion of number is the idea of a
universal function continuable from a function mapping rationals to rationals or to a finite extension of
rationals to a function in any number field. This algebraic continuation is analogous to the analytical
continuation of a real analytic function to the complex plane. Rational functions with rational coeffi-
cients are obviously functions satisfying this constraint. Algebraic functions with rational coefficients
satisfy this requirement if appropriate finite-dimensional algebraic extensions of p-adic numbers are
allowed. Exponent function is such a function. Logarithm is also such a function provided that the
above mentioned number theoretic conjecture holds true.

The definition of a definite integral for p-adic numbers has been the key challenge in attempts to
construct p-adic physics and algebraic continuations seems to solve this problem. The first problem is
that p-adic numbers are not well ordered and one cannot define what ordered integration interval [a, b]
means p-adically. The second problem is that Riemann sum gives identically vanishing p-adic integral
if coordinate increments approach zero at the limit. One can however define the definite integral in
terms of the integral function:∫ b

a

f(x)dx = F (b)− F (a) ; f(x) =
dF (x)

dx
.

Integral function F (x) is obtained using the inverse of the derivation just as in the real context. If
integration limits are restricted to be rational numbers or finitely extended rational numbers, they can
be ordered using the ordering of real numbers. This would essentially mean that p-adic integration
measure is an algebraic continuation of the real integration measure.

Also residy calculus might be generalized so that the value of an integral along the real axis could
be calculated by continuing it instead of the complex plane to any number field via its values in the
subset of rational numbers forming the rim of the book like structure having number fields as its pages.
If the poles of the continued function in the finitely extended number field allow interpretation as real
numbers it might be possible to generalize the residy formula. One can also imagine of extending
residy calculus to any algebraic extension. An interesting situation arises when the poles correspond
to extended p-adic rationals common to different pages of the ”great book”. This could mean that the
integral could be calculated at any page having the pole common. In particular, could a p-adic residy
integral be calculated in the ordinary complex plane by utilizing the fact that in this case numerical
approach makes sense.

Gaussian integration as a purely algebraic process gives hopes to define p-adic variants of con-
figuration space integrals but only in the case that the integral over the configuration space reduces
effectively to the Gaussian integral of a free quantum field theory. If configuration space is indeed a
union of symmetric spaces, there are good hopes for achieving this (Duistermaat-Hecke theorem).

p-Adic integration is not necessarily needed to define the p-adic counterpart for the field equations
associated with Kähler action but the continuation of the physics from real configuration space to the
p-adic variants of the configuration spaces requires the existence of the p-adic valued Kähler action.
If it is possible to assign to a given real space-time surface a p-adic counterpart uniquely in a given
resolution for rational numbers, one can define the p-adic Kähler action as the real action interpreted
as p-adic number in case that the real action belongs to a finite extension of rationals.

4.3.4 Generalized Quantum Mechanics

One can consider two generalizations of quantum mechanics to a fusion of p-adic and real quantum
mechanics.

1. For the first generalization the guiding principle for the generalization of quantum mechanics is
that quantum mechanics in a given number field is obtained as an algebraic continuation of the
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quantum mechanics in the field of rational numbers common to all number fields or in finite-
dimensional extensions of rational numbers. This means that U -matrices UF for transitions
from HQ to HF , where F refers to various completions of rationals, are obtained as algebraic
continuations of the unitary U -matrix UQ for HQ. The generalization means enormously strong
algebraic constraints on the form of the U -matrix.

2. A more radical option is that transitions from rational Hilbert space HQ to the Hilbert spaces
HF associated with different number fields occur. This requires that U -process is followed by
a process analogous to a state function reduction and preparation takes care that the resulting
states become states in HQ: this is what makes this generalization of a special interest. In
this case one can speak about total scattering probability from HQ to HF . The U-matrices UF
are not anymore mere analytic continuations of UQ. A possible interpretation of the unitary
process HQ → HF is as generation of intention whereas the reduction and preparation means
the transformation of the intention to action.

The assumption that HQ allows an algebraic continuation to the spaces HF is probably too strong
an idealization in p-adic and even in the real case. For instance, one cannot allow all rational valued
momenta in p-adic case for the simple reason that the continuation to the p-adic case involves always
some momentum cutoff if the extension of p-adics remains finite. Even in the real case the summation
over all rational momenta in the unitarity conditions of U -matrix fails to make sense and cutoff is
needed. A hierarchy of cutoffs suggests itself and has a natural interpretation as number theoretical
hierarchy of extensions of p-adics.

In order to avoid un-necessary complications the following formal discussion however uses HQ as
a universal Hilbert space contained by the various state spaces HF .

Quantum mechanics in HF as a algebraic continuation of quantum mechanics in HQ

The rational Hilbert space HQ is representable as the set of sequences of real or complex rationals
of which only finite number are non-vanishing. Real and p-adic Hilbert spaces are obtained as the
numbers in the sequences to become real or p-adic numbers and no limitations are posed to the
number of non-vanishing elements. All these Hilbert spaces have rational Hilbert space HQ as a
common sub-space. Also momenta and other continuous quantum numbers are replaced by a discrete
value set. Superposition principle holds true only in a restricted sense, and state function reduction
and preparation leads always to a final state which corresponds to a state in HQ. This picture differs
from the earlier one in which p-adic and real Hilbert spaces were assumed to form a direct sum.

The notion of unitarity generalizes. Contrary to the earlier beliefs, U -matrix does not possess
matrix elements between different number fields but between rational Hilbert space and Hilbert spaces
associated with various completions of rationals. This makes sense since the final state of the quantum
jump (and thus the initial state of the unitary process, is always in HQ.

The U -matrix is a collection of matrices UF having matrix elements in the number field F . UF
maps HQ to HF . Each of these U -matrices is unitary. Also UQ is unitary and UF is obtained by
algebraic continuation in the quantum numbers labelling the states of UQ to UF .

Hermitian conjugation makes sense since the defining condition

〈αF |UnQ〉 = 〈U†αF |nQ〉 . (4.3.1)

allows to interpret |nQ〉 also as an element of HF . If U would map different completed number fields
to each other, hermiticity conditions would not make sense.

The hermitian conjugate of U -matrix maps HF to HQ so that UU† resp. U†U maps HF resp. HQ

to itself. This means that there are two independent unitarity conditions

UFU
†
F = IdF ,

U†FUF = IdQ . (4.3.2)

One can write U = PQ + TF and U† = PQ + T †F , where PQ refers to the projection operator to HQ.
This gives
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TF + T †F = −TFT †F ,

PQTF + T †FPQ = −T †FTF . (4.3.3)

It is convenient to introduce the notations TQ = PQTF and T †Q = T †FPQ with analogous notations for

U and U†. The first condition, when multiplied from both sides by PQ, gives together with the second
equation unitarity conditions for TQ

TQ + T †Q = −TQT †Q ,

TQ + T †Q = −T †FTF . (4.3.4)

This means that the restriction of the U-matrix to HQ is unitary.
The difference between the right hand sides of the equation should vanish. The understanding of

how this happens requires more delicate considerations. For instance, in the case of F = C continuous
sum over indices appears at the right hand side coming from four-momenta labelling the states. The
restrictions of quantum numbers to Q and its subsets could be a process analogous to the momentum
cutoff of quantum field theories. The continuation from discrete integer valued labels of, say discrete
momenta, to continuous values is performed routinely in various physical models routinely, and it
would seem that this process has cognitive and physical counterparts. This picture conforms with the
vision that the rational (or extended rational) U-matrix UQ gives the U-matrices UF by an algebraic
continuation in the quantum numbers labelling the states (say 4-momenta).

Could UF describe dispersion from HQ to the spaces HF?

One can also consider a more general situation in which the states in HQ can be said to disperse to
the sectors HF . In this case one can write

T = ”
∑
F

”TF . (4.3.5)

Here the sum has only a symbolic meaning since different number fields are in question and an actual
summation is not possible. The T -matrix TQ is the sum of the restrictions of TF to HQ and is the
sum of rational valued T -matrices: TQ =

∑
F PQTF .

The T-matrices TF are not anymore obtainable by algebraic continuation from same T -matrix TQ.
The unitarity conditions

∑
F

(PQTF + T †FPQ) = −
∑
F

T †FTF (4.3.6)

make sense only if they are satisfied separately for each TF , exactly as in the previous case. T
The diagonal elements

TmmF + T
mm

F =
∑
α

TmαF T
mα

F =
∑
r

TmrF T
mr

F

give essentially total scattering probabilities from the state |m〉 of HQ to the sector HF , and must
be rational (or extended rational) numbers. One can therefore say that each U -process leads with a
definite probability to a particular sector of the state space.

The fact that states which are superpositions of states in different spaces HF does not make sense
mathematically, forces the occurrence of a process, which might be regarded as a number theoretical
counterpart of state function reduction and preparation. First a sector HF is selected with probability
pF . Then F -valued (in particular complex valued) entanglement in HF is reduced by state reduction
and preparation type processes to a rational or extended rational entanglement having interpretation
as bound state entanglement. It would be natural to assume that Negentropy Maximization Principle
governs this process. Obviously the possibility to reduce state function reduction to number theory
forces to consider quite seriously the proposed option.
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4.3.5 Do state function reduction and state-preparation have number the-
oretical origin?

The foregoing considerations support the view that state function reduction and state preparation are
number theoretical necessities so that there would be a deep connection between number theory and
free will. One could even say that free will is a number theoretic necessity. The resulting more unified
view provides the reason why for state function reduction, and preparation and allows to generalize
previous views developed gradually by physics and consciousness inspired educated guess work.

Negentropy Maximization Principle as variational principle of cognition

It is useful to discuss the original view about Negentropy Maximization Principle (NMP) before
considering the possible generalization of NMP inspired by the number theoretic vision.

NMP was originally motivated by the need to construct a TGD based quantum measurement
theory. Gradually it however became clear that standard quantum measurement theory more or less
follows from the assumption that the world of conscious experience is classical: this meant that NMP
became a principle governing only state preparation.

State function reduction is achieved if a localization in zero modes occurs in each quantum jump,
and if U matrix in zero modes corresponds to a flow in some orthogonal basis for the configuration
space spinor fields in the quantum fluctuating fiber degrees of freedom of the configuration space. The
requirement that U-matrix induces effectively a flow in zero modes is consistent with the effective
classicality of the zero modes requiring that quantum evolution causes no dispersion. The one-one
correlation between preferred quantum state basis in quantum fluctuating degrees of freedom and zero
modes implies nothing but a one-one correspondence between quantum states and classical variables
crucial for the interpretation of quantum theory. It seems that number theoretical vision forces to
generalize this view, and to raise NMP to a completely general principle applying also to the state
function reduction as the original proposal indeed was.

In its original form NMP governs the dynamics of self measurements and thus applies to the quan-
tum jumps reducing the entanglement between quantum fluctuating degrees of freedom for given val-
ues of zero modes. Self measurements reduce the entanglement only between sub-systems in quantum
fluctuating degrees of freedom since they occur after the localization in the zero modes. Self measure-
ment is repeated again and again for the unentangled sub-systems resulting in each self measurement.
This cascade of self measurements leads to a state possessing only extended rational entanglement
identifiable as bound state entanglement and having negative number theoretic entanglement entropy.
This process should be equivalent with the state preparation process assumed to be performed by a
conscious observer in standard quantum measurement theory.

NMP states that the self measurement can be regarded as a quantum measurement of the sub-
system’s density matrix reducing the counterpart of the entanglement entropy of some sub-system to
a smaller value, and that this occurs for the sub-system for which the reduction of the entanglement
entropy is largest among all sub-systems of the p-adic self. Inside each self NMP fixes some sub-system
which is quantum measured in the quantum jump. One could perhaps say that self measurements make
possible quantum level self repair since they allow the system in self state to fight against thermal-
ization which results from the generation of unbound entanglement between sub-system-complement
pairs.

NMP and number theory

The requirement the universe of conscious experience is classical is one manner to justify the notion
of quantum jump. This hypothesis could be replaced by a postulate that state function reduction
and preparation project quantum states to a definite number field and that only extended rational
entanglement identifiable as bound state entanglement is stable. This is consistent with NMP since it
is possible to assign to an extended rational entanglement a non-negative number theoretic negentropy
as the maximum over entropies defined by various p-adic entropies Sp = −

∑
pklog(|pk|p).

The unitary process U would thus start from a product ofbound states for which entanglement
coefficient are extended rationals, and would lead to a formal superposition of states belonging to
different number fields. Both state function reduction and state preparation would begin with a
localization to a definite number field. This localization would be followed by a self measurement
cascade reducing the entanglement to extended rational entanglement.
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This vision forces to challenge the earlier views about state function reduction.

1. There is no good reason for why NMP could not be applied to both state function reduction
and preparation.

2. If the entanglement between zero modes and quantum fluctuating degrees of freedom involves
only discrete values of zero modes, the problems caused by the fact that no well-defined functional
integral measure over zero modes exists, find an automatic resolution. Since extended rational
entanglement possesses negative entanglement entropy, it is stable also against reduction if NMP
applies completely generally. A discrete entanglement involving transcendentals not contained
to any finite extension of any p-adic number field is unstable and reduced.

3. The quantum measurement lasts for a time determined by the life-time of the bound state
entanglement between zero modes and quantum fluctuating degrees of freedom. Physical con-
siderations of course support the view that it takes more than single quantum jump (10−39

seconds of psychological time) for the state function reduction to take place. The notion of zero
mode-zero mode bound state entanglement seems however to be self-contradictory. If join along
boundaries bonds are space-time correlates for the bound state entanglement, their formation
should transform roughly half of the zero modes associated with the two space-time sheets to
quantum fluctuating degrees of freedom.

4. If p-adic length scale hierarchy has as its counterpart a hierarchy of state function reduction
and preparation cascades, one must accept the quantum parallel occurrence of state function
reduction and preparation processes in the parallel quantum universes corresponding to different
p-adic length scales. This picture provides a justification for the modelling of hadron as a
quantum system in long length and time scales and as a dissipative system consisting of quarks
and gluons in shorter length and time scales. The bound state entanglement between sub-systems
of entangled systems having as a space-time correlate join along boundaries bonds connecting
sub-system space-time sheets, is a second important implication of the new sub-system concept,
and plays a central role in TGD inspired theory of consciousness.

4.4 The boost from TGD inspired theory of consciousness

Quite generally, TGD inspired theory of consciousness can be seen as a generalization of quantum
measurement theory. The identification of quantum jump as a moment of consciousness is analogous
to the identification of elementary particles as basic building blocks of matter. The observer is an
outsider in standard quantum measurement theory and is replaced by the notion of self in TGD
inspired theory of consciousness. Selves identified as systems able to avoid bound state entanglement
and identifiable as ensembles of quantum jumps, are analogous to many-particle states. The sensory
and other qualia of self are determined as statistical averages over quantum number and zero mode
increments for the increasing sequence of quantum jumps defining self. Especially important are
selves, which are in a state of macro-temporal quantum coherence since for these selves the entropy
of the ensemble defined by the quantum jumps does not increase and the qualia stay sharp. These
selves are analogous to bound states of elementary particles and their formation actually corresponds
to the generation of bound state entanglement.

4.4.1 The anatomy of the quantum jump

In TGD framework quantum transitions correspond to a quantum jump between two different quantum
histories rather than to a non-deterministic behavior of a single quantum history. Therefore U-matrix
relates to each other two quantum histories rather than the initial and final states of a single quantum
history.

To understand the philosophy behind the construction of U -matrix it is useful to notice that in TGD
framework there is actually a ’holy trinity’ of time developments instead of single time development
encountered in ordinary quantum field theories.

1. The classical time development determined by the criticality condition selecting preferred ex-
tremals as generalized Bohr orbits [86] .
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2. The unitary ”time development” defined by U associated with each quantum jump

Ψi → UΨi → Ψf ,

and defining U -matrix. One cannot however assign to the U -matrix an interpretation as a
unitary time-translation operator and this means that one must leave open the identification of
U -matrix with S-matrix.

3. The time development of subjective experiences by quantum jumps identified as moments of
consciousness. The value of psychological time associated with a given quantum jump is de-
termined by the contents of consciousness of the observer. The understanding of psychological
time and its arrow and of the dynamics of subjective time development requires the construc-
tion of theory of consciousness. A crucial role is played by the classical non-determinism of
Kähler action implying that the non-determinism of quantum jump and hence also the contents
of conscious experience can be concentrated into a finite volume of the imbedding space.

U is informational ”time development” operator, which is unitary like the S-matrix characterizing
the unitary time evolution of quantum mechanics. U is however only formally analogous to Schrödinger
time evolution of infinite duration since there is no real time evolution or translation involved. It is
not clear whether one should regard U -matrix and S-matrix as two different things or not: U -matrix
is a completely universal object characterizing the dynamics of evolution by self-organization whereas
S-matrix is a highly context dependent concept in wave mechanics and in quantum field theories
where it at least formally represents unitary time translation operator at the limit of an infinitely long
interaction time. The S-matrix understood in the spirit of superstring models is however something
very different and could correspond to U-matrix.

The requirement that quantum jump corresponds to a measurement in the sense of quantum field
theories implies that each quantum jump involves localization in zero modes which parameterize also
the possible choices of the quantization axes. Thus the selection of the quantization axes performed by
the Cartesian outsider becomes now a part of quantum theory. Together these requirements imply that
the final states of quantum jump correspond to quantum superpositions of space-time surfaces which
are macroscopically equivalent. Hence the world of conscious experience looks classical. Physically it
seems obvious that U matrix should decompose to a cosmological U -matrix representing dispersion
in configuration space and U -matrix representing local dynamics: this indeed occurs thanks to the
classical non-determinism of the Kähler action. At least formally quantum jump can be interpreted
also as a quantum computation in which matrix U represents unitary quantum computation. An
important exception are the zero modes characterizing center of mass degrees of freedom of 3-surface
which correspond to the isometries of M4

+ × CP2. In these degrees of freedom localization does not
occur. At the limit when 3-surfaces are regarded as pointlike objects theory should obviously reduce
to quantum field theory.

The three non-determinisms

Besides the non-determinism of quantum jump, TGD allows two other kinds of non-determinisms:
the classical non-determinism basically due the vacuum degeneracy of the Kähler action and p-adic
non-determinism of p-adic differential equations due to the fact that functions with vanishing p-adic
derivative correspond to piecewise constant functions.

To achieve classical determinism in a generalized sense, one must generalize the definition of the
3-surfaces Y 3 (belonging to light cone boundary) by allowing also ”association sequences”, that is
3-surfaces which have, besides the component belonging to the light cone boundary, also disjoint
components which do not belong to the light cone boundary and have mutual time-like separations.
This means the introduction of additional, one might hope typically discrete, degrees of freedom
(consider non-determinism based on bifurcations as an example). It is even possible to have quantum
entanglement between the states corresponding to different values of time.

Without the classical and p-adic non-determinisms general coordinate invariance would reduce the
theory to the light cone boundary and this would mean essentially the loss of time which occurs also
in the quantization of general relativity as a consequence of general coordinate invariance. Classical
and p-adic non-determinisms imply that one can have quantum jumps with non-determinism (in
conventional sense) located to a finite time interval. If quantum jumps correspond to moments of
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consciousness, and if the contents of consciousness are determined by the locus of the non-determinism,
then these quantum jumps must give rise to a conscious experience with contents located in a finite
time interval.

Also p-adic space-time sheets obey their own quantum physics and are identifiable as seats of
cognitive representations. p-Adic non-determinism is the basic prerequisite for imagination and sim-
ulation. The notion of cognitive space-time sheet as a space-time sheet having finite time duration is
one aspect of the p-adic non-determinism and allows to understand how the notion of psychological
time emerges. Cognitive space-time sheets simply drift quantum jump by quantum to the direction
of geometric future since there is much more room there in the light cone cosmology.

The classical non-determinism is maximal for CP2 type extremals for which the M4
+ projection

of the space-time surface is random lightlike curve. In this case, basic objects are essentially four-
rather than 3-dimensional. The basic implication of the classical non-determinism is that quantum
theory does not reduce to the light cone boundary. Secondly, U -matrix reduces to a tensor product of
a cosmologcal U -matrix and local U -matrices relevant for particle physics. As a matter fact, an entire
hierarchy of U -matrices defined in various p-adic time scales is expected to appear in the hierarchy.
Thirdly, the classical non-determinism of CP2 type extremals allows a topologization of the Feynman
diagrammatics of quantum field theories and string models. Although localization in zero modes
characterizing zitterbewegung orbit occur in quantum jump, there is integral over the positions of
vertices which correspond to cm degrees of freedom for imbedding space, and this gives rise to a sum
over various Feynman diagrams.

How psychological time and its arrow emerge?

How psychological time and its arrow emerge is the basic challenge for the hypothesis that quantum
jumps occur between quantum histories and are identifiable as moments of consciousness. Mind like
space-time sheets provide a geometric model of unconscious mind in TGD framework and make it
possible to solve the puzzle of psychological time. The first argument is following.

Mind like space-time sheets have well center of mass time coordinate and this coordinate is zero
mode identifiable as psychological time. Localization in zero modes means that final states of quantum
jumps correspond to quantum superpositions of space-time surfaces having same number of mind like
space-time sheets such that given mind like space-time sheet possesses same value of psychological time
for all space-time surfaces appearing in the superposition. The arrow of psychological time follows
from the gradual drift of the mind like space-time sheets in future direction occurring quantum jump
by quantum jump and is implied by the geometry of future light cone (there is more volume in the
future of a given light cone point than in its future). The simplest assumption is that the average
increment of psychological time in single quantum jump is of order CP2 time, which is about 104

Planck times.
Besides classical non-determinism there is also p-adic non-determinism and one should keep mind

open in the attempts to identify the roles of these two non-determinisms. The interpretation taken
as a working hypothesis in the recent version of TGD inspired theory of consciousness is that p-adic
space-time regions provide cognitive representations of the real regions and serve as correlates for
intentions. Real regions are in turn symbolic representations for the material world in TGD sense of
the word. This means that besides ordinary matter also higher level physical states associated with
the real space-time sheets of a finite duration and having vanishing net energy are possible. The zero
energy states representing pairs of incoming and outgoing states could make possible self-referential
real physics representing the laws of physics in the structure of the higher level physical states. Real
space-time sheets of finite temporal duration might be interpreted also as correlates of pure sensory
experience as opposed to p-adic space-time sheets which can be identified as correlates of thoughts.
Also volition could be assigned to the quantum jumps involving selection between various branches of
multifurcations implied by the classical non-determinism.

A more refined argument explaining the arrow of psychological time is based on the idea that
psychological time correspond to the moment of geometric time which gives the dominant contribution
to the conscious experience, and that it is the transformation of intentions to actions which provides
this contribution. The transformation of intentions to actions corresponds to the transformation of
p-adic space-time sheets to real ones, and one can identify psychological time as characterizing the
position of the intention-to action phase transition front. In order to have consistency with the basic
facts about everyday conscious experience one must assume that the geometric past remains unable
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to express intentions for a period of time longer than the life cycle since otherwise the decisions made
in say my geometric youth subjectively now could induce dramatic changes in my recent life. This
dead time would be analogous to the recovery time of neuron after the generation of nerve pulse.

Macro-temporal quantum coherence and spin glass degeneracy

At the space-time level the generation of macroscopic quantum coherence is easy to understand if one
accepts the identification of the space-time sheets as coherence regions. Quantum criticality and the
closely related spin glass degeneracy are essential for the fractal hierarchy of space-time sheets. The
problem of understanding macro-temporal and macroscopic quantum coherence at the level of con-
figuration space (of 3-surfaces) is a more tricky challenge although quantum-classical correspondence
strongly suggests that this is possible.

Concerning macro-temporal quantum coherence, the situation in quantum TGD seems at the first
glance to be even worse than in standard physics. The problem is that simplest estimate for the
increment in psychological time in single quantum jump is about 10−39 seconds derived from the
idea that single quantum jump represent a kind of elementary particle of consciousness and thus
corresponds to CP2 time of about 10−39 seconds. If this time interval defines coherence time one
ends up to a definite contradiction with the standard physics. Of course, the average increment of the
geometric time during single quantum jump could vary and correspond to the de-coherence time. The
idea of quantum jump as an elementary particle of consciousness does not support this assumption.

To understand how this naive conclusion is wrong, one must look more precisely the anatomy of
quantum jump. The unitary process Ψi → UΨi, where Ψi is a prepared maximally unentangled state,
corresponds to the quantum computation producing maximally entangled multi-verse state. Then
follows the state function reduction and after this the state preparation involving a sequence of self
measurements and given rise to a new maximally unentangled state Ψf .

1. What happens in the state function reduction is a localization in zero modes, which do not
contribute to the line element of the configuration space metric. They are non-quantum fluctu-
ating degrees of freedom and TGD counterparts of the macroscopic, classical degrees of freedom.
There are however also quantum-fluctuating degrees of freedom and the assumption that zero
modes and quantum fluctuating degrees of freedom are correlated like the direction of a pointer
of a measurement apparatus and quantum numbers of the quantum system, implies standard
quantum measurement theory.

2. Bound state entanglement is assumed to be stable against state function reduction and prepa-
ration. Bound state formation has as a geometric correlate formation of join along boundaries
bonds between space-time sheets representing free systems. Thus the members of a pair of
disjoint space-time sheets are joined to single space-time sheet. Half of the zero modes is trans-
formed to quantum fluctuating degrees of freedom and only overall center of mass zero modes
remain zero modes. These new quantum fluctuating degrees of freedom represent macroscopic
quantum fluctuating degrees of freedom. In these degrees of freedom localization does not occur
since bound states are in question.

Both state function reduction and state preparation stages leave this bound state entanglement
intact, and in these degrees of freedom the system behaves effectively as a quantum coherent
system. One can say that a sequence of quantum jumps binds to form a single long-lasting
quantum jump effectively. This is in complete accordance with the fractality of consciousness.
Quantum jumps represent moments of consciousness which are ”elementary particles of con-
sciousness” and in macro-temporal quantum coherent state these elementary particles bind to
form atoms, molecules, etc. of consciousness.

3. The properties of the bound state plus its interaction with the environment allow to estimate the
typical duration of the bound state. This time takes the role of coherence time. This suggests
a connection with the standard approach to quantum computation. An essential element is
spin glass degeneracy. The generation of join along boundaries bonds connecting the space-time
sheets of the composite systems is the space-time correlate for the formation of the bound states.
Spin glass degeneracy is much higher for the bound states because of the presence of the join
along boundaries bonds. This together with the fact that these degenerate states are almost
identical so that transition amplitudes between them are also almost identical, implies that the
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life-time of the majority of bound states is much longer than one might expect otherwise. The
detailed argument is carried out in [24] and can be applied to show that spin glass degeneracy
for the color flux tubes explains color confinement [35] .

4. The number theoretic notion of information relies on Shannon entropy in which the logarithms of
probabilities are replaced by logarithms of their p-adic norms. This requires that the probabilities
are rational or belong to an finite-dimensional extension of rationals. What is so important is
that this entropy can have also negative values. If one assumes that bound states form a
hierarchy such that the entanglement coefficients belong always to a finite-dimensional extension
of rationals, one can define the entanglement entropy as a number theoretic entropy associated
with some prime p. In p-adic context the prime is unique whereas in the real context the value of
the prime can be selected in such a manner that the entropy is maximally negative. This prime
would be naturally a maximal prime factor of the integer N defining the number of strictly
deterministic regions of the space-time sheet in question. If this assumption is made, NMP
alone implies the stability of bound states against state preparation by self measurements. This
generalization of the information concept has far reaching implications in TGD inspired theory
consciousness.

4.4.2 Negentropy Maximization Principle and new information measures

TGD inspired theory of consciousness, in particular the formulation of Negentropy Maximization
Principle (NMP) in p-adic context, has forced to rethink the notion of the information concept. In
TGD state preparation process is realized as a sequence of self measurements. Each self measurement
means a decomposition of the sub-system involved to two unentangled parts. The decomposition is
fixed highly uniquely from the requirement that the reduction of the entanglement entropy is maximal.

The additional assumption is that bound state entanglement is stable against self measurement.
This assumption is somewhat ad hoc and it would be nice to get rid of it. The only manner to achieve
this seems to be a generalized definition of entanglement entropy allowing to assign a negative value
of entanglement entropy to the bound state entanglement, so that bound state entanglement would
actually carry information, in fact conscious information (experience of understanding). This would
be very natural since macro-temporal quantum coherence corresponds to a generation of bound state
entanglement, and is indeed crucial for ability to have long lasting non-entropic mental images.

The generalization of the notion of number concept leads immediately to the basic problem. How to
generalize the notion of entanglement entropy that it makes sense for a genuinely p-adic entanglement?
What about the number-theoretically universal entanglement with entanglement probabilities, which
correspond to finite extension of rational numbers? One can also ask whether the generalized notion
of information could make sense at the level of the space-time as suggested by quantum-classical
correspondence.

In the real context Shannon entropy is defined for an ensemble with probabilities pn as

S = −
∑
n

pnlog(pn) . (4.4.1)

As far as theory of consciousness is considered, the basic problem is that Shannon entropy is always
non-negative so that as such it does not define a genuine information measure. One could define
information as a change of Shannon entropy and this definition is indeed attractive in the sense that
quantum jump is the basic element of conscious experience and involves a change. One can however
argue that the mere ability to transfer entropy to environment (say by aggressive behavior) is not all
that is involved with conscious information, and even less so with the experience of understanding
or moment of heureka. One should somehow generalize the Shannon entropy without losing the
fundamental additivity property.

p-Adic entropies

The key observation is that in the p-adic context the logarithm function log(x) appearing in the
Shannon entropy is not defined if the argument of logarithm has p-adic norm different from 1. Situation
changes if one uses an extension of p-adic numbers containing log(p): the conjecture is that this
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extension is finite-dimensional. One might however argue that Shannon entropy should be well defined
even without the extension.

p-Adic thermodynamics inspires a manner to achieve this. One can replace log(x) with the log-
arithm logp(|x|p) of the p-adic norm of x, where logp denotes p-based logarithm. This logarithm is
integer valued (logp(p

n) = n), and is interpreted as a p-adic integer. The resulting p-adic entropy

Sp =
∑
n

pnk(pn) ,

k(pn) = −logp(|pn|) . (4.4.2)

is additive: that is the entropy for two non-interacting systems is the sum of the entropies of com-
posites. Note that this definition differs from Shannon’s entropy by the factor log(p). This entropy
vanishes identically in the case that the p-adic norms of the probabilities are equal to one. This means
that it is possible to have non-entropic entanglement for this entropy.

One can consider a modification of Sp using p-adic logarithm if the extension of the p-adic numbers
contains log(p). In this case the entropy is formally identical with the Shannon entropy:

Sp = −
∑
n

pnlog(pn) = −
∑
n

pn
[
−k(pn)log(p) + pkn log(pn/p

kn
]
. (4.4.3)

It seems that this entropy cannot vanish.
One must map the p-adic value entropy to a real number and here canonical identification can be

used:

Sp,R = (Sp)R × log(p)) ,

(
∑
n

xnp
n)R =

∑
n

xnp
−n . (4.4.4)

The real counterpart of the p-adic entropy is non-negative.

Number theoretic entropies and bound states

In the case that the probabilities are rational or belong to a finite-dimensional extension of rationals,
it is possible to regard them as real numbers or p-adic numbers in some extension of p-adic numbers
for any p. The visions that rationals and their finite extensions correspond to islands of order in the
seas of chaos of real and p-adic transcendentals suggests that states having entanglement coefficients
in finite-dimensional extensions of rational numbers are somehow very special. This is indeed the
case. The p-adic entropy entropy Sp = −

∑
n pnlogp(|pn|)log(p) can be interpreted in this case as an

ordinary rational number in an extension containing log(p).
What makes this entropy so interesting is that it can have also negative values in which case the

interpretation as an information measure is natural. In the real context one can fix the value of the
value of the prime p by requiring that Sp is maximally negative, so that the information content of
the ensemble could be defined as

I ≡ Max{−Sp, p prime} . (4.4.5)

This information measure is positive when the entanglement probabilities belong to a finite-dimensional
extension of rational numbers. Thus kind of entanglement is stable against NMP, and has a natural
interpretation as bound state entanglement. The prediction would be that the bound states of real
systems form a number theoretical hierarchy according to the prime p and and dimension of algebraic
extension characterizing the entanglement.

Number theoretically state function reduction and state preparation could be seen as information
generating processes projecting the physical states from either real or p-adic sectors of the state
space to their intersection. Later an argument that these processes have a purely number theoretical
interpretation will be developed based on the generalized notion of unitarity allowing the U -matrix to
have matrix elements between the sectors of the state space corresponding to different number fields.
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Number theoretic information measures at the space-time level

Quantum classical correspondence suggests that the notion of entropy should have also space-time
counterpart. Entropy requires ensemble and both the p-adic non-determinism and the non-determinism
of Kähler action allow to define the required ensemble as the ensemble of strictly deterministic regions
of the space-time sheet. One can measure various observables at these space-time regions, and the
frequencies for the outcomes are rational numbers of form pk = n(k)/N , where N is the number of
strictly deterministic regions of the space-time sheet. The number theoretic entropies are well defined
and negative if p divides the integer N . Maximum is expected to result for the largest prime power
factor of N . This would mean the possibility to assign a unique prime to a given real space-time sheet
and thus the solve the basic problem created already by p-adic mass calculations.

The classical non-determinism resembles p-adic non-determinism in the sense that the space-time
sheet obeys effective p-adic topology in some length and time scale range is consistent with this idea
since p-adic fractality suggests that N is power of p.

4.5 TGD as a generalized number theory

The vision about a number theoretic formulation of quantum TGD is based on the gradual accu-
mulation of wisdom coming from different sources. The attempts to find a formulation allowing to
understand real and p-adic physics as aspects of some more general scenario have been an important
stimulus and generated a lot of, not necessarily mutually consistent ideas, some of which might serve
as building blocks of the final formulation. The original chapter representing the number theoretic
vision as a consistent narrative grew so massive that I decided to divide it to three parts.

The first part is devoted to the p-adicization program attempting to construct physics in various
number fields as an algebraic continuation of physics in the field of rationals (or appropriate extension
of rationals). The program involves in essential manner the generalization of number concept obtained
by fusing reals and p-adic number fields to a larger structure by gluing them together along common
rationals. Highly non-trivial number theoretic conjectures are an i outcome of the program.

Second part focuses on the idea that the tangent spaces of space-time and imbedding space can
be regarded as 4- resp. 8-dimensional algebras such that space-time tangent space defines sub-algebra
of imbedding space. The basic candidates for the pair of algebras are hyper-quaternions and hyper-
octonions. The problems are caused by the Euclidian signature of the Euclidian norm.

The great idea is that space-time surfaces X4 correspond to hyper-quaternionic or co-hyper-
quaternionic sub-manifolds of HO = M8. The possibility to assign to X4 a surface in M4 × CP2

means a number theoretic analog for spontaneous compactification. Of course, nothing dynamical is
involved: a dual relation between totally different descriptions of the physical world are in question.
In the spirit of generalized algebraic geometry one can ask whether hyper-quaternionic space-time
surfaces and their duals could be somehow assigned to hyper-octonion analytic maps HO → HO, and
there are good arguments suggesting that this is the case.

The third part is devoted to infinite primes. Infinite primes are in one-one correspondence with
the states of super-symmetric arithmetic quantum field theories. The infinite-primes associated with
hyper-quaternionic and hyper-octonionic numbers are the most natural ones physically because of the
underlying Lorentz invariance, and the possibility to interpret them as momenta with mass squared
equal to prime. Most importantly, the polynomials associated with hyper-octonionic infinite primes
have automatically space-time surfaces as representatives so that space-time geometry becomes a
representative for the quantum states.

4.5.1 The painting is the landscape

The work with TGD inspired theory of consciousness has led to a vision about the relationship of
mathematics and physics. Physics is not in this view a model of reality but objective reality itself:
painting is the landscape. One can also equate mathematics and physics in a well defined sense and
the often implicitly assumed Cartesian theory-world division disappears. Physical realities are mathe-
matical ideas represented by configuration space spinor fields (quantum histories) and quantum jumps
between quantum histories give rise to consciousness and to the subjective existence of mathematician.

The concrete realization for the notion algebraic hologram based on the notion of infinite prime is
a second new element. The notion of infinite rationals leads to the generalization of also the notion of
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finite number since infinite-dimensional space of real units obtained from finite rational valued ratios
q of infinite integers divided by q. These units are not units in p-adic sense. The generalization to the
(hyper-)quaternionic and (hyper-)octonionic context means that ordinary space-time points become
infinitely structured and space-time point is able to represent even the quantum physical state of the
Universe in its algebraic structure. Single space-time point becomes the Platonia not visible at the
level of real physics but essential for mathematical cognition.

In this view evolution becomes also evolution of mathematical structures, which become more and
more self-conscious quantum jump by quantum jump. The notion of p-adic evolution is indeed a
basic prediction of quantum TGD but even this vision might be generalized by allowing rational-adic
topologies for which topology is defined by a ring with unit rather than number field.

4.5.2 p-Adic physics as physics of cognition

Real and p-adic regions of the space-time as geometric correlates of matter and mind

The solutions of the equations determining space-time surfaces are restricted by the requirement that
imbedding space-coordinates are real. When this is not the case, one might apply instead of a real
completion with some rational-adic or p-adic completion: this is how rational-adic p-adic physics
could emerge from the basic equations of the theory. One could interpret the resulting rational-adic
or p-adic regions as geometrical correlates for ’mind stuff’.

p-Adic non-determinism implies extreme flexibility and therefore makes the identification of the
p-adic regions as seats of cognitive representations very natural. Unlike real completion, p-adic com-
pletions preserve the information about the algebraic extension of rationals and algebraic coding of
quantum numbers must be associated with ’mind like’ regions of space-time. p-Adics and reals are in
the same relationship as map and territory.

The implications are far-reaching and consistent with TGD inspired theory of consciousness: p-
adic regions are present even at elementary particle level and provide some kind of model of ’self’
and external world. In fact, p-adic physics must model the p-adic cognitive regions representing real
elementary particle regions rather than elementary particles themselves!

The generalization of the notion of number and p-adicization program

The unification of real physics of material work and p-adic physics of cognition and intentionality
leads to the generalization of the notion of number field. Reals and various p-adic number fields
are glued along their common rationals (and common algebraic numbers too) to form a fractal book
like structure. Allowing all possible finite-dimensional extensions of p-adic numbers brings additional
pages to this ”Big Book”.

At space-time level the book like structure corresponds to the decomposition of space-time surface
to real and p-adic space-time sheets. This has deep implications for the view about cognition. For
instance, two points infinitesimally near p-adically are infinitely distant in real sense so that cognition
becomes a cosmic phenomenon.

One general idea which results as an outcome of the generalized notion of number is the idea
of a universal function continuable from a function mapping rationals to rationals or to a finite
extension of rationals to a function in any number field. This algebraic continuation is analogous
to the analytical continuation of a real analytic function to the complex plane. Rational functions
with rational coefficients are obviously functions satisfying this constraint. Algebraic functions with
rational coefficients satisfy this requirement if appropriate finite-dimensional algebraic extensions of
p-adic numbers are allowed. Exponent function is such a function.

For instance, residue calculus might be generalized so that the value of an integral along the real
axis could be calculated by continuing it instead of the complex plane to any number field via its
values in the subset of rational numbers forming the rim of the book like structure having number
fields as its pages. If the poles of the continued function in the finitely extended number field allow
interpretation as real numbers it might be possible to generalize the residue formula. One can also
imagine of extending residue calculus to any algebraic extension. An interesting situation arises when
the poles correspond to extended p-adic rationals common to different pages of the ”great book”.
Could this mean that the integral could be calculated at any page having the pole common. In
particular, could a p-adic residue integral be calculated in the ordinary complex plane by utilizing the
fact that in this case numerical approach makes sense.
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Algebraic continuation is the basic tool of p-adicization program. Entire physics of the TGD
Universe should be algebraically continuable to various number fields. Real number based physics
would define the physics of matter and p-adic physics would describe correlates of cognition and
intentionality. The basic stumbling block of this program is integration and algebraic continuation
should allow to circumvent this difficulty. Needless to say, the requirement that the continuation exists
must pose immensely tight constraints on the physics.

Due to the fact that real and p-adic topologies are fundamentally different, ultraviolet and infrared
cutoffs in the set of rationals are unavoidable notions and correspond to a hierarchy of different physical
phases on one hand and different levels of cognition on the other hand. Two types of cutoffs are
predicted: p-adic length scale cutoff and a cutoff due to phase resolution. The latter cutoff seems to
correspond naturally to the hierarchy of algebraic extensions of p-adic numbers and Beraha numbers
Bn = 4cos2(π/n), n ≥ 3 related closely to the hierarchy of quantum groups, braid groups, and II1

factors of von Neumann algebra [30] . This cutoff hierarchy seems to relate closely to the hierarchy of
cutoffs defined by the hierarchy of subalgebras of the super-symplectic algebra defined by the hierarchy
of sets (z1, ...zn), where zi are the first n non-trivial zeros of Riemann Zeta. Hence there are good
hopes that the p-adicization program might unify apparently unrelated branches of mathematics.

4.5.3 Space-time-surface as a hyper-quaternionic sub-manifold of hyper-
octonionic imbedding space?

Second thread in the development of ideas has been present for only few years ideas inspired by the
possibility that quaternions and octonions might allow a deeper understanding of TGD. This thread
emerged from the discussions with Tony Smith which stimulated very general ideas about space-
time surface as associative, quaternionic sub-manifold of octonionic 8-space. Also the observation
that quaternionic and octonionic primes have norm squared equal to prime in complete accordance
with p-adic length scale hypothesis, led to suspect that the notion of primeness for quaternions, and
perhaps even for octonions, might be fundamental for the formulation of quantum TGD [86] . It
turned out that, much in spirit with transition from Riemannian to pseudo-Riemannian geometry,
hyper-quaternins and hyper-octonions are forced by physical considerations.

Transition from string models to TGD as replacement of real/complex numbers with
quaternions/octonions

One can fairly say, that quantum TGD results from string model with the pair of real and complex
numbers replaced with the pair of hyper-quaternions and hyper-octonions. Hyper is necessary in order
to take into the Minkowskian signature of the metric.

Space-time identified as a hyper-quaternionic sub-manifold of the hyper-octonionic space in the
sense that the tangent space of the space-time surface defines a hyper-quaternionic sub-algebra of
the hyper-octonionic tangent space of H at each space-time point, looks an attractive idea. Second
possibility is that the tangent space-algebra of the space-time surface is either associative or co-
associative at each point. One can also consider possibility that the dynamics of the space-time
surface is determined from the requirement that space-time surface is algebraically closed in the sense
that tangent space at each point has this property. Also the possibility that the property in question
is associated with the normal space at each point of X4 can be considered.

Some delicacies are caused by the question whether the induced algebra at X4 is just the hyper-
octonionic product or whether the algebra product is projected to the space-time surface. If the
normal part of the product is projected out, the space-time algebra closes automatically.

The first guess would be that space-time surfaces are hyper-quaternionic sub-manifolds of hyper-
octonionic space HO = M8 with the property that complex structure is fixed and same at all points
of space-time surface. This corresponds to a global selection of a preferred octonionic imaginary unit.
The automorphisms leaving this selection invariant form group SU(3) identifiable as color group. The
selections of hyper-quaternionic sub-space under this condition are parameterized by CP2. This means
that each 4-surface in HO defines a 4-surface in M4×CP2 and one can speak about number-theoretic
analog of spontaneous compactification having of course nothing to do with dynamics. It would be
possible to make physics in two radically different geometric pictures: HO picture and H = M4×CP2

picture.
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For a theoretical physicists of my generation it is easy to guess that the next step is to realize that
it is possible to fix the preferred octonionic imaginary at each point of HO separately so that local
S6 = G2/SU(3), or equivalently the local group G2 subject to SU(3) gauge invariance, characterizes
the possible choices of hyper-quaternionic structure with a preferred imaginary unit. G2 ⊂ SO(7) is the
automorphism group of octonions, and appears also in M-theory. This local choice has interpretation
as a fixing of the plane of non-physical polarizations and rise to degeneracy which is a good candidate
for the ground state degeneracy caused by the vacuum extremals.

OH − −M4 × CP2 duality allows to construct a foliation of HO by hyper-quaternionic space-
time surfaces in terms of maps HO → SU(3) satisfying certain integrability conditions guaranteing
that the distribution of hyper-quaternionic planes integrates to a foliation by 4-surfaces. In fact, the
freedom to fix the preferred imaginary unit locally extends the maps to HO → G2 reducing to maps
HO → SU(3)× S6 in the local trivialization of G2. This foliation defines a four-parameter family of
4-surfaces in M4×CP2 for each local choice of the preferred imaginary unit. The dual of this foliation
defines a 4-parameter famility co-hyper-quaternionic space-time surfaces.

Hyper-octonion analytic functions HO → HO with real Taylor coefficients provide a physically
motivated ansatz satisfying the integrability conditions. The basic reason is that hyper-octonion ana-
lyticity is not plagued by the complications due to non-commutativity and non-associativity. Indeed,
this notion results also if the product is Abelianized by assuming that different octonionic imaginary
units multiply to zero. A good candidate for the HO dynamics is free massless Dirac action with
Weyl condition for an octonion valued spinor field using octonionic representation of gamma matrices
and coupled to the G2 gauge potential defined by the tensor 7 × 7 tensor product of the imaginary
parts of spinor fields.

The basic conjecture is that the absolute minima of Kähler action in H = M4×CP2 correspond to
the hyper-quaternion analytic surfaces in HO. The map f : HO → S6 would probably satisfy some
constraints posed by the requirement that the resulting surfaces define solutions of field equations
in M4 × CP2 picture. This conjecture has several variants. It could be that only the asymptotic
behavior corresponds to hyper-quaternion analytic function but that hyper-quaternionicity is a general
property of absolute minima. It could also be that maxima of Kähler function correspond to this kind
of 4-surfaces. The encouraging hint is the fact that Hamilton-Jacobi coordinates coding for the local
selection of the plane of non-physical polarizations, appear naturally also in the construction of general
solutions of field equations [12] .

Physics as a generalized algebraic number theory and Universe as algebraic hologram

The third stimulus encouraging to think that TGD might be reduced to algebraic number theory and
algebraic geometry in some generalized sense, came from the work with Riemann hypothesis [75] . One
can assign to Riemann Zeta a super-conformal quantum field theory and identify Zeta as a Hermitian
form in the state space possibly defining a Hilbert space metric. The proposed form of the Riemann
hypothesis implies that the zeros of ζ code for infinite primes which in turn have interpretation as
Fock states of a super-symmetric quantum field theory if the proposed vision is correct.

A further stimulus came from the realization that algebraic extensions of rationals, which make
possible a generalization of the notion of prime, could provide enormous representative and information
storage power in arithmetic quantum field theory. Algebraic symmetries defined as transformations
preserving the algebraic norm represent new kind of symmetries commuting with ordinary quantum
numbers. Fractal scalings and discrete symmetries are in question so that the notion of fractality
emerges to the fundamental physics in this manner.

The basic observation, completely consistent with fractality, is that these symmetries make possible
what might be called algebraic hologram. The algebraic quantum numbers associated with elementary
particle depend on the environment of the particle. The only possible conclusion seems to be that
these fractal quantum numbers provide some kind of ’cognitive representation’ about external world.
This kind of an algebraic hologram would be in complete accordance with fractality and would provide
first principle realization for fractality observed everywhere in Nature but not properly understood
in standard physics framework. A further basic idea which emerged was the principle of algebraic
democracy: all possible algebraic extensions of rational (hyper-)quaternions and (hyper-)octonions
are possible and emerge dynamically as properties of physical systems in algebraic physics.
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4.5.4 Infinite primes and physics in TGD Universe

The notion of infinite primes emerged originally from TGD inspired theory of consciousness [50] but it
soon turned out that the notion could be used to build a number theoretic interpretation of quantum
TGD and relate quantum to classical. Also the notion of infinite-P p-adicity emerges naturally and
could replaces real topology with something more refined and appropriate for description of the space-
time correlates of cognition.

Infinite primes and infinite hierarchy of second quantizations

The discovery of infinite primes was one important step in the development suggesting strongly the
possibility to reduce physics to number theory. The construction of infinite primes can be regarded
as a repeated second quantization of a super-symmetric arithmetic quantum field theory. Later it
became clear that the process generalizes so that it applies even in the case of hyper-quaternionic
and hyper-octonionic primes. This hierarchy of second quantizations means enormous generalization
of physics to what might be regarded a physical counterpart for a hierarchy of abstractions about
abstractions about.... The ordinary second quantized quantum physics corresponds only to the lowest
level infinite primes.

What is remarkable is that one has quite realistic possibilities to understand the quantum numbers
of physical particles in terms of hyper-octonionic infinite primes. Also the TGD inspired model for
1/f noise [64] based on thermal arithmetic quantum field theory encouraged also to consider the idea
about hyper-quaternionic or hyper-octonionic arithmetic quantum field theory as an essential element
of quantum TGD.

Infinite primes as a bridge between quantum and classical

The final stimulus came from the observation stimulated by algebraic number theory [79] . Infinite
primes can be mapped to polynomial primes and this observation allows to identify completely gener-
ally the spectrum of infinite primes whereas hitherto it was possible to construct explicitly only what
might be called generating infinite primes. Infinite primes allow nice interpretation as Fock states of
a second quantized super-symmetric quantum field theory. Also bound states are included.

This in turn led to the observation that one can represent infinite primes (integers) geometrically
as surfaces related to the polynomials associated with infinite primes (integers). Thus infinite primes
would serve as a bridge between Fock-space descriptions and geometric descriptions of physics: quan-
tum and classical. Geometric objects could be seen as concrete representations of infinite numbers
providing amplification of infinitesimals to macroscopic deformations of space-time surface. We see
the infinitesimals as concrete geometric shapes!

The original mapping to 4-surfaces inspired by algebraic geometry was essentially as zeros of
polynomials. It however turned out that the mapping is more delicate and based on the idea that space-
time surfaces correspond to hyper-quaternionic or co-hyper-quaternionic sub-manifolds of imbedding
space with hyper-octonionic structure. Also the attribute maximally associative or co-associate could
be used. The assignment of a space-time surface to an infinite prime boils down to an assignment of
a hyper-octonion analytic polynomial to infinite prime, which in turn defines a foliation of M4×CP2

by hyper-quaternionic space-time surfaces. The procedure generalizes also to the higher levels of the
hierarchy and the natural interpretation is in terms of the hierarchical structure of the many-sheeted
space-time.

The connection with the basic ideas of algebraic geometry from the possibility to order space-time
surfaces according to the complexity of the polynomial involved (at higher levels rational coefficients
of the polynomial are replaced with rational polynomials). In particular, the notions of degree and
genus make sense for space-time surface.

Various equivalent characterizations of space-times as surfaces

The idea about space-times as associative, hyper-quaternionic surfaces of a hyper-octonionic imbed-
ding space M8 and the notion of infinite prime serving as a bridge between classical and quantum
are the two basic tenets of the algebraic approach. This vision leads to an equivalence of quite dif-
ferent views about space-time: space-time as an associative/hyper-quaternionic or co-associative/co-
hyperquaterionic surface of an hyper-octonionic imbedding space HO = M8; space-time as a surface
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in H = M4 × CP2; space-time as a geometric counterpart of an infinite prime representing also Fock
state identifiable as a particular ground state of super-symplectic representation; and finally, space-
time surface as an absolute minimum of the Kähler action. The great challenge is to prove that the
last characterization is equivalent with the others.

Infinite primes and quantum gravitational holography

Infinite primes emerge naturally in the realization of the quantum gravitational holography in terms
of the modified Dirac operator and provide a deeper understanding of the basic aspects of the config-
uration space geometry.

1. Two types of infinite primes are predicted corresponding to the two types of fermionic vacua
X ± 1, where X is the product of all finite primes. The physical interpretation for the two
types of infinite primes X ± 1 is in terms of two quantizations for which creation and oscillator
operators change role and which correspond to the two signs of inertial energy in TGD Universe.
In particular, phase conjugate photons would be negative energy photons erratically believed to
reduce to standard physics.

2. The new view about gravitational and inertial masses forced by TGD leads also the view that
positive and negative energy space-time sheets are created pairwise at space-like 3-surfaces lo-
cated at 7-D light-like causal determinants X7

± = δM4
±×CP2. The conjecture is that the ratio of

Dirac determinants associated with the positive and negative energy space-time sheets, which is
finite, equals to the exponent of Kähler function which would be thus determined completely by
the data at 3-dimensional causal determinants and realizing quantum gravitational holography.

3. The spectra associated with the space-time sheets X4
+ and X4

− meeting at X3 would correspond
to the infinite primes built from the vacua corresponding to the infinite primes X±1. The close
analogy of the product of all finite hyper-octonionic primes with Dirac determinant suggest that
the ratio of the determinants corresponds to the ratio of infinite primes defining X4

+ and X4
−.

The theory predicts the dependence of the eigenvalues of the modified Dirac operator on the
value of the Kähler action. Both Kähler coupling strength and gravitational coupling strength
are expressible in terms of the finite primes characterizing the ratio of the infinite primes and
this ratio depends on the p-adic prime characterizing X4

+ and X4
−.

4. Some modes of the spectrum of the modified Dirac operator at X4
± become zero modes, and

by the resulting spectral asymmetry the ratio of the determinants differs from unity. Thus the
spectral asymmetry or the infinite primes defining the space-time sheets X4

+ and X4
− is all that

would be needed to deduce the value of the vacuum functional once causal determinants are
known.

4.5.5 Infinite primes and more precise view about p-adic length scale hy-
pothesis

Number theoretical considerations allow to develop more quantitative vision about the how p-adic
length scale hypothesis relates to the ideas just described.

How to define the notion of elementary particle?

p-Adic length scale hierarchy forces to reconsider carefully also the notion of elementary particle.
p-Adic mass calculations led to the idea that particle can be characterized uniquely by single p-adic
prime characterizing its mass squared. It however turned out that the situation is probably not so
simple.

The work with modelling dark matter suggests that particle could be characterized by a collection
of p-adic primes to which one can assign weak, color, em, gravitational interactions, and possibly also
other interactions. It would also seem that only the space-time sheets containing common primes
in this collection can interact. This leads to the notions of relative and partial darkness. An entire
hierarchy of weak and color physics such that weak bosons and gluons of given physics are characterized
by a given p-adic prime p and also the fermions of this physics contain space-time sheet characterized
by same p-adic prime, say M89 as in case of weak interactions. In this picture the decay widths of
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weak bosons do not pose limitations on the number of light particles if weak interactions for them are
characterized by p-adic prime p 6= M89. Same applies to color interactions.

The p-adic prime characterizing the mass of the particle would perhaps correspond to the largest
p-adic prime associated with the particle. Graviton which corresponds to infinitely long ranged in-
teractions, could correspond to the same p-adic prime or collection of them common to all particles.
This might apply also to photons. Infinite range might mean that the join along boundaries bonds
mediating these interactions can be arbitrarily long but their transversal sizes are characterized by
the p-adic length scale in question.

The natural question is what this collection of p-adic primes characterizing particle means? The
hint about the correct answer comes from the number theoretical vision, which suggests that at
fundamental level the branching of boundary components to two or more components, completely
analogous to the branching of line in Feynman diagram, defines vertices [84] .

1. If space-time sheets correspond holographically to multi-p p-adic topology such that largest p
determines the mass scale, the description of particle reactions in terms of branchings indeed
makes sense. This picture allows also to understand the existence of different scaled up copies
of QCD and weak physics. Multi-p p-adicity could number theoretically correspond to q-adic
topology for q = m/n a rational number consistent with p-adic topologies associated with prime
factors of m and n (1/p-adic topology is homeomorphic with p-adic topology).

2. One could also imagine that different p-adic primes in the collection correspond to different
space-time sheets condensed at a larger space-time sheet or boundary components of a given
space-time sheet. If the boundary topologies for gauge bosons are completely mixed, as the
model of hadrons forces to conclude, this picture is consistent with the topological explanation
of the family replication phenomenon and the fact that only charged weak currents involve
mixing of quark families. The problem is how to understand the existence of different copies
of say QCD. The second difficult question is why the branching leads always to an emission of
gauge boson characterized by a particular p-adic prime, say M89, if this p-adic prime does not
somehow characterize also the particle itself.

3. The formulation of quantum TGD based on the identification of light-like 3-surfaces as fun-
damental dynamical objects (supported by 4-D general coordinate invariance) suggests that
light-like 3 surface identifiable as orbits of partons are characterized by p-adic primes and one
can even characterize what this means at the level of the modified Dirac operator characterizing
quantum dynamics at parton level [24] . Space-time sheet itself would be characterized by a
collection of p-adic primes so that multi-p-p-adicity would emerges naturally. Even q-adicity
might make sense. In the lowest order approximation only partonic boundary components with
same prime would interact. The hierarchy of space-time sheets would give rise to a hierarchy of
infinite primes. This view leads also to a nice interpretation of infinite primes and fermion-boson
dichotomy in terms of cognition and intentionality.

What effective p-adic topology really means?

The need to characterize elementary particle p-adically leads to the question what p-adic effective
topology really means. p-Adic mass calculations leave actually a lot of room concerning the answer
to this question.

1. The naivest option is that each space-time sheet corresponds to single p-adic prime. A more
general possibility is that the boundary components of space-time sheet correspond to different p-
adic primes. This view is not favored by the view that each particle corresponds to a collection
of p-adic primes each characterizing one particular interaction that the particle in question
participates.

2. A more abstract possibility is that a given space-time sheet or boundary component can corre-
spond to several p-adic primes. Indeed, a power series in powers of given integer n gives rise to
a well-defined power series with respect to all prime factors of n and effective multi-p-adicity
could emerge at the level of field equations in this manner.
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One could say that space-time sheet or boundary component corresponds to several p-adic primes
through its effective p-adic topology in a hologram like manner. This option is the most flexible
one as far as physical interpretation is considered. It is also supported by the number theoretical
considerations predicting the value of gravitational coupling constant [84] .

An attractive hypothesis is that only space-time sheets characterized by integers ni having common
prime factors can be connected by join along boundaries bonds and can interact by particle exchanges
and that each prime p in the decomposition corresponds to a particular interaction mediated by an
elementary boson characterized by this prime.

Do infinite primes code for q-adic effective space-time topologies?

Besides the hierarchy of space-time sheets, TGD predicts, or at least suggests, several hierarchies such
as the hierarchy of infinite primes [84] , hierarchy of Jones inclusions [97] , hierarchy of dark matters
with increasing values of ~ [28, 26] , the hierarchy of extensions of given p-adic number field, and
the hierarchy of selves and quantum jumps with increasing duration with respect to geometric time.
There are good reasons to expect that these hierarchies are closely related.

1. Some facts about infinite primes

The hierarchy of infinite primes can be interpreted in terms of an infinite hierarchy of second
quantized super-symmetric arithmetic quantum field theories allowing a generalization to quaternionic
or perhaps even octonionic context [84] . Infinite primes, integers, and rationals have decomposition
to primes of lower level.

Infinite prime has fermionic and bosonic parts having no common primes. Fermionic part is finite
and corresponds to an integer containing and bosonic part is an integer multiplying the product of all
primes with fermionic prime divided away. The infinite prime at the first level of hierarchy corresponds
in a well defined sense a rational number q = m/n defined by bosonic and fermionic integers m and
n having no common prime factors.

2. Do infinite primes code for effective q-adic space-time topologies?

The most obvious question concerns the space-time interpretation of this rational number. Also the
question arises about the possible relation with the integers characterizing space-time sheets having
interpretation in terms of multi-p-adicity. On can assign to any rational number q = m/n so called q-
adic topology. This topology is not consistent with number field property like p-adic topologies. Hence
the rational number q assignable to infinite prime could correspond to an effective q-adic topology.

If this interpretation is correct, arithmetic fermion and boson numbers could be coded into effective
q-adic topology of the space-time sheets characterizing the non-determinism of Kähler action in the
relevant length scale range. For instance, the power series of q > 1 in positive powers with integer
coefficients in the range [0, q) define q-adically converging series, which also converges with respect to
the prime factors of m and can be regarded as a p-adic power series. The power series of q in negative
powers define in similar converging series with respect to the prime factors of n.

I have proposed earlier that the integers defining infinite rationals and thus also the integers m and
n characterizing finite rational could correspond at space-time level to particles with positive resp.
negative time orientation with positive resp. negative energies. Phase conjugate laser beams would
represent one example of negative energy states. With this interpretation super-symmetry exchanging
the roles of m and n and thus the role of fermionic and bosonic lower level primes would correspond
to a time reversal.

1. The first interpretation is that there is single q-adic space-time sheet and that positive and
negative energy states correspond to primes associated with m and n respectively. Positive
(negative) energy space-time sheets would thus correspond to p-adicity (1/p-adicity) for the
field modes describing the states.

2. Second interpretation is that particle (in extremely general sense that entire universe can be
regarded as a particle) corresponds to a pair of positive and negative energy space-time sheets
labelled by m and n characterizing the p-adic topologies consistent with m− and n-adicities.
This looks natural since Universe has necessary vanishing net quantum numbers. Unless one
allows the non-uniqueness due to m/n = mr/nr, positive and negative energy space-time sheets
can be connected only by # contacts so that positive and negative energy space-time sheets
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cannot interact via the formation of #B contacts and would be therefore dark matter with
respect to each other.

Positive energy particles and negative energy antiparticles would also have different mass scales. If
the rate for the creation of # contacts and their CP conjugates are slightly different, say due to
the presence of electric components of gauge fields, matter antimatter asymmetry could be generated
primordially.

These interpretations generalize to higher levels of the hierarchy. There is a homomorphism from
infinite rationals to finite rationals. One can assign to a product of infinite primes the product of
the corresponding rationals at the lower level and to a sum of products of infinite primes the sum
of the corresponding rationals at the lower level and continue the process until one ends up with a
finite rational. Same applies to infinite rationals. The resulting rational q = m/n is finite and defines
q-adic effective topology, which is consistent with all the effective p-adic topologies corresponding to
the primes appearing in factorizations of m and n. This homomorphism is of course not 1-1.

If this picture is correct, effective p-adic topologies would appear at all levels but would be dic-
tated by the infinite-p p-adic topology which itself could refine infinite-P p-adic topology [84] coding
information too subtle to be catched by ordinary physical measurements.

Obviously, one could assign to each elementary particle infinite prime, integer, or even rational to
this a rational number q = m/n. q would associate with the particle q-adic topology consistent with
a collection of p-adic topologies corresponding to the prime factors of m and n and characterizing the
interactions that the particle can participate directly. In a very precise sense particles would represent
both infinite and finite numbers.

Under what conditions space-time sheets can be connected by #B contact?

Assume that particles are characterized by a p-adic prime determining it mass scale plus p-adic primes
characterizing the gauge bosons to which they couple and assume that #B contacts mediate gauge
interactions. The question is what kind of space-time sheets can be connected by #B contacts.

1. The first working hypothesis that comes in mind is that the p-adic primes associated with the
two space-time sheets connected by #B contact must be identical. This would require that
particle is many-sheeted structure with no other than gravitational interactions between various
sheets. The problem of the multi-sheeted option is that the characterization of events like
electron-positron annihilation to a weak boson looks rather clumsy.

2. If the notion of multi-p p-adicity is accepted, space-time sheets are characterized by integers
and the largest prime dividing the integer might characterize the mass of the particle. In this
case a common prime factor p for the integers characterizing the two space-time sheets could
be enough for the possibility of #B contact and this contact would be characterized by this
prime. If no common prime factors exist, only # contacts could connect the space-time sheets.
This option conforms with the number theoretical vision. This option would predict that the
transition to large ~ phase occurs simultaneously for all interactions.

What about the integer characterizing graviton?

If one accepts the hypothesis that graviton couples to both visible and dark matter, graviton should be
characterized by an integer dividing the integers characterizing all particles. This leaves two options.

Option I: gravitational constant characterizes graviton number theoretically

The argument leading to an expression for gravitational constant in terms of CP2 length scale led
to the proposal that the product of primes p ≤ 23 are common to all particles and one interpretation
was in terms of multi-fractality. If so, graviton would be characterized by a product of some or all
primes p ≤ 23 and would thus correspond to a very small p-adic length scale. This might be also the
case for photon although it would seem that photon cannot couple to dark matter always. p = 23
might characterize the transversal size of the massless extremal associated with the space-time sheet
of graviton.

Option II: graviton behaves as a unit with respect to multiplication
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One can also argue that if the largest prime assignable to a particle characterizes the size of the
particle space-time sheet it does not make sense to assign any finite prime to a massless particle like
graviton. Perhaps graviton corresponds to simplest possible infinite prime P = X ± 1, X the product
of all primes.

As found, one can assign to any infinite prime, integer, and rational a rational number q = m/n to
which one can assign a q-adic topology as effective space-time topology and as a special case effective
p-adic topologies corresponding to prime factors of m and n.

In the case of P = X±1 the rational number would be equal to ±1. Graviton could thus correspond
to p = 1-adic effective topology. The ”prime” p = 1 indeed appears as a factor of any integer so that
graviton would couple to any particle. Formally the 1-adic norm of any number would be 1 or 0 which
would suggest that a discrete topology is in question.

The following observations help in attempts to interpret this.

1. CP2 type extremals having interpretation as gravitational instantons are non-deterministic in
the sense that M4 projection is random light-like curve. This condition implies Virasoro con-
ditions which suggests interpretation in terms topological quantum theory limit of gravitation
involving vanishing four-momenta but non-vanishing color charges. This theory would represent
gravitation at the ultimate CP2 length scale limit without the effects of topological condensa-
tion. In longer length scales a hierarchy of effective theories of gravitation corresponds to the
coupling of space-time sheets by join along boundaries bonds would emerge and could give rise
to ”strong gravities” with strong gravitational constant proportional to L2

p. It is quite possible
that the M-theory based vision about duality between gravitation and gauge interactions applies
to electro-weak interactions and in these ”strong gravities”.

2. p-Adic length scale hypothesis p ' 2k, k integer, implies that Lk ∝
√
k corresponds to the

size scale of causal horizon associated with # contact. For p = 1 k would be zero and the
causal horizon would contract to a point which would leave only generalized Feynman diagrams
consisting of CP2 type vacuum extremals moving along random light-like orbits and obeying
Virasoro conditions so that interpretation as a kind of topological gravity suggests itself.

3. p = 1 effective topology can make marginally sense for vacuum extremals with vanishing Kähler
form and carrying only gravitational charges. The induced Kähler form vanishes identically by
the mere assumption that X4, be it continuous or discontinuous, belongs to M4 × Y 2, Y 2 a
Lagrange sub-manifold of CP2.

Why topological graviton, or whatever the particle represented by CP2 type vacuum extremals
should be called, should correspond to the weakest possible notion of continuity? The most plausible
answer is that discrete topology is consistent with any other topology, in particular with any p-adic
topology. This would express the fact that CP2 type extremals can couple to any p-adic prime. The
vacuum property of CP2 type extremals implies that the splitting off of CP2 type extremal leaves the
physical state invariant and means effectively multiplying integer by p = 1.

It seems that Option I suggested by the deduction of the value of gravitational constant looks
more plausible as far as the interpretation of gravitation is considered. This does not however mean
that CP2 type vacuum extremals carrying color quantum numbers could not describe gravitational
interactions in CP2 length scale.

4.5.6 Infinite primes, cognition and intentionality

Somehow it is obvious that infinite primes must have some very deep role to play in quantum TGD and
TGD inspired theory of consciousness. What this role precisely is has remained an enigma although
I have considered several detailed interpretations, one of them above.

In the following an interpretation allowing to unify the views about fermionic Fock states as a rep-
resentation of Boolean cognition and p-adic space-time sheets as correlates of cognition is discussed.
Very briefly, real and p-adic partonic 3-surfaces serve as space-time correlates for the bosonic super
algebra generators, and pairs of real partonic 3-surfaces and their algebraically continued p-adic vari-
ants as space-time correlates for the fermionic super generators. Intentions/actions are represented
by p-adic/real bosonic partons and cognitions by pairs of real partons and their p-adic variants and
the geometric form of Fermi statistics guarantees the stability of cognitions against intentional action.
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It must be emphasized that this interpretation is not identical with the one discussed above since it
introduces different identification of the space-time correlates of infinite primes.

Infinite primes very briefly

Infinite primes have a decomposition to infinite and finite parts allowing an interpretation as a many-
particle state of a super-symmetric arithmetic quantum field theory for which fermions and bosons
are labelled by primes. There is actually an infinite hierarchy for which infinite primes of a given
level define the building blocks of the infinite primes of the next level. One can map infinite primes
to polynomials and these polynomials in turn could define space-time surfaces or at least light-like
partonic 3-surfaces appearing as solutions of Chern-Simons action so that the classical dynamics would
not pose too strong constraints.

The simplest infinite primes at the lowest level are of form mBX/sF + nBsF , X =
∏
i pi (product

of all finite primes). The simplest interpretation is that X represents Dirac sea with all states filled
and X/sF + sF represents a state obtained by creating holes in the Dirac sea. mB , nB , and sF are
defined as mB =

∏
i p
mi
i , nB =

∏
i q
ni
i , and sF =

∏
i qi, mB and nB have no common prime factors.

The integers mB and nB characterize the occupation numbers of bosons in modes labelled by pi and
qi and sF =

∏
i qi characterizes the non-vanishing occupation numbers of fermions.

The simplest infinite primes at all levels of the hierarchy have this form. The notion of infinite
prime generalizes to hyper-quaternionic and even hyper-octonionic context and one can consider the
possibility that the quaternionic components represent some quantum numbers at least in the sense
that one can map these quantum numbers to the quaternionic primes.

The obvious question is whether configuration space degrees of freedom and configuration space
spinor (Fock state) of the quantum state could somehow correspond to the bosonic and fermionic parts
of the hyper-quaternionic generalization of the infinite prime. That hyper-quaternionic (or possibly
hyper-octonionic) primes would define as such the quantum numbers of fermionic super generators
does not make sense. It is however possible to have a map from the quantum numbers labelling
super-generators to the finite primes. One must also remember that the infinite primes considered are
only the simplest ones at the given level of the hierarchy and that the number of levels is infinite.

Precise space-time correlates of cognition and intention

The best manner to end up with the proposal about how p-adic cognitive representations relate
bosonic representations of intentions and actions and to fermionic cognitive representations is through
the following arguments.

1. In TGD inspired theory of consciousness Boolean cognition is assigned with fermionic states.
Cognition is also assigned with p-adic space-time sheets. Hence quantum classical correspon-
dence suggests that the decomposition of the space-time into p-adic and real space-time sheets
should relate to the decomposition of the infinite prime to bosonic and fermionic parts in turn
relating to the above mention decomposition of physical states to bosonic and fermionic parts.

If infinite prime defines an association of real and p-adic space-time sheets and this association
could serve as a space-time correlate for the Fock state defined by configuration space spinor for
given 3-surface. Also spinor field as a map from real partonic 3-surface would have as a space-
time correlate a cognitive representation mapping real partonic 3-surfaces to p-adic 3-surfaces
obtained by algebraic continuation.

2. Consider first the concrete interpretation of integers mB and nB . The most natural guess is
that the primes dividing mB =

∏
i p
mi characterize the effective p-adicities possible for the real

3-surface. mi could define the numbers of disjoint partonic 3-surfaces with effective pi-adic topol-
ogy and associated with with the same real space-time sheet. These boundary conditions would
force the corresponding real 4-surface to have all these effective p-adicities implying multi-p-adic
fractality so that particle and wave pictures about multi-p-adic fractality would be mutually con-
sistent. It seems natural to assume that also the integer ni appearing in mB =

∏
i q
ni
i code for

the number of real partonic 3-surfaces with effective qi-adic topology.

3. Fermionic statistics allows only single genuinely qi-adic 3-surface possibly forming a pair with
its real counterpart from which it is obtained by algebraic continuation. Pairing would conform
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with the fact that nF appears both in the finite and infinite parts of the infinite prime (something
absolutely essential concerning the consistency of interpretation!).

The interpretation could be as follows.

i) Cognitive representations must be stable against intentional action and fermionic statistics
guarantees this. At space-time level this means that fermionic generators correspond to pairs
of real effectively qi-adic 3-surface and its algebraically continued qi-adic counterpart. The
quantum jump in which qi-adic 3-surface is transformed to a real 3-surface is impossible since
one would obtain two identical real 3-surfaces lying on top of each other, something very singular
and not allowed by geometric exclusion principle for surfaces. The pairs of boson and fermion
surfaces would thus form cognitive representations stable against intentional action.

ii) Physical states are created by products of super algebra generators. Bosonic generators can
have both real or p-adic partonic 3-surfaces as space-time correlates depending on whether they
correspond to intention or action. More precisely, mB and nB code for collections of real and
p-adic partonic 3-surfaces. What remains to be interpreted is why mB and nB cannot have
common prime factors (this is possible if one allows also infinite integers obtained as products
of finite integer and infinite primes).

iii) Fermionic generators to the pairs of a real partonic 3-surface and its p-adic counterpart
obtained by algebraic continuation and the pictorial interpretation is as fermion hole pair. Un-
restricted quantum super-position of Boolean statements requires that many-fermion state is
accompanied by a corresponding many-antifermion state. This is achieved very naturally if real
and corresponding p-adic fermion have opposite fermion numbers so that the kicking of negative
energy fermion from Dirac sea could be interpreted as creation of real-p-adic fermion pairs from
vacuum.

If p-adic space-time sheets obey same algebraic expressions as real sheets (rational functions
with algebraic coefficients), the Chern-Simons Noether charges associated with real partons
defined as integrals can be assigned also with the corresponding p-adic partons if they are
rational or algebraic numbers. This would allow to circumvent the problems related to the
p-adic integration. Therefore one can consider also the possibility that p-adic partons carry
Noether charges opposite to those of corresponding real partons sheet and that pairs of real and
p-adic fermions can be created from vacuum. This makes sense also for the classical charges
associated with Kähler action in space-time interior if the real space-time sheet obeying multi-
p p-adic effective topology has algebraic representation allowing interpretation also as p-adic
surface for all primes involved.

iv) This picture makes sense if the partonic 3-surfaces containing a state created by a product of
super algebra generators are unstable against decay to this kind of 3-surfaces so that one could
regard partonic 3-surfaces as a space-time representations for a configuration space spinor field.

4. Are alternative interpretations possible? For instance, could q = mB/nB code for the effective
q-adic topology assignable to the space-time sheet. That q-adic numbers form a ring but not
a number field casts however doubts on this interpretation as does also the general physical
picture.

4.5.7 Complete algebraic, topological, and dimensional democracy?

Without the notion of Platonia allowing realization of all imaginable algebraic structures cognitively
but leaving no trace on the physics of matter, the idea about dimensional democracy would look almost
compelling despite the fact that it might well be in conflict with the special role of the dimensions
associated with the classical number fields. One can imagine several realizations of this idea.

1. The most (if not the only) plausible realization for the dimensional hierarchy would be following.
Both fractal cosmology, non-determinism of Kähler action, and Poincare invariance favor the
option in which configuration space is a union of sectors characterized by unions of future and
past light cones M4

±(a) where a characterizes the position a of the dip of the light-cone in M4.
Future/past dichotomy would correspond to positive/negative energy dichotomy and to the two
kinds of infinite primes constructed from X±1, X the product of all finite primes. Hence the cm
degrees of freedom for the sectors of the configuration space would correspond to the union of
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the spaces (M4)m × (M4)n of dimension D = 4(m+ n), and the dimensional democracy would
conform with the 8-dimensionality of the imbedding space.

2. The most plausible identification consistent with the p-adic length scale hierarchy is as unions of
n disjoint 4-surfaces of H. This correspondence is completely analogous to that involved when
the configuration space of n point-like particles is identified as (E3)n in wave mechanics.

3. One might also consider of assigning with hyper-octonionic infinite primes of level n 4n-dimensional
surfaces in 8n-dimensional space Hn = (M4

+ × CP2)n. This would suggests a dimensional hi-
erarchy of space-time surfaces and a complete dimensional and algebraic democracy: quite a
considerable generalization of quantum TGD from its original formulation. This option does not
however look physically plausible since it is not consistent with the hierarchical ”abstractions
about abstractions” structure of infinite primes and corresponding space-time representations.

Since quantum field theories are based on the notion of point like particles, the hierarchy of
arithmetic quantum field theories associated with infinite primes cannot code entire quantum TGD
but only the ground states of the super-symplectic representations. This might however be the crucial
element needed to understand the construction S-matrix of quantum TGD at the general level.

One can imagine also a topological democracy and an evolution of algebraic topological structures.
At the lowest, primordial level there are just algebraic surfaces allowing no completion to smooth ...-
adic or real surfaces, and defined only in algebraic extensions of rationals by algebraic field equations.
At higher levels rational-adic, p-adic and even infinite-P p-adic completions of infinite primes could
appear and provide natural completions of function spaces. Of course, all these generalizations might
make sense only as cognitive structures in Platonia and it is comforting to know that there is room
in just a single point of TGD Universe for all this richness of imaginable structures!

The reader not familiar with the basic algebra of quaternions and octonions is encourated to study
some background material: the homepage of Tony Smith provides among other things an excellent
introduction to quaternions and octonions [123] . String model builders are beginning to grasp the
potential importance of octonions and quaternions and the articles about possible applications of
octonions [73, 121, 91] provide an introduction to octonions using the language of physicist.

Personally I found quite frustrating to realize that I had neglected totally learning of the basic ideas
of algebraic geometry, despite its obvious potential importance for TGD and its applications in string
models. This kind of losses are the price one must pay for working outside the scientific community.
It is not easy for a physicist to find readable texts about algebraic geometry and algebraic number
theory from the bookshelves of mathematical libraries. The book ”Algebraic Geometry for Scientists
and Engineers” by Abhyankar [44] , which is not so elementary as the name would suggest, introduces
in enjoyable manner the basic concepts of algebraic geometry and binds the basic ideas with the
more recent developments in the field. ”Problems in Algebraic Number Theory” by Esmonde and
Murty [79] in turn teaches algebraic number theory through exercises which concretize the abstract
ideas. The book ”Invitation to Algebraic Geometry” by K. E. Smith. L. Kahanpää, P. Kekäläinen
and W. Traves is perhaps the easiest and most enjoyable introduction to the topic for a novice. It
also contains references to the latest physics inspired work in the field.
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Chapter 5

An Overview About Quantum
TGD: Part I

5.1 Introduction

This chapter is the first one of two chapters providing a summary about evolution of quantum TGD
in nearly chronological order. By their nature these chapters are dynamical and I cannot guarantee
internal consistency since the ideas discussed are those under most vigorous development.

The discussions are based on the general vision that quantum states of the Universe correspond
to the modes of classical spinor fields in the ”world of the classical worlds” identified as the infinite-
dimensional configuration space of 3-surfaces of H = M4 × CP2 (more or less-equivalently, the cor-
responding 4-surfaces defining generalized Bohr orbits). The following topics are discussed on basis
this vision.

5.1.1 Geometric ideas

TGD relies heavily on geometric ideas, which have gradually generalized during the years.

1. The basic dynamical objects of TGD are 3-surfaces of 8-D imbedding space fixed uniquely by
the symmetries of particle physics and the structure of standard model. 4-D general coordinate
invariance allows to assume that these surfaces are light-like and the interpretation is as random
light-like orbits of 2-dimensional partons. This picture leads immediately to an understanding
of the fundamental super-conformal symmetries of the theory and realization that TGD can be
seen as an almost topological quantum field theory.

2. The basic vision is that it is possible to reduce quantum theory to configuration space geometry
and spinor structure. The geometrization of loop spaces inspires the idea that the mere exis-
tence of Riemann connection fixes configuration space Kähler geometry uniquely. Accordingly,
configuration space can be regarded as a union of infinite-dimensional symmetric spaces la-
belled by zero modes labelling classical non-quantum fluctuating degrees of freedom. The huge
symmetries of the configuration space geometry deriving from the light-likeness of 3-surfaces
and from the special conformal properties of the boundary of 4-D light-cone would guarantee
the maximal isometry group necessary for the symmetric space property. Quantum criticality
is the fundamental hypothesis allowing to fix the Kähler function and thus dynamics of TGD
uniquely. Quantum criticality leads to surprisingly strong predictions about the evolution of
coupling constants.

3. Configuration space spinors correspond to Fock states and anti-commutation relations for fermionic
oscillator operators correspond to anti-commutation relations for the gamma matrices of the con-
figuration space. Configuration space Clifford algebra defines a von Neumann algebra known as
hyper-finite factor of type II1 (HFFs). This has led to a profound understanding of quantum
TGD. The outcome of this approach is that the exponents of Kähler function and Chern-Simons
action are not fundamental objects but reduce to the Dirac determinant associated with the
modified Dirac operator assigned to the light-like 3-surfaces.
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4. The reduction of the configuration space geometrization to second quantization of induced spinor
fields at light-like 3-surface is crucial for the practical progress made in the geometrization.
The Dirac determinant defined as the product of generalized eigenvalues of the modified Dirac
operator has identification as vacuum functional defined by Kähler function. By construction
the generalized eigenvalues carry information about the preferred extremal of Kähler action,
and their number for a given light-like 3-surface is finite so that finiteness of the theory is
guaranteed and the notion of finite measurement resolution -forced originally by the properties
of hyper-finite factors- emerges automatically.

5. p-Adic mass calculations relying on p-adic length scale hypothesis led to an understanding of
elementary particle masses using only super-conformal symmetries and p-adic thermodynamics.
The need to fuse real physics and various p-adic physics to single coherent whole led to a
generalization of the notion of number obtained by gluing together reals and p-adics together
along common rationals and algebraics. The interpretation of p-adic space-time sheets is as
correlates for cognition and intentionality. p-Adic and real space-time sheets intersect along
common rationals and algebraics and the subset of these points defines what I call number
theoretic braid in terms of which both configuration space geometry and S-matrix elements
should be expressible. Thus one would obtain number theoretical discretization which involves
no ad hoc elements and is inherent to the physics of TGD.

6. The work with HFFs combined with experimental input led to the notion of hierarchy of Planck
constants interpreted in terms of dark matter. The hierarchy is realized via a generalization of
the notion of imbedding space obtained by gluing infinite number of its variants along common
lower-dimensional quantum critical sub-manifolds.

7. HFFs lead also to an idea about how entire TGD emerges from classical number fields, actu-
ally their complexifications. In particular, CP2 could be interpreted as a structure related to
octonions. This would mean that TGD could be seen also as a generalized number theory. The
vision about TGD as a generalized number theory involves also the notion of infinite primes.
This notion leads to a further generalization of the ideas about geometry: this time the notion
of space-time point generalizes so that it has an infinitely complex number theoretical anatomy
not visible in real topology.

5.1.2 Ideas related to the construction of S-matrix

The construction of S-matrix has been the most difficult challenge of TGD and involves several ideas
that have emerged during last years. It is not possible to represent explicit formulas yet but the general
principles behind S-matrix, or rather its generalization to M-matrix, are reasonably well understood
now.

1. Zero energy ontology motivated originally by TGD inspired cosmology means that physical
states have vanishing net quantum numbers and are decomposable to positive and negative
energy parts separated by a temporal distance characterizing the system as space-time sheet of
finite size in time direction. The particle physics interpretation is as initial and final states of a
particle reaction. S-matrix and density matrix are unified to the notion of M-matrix expressible
as a product of square root of density matrix and of unitary S-matrix. Thermodynamics becomes
therefore a part of quantum theory.

One must distinguish M-matrix from U-matrix defined between zero energy states and analogous
to S-matrix and characterizing the unitary process associated with quantum jump. U-matrix is
most naturally related to the description of intentional action since in a well-defined sense it has
elements between physical systems corresponding to different number fields.

2. The notion of measurement resolution represented in terms of inclusions of HFFs is an essen-
tial element of the picture. Measurement resolution corresponds to the action of the included
sub-algebra creating zero energy states in time scales shorter than the cutoff scale. This algebra
effectively replaces complex numbers as coefficient fields and the condition that its action com-
mutes with the M-matrix implies that M-matrix corresponds to Connes tensor product. Thus
S-matrix is characterized by the measurement resolution analogous to length scale cutoff of quan-
tum field theories. Together with super-conformal symmetries this fixes possible M-matrices to
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a very high degree. The amazing conclusion interpreted in terms of asymptotic freedom is that
at the never-reachable limit of infinite measurement resolution the S-matrix becomes trivial.

3. An essential difference between TGD and string models is the replacement of stringy diagrams
with generalized Feynman diagrams obtained by gluing 3-D light-like surfaces (instead of lines)
together at their ends represented as partonic 2-surfaces. This makes the construction of vertices
very simple. The notion of number theoretic braid in turn implies discretization having also
interpretation in terms of non-commutativity due to finite measurement resolution replacing
anti-commutativity along stringy curves with anti-commutativity at points of braids. Braids can
replicate at vertices which suggests interpretation in terms of topological quantum computation
combined with non-faithful copying and communication of information. The analogs of stringy
diagrams have quite different interpretation in TGD: for instance, photons travelling via two
different paths in double slit experiment are represented in terms of stringy branching of the
photonic 2-surface.

4. Light-likeness of the basic fundamental objects implies that TGD is almost topological QFT so
that the formulation in terms of category theoretical notions is expected to work. M-matrices
form in a natural manner a functor from the category of cobordisms to the category of pairs of
Hilbert spaces and this gives additional strong constraints on the theory.

5. HO−H duality or ”number theoretical compactification” [86] states that one can regard space-
time surfaces X4 either as hyperquaternionic surfaces in the space HO = M8 of hyper-octonions
or as preferred extremals of Kähler action in M4 ×CP2. Hyper-quaternionicity means that the
tangent space of X4 at each point is some hyperquaternionic subspace HQ = M4 of HO.
Besides this a preferred plane M2 ⊂ M8 identifiable as a plane of non-physical polarizations
belongs to the tangent space at each point. This hypothesis provides a purely number theoretic
interpretation of gauge conditions and implies a large number of ”must-be-trues” of quantum
TGD, and together with zero energy ontology leads to a precise view about the realization of
zero energy states in terms of causal diamonds allowing to deduce p-adic length scale hypothesis
and a general vision about coupling constant evolution in which time scales appear as power of
2 multiples of a basic length scale.

One important implication is a justification for the coset construction based on the lifting of Su-
per Kac-Moody algebra (SKM) at a given light-like 3-surface to a sub-algebra of super-symplectic
algebra (SC) lifted from δM± × CP2 to algebra in H. Coset construction provides a precise
realization for what I used to call 7-3 duality stating that the actions of SC and SKM Virasoro
algebras on physical states are identical. The interpretation is in terms of a generalization of
Einstein’s equations realizing Equivalence Principle in TGD framework. Also a justification for
p-adic thermodynamics emerges.

6. The outcome is a generalization of Feynman diagrammatics in which the lines of Feynman di-
agrams are replaced with 3-D light-like surfaces meeting at 2-D surfaces representing vertices.
The contribution of a given Feynman diagram is calculated using the fusion rules of a gener-
alized conformal field theory recursively rather than instead of the ordinary Feynman rules. A
new element is symplectically invariant (invariant under symplectic/contact transformations of
δM4
± × CP2) factor of N-point function and thus expressible in terms of symplectic invariants

constructed from the areas assignable to the geodesic triangles defined by the subsets of N
points and satisfying fusion rules. Simple argument shows that this factor vanishes if any two
arguments of N-point function are identical: this gives excellent hopes that infinities are avoided
as general arguments indeed predict. The construction and classification of symplectic QFTs as
analogs of conformal field theories becomes a basic mathematical challenge.

The restriction of the arguments of N-point functions to a discrete set of points at partonic
2-surfaces and defining number theoretical braids is an essential ingredient of the approach
making it possible the completion of the theory to real and various p-adic domains. These
points correspond to the unique intersection of the hyper-quaternionic (and thus associative
subset M4 ⊂ M8 with the partonic 2-surfaces, where M4 is now a fixed hyper-quaternionic
plane of M8 which should not be confused with the varying hyper-quaternionic plane assignable
to each point of X4.
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A structure resembling stringy perturbation theory involving fermionic propagators expressible
as inverses of the super-generator G0 is what one expects. Contrary to original naive beliefs, the
fact that G0 and also ordinary imbedding space gamma matrices γk must carry fermion number
is not any problem. Even in the case of ordinary Feynman diagrams the interpretation that
pkγk creates 1-fermion state from vacuum works in massless gauge theories involving no scalar
fields (and thus no Higgs field). There is no need for Majorana spinors leading to super string
models and imbedding space dimension D = 8 works.

5.1.3 Some general predictions of quantum TGD

TGD is consistent with the symmetries of the standard model by construction although there are
definite deviations from the symmetries of standard model. TGD however predicts also a lot of new
physics. Below just some examples of the predictions of TGD.

1. Fractal hierarchies meaning the existence of scaled variants of standard model physics is the
basic prediction of quantum TGD. p-Adic length scale hypothesis predicts the possibility that
elementary particles can have scaled variants with mass scales related by power of

√
2. Dark

matter hierarchy predicts the existence of infinite number of scaled variants with same mass
spectrum with quantum scales like Compton length scaling like ~.

2. TGD predicts that standard model fermions and gauge bosons differ topologically in a profound
manner. Fermions correspond to light-like wormhole throats associated with topologically con-
densed CP2 type extremals whereas gauge bosons correspond to fermion-antifermion states as-
sociated with the throats of wormhole contacts connecting two space-time sheets with opposite
time orientation. The implication is that Higgs vacuum expectation value cannot contribute to
fermion mass: this conforms with the results of p-adic mass calculations. TGD predicts also so
called super-symplectic quanta and these give dominating contribution to most hadron masses.
These degrees of freedom correspond to those of hadronic string and should not reduce to QCD.

3. The most fascinating applications of zero energy ontology are to quantum biology and TGD
inspired theory of consciousness. Basic new element are negative energy photons making possible
communications to the direction of geometric past. Here also dark matter hierarchy is involved
in an essential manner.

4. In cosmology the mere imbeddability required for Robertson-Walker cosmology implies that crit-
ical and over-critical cosmologies are almost unique and characterized by their finite duration.
The cosmological expansion is accelerating for them and there is no need to assume cosmological
constant. Macroscopic quantum coherence of dark matter in astrophysical scales is a dramatic
prediction and allows also to assign periods of accelerating expansion to quantum phase transi-
tion changing the value of gravitational Planck constant. The dark matter parts of astrophysical
systems are predicted to be quantum systems.

5. The notion of generalized imbedding space suggests that the physics of TGD Universe is universal
in the sense that it is possible to engineer a system able to mimic the physics of any consistent
gauge theory. Kind of analog of Turing machine would be in question.

5.2 Physics as geometry of configuration space spinor fields

The construction of the configuration space geometry has proceeded rather slowly. The experimenta-
tion with various ideas has however led to the identification of the basic constraints on the configuration
space geometry.

5.2.1 Reduction of quantum physics to the Kähler geometry and spinor
structure of configuration space of 3-surfaces

The basic philosophical motivation for the hypothesis that quantum physics could reduce to the
construction of configuration space Kähler metric and spinor structure, is that infinite-dimensional
Kähler geometric existence could be unique not only in the sense that the geometry of the space of
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3-surfaces could be unique but that also the dimension of the space-time is fixed to D = 4 by this
requirement and M4

+ × CP2 is the only possible choice of imbedding space. This optimistic vision
derives from the work of Dan Freed with loops spaces demonstrating that they possess unique Kähler
geometry and from the fact that in D > 1 case the existence of Riemann connection, finiteness of
Ricci tensor, and general coordinate invariance poses even stronger constraints.

5.2.2 Constraints on configuration space geometry

The detailed considerations of the constraints on configuration space geometry suggests that it should
possess at least the following properties.

1. Metric should be Kähler metric. This property is necessary if one wants to geometrize the
oscillator algebra used in the construction of the physical states and to obtain a well defined
divergence free functional integration in the configuration space.

2. Metric should allow Riemann connection, which, together with the Kähler property, very proba-
bly implies the existence of an infinite dimensional isometry group as the construction of Kähler
geometry for the loop spaces demonstrates [85] .

3. The so called symmetric spaces classified by Cartan [93] are Cartesian products of the coset
spaces G/H with maximal isometry group G. Symmetric spaces possess G invariant metric and
curvature tensor is constant so that all points of the symmetric space are metrically equivalent.
Symmetric space structure means that the Lie-algebra of G decomposes as

g = h⊕ t ,
[h, h] ⊂ h , [h, t] ⊂ t , [t, t] ⊂ h ,

where g and h denote the Lie-algebras of G and H respectively and t denotes the complement
of h in g. The existence of the g = t+ h decomposition poses an extremely strong constraint on
the symmetry group G.

In the infinite-dimensional context symmetric space property would mean a drastic calculational
simplification. The most one can hope is that configuration space is expressible as a union
∪i(G/H)i of symmetric spaces. Reduction to a union of G/H is the best one can hope since 3-
surface of Planck size cannot be metrically equivalent with a 3-surface having the size of galaxy!
The coordinates labelling the symmetric spaces in this union do not appear as differentials in the
line element of configuration space and are thus zero modes. They correspond to non-quantum
fluctuating degrees of freedom in a well defined sense and are identifiable as classical variables
of quantum measurement theory.

4. Metric should be Diff4 (not only Diff3!) invariant and degenerate and the definition of the
metric should associate a unique space-time surface X4(X3) to a given 3-surface X3 to act on.
This requirement is absolutely crucial for all developments.

5. Divergence cancellation requirement for the functional integral over the configuration space
requires that the metric is Ricci flat and thus satisfies vacuum Einstein equations.

5.2.3 Configuration space as a union of symmetric spaces

In the finite-dimensional context, globally symmetric spaces are of form G/H and connection and
curvature are independent of the metric, provided it is left invariant under G. Good guess is that
same holds true in the infinite-dimensional context. The task is to identify the infinite-dimensional
groups G and H. Only quite recently, more than seven years after the discovery of the candidate
for Kähler function defining the metric, it became finally clear that these identifications follow quite
nicely from Diff4 invariance and Diff4 degeneracy.

The crux of the matter is Diff4 degeneracy : all 3-surfaces on the orbit of 3-surface X3 must be
physically equivalent so that one can effectively replace all 3-surfaces Z3 on the orbit of X3 with
a suitably chosen surface Y 3 on the orbit of X3. The Lorentz and Diff4 invariant choice of Y 3 is
as the intersection of the 4-surface with the set δM4

+ × CP2, where δM4
+ denotes the boundary of
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the light cone: effectively the imbedding space can be replaced with the product δM4
+ × CP2 as far

as vibrational degrees of freedom are considered. More precisely: configuration space has a fiber
structure: the 3-surfaces Y 3 ⊂ δM4

+ × CP2 correspond to the base space and the 3-surfaces on the
orbit of given Y 3 and diffeomorphic with Y 3 correspond to the fiber and are separated by a zero
distance from each other in the configuration space metric.

These observations lead to the identification of the isometry group as some subgroup G of the
group of the diffeomorphisms of δH = δM4

+ × CP2. These diffeomorphisms indeed act in a natural
manner in δCH, the space of the 3-surfaces in δH. Therefore one can identify the configuration
space as the union of the coset spaces G/H, where H corresponds to the subgroup of G acting as
diffeomorphisms for a given X3. H depends on the topology of X3 and since G does not change the
topology of the 3-surface, each 3-topology defines a separate orbit of G. Therefore, the union involves
the sum over all topologies of X3 plus possibly other ’zero modes’.

The task is to identify correctly G as a sub-algebra of the diffeomorphisms of δH. The only
possibility seems to be that the symplectic transformations of δH generated by the function algebra
of δH act as isometries of the configuration space. The symplectic transformations act nontrivially
also in δM4

+ since δM4
+ allows Kähler structure and thus also symplectic structure.

The magic properties of the light like 3-surfaces

In case of the Kähler metric, G- and H Lie-algebras must allow a complexification so that the isome-
tries can act as holomorphic transformations. The unique feature of the lightcone boundary δM4

+,
realized already seven years ago, is its metric degeneracy: the boundary of the light cone is metrically
2-dimensional sphere although it is topologically 3-dimensional! This implies that light cone bound-
ary allows an infinite-dimensional group of conformal symmetries generated by an algebra, which is a
generalization of the ordinary Virasoro algebra! There is actually also an infinite-dimensional group
of isometries (!) isomorphic with the group of the conformal transformations! Even more, in case
of δH the groups of the conformal symmetries and isometries are local with respect to CP2. Fur-
thermore, light cone boundary allows infinite dimensional group of symplectic transformations as the
symmetries of the symplectic structure automatically associated with the Kähler structure. Therefore
4-dimensional Minkowski space is in a unique position in TGD approach. δM4

+ allows also complex-
ification and Kähler structure unlike the boundaries of the higher-dimensional light cones so that it
becomes possible to define a complexification in the tangent space of the configuration space, too.

The space of the vector fields on δH = δM4
+ × CP2 inherits the complex structure of the light

cone boundary and CP2. The complexification can be induced from the complex conjugation for the
functions depending on the radial coordinate of the light cone boundary playing the same role as the
time coordinate associated with string space-time sheet. In M4

+ degrees of freedom complexification
works only provided that the radial vector fields posses zero norm as configuration space vector fields
(they have also zero norm as vector fields).

The effective two-dimensionality of the light cone boundary allows also to circumvent the no-go
theorems associated with the higher-dimensional Abelian extensions. First, in the dimensions D > 2
Abelian extensions of the gauge algebra are extensions by an infinite dimensional Abelian group rather
than central extensions by the group U(1). In the present case the extension is a symplectic extension
analogous to the extension defined by the Poisson bracket {p, q} = 1 rather than the standard central
extension but is indeed 1- dimensional and well defined provided that the configuration space metric
is Kähler. Secondly, D > 2 extensions possess no unitary faithful representations (satisfying certain
well motivated physical constraints) [106] . The point is that light cone boundary is metrically and
conformally 2-sphere and therefore the gauge algebra is effectively the algebra associated with the
2-sphere and, as a consequence, also the configuration space metric is Kähler.

There is counter argument against complexifixation. The Kähler structure of the light cone bound-
ary is not unique: various complex structures are parameterized by SO(3, 1)/SO(3) (Lobatchewski
space). The definition of the Kähler function as absolute minimum of Kähler action however makes
it possible to assign unique space-time surface X4(Y 3) to any Y 3 on the light cone boundary and the
requirement that the group SO(3) specifying the Kähler structure is isotropy group of the classical
four-momentum associated with X4(Y 3), fixes the complex structure uniquely as a function of Y 3.
Thus it seems that Kähler action is necessary ingredient of the group theoretical approach.
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Symmetric space property reduces to conformal and symplectic invariance

The idea about symmetric space is extremely beautiful but it millenium had to change before I was
ripe to identify the precise form of the Cartan decomposition. The solution of the puzzle turned out
to be amazingly simple.

The algebra is a direct sum g = g1 ⊕ g2 such that g1 has h = n as conformal weights and g2

has more general conformal weights determined by the squares of the generalized eigenvalues λi of
modified Dirac equation. Their number is finite for given light-like 3-surface and they are analogous
to vacuum expectation values of Higgs. This motivates the guess that the ground state conformal
weights are given by h = i/2+λ2

i . It is actually possible to regard the imaginary part of h as a pseudo
conformal weight, which can be eliminated by a natural choice of the light-like radial coordinate of
δM4

+. The original speculation h = 1/2 + iy, where y is a combination of the imaginary parts of zeros
of Riemann Zeta with integer coefficients, was motivated by the generalization of the formula for
the ground state conformal weight of N-S representation but is inconsistent with the recent physical
picture. The only physically motivated zeta is defined by the eigenvalues λi but its zeros do not define
natural ground state conformal weights.

The requirement that ordinary Virasoro and Kac Moody generators annihilate physical states
corresponds now to the fact that the generators of h vanish at the point of configuration space, which
remains invariant under the action of h. The maximum of Kähler function corresponds naturally to
this point and plays also an essential role in the integration over configuration space by generalizing
the Gaussian integration of free quantum field theories.

The light cone conformal invariance differs in many respects from the conformal invariance of
string theories. In particular, the finite-dimensional group defining Kac-Moody group is replaced by
an infinite-dimensional symplectic group.

5.2.4 An educated guess for the Kähler function

The turning point in the attempts to construct configuration space geometry was the realization that
four-dimensional Diff invariance (not only 3-dimensional Diff invariance!) of General Relativity
must have a counterpart in TGD. In order to realize this symmetry in the space of 3-surfaces, the
definition of the configuration space metric should somehow associate to a given 3-surface X3 a unique
space-time surface X4(X3) for Diff4 to act on. Physical considerations require that the metric should
be, not only Diff4 invariant, but also Diff4 degenerate so that infinitesimal Diff4 transformations should
correspond to zero norm vector fields of the configuration space.

Since Kähler function determines Kähler geometry, the definition of the Kähler function should
associate a unique space-time surface X4(X3) to a given 3-surface X3. The natural physical inter-
pretation for this space-time surface is as the classical space-time associated with X3 so that in TGD
classical physics (X4(X3)) becomes a part of the configuration space geometry and of the quantum
theory.

One could try to construct the configuration space geometry by finding the metric for a single
representative 3-surface at each orbit of G and extending it by left translations to the entire orbit
of G. The metric for this representative should be Diff3 invariant and somehow it should associate
a unique space-time surface to the 3-surface in question. The original attempt was however more
indirect and based on the realization that the construction of the Kähler geometry reduces to that
of finding Kähler function K(X3) with the property that it associates a unique space-time surface
X4(X3) to a given 3-surface X3 and possesses mathematically and physically acceptable properties.
The guess for the Kähler function is the following one.

By Diff4 invariance one can restrict the consideration on the set of 3-surfaces Y 3 on the ’light cone
boundary’ δH = δM4

+×CP2 since one can define the space-time surface associated with X3 ⊂ X4(Y 3)
to be X4(X3) = X4(Y 3) in case that the initial value problem for X3 has X4(Y 3) as its solution.
This implies K(X3) = K(Y 3).

The value of the Kähler function K for a given 3-surface Y 3 on light cone boundary is obtained
in the following manner.

1. Consider all possible 4-surfaces X4 ⊂ M4
+ × CP2 having Y 3 as its sub-manifold: Y 3 ⊂ X4. If

Y 3 has boundary then it belongs to the boundary of X4: δY 3 ⊂ δX4.
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2. Associate to each four surface Kähler action as the Maxwell action for the Abelian gauge field
defined by the projection of the CP2 Kähler form to the four-surface. For a Minkowskian
signature of the induced metric Kähler electric field gives a negative contribution to the action
density whereas for an Euclidian signature the action density is always non-positive.

3. Define the value of the Kähler function K for Y 3 as the absolute minimum of the Kähler action
SK over all possible four-surfaces having Y 3 as its sub-manifold: K(Y 3) = Min{SK(X4)|X4 ⊃
Y 3}.

This definition of the Kähler function has several physically appealing features.

1. Kähler geometry associates with each X3 a unique four-surface, which will be interpreted as
the classical space-time associated with X3. This means that the so called classical space time
(and physics!) in TGD approach is not defined via some approximation procedure (stationary
phase approximation of the functional integral) but is an essential part of not only quantum
theory, but also of the configuration space geometry, which in turn might be determined by a
mere mathematical consistency! Since quantum states are superpositions over these classical
space-times, it is clear that the observed classical space-time is some kind of effective, quantum
average space-time, presumably defined as an absolute minimum for the effective action of the
theory.

2. The space-time surface associated with a given 3-surface is analogous to a Bohr orbit of the
old fashioned quantum theory. The point is that the initial value problem in question differs
from the ordinary initial value problem in that although the values of the H coordinates hk

as functions hk(x) of X3 coordinates can be chosen arbitrarily, the time derivatives ∂th
k(x) at

X3 are uniquely fixed by the principle selecting preferred extremals as generalized Bohr orbits
(absolute minimization or something more delicate [86] ) unlike in the ordinary variational
problems encountered in the classical physics. This implies something closely analogous to
the quantization of the symplectic momenta so that the space-time surface can be regarded as
a generalized Bohr orbit. The classical quantization of electric charge and mass are possible
consequences of the Bohr orbit property.

3. Kähler function is Diff4 invariant in the sense that the value of the Kähler function is same
for all 3-surfaces belonging to the orbit of a given 3-surface. As a consequence, configuration
space metric is Diff4 degenerate. The implications of the Diff4 invariance have turned out to be
decisive, not only for the geometrization of the configuration space, but also for the construction
of the quantum theory. For instance, time like vibrational modes tangential to the 4-surface
imply tachyonic mass spectrum unless they correspond to the zero modes of the configuration
space metric. Diff4 invariance however guarantees the required kind of degeneracy of the metric.

4. The non-determinism of Kähler action means that the complete reduction to the light cone
boundary is not possible. This means a mathematical challenge but is physically a highly
desirable feature since otherwise time would be lost as it is lost in the canonically quantized
general relativity.

The most general expectation is that configuration space can be regarded as a union of coset spaces:
C(H) = ∪iG/H(i). Index i labels 3-topology and zero modes. The group G, which can depend on
3-surface, can be identified as a subgroup of diffeomorphisms of δM4

+ × CP2 and H must contain as
its subgroup a group, whose action reduces to Diff(X3) so that these transformations leave 3-surface
invariant.

The task is to identify plausible candidate for G and to show that the tangent space of the
configuration space allows Kähler structure, in other words that the Lie-algebras of G and H(i)
allow complexification. One must also identify the zero modes and construct integration measure
for the functional integral in these degrees of freedom. Besides this one must deduce information
about the explicit form of configuration space metric from symmetry considerations combined with
the hypothesis that Kähler function is determined as absolute minimum of Kähler action.

It will be found that in the case of M4
+ × CP2 Kähler geometry, or strictly speaking contact

Kähler geometry, characterized by a degenerate Kähler form (Diff4 degeneracy and plus possible
other degeneracies) seems possible. Although it seems that this construction must be generalized by



5.2. Physics as geometry of configuration space spinor fields 203

allowing all light like 7-surfaces X3
l ×CP2, at least those for which X3

l is boundary of light-cone inside
M4

+ or M4, with the physical interpretation differing dramatically from the original one, the original
construction discussed in the sequel involves the most essential aspects of the problem.

5.2.5 An alternative for the absolute minimization of Kähler action

One can criticize the assumption that extremals correspond to absolute minima, and the number
theoretical vision discussed in [86] indeed favors the separate minimization of magnitudes of positive
and negative contributions to the Kähler action.

For this option Universe would do its best to save energy, being as near as possible to vacuum.
Also vacuum extremals would become physically relevant: note that they would be only inertial vacua
and carry non-vanishing density gravitational energy. The non-determinism of the vacuum extremals
would have an interpretation in terms of the ability of Universe to engineer itself.

The 3-surfaces for which CP2 projection is at least 2-dimensional and not a Lagrange manifold
would correspond to non-vacua since conservation laws do not leave any other option. The variational
principle would favor equally magnetic and electric configurations whereas absolute minimization of
action based on SK would favor electric configurations. The positive and negative contributions
would be minimized for 4-surfaces in relative homology class since the boundary of X4 defined by
the intersections with 7-D light-like causal determinants would be fixed. Without this constraint only
vacuum bubbles would result.

The attractiveness of the number theoretical variational principle from the point of calculability of
TGD would be that the initial values for the time derivatives of the imbedding space coordinates at
X3 at light-like 7-D causal determinant could be computed by requiring that the energy of the solution
is minimized. This could mean a computerizable solution to the construction of Kähler function.

It should be noticed that the considerations of this chapter relate only to the extremals of Kähler
action which need not be absolute minima nor more general preferred extremals discussed in [86]
although this is suggested by the high symmetries. The number theoretic approach based on the
properties of quaternions and octonions discussed in the chapter [86] leads to a proposal for the
general solution of field equations based on the generalization of the notion of calibration [91] providing
absolute minima of volume to that of Kähler calibration. This approach will not be discussed in this
chapter.

5.2.6 The construction of the configuration space geometry from symme-
try principles

The gigantic size of the isometry group suggests that it might be possible to deduce very detailed
information about the metric of the configuration space by group theoretical arguments. This turns
out to be the case. In order to have a Kähler structure, one must define a complexification of the
configuration space. Also one should identify the Lie algebra of the isometry group and try to derive
explicit form of the Kähler metric using this information. One can indeed construct the metric in this
manner but a rigorous proof that the corresponding Kähler function is the one defined by Kähler action
does not exist yet although both approaches predict the same general qualitative properties for the
metric. The argument stating the equivalence of the two approaches reduces to the hypothesis stating
electric-magnetic duality of the theory. For the Bohr orbit like preferred extremals of Kähler action
magnetic configuration space Hamiltonians derivable from group theoretical approach are essentially
identical with electric configuration space Hamiltonians derivable from Kähler action.

General Coordinate Invariance and generalized quantum gravitational holography

The basic motivation for the construction of configuration space geometry is the vision that physics
reduces to the geometry of classical spinor fields in the infinite-dimensional configuration space of
3-surfaces of M4

+ × CP2 or of M4 × CP2. Hermitian conjugation is the basic operation in quantum
theory and its geometrization requires that configuration space possesses Kähler geometry. Kähler
geometry is coded into Kähler function.

The original belief was that the four-dimensional general coordinate invariance of Kähler function
reduces the construction of the geometry to that for the boundary of configuration space consisting
of 3-surfaces on δM4

+×CP2, the moment of big bang. The proposal was that Kähler function K(Y 3)
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could be defined as absolute minimum of so called Kähler action for the unique space-time surface
X4(Y 3) going through given 3-surface Y 3 at δM4

+×CP2. For Diff4 transforms of Y 3 at X4(Y 3) Kähler
function would have the same value so that Diff4 invariance and degeneracy would be the outcome.

This picture is however too simple.

1. The degeneracy of the absolute minima caused by the classical non-determinism of Kähler action
however brings in additional delicacies, and it seems that the reduction to the light cone boundary
which in fact corresponds to what has become known as quantum gravitational holography must
be replaced with a construction involving more general light like 7-surfaces X3

l × CP2.

2. It has also become obvious that the gigantic symmetries associated with δM4
+ × CP2 manifest

themselves as the properties of propagators and vertices, and that M4 is favored over M4
+.

Cosmological considerations, Poincare invariance, and the new view about energy favor the
decomposition of the configuration space to a union of configuration spaces associated with
various 7-D causal determinants. The minimum assumption is that all possible unions of future
and past light cone boundaries δM4

±×CP2 ⊂M4×CP2 label the sectors of CH: the nice feature
of this option is that the considerations of this chapter restricted to δM3

+×CP2 generalize almost
trivially. This option is beautiful because the center of mass degrees of freedom associated with
the different sectors of CH would correspond to M4 itself and its Cartesian powers. One cannot
exclude the possibility that even more general light like surfaces X3

l ×CP2 of M4 are important
as causal determinants.

The definition of the Kähler function requires that the many-to-one correspondence X3 → X4(X3)
must be replaced by a bijective correspondence in the sense that X3 is unique among all its Diff4

translates. This also allows physically preferred ”gauge fixing” allowing to get rid of the mathematical
complications due to Diff4 degeneracy. The internal geometry of the space-time sheet X4(X3) must
define the preferred 3-surface X3 and also a preferred light like 7-surface X3

l × CP2.
This is indeed possible. The possibility of negative values of Poincare energy(or equivalently inertial

energy) inspires the hypothesis that the total quantum numbers and classical conserved quantities of
the Universe vanish. This view is consistent with experimental facts if gravitational energy is defined
as a difference of Poincare energies of positive and negative energy matter. Space-time surface consists
of pairs of positive and negative energy space-time sheets created at some moment from vacuum and
branching at that moment. This allows to select X3 uniquely and define X4(X3) as the absolute
minimum of Kähler action in the set of 4-surfaces going through X3. These space-time sheets should
also define uniquely the light like 7-surface X3

l ×CP2, most naturally as the ”earliest” surface of this
kind. Note that this means that it become possible to assign a unique value of geometric time to the
space-time sheet.

The realization of this vision means a considerable mathematical challenge. The effective metric
2-dimensionality of 3-dimensional light-like surfaces X3

l of M4 implies generalized conformal and sym-
plectic invariances allowing to generalize quantum gravitational holography from light like boundary
so that the complexities due to the non-determinism can be taken into account properly.

Light like 3-D causal determinants, 7-3 duality, and effective 2-dimensionality

Thanks to the non-determinism of Kähler action, also light like 3-surfaces X3
l of space-time surface

appear as causal determinants (CDs). Examples are boundaries and elementary particle horizons at
which Minkowskian signature of the induced metric transforms to Euclidian one. This brings in a
second conformal symmetry related to the metric 2-dimensionality of the 3-D CD. This symmetry
is identifiable as TGD counterpart of the Kac Moody symmetry of string models. The challenge is
to understand the relationship of this symmetry to configuration space geometry and the interaction
between the two conformal symmetries.

The possibility of spinorial shock waves at X3
l leads to the hypothesis that they correspond to

particle aspect of field particle duality whereas the physics in the interior of space-time corresponds to
field aspect. More generally, field particle duality in TGD framework states that 3-D light like causal
determinants and 7-D causal determinants are dual to each other. In particular, super-symplectic and
Super Kac Moody symmetries are also dually related.

The underlying reason for 7–3 duality be understood from a simple geometric picture in which
3-D light like causal determinants X3

l intersect 7-D causal determinants X7 along 2-D surfaces X2
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and thus form 2-sub-manifolds of the space-like 3-surface X3 ⊂ X7. One can regard either symplectic
deformations of X7 or Kac-Moody deformations of X2 as defining the tangent space of configuration
space so that 7–3 duality would relate two different coordinate choices for CH.

The assumption that the data at either X3 or X3
l are enough to determine configuration space

geometry implies that the relevant data is contained to their intersection X2. This is the case if the
deformations of X3

l not affecting X2 and preserving light likeness corresponding to zero modes or
gauge degrees of freedom and induce deformations of X3 also acting as zero modes. The outcome is
effective 2-dimensionality. One cannot over-emphasize the importance of this conclusion. It indeed
stream lines dramatically the earlier formulas for configuration space metric involving 3-dimensional
integrals over X3 ⊂ M4

+ × CP2 reducing now to 2-dimensional integrals. Most importantly, no data
about absolute minima of Kähler are needed to construct the configuration space metric so that the
construction is also practical.

The reduction of data to that associated with 2-D surfaces conforms with the number theoretic vi-
sion about imbedding space as having hyper-octonionic structure [86] : the commutative sub-manifolds
of OH = M8 have dimension not larger than two and for them tangent space is complex sub-space of
hyper-octonion tangent space. Number theoretic counterpart of quantum measurement theory forces
the reduction of relevant data to 2-D commutative sub-manifolds of X3. These points are discussed
in more detail in the next chapter whereas in this chapter the consideration will be restricted to
X3
l = δM4

+ case which involves all essential aspects of the problem.

Two guesses for configuration space Hamiltonians

The detailed view about configuration space Hamiltonians developed gradually through guesses. The
last section of this chapter provides the recent view about the construction of configuration space
Hamiltonians based on a fundamental action principle at partonic level. Although the magnetic and
electric Hamiltonians discussed below do not represent the last step in this progress they deserve a
discussion.

1. Magnetic Hamiltonians

Assuming that the elements of the radial Virasoro algebra of δM4
+ have zero norm, one ends up

with an explicit identification of the symplectic structure of the configuration space. There is almost
unique identification for the symplectic structure. Configuration space counterparts of δM4 × CP2

Hamiltonians are defined by the generalized signed and and unsigned Kähler magnetic fluxes

Qm(HA, X
2) = Z

∫
X2 HAJ

√
g2d

2x ,

Q+
m(HA, rM ) = Z

∫
X2 HA|J |

√
g2d

2x ,

J ≡ εαβJαβ .

HA is CP2 Hamiltonian multiplied by a function of coordinates of light cone boundary belonging
to a unitary representation of the Lorentz group. Z is a conformal factor depending on symplectic
invariants. The symplectic structure is induced by the symplectic structure of CP2.

The most general flux is superposition of signed and unsigned fluxes Qm and Q+
m.

Qα,βm (HA, X
2) = αQm(HA, X

2) + βQ+
m(HA, X

2) .

Thus it seems that symmetry arguments fix the form of the configuration space metric apart from
the presence of a conformal factor Z multiplying the magnetic flux and the degeneracy related to the
signed and unsigned fluxes.

The notion of 7–3-duality described in the introduction implies that the relevant data about
configuration space geometry is contained by 2-D surfaces X2 at the intersections of 3-D light like
CDS and 7-D causal determinants such as M4

+ × CP2. In this case the entire Hamiltonian could be
defined as the sum of magnetic fluxes over surfaces X2

i ⊂ X3. The maximally optimistic guess would
be that it is possible to fix both X2

i and 7-D causal determinants freely with X2
i possibly identified

as commutative sub-manifold of octonionic H.

2. Electric Hamiltonians and electric-magnetic duality
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Absolute minimization of Kähler action -which have however turned to be a wrong guess for the
principle fixing the preferred extremals- suggested that one can identify configuration space Hamilto-
nians as classical charges Qe(HA) associated with the Hamiltonians of the symplectic transformations
of the light cone boundary, that is as variational derivatives of the Kähler action with respect to the
infinitesimal deformations induced by δM4

+ ×CP2 Hamiltonians. Alternatively, one might simply re-
place Kähler magnetic field J with Kähler electric field defined by space-time dual ∗J in the formulas
of previous section. These Hamiltonians are analogous to Kähler electric charge and the hypothesis
motivated by the experience with the instantons of the Euclidian Yang Mills theories and ’Yin-Yang’
principle, as well as by the duality of CP2 geometry, is that for the absolute minima of the Kähler
action these Hamiltonians are affinely related:

Qe(HA) = Z [Qm(HA) + qe(HA)] .

Here Z and qe are constants depending on symplectic invariants only. Thus the equivalence of the
two approaches to the construction of configuration space geometry boils down to the hypothesis of a
physically well motivated electric-magnetic duality.

The crucial technical idea is to regard configuration space metric as a quadratic form in the entire
Lie-algebra of the isometry group G such that the matrix elements of the metric vanish in the sub-
algebra H of G acting as Diff3(X3). The Lie-algebra of G with degenerate metric in the sense that
H vector fields possess zero norm, can be regarded as a tangent space basis for the configuration space
at point X3 at which H acts as an isotropy group: at other points of the configuration space H is
different. For given values of zero modes the maximum of Kähler function is the best candidate for
X3. This picture applies also in symplectic degrees of freedom.

Complexification and explicit form of the metric and Kähler form

The identification of the Kähler form and Kähler metric in symplectic degrees of freedom follows triv-
ially from the identification of the symplectic form and definition of complexification. The requirement
that Hamiltonians are eigen states angular momentum (and possibly also of Lorentz boost), isospin
and hypercharge implies physically natural complexification. In order to fix the complexification com-
pletely one must introduce some convention fixing which states correspond to ’positive’ frequencies
and which to ’negative frequencies’ and which to zero frequencies that is to decompose the generators
of the symplectic algebra to three sets Can+, Can− and Can0. One must distinguish between Can0

and zero modes, which are not considered here at all. For instance, CP2 Hamiltonians correspond to
zero modes.

The natural complexification relies on the imaginary part of the radial conformal weight whereas
the real part defines the g = t + h decomposition naturally. The wave vector associated with the
radial logarithmic plane wave corresponds to the angular momentum quantum number associated
with a wave in S1 in the case of Kac Moody algebra. One can imagine three options.

1. It is quite possible that the spectrum of k2 does not contain k2 = 0 at all so that the sector Can0

could be empty. This complexification is physically very natural since it is manifestly invariant
under SU(3) and SO(3) defining the preferred spherical coordinates. The choice of SO(3) is
unique if the classical four-momentum associated with the 3-surface is time like so that there
are no problems with Lorentz invariance.

2. If k2 = 0 is possible one could have

Can+ = {Ha
m,n,k=k1+ik2

, k2 > 0} ,

Can− = {Ha
m,n,k, k2 < 0} ,

Can0 = {Ha
m,n,k, k2 = 0} . (5.2.1)

3. If it is possible to n2 6= 0 for k2 = 0, one could define the decomposition as
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Can+ = {Ha
m,n,k, k2 > 0 or k2 = 0, n2 > 0} ,

Can− = {Ha
m,n,k, k2 < 0 ork2 = 0, n2 < 0} ,

Can0 = {Ha
m,n,k, k2 = n2 = 0} . (5.2.2)

In this case the complexification is unique and Lorentz invariance guaranteed if one can fix the
SO(2) subgroup uniquely. The quantization axis of angular momentum could be chosen to be
the direction of the classical angular momentum associated with the 3-surface in its rest system.

The only thing needed to get Kähler form and Kähler metric is to use the ”half Poisson bracket”

Jf (X(HA), X(HB)) = 2Im (iQf ({HA, HB}−+)) ,

Gf (X(HA), X(HB)) = 2Re (iQf ({HA, HB}−+)) . (5.2.3)

Here the subscript + and − refer to complex isometry current and its complex conjugate in terms of
which the ”half Poisson bracket” can be expressed.

Symplectic form, and thus also Kähler form and Kähler metric, could contain a conformal factor
depending on the isometry invariants characterizing the size and shape of the 3-surface. At this stage
one cannot say much about the functional form of this factor.

5.2.7 Configuration space spinor structure

Quantum TGD should be reducible to the classical spinor geometry of the configuration space. In
particular, physical states should correspond to the modes of the configuration space spinor fields.
The immediate consequence is that configuration space spinor fields cannot, as one might naively
expect, be carriers of a definite spin and unit fermion number. Concerning the construction of the
configuration space spinor structure there are some important clues.

1. The classical bosonic physics is coded into the definition of the configuration space metric;
therefore the classical physics associated with the spinors of the imbedding space should be
coded into the definition of the configuration space spinor structure. This means that the
generalized massless Dirac equation for the induced spinor fields on X4(X3) should be closely
related to the definition of the configuration space gamma matrices.

2. Complex probability amplitudes (scalar fields) in the configuration space correspond to the sec-
ond quantized boson fields in X4. Hence the spinor fields of the configuration space should
correspond to the second quantized, free, induced spinor fields on X4. The space of the con-
figuration space spinors should be just the Fock space of the second quantized fermions on
X4!

3. Symplectic algebra might generalize to a super symplectic algebra and that super generators
should be linearly related to the gamma matrices of the configuration space. If this indeed is the
case then the construction of the configuration space spinor structure becomes a purely group
theoretical problem.

The realization of these ideas is simple in principle. Perform a second quantization for the free in-
duced spinor field in X4. Express configuration space gamma matrices and symplectic super generators
as superpositions of the fermionic oscillator operators. This means that configuration space gamma
matrices are analogous to spin 3/2 fields and can be regarded as a superpartner of the gravitational
field of the configuration space. Deduce the anti-commutation relations of the spinor fields from the
requirement of super symplectic invariance. Generalize the flux representation for the configuration
space Hamiltonians to a spinorial flux representation for their super partners.
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Configuration space gamma matrices as super algebra generators

The basic idea is that the space of the configuration space spinors must correspond to the Fock space
for the second quantized induced spinor fields. In accordance with this the gamma matrices of the
configuration space must be expressible as superpositions of the fermionic oscillator operators for the
second quantized induced free spinor fields in X4 so that they are analogous to spin 3/2 fields. The
Dirac equation is fixed from the requirement of super symmetry and has same vacuum degeneracy as
Kähler action. A further assumption is that the contractions of the gamma matrices with isometry
currents correspond to super charges of the group of isometries of the configuration space so that the
construction reduces to group theory. Also the super Kac Moody algebra associated with light like
3-D causal determinants defines candidates for gamma matrices defining the components of the metric
as anti-commutators and the question is whether the two definitions are mutually consistent.

7–3 duality

The failure of the classical non-determinism forces to introduce two kinds of causal determinants
(CDs). 7-D light like causal determinants are unions of the boundaries of future and past directed
light cones in M4 at arbitrary positions (also more general light like surfaces X7 = X3

l ×CP2 might be
considered). CH is a union of sectors associated with these 7-D causal determinants playing in a very
rough sense the roles of big bangs and big crunches. The creation of pairs of positive and negative
energy space-time sheets occurs at X3 ⊂ X7 in the sense that negative and positive energy space-time
sheet meet at X3. Negative and positive energy space-time sheets are space-time correlates for bras
and kets and the meeting of negative and positive energy space-time sheets is the space-time correlate
for their scalar product.

Also 3-D light like causal determinants X3
l ⊂ X4 must be introduced: elementary particle horizons

provide a basic example of this kind of CDs. The deformations of the 2-surfaces defining X3
l define

Kac Moody type conformal symmetries.
7–3 duality states that the two kind of causal determinants play a dual role in the construction of

the theory and implies that 3-surfaces are effectively two-dimensional with respect to the CH metric in
the sense that all relevant data about CH geometry is contained by the two-dimensional intersections
X2 = X3

l ∩X7 defining 2-sub-manifolds of X3 ⊂ X7.
The relationship between super-symplectic (SC) and Super Kac-Moody (SKM) symmetries has

been one of the central themes in the development of TGD. The progress in the understanding of
the number theoretical aspects of TGD gives good hopes of lifting SKMV (V denotes Virasoro) to a
subalgebra of SCV so that coset construction works meaning that the differences of SCV and SKMV
generators annihilate physical states. This condition has interpretation in terms of Equivalence Prin-
ciple with coset Super Virasoro conditions defining a generalization of Einstein’s equations in TGD
framework. Also p-adic thermodynamics finds a justification since the expectation values of SKM
conformal weights can be non-vanishing in physical states.

The modified Dirac equation and gamma matrices

The modified Dirac equation is deduced from Kähler action by requiring it to have the same vacuum
degeneracy as Kähler action itself. The interpretation of the solutions of the modified Dirac equation
is as super gauge symmetry generators whereas physical degrees of freedom corresponds to generalized
eigen modes at X3

l and at space-like 3-surfaces X3 ⊂ X7.
The decisive property of the modified Dirac equation is that it allows shock wave solutions restricted

to X3
l : in terms of field-particle duality these shock waves correspond to the click caused by a particle

in a detector. This allows to realize quantum gravitational holography and 7–3 duality in the sense
that the induced second quantized spinor fields at the intersections X2 = X3

l ∩ X7 determine the
super-generators super-symplectic and super Kac Moody algebras invariant under the super gauge
symmetries generated by the solutions of the modified Dirac equation.

Both the function algebra and Poisson algebra of X7 allow super-symmetrization and both N-S
and Ramond type representations are possible. For Ramond type representation the modified Dirac
operators D+ and D−1

− associated with the positive and negative energy space-time sheets X4
± meeting

at X3 are present in the expressions of the super generators. NS-type representations correspond to
the replacement of these operators with projection operators to the space of spinor modes with non-
vanishing eigenvalues of D±. Both representations are necessary and correspond to leptonic and quark
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like representations of configuration space gamma matrices. Similar statements apply to super Kac-
Moody representations. These two kinds of representations correspond to super and kappa symmetries
of super-string models.

Expressing Kähler function in terms of Dirac determinant

Although quantum criticality in principle predicts the possible values of Kähler coupling strength, one
might hope that there exists even more fundamental approach involving no coupling constants and
predicting even quantum criticality and realizing quantum gravitational holography.

The simplest option (not the only one [20] is that Kähler function for a given space-time sheet is
the product of Dirac determinants associated with the light-like partonic 3-surfaces associated with
with it. p-Adicization requires that for a given prime p the generalized eigenvalues of the modified
Dirac operator D belong to an algebraic extension of rationals. The simplest manner to achieve this is
to restrict the number of the allowed modes of D to those in the algebraic extension. This restriction
would give rise to a purely physical cutoff and define one level in the number theoretical hierarchy of
physics. This restriction could also lead automatically to a finite value of the Dirac determinant. As a
matter fact, the properties of Kähler action imply automatically that the number of the eigenvalues is
finite for given light-like 3-surface. The interpretation is that the dynamics defined by Kähler action
automatically codes for the cutoff in measurement resolution.

The relationship between super-symplectic and super Kac-Moody algebras

The Olive-Goddard-Kent coset construction generalizes in the sense that the differences of the Virasoro
generators of super-symplectic and super Kac-Moody algebras annihilate the physical states. The
interpretation is in terms of generalization of Equivalence Principle. In particular, the fact that the
four-momenta assignable to super-symplectic and super Kac-Moody algebras are identical codes for
the equivalence of inertial and gravitational masses. The central charges of the two Virasoro algebras
must be identical so that the net central charge vanishes. This condition leads to a generalization of
stringy mass formula involving besides super Kac-Moody algebra also the super-symplectic algebra
and allowing continuum mass spectrum for many particle states.

The N = 4 super symmetries generated by the solutions of the modified Dirac equation are
pure super gauge transformations. All CP2 spinor harmonics except the covariantly constant right
handed neutrino spinor carry color quantum numbers and thus a non-vanishing vacuum conformal
weight: hence only an N = 1 global super symmetry is in principle possible. Since the Ramond type
super-generator corresponding to the covariantly constant neutrino vanishes identically even N = 1
global super-symmetry is absent and no sparticles are predicted. This means a decisive difference
in comparison with super string models and M-theory besides the fundamentally different realization
of the super conformal algebras allowing super generators to carry fermion number and realizing
bosonic sector of algebra as Hamiltonians rather than vector fields. This allows to avoid the notions
of super-space and super-field and infinite-dimensional Kähler geometry is all that is needed to realize
super-conformal symmetry.

5.2.8 What about infinities?

The construction of a divergence free and unitary inner product for the configuration space spinor
fields is one of the major challenges. In the sequel constraints on the geometry of the configuration
space posed by the finiteness of the inner product are analyzed.

Inner product from divergence cancellation

Forgetting the delicacies related to the non-determinism of the Kähler action, the inner product is
given by integrating the usual Fock space inner product defined at each point of the configuration space
over the reduced configuration space containing only the 3-surfaces Y 3 belonging to δH = δM4

+×CP2

(’light cone boundary’) using the exponent exp(K) as a weight factor:
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〈Ψ1|Ψ2〉 =

∫
Ψ1(Y 3)Ψ2(Y 3)exp(K)

√
GdY 3 ,

Ψ1(Y 3)Ψ2(Y 3) ≡ 〈Ψ1(Y 3)|Ψ2(Y 3)〉Fock . (5.2.4)

The degeneracy for the absolute minima of Kähler action implies additional summation over the
degenerate minima associated with Y 3. The restriction of the integration on light cone boundary is
Diff4 invariant procedure and resolves in elegant manner the problems related to the integration over
Diff4 degrees of freedom. A variant of the inner product is obtained dropping the bosonic vacuum
functional exp(K) from the definition of the inner product and by assuming that it is included into
the spinor fields themselves. Probably it is just a matter of taste how the necessary bosonic vacuum
functional is included into the inner product: what is essential that the vacuum functional exp(K) is
somehow present in the inner product.

The unitarity of the inner product follows from the unitary of the Fock space inner product and
from the unitarity of the standard L2 inner product defined by configuration space integration in
the set of the L2 integrable scalar functions. It could well occur that Diff4 invariance implies the
reduction of the configuration space integration to C(δH).

Consider next the bosonic integration in more detail. The exponent of the Kähler function appears
in the inner product also in the context of the finite dimensional group representations. For the
representations of the noncompact groups (say SL(2, R)) in coset spaces (now SL(2, R)/U(1) endowed
with Kähler metric) the exponent of Kähler function is necessary in order to get square integrable
representations [81]. The scalar product for two complex valued representation functions is defined as

(f, g) =

∫
fgexp(nK)

√
gdV . (5.2.5)

By unitarity, the exponent is an integer multiple of the Kähler function. In the present case only
the possibility n = 1 is realized if one requires a complete cancellation of the determinants. In finite
dimensional case this corresponds to the restriction to single unitary representation of the group in
question.

The sign of the action appearing in the exponent is of decisive importance in order to make
theory stable. The point is that the theory must be well defined at the limit of infinitely large
system. Minimization of action is expected to imply that the action of infinitely large system is bound
from above: the generation of electric Kähler fields gives negative contributions to the action. This
implies that at the limit of the infinite system the average action per volume is non-positive. For
systems having negative average density of action vacuum functional exp(K) vanishes so that only
configurations with vanishing average action per volume have significant probability. On the other
hand, the choice exp(−K) would make theory unstable: probability amplitude would be infinite for
all configurations having negative average action per volume. In the fourth part of the book it will be
shown that the requirement that average Kähler action per volume cancels has important cosmological
consequences.

Consider now the divergence cancellation in the bosonic integration. One can develop the Kähler
function as a Taylor series around maximum of Kähler function and use the contravariant Kähler
metric as a propagator. Gaussian and metric determinants cancel each other for a unique vacuum
functional. Ricci flatness guarantees that metric determinant is constant in complex coordinates so
that one avoids divergences coming from it. The non-locality of the Kähler function as a functional
of the 3-surface serves as an additional regulating mechanism: if K(X3) were a local functional of X3

one would encounter divergences in the perturbative expansion.
The requirement that quantum jump corresponds to a quantum measurement in the sense of quan-

tum field theories implies that quantum jump involves localization in zero modes. Localization in the
zero modes implies automatically p-adic evolution since the decomposition of the configuration space
into sectors DP labelled by the infinite primes P is determined by the corresponding decomposition
in zero modes. Localization in zero modes would suggest that the calculation of the physical predic-
tions does not involve integration over zero modes: this would dramatically simplify the calculational
apparatus of the theory. Probably this simplification occurs at the level of practical calculations if
U -matrix separates into a product of matrices associated with zero modes and fiber degrees of freedom.
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One must also calculate the predictions for the ratios of the rates of quantum transitions to different
values of zero modes and here one cannot actually avoid integrals over zero modes. To achieve this
one is forced to define the transition probabilities for quantum jumps involving a localization in zero
modes as

P (x, α→ y, β) =
∑
r,s

|S(r, α→ s, β)|2|Ψr(x)|2|Ψs(y)|2 ,

where x and y correspond to the zero mode coordinates and r and s label a complete state functional
basis in zero modes and S(r,m → s, n) involves integration over zero modes. In fact, only in this
manner the notion of the localization in the zero modes makes mathematically sense at the level of
S-matrix. In this case also unitarity conditions are well-defined. In zero modes state function basis
can be freely constructed so that divergence difficulties could be avoided. An open question is whether
this construction is indeed possible.

Some comments about the actual evaluation of the bosonic functional integral are in order.

1. Since configuration space metric is degenerate and the bosonic propagator is essentially the
contravariant metric, bosonic integration is expected to reduce to an integration over the zero
modes. For instance, isometry invariants are variables of this kind. These modes are analogous
to the parameters describing the conformal equivalence class of the orbit of the string in string
models.

2. αK is a natural small expansion parameter in configuration space integration. It should be
noticed that αK , when defined by the criticality condition, could also depend on the coordinates
parameterizing the zero modes.

3. Semiclassical approximation, which means the expansion of the functional integral as a sum
over the extrema of the Kähler function, is a natural approach to the calculation of the bosonic
integral. Symmetric space property suggests that for the given values of the zero modes there
is only single extremum and corresponds to the maximum of the Kähler function. There are
theorems stating that semiclassical approximation is exact for certain systems (for example
for integrable systems (Duistermaat-Hecke theorem [77] ). Symmetric space property suggests
that Kähler function might possess the properties guaranteing the exactness of the semiclassical
approximation. This would mean that the calculation of the integral

∫
exp(K)

√
GdY 3 and even

more complex integrals involving configuration space spinor fields would be completely analogous
to a Gaussian integration of free quantum field theory. This kind of reduction actually occurs
in string models and is consistent with the criticality of the Kähler coupling constant suggesting
that all loop integrals contributing to the renormalization of the Kähler action should vanish.
Also the condition that configuration space integrals are continuable to p-adic number fields
requires this kind of reduction.

Divergence cancellation, Ricci flatness, and symmetric space and Hyper Kähler proper-
ties

In the case of the loop spaces left invariance implies that Ricci tensor is a multiple of the metric tensor
so that Ricci scalar has an infinite value. Mathematical consistency (essentially the absence of the
divergences in the integration over the configuration space) forces the geometry to be Ricci flat: in
other words, vacuum Einstein’s equations are satisfied. It can be shown that Hyper Kähler property
guarantees Ricci flatness. The reason is that the contractions of the curvature tensor appearing in
the components of the Ricci tensor transform to traces over Lie algebra generators, which are SU(∞)
generators instead of U(∞) generators as in case of loop spaces, so that the traces vanish.

Hyper Kähler property requires a quaternionic structure in the tangent space of the configura-
tion space. Since any direction on the sphere S2 defined by the linear combinations of quaternionic
imaginary units with unit norm defines a particular complexification physically, Hyper-Kähler prop-
erty means the possibility to perform complexification in S2-fold manners. An interesting possibility
raised by the notion of number theoretical compactification [86] is that hyper Kähler structure could
be replaced with what might be called ”hyper-hyper-Kähler structure” resulting when quaternionic
tangent space is replaced with its hyper-quaternionic variant. This would conform with the Minkowski
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signature of the space-time surface. In this framework also hyper-octonionic structure might be con-
sidered. An interesting question not yet even touched, is whether the conjectured M8 −−M4 × CP2

duality is realized also at the level of the configuration space of 3-surfaces.
Consider now the arguments in favor of Ricci flatness of the configuration space.

1. The symplectic algebra of δM4
+ takes effectively the role of the U(1) extension of the loop

algebra. More concretely, the SO(2) group of the rotation group SO(3) takes the role of U(1)
algebra. Since volume preserving transformations are in question, the traces of the symplectic
generators vanish identically and in finite-dimensional this should be enough for Ricci flatness
even if Hyper Kähler property is not achieved.

2. The comparison with CP2 allows to link Ricci flatness with conformal invariance. The elements
of the Ricci tensor are expressible in terms of traces of the generators of the holonomy group
U(2) at the origin of CP2, and since U(1) generator is non-vanishing at origin, the Ricci tensor
is non-vanishing. In recent case the origin of CP2 is replaced with the maximum of Kähler
function and holonomy group corresponds to super-symplectic generators labelled by integer
valued real parts k1 of the conformal weights k = k1 + iρ. If generators with k1 = n vanish at
the maximum of the Kähler function, the curvature scalar should vanish at the maximum and by
the symmetric space property everywhere. These conditions correspond to Virasoro conditions
in super string models.

A possible source of difficulties are the generators having k1 = 0 and resulting as commutators
of generators with opposite real parts of the conformal weights. It might be possible to assume
that only the conformal weights k = k1 + iρ, k1 = 0, 1, ... are possible since it is the imaginary
part of the conformal weight which defines the complexification in the recent case. This would
mean that the commutators involve only positive values of k1.

3. In the infinite-dimensional case the Ricci tensor involves also terms which are non-vanishing even
when the holonomy algebra does not contain U(1) factor. It will be found that symmetric space
property guarantees Ricci flatness even in this case and the reason is essentially the vanishing
of the generators having k1 = n at the maximum of Kähler function.

There are also arguments in favor of the Hyper Kähler property. In the following argument reader
can well consider replacing the attribute ”quaternionic” with ”hyper-quaternionic”.

1. The dimensions of the imbedding space and space-time are 8 and 4 respectively so that the
dimension of configuration space in vibrational modes is indeed multiple of four as required by
Hyper Kähler property. Hyper Kähler property requires a quaternionic structure in the tangent
space of the configuration space. Since any direction on the sphere S2 defined by the linear com-
binations of quaternionic imaginary units with unit norm defines a particular complexification
physically, Hyper Kähler property means the possibility to perform complexification in S2-fold
manners.

2. S2-fold degeneracy is indeed associated with the definition of the complex structure of the
configuration space. First of all, the direction of the quantization axis for the spherical harmonics
or for the eigen states of Lorentz Cartan algebra at X2

+×CP2 can be chosen in S2-fold manners.
Quaternion conformal invariance means Hyper Kähler property almost by definition and the
S2-fold degeneracy for the complexification is obvious in this case.

3. One can see the super-symplectic conformal weights as points in a particular complex plane of
the quaternionic space and the choice of this plane corresponds to a selection of one configuration
space Kähler structure which are parameterized by S2. The necessity to restrict the conformal
weights to a complex plane brings in mind the commutativity constraint on simultaneously
measurable quantum observables.

If these naive arguments survive a more critical inspection, the conclusion would be that the effec-
tive 2-dimensionality of light like 3-surfaces implying generalized conformal and symplectic symmetries
would also imply Hyper Kähler property of the configuration space and make the theory well-defined
mathematically. This obviously fixes the dimension of space-time surfaces as well as the dimension of
Minkowski space factor of the imbedding space.
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5.3 Identification of elementary particles and the role of Higgs
in particle massivation

The development of the recent view about the identification of elementary particles and particle
massivation has taken fifteen years since the discovery of p-adic thermodynamics around 1993. p-
Adic thermodynamics worked excellently from the beginning for fermions. Only the understanding
of gauge boson masses turned out to be problematic and group theoretical arguments led to the
proposal that Higgs boson should be present and give the dominating contribution to the masses of
gauge bosons whereas the contribution to fermion masses should be small and even negligible. The
detailed understanding of quantum TGD at partonic level eventually led to the realization that the
coupling to Higgs is not needed after all. The deviation ∆h of the ground state conformal weight from
negative integer has interpretation as effective Higgs contribution since Higgs vacuum expectation is
naturally proportional to ∆h but the coupling to Higgs does not cause massivation. In the following I
summarize the basic identification of elementary particles and massivation. A more detailed discussion
can be found in [35] .

5.3.1 Identification of elementary particles

The developments in the formulation of quantum TGD which have taken place during the period 2005-
2007 [24, 23] suggest dramatic simplifications of the general picture discussed in the earlier version
of this chapter. p-Adic mass calculations [57, 58, 53] leave a lot of freedom concerning the detailed
identification of elementary particles.

Elementary fermions and bosons

The basic open question is whether the theory is on some sense free at parton level as suggested
by the recent view about the construction of S-matrix (actually its generalization M-matrix) and by
the almost topological QFT property of quantum TGD at parton level [23] . If partonic 2-surfaces
at elementary particle level carry only free many-fermion states, no bi-local composites of second
quantized induced spinor field would be needed in the construction of the quantum states and this
would simplify the theory enormously.

If this is the case, the basic conclusion would be that light-like 3-surfaces - in particular the ones
at which the signature of induced metric changes from Minkowskian to Euclidian - are carriers of
fermionic quantum numbers. These regions are associated naturally with CP2 type vacuum extremals
identifiable as correlates for elementary fermions if only fermion number ±1 is allowed for the stable
states. The question however arises about the identification of elementary bosons.

Wormhole contacts with two light-like wormhole throats carrying fermion and anti-fermion quan-
tum numbers are the first thing that comes in mind. The wormhole contact connects two space-time
sheets with induced metric having Minkowski signature. Wormhole contact itself has an Euclidian
metric signature so that there are two wormhole throats which are light-like 3-surfaces and would
carry fermion and anti-fermion number. In this case a delicate question is whether the space-time
sheets connected by wormhole contacts have opposite time orientations or not. If this the case the
two fermions would correspond to positive and negative energy particles.

I considered first the identification of only Higgs as a wormhole contact but there is no reason why
this identification should not apply also to gauge bosons (certainly not to graviton). This identification
would imply quite a dramatic simplification since the theory would be free at single parton level and
the only stable parton states would be fermions and anti-fermions.

This picture allows to understand the difference between fermions and gauge bosons and Higgs
particle. For fermions topological explanation of family replication predicts three fermionic generations
[22] corresponding to handle numbers g = 0, 1, 2 for the partonic 2-surface. In the case of gauge bosons
and Higgs this replication is not visible. This could be due to the fact that gauge bosons form singlet
and octet representation of the dynamical SU(3) group associated with the handle number g = 0, 1, 2
since bosons correspond to pairs of handles. If octet representation is heavy the experimental absence
of family replication for bosons can be understood.
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Graviton and other stringy states

Fermion and anti-fermion can give rise to only single unit of spin since it is impossible to assign angular
momentum with the relative motion of wormhole throats. Hence the identification of graviton as single
wormhole contact is not possible. The only conclusion is that graviton must be a superposition of
fermion-anti-fermion pairs and boson-anti-boson pairs with coefficients determined by the coupling of
the parton to graviton. Graviton-graviton pairs might emerge in higher orders. Fermion and anti-
fermion would reside at the same space-time sheet and would have a non-vanishing relative angular
momentum. Also bosons could have non-vanishing relative angular momentum and Higgs bosons
must indeed possess it.

Gravitons are stable if the throats of wormhole contacts carry non-vanishing gauge fluxes so that
the throats of wormhole contacts are connected by flux tubes carrying the gauge flux. The mechanism
producing gravitons would the splitting of partonic 2-surfaces via the basic vertex. A connection
with string picture emerges with the counterpart of string identified as the flux tube connecting the
wormhole throats. Gravitational constant would relate directly to the value of the string tension.

The development of the understanding of gravitational coupling has had many twists and it is
perhaps to summarize the basic misunderstandings.

1. CP2 length scale R, which is roughly 103.5 times larger than Planck length lP =
√
~G, defines

a fundamental length scale in TGD. The challenge is to predict the value of Planck length√
~G. The outcome was an identification of a formula for R2/~G predicting that the magnitude

of Kähler coupling strength αK is near to fine structure constant in electron length scale (for
ordinary value of Planck constant should be added here).

2. The emergence of the parton level formulation of TGD finally demonstrated that G actually
appears in the fundamental parton level formulation of TGD as a fundamental constant char-
acterizing the M4 part of CP2 Kähler gauge potential [20, 66] . This part is pure gauge in the
sense of standard gauge theory but necessary to guarantee that the theory does not reduce to
topological QFT. Quantum criticality requires that G remains invariant under p-adic coupling
constant evolution and is therefore predictable in principle at least.

3. The TGD view about coupling constant evolution [5] predicts the proportionality G ∝ L2
p, where

Lp is p-adic length scale. Together with input from p-adic mass calculations one ends up to
two conclusions. The correct conclusion was that Kähler coupling strength is equal to the fine
structure constant in the p-adic length scale associated with Mersenne prime p = M127 = 2127−1
assignable to electron [5] . I have considered also the possibility that αK would be equal to
electro-weak U(1) coupling in this scale.

4. The additional - wrong- conclusion was that gravitons must always correspond to the p-adic
prime M127 since G would otherwise vary as function of p-adic length scale. As a matter fact,
the question was for years whether it is G or g2

K which remains invariant under p-adic coupling
constant evolution. I found both options unsatisfactory until I realized that RG invariance is
possible for both g2

K and G! The point is that the exponent of the Kähler action associated with
the piece of CP2 type vacuum extremal assignable with the elementary particle is exponentially
sensitive to the volume of this piece and logarithmic dependence on the volume fraction is enough
to compensate the L2

p ∝ p proportionality of G and thus guarantee the constancy of G.

The explanation for the small value of the gravitational coupling strength serves as a test for the
proposed picture. The exchange of ordinary gauge boson involves the exchange of single CP2 type
extremal giving the exponent of Kähler action compensated by state normalization. In the case of
graviton exchange two wormhole contacts are exchanged and this gives second power for the exponent
of Kähler action which is not compensated. It would be this additional exponent that would give rise
to the huge reduction of gravitational coupling strength from the naive estimate G ∼ L2

p.
Gravitons are obviously not the only stringy states. For instance, one obtains spin 1 states when

the ends of string correspond to gauge boson and Higgs. Also non-vanishing electro-weak and color
quantum numbers are possible and stringy states couple to elementary partons via standard couplings
in this case. TGD based model for nuclei as nuclear strings having length of order L(127) [82] suggests
that the strings with light M127 quark and anti-quark at their ends identifiable as companions of the
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ordinary graviton are responsible for the strong nuclear force instead of exchanges of ordinary mesons
or color van der Waals forces.

Also the TGD based model of high Tc super-conductivity involves stringy states connecting the
space-time sheets associated with the electrons of the exotic Cooper pair [16, 17] . Thus stringy states
would play a key role in nuclear and condensed matter physics, which means a profound departure
from stringy wisdom, and breakdown of the standard reductionistic picture.

Spectrum of non-stringy states

The 1-throat character of fermions is consistent with the generation-genus correspondence. The 2-
throat character of bosons predicts that bosons are characterized by the genera (g1, g2) of the wormhole
throats. Note that the interpretation of fundamental fermions as wormhole contacts with second throat
identified as a Fock vacuum is excluded.

The general bosonic wave-function would be expressible as a matrix Mg1,g2
and ordinary gauge

bosons would correspond to a diagonal matrix Mg1,g2 = δg1,g2 as required by the absence of neutral
flavor changing currents (say gluons transforming quark genera to each other). 8 new gauge bosons are
predicted if one allows all 3× 3 matrices with complex entries orthonormalized with respect to trace
meaning additional dynamical SU(3) symmetry. Ordinary gauge bosons would be SU(3) singlets in
this sense. The existing bounds on flavor changing neutral currents give bounds on the masses of the
boson octet. The 2-throat character of bosons should relate to the low value T = 1/n � 1 for the
p-adic temperature of gauge bosons as contrasted to T = 1 for fermions.

If one forgets the complications due to the stringy states (including graviton), the spectrum of
elementary fermions and bosons is amazingly simple and almost reduces to the spectrum of standard
model. In the fermionic sector one would have fermions of standard model. By simple counting leptonic
wormhole throat could carry 23 = 8 states corresponding to 2 polarization states, 2 charge states, and
sign of lepton number giving 8+8=16 states altogether. Taking into account phase conjugates gives
16+16=32 states.

In the non-stringy boson sector one would have bound states of fermions and phase conjugate
fermions. Since only two polarization states are allowed for massless states, one obtains (2 + 1) ×
(3 + 1) = 12 states plus phase conjugates giving 12+12=24 states. The addition of color singlet
states for quarks gives 48 gauge bosons with vanishing fermion number and color quantum numbers.
Besides 12 electro-weak bosons and their 12 phase conjugates there are 12 exotic bosons and their 12
phase conjugates. For the exotic bosons the couplings to quarks and leptons are determined by the
orthogonality of the coupling matrices of ordinary and boson states. For exotic counterparts of W
bosons and Higgs the sign of the coupling to quarks is opposite. For photon and Z0 also the relative
magnitudes of the couplings to quarks must change. Altogether this makes 48+16+16=80 states.
Gluons would result as color octet states. Family replication would extend each elementary boson
state into SU(3) octet and singlet and elementary fermion states into SU(3) triplets.

What about light-like boundaries and macroscopic wormhole contacts?

Light-like boundaries of the space-time sheet as also wormhole throats can have macroscopic size and
can carry free many-fermion states but not elementary bosons. Number theoretic braids and anyons
might be assignable to these structures. Deformations of cosmic strings to magnetic flux tubes with
a light-like outer boundary are especially interesting in this respect.

If the ends of a string like object move with light velocity as implied by the usual stringy boundary
conditions they indeed define light-like 3-surfaces. Many-fermion states could be assigned at the
ends of string. One could also connect in pairwise manner the ends of two time-like strings having
opposite time orientation using two space-like strings so that the analog of boson state consisting
of two wormhole contacts and analogous to graviton would result. ”Wormhole throats” could have
arbitrarily long distance in M4.

Wormhole contacts can be regarded as slightly deformed CP2 type extremals only if the size of M4

projection is not larger than CP2 size. The natural question is whether one can construct macroscopic
wormhole contacts at all.

1. The throats of wormhole contacts cannot belong to vacuum extremals. One might however hope
that small deformations of macrosopic vacuum extremals could yield non-vacuum wormhole
contacts of macroscopic size.
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2. A large class of macroscopic wormhole contacts which are vacuum extremals consists of surfaces
of form X2

1 ×X2
2 ⊂ (M1 × Y 2)×E3, where Y 2 is Lagrangian manifold of CP2 (induced Kähler

form vanishes) and M4 = M1 × E3 represents decomposition of M1 to time-like and space-like
sub-spaces. X2

2 is a stationary surface of E3. Both X2
1 ⊂M1 × CP2 and X2

2 have an Euclidian
signature of metric except at light-like boundaries X1

a ×X2
2 and X1

b ×X2
2 defined by ends of X2

1

defining the throats of the wormhole contact.

3. This kind of vacuum extremals could define an extremely general class of macroscopic wormhole
contacts as their deformations. These wormhole contacts describe an interaction of wormhole
throats regarded as closed strings as is clear from the fact that X2 can be visualized as an analog
of closed string world sheet X2

1 in M1 × Y 2 describing a reaction leading from a state with a
given number of incoming closed strings to a state with a given number of outgoing closed strings
which correspond to wormhole throats at the two space-time sheets involved.

If one accepts the hierarchy of Planck constants [30] leading to the generalization of the notion
of imbedding space, the identification of anyonic phases in terms of macroscopic light-like surfaces
emerges naturally. In this kind of states large fermion numbers are possible. Dark matter would
correspond to this kind of phases and ”partonic” 2-surfaces could have even astrophysical size. Also
black holes can be identified as dark matter at light-like 3-surfaces analogous to black hole horizons
and possessing gigantic value of Planck constant [66] .

5.3.2 New view about the role of Higgs boson in massivation

The proposed identifications challenge the standard model view about particle massivation.

1. The standard model inspired interpretation would be that Higgs vacuum expectation associ-
ated with the coherent state of neutral Higgs wormhole contacts generates gauge boson mass.
Higgs could not however contribute to fermion mass since Higgs condensate cannot accompany
fermionic space-time sheets. Fermionic mass would be solely to p-adic thermodynamics. This
assumption is consistent with experimental facts but means asymmetry between fermions and
bosons.

2. The alternative interpretation inspired by p-adic thermodynamics. Besides the thermodynam-
ical contribution to the particle mass there can be a small contribution from the ground state
conformal weight unless this weight is not negative integer. Gauge boson mass would corre-
spond to the ground state conformal weight present in both fermionic and bosonic states and
in the case of gauge bosons this contribution would dominate due to the small value of p-adic
temperature. For fermions p-adic thermodynamics for super Virasoro algebra would give the
dominating contribution to the mass. Higgs vacuum expectation value would be proportional to
the square root of ground state conformal weight for the simple reason that it is the only natural
dimensional parameter available. Therefore the causal relation between Higgs and massivation
would have been misunderstood in standard model inspired framework. As will be found, the
generalized eigen values of the modified Dirac operator having dimension of mass have a natural
interpretation as square roots of ground state conformal weight and eigenvalues reflect directly
the dynamics of Kähler action.

3. The remaining problem is to understand how the negative value of the ground state conformal
weight emerges. This negative conformal weight compensated by the action of Super Virasoro
generators is necessary for the success of p-adic mass calculations. Also this problem finds a nat-
ural solution. The generalized eigenvalues of the modified Dirac operator are purely imaginary if
the effective metric associated with the modified Dirac operator has Euclidian signature. Ground
state conformal would be negative and if it is not integer, an effective Higgs contribution to the
mass squared is implied. For fermions the deviation from negative integer would be small. Hence
p-adic thermodynamics is able to describe the massivation without the introduction of coupling
to Higgs, which in TGD framework would be necessarily only a phenomenological description.

5.3.3 General mass formulas

In the following general view about p-adic mass formulas and related problems is discussed.
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Mass squared as a thermal expectation of super Kac-Moody conformal weight

The general view about particle massivation is based on the generalized coset construction allowing
to understand the p-adic thermal contribution to mass squared as a thermal expectation value of the
conformal weight for super Kac-Moody Virasoro algebra (SKMV ) or equivalently super-symplectic
Virasoro algebra (SSV ). Conformal invariance holds true only for the generators of the differences
of SKMV and SSV generators. In the case of SSV and SKMV only the generators Ln, n > 0,
annihilate the physical states. Obviously the actions of super-symplectic Virasoro (SSV) generators
and Super Kac-Moody Virasoro generators on physical states are identical. The interpretation is in
terms of Equivalence Principle. p-Adic mass expectation value is same irrespective of whether it is
calculated for the excitations created by SSV or KKMV generators and p-adic mass calculations are
consisted with super-conformal invariance.

1. Super-Kac Moody conformal weights must be negative for elementary fermions and this can be
understood if the ground state conformal weight corresponds to the square of the imaginary
eigenvalue of the modified Dirac operator having dimensions of mass. If the value of ground
state conformal weight is not negative integer, a contribution to mass squared analogous to
Higgs expectation is obtained.

2. Massless state is thermalized with respect to SKMV (or SSV ) with thermal excitations created
by generators Ln, n > 0.

Under what conditions conformal weight is additive

The question whether four- momentum or conformal weight is additive in p-adic mass calculations
becomes acute in hadronic mass calculations. Only the detailed understanding of quantum TGD at
partonic level allowed to understand the situation. One can consider three options.

1. Conformal weight and thus mass squared is additive only inside the regions of X3
l , which corre-

spond to non-vanishing of induced Kähler magnetic field since these behave effectively as separate
3-surfaces as far as eigenmodes of the modified Dirac operator are considered. The spectrum
of the ground state conformal weights is indeed different for these regions in the general case.
The four-momenta associated with different regions would be additive. This makes sense since
the tangent space of X4(X3

l ) contains at each point of X3
l a subspace M2(x)) ⊂ M4 defining

the plane of non-physical polarizations and the natural interpretation is that four-momentum
is in this plane. Hence the problem of original mass calculations forcing to assign all partonic
four-momenta to a fixed plane M2 is avoided.

2. If assigns independent translational degrees of freedom only to disjoint partonic 2-surfaces, a
separate mass formula for each X2

i would result and four-momenta would be additive:

M2
i =

∑
i

L0i(SKM) . (5.3.1)

Here L0i(SKM) contains a CP2 cm term giving the CP2 contribution to the mass squared
known once the spinorial partial waves associated with super generators used to construct the
state are known. Also vacuum conformal weight is included.

3. At the other extreme one has the option is based on the assignment of the mass squared with
the total cm. This option looked the only reasonable one for 15 years ago. This would give

M2 = (
∑
i

pi)
2 =

∑
i

M2
i + 2

∑
i 6=j

pi · pj = −
∑
i

L0i(SKM) .

(5.3.2)
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The additivity of mass squared is strong condition and p-adic mass calculations for hadrons
suggest that it holds true for quarks of low lying hadrons. For this option the decomposition of
the net four momentum to a sum of individual momenta can be regarded as subjective unless
there is a manner to measure the individual masses.

Mass formula for bound states of partons

The coefficient of proportionality between mass squared and conformal weight can be deduced from
the observation that the mass squared values for CP2 Dirac operator correspond to definite values of
conformal weight in p-adic mass calculations. It is indeed possible to assign to partonic 2-surface X2

CP2 partial waves correlating strongly with the net electro-weak quantum numbers of the parton so
that the assignment of ground state conformal weight to CP2 partial waves makes sense. In the case
of M4 degrees of freedom it is not possible to talk about momentum eigen states since translations
take parton out of δH+ so that momentum must be assigned with the tip of the light-cone containing
the particle.

The additivity of conformal weight means additivity of mass squared at parton level and this has
been indeed used in p-adic mass calculations. This implies the conditions

(
∑
i

pi)
2 =

∑
i

m2
i (5.3.3)

The assumption p2
i = m2

i makes sense only for massless partons moving collinearly. In the QCD based
model of hadrons only longitudinal momenta and transverse momentum squared are used as labels of
parton states, which would suggest that one has

p2
i,|| = m2

i ,

−
∑
i

p2
i,⊥ + 2

∑
i,j

pi · pj = 0 . (5.3.4)

The masses would be reduced in bound states: m2
i → m2

i − (p2
T )i. This could explain why massive

quarks can behave as nearly massless quarks inside hadrons.

5.4 Von Neumann algebras and TGD

The work with TGD inspired model [95] for topological quantum computation [50] led to the realization
that von Neumann algebras [81, 132, 113, 76] , in particular so called hyper-finite factors of type II1 [96]
, seem to provide the mathematics needed to develop a more explicit view about the construction
of S-matrix. In this chapter I will discuss various aspects of type II1 factors and their physical
interpretation in TGD framework. The lecture notes of R. Longo [105] give a concise and readable
summary about the basic definitions and results related to von Neumann algebras and I have used
this material freely in this chapter.

5.4.1 Philosophical ideas behind von Neumann algebras

The goal of von Neumann was to generalize the algebra of quantum mechanical observables. The basic
ideas behind the von Neumann algebra are dictated by physics. The algebra elements allow Hermitian
conjugation ∗ and observables correspond to Hermitian operators. Any measurable function f(A) of
operator A belongs to the algebra and one can say that non-commutative measure theory is in question.

The predictions of quantum theory are expressible in terms of traces of observables. Density
matrix defining expectations of observables in ensemble is the basic example. The highly non-trivial
requirement of von Neumann was that identical a priori probabilities for a detection of states of infinite
state system must make sense. Since quantum mechanical expectation values are expressible in terms
of operator traces, this requires that unit operator has unit trace: tr(Id) = 1.

In the finite-dimensional case it is easy to build observables out of minimal projections to 1-
dimensional eigen spaces of observables. For infinite-dimensional case the probably of projection to



5.4. Von Neumann algebras and TGD 219

1-dimensional sub-space vanishes if each state is equally probable. The notion of observable must thus
be modified by excluding 1-dimensional minimal projections, and allow only projections for which the
trace would be infinite using the straightforward generalization of the matrix algebra trace as the
dimension of the projection.

The non-trivial implication of the fact that traces of projections are never larger than one is
that the eigen spaces of the density matrix must be infinite-dimensional for non-vanishing projection
probabilities. Quantum measurements can lead with a finite probability only to mixed states with a
density matrix which is projection operator to infinite-dimensional subspace. The simple von Neumann
algebras for which unit operator has unit trace are known as factors of type II1 [96] .

The definitions of adopted by von Neumann allow however more general algebras. Type In algebras
correspond to finite-dimensional matrix algebras with finite traces whereas I∞ associated with a
separable infinite-dimensional Hilbert space does not allow bounded traces. For algebras of type III
non-trivial traces are always infinite and the notion of trace becomes useless.

5.4.2 Von Neumann, Dirac, and Feynman

The association of algebras of type I with the standard quantum mechanics allowed to unify matrix
mechanism with wave mechanics. Note however that the assumption about continuous momentum
state basis is in conflict with separability but the particle-in-box idealization allows to circumvent this
problem (the notion of space-time sheet brings the box in physics as something completely real).

Because of the finiteness of traces von Neumann regarded the factors of type II1 as fundamental
and factors of type III as pathological. The highly pragmatic and successful approach of Dirac [31]
based on the notion of delta function, plus the emergence of s [84] , the possibility to formulate the
notion of delta function rigorously in terms of distributions [95, 122] , and the emergence of path
integral approach [114] meant that von Neumann approach was forgotten by particle physicists.

Algebras of type II1 have emerged only much later in conformal and topological quantum field
theories [120, 136] allowing to deduce invariants of knots, links and 3-manifolds. Also algebraic
structures known as bi-algebras, Hopf algebras, and ribbon algebras [99] relate closely to type II1
factors. In topological quantum computation [50] based on braid groups [62] modular S-matrices they
play an especially important role.

In algebraic quantum field theory [34] defined in Minkowski space the algebras of observables
associated with bounded space-time regions correspond quite generally to the type III1 hyper-finite
factor [72, 17] .

5.4.3 Factors of type II1 and quantum TGD

For me personally the realization that TGD Universe is tailored for topological quantum computation
[95] led also to the realization that hyper-finite (ideal for numerical approximations) von Neumann
algebras of type II1 have a direct relevance for TGD.

The basic facts about hyper-finite von Neumann factors of type II1 suggest a more concrete view
about the general mathematical framework needed.

1. The effective 2-dimensionality of the construction of quantum states and configuration space
geometry in quantum TGD framework makes hyper-finite factors of type II1 very natural as
operator algebras of the state space. Indeed, the generators of conformal algebras, the gamma
matrices of the configuration space, and the modes of the induced spinor fields are labelled
by discrete labels. Hence the tangent space of the configuration space is a separable Hilbert
space and its Clifford algebra is a hyper-finite type II1 factor. Super-symmetry requires that
the bosonic algebra generated by configuration space Hamiltonians and the Clifford algebra of
configuration space both correspond to hyper-finite type II1 factors.

2. Four-momenta relate to the positions of tips of future and past directed light cones appearing
naturally in the construction of S-matrix. In fact, configuration space of 3-surfaces can be
regarded as union of big-bang/big crunch type configuration spaces obtained as a union of light-
cones parameterized by the positions of their tips. The algebras of observables associated with
bounded regions of M4 are hyper-finite and of type III1 in algebraic quantum field theory [72] .
The algebras of observables in the space spanned by the tips of these light-cones are not needed
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in the construction of S-matrix so that there are good hopes of avoiding infinities coming from
infinite traces.

3. Many-sheeted space-time concept forces to refine the notion of sub-system. Jones inclusions
N ⊂ M for factors of type II1 define in a generic manner to imbed interacting sub-systems
to a universal II1 factor which now naturally corresponds to the infinite Clifford algebra of
the tangent space of configuration space of 3-surfaces and contains interaction as M : N -
dimensional analog of tensor factor. Topological condensation of space-time sheet to a larger
space-time sheet, the formation of bound states by the generation of join along boundaries bonds,
interaction vertices in which space-time surface branches like a line of Feynman diagram: all
these situations might be described by Jones inclusion [5, 82] characterized by the Jones index
M : N assigning to the inclusion also a minimal conformal field theory and quantum group in
case of M : N < 4 and conformal theory with k = 1 Kac Moody for M : N = 4 [38] .

4. von Neumann’s somewhat artificial idea about identical a priori probabilities for states could
replaced with the finiteness requirement of quantum theory. Indeed, it is traces which produce
the infinities of quantum field theories. That M : N = 4 option is not realized physically as
quantum field theory (it would rather correspond to string model type theory characterized by
a Kac-Moody algebra instead of quantum group), could correspond to the fact that dimensional
regularization works only in D = 4 − ε. Dimensional regularization with space-time dimension
D = 4 − ε → 4 could be interpreted as the limit M : N → 4. M as an M : N -dimensional
N -module would provide a concrete model for a quantum space with non-integral dimension
as well as its Clifford algebra. An entire sequence of regularized theories corresponding to the
allowed values of M : N would be predicted.

5.4.4 Does quantum TGD emerge from local version of HFF?

There are reasons to hope that the entire quantum TGD emerges from a version of HFF made local
with respect to D ≤ 8 dimensional space H whose Clifford algebra Cl(H) raised to an infinite tensor
power defines the infinite-dimensional Clifford algebra. Bott periodicity meaning that Clifford algebras
satisfy the periodicity Cl(n+ k8) ≡ Cl(n)⊗Cl(8k)is an essential notion here [97, 30] . The points m
of Mk can be mapped to elements mkγk of the finite-dimensional Clifford algebra Cl(H) appearing
as an additional tensor factor in the localized version of the algebra.

The requirement that the local version of HFF is not isomorphic with HFF itself is highly non-
trivial. The only manner to achieve non-triviality is to multiply the algebra with a non-associative
tensor factor representing the space of hyper-octonions M8 identifiable as sub-space of complexi-
fied octonions with tangent space spanned by real unit and octonionic imaginary unit multiplied by
commuting imaginary unit (for a good review about properties of octonions see [52] ) .

Space-times could be regarded equivalently as surfaces in M8 or in M4 × CP2 and the dynam-
ics would reduce to associativity (hyper-quaternionicity) or co-associativity condition. It is rather
remarkable that CP2 forced by the standard model symmetries has also a purely number theoretic in-
terpretation as parameterizing hyper-quaternionic four-planes containing a preferred hyper-octonionic
imaginary unit defining hyper-complex structure in M8. Physically this choice corresponds to a choice
of Cartan algebra of Poincare algebra for which the system is at rest so that a connection with quantum
measurement theory is suggestive. Color group is identifiable as a subgroup of octonionic automor-
phism group G2 respecting this choice.

5.4.5 Quantum measurement theory with finite measurement resolution

Jones inclusions N ⊂M [5, 97] of these algebras lead to quantum measurement theory with a finite
measurement resolution characterized by N [97, 30] . Quantum Clifford algebraM/N interpreted as
N -module creates physical states modulo measurement resolution. Complex rays of the state space
resulting in the ordinary state function reduction are replaced by N -rays and the notions of unitarity,
hermiticity, and eigenvalue generalize [23, 30] .

Non-commutative physics would be interpreted in terms of a finite measurement resolution rather
than something emerging below Planck length scale. An important implication is that a finite mea-
surement sequence can never completely reduce quantum entanglement so that entire universe would
necessarily be an organic whole.
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At the level of conscious experience, the entanglement below measurement resolution would give
rise to a pool of shared and fused mental images giving rise to ”stereo consciousness” (say stereovision)
[51] so that contents of consciousness would not be something completely private as usually believed.
Also fuzzy logic emerges naturally since ordinary spinors are replaced by quantum spinors for which
the discrete spectrum of the eigenvalues of the moduli of its spinor components can be interpreted as
probabilities that corresponding belief is true is [18] [97] .

5.4.6 Cognitive consciousness, quantum computations, and Jones inclu-
sions

Large ~ phases provide good hopes of realizing topological quantum computation. There is an ad-
ditional new element. For quantum spinors state function reduction cannot be performed unless
quantum deformation parameter equals to q = 1. The reason is that the components of quantum
spinor do not commute: it is however possible to measure the commuting operators representing
moduli squared of the components giving the probabilities associated with ’true’ and ’false’. The uni-
versal eigenvalue spectrum for probabilities does not in general contain (1,0) so that quantum qbits
are inherently fuzzy. State function reduction would occur only after a transition to q=1 phase and
decoherence is not a problem as long as it does not induce this transition.

5.4.7 Fuzzy quantum logic and possible anomalies in the experimental data
for the EPR-Bohm experiment

The experimental data for EPR-Bohm experiment [7] excluding hidden variable interpretations of
quantum theory. What is less known that the experimental data indicates about possibility of an
anomaly challenging quantum mechanics [10] . The obvious question is whether this anomaly might
provide a test for the notion of fuzzy quantum logic inspired by the TGD based quantum measurement
theory with finite measurement resolution.

The experimental situation involves emission of two photons from spin zero system so that pho-
tons have opposite spins. What is measured are polarizations of the two photons with respect to
polarization axes which differ from standard choice of this axis by rotations around the axis of pho-
ton momentum characterized by angles α and β. The probabilities for observing polarizations (i, j),
where i, j is taken Z2 valued variable for a convenience of notation are Pij(α, β), are predicted to be
P00 = P11 = cos2(α− β)/2 and P01 = P10 = sin2(α− β)/2.

Consider now the discrepancies.

1. One has four identities Pi,i + Pi,i+1 = Pii + Pi+1,i = 1/2 having interpretation in terms of
probability conservation. Experimental data of [7] are not consistent with this prediction [1]
and this is identified as the anomaly.

2. The QM prediction E(α, β) =
∑
i(Pi,i − Pi,i+1) = cos(2(α − β) is not satisfied neither: the

maxima for the magnitude of E are scaled down by a factor ' .9. This deviation is not discussed
in [1] .

Both these findings raise the possibility that QM might not be consistent with the data. It turns
out that fuzzy quantum logic predicted by TGD and implying that the predictions for the probabilities
and correlation must be replaced by ensemble averages, can explain anomaly 2) but not anomaly a).
A ”mundane” explanation for anomaly 1) can be imagined [97] .

5.5 Hierarchy of Planck constants and the generalization of
the notion of imbedding space

In the following the recent view about structure of imbedding space forced by the quantization of
Planck constant is summarized. The question is whether it might be possible in some sense to replace
H or its Cartesian factors by their necessarily singular multiple coverings and factor spaces. One can
consider two options: either M4 or the causal diamond CD. The latter one is the more plausible
option from the point of view of WCW geometry.
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5.5.1 The evolution of physical ideas about hierarchy of Planck constants

The evolution of the physical ideas related to the hierarchy of Planck constants and dark matter as a
hierarchy of phases of matter with non-standard value of Planck constants was much faster than the
evolution of mathematical ideas and quite a number of applications have been developed during last
five years.

1. The starting point was the proposal of Nottale [27] that the orbits of inner planets correspond
to Bohr orbits with Planck constant ~gr = GMm/v0 and outer planets with Planck constant
~gr = 5GMm/v0, v0/c ' 2−11. The basic proposal [77, 63] was that ordinary matter condenses
around dark matter which is a phase of matter characterized by a non-standard value of Planck
constant whose value is gigantic for the space-time sheets mediating gravitational interaction.
The interpretation of these space-time sheets could be as magnetic flux quanta or as massless
extremals assignable to gravitons.

2. Ordinary particles possibly residing at these space-time sheet have enormous value of Compton
length meaning that the density of matter at these space-time sheets must be very slowly vary-
ing. The string tension of string like objects implies effective negative pressure characterizing
dark energy so that the interpretation in terms of dark energy might make sense [78] . TGD
predicted a one-parameter family of Robertson-Walker cosmologies with critical or over-critical
mass density and the ”pressure” associated with these cosmologies is negative.

3. The quantization of Planck constant does not make sense unless one modifies the view about
standard space-time is. Particles with different Planck constant must belong to different worlds
in the sense local interactions of particles with different values of ~ are not possible. This inspires
the idea about the book like structure of the imbedding space obtained by gluing almost copies
of H together along common ”back” and partially labeled by different values of Planck constant.

4. Darkness is a relative notion in this framework and due to the fact that particles at different
pages of the book like structure cannot appear in the same vertex of the generalized Feynman
diagram. The phase transitions in which partonic 2-surface X2 during its travel along X3

l leaks
to another page of book are however possible and change Planck constant. Particle (say photon
-) exchanges of this kind allow particles at different pages to interact. The interactions are
strongly constrained by charge fractionization and are essentially phase transitions involving
many particles. Classical interactions are also possible. It might be that we are actually ob-
serving dark matter via classical fields all the time and perhaps have even photographed it [89]
.

5. The realization that non-standard values of Planck constant give rise to charge and spin fraction-
ization and anyonization led to the precise identification of the prerequisites of anyonic phase.
If the partonic 2-surface, which can have even astrophysical size, surrounds the tip of CD, the
matter at the surface is anyonic and particles are confined at this surface. Dark matter could
be confined inside this kind of light-like 3-surfaces around which ordinary matter condenses. If
the radii of the basic pieces of these nearly spherical anyonic surfaces - glued to a connected
structure by flux tubes mediating gravitational interaction - are given by Bohr rules, the find-
ings of Nottale [27] can be understood. Dark matter would resemble to a high degree matter in
black holes replaced in TGD framework by light-like partonic 2-surfaces with a minimum size
of order Schwartschild radius rS of order scaled up Planck length lPl =

√
~grG = GM . Black

hole entropy is inversely proportional to ~ and predicted to be of order unity so that dramatic
modification of the picture about black holes is implied.

6. Perhaps the most fascinating applications are in biology. The anomalous behavior ionic currents
through cell membrane (low dissipation, quantal character, no change when the membrane is
replaced with artificial one) has a natural explanation in terms of dark supra currents. This
leads to a vision about how dark matter and phase transitions changing the value of Planck
constant could relate to the basic functions of cell, functioning of DNA and aminoacids, and to
the mysteries of bio-catalysis. This leads also a model for EEG interpreted as a communication
and control tool of magnetic body containing dark matter and using biological body as motor
instrument and sensory receptor. One especially amazing outcome is the emergence of genetic
code of vertebrates from the model of dark nuclei as nuclear strings [6, 89] , [6] .
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5.5.2 The most general option for the generalized imbedding space

Simple physical arguments pose constraints on the choice of the most general form of the imbedding
space.

1. The fundamental group of the space for which one constructs a non-singular covering space or
factor space should be non-trivial. This is certainly not possible for M4, CD, CP2, or H. One
can however construct singular covering spaces. The fixing of the quantization axes implies a
selection of the sub-space H4 = M2 × S2 ⊂ M4 × CP2, where S2 is geodesic sphere of CP2.
M̂4 = M4\M2 and ĈP 2 = CP2\S2 have fundamental group Z since the codimension of the
excluded sub-manifold is equal to two and homotopically the situation is like that for a punctured
plane. The exclusion of these sub-manifolds defined by the choice of quantization axes could
naturally give rise to the desired situation.

2. CP2 allows two geodesic spheres which left invariant by U(2 resp. SO(3). The first one is homo-
logically non-trivial. For homologically non-trivial geodesic sphere H4 = M2 × S2 represents a
straight cosmic string which is non-vacuum extremal of Kähler action (not necessarily preferred
extremal). One can argue that the many-valuedness of ~ is un-acceptable for non-vacuum ex-
tremals so that only homologically trivial geodesic sphere S2 would be acceptable. One could go
even further. If the extremals in M2×CP2 can be preferred non-vacuum extremals, the singular
coverings of M4 are not possible. Therefore only the singular coverings and factor spaces of
CP2 over the homologically trivial geodesic sphere S2 would be possible. This however looks a
non-physical outcome.

(a) The situation changes if the extremals of type M2×Y 2, Y 2 a holomorphic surface of CP3,
fail to be hyperquaternionic. The tangent space M2 represents hypercomplex sub-space
and the product of the modified gamma matrices associated with the tangent spaces of Y 2

should belong to M2 algebra. This need not be the case in general.

(b) The situation changes also if one reinterprets the gluing procedure by introducing scaled
up coordinates for M4 so that metric is continuous at M2 × CP2 but CDs with different
size have different sizes differing by the ratio of Planck constants and would thus have only
piece of lower or upper boundary in common.

3. For the more general option one would have four different options corresponding to the Cartesian
products of singular coverings and factor spaces. These options can be denoted by C−C, C−F ,
F − C, and F − F , where C (F ) signifies for covering (factor space) and first (second) letter
signifies for CD (CP2) and correspond to the spaces (ĈD×̂Ga) × ( ˆCP2×̂Gb), (ĈD×̂Ga) ×

ˆCP2/Gb, ĈD/Ga × ( ˆCP2×̂Gb), and ĈD/Ga × ˆCP2/Gb.

4. The groups Gi could correspond to cyclic groups Zn. One can also consider an extension by
replacing M2 and S2 with its orbit under more general group G (say tedrahedral, octahedral, or
icosahedral group). One expects that the discrete subgroups of SU(2) emerge naturally in this
framework if one allows the action of these groups on the singular sub-manifolds M2 or S2. This
would replace the singular manifold with a set of its rotated copies in the case that the subgroups
have genuinely 3-dimensional action (the subgroups which corresponds to exceptional groups in
the ADE correspondence). For instance, in the case of M2 the quantization axes for angular
momentum would be replaced by the set of quantization axes going through the vertices of
tedrahedron, octahedron, or icosahedron. This would bring non-commutative homotopy groups
into the picture in a natural manner.

5.5.3 About the phase transitions changing Planck constant

There are several non-trivial questions related to the details of the gluing procedure and phase tran-
sition as motion of partonic 2-surface from one sector of the imbedding space to another one.

1. How the gluing of copies of imbedding space at M2 × CP2 takes place? It would seem that the
covariant metric of CD factor proportional to ~2 must be discontinuous at the singular manifold
since only in this manner the idea about different scaling factor of CD metric can make sense.
On the other hand, one can always scale the M4 coordinates so that the metric is continuous
but the sizes of CDs with different Planck constants differ by the ratio of the Planck constants.
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2. One might worry whether the phase transition changing Planck constant means an instantaneous
change of the size of partonic 2-surface in M4 degrees of freedom. This is not the case. Light-
likeness in M2 × S2 makes sense only for surfaces X1 ×D2 ⊂ M2 × S2, where X1 is light-like
geodesic. The requirement that the partonic 2-surface X2 moving from one sector of H to
another one is light-like at M2 × S2 irrespective of the value of Planck constant requires that
X2 has single point of M2 as M2 projection. Hence no sudden change of the size X2 occurs.

3. A natural question is whether the phase transition changing the value of Planck constant can
occur purely classically or whether it is analogous to quantum tunneling. Classical non-vacuum
extremals of Chern-Simons action have two-dimensional CP2 projection to homologically non-
trivial geodesic sphere S2

I . The deformation of the entire S2
I to homologically trivial geodesic

sphere S2
II is not possible so that only combinations of partonic 2-surfaces with vanishing total

homology charge (Kähler magnetic charge) can in principle move from sector to another one,
and this process involves fusion of these 2-surfaces such that CP2 projection becomes single
homologically trivial 2-surface. A piece of a non-trivial geodesic sphere S2

I of CP2 can be
deformed to that of S2

II using 2-dimensional homotopy flattening the piece of S2 to curve. If this
homotopy cannot be chosen to be light-like, the phase transitions changing Planck constant take
place only via quantum tunnelling. Obviously the notions of light-like homotopies (cobordisms)
are very relevant for the understanding of phase transitions changing Planck constant.

5.5.4 How one could fix the spectrum of Planck constants?

The question how the observed Planck constant relates to the integers na and nb defining the covering
and factors spaces, is far from trivial and I have considered several options. The basic physical inputs
are the condition that scaling of Planck constant must correspond to the scaling of the metric of CD
(that is Compton lengths) on one hand and the scaling of the gauge coupling strength g2/4π~ on the
other hand.

1. One can assign to Planck constant to both CD and CP2 by assuming that it appears in the
commutation relations of corresponding symmetry algebras. Algebraist would argue that Planck
constants ~(CD) and ~(CP2) must define a homomorphism respecting multiplication and divi-
sion (when possible) by Gi. This requires r(X) = ~(X)~0 = n for covering and r(X) = 1/n for
factor space or vice versa.

2. If one assumes that ~2(X), X = M4, CP2 corresponds to the scaling of the covariant metric
tensor gij and performs an over-all scaling of H-metric allowed by the Weyl invariance of Kähler
action by dividing metric with ~2(CP2), one obtains the scaling of M4 covariant metric by
r2 ≡ ~2/~2

0 = ~2(M4)/~2(CP2) whereas CP2 metric is not scaled at all.

3. The condition that ~ scales as na is guaranteed if one has ~(CD) = na~0. This does not fix
the dependence of ~(CP2) on nb and one could have ~(CP2) = nb~0 or ~(CP2) = ~0/nb. The
intuitive picture is that nb- fold covering gives in good approximation rise to nanb sheets and
multiplies YM action action by nanb which is equivalent with the ~ = nanb~0 if one effectively
compresses the covering to CD×CP2. One would have ~(CP2) = ~0/nb and ~ = nanb~0. Note
that the descriptions using ordinary Planck constant and coverings and scaled Planck constant
but contracting the covering would be alternative descriptions.

This gives the following formulas r ≡ ~/~0 = r(M4)/r(CP2) in various cases.

C − C F − C C − F F − F

r nanb
na
nb

nb
na

1
nanb

5.5.5 Preferred values of Planck constants

Number theoretic considerations favor the hypothesis that the integers corresponding to Fermat
polygons constructible using only ruler and compass and given as products nF = 2k

∏
s Fs, where

Fs = 22s + 1 are distinct Fermat primes, are favored. The reason would be that quantum phase
q = exp(iπ/n) is in this case expressible using only iterated square root operation by starting from
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rationals. The known Fermat primes correspond to s = 0, 1, 2, 3, 4 so that the hypothesis is very
strong and predicts that p-adic length scales have satellite length scales given as multiples of nF of
fundamental p-adic length scale. nF = 211 corresponds in TGD framework to a fundamental constant
expressible as a combination of Kähler coupling strength, CP2 radius and Planck length appearing in
the expression for the tension of cosmic strings, and the powers of 211 seem to be especially favored
as values of na in living matter [27] .

5.5.6 How Planck constants are visible in Kähler action?

~(M4) and ~(CP2) appear in the commutation and anticommutation relations of various supercon-
formal algebras. Only the ratio of M4 and CP2 Planck constants appears in Kähler action and is
due to the fact that the M4 and CP2 metrics of the imbedding space sector with given values of
Planck constants are proportional to the corresponding Planck constants. This implies that Kähler
function codes for radiative corrections to the classical action, which makes possible to consider the
possibility that higher order radiative corrections to functional integral vanish as one might expect
at quantum criticality. For a given p-adic length scale space-time sheets with all allowed values of
Planck constants are possible. Hence the spectrum of quantum critical fluctuations could in the ideal
case correspond to the spectrum of ~ coding for the scaled up values of Compton lengths and other
quantal lengths and times. If so, large ~ phases could be crucial for understanding of quantum critical
superconductors, in particular high Tc superconductors.

5.5.7 Could the dynamics of Kähler action predict the hierarchy of Planck
constants?

The original justification for the hierarchy of Planck constants came from the indications that Planck
constant could have large values in both astrophysical systems involving dark matter and also in
biology. The realization of the hierarchy in terms of the singular coverings and possibly also factor
spaces of CD and CP2 emerged from consistency conditions. The formula for the Planck constant
involves heuristic guess work and physical plausibility arguments. There are good arguments in
favor of the hypothesis that only coverings are possible. Only a finite number of pages of the Big
Book correspond to a given value of Planck constant, biological evolution corresponds to a gradual
dispersion to the pages of the Big Book with larger Planck constant, and a connection with the
hierarchy of infinite primes and p-adicization program based on the mathematical realization of finite
measurement resolution emerges.

One can however ask whether this hierarchy could emerge directly from the basic quantum TGD
rather than as a separate hypothesis. The following arguments suggest that this might be possible. One
finds also a precise geometric interpretation of preferred extremal property interpreted as criticality
in zero energy ontology.

1-1 correspondence between canonical momentum densities and time derivatives fails for
Kähler action

The basic motivation for the geometrization program was the observation that canonical quantization
for TGD fails. To see what is involved let us try to perform a canonical quantization in zero energy
ontology at the 3-D surfaces located at the light-like boundaries of CD × CP2.

1. In canonical quantization canonical momentum densities π0
k ≡ πk = ∂LK/∂(∂0h

k), where ∂0h
k

denotes the time derivative of imbedding space coordinate, are the physically natural quantities
in terms of which to fix the initial values: once their value distribution is fixed also conserved
charges are fixed. Also the weak form of electric-magnetic duality given by J03√g4 = 4παKJ12

and a mild generalization of this condition to be discussed below can be interpreted as a manner
to fix the values of conserved gauge charges (not Noether charges) to their quantized values
since Kähler magnetic flux equals to the integer giving the homology class of the (wormhole)
throat. This condition alone need not characterize criticality, which requires an infinite number
of deformations of X4 for which the second variation of the Kähler action vanishes and implies
infinite number conserved charges. This in fact gives hopes of replacing πk with these conserved
Noether charges.
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2. Canonical quantization requires that ∂0h
k in the energy is expressed in terms of πk. The equation

defining πk in terms of ∂0h
k is however highly non-linear although algebraic. By taking squares

the equations reduces to equations for rational functions of ∂0h
k. ∂0h

k appears in contravariant
and covariant metric at most quadratically and in the induced Kähler electric field linearly and
by multplying the equations by det(g4)3 one can transform the equations to a polynomial form
so that in principle ∂0h

k can obtained as a solution of polynomial equations.

3. One can always eliminate one half of the coordinates by choosing 4 imbedding space coordinates
as the coordinates of the spacetime surface so that the initial value conditions reduce to those for
the canonical momentum densities associated with the remaining four coordinates. For instance,
for space-time surfaces representable as map M4 → CP2 M

4 coordinates are natural and the
time derivatives ∂0s

k of CP2 coordinates are multivalued. One would obtain four polynomial
equations with ∂0s

k as unknowns. In regions where CP2 projection is 4-dimensional -in particular
for the deformations of CP2 vacuum extremals the natural coordinates are CP2 coordinates and
one can regard ∂0m

k as unknows. For the deformations of cosmic strings, which are of form
X4 = X2 × Y 2 ⊂M4 × CP2, one can use coordinates of M2 × S2, where S2 is geodesic sphere
as natural coordinates and regard as unknowns E2 coordinates and remaining CP2 coordinates.

4. One can imagine solving one of the four polynomials equations for time derivaties in terms of
other obtaining N roots. Then one would substitute these roots to the remaining 3 conditions
to obtain algebraic equations from which one solves then second variable. Obviously situa-
tion is very complex without additional symmetries. The criticality of the preferred extremals
might however give additional conditions allowing simplifications. The reasons for giving up the
canonical quantization program was following. For the vacuum extremals of Kähler action πk
are however identically vanishing and this means that there is an infinite number of value distri-
butions for ∂0h

k. For small deformations of vacuum extremals one might however hope a finite
number of solutions to the conditions and thus finite number of space-time surfaces carrying
same conserved charges.

If one assumes that physics is characterized by the values of the conserved charges one must treat
the the many-valuedness of ∂0h

k. The most obvious guess is that one should replace the space of
space-like 4-surfaces corresponding to different roots ∂0h

k = F k(πl) with four-surfaces in the covering
space of CD × CP2 corresponding to different branches of the many-valued function ∂0h

k = F (πl)
co-inciding at the ends of CD.

Do the coverings forces by the many-valuedness of ∂0h
k correspond to the coverings

associated with the hierarchy of Planck constants?

The obvious question is whether this covering space actually corresponds to the covering spaces asso-
ciated with the hierarchy of Planck constants. This would conform with quantum classical correspon-
dence. The hierarchy of Planck constants and hierarchy of covering spaces was introduced to cure
the failure of the perturbation theory at quantum level. At classical level the multivaluedness of ∂0h

k

means a failure of perturbative canonical quantization and forces the introduction of the covering
spaces. The interpretation would be that when the density of matter becomes critical the space-time
surface splits to several branches so that the density at each branches is sub-critical. It is of course not
at all obvious whether the proposed structure of the Big Book is really consistent with this hypothesis
and one also consider modifications of this structure if necessary. The manner to proceed is by making
questions.

1. The proposed picture would give only single integer characterizing the covering. Two integers
assignable to CD and CP2 degrees of freedom are however needed. How these two coverings
could emerge?

(a) One should fix also the values of πnk = ∂LK/∂h
k
n, where n refers to space-like normal

coordinate at the wormhole throats. If one requires that charges do not flow between
regions with different signatures of the metric the natural condition is πnk = 0 and allows
also multi-valued solution. Since wormhole throats carry magnetic charge and since weak
form of electric-magnetic duality is assumed, one can assume that CP2 projection is four-
dimensional so that one can use CP2 coordinates and regard ∂0m

k as un-knows. The basic
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idea about topological condensation in turn suggests that M4 projection can be assumed
to be 4-D inside space-like 3-surfaces so that here ∂0s

k are the unknowns. At partonic 2-
surfaces one would have conditions for both π0

k and πnk . One might hope that the numbers
of solutions are finite for preferred extremals because of their symmetries and given by na
for ∂0m

k and by nb for ∂0s
k. The optimistic guess is that na and nb corresponds to the

numbers of sheets for singular coverings of CD and CP2. The covering could be visualized
as replacement of space-time surfaces with space-time surfaces which have nanb branches.
nb branches would degenerate to single branch at the ends of diagrams of the generaled
Feynman graph and na branches would degenerate to single one at wormhole throats.

(b) This picture is not quite correct yet. The fixing of π0
k and πnk should relate closely to the

effective 2-dimensionality as an additional condition perhaps crucial for criticality. One
could argue that both π0

k and πnk must be fixed at X3 and X3
l in order to effectively bring

in dynamics in two directions so that X3 could be interpreted as a an orbit of partonic
2-surface in space-like direction and X3

l as its orbit in light-like direction. The additional
conditions could be seen as gauge conditions made possible by symplectic and Kac-Moody
type conformal symmetries. The conditions for πk0 would give nb branches in CP2 degrees
of freedom and the conditions for πnk would split each of these branches to na branches.

(c) The existence of these two kinds of conserved charges (possibly vanishing for πnk ) could
relate also very closely to the slicing of the space-time sheets by string world sheets and
partonic 2-surfaces.

2. Should one then treat these branches as separate space-time surfaces or as a single space-time
surface? The treatment as a single surface seems to be the correct thing to do. Classically the
conserved changes would be nanb times larger than for single branch. Kähler action need not
(but could!) be same for different branches but the total action is nanb times the average action
and this effectively corresponds to the replacement of the ~0/g

2
K factor of the action with ~/g2

K ,
r ≡ ~/~0 = nanb. Since the conserved quantum charges are proportional to ~ one could argue
that r = nanb tells only that the charge conserved charge is nanb times larger than without
multi-valuedness. ~ would be only effectively nanb fold. This is of course poor man’s argument
but might catch something essential about the situation.

3. How could one interpret the condition J03√g4 = 4παKJ12 and its generalization to be discussed
below in this framework? The first observation is that the total Kähler electric charge is by
αK ∝ 1/(nanb) same always. The interpretation would be in terms of charge fractionization
meaning that each branch would carry Kähler electric charge QK = ngK/nanb. I have indeed
suggested explanation of charge fractionization and quantum Hall effect based on this picture.

4. The vision about the hierarchy of Planck constants involves also assumptions about imbedding
space metric. The assumption that the M4 covariant metric is proportional to ~2 follows from
the physical idea about ~ scaling of quantum lengths as what Compton length is. One can
always introduce scaled M4 coordinates bringing M4 metric into the standard form by scaling
up the M4 size of CD. It is not clear whether the scaling up of CD size follows automatically
from the proposed scenario. The basic question is why the M4 size scale of the critical extremals
must scale like nanb? This should somehow relate to the weak self-duality conditions implying
that Kähler field at each branch is reduced by a factor 1/r at each branch. Field equations
should posses a dynamical symmetry involving the scaling of CD by integer k and J0β√g4 and
Jnβ
√
g4 by 1/k. The scaling of CD should be due to the scaling up of the M4 time interval

during which the branched light-like 3-surface returns back to a non-branched one.

5. The proposed view about hierarchy of Planck constants is that the singular coverings reduce
to single-sheeted coverings at M2 ⊂ M4 for CD and to S2 ⊂ CP2 for CP2. Here S2 is any
homologically trivial geodesic sphere of CP2 and has vanishing Kähler form. Weak self-duality
condition is indeed consistent with any value of ~ and impies that the vacuum property for the
partonic 2-surface implies vacuum property for the entire space-time sheet as holography indeed
requires. This condition however generalizes. In weak self-duality conditions the value of ~ is
free for any 2-D Lagrangian sub-manifold of CP2.

The branching along M2 would mean that the branches of preferred extremals always collapse
to single branch when their M4 projection belongs to M2. Magnetically charged light-light-like
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throats cannot have M4 projection in M2 so that self-duality conditions for different values of
~ do not lead to inconsistencies. For spacelike 3-surfaces at the boundaries of CD the condition
would mean that the M4 projection becomes light-like geodesic. Straight cosmic strings would
have M2 as M4 projection. Also CP2 type vacuum extremals for which the random light-
like projection in M4 belongs to M2 would represent this of situation. One can ask whether
the degeneration of branches actually takes place along any string like object X2 × Y 2, where
X2 defines a minimal surface in M4. For these the weak self-duality condition would imply
~ =∞ at the ends of the string. It is very plausible that string like objects feed their magnetic
fluxes to larger space-times sheets through wormhole contacts so that these conditions are not
encountered.

Connection with the criticality of preferred extremals

Also a connection with quantum criticality and the criticality of the preferred extremals suggests
itself. Criticality for the preferred extremals must be a property of space-like 3-surfaces and light-
like 3-surfaces with degenerate 4-metric and the degeneration of the nanb branches of the space-time
surface at the its ends and at wormhole throats is exactly what happens at criticality. For instance,
in catastrophe theory roots of the polynomial equation giving extrema of a potential as function of
control parameters co-incide at criticality. If this picture is correct the hierarchy of Planck constants
would be an outcome of criticality and of preferred extremal property and preferred extremals would
be just those multi-branched space-time surfaces for which branches co-incide at the the boundaries
of CD × CP2 and at the throats.

5.5.8 A simple model for fractional quantum Hall effect

The generalization of the imbedding space suggests that it could possible to understand fractional
quantum Hall effect [2] at the level of basic quantum TGD as integer QHE for non-standard value of
Planck constant.

The formula for the quantized Hall conductance is given by

σ = ν × e2

h
,

ν =
n

m
. (5.5.1)

Series of fractions in ν = 1/3, 2/5, 3/7, 4/9, 5/11, 6/13, 7/15..., 2/3, 3/5, 4/7, 5/9, 6/11, 7/13...,
5/3, 8/5, 11/7, 14/9...4/3, 7/5, 10/7, 13/9..., 1/5, 2/9, 3/13..., 2/7, 3/11..., 1/7.... with odd denominator
have been observed as are also ν = 1/2 and ν = 5/2 states with even denominator [2] .

The model of Laughlin [21] cannot explain all aspects of FQHE. The best existing model proposed
originally by Jain is based on composite fermions resulting as bound states of electron and even
number of magnetic flux quanta [18] . Electrons remain integer charged but due to the effective
magnetic field electrons appear to have fractional charges. Composite fermion picture predicts all the
observed fractions and also their relative intensities and the order in which they appear as the quality
of sample improves.

Before proposing the TGD based model of FQHE as IQHE with non-standard value of Planck
constant, it is good to represent a simple explanation of IQHE effect. Choose the coordinates of the
current currying slab so that x varies in the direction of Hall current and y in the direction of the
main current. For IQHE the value of Hall conductivity is given by σ = jy/Ex = neev/vB = nee/B =
Ne2/hBS = Ne2/mh, were m characterizes the value of magnetized flux and N is the total number
of electrons in the current. In the Landau gauge Ay = xB one can assume that energy eigenstates are
momentum eigenstates in the direction of current and harmonic oscillator Gaussians in x-direction in
which Hall current runs. This gives

Ψ ∝ exp(iky)Hn(x+ kl2)exp(− (x+kl2)2

2l2 ) , l2 = ~
eB . (5.5.2)

Only the states for which the oscillator Gaussian differs considerably from zero inside slab are impor-
tant so that the momentum eigenvalues are in good approximation in the range 0 ≤ k ≤ kmax = Lx/l

2.
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Using N = (Ly/2π)
∫ kmax

0
dk one obtains that the total number of momentum eigenstates associated

with the given value of n is N = eBdLxLy/h = n. If ν Landau states are filled, the value of σ is
σ = νe2/h.

The interpretation of FQHE as IQHE with non standard value of Planck constant could explain
also the fractionization of charge, spin, and electron number. There are 2 × 2 = 4 combinations of
covering and factor spaces of CP2 and three of them can lead to the increase or at least fractionization
of the Planck constant required by FQHE.

1. The prediction for the filling fraction in FQHE would be

ν = ν0
~0

~ , ν0 = 1, 2, ... . (5.5.3)

ν0 denotes the number of filled Landau levels.

2. Let us denote the options as C-C, C-F, F-C, F-F, where the first (second) letter tells whether
a singular covering or factor space of CD (CP2) is in question. The observed filling fractions
are consistent with options C-C, C-F, and F-C for which CD or CP2 or both correspond to a
singular covering space. The values of ν in various cases are given by the following table.

Option C − C C − F F − C

ν ν0

nanb
ν0nb
na

ν0na
nb

(5.5.4)

There is a complete symmetry under the exchange of CD and CP2 as far as values of ν are
considered.

3. All three options are consistent with observations. Charge fractionization allows only the options
C −C and F −C. If one believes the general arguments stating that also spin is fractionized in
FQHE then only the option C −C, for which charge and spin units are equal to 1/nb and 1/na
respectively, remains. For C − C option one must allow ν0 > 1.

4. Both ν = 1/2 and ν = 5/2 state has been observed [2, 13] . The fractionized charge is believed
to be e/4 in the latter case [24, 22] . This requires nb = 4 allowing only (C,C) and (F,C)
options. ni ≥ 3 holds true if coverings and factor spaces are correlates for Jones inclusions and
this gives additional constraint. The minimal values of (ν0, na, nb) are (2, 1, 4) for ν = 1/2 and
(10, 1, 4) for ν = 5/2) for both C − C and F − C option. Filling fraction 1/2 corresponds in
the composite fermion model and also experimentally to the limit of zero magnetic field [18] .
nb = 2 would be inconsistent with the observed fractionization of electric charge for ν = 5/2
and with the vision inspired by Jones inclusions implying ni ≥ 3.

5. A possible problematic aspect of the TGD based model is the experimental absence of even values
of m except m = 2 (Laughlin’s model predicts only odd values of m). A possible explanation is
that by some symmetry condition possibly related to fermionic statistics (as in Laughlin model)
both na and nb must be odd. This would require that m = 2 case differs in some manner from
the remaining cases.

6. Large values of m in ν = n/m emerge as B increases. This can be understood from flux
quantization. One has e

∫
BdS = n~. By using actual fractional charge eF = e/nb in the flux

factor would give for (C,C) option eF
∫
BdS = nna~0. The interpretation is that each of the nb

sheets contributes one unit to the flux for e. Note that the value of magnetic field at given sheet
is not affected so that the build-up of multiple covering seems to keep magnetic field strength
below critical value.
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7. The understanding of the thermal stability is not trivial. The original FQHE was observed in
80 mK temperature corresponding roughly to a thermal energy of T ∼ 10−5 eV. For graphene
the effect is observed at room temperature. Cyclotron energy for electron is (from fe = 6 ×
105 Hz at B = .2 Gauss) of order thermal energy at room temperature in a magnetic field
varying in the range 1-10 Tesla. This raises the question why the original FQHE requires such
a low temperature. A possible explanation is that since FQHE involves several values of Planck
constant, it is quantum critical phenomenon and is characterized by a critical temperature. The
differences of single particle energies associated with the phase with ordinary Planck constant
and phases with different Planck constant would characterize the transition temperature.

5.6 Number theoretic compactification and M 8 −H duality

This section summarizes the basic vision about number theoretic compactification reducing the clas-
sical dynamics to number theory. In strong form M8 − H duality boils down to the assumption
that space-time surfaces can be regarded either as surfaces of H or as surfaces of M8 composed of
hyper-quaternionic and co-hyper-quaternionic regions identifiable as regions of space-time possessing
Minkowskian resp. Euclidian signature of the induced metric.

5.6.1 Basic idea behind M8 −M4 × CP2 duality

The hopes of giving M4×CP2 hyper-octonionic structure are meager. This circumstance forces to ask
whether four-surfaces X4 ⊂M8 could under some conditions define 4-surfaces in M4×CP2 indirectly
so that the spontaneous compactification of super string models would correspond in TGD to two
different manners to interpret the space-time surface. The following arguments suggest that this is
indeed the case.

The hard mathematical fact behind number theoretical compactification is that the quaternionic
sub-algebras of octonions with fixed complex structure (that is complex sub-space) are parameterized
by CP2 just as the complex planes of quaternion space are parameterized by CP1 = S2. Same applies
to hyper-quaternionic sub-spaces of hyper-octonions. SU(3) would thus have an interpretation as the
isometry group of CP2, as the automorphism sub-group of octonions, and as color group.

1. The space of complex structures of the octonion space is parameterized by S6. The subgroup
SU(3) of the full automorphism group G2 respects the a priori selected complex structure and
thus leaves invariant one octonionic imaginary unit, call it e1. Hyper-quaternions can be identi-
fied as U(2) Lie-algebra but it is obvious that hyper-octonions do not allow an identification as
SU(3) Lie algebra. Rather, octonions decompose as 1⊕1⊕3⊕3 to the irreducible representations
of SU(3).

2. Geometrically the choice of a preferred complex (quaternionic) structure means fixing of complex
(quaternionic) sub-space of octonions. The fixing of a hyper-quaternionic structure of hyper-
octonionic M8 means a selection of a fixed hyper-quaternionic sub-space M4 ⊂ M8 implying
the decomposition M8 = M4 ×E4. If M8 is identified as the tangent space of H = M4 × CP2,
this decomposition results naturally. It is also possible to select a fixed hyper-complex structure,
which means a further decomposition M4 = M2 × E2.

3. The basic result behind number theoretic compactification and M8 −H duality is that hyper-
quaternionic sub-spaces M4 ⊂M8 containing a fixed hyper-complex sub-space M2 ⊂M4 or its
light-like line M± are parameterized by CP2. The choices of a fixed hyper-quaternionic basis
1, e1, e2, e3 with a fixed complex sub-space (choice of e1) are labeled by U(2) ⊂ SU(3). The choice
of e2 and e3 amounts to fixing e2 ±

√
−1e3, which selects the U(2) = SU(2) × U(1) subgroup

of SU(3). U(1) leaves 1 invariant and induced a phase multiplication of e1 and e2 ± e3. SU(2)
induces rotations of the spinor having e2 and e3 components. Hence all possible completions of
1, e1 by adding e2, e3 doublet are labeled by SU(3)/U(2) = CP2.

4. Space-time surface X4 ⊂ M8 is by the standard definition hyper-quaternionic if the tangent
spaces ofX4 are hyper-quaternionic planes. Co-hyper-quaternionicity means the same for normal
spaces. The presence of fixed hyper-complex structure means at space-time level that the tangent
space of X4 contains fixed M2 at each point. Under this assumption one can map the points
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(m, e) ∈M8 to points (m, s) ∈ H by assigning to the point (m, e) of X4 the point (m, s), where
s ∈ CP2 characterize T (X4) as hyper-quaternionic plane. This definition is not the only one and
even the appropriate one in TGD context the replacement of the tangent plane with the 4-D
plane spanned by modified gamma matrices defined by Kähler action is a more natural choice.
This plane is not parallel to tangent plane in general. In the sequel T (X4) denotes the preferred
4-plane which co-incides with tangent plane of X4 only if the action defining modified gamma
matrices is 4-volume.

5. The choice of M2 can be made also local in the sense that one has T (X4) ⊃ M2(x) ⊂ M4 ⊂
H. It turns out that strong form of number theoretic compactification requires this kind of
generalization. In this case one must be able to fix the convention how the point of CP2 is
assigned to a hyper-quaternionic plane so that it applies to all possible choices of M2 ⊂ M4.
Since SO(3) hyper-quaternionic rotation relates the hyper-quaternionic planes to each other,
the natural assumption is hyper-quaternionic planes related by SO(3) rotation correspond to
the same point of CP2. Under this assumption it is possible to map hyper-quaternionic surfaces
of M8 for which M2 ⊂M4 depends on point of X4 to H.

5.6.2 Hyper-octonionic Pauli ”matrices” and modified definition of hyper-
quaternionicity

Hyper-octonionic Pauli matrices suggest an interesting possibility to define precisely what hyper-
quaternionicity means at space-time level (for background see [96] ).

1. According to the standard definition space-time surface X4 is hyper-quaternionic if the tangent
space at each point of X4 in X4 ⊂ M8 picture is hyper-quaternionic. What raises worries is
that this definition involves in no manner the action principle so that it is far from obvious that
this identification is consistent with the vacuum degeneracy of Kähler action. It also unclear
how one should formulate hyper-quaternionicity condition in X4 ⊂M4 × CP2 picture.

2. The idea is to map the modified gamma matrices Γα = ∂LK
∂hkα

Γk, Γk = eAk γA, to hyper-octonionic

Pauli matrices σα by replacing γA with hyper-octonion unit. Hyper-quaternionicity would state
that the hyper-octonionic Pauli matrices σα obtained in this manner span complexified quater-
nion sub-algebra at each point of space-time. These conditions would provide a number theoretic
manner to select preferred extremals of Kähler action. Remarkably, this definition applies both
in case of M8 and M4 × CP2.

3. Modified Pauli matrices span the tangent space of X4 if the action is four-volume because one has
∂LK
∂hkα

=
√
ggαβ∂hlβhkl. Modified gamma matrices reduce to ordinary induced gamma matrices

in this case: 4-volume indeed defines a super-conformally symmetric action for ordinary gamma
matrices since the mass term of the Dirac action given by the trace of the second fundamental
form vanishes for minimal surfaces.

4. For Kähler action the hyper-quaternionic sub-space does not coincide with the tangent space
since ∂LK

∂hkα
contains besides the gravitational contribution coming from the induced metric also

the ”Maxwell contribution” from the induced Kähler form not parallel to space-time surface.
Modified gamma matrices are required by super conformal symmetry for the extremals of Kähler
action and they also guarantee that vacuum extremals defined by surfaces in M4 × Y 2, Y 2 a
Lagrange sub-manifold of CP2, are trivially hyper-quaternionic surfaces. The modified definition
of hyper-quaternionicity does not affect in any manner M8 ↔M4×CP2 duality allowing purely
number theoretic interpretation of standard model symmetries.

A side comment not strictly related to hyper-quaternionicity is in order. The anticommutators
of the modified gamma matrices define an effective Riemann metric and one can assign to it the
counterparts of Riemann connection, curvature tensor, geodesic line, volume, etc... One would have
two different metrics associated with the space-time surface. Only if the action defining space-time
surface is identified as the volume in the ordinary metric, these metrics are equivalent. The index
raising for the effective metric could be defined also by the induced metric and it is not clear whether
one can define Riemann connection also in this case. Could this effective metric have concrete physical



232 Chapter 5. An Overview About Quantum TGD: Part I

significance and play a deeper role in quantum TGD? For instance, AdS-CFT duality leads to ask
whether interactions be coded in terms of the gravitation associated with the effective metric.

5.6.3 Minimal form of M8 −H duality

The basic problem in the construction of quantum TGD has been the identification of the preferred
extremals of Kähler action playing a key role in the definition of the theory. The most elegant manner
to do this is by fixing the 4-D tangent space T (X4(X3

l )) of X4(X3
l ) at each point of X3

l so that the
boundary value problem is well defined. What I called number theoretical compactification allows to
achieve just this although I did not fully realize this in the original vision. The minimal picture is
following.

1. The basic observations are following. Let M8 be endowed with hyper-octonionic structure. For
hyper-quaternionic space-time surfaces inM8 tangent spaces are by definition hyper-quaternionic.
If they contain a preferred plane M2 ⊂M4 ⊂M8 in their tangent space, they can be mapped to
4-surfaces in M4 × CP2. The reason is that the hyper-quaternionic planes containing preferred
the hyper-complex plane M2 of M± ⊂ M2 are parameterized by points of CP2. The map is
simply (m, e) → (m, s(m, e)), where m is point of M4, e is point of E4, and s(m, 2) is point of
CP2 representing the hyperquaternionic plane. The inverse map assigns to each point (m, s) in
M4×CP2 point m of M4, undetermined point e of E4 and 4-D plane. The requirement that the
distribution of planes containing the preferred M2 or M± corresponds to a distribution of planes
for 4-D surface is expected to fix the points e. The physical interpretation of M2 is in terms
of plane of non-physical polarizations so that gauge conditions have purely number theoretical
interpretation.

2. In principle, the condition that T (X4) contains M2 can be replaced with a weaker condition
that either of the two light-like vectors of M2 is contained in it since already this condition
assigns to T (X4) M2 and the map H → M8 becomes possible. Only this weaker form applies
in the case of massless extremals [12] as will be found.

3. The original idea was that hyper-quaternionic 4-surfaces in M8 containing M2 ⊂ M4 in their
tangent space could correspond to preferred extremals of Kähler action. This condition does
not seem to be consistent with what is known about the extremals of Kähler action. The
weaker form of the hypothesis is that hyper-quaternionicity holds only for 4-D tangent spaces
of X3

l ⊂ H = M4 × CP2 identified as wormhole throats or boundary components lifted to 3-
surfaces in 8-D tangent space M8 of H. The minimal hypothesis would be that only T (X4(X3

l ))
at X3

l is associative that is hyper-quaternionic for fixed M2. X3
l ⊂ M8 and T (X4(X3

l )) at X3
l

can be mapped to X3
l ⊂ H if tangent space contains also M± ⊂ M2 or M2 ⊂ M4 ⊂ M8 itself

having interpretation as preferred hyper-complex plane. This condition is not satisfied by all
surfaces X3

l as is clear from the fact that the inverse map involves local E4 translation. The
requirements that the distribution of hyper-quaternionic planes containing M2 corresponds to
a distribution of 4-D tangent planes should fix the E4 translation to a high degree.

4. A natural requirement is that the image of X3
l ⊂ H in M8 is light-like. The condition that the

determinant of induced metric vanishes gives an additional condition reducing the number of
free parameters by one. This condition cannot be formulated as a condition on CP2 coordinate
characterizing the hyper-quaternionic plane. Since M4 projections are same for the two repre-
sentations, this condition is satisfied if the contributions from CP2 and E4 and projections to
the induced metric are identical: skl∂αs

k∂βs
l = ekl∂αe

k∂βe
l. This condition means that only

a subset of light-like surfaces of M8 are realized physically. One might argue that this is as it
must be since the volume of E4 is infinite and that of CP2 finite: only an infinitesimal portion
of all possible light-like 3-surfaces in M8 can can have H counterparts. The conclusion would
be that number theoretical compactification is 4-D isometry between X4 ⊂ H and X4 ⊂M8 at
X3
l . This unproven conjecture is unavoidable.

5. M2 ⊂ T (X4(X3
l )) condition fixes T (X4(X3

l )) in the generic case by extending the tangent space
of X3

l , and the construction of configuration space spinor structure fixes boundary conditions
completely by additional conditions necessary when X3

l corresponds to a light-like 3 surfaces
defining wormhole throat at which the signature of induced metric changes. What is especially
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beautiful that only the data in T (X4(X3
l )) at X3

l is needed to calculate the vacuum functional of
the theory as Dirac determinant: the only remaining conjecture (strictly speaking un-necessary
but realistic looking) is that this determinant gives exponent of Kähler action for the preferred
extremal and there are excellent hopes for this by the structure of the basic construction.

The basic criticism relates to the condition that light-like 3-surfaces are mapped to light-like 3-
surfaces guaranteed by the condition that M8 −H duality is isometry at X3

l .

5.6.4 Strong form of M8 −H duality

The proposed picture is the minimal one. One can of course ask whether the original much stronger
conjecture that the preferred extrema of Kähler action correspond to hyper-quaternionic surfaces could
make sense in some form. One can also wonder whether one could allow the choice of the plane M2

of non-physical polarization to be local so that one would have M2(x) ⊂M4 ⊂M4 × E4, where M4

is fixed hyper-quaternionic sub-space of M8 and identifiable as M4 factor of H.

1. If M2 is same for all points of X3
l , the inverse map X3

l ⊂ H → X3
l ⊂ M8 is fixed apart from

possible non-uniquencess related to the local translation in E4 from the condition that hyper-
quaternionic planes represent light-like tangent 4-planes of light-like 3-surfaces. The question is
whether not only X3

l but entire four-surface X4(X3
l ) could be mapped to the tangent space of

M8. By selecting suitably the local E4 translation one might hope of achieving the achieving
this. The conjecture would be that the preferred extrema of Kähler action are those for which
the distribution integrates to a distribution of tangent planes.

2. There is however a problem. What is known about extremals of Kähler action is not consistent
with the assumption that fixed M2 of M± ⊂ M2is contained in the tangent space of X4. This
suggests that one should relax the condition that M2 ⊂M4 ⊂M8 is a fixed hyper-complex plane
associated with the tangent space or normal space X4 and allow M2 to vary from point to point
so that one would have M2 = M2(x). In M8 → H direction the justification comes from the
observation (to be discussed below) that it is possible to uniquely fix the convention assigning
CP2 point to a hyper-quaternionic plane containing varying hyper-complex plane M2(x) ⊂M4.

Number theoretic compactification fixes naturally M4 ⊂M8 so that it applies to any M2(x) ⊂
M4. Under this condition the selection is parameterized by an element of SO(3)/SO(2) = S2.
Note that M4 projection of X4 would be at least 2-dimensional in hyper-quaternionic case. In
co-hyper-quaternionic case E4 projection would be at least 2-D. SO(2) would act as a number
theoretic gauge symmetry and the SO(3) valued chiral field would approach to constant at X3

l

invariant under global SO(2) in the case that one keeps the assumption that M2 is fixed ad X3
l .

3. This picture requires a generalization of the map assigning to hyper-quaternionic plane a point
of CP2 so that this map is defined for all possible choices of M2 ⊂M4. Since the SO(3) rotation
of the hyper-quaternionic unit defining M2 rotates different choices parameterized by S2 to each
other, a natural assumption is that the hyper-quaternionic planes related by SO(3) rotation
correspond to the same point of CP2. Denoting by M2 the standard representative of M2, this
means that for the map M8 → H one must perform SO(3) rotation of hyper-quaternionic plane
taking M2(x) to M2 and map the rotated plane to CP2 point. In M8 → H case one must first
map the point of CP2 to hyper-quaternionic plane and rotate this plane by a rotation taking
M2(x) to M2.

4. In this framework local M2 can vary also at the surfaces X3
l , which considerably relaxes the

boundary conditions at wormhole throats and light-like boundaries and allows much more general
variety of light-like 3-surfaces since the basic requirement is that M4 projection is at least 1-
dimensional. The physical interpretation would be that a local choice of the plane of non-physical
polarizations is possible everywhere in X4(X3

l ). This does not seem to be in any obvious conflict
with physical intuition.

These observation provide support for the conjecture that (classical) S2 = SO(3)/SO(2) conformal
field theory might be relevant for (classical) TGD.
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1. General coordinate invariance suggests that the theory should allow a formulation using any
light-like 3-surface X3 inside X4(X3

l ) besides X3
l identified as union of wormhole throats and

boundary components. For these surfaces the element g(x) ∈ SO(3) would vary also at partonic
2-surfaces X2 defined as intersections of δCD×CP2 and X3 (here CD denotes causal diamond
defined as intersection of future and past directed light-cones). Hence one could have S2 =
SO(3)/SO(2) conformal field theory at X2 (regarded as quantum fluctuating so that also g(x)
varies) generalizing to WZW model for light-like surfaces X3.

2. The presence of E4 factor would extend this theory to a classical E4×S2 WZW model bringing
in mind string model with 6-D Euclidian target space extended to a model of light-like 3-surfaces.
A further extension to X4 would be needed to integrate the WZW models associated with 3-
surfaces to a full 4-D description. General Coordinate Invariance however suggests that X3

l

description is enough for practical purposes.

3. The choices of M2(x) in the interior of X3
l is dictated by dynamics and the first optimistic

conjecture is that a classical solution of SO(3)/SO(2) Wess-Zumino-Witten model obtained by
coupling SO(3) valued field to a covariantly constant SO(2) gauge potential characterizes the
choice of M2(x) in the interior of M8 ⊃ X4(X3

l ) ⊂ H and thus also partially the structure of
the preferred extremal. Second optimistic conjecture is that the Kähler action involving also E4

degrees of freedom allows to assign light-like 3-surface to light-like 3-surface.

4. The best that one can hope is that M8−H duality could allow to transform the extremely non-
linear classical dynamics of TGD to a generalization of WZW-type model. The basic problem
is to understand how to characterize the dynamics of CP2 projection at each point.

In H picture there are two basic types of vacuum extremals: CP2 type extremals representing
elementary particles and vacuum extremals having CP2 projection which is at most 2-dimensional
Lagrange manifold and representing say hadron. Vacuum extremals can appear only as limiting cases
of preferred extremals which are non-vacuum extremals. Since vacuum extremals have so decisive role
in TGD, it is natural to requires that this notion makes sense also in M8 picture. In particular, the
notion of vacuum extremal makes sense in M8.

This requires that Kähler form exist in M8. E4 indeed allows full S2 of covariantly constant Kähler
forms representing quaternionic imaginary units so that one can identify Kähler form and construct
Kähler action. The obvious conjecture is that hyper-quaternionic space-time surface is extremal of
this Kähler action and that the values of Kähler actions in M8 and H are identical. The elegant
manner to achieve this, as well as the mapping of vacuum extremals to vacuum extremals and the
mapping of light-like 3-surfaces to light-like 3-surfaces is to assume that M8 − H duality is Kähler
isometry so that induced Kähler forms are identical.

This picture contains many speculative elements and some words of warning are in order.

1. Light-likeness conjecture would boil down to the hypothesis that M8 − H correspondence is
Kähler isometry so that the metric and Kähler form of X4 induced from M8 and H would be
identical. This would guarantee also that Kähler actions for the preferred extremal are identical.
This conjecture is beautiful but strong.

2. The slicing of X4(X3
l ) by light-like 3-surfaces is very strong condition on the classical dynamics

of Kähler action and does not make sense for pieces of CP2 type vacuum extremals.

Minkowskian-Euclidian ↔ associative–co-associative

The 8-dimensionality ofM8 allows to consider both associativity (hyper-quaternionicity) of the tangent
space and associativity of the normal space- let us call this co-assosiativity of tangent space- as
alternative options. Both options are needed as has been already found. Since space-time surface
decomposes into regions whose induced metric possesses either Minkowskian or Euclidian signature,
there is a strong temptation to propose that Minkowskian regions correspond to associative and
Euclidian regions to co-associative regions so that space-time itself would provide both the description
and its dual.

The proposed interpretation of conjectured associative-co-associative duality relates in an inter-
esting manner to p-adic length scale hypothesis selecting the primes p ' 2k, k positive integer as
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preferred p-adic length scales. Lp ∝
√
p corresponds to the p-adic length scale defining the size of

the space-time sheet at which elementary particle represented as CP2 type extremal is topologically
condensed and is of order Compton length. Lk ∝

√
k represents the p-adic length scale of the worm-

hole contacts associated with the CP2 type extremal and CP2 size is the natural length unit now.
Obviously the quantitative formulation for associative-co-associative duality would be in terms p→ k
duality.

Are the known extremals of Kähler action consistent with the strong form of M8 − H
duality

It is interesting to check whether the known extremals of Kähler action [12] are consistent with strong
form of M8−H duality assuming that M2 or its light-like ray is contained in T (X4) or normal space.

1. CP2 type vacuum extremals correspond cannot be hyper-quaternionic surfaces but co-hyper-
quaternionicity is natural for them. In the same manner canonically imbedded M4 can be only
hyper-quaternionic.

2. String like objects are associative since tangent space obviously contains M2(x). Objects of form
M1 ×X3 ⊂M4 × CP2 do not have M2 either in their tangent space or normal space in H. So
that the map from H →M8 is not well defined. There are no known extremals of Kähler action
of this type. The replacement of M1 random light-like curve however gives vacuum extremal
with vanishing volume, which need not mean physical triviality since fundamental objects of the
theory are light-like 3-surfaces.

3. For canonically imbedded CP2 the assignment of M2(x) to normal space is possible but the
choice of M2(x) ⊂ N(CP2) is completely arbitrary. For a generic CP2 type vacuum extremals
M4 projection is a random light-like curve in M4 = M1 × E3 and M2(x) can be defined
uniquely by the normal vector n ∈ E3 for the local plane defined by the tangent vector dxµ/dt
and acceleration vector d2xµ/dt2 assignable to the orbit.

4. Consider next massless extremals. Let us fix the coordinates ofX4 as (t, z, x, y) = (m0,m2,m1,m2).
For simplest massless extremals CP2 coordinates are arbitrary functions of variables u = k ·m =
t−z and v = ε ·m = x, where k = (1, 1, 0, 0) is light-like vector of M4 and ε = (0, 0, 1, 0) a polar-
ization vector orthogonal to it. Obviously, the extremals defines a decomposition M4 = M2×E2.
Tangent space is spanned by the four H-vectors ∇αhk with M4 part given by ∇αmk = δkα and
CP2 part by ∇αsk = ∂us

kkα + ∂vs
kεα.

The normal space cannot contain M4 vectors since the M4 projection of the extremal is M4.
To realize hyper-quaternionic representation one should be able to from these vector two vectors
of M2, which means linear combinations of tangent vectors for which CP2 part vanishes. The
vector ∂th

k−∂zhk has vanishing CP2 part and corresponds to M4 vector (1,−1, 0, 0) fix assigns
to each point the plane M2. To obtain M2 one would need (1, 1, 0, 0) too but this is not
possible. The vector ∂yh

k is M4 vector orthogonal to ε but M2 would require also (1, 0, 0, 0).
The proposed generalization of massless extremals allows the light-like line M± to depend on
point of M4 [12] , and leads to the introduction of Hamilton-Jacobi coordinates involving a
local decomposition of M4 to M2(x) and its orthogonal complement with light-like coordinate
lines having interpretation as curved light rays. M2(x) ⊂ T (X4) assumption fails fails also for
vacuum extremals of form X1 × X3 ⊂ M4 × CP2, where X1 is light-like random curve. In
the latter case, vacuum property follows from the vanishing of the determinant of the induced
metric.

5. The deformations of string like objects to magnetic flux quanta are basic conjectural extremals of
Kähler action and the proposed picture supports this conjecture. In hyper-quaternionic case the
assumption that local 4-D plane of X3 defined by modified gamma matrices contains M2(x) but
that T (X3) does not contain it, is very strong. It states that T (X4) at each point can be regarded
as a product M2(x)×T 2, T 2 ⊂ T (CP2), so that hyper-quaternionic X4 would be a collection of
Cartesian products of infinitesimal 2-D planes M2(x) ⊂ M4 and T 2(x) ⊂ CP2. The extremals
in question could be seen as local variants of string like objects X2×Y 2 ⊂M4×CP2, where X2

is minimal surface and Y 2 holomorphic surface of CP2. One can say that X2 is replaced by a
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collection of infinitesimal pieces of M2(x) and Y 2 with similar pieces of homologically non-trivial
geodesic sphere S2(x) of CP2, and the Cartesian products of these pieces are glued together to
form a continuous surface defining an extremal of Kähler action. Field equations would pose
conditions on how M2(x) and S2(x) can depend on x. This description applies to magnetic flux
quanta, which are the most important must-be extremals of Kähler action.

Geometric interpretation of strong M8 −H duality

In the proposed framework M8 −H duality would have a purely geometric meaning and there would
nothing magical in it.

1. X4(X3
l ) ⊂ H could be seen a curve representing the orbit of a light-like 3-surface defining a

4-D surface. The question is how to determine the notion of tangent vector for the orbit of X3
l .

Intuitively tangent vector is a one-dimensional arrow tangential to the curve at point X3
l . The

identification of the hyper-quaternionic surface X4(X3
l ) ⊂M8 as tangent vector conforms with

this intuition.

2. One could argue that M8 representation of space-time surface is kind of chart of the real space-
time surface obtained by replacing real curve by its tangent line. If so, one cannot avoid the
question under which conditions this kind of chart is faithful. An alternative interpretation is
that a representation making possible to realize number theoretical universality is in question.

3. An interesting question is whether X4(X3
l ) as orbit of light-like 3-surface is analogous to a

geodesic line -possibly light-like- so that its tangent vector would be parallel translated in the
sense that X4(X3) for any light-like surface at the orbit is same as X4(X3

l ). This would give
justification for the possibility to interpret space-time surfaces as a geodesic of configuration
space: this is one of the first -and practically forgotten- speculations inspired by the construction
of configuration space geometry. The light-likeness of the geodesic could correspond at the level
of X4 the possibility to decompose the tangent space to a direct sum of two light-like spaces and
2-D transversal space producing the foliation of X4 to light-like 3-surfaces X3

l along light-like
curves.

4. M8−H duality would assign to X3
l classical orbit and its tangent vector at X3

l as a generalization
of Bohr orbit. This picture differs from the wave particle duality of wave mechanics stating that
once the position of particle is known its momentum is completely unknown. The outcome is
however the same: for X3

l corresponding to wormhole throats and light-like boundaries of X4,
canonical momentum densities in the normal direction vanish identically by conservation laws
and one can say that the the analog of (q, p) phase space as the space carrying wave functions
is replaced with the analog of subspace consisting of points (q, 0). The dual description in M8

would not be analogous to wave functions in momentum space space but to those in the space
of unique tangents of curves at their initial points.

The Kähler and spinor structures of M8

If one introduces M8 as dual of H, one cannot avoid the idea that hyper-quaternionic surfaces obtained
as images of the preferred extremals of Kähler action in H are also extremals of M8 Kähler action
with same value of Kähler action. As found, this leads to the conclusion that theM8 −H duality is
Kähler isometry. Coupling of spinors to Kähler potential is the next step and this in turn leads to the
introduction of spinor structure so that quantum TGD in H should have full M8 dual.

There are strong physical constraints on M8 dual and they could kill the hypothesis. The basic
constraint to the spinor structure of M8 is that it reproduces basic facts about electro-weak inter-
actions. This includes neutral electro-weak couplings to quarks and leptons identified as different
H-chiralities and parity breaking.

1. By the flatness of the metric of E4 its spinor connection is trivial. E4 however allows full S2 of
covariantly constant Kähler forms so that one can accommodate free independent Abelian gauge
fields assuming that the independent gauge fields are orthogonal to each other when interpreted
as realizations of quaternionic imaginary units.
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2. One should be able to distinguish between quarks and leptons also inM8, which suggests that one
introduce spinor structure and Kähler structure in E4. The Kähler structure of E4 is unique
apart form SO(3) rotation since all three quaternionic imaginary units and the unit vectors
formed from them allow a representation as an antisymmetric tensor. Hence one must select one
preferred Kähler structure, that is fix a point of S2 representing the selected imaginary unit.
It is natural to assume different couplings of the Kähler gauge potential to spinor chiralities
representing quarks and leptons: these couplings can be assumed to be same as in case of H.

3. Electro-weak gauge potential has vectorial and axial parts. Em part is vectorial involving cou-
pling to Kähler form and Z0 contains both axial and vector parts. The free Kähler forms could
thus allow to produce M8 counterparts of these gauge potentials possessing same couplings as
their H counterparts. This picture would produce parity breaking in M8 picture correctly.

4. Only the charged parts of classical electro-weak gauge fields would be absent. This would
conform with the standard thinking that charged classical fields are not important. The predicted
classical W fields is one of the basic distinctions between TGD and standard model and in this
framework. A further prediction is that this distinction becomes visible only in situations,
where H picture is necessary. This is the case at high energies, where the description of quarks
in terms of SU(3) color is convenient whereas SO(4) QCD would require large number of E4

partial waves. At low energies large number of SU(3) color partial waves are needed and the
convenient description would be in terms of SO(4) QCD. Proton spin crisis might relate to this.

5. Also super-symmetries of quantum TGD crucial for the construction of configuration space
geometry force this picture. In the absence of coupling to Kähler gauge potential all constant
spinor fields and their conjugates would generate super-symmetries so that M8 would allow N =
8 super-symmetry. The introduction of the coupling to Kähler gauge potential in turn means
that all covariantly constant spinor fields are lost. Only the representation of all three neutral
parts of electro-weak gauge potentials in terms of three independent Kähler gauge potentials
allows right-handed neutrino as the only super-symmetry generator as in the case of H.

6. The SO(3) element characterizing M2(x) is fixed apart from a local SO(2) transformation, which
suggests an additional U(1) gauge field associated with SO(2) gauge invariance and representable
as Kähler form corresponding to a quaternionic unit of E4. A possible identification of this gauge
field would be as a part of electro-weak gauge field.

M8 dual of configuration space geometry and spinor structure?

If one introduces M8 spinor structure and preferred extremals of M8 Kähler action, one cannot avoid
the question whether it is possible or useful to formulate the notion of configuration space geometry
and spinor structure for light-like 3-surfaces in M8 using the exponent of Kähler action as vacuum
functional.

1. The isometries of the configuration space in M8 and H formulations would correspond to sym-
plectic transformation of δM4

± × E4 and δM4
± × CP2 and the Hamiltonians involved would

belong to the representations of SO(4) and SU(3) with 2-dimensional Cartan sub-algebras.
In H picture color group would be the familiar SU(3) but in M8 picture it would be SO(4).
Color confinement in both SU(3) and SO(4) sense could allow these two pictures without any
inconsistency.

2. For M4×CP2 the two spin states of covariantly constant right handed neutrino and antineutrino
spinors generate super-symmetries. This super-symmetry plays an important role in the pro-
posed construction of configuration space geometry. As found, this symmetry would be present
also in M8 formulation so that the construction of M8 geometry should reduce more or less
to the replacement of CP2 Hamiltonians in representations of SU(3) with E4 Hamiltonians in
representations of SO(4). These Hamiltonians can be taken to be proportional to functions of
E4 radius which is SO(4) invariant and these functions bring in additional degree of freedom.

3. The construction of Dirac determinant identified as a vacuum functional can be done also in
M8 picture and the conjecture is that the result is same as in the case of H. In this framework
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the construction is much simpler due to the flatness of E4. In particular, the generalized eigen
modes of the Dirac operator DK(Y 3

l ) restricted to the X3
l correspond to a situation in which

one has fermion in induced Maxwell field mimicking the neutral part of electro-weak gauge field
in H as far as couplings are considered. Induced Kähler field would be same as in H. Eigen
modes are localized to regions inside which the Kähler magnetic field is non-vanishing and apart
from the fact that the metric is the effective metric defined in terms of canonical momentum
densities via the formula Γ̂α = ∂LK/∂h

k
αΓk for effective gamma matrices. This in fact, forces

the localization of modes implying that their number is finite so that Dirac determinant is a
product over finite number eigenvalues. It is clear that M8 picture could dramatically simplify
the construction of configuration space geometry.

4. The eigenvalue spectra of the transversal parts of DK operators in M8 and H should identical.
This motivates the question whether it is possible to achieve a complete correspondence between
H and M8 pictures also at the level of spinor fields at X3 by performing a gauge transformation
eliminating the classical W gauge boson field altogether at X3

l and whether this allows to trans-
form the modified Dirac equation in H to that in M8 when restricted to X3

l . That something like
this might be achieved is supported by the fact that in Coulombic gauge the component of gauge
potential in the light-like direction vanishes so that the situation is effectively 2-dimensional and
holonomy group is Abelian.

Why M8 −H duality is useful?

Skeptic could of course argue that M8−H duality produces only an inflation of unproven conjectures.
There are however strong reasons for M8 −H duality: both theoretical and physical.

1. The map of X3
l ⊂ H → X3

l ⊂ M8 and corresponding map of space-time surfaces would al-
low to realize number theoretical universality. M8 = M4 × E4 allows linear coordinates as
natural coordinates in which one can say what it means that the point of imbedding space is
rational/algebraic. The point of X4 ⊂ H is algebraic if it is mapped to an algebraic point
of M8 in number theoretic compactification. This of course restricts the symmetry groups to
their rational/algebraic variants but this does not have practical meaning. Number theoretical
compactication could in fact be motivated by the number theoretical universality.

2. M8−H duality could provide much simpler description of preferred extremals of Kähler action
since the Kähler form in E4 has constant components. If the spinor connection in E4 is com-
bination of the three Kähler forms mimicking neutral part of electro-weak gauge potential, the
eigenvalue spectrum for the modified Dirac operator would correspond to that for a fermion in
U(1) magnetic field defined by an Abelian magnetic field whereas in M4 × CP2 picture U(2)ew
magnetic fields would be present.

3. M8 − H duality provides insights to low energy hadron physics. M8 description might work
when H-description fails. For instance, perturbative QCD which corresponds to H-description
fails at low energies whereas M8 description might become perturbative description at this limit.
Strong SO(4) = SU(2)L × SU(2)R invariance is the basic symmetry of the phenomenological
low energy hadron models based on conserved vector current hypothesis (CVC) and partially
conserved axial current hypothesis (PCAC). Strong SO(4) = SU(2)L × SU(2)R relates closely
also to electro-weak gauge group SU(2)L × U(1) and this connection is not well understood in
QCD description. M8−H duality could provide this connection. Strong SO(4) symmetry would
emerge as a low energy dual of the color symmetry. Orbital SO(4) would correspond to strong
SU(2)L×SU(2)R and by flatness of E4 spin like SO(4) would correspond to electro-weak group
SU(2)L × U(1)R ⊂ SO(4). Note that the inclusion of coupling to Kähler gauge potential is
necessary to achieve respectable spinor structure in CP2. One could say that the orbital angular
momentum in SO(4) corresponds to strong isospin and spin part of angular momentum to the
weak isospin.

5.6.5 M8 −H duality and low energy hadron physics

The description of M8 −H at the configuration space level can be applied to gain a view about color
confinement and its dual for electro-weak interactions at short distance limit. The basic idea is that
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SO(4) and SU(3) provide provide dual descriptions of quark color using E4 and CP2 partial waves and
low energy hadron physics corresponds to a situation in which M8 picture provides the perturbative
approach whereas H picture works at high energies. The basic prediction is that SO(4) should appear
as dynamical symmetry group of low energy hadron physics and this is indeed the case.

Consider color confinement at the long length scale limit in terms of M8 −H duality.

1. At high energy limit only lowest color triplet color partial waves for quarks dominate so that
QCD description becomes appropriate whereas very higher color partial waves for quarks and
gluons are expected to appear at the confinement limit. Since configuration space degrees of
freedom begin to dominate, color confinement limit transcends the descriptive power of QCD.

2. The success of SO(4) sigma model in the description of low lying hadrons would directly relate to
the fact that this group labels also the E4 Hamiltonians in M8 picture. Strong SO(4) quantum
numbers can be identified as orbital counterparts of right and left handed electro-weak isospin
coinciding with strong isospin for lowest quarks. In sigma model pion and sigma boson form
the components of E4 valued vector field or equivalently collection of four E4 Hamiltonians
corresponding to spherical E4 coordinates. Pion corresponds to S3 valued unit vector field with
charge states of pion identifiable as three Hamiltonians defined by the coordinate components.
Sigma is mapped to the Hamiltonian defined by the E4 radial coordinate. Excited mesons
corresponding to more complex Hamiltonians are predicted.

3. The generalization of sigma model would assign to quarks E4 partial waves belonging to the
representations of SO(4). The model would involve also 6 SO(4) gluons and their SO(4) partial
waves. At the low energy limit only lowest representations would be be important whereas at
higher energies higher partial waves would be excited and the description based on CP2 partial
waves would become more appropriate.

4. The low energy quark model would rely on quarks moving SO(4) color partial waves. Left resp.
right handed quarks could correspond to SU(2)L resp. SU(2)R triplets so that spin statistics
problem would be solved in the same manner as in the standard quark model.

5. Family replication phenomenon is described in TGD framework the same manner in both cases
so that quantum numbers like strangeness and charm are not fundamental. Indeed, p-adic mass
calculations allowing fractally scaled up versions of various quarks allow to replace Gell-Mann
mass formula with highly successful predictions for hadron masses [58] .

To my opinion these observations are intriguing enough to motivate a concrete attempt to construct
low energy hadron physics in terms of SO(4) gauge theory.

5.6.6 The notion of number theoretical braid

Braids -not necessary number theoretical- provide a realization discretization as a space-time correlate
for the finite measurement resolution. The notion of braid was inspired by the idea about quantum
TGD as almost topological quantum field theory. Although the original form of this idea has been
buried, the notion of braid has survived: in the decomposition of space-time sheets to string world
sheets, the ends of strings define representatives for braid strands at light-like 3-surfaces.

The notion of number theoretic universality inspired the much more restrictive notion of number
theoretic braid requiring that the points in the intersection of the braid with the partonic 2-surface
correspond to rational or at most algebraic points of H in preferred coordinates fixed by symmetry
considerations. The challenge has been to find a unique identification of the number theoretic braid or
at least of the end points of the braid. The following consideration suggest that the number theoretic
braids are not a useful notion in the generic case but make sense and are needed in the intersection
of real and p-adic worlds which is in crucial role in TGD based vision about living matter [52] .

It is only the braiding that matters in topological quantum field theories used to classify braids.
Hence braid should require only the fixing of the end points of the braids at the intersection of the braid
at the light-like boundaries of CDs and the braiding equivalence class of the braid itself. Therefore it
is enough is to specify the topology of the braid and the end points of the braid in accordance with
the attribute ”number theoretic”. Of course, the condition that all points of the strand of the number
theoretic braid are algebraic is impossible to satisfy.
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The situation in which the equations defining X2 make sense both in real sense and p-adic sense
using appropriate algebraic extension of p-adic number field is central in the TGD based vision about
living matter [52] . The reason is that in this case the notion of number entanglement theoretic entropy
having negative values makes sense and entanglement becomes information carrying. This motivates
the identification of life as something in the intersection of real and p-adic worlds. In this situation the
identification of the ends of the number theoretic braid as points belonging to the intersection of real
and p-adic worlds is natural. These points -call them briefly algebraic points- belong to the algebraic
extension of rationals needed to define the algebraic extension of p-adic numbers. This definition
however makes sense also when the equations defining the partonic 2-surfaces fail to make sense in
both real and p-adic sense. In the generic case the set of points satisfying the conditions is discrete.
For instance, according to Fermat’s theorem the set of rational points satisfying Xn+Y n = Zn reduces
to the point (0, 0, 0) for n = 3, 4, .... Hence the constraint might be quite enough in the intersection
of real and p-adic worlds where the choice of the algebraic extension is unique.

One can however criticize this proposal.

1. One must fix the the number of points of the braid and outside the intersection and the non-
uniquencess of the algebraic extension makes the situation problematic. Physical intuition sug-
gests that the points of braid define carriers of quantum numbers assignable to second quantized
induced spinor fields so that the total number of fermions antifermions would define the number
of braids. In the intersection the highly non-trivial implication is that this number cannot exceed
the number of algebraic points.

2. In the generic case one expects that even the smallest deformation of the partonic 2-surface
can change the number of algebraic points and also the character of the algebraic extension
of rational numbers needed. The restriction to rational points is not expected to help in the
generic case. If the notion of number theoretical braid is meant to be practical, must be able to
decompose WCW to open sets inside which the numbers of algebraic points of braid at its ends
are constant. For real topology this is expected to be impossible and it does not make sense
to use p-adic topology for WCW whose points do not allow interpretation as p-adic partonic
surfaces.

3. In the intersection of real and p-adic worlds which corresponds to a discrete subset of WCW,
the situation is different. Since the coefficients of polynomials involved with the definition of
the partonic 2-surface must be rational or at most algebraic, continuous deformations are not
possible so that one avoids the problem.

4. This forces to ask the reason why for the number theoretic braids. In the generic case they
seem to produce only troubles. In the intersection of real and p-adic worlds they could however
allow the construction of the elements of M -matrix describing quantum transitions changing
p-adic to real surfaces and vice versa as realizations of intentions and generation of cognitions.
In this the case it is natural that only the data from the intersection of the two worlds are used.
In [52] I have sketched the idea about number theoretic quantum field theory as a description
of intentional action and cognition.

There is also the the problem of fixing the interior points of the braid modulo deformations not
affecting the topology of the braid.

1. Infinite number of non-equivalent braidings are possible. Should one allow all possible braidings
for a fixed light-like 3-surface and say that their existence is what makes the dynamics essentially
three-dimensional even in the topological sense? In this case there would be no problems with
the condition that the points at both ends of braid are algebraic.

2. Or should one try to characterize the braiding uniquely for a given partonic 2-surfaces and
corresponding 4-D tangent space distributions? The slicing of the space-time sheet by partonic
2-surfaces and string word sheets suggests that the ends of string world sheets could define the
braid strands in the generic context when there is no algebraicity condition involved. This could
be taken as a very natural manner to fix the topology of braid but leave the freedom to choose
the representative for the braid. In the intersection of real and p-adic worlds there is no good
reason for the end points of strands in this case to be algebraic at both ends of the string world
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sheet. One can however start from the braid defined by the end points of string world sheets,
restrict the end points to be algebraic at the end with a smaller number of algebraic points and
and then perform a topologically non-trivial deformation of the braid so that also the points
at the other end are algebraic? Non-trivial deformations need not be possible for all possible
choices of algebraic braid points at the other end of braid and different choices of the set of
algebraic points would give rise to different braidings. A further constraint is that only the
algebraic points at which one has assign fermion or antifermion are used so that the number of
braid points is not always maximal.

3. One can also ask whether one should perform the gauge fixing for the strands of the number
theoretic braid using algebraic functions making sense both in real and p-adic context. This
question does not seem terribly relevant since since it is only the topology of the braid that
matters.

5.6.7 Connection with string model and Equivalence Principle at space-
time level

Coset construction allows to generalize Equivalence Principle and understand it at quantum level. This
is however not quite enough: a precise understanding of Equivalence Principle is required also at the
classical level. Also the mechanism selecting via stationary phase approximation a preferred extremal
of Kähler action providing a correlation between quantum numbers of the particle and geometry of
the preferred extremals is still poorly understood.

Is stringy action principle coded by the geometry of preferred extremals?

It seems very difficult to deduce Equivalence Principle as an identity of gravitational and inertial
masses identified as Noether charges associated with corresponding action principles. Since string
model is an excellent theory of quantum gravitation, one can consider a less direct approach in which
one tries to deduce a connection between classical TGD and string model and hope that the bridge
from string model to General Relativity is easier to build. Number theoretical compactification gives
good hopes that this kind of connection exists.

1. Number theoretic compactification implies that the preferred extremals of Kähler action have
the property that one can assign to each point of M4 projection PM4(X4(X3

l )) of the preferred
extremal M2(x) identified as the plane of non-physical polarizations and also as the plane in
which local massless four-momentum lies.

2. If the distribution of the planes M2(x) is integrable, one can slice PM4(X4(X3
l )) to string world-

sheets. The intersection of string world sheets with X3 ⊂ δM4
±×CP2 corresponds to a light-like

curve having tangent in local tangent space M2(x) at light-cone boundary. This is the first
candidate for the definition of number theoretic braid. Second definition assumes M2 to be
fixed at δCD: in this case the slicing is parameterized by the sphere S2 defined by the light rays
of δM4

±.

3. One can assign to the string world sheet -call it Y 2 - the standard area action

SG(Y 2) =

∫
Y 2

T
√
g2d

2y , (5.6.1)

where g2 is either the induced metric or only its M4 part. The latter option looks more natural
since M4 projection is considered. T is string tension.

4. The naivest guess would be T = 1/~G apart from some numerical constant but one must be
very cautious here since T = 1/L2

p apart from a numerical constant is also a good candidate if
one accepts the basic argument identifying G in terms of p-adic length Lp and Kähler action for
two pieces of CP2 type vacuum extremals representing propagating graviton. The formula reads
G = L2

pexp(−2aSK(CP2)), a ≤ 1 [5, 30] . The interaction strength which would be L2
p without

the presence of CP2 type vacuum extremals is reduced by the exponential factor coming from
the exponent of Kähler function of configuration space.
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5. One would have string model in either CD×CP2 or CD ⊂M4 with the constraint that stringy
world sheet belongs to X4(X3

l ). For the extremals of SG(Y 2) gravitational four-momentum
defined as Noether charge is conserved. The extremal property of string world sheet need
not however be consistent with the preferred extremal property. This constraint might bring
in coupling of gravitons to matter. The natural guess is that graviton corresponds to a string
connecting wormhole contacts. The strings could also represent formation of gravitational bound
states when they connect wormhole contacts separated by a large distance. The energy of the
string is roughly E ∼ ~TL and for T = 1/~G gives E ∼ L/G. Macroscopic strings are not
allowed except as models of black holes. The identification T ∼ 1/L2

p gives E ∼ ~L/L2
p, which

does not favor long strings for large values of ~. The identification Gp = L2
p/~0 gives T = 1/~Gp

and E ∼ ~0L/L
2
p, which makes sense and allows strings with length not much longer than p-

adic length scale. Quantization - that is the presence of configuration space degrees of freedom-
would bring in massless gravitons as deformations of string whereas strings would carry the
gravitational mass.

6. The exponent exp(iSG) can appear as a phase factor in the definition of quantum states for
preferred extremals. SG is not however enough. One can assign also to the points of number
theoretic braid action describing the interaction of a point like current Qdxµ/ds with induced
gauge potentials Aµ. The corresponding contribution to the action is

Sbraid =

∫
braid

iT r(Q
dxµ

ds
Aµ)dx . (5.6.2)

In stationary phase approximation subject to the additional constraint that a preferred extremal
of Kähler action is in question one obtains the desired correlation between the geometry of
preferred extremal and the quantum numbers of elementary particle. This interaction term
carries information only about the charges of elementary particle. It is quite possible that the
interaction term is more complex: for instance, it could contain spin dependent terms (Stern-
Gerlach experiment).

7. The constraint coming from preferred extremal property of Kähler action can be expressed in
terms of Lagrange multipliers

Sc =

∫
Y 2

λkDα(
∂LK
∂αhk

)
√
g2d

2y . (5.6.3)

8. The action exponential reads as

exp(iSG + Sbraid + Sc) . (5.6.4)

The resulting field equations couple stringy M4 degrees of freedom to the second variation of
Kähler action with respect to M4 coordinates and involve third derivatives of M4 coordinates
at the right hand side. If the second variation of Kähler action with respect to M4 coordinates
vanishes, free string results. This is trivially the case if a vacuum extremal of Kähler action is
in question.

9. An interesting question is whether the preferred extremal property boils down to the condition
that the second variation of Kähler action with respect to M4 coordinates or actually all co-
ordinates vanishes so that gravitonic string is free. As a matter fact, the stronger condition is
required that the Noether currents associated with the modified Dirac action are conserved. The
physical interpretation would be in terms of quantum criticality which is the basic conjecture
about the dynamics of quantum TGD. This is clear from the fact that in 1-D system criticality
means that the potential V (x) = ax+bx2 + .. has b = 0. In field theory criticality corresponds to
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the vanishing of the term m2φ2/2 so that massless situation corresponds to massless theory and
criticality and long range correlations. For more than one dynamical variable there is a hierarchy
of criticalities corresponding to the gradual reduction of the rank of the matrix of the matrix
defined by the second derivatives of V (x) and this gives rise to a classification of criticalities.
Maximum criticality would correspond to the total vanishing of this matrix. In infinite-D case
this hierarchy is infinite.

What does the equality of gravitational and inertial masses mean?

Consider next the question in what form Equivalence Principle could be realized in this framework.

1. Coset construction inspires the conjecture that gravitational and inertial four-momenta are iden-
tical. Also some milder form of it would make sense. What is clear is that the construction of
preferred extremal involving the distribution of M2(x) implies that conserved four-momentum
associated with Kähler action can be expressed formally as stringy four-momentum. The integral
of the conserved inertial momentum current over X3 indeed reduces to an integral over the curve
defining string as one integrates over other two degrees of freedom. It would not be surprising
if a stringy expression for four-momentum would result but with string tension depending on
the point of string and possibly also on the component of four-momentum. If the dependence
of string tension on the point of string and on the choice of the stringy world sheet is slow,
the interpretation could be in terms of coupling constant evolution associated with the stringy
coordinates. An alternative interpretation is that string tension corresponds to a scalar field.
A quite reasonable option is that for given X3

l T defines a scalar field and that the observed T
corresponds to the average value of T over deformations of X3

l .

2. The minimum option is that Kähler mass is equal to the sum gravitational masses assignable to
strings connecting points of wormhole throat or two different wormhole throats. This hypothesis
makes sense even for wormhole contacts having size of order Planck length.

3. The condition that gravitational mass equals to the inertial mass (rest energy) assigned to
Kähler action is the most obvious condition that one can imagine. The breaking of Poincare
invariance to Lorentz invariance with respect to the tip of CD supports this form of Equivalence
Principle. This would predict the value of the ratio of the parameter R2T and p-adic length
scale hypothesis would allow only discrete values for this parameter. p ' 2k following from
the quantization of the temporal distance T (n) between the tips of CD as T (n) = 2nT0 would
suggest string tension Tn = 2nR2 apart from a numerical factor. Gp ∝ 2nR2/~0 would emerge
as a prediction of the theory. G can be seen either as a prediction or RG invariant input
parameter fixed by quantum criticality. The arguments related to p-adic coupling constant
evolution suggest R2/~0G = 3× 223 [5, 30] .

4. The scalar field property of string tension should be consistent with the vacuum degeneracy of
Kähler action. For instance, for the vacuum extremals of Kähler action stringy action is non-
vanishing. The simplest possibility is that one includes the integral of the scalar JµνJµν over
the degrees transversal to M2 to the stringy action so that string tension vanishes for vacuum
extremals. This would be nothing but dimensional reduction of 4-D theory to a 2-D theory
using the slicing of X4(X3

l ) to partonic 2-surfaces and stringy word sheets. For cosmic strings
Kähler action reduces to stringy action with string tension T ∝ 1/g2

KR
2 apart from a numerical

constant. If one wants consistency with T ∝ 1/L2
p, one must have T ∝ 1/g2

K2nR2 for the cosmic
strings deformed to Kähler magnetic flux tubes. This looks rather plausible if the thickness of
deformed string in M4 degrees of freedom is given by p-adic length scale.

5.7 Does modified Dirac action define the fundamental action
principle?

Although quantum criticality in principle predicts the possible values of Kähler coupling strength,
one might hope that there exists even more fundamental approach involving no coupling constants
and predicting even quantum criticality and realizing quantum gravitational holography. The Dirac
determinant associated with the modified Dirac action is an excellent candidate in this respect.
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The original working hypothesis was that Dirac determinant defines the vacuum functional of the
theory having interpretation as the exponent of Kähler function of world of classical worlds (WCW)
expressible and that Kähler function reduces to Kähler action for a preferred extremal of Kähler
action.

5.7.1 What are the basic equations of quantum TGD?

A good place to start is to as what might the basic equations of quantum TGD. There are two kinds
of equations at the level of space-time surfaces.

1. Purely classical equations define the dynamics of the space-time sheets as preferred extremals
of Kähler action. Preferred extremals are quantum critical in the sense that second variation
vanishes for critical deformations representing zero modes. This condition guarantees that corre-
sponding fermionic currents are conserved. There is infinite hierarchy of these currents and they
define fermionic counterparts for zero modes. Space-time sheets can be also regarded as hyper-
quaternionic surfaces. What these statements precisely mean has become clear only during this
year. A rigorous proof for the equivalence of these two identifications is still lacking.

2. The purely quantal equations are associated with the representations of various super-conformal
algebras and with the modified Dirac equation. The requirement that there are deformations
of the space-time surface -actually infinite number of them- giving rise to conserved fermionic
charges implies quantum criticality at the level of Kähler action in the sense of critical de-
formations. The precise form of the modified Dirac equation is not however completely fixed
without further input. Quantal equations involve also generalized Feynman rules for M -matrix
generalizing S-matrix to a ”complex square root” of density matrix and defined by time-like
entanglement coefficients between positive and negative energy parts of zero energy states is
certainly the basic goal of quantum TGD.

3. The notion of weak electric-magnetic duality generalizing the notion of electric-magnetic duality
[31] , [18] leads to a detailed understanding of how TGD reduces to almost topological quantum
field theory [31] , [18] . If Kähler current defines Beltrami flow [47] it is possible to find a gauge
in which Coulomb contribution to Kähler action vanishes so that it reduces to Chern-Simons
term. If light-like 3-surfaces and ends of space-time surface are extremals of Chern-Simons
action also effective 2-dimensionality is realized. The condition that the theory reduces to
almost topological QFT and the hydrodynamical character of field equations leads to a detailed
ansatz for the general solution of field equations and also for the solutions of the modified Dirac
equation relying on the notion of Beltrami flow for which the flow parameter associated with
the flow lines defined by a conserved current extends to a global coordinate. This makes the
theory is in well-defined sense completely integrable. Direct connection with massless theories
emerges: every conserved Beltrami currents corresponds to a pair of scalar functions with the
first one satisfying massless d’Alembert equation in the induced metric. The orthogonality of
the gradients of these functions allows interpretation in terms of polarization and momentum
directions. The Beltrami flow property can be also seen as one aspect of quantum criticality
since the conserved currents associated with critical deformations define this kind of pairs.

4. The hierarchy of Planck constants provides also a fresh view to the quantum criticality. The
original justification for the hierarchy of Planck constants came from the indications that Planck
constant could have large values in both astrophysical systems involving dark matter and also
in biology. The realization of the hierarchy in terms of the singular coverings and possibly
also factor spaces of CD and CP2 emerged from consistency conditions. It however seems
that TGD actually predicts this hierarchy of covering spaces. The extreme non-linearity of
the field equations defined by Kähler action means that the correspondence between canonical
momentum densities and time derivatives of the imbedding space coordinates is 1-to-many. This
leads naturally to the introduction of the covering space of CD×CP2, where CD denotes causal
diamond defined as intersection of future and past directed light-cones.

At the level of WCW there is the generalization of the Dirac equation which can be regarded as a
purely classical Dirac equation. The modified Dirac operators associated with quarks and leptons carry
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fermion number but the Dirac equations are well-defined. An orthogonal basis of solutions of these
Dirac operators define in zero energy ontology a basis of zero energy states. The M -matrices defining
entanglement between positive and negative energy parts of the zero energy state define what can be
regarded as analogs of thermal S-matrices. The M-matrices associated with the solution basis of the
WCW Dirac equation define by their orthogonality unitary U-matrix between zero energy states. This
matrix finds the proper interpretation in TGD inspired theory of consciousness. WCW Dirac equation
as the analog of super-Virasoro conditions for the ”gamma fields” of superstring models defining super
counterparts of Virasoro generators was the main focus during earlier period of quantum TGD but
has not received so much attention lately and will not be discussed in this chapter.

5.7.2 Quantum criticality and modified Dirac action

The precise mathematical formulation of quantum criticality has remained one of the basic challenges
of quantum TGD. The question leading to a considerable progress in the problem was simple: Under
what conditions the modified Dirac action allows to assign conserved fermionic currents with the
deformations of the space-time surface? The answer was equally simple: These currents exists only
if these deformations correspond to vanishing second variations of Kähler action - which is what
criticality is. The vacuum degeneracy of Kähler action strongly suggests that the number of critical
deformations is always infinite and that these deformations define an infinite inclusion hierarchy of
super-conformal algebras. This inclusion hierarchy would correspond to a fractal hierarchy of breakings
of super-conformal symmetry generalizing the symmetry breaking hierarchies of gauge theories. These
super-conformal inclusion hierarchies would realize the inclusion hierarchies for hyper-finite factors of
type II1.

Quantum criticality and fermionic representation of conserved charges associated with
second variations of Kähler action

It is rather obvious that TGD allows a huge generalizations of conformal symmetries. The development
of the understanding of conservation laws has been slow. Modified Dirac action provides excellent
candidates for quantum counterparts of Noether charges. Unfortunately, the isometry charges vanish
for Cartan algebras. The only manner to obtain non-trivial isometry charges is to add a direct coupling
to the charges in Cartan algebra as will be found later. This addition involves Chern-Simons Dirac
action so that the original intuition guided by almost TQFT idea was not wrong after all.

1. Conservation of the fermionic current requires the vanishing of the second variation of Kähler
action

1. The modified Dirac action assigns to a deformation of the space-time surface a conserved charge
expressible as bilinears of fermionic oscillator operators only if the first variation of the modified
Dirac action under this deformation vanishes. The vanishing of the first variation for the modified
Dirac action is equivalent with the vanishing of the second variation for the Kähler action. This
can be seen by the explicit calculation of the second variation of the modified Dirac action and
by performing partial integration for the terms containing derivatives of Ψ and Ψ to give a total
divergence representing the difference of the charge at upper and lower boundaries of the causal
diamond plus a four-dimensional integral of the divergence term defined as the integral of the
quantity

∆SD = ΨΓkDαJ
α
k Ψ ,

Jαk =
∂2LK
∂hkα∂h

l
β

δhkβ +
∂2LK
∂hkα∂h

l
δhl . (5.7.1)

Here hkβ denote partial derivative of the imbedding space coordinate with respect to space-time
coordinates. This term must vanish:

DαJ
α
k = 0 .
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The condition states the vanishing of the second variation of Kähler action. This can of course
occur only for preferred deformations of X4. One could consider the possibility that these
deformations vanish at light-like 3-surfaces or at the boundaries of CD. Note that covariant
divergence is in question so that Jαk does not define conserved classical charge in the general
case.

2. It is essential that the modified Dirac equation holds true so that the modified Dirac action
vanishes: this is needed to cancel the contribution to the second variation coming from the
determinant of the induced metric. The condition that the modified Dirac equation is satisfied
for the deformed space-time surface requires that also Ψ suffers a transformation determined by
the deformation. This gives

δΨ = − 1

D
× ΓkJαk Ψ . (5.7.2)

Here 1/D is the inverse of the modified Dirac operator defining the counterpart of the fermionic
propagator.

3. The fermionic conserved currents associated with the deformations are obtained from the stan-
dard conserved fermion current

Jα = ΨΓαΨ . (5.7.3)

Note that this current is conserved only if the space-time surface is extremal of Kähler action:
this is also needed to guarantee Hermiticity and same form for the modified Dirac equation for Ψ
and its conjugate as well as absence of mass term essential for super-conformal invariance [32, 36]
. Note also that ordinary divergence rather only covariant divergence of the current vanishes.

The conserved currents are expressible as sums of three terms. The first term is obtained by
replacing modified gamma matrices with their increments in the deformation keeping Ψ and its
conjugate constant. Second term is obtained by replacing Ψ with its increment δΨ. The third
term is obtained by performing same operation for δΨ.

Jα = ΨΓkJαk Ψ + ΨΓ̂αδΨ + δΨΓ̂αΨ . (5.7.4)

These currents provide a representation for the algebra defined by the conserved charges analo-
gous to a fermionic representation of Kac-Moody algebra [16] .

4. Also conserved super charges corresponding to super-conformal invariance are obtained. The
first class of super currents are obtained by replacing Ψ or Ψ right-handed neutrino spinor or
its conjugate in the expression for the conserved fermion current and performing the above
procedure giving two terms since nothing happens to the covariantly constant right handed-
neutrino spinor. Second class of conserved currents is defined by the solutions of the modified
Dirac equation interpreted as c-number fields replacing Ψ or Ψ and the same procedure gives
three terms appearing in the super current.

5. The existence of vanishing of second variations is analogous to criticality in systems defined by a
potential function for which the rank of the matrix defined by second derivatives of the potential
function vanishes at criticality. Quantum criticality becomes the prerequisite for the existence
of quantum theory since fermionic anti-commutation relations in principle can be fixed from
the condition that the algebra in question is equivalent with the algebra formed by the vector
fields defining the deformations of the space-time surface defining second variations. Quantum
criticality in this sense would also select preferred extremals of Kähler action as analogs of Bohr
orbits and the the spectrum of preferred extremals would be more or less equivalent with the
expected existence of infinite-dimensional symmetry algebras.
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2. About the general structure of the algebra of conserved charges

Some general comments about the structure of the algebra of conserved charges are in order.

1. Any Cartan algebra of the isometry group P × SU(3) (there are two types of them for P
corresponding to linear and cylindrical Minkowski coordinates) defines critical deformations
(one could require that the isometries respect the geometry of CD). The corresponding charges
are conserved but vanish since the corresponding conjugate coordinates are cyclic for the Kähler
metric and Kähler form so that the conserved current is proportional to the gradient of a Killing
vector field which is constant in these coordinates. Therefore one cannot represent isometry
charges as fermionic bilinears. Four-momentum and color quantum numbers are defined for
Kähler action as classical conserved quantities but this is probably not enough. This can be
seen as a problem.

(a) Four-momentum and color Cartan algebra emerge naturally in the representations of super-
conformal algebras. In the case of color algebra the charges in the complement of the Cartan
algebra can be constructed in standard manner as extension of those for the Cartan algebra
using free field representation of Kac-Moody algebras. In string theories four-momentum
appears linearly in bosonic Kac-Moody generators and in Sugawara construction [127] of
super Virasoro generators as bilinears of bosonic Kac-Moody generators and fermionic super
Kac-Moody generators [16] . Also now quantized transversal parts for M4 coordinates could
define a second quantized field having interpretation as an operator acting on spinor fields
of WCW. The angle coordinates conjugate to color isospin and hyper charge take the role
of M4 coordinates in case of CP2.

(b) Somehow one should be able to feed the information about the super-conformal repre-
sentation of the isometry charges to the modified Dirac action by adding to it a term
coupling fermionic current to the Cartan charges in general coordinate invariant and isom-
etry invariant manner. As will be shown later, this is possible. The interpretation is as
measurement interaction guaranteeing also the stringy character of the fermionic propaga-
tors. The values of the couplings involved are fixed by the condition of quantum criticality
assumed in the sense that Kähler function of WCW suffers only a U(1) gauge transforma-
tion K → K + f + f , where f is a holomorphic function of WCW coordinates depending
also on zero modes.

(c) The simplest addition involves the modified gamma matrices defined by a Chern-Simon
term at the light-like wormhole throats and is sum of Chern-Simons Dirac action and
corresponding coupling term linear in Cartan charges assignable to the partonic 2-surfaces
at the ends of the throats. Hence the modified Dirac equation in the interior of the space-
time sheet is not affected and nothing changes as far as quantum criticality in interior is
considered.

2. The action defined by four-volume gives a first glimpse about what one can expect. In this
case modified gamma matrices reduce to the induced gamma matrices. Second variations satisfy
d’Alembert type equation in the induced metric so that the analogs of massless fields are in
question. Mass term is present only if some dimensions are compact. The vanishing of excitations
at light-like boundaries is a natural boundary condition and might well imply that the solution
spectrum could be empty. Hence it is quite possible that four-volume action leads to a trivial
theory.

3. For the vacuum extremals of Kähler action the situation is different. There exists an infinite
number of second variations and the classical non-determinism suggests that deformations van-
ishing at the light-like boundaries exist. For the canonical imbedding of M4 the equation for
second variations is trivially satisfied. If the CP2 projection of the vacuum extremal is one-
dimensional, the second variation contains a on-vanishing term and an equation analogous to
massless d’Alembert equation for the increments of CP2 coordinates is obtained. Also for the
vacuum extremals of Kähler action with 2-D CP2 projection all terms involving induced Kähler
form vanish and the field equations reduce to d’Alembert type equations for CP2 coordinates.
A possible interpretation is as the classical analog of Higgs field. For the deformations of non-
vacuum extremals this would suggest the presence of terms analogous to mass terms: these kind



248 Chapter 5. An Overview About Quantum TGD: Part I

of terms indeed appear and are proportional to δsk. M4 degrees of freedom decouple completely
and one obtains QFT type situation.

4. The physical expectation is that at least for the vacuum extremals the critical manifold is
infinite-dimensional. The notion of finite measurement resolution suggests infinite hierarchies of
inclusions of hyper-finite factors of type II1 possibly having interpretation in terms of inclusions
of the super conformal algebras defined by the critical deformations.

5. The properties of Kähler action give support for this expectation. The critical manifold is
infinite-dimensional in the case of vacuum extremals. Canonical imbedding of M4 would corre-
spond to maximal criticality analogous to that encountered at the tip of the cusp catastrophe.
The natural guess would be that as one deforms the vacuum extremal the previously critical
degrees of freedom are transformed to non-critical ones. The dimension of the critical manifold
could remain infinite for all preferred extremals of the Kähler action. For instance, for cosmic
string like objects any complex manifold of CP2 defines cosmic string like objects so that there
is a huge degeneracy is expected also now. For CP2 type vacuum extremals M4 projection is
arbitrary light-like curve so that also now infinite degeneracy is expected for the deformations.

3. Critical super algebra and zero modes

The relationship of the critical super-algebra to configuration space geometry is interesting.

1. The vanishing of the second variation plus the identification of Kähler function as a Kähler action
for preferred extremals means that the critical variations are orthogonal to all deformations of
the space-time surface with respect to the configuration space metric and thus correspond to
zero modes. This conforms with the fact that configuration space metric vanishes identically for
canonically imbedded M4. Zero modes do not seem to correspond to gauge degrees of freedom so
that the super-conformal algebra associated with the zero modes has genuine physical content.

2. Since the action of X4 local Hamiltonians of δM4
×CP2 corresponds to the action in quantum

fluctuating degrees of freedom, critical deformations cannot correspond to this kind of Hamilto-
nians.

3. The notion of finite measurement resolution suggests that the degrees of freedom which are
below measurement resolution correspond to vanishing gauge charges. The sub-algebras of
critical super-conformal algebra for which charges annihilate physical states could correspond to
this kind of gauge algebras.

4. The conserved super charges associated with the vanishing second variations cannot give con-
figuration space metric as their anti-commutator. This would also lead to a conflict with the
effective 2-dimensionality stating that the configuration space line-element is expressible as sum
of contribution coming from partonic 2-surfaces as also with fermionic anti-commutation rela-
tions.

4. Connection with quantum criticality

The vanishing of the second variation for some deformations means that the system is critical, in the
recent case quantum critical. Basic example of criticality is bifurcation diagram for cusp catastrophe.
For some mysterious reason I failed to realize that quantum criticality realized as the vanishing of
the second variation makes possible a more or less unique identification of preferred extremals and
considered alternative identifications such as absolute minimization of Kähler action which is just the
opposite of criticality. Both the super-symmetry of DK and conservation Dirac Noether currents for
modified Dirac action have thus a connection with quantum criticality.

1. Finite-dimensional critical systems defined by a potential function V (x1, x2, ..) are characterized
by the matrix defined by the second derivatives of the potential function and the rank of sys-
tem classifies the levels in the hierarchy of criticalities. Maximal criticality corresponds to the
complete vanishing of this matrix. Thom’s catastrophe theory classifies these hierarchies, when
the numbers of behavior and control variables are small (smaller than 5). In the recent case the
situation is infinite-dimensional and the criticality conditions give additional field equations as
existence of vanishing second variations of Kähler action.
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2. The vacuum degeneracy of Kähler action allows to expect that this kind infinite hierarchy of
criticalities is realized. For a general vacuum extremal with at most 2-D CP2 projection the
matrix defined by the second variation vanishes because Jαβ = 0 vanishes and also the matrix

(Jαk +J α
k )(Jβl+J β

l ) vanishes by the antisymmetry Jαk = −J α
k . Recall that the formulation of

Equivalence Principle in string picture demonstrated that the reduction of stringy dynamics to
that for free strings requires that second variation with respect to M4 coordinates vanish. This
condition would guarantee the conservation of fermionic Noether currents defining gravitational
four-momentum and other Poincare quantum numbers but not those for gravitational color
quantum numbers. Encouragingly, the action of CP2 type vacuum extremals having random
light-like curve as M4 projection have vanishing second variation with respect to M4 coordinates
(this follows from the vanishing of Kähler energy momentum tensor, second fundamental form,
and Kähler gauge current). In this case however the momentum is vanishing.

3. Conserved bosonic and fermionic Noether charges would characterize quantum criticality. In
particular, the isometries of the imbedding space define conserved currents represented in terms
of the fermionic oscillator operators if the second variations defined by the infinitesimal isometries
vanish for the modified Dirac action. For vacuum extremals the dimension of the critical manifold
is infinite: maybe there is hierarchy of quantum criticalities for which this dimension decreases
step by step but remains always infinite. This hierarchy could closely relate to the hierarchy of
inclusions of hyper-finite factors of type II1. Also the conserved charges associated with Super-
symplectic and Super Kac-Moody algebras would require infinite-dimensional critical manifold
defined by the spectrum of second variations.

4. Phase transitions are characterized by the symmetries of the phases involved with the tran-
sitions, and it is natural to expect that dynamical symmetries characterize the hierarchy of
quantum criticalities. The notion of finite quantum measurement resolution based on the hi-
erarchy of Jones inclusions indeed suggests the existence of a hierarchy of dynamical gauge
symmetries characterized by gauge groups in ADE hierarchy [30] with degrees of freedom below
the measurement resolution identified as gauge degrees of freedom.

5. A breakthrough in understanding of the criticality was the discovery that the realization that
the hierarchy of singular coverings of CD × CP2 needed to realize the hierarchy of Planck
constants could correspond directly to a similar hierarchy of coverings forced by the factor that
classical canonical momentum densities correspond to several values of the time derivatives
of the imbedding space coordinates led to a considerable progress if the understanding of the
relationship between criticality and hierarchy of Planck constants [41] , [11] . Therefore the
problem which led to the geometrization program of quantum TGD, also allowed to reduce the
hierarchy of Planck constants introduced on basis of experimental evidence to the basic quantum
TGD. One can say that the 3-surfaces at the ends of CD resp. wormhole throats are critical
in the sense that they are unstable against splitting to nb resp. na surfaces so that one obtains
space-time surfaces which can be regarded as surfaces in na × nb fold covering of CD × CP2.
This allows to understand why Planck constant is effectively replaced with nanb~0 and explains
charge fractionization.

Preferred extremal property as classical correlate for quantum criticality, holography,
and quantum classical correspondence

The Noether currents assignable to the modified Dirac equation are conserved only if the first variation
of the modified Dirac operator DK defined by Kähler action vanishes. This is equivalent with the
vanishing of the second variation of Kähler action -at least for the variations corresponding to dynam-
ical symmetries having interpretation as dynamical degrees of freedom which are below measurement
resolution and therefore effectively gauge symmetries.

The vanishing of the second variation in interior of X4(X3
l ) is what corresponds exactly to quantum

criticality so that the basic vision about quantum dynamics of quantum TGD would lead directly to a
precise identification of the preferred extremals. Something which I should have noticed for more than
decade ago! The question whether these extremals correspond to absolute minima remains however
open.
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The vanishing of second variations of preferred extremals -at least for deformations representing
dynamical symmetries, suggests a generalization of catastrophe theory of Thom, where the rank of
the matrix defined by the second derivatives of potential function defines a hierarchy of criticalities
with the tip of bifurcation set of the catastrophe representing the complete vanishing of this matrix.
In the recent case this theory would be generalized to infinite-dimensional context. There are three
kind of variables now but quantum classical correspondence (holography) allows to reduce the types
of variables to two.

1. The variations of X4(X3
l ) vanishing at the intersections of X4(X3

l ) wth the light-like boundaries
of causal diamonds CD would represent behavior variables. At least the vacuum extremals of
Kähler action would represent extremals for which the second variation vanishes identically (the
”tip” of the multi-furcation set).

2. The zero modes of Kähler function would define the control variables interpreted as classical
degrees of freedom necessary in quantum measurement theory. By effective 2-dimensionality (or
holography or quantum classical correspondence) meaning that the configuration space metric
is determined by the data coming from partonic 2-surfaces X2 at intersections of X3

l with
boundaries of CD, the interiors of 3-surfaces X3 at the boundaries of CDs in rough sense
correspond to zero modes so that there is indeed huge number of them. Also the variables
characterizing 2-surface, which cannot be complexified and thus cannot contribute to the Kähler
metric of configuration space represent zero modes. Fixing the interior of the 3-surface would
mean fixing of control variables. Extremum property would fix the 4-surface and behavior
variables if boundary conditions are fixed to sufficient degree.

3. The complex variables characterizing X2 would represent third kind of variables identified as
quantum fluctuating degrees of freedom contributing to the configuration space metric. Quantum
classical correspondence requires 1-1 correspondence between zero modes and these variables.
This would be essentially holography stating that the 2-D ”causal boundary” X2 of X3(X2)
codes for the interior. Preferred extremal property identified as criticality condition would
realize the holography by fixing the values of zero modes once X2 is known and give rise to
the holographic correspondence X2 → X3(X2). The values of behavior variables determined by
extremization would fix then the space-time surface X4(X3

l ) as a preferred extremal.

4. Clearly, the presence of zero modes would be absolutely essential element of the picture. Quan-
tum criticality, quantum classical correspondence, holography, and preferred extremal property
would all represent more or less the same thing. One must of course be very cautious since the
boundary conditions at X3

l involve normal derivative and might bring in delicacies forcing to
modify the simplest heuristic picture.

5. There is a possible connection with the notion of self-organized criticality [11] introduced to
explain the behavior of systems like sand piles. Self-organization in these systems tends to lead
”to the edge”. The challenge is to understand how system ends up to a critical state, which by
definition is unstable. Mechanisms for this have been discovered and based on phase transitions
occurring in a wide range of parameters so that critical point extends to a critical manifold. In
TGD Universe quantum criticality suggests a universal mechanism of this kind. The criticality
for the preferred extremals of Kähler action would mean that classically all systems are critical
in well-defined sense and the question is only about the degree of criticality. Evolution could
be seen as a process leading gradually to increasingly critical systems. One must however
distinguish between the criticality associated with the preferred extremals of Kähler action and
the criticality caused by the spin glass like energy landscape like structure for the space of the
maxima of Kähler function.

5.7.3 Handful of problems with a common resolution

Theory building could be compared to pattern recognition or to a solving a crossword puzzle. It is
essential to make trials, even if one is aware that they are probably wrong. When stares long enough
to the letters which do not quite fit, one suddenly realizes what one particular crossword must actually
be and it is soon clear what those other crosswords are. In the following I describe an example in
which this analogy is rather concrete. Let us begin by listing the problems.
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1. The condition that modified Dirac action allows conserved charges leads to the condition that
the symmetries in question give rise to vanishing second variations of Kähler action. The in-
terpretation is as quantum criticality and there are good arguments suggesting that the critical
symmetries define an infinite-dimensional super-conformal algebra forming an inclusion hierar-
chy related to a sequence of symmetry breakings closely related to a hierarchy of inclusions
of hyper-finite factors of types II1 and III1. This means an enormous generalization of the
symmetry breaking patterns of gauge theories.

There is however a problem. For the translations of M4 and color hyper charge and isospin
(more generally, any Cartan algebra of P × SU(3)) the resulting fermionic charges vanish. The
trial for the crossword in absence of nothing better would be the following argument. By the
abelianity of these charges the vanishing of quantal representation of four-momentum and color
Cartan charges is not a problem and that classical representation of these charges or their
super-conformal representation is enough.

2. Modified Dirac equation is satisfied in the interior of space-time surface always. This means that
one does not obtain off-mass shell propagation at all in 4-D sense. Effective 2-dimensionality
suggests that off mass shell propagation takes place along wormhole throats. The reduction to
almost topological QFT with Kähler function reducing to Chern-Simonst type action implied
by the weak form of electric-magnetic duality and a proper gauge choice for the induced Kähler
gauge potential implies effective 3-dimensionality at classical level. This inspires the question
whether Chern-Simons type action resulting from an instanton term could define the modified
gamma matrices appearing in the 3-D modified Dirac action associated with wormhole throats
and the ends of the space-time sheet at the boundaries of CD.

The assumption that modified Dirac equation is satisfied also at the ends and wormhole throats
would realize effective 2-dimensionality as conditions on the boundary values of the 4-D Dirac
equation but would would not allow off mass shell propagation. Therefore one could argue that
effective 2-dimensionality in this sense holds true only for incoming and outgoing particles.

The reduction of Kähler action to Chern-Simons term together with effective 2-dimensionality
suggests that Kähler function corresponds to an extremum of this action with a constraint term
due to the weak form of electric-magnetic duality. Without this term the extrema of Chern-
Simons action have 2-D CP2 projection not consistent with the weak form of electric-magnetic
duality. The extrema are not maxima of Kähler function: they are obtained by varying with
respect to tangent space data of the partonic 2-surfaces. Lagrange multiplier term induces also
to the modified gamma matrices a contribution which is of the same general form as for any
general coordinate invariant action.

3. Quantum classical correspondence requires that the geometry of the space-time sheet should
correlate with the quantum numbers characterizing positive (negative) energy part of the quan-
tum state. One could argue that by multiplying WCW spinor field by a suitable phase factor
depending on the charges of the state, the correspondence follows from stationary phase approx-
imation. This crossword looks unconvincing. A more precise connection between quantum and
classical is required.

4. In quantum measurement theory classical macroscopic variables identified as degrees of freedom
assignable to the interior of the space-time sheet correlate with quantum numbers. Stern Gerlach
experiment is an excellent example of the situation. The generalization of the imbedding space
concept by replacing it with a book like structure implies that imbedding space geometry at
given page and for given causal diamond (CD) carries information about the choice of the
quantization axes (preferred plane M2 of M4 resp. geodesic sphere of CP2 associated with
singular covering/factor space of CD resp. CP2 ). This is a big step but not enough. Modified
Dirac action as such does not seem to provide any hint about how to achieve this correspondence.
One could even wonder whether dissipative processes or at least the breaking of T and CP
characterizing the outcome of quantum jump sequence should have space-time correlate. How
to achieve this?

Each of these problems makes one suspect that something is lacking from the modified Dirac
action: there should exist an elegant manner to feed information about quantum numbers of the state
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to the modified Dirac action in turn determining vacuum functional as an exponent Kähler function
identified as Kähler action for the preferred extremal assumed to be dictated by by quantum criticality
and equivalently by hyper-quaternionicity.

This observation leads to what might be the correct question. Could a general coordinate invariant
and Poincare invariant modification of the modified Dirac action consistent with the vacuum degen-
eracy of Kähler action allow to achieve this information flow somehow? In the following one manner
to achieve this modification is discussed. It must be however emphasized that I have considered many
alternatives and the one discussed below finds its justification only from the fact that it is the simplest
one found hitherto.

The identification of the measurement interaction term

The idea is simple: add to the modified Dirac action a term which is analogous to the Dirac action in
M4 × CP2. One can consider two options according to whether the term is assigned with interior or
with a 3-D light-like 3-surface and last years have been continual argumentation about which option
is the correct one.

1. The additional term would be essentially the analog of the ordinary Dirac action at the imbedding
space level.

Sint =
∑
A

QA

∫
ΨgABjBαΓ̂αΨ

√
gd4x ,

gAB = jkAhklj
l
B , gABgBC = δAC ,

jBα = jkBhkl∂αh
l . (5.7.5)

The sum is over isometry charges QA interpreted as quantal charges and jAk denotes the Killing
vector field of the isometry. gAB is the inverse of the tensor gAB defined by the local inner
products of Killing vectors fields in M4 and CP2. The space-time projections of the Killing
vector fields jBα have interpretation as classical color gauge potentials in the case of SU(3). In
M4 degrees of freedom and for Cartan algebra of SU(3) jBα reduce to the gradients of linear
M4 coordinates in case of translations. Modified gamma matrices could be assigned to Kähler
action or its instanton term or with Chern-Simons action.

2. The added term containing quantal charges must make sense in the modified Dirac equation.
This requires that the physical state is an eigenstate of momentum and color charges. This
allows only color hyper-charge and color isospin so that there is no hope of obtaining exactly
the stringy formula for the propagator. The modified Dirac operator is given by

D = D +Dint = Γ̂αDα + Γ̂α
∑
A

QAg
ABjBα

= Γ̂α(Dα + ∂αφ) , ∂αφ =
∑
A

QAg
ABjBα . (5.7.6)

The conserved fermionic isometry currents are

JAα =
∑
B

QBΨgBCjkChklj
l
AΓ̂αΨ = QAΨΓ̂αΨ . (5.7.7)

Here the sum is restricted to a Cartan sub-algebra of Poincare group and color group.
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3. An important restriction is that by four-dimensionality of M4 and CP2 the rank of gAB is 4 so
that gAB exists only when one considers only four conserved charges. In the case of M4 this is
achieved by a restriction to translation generators QA = pA. gAB reduces to Minkowski metric
and Killing vector fields are constants. The Cartan sub-algebra could be however replaced by
any four commuting charges in the case of Poincare algebra (second one corresponds to time
translation plus translation, boost and rotation in given direction). In the case of SU(3) one must
restrict the consideration either to U(2) sub-algebra or its complement. CP2 = SU(3)/SU(2)
decomposition would suggest the complement as the correct choice. One can indeed build the
generators of U(2) as commutators of the charges in the complement. On the other hand, Cartan
algebra is enough in free field construction of Kac-Moody algebras.

4. What is remarkable that for the Cartan algebra of M4 × SU(3) the measurement interaction
term is equivalent with the addition of gauge part ∂αφ of the induced Kähler gauge potential Aα.
This property might hold true for any measurement interaction term. This also suggests that the
change in Kähler function is only the transformation Aα → Aα + ∂αφ, ∂αφ =

∑
AQAg

ABjBα.

5. Recall that the φ for U(1) gauge transformations respecting the vanishing of the Coulomb
interaction term of Kähler action [41] , [11] the current jαKφ is conserved, which implies that the
change of the Kähler action is trivial. These properties characterize the gauge transformations
respecting the gauge in which Coulombic interaction term of the Kähler action vanishes so
that Kähler action reduces to 3-dimensional generalized Chern-Simons term if the weak form of
electric-magnetic duality holds true guaranteeing among other things that the induced Kähler
field is not too singular at the wormhole throats [41] , [11] . The scalar function assignable to the
measurement interaction terms does not have this property and this is what is expected since it
must change the value of the Kähler function and therefore affect the preferred extremal.

Concerning the precise form of the modified Dirac action the basic clue comes from the observation
that the measurement interaction term corresponds to the addition of a gauge part to the induced CP2

Kähler gauge potential Aα. The basic question is what part of the action one assigns the measurement
interaction term.

1. One could define the measurement interaction term using either the four-dimensional instanton
term or its reduction to Chern-Simons terms. The part of Dirac action defined by the instanton
term in the interior does not reduce to a 3-D form unless the Dirac equation defined by the
instanton term is satisfied : this cannot be true. Hence Chern-Simons term is the only possibility.

The classical field equations associated with the Chern-Simons term cannot be assumed since
they would imply that the CP2 projection of the wormhole throat and space-like 3-surface are
2-dimensional. This might hold true for space-like 3-surfaces at the ends of CD and incoming
and outgoing particles but not for off mass shell particles. This is however not a problem since
DαΓ̂αC−S for the modified gamma matrices for Chern-Simons action does not contain second
derivatives. This is due to the topological character of this term. For Kähler action second
derivatives are present and this forces extremal property of Kähler action in the modified Dirac
Kähler action so that classical physics results as a consistency condition.

2. If one assigns measurement interaction term to both DK and DC−S the measurement interaction
corresponds to a mere gauge transformation for ASα and is trivial. Therefore it seems that one
must choose between DK or DC−S . At least formally the measurement interaction term asso-
ciated with DK is gauge equivalent with its negative DC−S . The addition of the measurement
interaction to DK changes the basis for the 4-D induced spinors by the phase exp(−iQKφ) and
therefore also the basis for the generalized eigenstates of DC−S and this brings in effectively the
measurement interaction term affecting the Dirac determinant.

3. The definition of Dirac determinant should be in terms of Chern-Simons action induced by the
instanton term and identified as a product of the generalized eigenvalues of this operator. The
modified Dirac equation for Ψ is consistent with that for its conjugate if the coefficient of the
instanton term is real and one uses the Dirac action Ψ(D→ − D←)Ψ giving modified Dirac
equation as
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DC−SΨ +
1

2
(DαΓ̂αC−S)Ψ = 0 . (5.7.8)

As noticed, the divergence of gamma matrices does not contain second derivatives in the case of
Chern-Simons action. In the case of Kähler action they occur unless field equations equivalent
with the vanishing of the divergence term are satisfied.

Also the fermionic current is conserved in this case, which conforms with the idea that fermions
flow along the light-like 3-surfaces. If one uses the action ΨD→Ψ, Ψ does not satisfy the Dirac
equation following from the variational principle and fermion current is not conserved. Also if
the Chern-Simons term is imaginary - as a naive idea about dissipation would suggest- the Dirac
equation fails to be consistent with the conjugation.

4. Off mass shell states appear in the lines of the generalized Feynman diagrams and for these
DC−S cannot annihilate the spinor field. The generalized eigen modes lf DC−S should be such
that one obtains the counterpart of Dirac propagator which is purely algebraic and does not
therefore depend on the coordinates of the throat. This is satisfied if the generalized eigenvalues
are expressible in terms of covariantly constant combinations of gamma matrices and here only
M4 gamma matrices are possible. Therefore the eigenvalue equation reqards as

DΨ = λkγkΨ , D = DC−S +DαΓ̂αC−S , DC−S = Γ̂αC−SDα .

(5.7.9)

Here the covariant derivatives Dα contain the measurement interaction term as an apparent
gauge term. Covariant constancy allows to take the square of this equation and one has

(D2 +
[
D,λkγk

]
)Ψ+ = λkλkΨ . (5.7.10)

The commutator term is analogous to magnetic moment interaction. The generalized eigenvalues
correspond to λ =

√
λkλk and Dirac determinant is defined as a product of the eigenvalues.

λ is completely analogous to mass. For incoming lines this mass would vanish so that all
incoming particles irrespective their actual quantum numbers would be massless in this sense
and the propagator is indeed that for a massless particle. Note that the eigen modes define
the boundary values for the solutions of DKΨ = 0 so that the values of λ indeed define the
counterpart of the momentum space.

This transmutation of massive particles to effectively massless ones might make possible the
application of the twistor formalism as such in TGD framework [96] . N = 4 SUSY is one
of the very few gauge theory which might be UV finite but it is definitely unphysical due to
the masslessness of the basic quanta. Could the resolution of the interpretational problems
be that the four-momenta appearing in this theory do not directly correspond to the observed
four-momenta?

Objections

The alert reader has probably raised several critical questions. Doesn’t the need to solve λk as func-
tions of incoming quantum numbers plus the need to construct the measurement interactions makes
the practical application of the theory hopelessly difficult? Could the resulting pseudo-momentum
λk correspond to the actual four-momentum? Could one drop the measurement interaction term
altogether and assume that the quantum classical correspondence is through the identification of the
eigenvalues as the four-momenta of the on mass shell particles propagating at the wormhole throats?
Could one indeed assume that the momenta have a continuous spectrum and thus do not depend on
the boundary conditions at all? Usually the thinking is just the opposite and in the general case would
lead to to singular eigen modes.



5.7. Does modified Dirac action define the fundamental action principle? 255

1. Only the information about four-momentum would be fed into the space-time geometry. TGD
however allows much more general measurement interaction terms and it would be very strange
if the space-time geometry would not correlate also with the other quantum numbers. Mass
formulas would of course contain information also about other quantum numbers so that this
claim is not quite justified.

2. Number theoretic considerations and also the construction of octonionic variant of Dirac equa-
tion [84] , [16] force the conclusion that the spectrum of pseudo four-momentum is restricted
to a preferred plane M2 of M4 and this excludes the interpretation of λk as a genuine four-
momentum. It also improves the hopes that the sum over pseudo-momenta does not imply
divergences.

3. Dirac determinant would depend on the mass spectrum only and could not be identified as
exponent of Kähler function. Note that the original guideline was the dream about stringy
propagators. This is achieved for λAλ

A = n in suitable units. This spectrum would of course
also imply that Dirac determinant defined in terms of ζ function regularization is independent
of the space-time surface and could not be identified with the exponent of Kähler function. One
must of course take the identification of exponent of Kähler function as Dirac determinant as an
additional conjecture which is not necessary for the calculation of Kähler function if the weak
form of electric-magnetic duality is accepted.

4. All particles would behave as massless particles and this would not be consistent with the
proposed Feynman diagrammatics inspired by zero energy ontology. Since wormhole throats
carry on mass shell particles with positive or negative energy so that the net momentum can be
also space-like propagators diverge for massless particles. One might overcome this problem by
assuming small thermal mass (from p-adic thermodynamics [55] ) and this is indeed assumed to
reduce the number of generalized Feynman diagrams contributing to a given reaction to finite
number.

Second objection of the skeptic reader relates to the delicacies of U(1) gauge invariance. The
modified Dirac action seems to break gauge symmetries and this breaking of gauge symmetry is
absolutely essential for the dependence of the Dirac determinant on the quantum numbers. It however
seems that this breaking of gauge invariance is only apparent.

1. One must distinguish between genuine U(1) gauge transformations carried out for the induced
Kähler gauge potential Aα and apparent gauge transformations of the Kähler gauge potential
Ak of S2 × CP2 induced by symplectic transformations deforming the space-time surface and
affect also induced metric. This delicacy of U(1) gauge symmetry explains also the apparent
breaking of U(1) gauge symmetry of Chern-Simons Dirac action due to the presence of explicit
terms Ak and Aα.

2. CP2 Kähler gauge potential is obtained in complex coordinates from Kähler function as (Kξi ,Kξi
) =

(∂ξiK,−∂ξiK). Gauge transformations correspond to the additions K → K+f+f , where f is a
holomorphic function. Kähler gauge potential has a unique gauge in which the Kähler function
of CP2 is U(2) invariant and contains no holomorphic part. Hence Ak is defined in a preferred
gauge and is a gauge invariant quantity in this sense. Same applies to S2 part of the Kähler
potential if present.

3. Aα should be also gauge invariant under gauge transformation respecting the vanishing of
Coulombic interaction energy. The allowed gauge transformations Aα → Aα + ∂αφ must satisfy
Dα(jαKφ) = 0. If the scalar function φ reduces to constant at the wormhole throats and at the
ends of the space-time surface DC−S is gauge invariant. The gauge transformations for which φ
does not satisfy this condition are identified as representations of critical deformations of space-
time surface so that the change of Aα would code for this kind of deformation and indeed affect
the modified Dirac operator and Kähler function (the change would be due to the change of zero
modes).
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Some details about the modified Dirac equation defined by Chern-Simons action

First some general comments about DC−S are in order.

1. Quite generally, there is vacuum avoidance in the sense that Ψ must vanish in the regions where
the modified gamma matrices vanish. A physical analogy for the system consider is a charged
particle in an external magnetic field. The effective metric defined by the anti-commutators of
the modified gamma matrices so that standard intuitions might not help much. What one would
naively expect would be analogs of bound states in magnetic field localized into regions inside
which the magnetic field is non-vanishing.

2. If only CP2 Kähler form appears in the Kähler action, the modified Dirac action defined by
the Chern-Simons term is non-vanishing only when the dimension of the CP2 projection of the
3-surface is D(CP2) ≥ 2 and the induced Kähler field is non-vanishing. This conforms with
the properties of Kähler action. The solutions of the modified Dirac equation with a vanishing
eigenvalue λ would naturally correspond to incoming and outgoing particles.

3. D(CP2) ≤ 2 is apparently inconsistent with the weak form of electric-magnetic duality requiring
D(CP2) = 3. The conclusion is wrong: the variations of Chern-Simons action are subject to the
constraint that electric-magnetic duality holds true expressible in terms of Lagrange multiplier
term

∫
Λα(Jnα −KεnαβγJβγ)

√
g4d

3x . (5.7.11)

This gives a constraint force to the field equations and also a dependence on the induced 4-metric
so that one has only almost topological QFT. This term also guarantees the M4 part of WCW
Kähler metric is non-trivial. The condition that the ends of space-time sheet and wormhole
throats are extrema of Chern-Simons action subject to the electric-magnetic duality constraint
is strongly suggested by the effective 2-dimensionality.

4. Electric-magnetic duality constraint gives an additional term to the Dirac action determined
by the Lagrange multiplier term. This term gives an additional contribution to the modified
gamma matrices having the same general form as coming from Kähler action and Chern-Simons
action. In the following this term will not be considered. For the extremals it only affects the
modified gamma matrices and leaves the general form of solutions unchanged.

In absence of the constraint from the weak form of electric-magnetic duality the explicit expression
of DC−S is given by

D = Γ̂µDµ +
1

2
DµΓ̂µ ,

Γ̂µ =
∂LC−S
∂µhk

Γk = εµαβ
[
2Jkl∂αh

lAβ + JαβAk
]

ΓkDµ ,

DµΓ̂µ = BαK(Jkα + ∂αAk) ,

BαK = εαβγJβγ , Jkα = Jkl∂αs
l , ε̂αβγ = εαβγ

√
g3 . (5.7.12)

Note ε̂αβγ = does not depend on the induced metric.
The extremals of Chern-Simons action without constraint term satisfy

BαK(Jkl + ∂lAk)∂αh
l = 0 , BαK = εαβγJβγ . (5.7.13)

For a non-vanishing Kähler magnetic field Bα these equations hold true when CP2 projection is
2-dimensional. This implies a vanishing of Chern-Simons action in absence of the constraint term
realizing electric-magnetic duality, which is therefore absolutely essential in order for having a non-
vanishing WCW metric.

Consider now the situation in more detail.
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1. Suppose that one can assign a global coordinate to the flow lines of the Kähler magnetic field.
In this case one might hope that ordinary intuitions about motion in constant magnetic field
might be helpful. The repetition of the discussion of [41] , [11] leads to the condition B∧dB = 0
implying that a Beltrami flow for which current flows along the field lines and Lorentz forces
vanishes is in question. This need not be the generic case.

2. With this assumption the modified Dirac operator reduces to a one-dimensional Dirac operator

D = ε̂rαβ
[
2Jkl∂αh

lAβ + JαβAk
]

ΓkDr . (5.7.14)

3. The general solutions of the modified Dirac equation is covariantly constant with respect to the
coordinate r:

DrΨ = 0 . (5.7.15)

The solution to this condition can be written immediately in terms of a non-integrable phase
factor Pexp(i

∫
Ardr), where integration is along curve with constant transversal coordinates.

If Γ̂v is light-like vector field also Γ̂vΨ0 defines a solution of DC−S . This solution corresponds
to a zero mode for DC−S and does not contribute to the Dirac determinant. Note that the
dependence of these solutions on transversal coordinates of X3

l is arbitrary.

4. The formal solution associated with a general eigenvalue can be constructed by integrating the
eigenvalue equation separately along all coordinate curves. This makes sense if r indeed assigned
to light-like curves indeed defines a global coordinate. What is strange that there is no correlation
between the behaviors with respect longitudinal coordinate and transversal coordinates. System
would be like a collection of totally uncorrelated point like particles reflecting the flow of the
current along flux lines. It is difficult to say anything about the spectrum of the generalized
eigenvalues in this case: it might be that the boundary conditions at the ends of the flow lines
fix the allowed values of λ. Clearly, the Beltrami flow property is what makes this case very
special.

A connection with quantum measurement theory

It is encouraging that isometry charges and also other charges could make themselves visible in the
geometry of space-time surface as they should by quantum classical correspondence. This suggests an
interpretation in terms of quantum measurement theory.

1. The interpretation resolves the problem caused by the fact that the choice of the commuting
isometry charges is not unique. Cartan algebra corresponds naturally to the measured observ-
ables. For instance, one could choose the Cartan algebra of Poincare group to consist of energy
and momentum, angular momentum and boost (velocity) in particular direction as generators
of the Cartan algebra of Poincare group. In fact, the choices of a preferred plane M2 ⊂ M4

and geodesic sphere S2 ⊂ CP2 allowing to fix the measurement sub-algebra to a high degree
are implied by the replacement of the imbedding space with a book like structure forced by the
hierarchy of Planck constants. Therefore the hierarchy of Planck constants seems to be required
by quantum measurement theory. One cannot overemphasize the importance of this connection.

2. One can add similar couplings of the net values of the measured observables to the currents
whose existence and conservation is guaranteed by quantum criticality. It is essential that one
maps the observables to Cartan algebra coupled to critical current characterizing the observable
in question. The coupling should have interpretation as a replacement of the induced Kähler
gauge potential with its gauge transform. Quantum classical correspondence encourages the
identification of the classical charges associated with Kähler action with quantal Cartan charges.
This would support the interpretation in terms of a measurement interaction feeding information
to classical space-time physics about the eigenvalues of the observables of the measured system.
The resulting field equations remain second order partial differential equations since the second
order partial derivatives appear only linearly in the added terms.
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3. What about the space-time correlates of electro-weak charges? The earlier proposal explains this
correlation in terms of the properties of quantum states: the coupling of electro-weak charges to
Chern-Simons term could give the correlation in stationary phase approximation. It would be
however very strange if the coupling of electro-weak charges with the geometry of the space-time
sheet would not have the same universal description based on quantum measurement theory as
isometry charges have.

(a) The hint as how this description could be achieved comes from a long standing un-answered
question motivated by the fact that electro-weak gauge group identifiable as the holonomy
group of CP2 can be identified as U(2) subgroup of color group. Could the electro-weak
charges be identified as classical color charges? This might make sense since the color
charges have also identification as fermionic charges implied by quantum criticality. Or
could electro-weak charges be only represented as classical color charges by mapping them
to classical color currents in the measurement interaction term in the modified Dirac action?
At least this question might make sense.

(b) It does not make sense to couple both electro-weak and color charges to the same fermion
current. There are also other fundamental fermion currents which are conserved. All the
following currents are conserved.

Jα = ΨOΓ̂αΨ

O ∈ {1 , J ≡ JklΣkl , ΣAB , ΣABJ} . (5.7.16)

Here Jkl is the covariantly constant CP2 Kähler form and ΣAB is the (also covariantly)
constant sigma matrix of M4 (flatness is absolutely essential).

(c) Electromagnetic charge can be expressed as a linear combination of currents corresponding
to O = 1 and O = J and vectorial isospin current corresponds to J . It is natural to couple
of electromagnetic charge to the the projection of Killing vector field of color hyper charge
and coupling it to the current defined by Oem = a+bJ . This allows to interpret the puzzling
finding that electromagnetic charge can be identified as anomalous color hyper-charge for
induced spinor fields made already during the first years of TGD. There exist no conserved
axial isospin currents in accordance with CVC and PCAC hypothesis which belong to the
basic stuff of the hadron physics of old days.

(d) Color charges would couple naturally to lepton and quark number current and the U(1)
part of electro-weak charges to the n = 1 multiple of quark current and n = 3 multiple of
the lepton current (note that leptons resp. quarks correspond to t = 0 resp. t = ±1 color
partial waves). If electro-weak resp. couplings to H-chirality are proportional to 1 resp.
Γ9, the fermionic currents assigned to color and electro-weak charges can be regarded as
independent. This explains why the possibility of both vectorial and axial couplings in 8-D
sense does not imply the doubling of gauge bosons.

(e) There is also an infinite variety of conserved currents obtained as the quantum critical
deformations of the basic fermion currents identified above. This would allow in principle
to couple an arbitrary number of observables to the geometry of the space-time sheet by
mapping them to Cartan algebras of Poincare and color group for a particular conserved
quantum critical current. Quantum criticality would therefore make possible classical space-
time correlates of observables necessary for quantum measurement theory.

(f) The coupling constants associated with the deformations would appear in the couplings.
Quantum criticality (K → K + f + f condition) should predict the spectrum of these
couplings. In the case of momentum the coupling would be proportional to

√
G/~0= kR/~0

and k ∼ 211 should follow from quantum criticality. p-Adic coupling constant evolution
should follow from the dependence on the scale of CD coming as powers of 2.

4. Quantum criticality implies fluctuations in long length and time scales and it is not surprising
that quantum criticality is needed to produce a correlation between quantal degrees of free-
dom and macroscopic degrees of freedom. Note that quantum classical correspondence can be
regarded as an abstract form of entanglement induced by the entanglement between quantum
charges QA and fermion number type charges assignable to zero modes.
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5. Space-time sheets can have an arbitrary number of wormhole contacts so that the interpretation
in terms of measurement theory coupling short and long length scales suggests that the measure-
ment interaction terms are localizable at the wormhole throats. This would favor Chern-Simons
term or possibly instanton term if reducible to Chern-Simons terms. The breaking of CP and
T might relate to the fact that state function reductions performed in quantum measurements
indeed induce dissipation and breaking of time reversal invariance.

6. The experimental arrangement quite concretely splits the quantum state to a quantum su-
perposition of space-time sheets such that each eigenstate of the measured observables in the
superposition corresponds to different space-time sheet already before the realization of state
function reduction. This relates interestingly to the question whether state function reduction
really occurs or whether only a branching of wave function defined by WCW spinor field takes
place as in multiverse interpretation in which different branches correspond to different observers.
TGD inspired theory consciousness requires that state function reduction takes place. Maybe
multiversalist might be able to find from this picture support for his own beliefs.

7. One can argue that ”free will” appears not only at the level of quantum jumps but also as the
possibility to select the observables appearing in the modified Dirac action dictating in turn
the Kähler function defining the Kähler metric of WCW representing the ”laws of physics”.
This need not to be the case. The choice of CD fixes M2 and the geodesic sphere S2: this
does not fix completely the choice of the quantization axis but by isometry invariance rotations
and color rotations do not affect Kähler function for given CD and for a given type of Cartan
algebra. In M4 degrees of freedom the possibility to select the observables in two manners
corresponding to linear and cylindrical Minkowski coordinates could imply that the resulting
Kähler functions are different. The corresponding Kähler metrics do not differ if the real parts
of the Kähler functions associated with the two choices differ by a term f(Z) + f(Z), where Z
denotes complex coordinates of WCW, the Kähler metric remains the same. The function f can
depend also on zero modes. If this is the case then one can allow in given CD superpositions
of WCW spinor fields for which the measurement interactions are different. This condition
is expected to pose non-trivial constraints on the measurement action and quantize coupling
parameters appearing in it.

New view about gravitational mass and matter antimatter asymmetry

The physical interpretation of the additional term in the modified Dirac action might force quite a
radical revision of the ideas about matter and antimatter.

1. The term pA∂αm
A contracted with the fermion current is analogous to a gauge potential cou-

pling to fermion number. Since the additional terms in the modified Dirac operator induce
stringy propagation, a natural interpretation of the coupling to the induced spinor fields is in
terms of gravitation. One might perhaps say that the measurement of four momentum in-
duces gravitational interaction. Besides momentum components also color charges take the role
of gravitational charges. As a matter fact, any observable takes this role via coupling to the
projections of Killing vector fields of Cartan algebra. The analogy of color interactions with
gravitational interactions is indeed one of the oldest ideas in TGD.

2. The coupling to four-momentum is through fermion number (both quark number and lepton
number). For states with a vanishing fermion number isometry charges therefore vanish. In
this framework matter antimatter asymmetry would be due to the fact that matter (antimatter)
corresponds to positive (negative) energy parts of zero energy states for massive systems so that
the contributions to the net gravitational four-momentum are of same sign. Could antimatter
be unobservable to us because it resides at negative energy space-time sheets? As a matter fact,
I proposed already years ago that gravitational mass is essentially the magnitude of the inertial
mass but gave up this idea.

3. Bosons do not couple at all to gravitation if they are purely local bound states of fermion and
anti-fermion at the same space-time sheet (say represented by generators of super Kac-Moody
algebra). Therefore the only possible identification of gauge bosons is as wormhole contacts.
If the fermion and anti-fermion at the opposite throats of the contact correspond to positive
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and negative energy states the net gravitational energy receives a positive contribution from
both sheets. If both correspond to positive (negative) energy the contributions to the net four-
momentum have opposite signs. It is not yet clear which identification is the correct one.

5.7.4 Generalized eigenvalues of DC−S and General Coordinate Invariance

The fixing of light-like 3-surface to be the wormhole throat at which the signature of induced metric
changes from Minkowskian to Euclidian corresponds to a convenient fixing of gauge. General Coordi-
nate Invariance however requires that any light-like surface Y 3

l parallel to X3
l in the slicing is equally

good choice. In particular, it should give rise to same Kähler metric but not necessarily the same
exponent of Kähler function identified as the product of the generalized eigenvalues of DC,S at Y 3

l .
General Coordinate Invariance requires that the components of Kähler metric of configuration

space defined in terms of Kähler function as

Gkl = ∂k∂lK =
∑
i

∂k∂lλi

remain invariant under this flow. Here complex coordinate are of course associated with the configu-
ration space. This is the case if the flow corresponds to the addition of sum of holomorphic function
f(z) and its conjugate f(z)) which is anti-holomorphic function to K. This boils down to the scaling
of eigenvalues λi by

λi → exp(fi(z) + fi(z))λi . (5.7.17)

If the eigenvalues are interpreted as vacuum conformal weights, general coordinate transformations
correspond to a spectral flow scaling the eigenvalues in this manner. This in turn would induce spectral
flow of ground state conformal weights if the squares of λi correspond to ground state conformal
weights.

5.8 Super-conformal symmetries at space-time and configura-
tion space level

The physical interpretation and detailed mathematical understanding of super-conformal symmetries
has developed rather slowly and has involved several side tracks. In the following I try to summarize the
basic picture with minimal amount of formulas with the understanding that the statement ”Noether
charge associated with geometrically realized Kac-Moody symmetry” is enough for the reader to write
down the needed formula explicitly.

5.8.1 Configuration space as a union of symmetric spaces

In finite-dimensional context globally symmetric spaces are of form G/H and connection and curvature
are independent of the metric, provided it is left invariant under G. The hope is that same holds true
in infinite-dimensional context. The most one can hope of obtaining is the decomposition C(H) =
∪iG/Hi over orbits of G. One could allow also symmetry breaking in the sense that G and H depend
on the orbit: C(H) = ∪iGi/Hi but it seems that G can be chosen to be same for all orbits. What
is essential is that these groups are infinite-dimensional. The basic properties of the coset space
decomposition give very strong constraints on the group H, which certainly contains the subgroup of
G, whose action reduces to diffeomorphisms of X3.

Consequences of the decomposition

If the decomposition to a union of coset spaces indeed occurs, the consequences for the calculability of
the theory are enormous since it suffices to find metric and curvature tensor for single representative
3-surface on a given orbit (contravariant form of metric gives propagator in perturbative calculation
of matrix elements as functional integrals over the configuration space). The representative surface
can be chosen to correspond to the maximum of Kähler function on a given orbit and one obtains
perturbation theory around this maximum (Kähler function is not isometry invariant).
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The task is to identify the infinite-dimensional groups G and H and to understand the zero mode
structure of the configuration space. Almost twenty (seven according to long held belief!) years after
the discovery of the candidate for the Kähler function defining the metric, it became finally clear
that these identifications follow quite nicely from Diff4 invariance and Diff4 degeneracy as well as
special properties of the Kähler action.

The guess (not the first one!) would be following. G corresponds to the symplectic transformations
of δM4

±×CP2 leaving the induced Kähler form invariant. If G acts as isometries the values of Kähler
form at partonic 2-surfaces (remember effective 2-dimensionality) are zero modes and configuration
space allows slicing to symplectic orbits of the partonic 2-surface with fixed induced Kähler form.
Quantum fluctuating degrees of freedom would correspond to symplectic group and to the fluctua-
tions of the induced metric. The group H dividing G would in turn correspond to the Kac-Moody
symmetries respecting light-likeness of X3

l and acting in X3
l but trivially at the partonic 2-surface X2.

This coset structure was originally discovered via coset construction for super Virasoro algebras of
super-symplectic and super Kac-Moody algebras and realizes Equivalence Principle at quantum level.

Configuration space isometries as a subgroup of Diff(δM4
+ × CP2)

The reduction to light cone boundary leads to the identification of the isometry group as some subgroup
of for the group G for the diffeomorphisms of δM4

+ × CP2. These diffeomorphisms indeed act in a
natural manner in δCH, the the space of 3-surfaces in δM4

+ × CP2. Configuration space is expected
to decompose to a union of the coset spaces G/Hi, where Hi corresponds to some subgroup of G
containing the transformations of G acting as diffeomorphisms for given X3. Geometrically the vector
fields acting as diffeomorphisms of X3 are tangential to the 3-surface. Hi could depend on the topology
of X3 and since G does not change the topology of 3-surface each 3-topology defines separate orbit
of G. Therefore, the union involves sum over all topologies of X3 plus possibly other ’zero modes’.
Different topologies are naturally glued together since singular 3-surfaces intermediate between two
3-topologies correspond to points common to the two sectors with different topologies.

5.8.2 Isometries of configuration space geometry as symplectic transfor-
mations of δM4

+ × CP2

During last decade I have considered several candidates for the group G of isometries of the configu-
ration space as the sub-algebra of the subalgebra of Diff(δM4

+ × CP2). To begin with let us write
the general decomposition of diff(δM4

+ × CP2):

diff(δM4
+ × CP2) = S(CP2)× diff(δM4

+)⊕ S(δM4
+)× diff(CP2) . (5.8.1)

Here S(X) denotes the scalar function basis of space X. This Lie-algebra is the direct sum of light cone
diffeomorphisms made local with respect to CP2 and CP2 diffeomorphisms made local with respect
to light cone boundary.

The idea that entire diffeomorphism group would act as isometries looks unrealistic since the theory
should be more or less equivalent with topological field theory in this case. Consider now the various
candidates for G.

1. The fact that symplectic transformations of CP2 and M4
+ diffeomorphisms are dynamical sym-

metries of the vacuum extremals suggests the possibility that the diffeomorphisms of the light
cone boundary and symplectic transformations of CP2 could leave Kähler function invariant and
thus correspond to zero modes. The symplectic transformations of CP2 localized with respect
to light cone boundary acting as symplectic transformations of CP2 have interpretation as local
color transformations and are a good candidate for the isometries. The fact that local color
transformations are not even approximate symmetries of Kähler action is not a problem: if they
were exact symmetries, Kähler function would be invariant and zero modes would be in question.

2. CP2 local conformal transformations of the light cone boundary act as isometries of δM4
+. Be-

sides this there is a huge group of the symplectic symmetries of δM4
+×CP2 if light cone boundary

is provided with the symplectic structure. Both groups must be considered as candidates for
groups of isometries. δM4

+×CP2 option exploits fully the special properties of δM4
+×CP2, and
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one can develop simple argument demonstrating that δM4
+ × CP2 symplectic invariance is the

correct option. Also the construction of configuration space gamma matrices as super-symplectic
charges supports δM4

+ × CP2 option.

This picture remained same for a long time. The discovery that Kac-Moody algebra consisting of
X2 local symmetries generated by Hamiltonians of isometry sub-algebra of symplectic algebra forced
to challenge this picture and ask whether also X2-local transformations of symplectic group could be
involved.

1. The basic condition is that the X2 local transformation acts leaves induced Kähler form in-
variant apart from diffeomorphism. Denote the infinitesimal generator of X2 local symplecto
morphism by ΦA(x)jAk, where A labels Hamiltonians in the sum and by jα the generator of X2

diffeomorphism.

2. The invariance of J = εαβJαβ
√
g2 modulo diffeomorphism under the infinitesimal symplectic

transformation gives

{HA,ΦA} ≡ ∂αH
Aεαβ∂βΦA = ∂αJj

α . (5.8.2)

3. Note that here the Poisson bracket is not defined by Jαβ but εαβ defined by the induced metric.
Left hand side reflects the failure of symplectomorphism property due to the dependence of
ΦA(x) on X2 coordinate which and comes from the gradients of δM4 × CP2 coordinates in the
expression of the induced Kähler form. Right hand side corresponds to the action of infinitesimal
diffeomorphism.

4. Let us assume that one can restrict the consideration to single Hamiltonian so that the trans-
formation is generated by Φ(x)HA and that to each Φ(x) there corresponds a diffeomorphism
of X2, which is a symplectic transformation of X2 with respect to symplectic form εαβ and
generated by Hamiltonian Ψ(x). This transforms the invariance condition to

{HA,Φ} ≡ ∂αH
Aεαβ∂βΦ = ∂αJε

αβ∂βΨA = {J,ΨA} . (5.8.3)

This condition can be solved identically by assuming that ΦA and Ψ are proportional to arbitrary
smooth function of J :

Φ = f(J) , ΨA = −f(J)HA . (5.8.4)

Therefore the X2 local symplectomorphisms of H reduce to symplectic transformations of X2

with Hamiltonians depending on single coordinate J of X2. The analogy with conformal in-
variance for which transformations depend on single coordinate z is obvious. As far as the
anti-commutation relations for induced spinor fields are considered this means that J = consant
curves behave as points points. For extrema of J appearing as candidates for points of number
theoretic braids J = constant curves reduce to points.

5. From the structure of the conditions it is easy to see that the transformations generate a Lie-
algebra. For the transformations Φ1

AH
A Φ2

AH
A the commutator is

Φ
[1,2]
A = f BC

A ΦBΦC , (5.8.5)

where f BC
A are the structure constants for the symplectic algebra of δM4

± × CP2. From this
form it is easy to check that Jacobi identifies are satisfied. The commutator has same form as
the commutator of gauge algebra generators. BRST gauge symmetry is perhaps the nearest
analog of this symmetry. In the case of isometries these transforms realized local color gauge
symmetry in TGD sense.
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6. If space-time surface allows a slicing to light-like 3-surfaces Y 3
l parallel to X3

l , these conditions
make sense also for the partonic 2-surfaces defined by the intersections of Y 3

l with δM4
± × CP2

and ”parallel” to X2. The local symplectic transformations also generalize to their local variants
in X3

l . Light-likeness of X3
l means effective metric 2-dimensionality so that 2-D Kähler metric

and symplectic form as well as the invariant J = εαβJαβ exist. A straightforward calculation
shows that the the notion of local symplectic transformation makes sense also now and formulas
are exactly the same as above.

5.8.3 SUSY algebra defined by the anticommutation relations of fermionic
oscillator operators and WCW local Clifford algebra elements as
chiral super-fields

Whether TGD allows space-time supersymmetry has been a long-standing question. Majorana spinors
appear in N = 1 super-symmetric QFTs- in particular minimally super-symmetric standard model
(MSSM). Majorana-Weyl spinors appear in M-theory and super string models. An undesirable conse-
quence is chiral anomaly in the case that the numbers of left and right handed spinors are not same.
For D = 11 and D = 10 these anomalies cancel which led to the breakthrough of string models and
later to M-theory. The probable reason for considering these dimensions is that standard model does
not predict right-handed neutrino (although neutrino mass suggests that right handed neutrino exists)
so that the numbers of left and right handed Weyl-spinors are not the same.

In TGD framework the situation is different. Covariantly constant right-handed neutrino spinor
acts as a super-symmetry in CP2. One might think that right-handed neutrino in a well-defined sense
disappears from the spectrum as a zero mode so that the number of right and left handed chiralities
in M4 ×CP2 would not be same. For light-like 3-surfaces covariantly constant right-handed neutrino
does not however solve the counterpart of Dirac equation for a non-vanishing four-momentum and
color quantum numbers of the physical state. Therefore it does not disappear from the spectrum
anymore and one expects the same number of right and left handed chiralities.

In TGD framework the separate conservation of baryon and lepton numbers excludes Majorana
spinors and also the the Minkowski signature of M4 × CP2 makes them impossible. The conclusion
that TGD does not allow super-symmetry is however wrong. For N = 2N Weyl spinors are indeed
possible and if the number of right and left handed Weyl spinors is same super-symmetry is possible.
In 8-D context right and left-handed fermions correspond to quarks and leptons and since color in
TGD framework corresponds to CP2 partial waves rather than spin like quantum number, also the
numbers of quark and lepton-like spinors are same.

The physical picture suggest a new kind of approach to super-symmetry in the sense that the
anticommutations of fermionic oscillator operators associated with the modes of the induced spinor
fields define a structure analogous to SUSY algebra. This means that N = 2N SUSY with large N
is in question allowing spins higher than two and also large fermion numbers. Recall that N ≤ 32 is
implied by the absence of spins higher than two and the number of real spinor components is N = 32
also in TGD. The situation clearly differs from that encountered in super-string models and SUSYs
and the large value of N allows to expect very powerful constraints on dynamics irrespective of the fact
that SUSY is broken. Right handed neutrino modes define a sub-algebra for which the SUSY is only
slightly broken by the absence of weak interactions and one could also consider a theory containing a
large number of N = 2 super-multiplets corresponding to the addition of right-handed neutrinos and
antineutrinos at the wormhole throat.

Masslessness condition is essential for super-symmetry and at the fundamental level it could be
formulated in terms of modified gamma matrices using octonionic representation and assuming that
they span local quaternionic sub-algebra at each point of the space-time sheet. SUSY algebra has
standard interpretation with respect to spin and isospin indices only at the partonic 2-surfaces so that
the basic algebra should be formulated at these surfaces. Effective 2-dimensionality would require
that partonic 2-surfaces can be taken to be ends of any light-like 3-surface Y 3

l in the slicing of the
region surrounding a given wormhole throat.

Super-algebra associated with the modified gamma matrices

Anti-commutation relations for fermionic oscillator operators associated with the induced spinor fields
are naturally formulated in terms of the modified gamma matrices. Super-conformal symmetry sug-
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gests that the anti-commutation relations for the fermionic oscillator operators at light-like 3-surfaces
or at their ends are most naturally formulated as anti-commutation relations for SUSY algebra. The
resulting anti-commutation relations would fix the quantum TGD.

{a†nα, anβ} = DmnDαβ ,

D = (pµ +
∑
a

Qµa)σ̂µ . (5.8.6)

Here pµ and Qµa are space-time projections of momentum and color charges in Cartan algebra. Their
action is purely algebraic. The anti-commutations are nothing but a generalization of the ordinary
equal-time anticommutation relations for fermionic oscillator operators to a manifestly covariant form.
The matrix Dm,n is expected to reduce to a diagonal form with a proper normalization of the oscillator
operators. The experience with extended SUSY algebra suggest that the anti-commutators could
contain additional central term proportional to δαβ .

One can consider basically two different options concerning the definition of the super-algebra.

1. If the super-algebra is defined at the 3-D ends of the intersection of X4 with the bound-
aries of CD, the modified gamma matrices appearing in the operator D appearing in the
anti-commutator are associated with Kähler action. If the generalized masslessness condition
D2 = 0 holds true -as suggested already earlier- one can hope that no explicit breaking of super-
symmetry takes place and elegant description of massive states as effectively massless states
making also possible generalization of twistor is possible. One must however notice that also
massive representatives of SUSY exist.

2. SUSY algebra could be also defined at 2-D ends of light-like 3-surfaces.

According to considerations of [31] these options are equivalent for a large class of space-time
sheets. If the effective 3-dimensionality realized in the sense that the effective metric defined by the
modified gamma matrices is degenerate, propagation takes place along 3-D light-like 3-surfaces. This
condition definitely fails for string like objects.

One can realize the local Clifford algebra also by introducing theta parameters in the standard
manner and the expressing a collection of local Clifford algebra element with varying values of fermion
numbers (function of CD and CP2 coordinates) as a chiral super-field. The definition of a chiral super
field requires the introduction of super-covariant derivatives. Standard form for the anti-commutators
of super-covariant derivatives Dα make sense only if they do not affect the modified gamma matrices.
This is achieved if pk acts on the position of the tip of CD (rather than internal coordinates of the
space-time sheet). Qa in turn must act on CP2 coordinates of the tip.

Super-fields associated with WCW Clifford algebra

WCW local Clifford algebra elements possess definite fermion numbers and it is not physically sensible
to super-pose local Clifford algebra elements with different fermion numbers. The extremely elegant
formulation of super-symmetric theories in terms of super-fields encourages to ask whether the local
Clifford algebra elements could allow expansion in terms of complex theta parameters assigned to
various fermionic oscillator operator in order to obtain formal superposition of elements with different
fermion numbers. One can also ask whether the notion of chiral super field might make sense.

The obvious question is whether it makes sense to assign super-fields with the modified gamma
matrices.

1. Modified gamma matrices are not covariantly constant but this is not a problem since the action
of momentum generators and color generators is purely algebraic space-time coordinates.

2. One can define the notion of chiral super-field also at the fundamental level. Chiral super-field
would be continuation of the local Clifford algebra of associated with CD to a local Clifford
algebra element associated with the union of CDs. This would allow elegant description of cm
degrees of freedom, which are the most interesting as far as QFT limit is considered.
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3. Kähler function of WCW as a function of complex coordinates could be extended to a chi-
ral super-field defined in quantum fluctuation degrees of freedom. It would depend on zero
modes too. Does also the latter dependence allow super-space continuation? Coefficients of
powers of theta would correspond to fermionic oscillator operators. Does this function define
the propagators of various states associated with light-like 3-surface? Configuration space com-
plex coordinates would correspond to the modes of induced spinor field so that super-symmetry
would be realized very concretely.

5.8.4 Identification of Kac-Moody symmetries

The Kac-Moody algebra of symmetries acting as symmetries respecting the light-likeness of 3-surfaces
plays a crucial role in the identification of quantum fluctuating configuration space degrees of freedom
contributing to the metric.

Identification of Kac-Moody algebra

The generators of bosonic super Kac-Moody algebra leave the light-likeness condition
√
g3 = 0 invari-

ant. This gives the condition

δgαβCof(gαβ) = 0 , (5.8.7)

Here Cof refers to matrix cofactor of gαβ and summation over indices is understood. The conditions
can be satisfied if the symmetries act as combinations of infinitesimal diffeomorphisms xµ → xµ + ξµ

of X3 and of infinitesimal conformal symmetries of the induced metric

δgαβ = λ(x)gαβ + ∂µgαβξ
µ + gµβ∂αξ

µ + gαµ∂βξ
µ . (5.8.8)

Ansatz as an X3-local conformal transformation of imbedding space

Write δhk as a super-position of X3-local infinitesimal diffeomorphisms of the imbedding space gen-
erated by vector fields JA = jA,k∂k:

δhk = cA(x)jA,k . (5.8.9)

This gives

cA(x)
[
Dkj

A
l +Dlj

A
k

]
∂αh

k∂βh
l + 2∂αcAhklj

A,k∂βh
l

= λ(x)gαβ + ∂µgαβξ
µ + gµβ∂αξ

µ + gαµ∂βξ
µ . (5.8.10)

If an X3-local variant of a conformal transformation of the imbedding space is in question, the first
term is proportional to the metric since one has

Dkj
A
l +Dlj

A
k = 2hkl . (5.8.11)

The transformations in question includes conformal transformations of H± and isometries of the
imbedding space H.

The contribution of the second term must correspond to an infinitesimal diffeomorphism of X3

reducible to infinitesimal conformal transformation ψµ:

2∂αcAhklj
A,k∂βh

l = ξµ∂µgαβ + gµβ∂αξ
µ + gαµ∂βξ

µ . (5.8.12)
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A rough analysis of the conditions

One could consider a strategy of fixing cA and solving solving ξµ from the differential equations. In
order to simplify the situation one could assume that gir = grr = 0. The possibility to cast the metric
in this form is plausible since generic 3-manifold allows coordinates in which the metric is diagonal.

1. The equation for grr gives

∂rcAhklj
Ak∂rh

k = 0 . (5.8.13)

The radial derivative of the transformation is orthogonal to X3. No condition on ξα results. If
cA has common multiplicative dependence on cA = f(r)dA by a one obtains

dAhklj
Ak∂rh

k = 0 . (5.8.14)

so that JA is orthogonal to the light-like tangent vector ∂rh
k X3 which is the counterpart for

the condition that Kac-Moody algebra acts in the transversal degrees of freedom only. The
condition also states that the components gri is not changed in the infinitesimal transformation.

It is possible to choose f(r) freely so that one can perform the choice f(r) = rn and the notion
of radial conformal weight makes sense. The dependence of cA on transversal coordinates is
constrained by the transversality condition only. In particular, a common scale factor having
free dependence on the transversal coordinates is possible meaning that X3- local conformal
transformations of H are in question.

2. The equation for gri gives

∂rξ
i = ∂rcAhklj

Akhij∂jh
k . (5.8.15)

The equation states that gri are not affected by the symmetry. The radial dependence of ξi is
fixed by this differential equation. No condition on ξr results. These conditions imply that the
local gauge transformations are dynamical with the light-like radial coordinate r playing the
role of the time variable. One should be able to fix the transformation more or less arbitrarily
at the partonic 2-surface X2.

3. The three independent equations for gij give

ξα∂αgij + gkj∂iξ
k + gki∂jξ

k = ∂icAhklj
Ak∂jh

l . (5.8.16)

These are 3 differential equations for 3 functions ξα on 2 independent variables xi with r ap-
pearing as a parameter. Note however that the derivatives of ξr do not appear in the equation.
At least formally equations are not over-determined so that solutions should exist for arbitrary
choices of cA as functions of X3 coordinates satisfying the orthogonality conditions. If this
is the case, the Kac-Moody algebra can be regarded as a local algebra in X3 subject to the
orthogonality constraint.

This algebra contains as a subalgebra the analog of Kac-Moody algebra for which all cA except
the one associated with time translation and fixed by the orthogonality condition depends on
the radial coordinate r only. The larger algebra decomposes into a direct sum of representations
of this algebra.
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Commutators of infinitesimal symmetries

The commutators of infinitesimal symmetries need not be what one might expect since the vector
fields ξµ are functionals cA and of the induced metric and also cA depends on induced metric via the
orthogonality condition. What this means that jA,k in principle acts also to φB in the commutator
[cAJ

A, cBJ
B ].

[
cAJ

A, cBJ
B
]

= cAcBJ
[A,B] + JA ◦ cBJB − JB ◦ cAJA , (5.8.17)

where ◦ is a short hand notation for the change of cB induced by the effect of the conformal transfor-
mation JA on the induced metric.

Luckily, the conditions in the case grr = gir = 0 state that the components grr and gir of the
induced metric are unchanged in the transformation so that the condition for cA resulting from grr
component of the metric is not affected. Also the conditions coming from gir = 0 remain unchanged.
Therefore the commutation relations of local algebra apart from constraint from transversality result.

The commutator algebra of infinitesimal symmetries should also close in some sense. The or-
thogonality to the light-like tangent vector creates here a problem since the commutator does not
obviously satisfy this condition automatically. The problem can be solved by following the recipes of
non-covariant quantization of string model.

1. Make a choice of gauge by choosing time translation P 0 in a preferred M4 coordinate frame
to be the preferred generator JA0 ≡ P 0, whose coefficient ΦA0 ≡ Ψ(P 0) is solved from the
orthogonality condition. This assumption is analogous with the assumption that time coordinate
is non-dynamical in the quantization of strings. The natural basis for the algebra is obtained
by allowing only a single generator JA besides P 0 and putting dA = 1.

2. This prescription must be consistent with the well-defined radial conformal weight for the JA 6=
P 0 in the sense that the proportionality of dA to rn for JA 6= P 0 must be consistent with
commutators. SU(3) part of the algebra is of course not a problem. From the Lorentz vector
property of P k it is clear that the commutators resulting in a repeated commutation have well-
defined radial conformal weights only if one restricts SO(3, 1) to SO(3) commuting with P 0. Also
D could be allowed without losing well-defined radial conformal weights but the argument below
excludes it. This picture conforms with the earlier identification of the Kac-Moody algebra.

Conformal algebra contains besides Poincare algebra and the dilation D = mk∂mk the mutually
commuting generators Kk = (mrmr∂mk − 2mkml∂ml)/2. The commutators involving added
generators are

[
D,Kk

]
= −Kk ,

[
D,P k

]
= P k ,[

Kk,Kl
]

= 0 ,
[
Kk, P l

]
= mklD −Mkl .

(5.8.18)

From the last commutation relation it is clear that the inclusion of Kk would mean loss of
well-defined radial conformal weights.

3. The coefficient dm0/dr of Ψ(P 0) in the equation

Ψ(P 0)
dm0

dr
= −JAkhkl∂rhl

is always non-vanishing due to the light-likeness of r. Since P 0 commutes with generators of
SO(3) (but not with D so that it is excluded!), one can define the commutator of two generators
as a commutator of the remaining part and identify Ψ(P 0) from the condition above.

4. Of course, also the more general transformations act as Kac-Moody type symmetries but the
interpretation would be that the sub-algebra plays the same role as SO(3) in the case of Lorentz
group: that is gives rise to generalized spin degrees of freedom whereas the entire algebra divided
by this sub-algebra would define the coset space playing the role of orbital degrees of freedom. In
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fact, also the Kac-Moody type symmetries for which cA depends on the transversal coordinates
of X3 would correspond to orbital degrees of freedom. The presence of these orbital degrees of
freedom arranging super Kac-Moody representations into infinite multiplets labeled by function
basis for X2 means that the number of degrees of freedom is much larger than in string models.

5. It is possible to replace the preferred time coordinate m0 with a preferred light-like coordinate.
There are good reasons to believe that orbifold singularity for phases of matter involving non-
standard value of Planck constant corresponds to a preferred light-ray going through the tip of
δM4
±. Thus it would be natural to assume that the preferred M4 coordinate varies along this

light ray or its dual. The Kac-Moody group SO(3)×E3 respecting the radial conformal weights
would reduce to SO(2) × E2 as in string models. E2 would act in tangent plane of S2

± along
this ray defining also SO(2) rotation axis.

Hamiltonians

The action of these transformations on Kähler action is well-defined and one can deduce the conserved
quantities having identification as configuration space Hamiltonians. Hamiltonians also correspond
to closed 2-forms. The condition that the Hamiltonian reduces to a dual of closed 2-form is satisfied
because X2-local conformal transformations of M4

±×CP2 are in question (X2-locality does not imply
any additional conditions).

The action of Kac-Moody algebra on spinors and fermionic representations of Kac-Moody
algebra

One can imagine two interpretations for the action of generalized Kac-Moody transformations on
spinors.

1. The basic goal is to deduce the fermionic Noether charge associated with the bosonic Kac-Moody
symmetry and this can be done by a standard recipe. The first contribution to the charge comes
from the transformation of modified gamma matrices appearing in the modified Dirac action
associated with fermions. Second contribution comes from spinor rotation.

2. Both SO(3) and SU(3) rotations have a standard action as spin rotation and electro-weak rota-
tion allowing to define the action of the Kac-Moody algebra JA on spinors.

How central extension term could emerge?

The central extension term of Kac-Moody algebra could correspond to a symplectic extension which
can emerge from the freedom to add a constant term to Hamiltonians as in the case of super-symplectic
algebra. The expression of the Hamiltonians as closed forms could allow to understand how the central
extension term emerges.

In principle one can construct a representation for the action of Kac-Moody algebra on fermions a
representations as a fermionic bilinear and the central extension of Kac-Moody algebra could emerge
in this construction just as it appears in Sugawara construction.

About the interpretation of super Kac-Moody symmetries

Also the light like 3-surfaces X3
l of H defining elementary particle horizons at which Minkowskian

signature of the metric is changed to Euclidian and boundaries of space-time sheets can act as causal
determinants, and thus contribute to the configuration space metric. In this case the symmetries
correspond to the isometries of the imbedding space localized with respect to the complex coordinate
of the 2-surface X2 determining the light like 3-surface X3

l so that Kac-Moody type symmetry results.
Also the condition

√
g3 = 0 for the determinant of the induced metric seems to define a conformal

symmetry associated with the light like direction.
If is enough to localize only theH-isometries with respect toX3

l , the purely bosonic part of the Kac-
Moody algebra corresponds to the isometry group M4×SO(3, 1)×SU(3). The physical interpretation
of these symmetries is not so obvious as one might think. The point is that one can generalize the
formulas characterizing the action of infinitesimal isometries on spinor fields of finite-dimensional
Kähler manifold to the level of the configuration space. This gives rise to bosonic generators containing
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also a sigma-matrix term bilinear in fermionic oscillator operators. This representation need not be
equivalent with the purely fermionic representations provided by induced Dirac action. Thus one has
two groups of local color charges and the challenge is to find a physical interpretation for them.

The following arguments support one possible identification.

1. The hint comes from the fact that U(2) in the decomposition CP2 = SU(3)/U(2) corresponds
in a well-defined sense electro-weak algebra identified as a holonomy algebra of the spinor con-
nection. Hence one could argue that the U(2) generators of either SU(3) algebra might be
identifiable as generators of local U(2)ew gauge transformations whereas non-diagonal gener-
ators would correspond to Higgs field. This interpretation would conform with the idea that
Higgs field is a genuine scalar field rather than a composite of fermions.

2. Since X3
l -local SU(3) transformations represented by fermionic currents are characterized by

central extension they would naturally correspond to the electro-weak gauge algebra and Higgs
bosons. This is also consistent with the fact that both leptons and quarks define fermionic Kac
Moody currents.

3. The fact that only quarks appear in the gamma matrices of the configuration space supports the
view that action of the generators of X3

l -local color transformations on configuration space spinor
fields represents local color transformations. If the action of X3

l -local SU(3) transformations
on configuration space spinor fields has trivial central extension term the identification as a
representation of local color symmetries is possible.

The topological explanation of the family replication phenomenon is based on an assignment of 2-
dimensional boundary to a 3-surface characterizing the elementary particle. The precise identification
of this surface has remained open and one possibility is that the 2-surfaceX2 defining the light light-like
surface associated with an elementary particle horizon is in question. This assumption would conform
with the notion of elementary particle vacuum functionals defined in the zero modes characterizing
different conformal equivalences classes for X2.

The relationship of the Super-Kac Moody symmetry to the standard super-conformal
invariance

Super-Kac Moody symmetry can be regarded as N = 4 complex super-symmetry with complex H-
spinor modes of H representing the 4 physical helicities of 8-component leptonic and quark like spinors
acting as generators of complex dynamical super-symmetries. The super-symmetries generated by the
covariantly constant right handed neutrino appear with both M4 helicities: it however seems that
covariantly constant neutrino does not generate any global super-symmetry in the sense of particle-
sparticle mass degeneracy. Only righthanded neutrino spinor modes (apart from covariantly constant
mode) appear in the expressions of configuration space gamma matrices forming a subalgebra of the
full super-algebra.

N = 2 real super-conformal algebra is generated by the energy momentum tensor T (z), U(1)
current J(z), and super generatorsG±(z) carrying U(1) charge. Now U(1) current would correspond to
right-handed neutrino number and super generators would involve contraction of covariantly constant
neutrino spinor with second quantized induced spinor field. The further facts that N = 2 algebra is
associated naturally with Kähler geometry, that the partition functions associated with N = 2 super-
conformal representations are modular invariant, and that N = 2 algebra defines so called chiral ring
defining a topological quantum field theory [61], lend a further support for the belief that N = 2
super-conformal algebra acts in super-symplectic degrees of freedom.

The values of c and conformal weights for N = 2 super-conformal field theories are given by

c =
3k

k + 2
,

∆l,m(NS) =
l(l + 2)−m2

4(k + 2)
, l = 0, 1, ..., k ,

qm =
m

k + 2
, m = −l,−l + 2, ...., l − 2, l . (5.8.19)
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qm is the fractional value of the U(1) charge, which would now correspond to a fractional fermion
number. For k = 1 one would have q = 0, 1/3,−1/3, which brings in mind anyons. ∆l=0,m=0 = 0
state would correspond to a massless state with a vanishing fermion number. Note that SU(2)k
Wess-Zumino model has the same value of c but different conformal weights. More information about
conformal algebras can be found from the appendix of [61].

For Ramond representation L0−c/24 or equivalently G0 must annihilate the massless states. This
occurs for ∆ = c/24 giving the condition k = 2

[
l(l + 2)−m2

]
(note that k must be even and that

(k, l,m) = (4, 1, 1) is the simplest non-trivial solution to the condition). Note the appearance of a
fractional vacuum fermion number qvac = ±c/12 = ±k/4(k+2). I have proposed that NS and Ramond
algebras could combine to a larger algebra containing also lepto-quark type generators but this not
necessary.

The conformal algebra defined as a direct sum of Ramond and NS N = 4 complex sub-algebras
associated with quarks and leptons might further extend to a larger algebra if lepto-quark generators
acting effectively as half odd-integer Virasoro generators can be allowed. The algebra would contain
spin and electro-weak spin as fermionic indices. Poincare and color Kac-Moody generators would
act as symplectically extended isometry generators on configuration space Hamiltonians expressible
in terms of Hamiltonians of X3

l × CP2. Electro-weak and color Kac-Moody currents have conformal
weight h = 1 whereas T and G have conformal weights h = 2 and h = 3/2.

The experience with N = 4 complex super-conformal invariance suggests that the extended algebra
requires the inclusion of also second quantized induced spinor fields with h = 1/2 and their super-
partners with h = 0 and realized as fermion-antifermion bilinears. Since G and Ψ are labeled by
2× 4 spinor indices, super-partners would correspond to 2× (3 + 1) = 8 massless electro-weak gauge
boson states with polarization included. Their inclusion would make the theory highly predictive since
induced spinor and electro-weak fields are the fundamental fields in TGD.

5.8.5 Coset space structure for configuration space as a symmetric space

The key ingredient in the theory of symmetric spaces is that the Lie-algebra of G has the following
decomposition

g = h+ t ,
[h, h] ⊂ h , [h, t] ⊂ t , [t, t] ⊂ h .

In present case this has highly nontrivial consequences. The commutator of any two infinitesimal
generators generating nontrivial deformation of 3-surface belongs to h and thus vanishing norm in the
configuration space metric at the point which is left invariant by H. In fact, this same condition follows
from Ricci flatness requirement and guarantees also thatG acts as isometries of the configuration space.
This generalization is supported by the properties of the unitary representations of Lorentz group at
the light cone boundary and by number theoretical considerations.

The algebras suggesting themselves as candidates are symplectic algebra of δM± ×CP2 and Kac-
Moody algebra mapping light-like 3-surfaces to light-like 3-surfaces to be discussed in the next section.

The identification of the precise form of the coset space structure is however somewhat delicate.

1. The essential point is that both symplectic and Kac-Moody algebras allow representation in
terms of X3

l -local Hamiltonians. The general expression for the Hamilton of Kac-Moody algebra
is

H =
∑

ΦA(x)HA . (5.8.20)

Here HA are Hamiltonians of SO(3)× SU(3) acting in δX3
l ×CP2. For symplectic algebra any

Hamiltonian is allowed. If x corresponds to any point of X3
l , one must assume a slicing of the

causal diamond CD by translates of δM4
±.

2. For symplectic generators the dependence of form on r∆ on light-like coordinate of δX3
l × CP2

is allowed. ∆ is complex parameter whose modulus squared is interpreted as conformal weight.
∆ is identified as analogous quantum number labeling the modes of induced spinor field.
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3. One can wonder whether the choices of the rM = constant sphere S2 is the only choice. The
Hamiltonin-Jacobi coordinate for X4

X3
l

suggest an alternative choice as E2 in the decomposition

of M4 = M2(x)×E2(x) required by number theoretical compactification and present for known
extremals of Kähler action with Minkowskian signature of induced metric. In this case SO(3)
would be replaced with SO(2). It however seems that the radial light-like coordinate u of X4(X3

l )
would remain the same since any other curve along light-like boundary would be space-like.

4. The vector fields for representing Kac-Moody algebra must vanish at the partonic 2-surface
X2 ⊂ δM4

± × CP2. The corresponding vector field must vanish at each point of X2:

jk =
∑

ΦA(x)JklHA
l = 0 . (5.8.21)

This means that the vector field corresponds to SO(2)×U(2) defining the isotropy group of the
point of S2 × CP2.

This expression could be deduced from the idea that the surfaces X2 are analogous to origin of
CP2 at which U(2) vector fields vanish. Configuration space at X2 could be also regarded as the
analog of the origin of local S2×CP2. This interpretation is in accordance with the original idea
which however was given up in the lack of proper realization. The same picture can be deduced
from braiding in which case the Kac-Moody algebra corresponds to local SO(2)×U(2) for each
point of the braid at X2. The condition that Kac-Moody generators with positive conformal
weight annihilate physical states could be interpreted by stating effective 2-dimensionality in the
sense that the deformations of X3

l preserving its light-likeness do not affect the physics. Note
however that Kac-Moody type Virasoro generators do not annihilate physical states.

5. Kac-Moody algebra generator must leave induced Kähler form invariant at X2. This is of course
trivial since the action leaves each point invariant. The conditions of Cartan decomposition are
satisfied. The commutators of the Kac-Moody vector fields with symplectic generators are
non-vanishing since the action of symplectic generator on Kac-Moody generator restricted to
X2 gives a non-vanishing result belonging to the symplectic algebra. Also the commutators of
Kac-Moody generators are Kac-Moody generators.

5.8.6 The relationship between super-symplectic and Super Kac-Moody
algebras, Equivalence Principle, and justification of p-adic thermo-
dynamics

The relationship between super-symplectic algebra (SS) acting at light-cone boundary and Super
Kac-Moody algebra (SKM) acting on light-like 3-surfaces has remained somewhat enigmatic due to
the lack of physical insights. This is not the only problem. The question to precisely what extent
Equivalence Principle (EP) remains true in TGD framework and what might be the precise mathe-
matical realization of EP is waiting for an answer. Also the justification of p-adic thermodynamics
for the scaling generator L0 of Virasoro algebra -in obvious conflict with the basic wisdom that this
generator should annihilate physical states- is lacking. It seems that these three problems could have
a common solution.

New vision about the relationship between SSV and SKMV

Consider now the new vision about the relationship between SSV and SKMV .

1. The isometries of H assignable with SKM are also symplectic transformations [21] (note that
I have used the attribute ”canonical” instead of ”symplectic” previously). Hence might con-
sider the possibility that SKM could be identified as a subalgebra of SS. If this makes sense,
a generalization of the coset construction obtained by replacing finite-dimensional Lie group
with infinite-dimensional symplectic group suggests itself. The differences of SSV and SKMV
elements would annihilate physical states and commute/anticommute with SKMV . Also the
generators On, n > 0, for both algebras would annihilate the physical states so that the differ-
ences of the elements would annihilate automatically physical states for n > 0.
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2. The super-generator G0 contains the Dirac operator D of H. If the action of SSV and SKMV
Dirac operators on physical states are identical then cm of degrees of freedom disappear from
the differences G0(SCV )−G0(SKMV ) and L0(SCV )− L0(SKMV ). One could interpret the
identical action of the Dirac operators as the long sought-for precise realization of Equivalence
Principle (EP) in TGD framework. EP would state that the total inertial four-momentum and
color quantum numbers assignable to SS (imbedding space level) are equal to the gravitational
four-momentum and color quantum numbers assignable to SKM (space-time level). Note that
since super-symplectic transformations correspond to the isometries of the ”world of classical
worlds” the assignment of the attribute ”inertial” to them is natural.

Consistency with p-adic thermodynamics

The consistency with p-adic thermodynamics provides a strong reality test and has been already used
as a constraint in attempts to understand the super-conformal symmetries in partonic level.

1. In physical states the p-adic thermal expectation value of the SKM and SS conformal weights
would be non-vanishing and identical and mass squared could be identified equivalently either
as the expectation value of SKM or SS scaling generator L0. There would be no need to give
up Super Virasoro conditions for SCV − SKMV .

2. There is consistency with p-adic mass calculations for hadrons [58] since the non-perturbative SS
contributions and perturbative SKM contributions to the mass correspond to space-time sheets
labeled by different p-adic primes. The earlier statement that SS is responsible for the domi-
nating non-perturbative contributions to the hadron mass transforms to a statement reflecting
SS − SKM duality. The perturbative quark contributions to hadron masses can be calculated
most conveniently by using p-adic thermodynamics for SKM whereas non-perturbative contri-
butions to hadron masses can be calculated most conveniently by using p-adic thermodynamics
for SS. Also the proposal that the exotic analogs of baryons resulting when baryon looses its
valence quarks [53] remains intact in this framework.

3. The results of p-adic mass calculations depend crucially on the number N of tensor factors
contributing to the Super-Virasoro algebra. The required number is N = 5 and during years
I have proposed several explanations for this number. It seems that holonomic contributions
that is electro-weak and spin contributions must be regarded as contributions separate from
those coming from isometries. SKM algebras in electro-weak degrees and spin degrees of of
freedom, would give 2+1=3 tensor factors corresponding to U(2)ew ×SU(2). SU(3) and SO(3)
(or SO(2) ⊂ SO(3) leaving the intersection of light-like ray with S2 invariant) would give 2
additional tensor factors. Altogether one would indeed have 5 tensor factors.

There are some further questions which pop up in mind immediately.

1. Why mass squared corresponds to the thermal expectation value of the net conformal weight?
This option is forced among other things by Lorentz invariance but it is not possible to provide
a really satisfactory answer to this question yet. In the coset construction there is no reason to
require that the mass squared equals to the integer value conformal weight for SKM algebra.
This allows the possibility that mass squared has same value for states with different values
of SKM conformal weights appearing in the thermal state and equals to the average of the
conformal weight.

2. The coefficient of proportionality can be however deduced from the observation that the mass
squared values for CP2 Dirac operator correspond to definite values of conformal weight in p-
adic mass calculations. It is indeed possible to assign to partonic 2-surface X2 CP2 partial
waves correlating strongly with the net electro-weak quantum numbers of the parton so that the
assignment of ground state conformal weight to CP2 partial waves makes sense.

3. In the case of M4 degrees of freedom it is strictly speaking not possible to talk about momentum
eigen states since translations take parton out of δH+. This would suggests that 4-momentum
must be assigned with the tip of the light-cone containing the particle but this is not consistent
with zero energy ontology. Hence it seems that one must restrict the translations of X3

l to
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time like translations in the direction of geometric future at δM4
+ × CP2. The decomposition

of the partonic 3-surface X3
l to regions X3

l,i carrying non-vanishing induced Kähler form and

the possibility to assign M2(x) ⊂M4 to the tangent space of X4(X3
l ) at points of X3

l suggests
that the points of number theoretic braid to which oscillator operators can be assigned can
carry four-momentum in the plane defined by M2(x). One could assume that the four-momenta
assigned with points in given region X3

i are collinear but even this restriction is not necessary.

4. The additivity of conformal weight means additivity of mass squared at parton level and this
has been indeed used in p-adic mass calculations. This implies the conditions

(
∑
i

pi)
2 =

∑
i

m2
i (5.8.22)

The assumption p2
i = m2

i makes sense only for massless partons moving collinearly. In the QCD
based model of hadrons only longitudinal momenta and transverse momentum squared are used
as labels of parton states, which together with the presence of preferred plane M2 would suggest
that one has

p2
i,|| = m2

i ,

−
∑
i

p2
i,⊥ + 2

∑
i,j

pi · pj = 0 . (5.8.23)

The masses would be reduced in bound states: m2
i → m2

i − (p2
T )i. This could explain why

massive quarks can behave as nearly massless quarks inside hadrons.

How it is possible to have negative conformal weights for ground states?

p-Adic mass calculations require negative conformal weights for ground states [49] . The only elegant
solution of the problems caused by this requirement seems to be p-adic: the conformal weights are
positive in the real sense but as p-adic numbers their dominating part is negative integer (in the real
sense), which can be compensated by the conformal weights of Super Virasoro generators.

1. If ±λ2
i as such corresponds to a ground state conformal weight and if λi is real the ground state

conformal weight positive in the real sense. In complex case (instanton term) the most natural
formula is h = ±|λ|2.

2. The first option is based on the understanding of conformal excitations in terms of CP breaking
instanton term added to the modified Dirac operator. In this case the conformal weights are
identified as h = n − |λk|2 and the minus sign comes from the Euclidian signature of the
effective metric for the modified Dirac operator. Ground state conformal weight would be
non-vanishing for non-zero modes of D(X3

l ). Massless bosons produce difficulties unless one
has h = |λi(1) − λi(2)|2, where i = 1, 2 refers to the two wormhole throats. In this case the
difference can vanish and its non-vanishing would be due to the symmetric breaking. This
scenario is assumed in p-adic mass calculations. Fermions are predicted to be always massive
since zero modes of D(X2) represent super gauge degrees of freedom.

3. In the context of p-adic thermodynamics a loop hole opens allowing λi to be real. In spirit of
rational physics suppose that one has in natural units h = λ2

i = xp2 − n, where x is integer.
This number is positive and large in the real sense. In p-adic sense the dominating part of
this number is −n and can be compensated by the net conformal weight n of Super Virasoro
generators acting on the ground state. xp2 represents the small Higgs contribution to the mass
squared proportional to (xp2)R ' x/p2 (R refers to canonical identification ). By the basic
features of the canonical identification p > x ' p should hold true for gauge bosons for which
Higgs contribution dominates. For fermions x should be small since p-adic mass calculations are
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consistent with the vanishing of Higgs contribution to the fermion mass. This would lead to the
earlier conclusion that xp2 and hence BK is large for bosons and small for fermions and that the
size of fermionic (bosonic) wormhole throat is large (small). This kind of picture is consistent
with the p-adic modular arithmetics and suggests by the cutoff for conformal weights implied
by the fact that both the number of fermionic oscillator operators and the number of points of
number theoretic braid are finite. This solution is however tricky and does not conform with
number theoretical universality.
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Chapter 6

An Overview About Quantum
TGD: Part II

6.1 Introduction

This chapter is the second one of two chapters providing a summary about evolution of quantum TGD
in nearly chronological order. By their nature these chapters are dynamical and I cannot guarantee
internal consistency since the ideas discussed are those under most vigorous development. In this
chapter ideas related to the construction of S-matrix and coupling constant evolution are discussed.

The construction of S-matrix involves several ideas that have emerged during last years.

1. Zero energy ontology motivated originally by TGD inspired cosmology means that physical
states have vanishing net quantum numbers and are decomposable to positive and negative en-
ergy parts separated by a temporal distance characterizing the system as space-time sheet of
finite size in time direction. The particle physics interpretation is as initial and final states of
a particle reaction. S-matrix and density matrix are unified to the notion of M-matrix express-
ible as a product of square root of density matrix and of unitary S-matrix. Thermodynamics
becomes therefore a part of quantum theory. One must distinguish M-matrix from U-matrix
defined between zero energy states and analogous to S-matrix and characterizing the unitary
process associated with quantum jump. U-matrix is most naturally related to the description of
intentional action since in a well-defined sense it has elements between physical systems corre-
sponding to different number fields.

2. The notion of measurement resolution represented in terms of inclusions of HFFs is an essen-
tial element of the picture. Measurement resolution corresponds to the action of the included
sub-algebra creating zero energy states in time scales shorter than the cutoff scale. This alge-
bra effectively replaces complex numbers as coefficient fields and the condition that its action
commutes with the M-matrix implies that M-matrix corresponds to Connes tensor product.
Together with super-conformal symmetries this fixes possible M-matrices to a very high degree.

3. Zero energy ontology leads to profoundly new view about the notion of virtual particle allowing
to prove that the M-matrix is finite and that the number of Feynman diagrams contributing to
given reaction is finite if particles have p-adic thermal mass.

4. The symmetric space property of world of classical worlds (WCW) allows to reduce WCW
functional integral to Fourier analysis in WCW having a direct generalization to p-adic context
so that the great dream about algebraic universality can be realized.

6.2 About the construction of S-matrix

During years I have proposed a long list of nice looking ideas concerning the construction of S-matrix.
After the progress in understanding the role of hyper-finite factors of type II1 it become clear that
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the basic problems have been more at the conceptual level rather than calculational. Thus the key
questions seem to be following ones.

What does one actually mean with S-matrix? How does S-matrix differ from the U -matrix asso-
ciated with the quantum jump? What could S-matrix with a finite measurement resolution mean?
What is the precise mathematical characterization of a physical state when the measurement resolu-
tion is finite? How does the fuzziness due to a finite measurement resolution affect the definition of
transition probabilities defined by S-matrix?

The proper formulation of the notion of measurement resolution leads to a rather dramatic mod-
ification of the standard mathematical picture. S-matrix could be fractal and more or less the same
for M and its sub-factors. Transition probabilities would be defined by ”quantum S-matrix” with
non-commuting N valued elements in non-commutative fuzzy ”quantum quantum state space” with
N valued coefficients generated by M/N , where Jones inclusion N ⊂ M defines the measurement
resolution. Transition probabilities would be eigenvalues of the transition probabilities, which would
be commuting Hermitian operators in N .

Classical TGD forces to question even the basic ontology and strongly suggests the notion of zero
energy ontology in which physical states possess vanishing net quantum numbers and are creatable
from vacuum: S-matrix would represent entanglement coefficients between positive and negative en-
ergy parts of the state. U -matrix would characterize transition amplitudes between zero energy states
and could have elements between states belonging to different number fields. In particular, it could
characterize transitions in which intention transforms to action.

At the more technical level the requirement of number theoretical universality leads to a rather
concrete picture about the general form of S-matrix based on the notion of number theoretic braid.
This notion emerges also from the non-commutativity implied by the finite measurement resolution
characterized in terms of Jones inclusions.

The improved understanding of super-conformal symmetries during last year provides powerful
additional constraints and suggest a modification of stringy picture replacing number theoretic strings
with number theoretic braids.

6.2.1 About the general conceptual framework behind quantum TGD

Let us first list the basic conceptual framework in which I try to concretize the ideas about S-matrix.

N = 4 super-conformal invariance and light-like 3-surfaces as fundamental dynamical
objects

Super-conformal symmetries generalized from string model context to TGD framework are symmetries
of S-matrix and of its generalization to M-matrix. This is very powerful constraint but useless unless
one has precisely defined ontology translated to a rigorous mathematical framework. The zero energy
ontology of TGD is now rather well understood but differs dramatically from that of standard quantum
field theories. Second deep difference is that path integral formalism is given up and the goal is to
construct S-matrix as a generalization of braiding S-matrices with reaction vertices replaced with the
replication of number theoretic braids associated with partonic 2-surfaces taking the role of vertices.

The path leading to the understanding of super-conformal invariance in TGD framework was long
but the final outcome is briefly described. The are two kinds of super-conformal symmetries.

1. The first super-conformal invariance is associated with light-cone boundary and is due to its
metric 2-dimensionality putting 4-D Minkowski space in a unique position. The symplectic
transformations of δH± = δM4

±×CP2 are identified as isometries of the configuration space. The
super-generators of super-symplectic algebra correspond to the gamma matrices of configuration
space.

2. Light-like partonic 3-surfaces X3 are the basic dynamical objects and light-likeness is respected
by the 3-D variant of Kac-Moody algebra of conformal transformations of imbedding space made
local with respect to X3. Ordinary 1-D Kac-Moody algebra with complex coordinate z replaced
with a light-like radial coordinate r takes a special role and super Kac-Moody symmetry is
associated with this. The conformal symmetries associated with X2 are counterpart of stringy
conformal symmetries but have a role analogous to the conformal symmetries of critical statistical
systems.
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3. By the generalized coset construction the differences of SKMV and SCV generators annihilate
physical states: the interpretation is in terms of Equivalence Principle. This also justifies the
assuption that mass squared is p-adic thermal expectation value of Super Kac-Moody conformal
weight. SKM algebra creates tachyonic ground states with various conformal weights as null
states annihilated by Ln, n > 0 to which p-adic thermodynamics in SKMV degrees of freedom
applies.

The light-likeness property allows the fermionic counterpart of the Chern-Simons action for the
induced Kähler gauge potential as the only possible action principle. The resulting almost topological
conformal field theory has maximal N = 4 super-conformal symmetry with the inherent gauge group
SU(2)×U(2) identified in terms of rotations and electro-weak symmetries acting on imbedding space
spinors.

Fermionic dynamics is determined by the modified Dirac action fixed uniquely by the requirement
of super-conformal symmetry. The generalized eigen modes and the generalized eigen-values λ of the
modified Dirac operator D are expected to play a fundamental role in quantum TGD.

S-matrix as a functor

Almost topological QFT property of quantum allows to identify S-matrix as a functor from the
category of generalized Feynman cobordisms to the category of operators mapping the Hilbert space of
positive energy states to that for negative energy states: these Hilbert spaces are assignable to partonic
2-surfaces. Feynman cobordism is the generalized Feynman diagram having light-like 3-surfaces as
lines glued together along their ends defining vertices as 2-surfaces. This picture differs dramatically
from that of string models. There is a functional integral over the small deformations of Feynman
cobordisms corresponding to maxima of Kähler function. Functor property generalizes the unitary
condition and allows also thermal S-matrices which seem to be unavoidable since imbedding space
degrees of freedom give rise to a factor of type I with Tr(id) =∞.

S-matrix in zero energy ontology

Zero energy ontology allows to construct unitary S-matrix in fermionic degrees of freedom as unitary
entanglement coefficients between positive and negative energy parts of zero energy state. The basic
properties of hyper-finite factor II1 are absolutely crucial. The inclusion of bosonic degrees of freedom
lead to a replacement of HFF of type II1 with HFF of type II∞ = II1⊗I∞. However, normalizability
of the states allows only a projection of S-matrix to a finite-dimensional subspace of incoming or
outgoing states. Hence the S-matrix is effectively restricted to II1 ⊗ In = II1 factor so that at the
level of physical states HFF of type II1 results. This is absolutely crucial for the unitary of the
S-matrix since it makes possible to have Tr(SS†) = Tr(Id) = 1. If factor of type I is present as a
tensor factor, thermal S-matrix is the only possibility and later arguments in favor of the idea that
thermodynamics is unavoidable part of quantum theory in zero energy ontology will be developed.

One can worry whether unitarity condition is consistent with the idea that fermionic degrees
of freedom should allow to represent Boolean functions in terms of time-like entanglement. That
unitary time evolution is able to represent this kind of functions in the case of quantum computers
suggests that unitarity is not too strong a restriction. The basic question is whether only a ”cognitive”
representation of physical S-matrix in terms of time like entanglement or a genuine physical S-matrix
is in question. It seems that the latter option is the only possible one so that physical systems would
represent the laws of physics.

U-matrix

Besides S-matrix there is also U -matrix defining the unitary process associated with the quantum
jump. S- resp. U -matrix characterizes quantum state resp. quantum jump so that they cannot be
one and same thing.

1. There are good arguments supporting the view that U -matrix is almost trivial, and the real
importance of U -matrix seems to be related to the to the description of intentional action
identified as a transition between p-adic and real zero energy states and to the possibility to
perceive states rather than only changes as quantum jumps leaving the state almost unchanged.
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2. State function reduction corresponds to a projection sub-factor in TGD inspired quantum mea-
surement theory whereas U process in some sense corresponds its reversal. Therefore U matrix
might correspond to unitary isomorphism mapping factor to a larger factor containing it.

3. State function reduction must be consistent with the unitarity of S-matrix defining time-like
entanglement. Since state function reduction means essentially multiplication by a projector to
a sub-space it seems that state function reduction for both incoming and outgoing states are
possible and would naturally correspond to projections to sub-factors of corresponding HFFs of
type II1.

Unitarity of S-matrix is not necessary in zero energy ontology

U-matrix is necessarily unitary. There are good reasons to believe that this condition combined with
Lorentz invariance makes it almost trivial. In the case of S-matrix unitarity is not absolutely necessary.

The restriction of the time-like entanglement coefficients to a unitary S-matrix would conform
with the idea that light-like partonic 2-surfaces represent a dynamical evolution at quantum level
so that zero energy states must be orthogonal both with respect to positive and negative energy
parts of the states. On the other hand, the light-like 3-surface can be chosen arbitrarily and its
choice indeed affects S-matrix. Hence the theory cannot fully reduce to a 2-dimensional theory.
The interpretation is that light-like 3-surfaces are in 1-1 correspondence with the ground states of
super-conformal representations identifiable as light particles.

There are several arguments supporting the view that S-matrix need not be unitary. The simplest
observation is that imbedding space degrees of freedom naturally give rise to a factor of type I so
that only thermal S-matrix defines a normalizable zero energy state. S-matrix as functor from the
category of Feynman cobordisms to the category operators defining entanglement coefficients implies
that S-matrix in fermionic degrees of freedom for a product of cobordisms is product of the S-matrices
for cobordisms. This implies that in fermionic degrees of freedom S-matrix is thermal S-matrix
with time parameter replaced with complex time parameter whose imaginary part corresponds to
inverse temperature. Also an argument based on the existence of universal thermal S-matrix with a
complex time parameter for hyper-finite factors of type III1 supports the view that unitarity is not
necessary. A further argument is based on the finding that in dimensions D < 4 unitary S-matrix
exists only if cobordism is trivial so that topology change would not be possible. This raises the
fascinating possibility that thermodynamics - in particular p-adic thermodynamics - is an unavoidable
and inherent property of quantum TGD.

Does Connes tensor product fix the allowed M-matrices?

Hyperfinite factors of type II1 and the inclusion N ⊂ M inclusions have been proposed to define
quantum measurement theory with a finite measurement resolution characterized by N and with
complex rays of state space replaced with N rays. What this really means is far from clear.

1. Naively one expects that matrices whose elements are elements of N give a representation for
M. Now however unit operator has unit trace and one cannot visualize the situation in terms of
matrices in case of M and N .

2. The state space with N resolution would be formally M/N consisting of N rays. For M/N
one has finite-D matrices with non-commuting elements of N . In this case quantum matrix
elements should be multiplets of selected elements of N , not all possible elements of N . One
cannot therefore think in terms of the tensor product of N with M/N regarded as a finite-D
matrix algebra.

3. What does this mean? Obviously one must pose a condition implying that N action commutes
with matrix action just like C: this poses conditions on the matrices that one can allow. Connes
tensor product [97] does just this. Note I have proposed already earlier the reduction of inter-
actions to Connes tensor product (see the section ”Could Connes tensor product....” later in
this chapter) but without reference to zero energy ontology as a fundamental manner to define
measurement resolution with respect time and assuming unitarity.
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The starting point is the Jones inclusion sequence

N ⊂M ⊂M⊗NM...

HereM⊗NM is Connes tensor product which can be seen as elements of the ordinary tensor product
commuting with N action so that N indeed acts like complex numbers inM. M/N is in this picture
represented with M in which operators defined by Connes tensor products of elements of M. The
replacement M → M/N corresponds to the replacement of the tensor product of elements of M
defining matrices with Connes tensor product.

One can try to generalize this picture to zero energy ontology.

1. M⊗NM would be generalized byM+ ⊗NM−. HereM+ would create positive energy states
and M− negative energy states and N would create zero energy states in some shorter time
scale resolution: this would be the precise meaning of finite measurement resolution.

2. Connes entanglement with respect to N would define a non-trivial and unique recipe for con-
structing M-matrices as a generalization of S-matrices expressible as products of square root of
density matrix and unitary S-matrix but it is not how clear how many M-matrices this allows.
In any case M-matrices would depend on the triplet (N ,M+,M−) and this would correspond
to p-adic length scale evolution giving replacing coupling constant evolution in TGD framework.
Thermodynamics would enter the fundamental quantum theory via the square root of density
matrix.

3. Zero energy ontology is a key element of this picture and the most compelling argument for
zero energy ontology is the possibility of describing coherent states of Cooper pairs without
giving up fermion number, charge, etc. conservation and automatic emerges of length scale
dependent notion of quantum numbers (quantum numbers identified as those associated with
positive energy factor).

To sum up, interactions would be an outcome of a finite measurement resolution and at the
never-achievable limit of infinite measurement resolution the theory would be free: this would be the
counterpart of asymptotic freedom.

Quantum classical correspondence

Quantum classical correspondence states that there is a correspondence between quantum fluctuating
degrees of freedom associated with partonic 2-surfaces and classical dynamics. The weakest form of
this principle is that the ground states of partonic super-conformal representations (massless states
which generate light masses observed in laboratory) correspond to the interior dynamics of space-time
sheets containing the partonic 2-surfaces. At the space-time level there would be 1-1 correspondence
with the maxima of Kähler function giving rise to the analog of spin glass energy landscape.

One could protest by saying that excited states of super-conformal representations have no space-
time correlate in this picture. Quantum states are replaced with states in which the projection of
S-matrix to a finite-dimensional space in bosonic degrees of freedom appears as time-like entanglement
coefficients so that quantum classical correspondence is obtained in strict sense after all. These states
states are formally analogous which raises the question whether an actual relationship exists. For
HFFs of type III unitary time evolution and thermal equilibrium are indeed closely related aspects of
states [69] . I∞ → In cutoff in the bosonic degrees of freedom would naturally have the discretization
represented by number theoretic braids as a space-time correlate.

The effective elimination of the degrees of freedom associated with the space-time interior implied
by the 1-1 correlation would allow to forget 4-D space-time degrees of freedom more or less completely
as far as calculation of S-matrix is considered and everything would reduce to Fock space level as
it does in quantum field theories. The functional integral around the maximum of Kähler function
would select a set of preferred light-like partonic 3-surfaces. Quantum criticality suggests that the
functional integral can be carried out exactly.
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How TGD differs from string models

An important detail which deserves to be mentioned separately is one crucial deviation from string
model picture: the stringy decays of partonic 2-surfaces or 3-surfaces are space-time correlates for
the propagation of particle via several different routes rather than genuine particle decay. Note that
partonic 2-surfaces can have arbitrarily large size and the outer boundary of any physical system
represents the basic example of this kind of surface. Particle reactions correspond to branchings of
light-like partonic 2-surfaces so that incoming and outgoing partons are glued together along their
ends. This picture makes sense because quantum TGD reduces to almost topological conformal QFT
at parton level (only light-likeness brings in the notion of metric).

Quantum classical correspondence allows to interpret light-like partonic 3-surface either as a time
evolution of a highly non-deterministic 2-D system or as a 3-D system. This state-dynamics duality
was discovered already in [95] , where it was realized that topological quantum computation has
interpretation either as a program (state) or running of program (dynamics). Complete reduction to
2-D dynamics is not possible since the light-like 3-surfaces associated with maxima of Kähler action
define spin glass energy landscape such that each maximum corresponds to its own S-matrix.

In this picture particle reactions correspond classically to branchings of partonic 2-surfaces gen-
eralizing the branchings for lines in Feynman diagrams. The stringy vertices for decays of surfaces
correspond in TGD framework to the classical space-time correlate for a particle travelling along dif-
ferent paths and the particle creation and annihilation is a generalization of what occurs in Feynman
diagrams with vertices replaced with 2-dimensional partonic surfaces along which light-like partonic
3-surfaces meet.

Physics as a generalized number theory vision

TGD as a generalized number theory vision gives powerful constraints. New view about space-time
involves p-adic space-time sheets as space-time correlates for cognitive representations in fermionic case
and for intentions in the bosonic case. This leads to the notion of number theoretic braid belonging
to the algebraic intersection of real and p-adic partonic surfaces obeying same algebraic equations.

The implication is that the data characterizing S-matrix elements should come from discrete
algebraic points of number theoretic braids. The Galois groups for braids occupying regions of partonic
2-surface emerge as a new element and relate closely to the representations of braid groups in HFFs of
type II1. Number theoretic universality leads to the condition that S-matrix elements are algebraic
numbers in the extension of rational defined by the extension of p-adic numbers involved.

The role of hyper-finite factors of type II1

The Clifford algebra of configuration space (”world of classical worlds”) spinors is very naturally a
hyper-finite factor of type II1. During the last few years I have gradually learned something about
the magnificent mathematical beauty of these objects.

1. TGD inspired quantum measurement theory with measurement resolution characterized in terms
of Jones inclusion and based on HFFs of type II1 brings in non-commutative quantum physics
and leads to powerful general predictions [97, 52] . The basic idea is that complex rays of the
state space are replaced with N rays for Jones inclusion N ⊂ M. N defines the measurement
resolution in the sense that the group G leaving elements of N invariant characterizes the
measured quantum numbers.

2. Hyper-finite factors have the property that they are isomorphic with their tensor powers. This
makes possible the construction of vertices as unitary isomorphisms between tensor products
of HFFs of type II1 associated with incoming and outgoing states. The core part of S-matrix
boils down to a unitary isomorphism between tensor products of hyper-finite factors of type II1
associated with incoming resp. outgoing partonic 3-surfaces whose ends meet at the partonic
2-surface representing reaction vertex.

3. The study of Jones inclusions leads to the idea that Planck constant is dynamical and quantized.
The predicted hierarchy of Planck constants involving a generalization of imbedding space con-
cept and an explanation of dark matter as macroscopic quantum phases [30] . Here the special
mathematical role of Jones inclusions with index r ≤ 4 is crucial.
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4. The properties of HFFs inspire also the idea that TGD based physics should able to mimic any
imaginable quantum physical system defined by gauge theory or conformal field theory involving
Kac-Moody symmetry. Thus the ultimate physics would be kind of analog for Turing machine.
The prediction inspired by TGD based explanation of McKay correspondence [20] is that TGD
Universe is indeed able to simulate gauge and Kac-Moody dynamics of a very large subset of
ADE type groups. In fact, also much more general prediction that simulation should be possible
for any compact Lie group emerges.

5. HFFs of type II1 lead also to deep connections with number theory [20] and number theoretical
braids can be interpreted in terms of representations of Galois groups assignable with partonic
2-surfaces in terms of HFFs of type II1. Particle decay represents a replication of number
theoretical braids and this together with p-adic fractality and hierarchy of Planck constants
suggests strongly direct connections with genetic code and DNA.

Could TGD emerge from a local version of infinite-dimensional Clifford algebra?

A crucial step in the progress was the realization that TGD emerges from the mere idea that a local
version of hyper-finite factor of type II1 represented as an infinite-dimensional Clifford algebra must
exist (as analog of say local gauge groups). This implies a connection with the classical number fields.
Quantum version of complexified octonions defining the coordinate with respect to which one localizes
is unique by its non-associativity allowing to uniquely separate the powers of octonionic coordinate
from the associative infinite-dimensional Clifford algebra elements appearing as Taylor coefficients in
the expansion of Clifford algebra valued field.

Associativity condition implies the classical and quantum dynamics of TGD. Space-time surfaces
are hyper-quaternionic of co-hyper-quatenionic sub-manifolds of hyper-octonionic imbedding space
HO. Also the interpretation as a four-surface in H = M4×CP2 emerges and implies HO−H duality.
What is also nice that Minkowski spaces correspond to the spectra for the eigenvalues of maximal set
of commuting quantum coordinates of suitably defined quantum spaces. Thus Minkowski signature
has quantal explanation.

6.2.2 S-matrix as a functor in TQFTs

John Baez’s [51] discusses in a physicist friendly manner the possible application of category theory
to physics. The lessons obtained from the construction of topological quantum field theories (TQFTs)
suggest that category theoretical thinking might be very useful in attempts to construct theories of
quantum gravitation.

The point is that the Hilbert spaces associated with the initial and final state n-1-manifold of n-
cobordism indeed form in a natural manner category. Morphisms of Hilb in turn are unitary or possibly
more general maps between Hilbert spaces. TQFT itself is a functor assigning to a cobordism the
counterpart of S-matrix between the Hilbert spaces associated with the initial and final n-1-manifold.
The surprising result is that for n ≤ 4 the S-matrix can be unitary S-matrix only if the cobordism is
trivial. This should lead even string theorist to raise some worried questions.

In the hope of feeding some category theoretic thinking into my spine, I briefly summarize some
of the category theoretical ideas discussed in the article and relate it to the TGD vision, and after
that discuss the worried questions from TGD perspective. That space-time makes sense only relative
to imbedding space would conform with category theoretic thinking.

The *-category of Hilbert spaces

Baez considers first the category of Hilbert spaces. Intuitively the definition of this category looks
obvious: take linear spaces as objects in category Set, introduce inner product as additional structure
and identify morphisms as maps preserving this inner product. In finite-D case the category with
inner product is however identical to the linear category so that the inner product does not seem
to be absolutely essential. Baez argues that in infinite-D case the morphisms need not be restricted
to unitary transformations: one can consider also bounded linear operators as morphisms since they
play key role in quantum theory (consider only observables as Hermitian operators). For hyper-finite
factors of type II1 inclusions define very important morphisms which are not unitary transformations
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but very similar to them. This challenges the belief about the fundamental role of unitarity and raises
the question about how to weaken the unitarity condition without losing everything.

The existence of the inner product is essential only for the metric topology of the Hilbert space.
Can one do without inner product as an inherent property of state space and reduce it to a morphism?
One can indeed express inner product in terms of morphisms from complex numbers to Hilbert space
and their conjugates. For any state Ψ of Hilbert space there is a unique morphisms TΨ from C to
Hilbert space satisfying TΨ(1) = Ψ. If one assumes that these morphisms have conjugates T ∗Ψ mapping
Hilbert space to C, inner products can be defined as morphisms T ∗ΦTΨ. The Hermitian conjugates of
operators can be defined with respect to this inner product so that one obtains *-category. Reader
has probably realized that TΨ and its conjugate correspond to ket and bra in Dirac’s formalism.

Note that in TGD framework based on hyper-finite factors of type II1 (HFFs) the inclusions of
complex rays might be replaced with inclusions of HFFs with included factor representing the finite
measurement resolution. Note also the analogy of inner product with the representation of space-times
as 4-surfaces of the imbedding space in TGD.

The monoidal *-category of Hilbert spaces and its counterpart at the level of nCob

One can give the category of Hilbert spaces a structure of monoid by introducing explicitly the tensor
products of Hilbert spaces. The interpretation is obvious for physicist. Baez describes the details of this
identification, which are far from trivial and in the theory of quantum groups very interesting things
happen. A non-commutative quantum version of the tensor product implying braiding is possible
and associativity condition leads to the celebrated Yang-Baxter equations: inclusions of HFFs lead to
quantum groups too.

At the level of nCob the counterpart of the tensor product is disjoint union of n-1-manifolds. This
unavoidably creates the feeling of cosmic loneliness. Am I really a disjoint 3-surface in emptiness
which is not vacuum even in the geometric sense? Cannot be true!

This horrifying sensation disappears if n-1-manifolds are n-1-surfaces in some higher-dimensional
imbedding space so that there would be at least something between them. I can emit a little baby
manifold moving somewhere perhaps being received by some-one somewhere and I can receive radiation
from some-one at some distance and in some direction as small baby manifolds making gentle tosses
on my face!

This consoling feeling could be seen as one of the deep justifications for identifying fundamental
objects as light-like partonic 3-surfaces in TGD framework. Their ends correspond to 2-D partonic
surfaces at the boundaries of future or past directed light-cones (states of positive and negative energy
respectively) and are indeed disjoint but not in the desperately existential sense as 3-geometries of
General Relativity.

This disjointness has also positive aspect in TGD framework. One can identify the color degrees
of freedom of partons as those associated with CP2 degrees of freedom. For instance, SU(3) analogs
for rotational states of rigid body become possible. 4-D space-time surfaces as preferred extremals
of Kähler action connect the partonic 3-surfaces and bring in classical representation of correlations
and thus of interactions. The representation as sub-manifolds makes it also possible to speak about
positions of these sub-Universes and about distances between them. The habitants of TGD Universe
are maximally free but not completely alone.

TQFT as a functor

The category theoretic formulation of TQFT relies on a very elegant and general idea. Quantum
transition has as a space-time correlate an n-dimensional surface having initial final states as its
n-1-dimensional ends. One assigns Hilbert spaces of states to the ends and S-matrix would be a
unitary morphism between the ends. This is expressed in terms of the category theoretic language by
introducing the category nCob with objects identified as n-1-manifolds and morphisms as cobordisms
and *-category Hilb consisting of Hilbert spaces with inner product and morphisms which are bounded
linear operators which do not however preserve the unitarity. Note that the morphisms of nCob cannot
anymore be identified as maps between n-1-manifolds interpreted as sets with additional structure so
that in this case category theory is more powerful than set theory.

TQFT is identified as a functor nCob → Hilb assigning to n-1-manifolds Hilbert spaces, and to
cobordisms unitary S-matrices in the category Hilb. This looks nice but the surprise is that for n ≤ 4
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unitary S-matrix exists only if the cobordism is trivial so that topology changing transitions are not
possible unless one gives up unitarity.

This raises several worried questions.

1. Does this result mean that in TQFT sense unitary S-matrix for topology changing transitions
from a state containing ni closed strings to a state containing nf 6= ni strings does not exist?
Could the situation be same also for more general non-topological stringy S-matrices? Could
the non-converging perturbation series for S-matrix with finite individual terms matrix fail to
no non-perturbative counterpart? Could it be that M-theory is doomed to remain a dream with
no hope of being fulfilled?

2. Should one give up the unitarity condition and require that the theory predicts only the relative
probabilities of transitions rather than absolute rates? What the proper generalization of the
S-matrix could be?

3. What is the relevance of this result for quantum TGD?

6.2.3 S-matrix as a functor in quantum TGD

The result about the non-existence of unitary S-matrix for topology changing cobordisms allows new
insights about the meaning of the departures of TGD from string models.

Cobordism cannot give interesting selection rules

When I started to work with TGD for more than 28 years ago, one of the first ideas was that one
could identify the selection rules of quantum transitions as topological selection rules for cobordisms.
Within week or two came the great disappointment: there were practically no selection rules. Could
one revive this naive idea? Could the existence of unitary S-matrix force the topological selection
rules after all? I am skeptic. If I have understood correctly the discussion of what happens in 4-D
case [116] only the exotic diffeo-structures modify the situation in 4-D case.

Light-like 3-surfaces allow cobordism

In the physically interesting GRT like situation one would expect the cobordism to be mediated by a
space-time surface possessing Lorentz signature. This brings in metric and temporal distance. This
means complications since one must leave the pure TQFT context. Also the classical dynamics of
quantum gravitation brings in strong selection rules related to the dynamics in metric degrees of
freedom so that TQFT approach is not expected to be useful from the point of view of quantum
gravity and certainly not the limit of a realistic theory of quantum gravitation.

In TGD framework situation is different. 4-D space-time sheets can have Euclidian signature of the
induced metric so that Lorentz signature does not pose conditions. The counterparts of cobordisms
correspond at fundamental level to light-like 3-surfaces, which are arbitrarily except for the light-
likeness condition (the effective 2-dimensionality implies generalized conformal invariance and analogy
with 3-D black-holes since 3-D vacuum Einstein equations are satisfied). Field equations defined by
the Chern-Simons action imply that CP2 projection is at most 2-D but this condition holds true only
for the extremals and one has functional integral over all light-like 3-surfaces. The temporal distance
between points along light-like 3-surface vanishes. The constraints from light-likeness bring in metric
degrees of freedom but in a very gentle manner and just to make the theory physically interesting.

Feynmann cobordism as opposed to ordinary cobordism

In string model context the discouraging results from TQFT hold true in the category of nCob, which
corresponds to trouser diagrams for closed strings or for their open string counterparts. In TGD
framework these diagrams are replaced with a direct generalization of Feynman diagrams for which
3-D light-like partonic 3-surfaces meet along their 2-D ends at the vertices. In honor of Feynman one
could perhaps speak of Feynman cobordisms. These surfaces are singular as 3-manifolds but vertices
are nice 2-manifolds. I contrast to this, in string models diagrams are nice 2-manifolds but vertices
are singular as 1-manifolds (say eye-glass type configurations for closed strings).



308 Chapter 6. An Overview About Quantum TGD: Part II

This picture gains a strong support for the interpretation of fermions as light-like throats associated
with connected sums of CP2 type extremals with space-time sheets with Minkowski signature and of
bosons as pairs of light-like wormhole throats associated with CP2 type extremal connecting two
space-time sheets with Minkowski signature of induced metric. The space-time sheets have opposite
time orientations so that also zero energy ontology emerges unavoidably. There is also consistency
TGD based explanation of the family replication phenomenon in terms of genus of light-like partonic
2-surfaces.

One can wonder what the 4-D space-time sheets associated with the generalized Feynman diagrams
could look like? One can try to gain some idea about this by trying to assign 2-D surfaces to ordinary
Feynman diagrams having a subset of lines as boundaries. In the case of 2→2 reaction open string
is pinched to a point at vertex. 1→2 vertex, and quite generally, vertices with odd number of lines,
are impossible. The reason is that 1-D manifolds of finite size can have either 0 or 2 ends whereas
in higher-D the number of boundary components is arbitrary. What one expects to happen in TGD
context is that wormhole throats which are at distance characterized by CP2 fuse together in the
vertex so that some kind of pinches appear also now.

Zero energy ontology

Zero energy ontology gives rise to a second profound distinction between TGD and standard QFT.
Physical states are identified as states with vanishing net quantum numbers, in particular energy.
Everything is creatable from vacuum - and one could add- by intentional action so that zero energy
ontology is profoundly Eastern. Positive resp. negative energy parts of states can be identified as
states associated with 2-D partonic surfaces at the boundaries of future resp. past directed light-cones,
whose tips correspond to the arguments of n-point functions. Each incoming/outgoing particle would
define a mini-cosmology corresponding to not so big bang/crunch. If the time scale of perception is
much shorter than time interval between positive and zero energy states, the ontology looks like the
Western positive energy ontology. Bras and kets correspond naturally to the positive and negative
energy states and phase conjugation for laser photons making them indeed something which seems to
travel in opposite time direction is counterpart for bra-ket duality.

Finite temperature S-matrix defines genuine quantum state in zero energy ontology

In TGD framework one encounters two S-matrix like operators.

1. There is U-matrix between zero energy states. This is expected to be rather trivial but very
important from the point of view of description of intentional actions as transitions transforming
p-adic partonic 3-surfaces to their real counterparts.

2. The S-matrix like operator describing what happens in laboratory corresponds to the time-like
entanglement coefficients between positive and negative energy parts of the state. Measurement
of reaction rates would be a measurement of observables reducing time like entanglement and
very much analogous to an ordinary quantum measurement reducing space-like entanglement.
There is a finite measurement resolution described by inclusion of HFFs and this means that
situation reduces effectively to a finite-dimensional one.

p-Adic thermodynamics strengthened with p-adic length scale hypothesis predicts particle masses
with an amazing success. At first the thermodynamical approach seems to be in contradiction with the
idea that elementary particles are quantal objects. Unitarity is however not necessary if one accepts
that only relative probabilities for reductions to pairs of initial and final states interpreted as particle
reactions can be measured.

The beneficial implications of unitarity are not lost if one replaces QFT with thermal QFT. Cate-
gory theoretically this would mean that the time-like entanglement matrix associated with the product
of cobordisms is a product of these matrices for the factors. The time parameter in S-matrix would
be replaced with a complex time parameter with the imaginary part identified as inverse temperature.
Hence the interpretation in terms of time evolution is not lost.

In the theory of hyper-finite factors of type III1 the partition function for thermal equilibrium
states and S-matrix can be neatly fused to a thermal S-matrix for zero energy states and one could
introduce p-adic thermodynamics at the level of quantum states. It seems that this picture applies
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to HFFs by restriction. Therefore the loss of unitarity S-matrix might after all turn to a victory by
more or less forcing both zero energy ontology and p-adic thermodynamics.

Time-like entanglement coefficients as a square root of density matrix?

All quantum states do not correspond to thermal states and one can wonder what might be the most
general identification of the quantum state in zero energy ontology. Density matrix formalism defines
a very general formulation of quantum theory. Since the quantum states in zero energy ontology are
analogous to operators, the idea that time-like entanglement coefficients in some sense define a square
root of density matrix is rather natural. This would give the defining conditions

ρ+ = SS† , ρ− = S†S ,

Tr(ρ±) = 1 . (6.2.1)

ρ± would define density matrix for positive/negative energy states. In the case HFFs of type II1
one obtains unitary S-matrix and also the analogs of pure quantum states are possible for factors of
type I. The numbers p+

m,n = |S2
m,n|/ρ+

m,m and p−m,n = |S2
n,m|/ρ−m,m give the counterparts of the usual

scattering probabilities.
A physically well-motivated hypothesis would be that S has expression S =

√
ρS0 such that S0 is

a universal unitary S-matrix, and
√
ρ is square root of a state dependent density matrix. Note that in

general S is not diagonalizable in the algebraic extension involved so that it is not possible to reduce
the scattering to a mere phase change by a suitable choice of state basis. Clearly, S-matrix can be seen
as matrix valued generalization of Schrö;dinger amplitude. Note that the ”indices” of the S-matrices
correspond to configuration space spinors (fermions and their bound states giving rise to gauge bosons
and gravitons) and to configuration space degrees of freedom (world of classical worlds). For hyper-
finite factor of II1 it is not strictly speaking possible to speak about indices since the matrix elements
are traces of the S-matrix multiplied by projection operators to infinite-dimensional subspaces from
right and left.

The functor property of S-matrices implies that they form a multiplicative structure analogous
but not identical to groupoid [13] . Recall that groupoid has associative product and there exist
always right and left inverses and identity in the sense that ff−1 and f−1f are always defined but
not identical and one has fgg−1 = f and f−1fg = g.

The reason for the groupoid like property is that S-matrix is a map between state spaces associated
with initial and final sets of partonic surfaces and these state spaces are different so that inverse must
be replaced with right and left inverse. The defining conditions for groupoid are replaced with more
general ones. Also now associativity holds but the role of inverse is taken by hermitian conjugate.
Thus one has the conditions fgg† = fρg,+ and f†fg = ρf,−g, and the conditions ff† = ρ+ and
f†f = ρ− are satisfied. Here ρ± is density matrix associated with positive/negative energy parts
of zero energy state. If the inverses of the density matrices exist, groupoid axioms hold true since
f−1
L = f†ρ−1

f,+ satisfies ff−1
L = Id+ and f−1

R = ρ−1
f,−f

† satisfies f−1
R f = Id−.

There are good reasons to believe that also tensor product of its appropriate generalization to
the analog of co-product makes sense with non-triviality characterizing the interaction between the
systems of the tensor product. If so, the S-matrices would form very beautiful mathematical structure
bringing in mind the corresponding structures for 2-tangles and N-tangles. Knowing how incredibly
powerful the group like structures have been in physics one has good reasons to hope that groupoid
like structure might help to deduce a lot of information about the quantum dynamics of TGD.

6.2.4 Number theoretic constraints on S-matrix

Number theoretical universality leads to the hypothesis that S-matrix elements must be algebraic
numbers [23] . This is achieved naturally if the definition of S-matrix elements involves only the
data associated with the number theoretic braid. This leads naturally to a connection with braiding
S-matrices also in the case of real-to-real transitions. Also the concept of number theoretic string
emerges.

The partonic vertices appearing in S-matrix elements should be expressible in terms of N-point
functions of almost topologicalN = 4 super-conformal field theory but with the p-adically questionable
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N-fold integrals over string replaced with sums over the strands of a braid: spin chain type string
discretization could be in question [23] . Propagators, that is correlations between partonic 2-surfaces,
would be due to the interior dynamics of space-time sheets which means a deviation from super string
theory. Another function of interior degrees of freedom is to provide zero modes of metric of WCW
identifiable as classical degrees of freedom of quantum measurement theory entangling with quantal
degrees of freedom at partonic 3-surfaces.

6.3 The latest vision about the role of HFFs in TGD

It is clear that at least the hyper-finite factors of type II1 assignable to WCW spinors must have a
profound role in TGD. Whether also HFFS of type III1 appearing also in relativistic quantum field
theories emerge when WCW spinors are replaced with spinor fields is not completely clear. I have
proposed several ideas about the role of hyper-finite factors in TGD framework. In particular, Connes
tensor product is an excellent candidate for defining the notion of measurement resolution.

In the following this topic is discussed from the perspective made possible by zero energy ontology
and the recent advances in the understanding of M-matrix using the notion of bosonic emergence.
The conclusion is that the notion of state as it appears in the theory of factors is not enough for
the purposes of quantum TGD. The reason is that state in this sense is essentially the counterpart
of thermodynamical state. The construction of M-matrix might be understood in the framework of
factors if one replaces state with its ”complex square root” natural if quantum theory is regarded
as a ”complex square root” of thermodynamics. It is also found that the idea that Connes tensor
product could fix M-matrix is too optimistic but an elegant formulation in terms of partial trace
for the notion of M-matrix modulo measurement resolution exists and Connes tensor product allows
interpretation as entanglement between sub-spaces consisting of states not distinguishable in the
measurement resolution used. The partial trace also gives rise to non-pure states naturally.

6.3.1 Basic facts about factors

In this section basic facts about factors are discussed. My hope that the discussion is more mature
than or at least complementary to the summary that I could afford when I started the work with
factors for more than half decade ago. I of course admit that this just a humble attempt of a physicist
to express physical vision in terms of only superficially understood mathematical notions.

Basic notions

First some standard notations. Let B(H) denote the algebra of linear operators of Hilbert space H
bounded in the norm topology with norm defined by the supremum of for the length of the image
of a point of unit sphere H. This algebra has a lot of common with complex numbers in that the
counterparts of complex conjugation, order structure and metric structure determined by the algebraic
structure exist. This means the existence involution -that is *- algebra property. The order structure
determined by algebraic structure means following: A ≥ 0 defined as the condition (Aξ, ξ) ≥ 0 is
equivalent with A = B∗B. The algebra has also metric structure ||AB|| ≤ ||A||||B| (Banach algebra
property) determined by the algebraic structure. The algebra is also C∗ algebra: ||A∗A|| = ||A||2
meaning that the norm is algebraically like that for complex numbers.

A von Neumann algebra M [43] is defined as a weakly closed non-degenerate *-subalgebra of
B(H) and has therefore all the above mentioned properties. From the point of view of physicist it is
important that a sub-algebra is in question.

In order to define factors one must introduce additional structure.

1. Let M be subalgebra of B(H) and denote by M′ its commutant defined as the sub-algebra of
B(H) commuting with it and allowing to express B(H) as B(H) =M∨M′.

2. A factor is defined as a von Neumann algebra satisfying M′′ = M M is called factor. The
equality of double commutant with the original algebra is thus the defining condition so that
also the commutant is a factor. An equivalent definition for factor is as the condition that
the intersection of the algebra and its commutant reduces to a complex line spanned by a unit
operator. The condition that the only operator commuting with all operators of the factor is
unit operator corresponds to irreducibility in representation theory.
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3. Some further basic definitions are needed. Ω ∈ H is cyclic if the closure of MΩ is H and
separating if the only element of M annihilating Ω is zero. Ω is cyclic for M if and only if
it is separating for its commutant. In so called standard representation Ω is both cyclic and
separating.

4. For hyperfinite factors an inclusion hierarchy of finite-dimensional algebras whose union is dense
in the factor exists. This roughly means that one can approximate the algebra in arbitrary
accuracy with a finite-dimensional sub-algebra.

The definition of the factor might look somewhat artificial unless one is aware of the underlying
physical motivations. The motivating question is what the decomposition of a physical system to
non-interacting sub-systems could mean. The decomposition of B(H) to ∨ product realizes this
decomposition.

1. Tensor product H = H1⊗H2 is the decomposition according to the standard quantum measure-
ment theory and means the decomposition of operators in B(H) to tensor products of mutually
commuting operators inM = B(H1) andM′ = B(H2). The information aboutM can be coded
in terms of projection operators. In this case projection operators projecting to a complex ray of
Hilbert space exist and arbitrary compact operator can be expressed as a sum of these projectors.
For factors of type I minimal projectors exist. Factors of type In correspond to sub-algebras of
B(H) associated with infinite-dimensional Hilbert space and I∞ to B(H) itself. These factors
appear in the standard quantum measurement theory where state function reduction can lead
to a ray of Hilbert space.

2. For factors of type II no minimal projectors exists whereas finite projectors exist. For factors of
type II1 all projectors have trace not larger than one and the trace varies in the range (0, 1]. In
this case cyclic vectors Ω exist. State function reduction can lead only to an infinite-dimensional
subspace characterized by a projector with trace smaller than 1 but larger than zero. The
natural interpretation would be in terms of finite measurement resolution. The tensor product
of II1 factor and I∞ is II∞ factor for which the trace for a projector can have arbitrarily large
values. II1 factor has a unique finite tracial state and the set of traces of projections spans unit
interval. There is uncountable number of factors of type II but hyper-finite factors of type II1

are the exceptional ones and physically most interesting.

3. Factors of type III correspond to an extreme situation. In this case the projection operators E
spanning the factor have either infinite or vanishing trace and there exists an isometry mapping
EH to H meaning that the projection operator spans almost all of H. All projectors are also
related to each other by isometry. Factors of type III are smallest if the factors are regarded
as sub-algebras of a fixed B(H) where H corresponds to isomorphism class of Hilbert spaces.
Situation changes when one speaks about concrete representations. Also now hyper-finite factors
are exceptional.

4. Von Neumann algebras define a non-commutative measure theory. Commutative von Neumann
algebras indeed reduce to L∞(X) for some measure space (X,µ) and vice versa.

Weights, states and traces

The notions of weight, state, and trace are standard notions in the theory of von Neumann algebras.

1. A weight of von Neumann algebra is a linear map from the set of positive elements (those of
form a∗a) to non-negative reals.

2. A positive linear functional is weight with ω(1) finite.

3. A state is a weight with ω(1) = 1.

4. A trace is a weight with ω(aa∗) = ω(a∗a) for all a.

5. A tracial state is a weight with ω(1) = 1.
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A factor has a trace such that the trace of a non-zero projector is non-zero and the trace of
projection is infinite only if the projection is infinite. The trace is unique up to a rescaling. For
factors that are separable or finite, two projections are equivalent if and only if they have the same
trace. Factors of type In the values of trace are equal to multiples of 1/n. For a factor of type I∞ the
value of trace are 0, 1, 2, .... For factors of type II1 the values span the range [0, 1] and for factors of
type II∞ n the range [0,∞). For factors of type III the values of the trace are 0, and ∞.

Tomita-Takesaki theory

Tomita-Takesaki theory is a vital part of the theory of factors. First some definitions.

1. Let ω(x) be a faithful state of von Neumann algebra so that one has ω(xx∗) > 0 for x > 0.
Assume by Riesz lemma the representation of ω as a vacuum expectation value: ω = (·Ω,Ω),
where Ω is cyclic and separating state.

2. Let

L∞(M) ≡M , L2(M) = H , L1(M) =M∗ , (6.3.1)

where M∗ is the pre-dual of M defined by linear functionals in M. One has M ∗
∗ =M.

3. The conjugation x → x∗ is isometric in M and defines a map M→ L2(M) via x → xΩ. The
map S0;xΩ→ x∗Ω is however non-isometric.

4. Denote by S the closure of the anti-linear operator S0 and by S = J∆1/2 its polar decomposition
analogous that for complex number and generalizing polar decomposition of linear operators by
replacing (almost) unitary operator with anti-unitary J . Therefore ∆ = S∗S > 0 is positive
self-adjoint and J an anti-unitary involution. The non-triviality of ∆ reflects the fact that the
state is not trace so that hermitian conjugation represented by S in the state space brings in
additional factor ∆1/2.

5. What x can be is puzzling to physicists. The restriction fermionic Fock space and thus to
creation operators would imply that ∆ would act non-trivially only vacuum state so that ∆ > 0
condition would not hold true. The resolution of puzzle is the allowance of tensor product of
Fock spaces for which vacua are conjugates: only this gives cyclic and separating state. This is
natural in zero energy ontology.

The basic results of Tomita-Takesaki theory are following.

1. The basic result can be summarized through the following formulas

∆itM∆−it =M , JMJ =M′ .

2. The latter formula implies that M and M′ are isomorphic algebras. The first formula implies
that a one parameter group of modular automorphisms characterizes partially the factor. The
physical meaning of modular automorphisms is discussed in [70, 137] ∆ is Hermitian and positive
definite so that the eigenvalues of log(∆) are real but can be negative. ∆it is however not unitary
for factors of type II and III. Physically the non-unitarity must relate to the fact that the flow
is contracting so that hermiticity as a local condition is not enough to guarantee unitarity.

3. ω → σωt = Ad∆it defines a canonical evolution -modular automorphism- associated with ω
and depending on it. The ∆:s associated with different ω:s are related by a unitary inner
automorphism so that their equivalence classes define an invariant of the factor.

Tomita-Takesaki theory gives rise to a non-commutative measure theory which is highly non-trivial.
In particular the spectrum of ∆ can be used to classify the factors of type II and III.
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Modular automorphisms

Modular automorphisms of factors are central for their classification.

1. One can divide the automorphisms to inner and outer ones. Inner automorphisms correspond
to unitary operators obtained by exponentiating Hermitian Hamiltonian belonging to the factor
and connected to identity by a flow. Outer automorphisms do not allow a representation as a
unitary transformations although log(∆) is formally a Hermitian operator.

2. The fundamental group of the type II1 factor defined as fundamental group group of correspond-
ing II∞ factor characterizes partially a factor of type II1. This group consists real numbers λ
such that there is an automorphism scaling the trace by λ. Fundamental group typically contains
all reals but it can be also discrete and even trivial.

3. Factors of type III allow a one-parameter group of modular automorphisms, which can be used
to achieve a partial classification of these factors. These automorphisms define a flow in the
center of the factor known as flow of weights. The set of parameter values λ for which ω is
mapped to itself and the center of the factor defined by the identity operator (projector to the
factor as a sub-algebra of B(H)) is mapped to itself in the modular automorphism defines the
Connes spectrum of the factor. For factors of type IIIλ this set consists of powers of λ < 1. For
factors of type III0 this set contains only identity automorphism so that there is no periodicity.
For factors of type III1 Connes spectrum contains all real numbers so that the automorphisms
do not affect the identity operator of the factor at all.

The modules over a factor correspond to separable Hilbert spaces that the factor acts on. These
modules can be characterized by M-dimension. The idea is roughly that complex rays are replaced
by the sub-spaces defined by the action of M as basic units. M-dimension is not integer valued in
general. The so called standard module has a cyclic separating vector and each factor has a standard
representation possessing antilinear involution J such that M′ = JMJ holds true (note that J
changes the order of the operators in conjugation). The inclusions of factors define modules having
interpretation in terms of a finite measurement resolution defined by M.

Crossed product as a manner to construct factors of type III

By using so called crossed product [9] for a group G acting in algebra A one can obtain new von
Neumann algebras. One ends up with crossed product by a two-step generalization by starting from
the semidirect product G / H for groups defined as (g1, h1)(g2, h2) = (g1h1(g2), h1h2) (note that
Poincare group has interpretation as a semidirect product M4 / SO(3, 1) of Lorentz and translation
groups). At the first step one replaces the group H with its group algebra. At the second step the
the group algebra is replaced with a more general algebra. What is formed is the semidirect product
A / G which is sum of algebras Ag. The product is given by (a1, g1)(a2, g2) = (a1g1(a2), g1g2). This
construction works for both locally compact groups and quantum groups. A not too highly educated
guess is that the construction in the case of quantum groups gives the factorM as a crossed product
of the included factor N and quantum group defined by the factor space M/N .

The construction allows to express factors of type III as crossed products of factors of type II∞
and the 1-parameter group G of modular automorphisms assignable to any vector which is cyclic for
both factor and its commutant. The ergodic flow θλ scales the trace of projector in II∞ factor by
λ > 0. The dual flow defined by G restricted to the center of II∞ factor does not depend on the
choice of cyclic vector.

The Connes spectrum - a closed subgroup of positive reals - is obtained as the exponent of the
kernel of the dual flow defined as set of values of flow parameter λ for which the flow in the center is
trivial. Kernel equals to {0} for III0, contains numbers of form log(λ)Z for factors of type IIIλ and
contains all real numbers for factors of type III1 meaning that the flow does not affect the center.

6.3.2 Inclusions and Connes tensor product

Inclusions N ⊂M of von Neumann algebras have physical interpretation as a mathematical descrip-
tion for sub-system-system relation. For type I algebras the inclusions are trivial and tensor product
description applies as such. For factors of II1 and III the inclusions are highly non-trivial. The
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inclusion of type II1 factors were understood by Vaughan Jones [5] and those of factors of type III
by Alain Connes [65] .

Formally sub-factor N of M is defined as a closed ∗-stable C-subalgebra of M. Let N be a
sub-factor of type II1 factor M. Jones index M : N for the inclusion N ⊂ M can be defined as
M : N = dimN (L2(M)) = TrN ′(idL2(M)). One can say that the dimension of completion of M as
N module is in question.

Basic findings about inclusions

What makes the inclusions non-trivial is that the position of N in M matters. This position is
characterized in case of hyper-finite II1 factors by index M : N which can be said to the dimension
of M as N module and also as the inverse of the dimension defined by the trace of the projector
from M to N . It is important to notice that M : N does not characterize either M or M, only the
imbedding.

The basic facts proved by Jones are following [5] .

1. For pairs N ⊂M with a finite principal graph the values of M : N are given by

a) M : N = 4cos2(π/h) , h ≥ 3 ,

b) M : N ≥ 4 .
(6.3.2)

the numbers at right hand side are known as Beraha numbers [119] . The comments below give
a rough idea about what finiteness of principal graph means.

2. As explained in [38] , for M : N < 4 one can assign to the inclusion Dynkin graph of ADE
type Lie-algebra g with h equal to the Coxeter number h of the Lie algebra given in terms of
its dimension and dimension r of Cartan algebra r as h = (dimg(g)− r)/r. The Lie algebras of
SU(n), E7 and D2n+1 are however not allowed. For M : N = 4 one can assign to the inclusion
an extended Dynkin graph of type ADE characterizing Kac Moody algebra. Extended ADE
diagrams characterize also the subgroups of SU(2) and the interpretation proposed in [97] is
following. The ADE diagrams are associated with the n = ∞ case having M : N ≥ 4. There
are diagrams corresponding to infinite subgroups: SU(2) itself, circle group U(1), and infinite
dihedral groups (generated by a rotation by a non-rational angle and reflection. The diagrams
corresponding to finite subgroups are extension of An for cyclic groups, of Dn dihedral groups,
and of En with n=6,7,8 for tedrahedron, cube, dodecahedron. For M : N < 4 ordinary Dynkin
graphs of D2n and E6, E8 are allowed.

Connes tensor product

The inclusions The basic idea of Connes tensor product is that a sub-space generated sub-factor N
takes the role of the complex ray of Hilbert space. The physical interpretation is in terms of finite
measurement resolution: it is not possible to distinguish between states obtained by applying elements
of N .

Intuitively it is clear that it should be possible to decomposeM to a tensor product of factor space
M/N and N :

M = M/N ⊗N . (6.3.3)

One could regard the factor spaceM/N as a non-commutative space in which each point corresponds
to a particular representative in the equivalence class of points defined by N . The connections between
quantum groups and Jones inclusions suggest that this space closely relates to quantum groups. An
alternative interpretation is as an ordinary linear space obtained by mapping N rays to ordinary
complex rays. These spaces appear in the representations of quantum groups. Similar procedure
makes sense also for the Hilbert spaces in which M acts.
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Connes tensor product can be defined in the space M⊗M as entanglement which effectively
reduces to entanglement between N sub-spaces. This is achieved if N multiplication from right is
equivalent with N multiplication from left so that N acts like complex numbers on states. One can
imagine variants of the Connes tensor product and in TGD framework one particular variant appears
naturally as will be found.

In the finite-dimensional case Connes tensor product of Hilbert spaces has a rather simple repre-
sentation. If the matrix algebra N of n × n matrices acts on V from right, V can be regarded as a
space formed by m × n matrices for some value of m. If N acts from left on W , W can be regarded
as space of n× r matrices.

1. In the first representation the Connes tensor product of spaces V andW consists ofm×r matrices
and Connes tensor product is represented as the product VW of matrices as (VW )mre

mr. In
this representation the information about N disappears completely as the interpretation in terms
of measurement resolution suggests. The sum over intermediate states defined by N brings in
mind path integral.

2. An alternative and more physical representation is as a state∑
n

VmnWnre
mn ⊗ enr

in the tensor product V ⊗W .

3. One can also consider two spaces V and W in which N acts from right and define Connes tensor
product for A†⊗NB or its tensor product counterpart. This case corresponds to the modification
of the Connes tensor product of positive and negative energy states. Since Hermitian conjugation
is involved, matrix product does not define the Connes tensor product now. For m = r case
entanglement coefficients should define a unitary matrix commuting with the action of the
Hermitian matrices of N and interpretation would be in terms of symmetry. HFF property
would encourage to think that this representation has an analog in the case of HFFs of type II1.

4. Also type In factors are possible and for them Connes tensor product makes sense if one can
assign the inclusion of finite-D matrix algebras to a measurement resolution.

6.3.3 Factors in quantum field theory and thermodynamics

Factors arise in thermodynamics and in quantum field theories [105, 70, 137] . There are good
arguments showing that in HFFS of III1 appear are relativistic quantum field theories. In non-
relativistic QFTs the factors of type I appear so that the non-compactness of Lorentz group is essential.
Factors of type III1 and IIIλ appear also in relativistic thermodynamics.

The geometric picture about factors is based on open subsets of Minkowski space. The basic
intuitive view is that for two subsets of M4, which cannot be connected by a classical signal moving
with at most light velocity, the von Neumann algebras commute with each other so that ∨ product
should make sense.

Some basic mathematical results of algebraic quantum field theory [137] deserve to be listed since
they are suggestive also from the point of view of TGD.

1. Let O be a bounded region of R4 and define the region of M4 as a union ∪|x|<ε(O + x) where
(O+x) is the translate of O and |x| denotes Minkowski norm. Then every projection E ∈M(O)
can be written as WW ∗ with W ∈M(Oε) and W ∗W = 1. Note that the union is not a bounded
set of M4. This almost establishes the type III property.

2. Both the complement of light-cone and double light-cone define HFF of type III1. Lorentz boosts
induce modular automorphisms.

3. The so called split property suggested by the description of two systems of this kind as a tensor
product in relativistic QFTs is believed to hold true. This means that the HFFs of type III1

associated with causally disjoint regions are sub-factors of factor of type I∞. This means

M1 ⊂ B(H1)× 1 , M2 ⊂ 1⊗ B(H2) .

An infinite hierarchy of inclusions of HFFS of type III1s is induced by set theoretic inclusions.
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6.3.4 TGD and factors

The following vision about TGD and factors relies heavily on zero energy ontology, TGD inspired
quantum measurement theory, basic vision about quantum TGD, and bosonic emergence.

The problems

Concerning the role of factors in TGD framework there are several problems of both conceptual and
technical character.

1. Conceptual problems

It is safest to start from the conceptual problems and take a role of skeptic.

1. Under what conditions the assumptions of Tomita-Takesaki formula stating the existence of
modular automorphism and isomorphy of the factor and its commutant hold true? What is the
physical interpretation of the formula M′ = JMJ relating factor and its commutant in TGD
framework?

2. Is the identification M = ∆it sensible is quantum TGD and zero energy ontology, where M-
matrix is ”complex square root” of exponent of Hamiltonian defining thermodynamical state
and the notion of unitary time evolution is given up? The notion of state ω leading to ∆
is essentially thermodynamical and one can wonder whether one should take also a ”complex
square root” of ω to get M-matrix giving rise to a genuine quantum theory.

3. TGD based quantum measurement theory involves both quantum fluctuating degrees of freedom
assignable to light-like 3-surfaces and zero modes identifiable as classical degrees of freedom
assignable to interior of the space-time sheet. Zero modes have also fermionic counterparts.
State preparation should generate entanglement between the quantal and classical states. What
this means at the level of von Neumann algebras?

4. What is the TGD counterpart for causal disjointness. At space-time level different space-time
sheets could correspond to such regions whereas at imbedding space level causally disjoint CDs
would represent such regions.

2. Technical problems

There are also more technical questions.

1. What is the von Neumann algebra needed in TGD framework? Does one have a a direct integral
over factors (at least a direct integral over zero modes labeling factors)? Which factors appear
in it? Can one construct the factor as a crossed product of some group G with a direct physical
interpretation and of naturally appearing factor A? Is A a HFF of type II∞? assignable to a
fixed CD? What is the natural Hilbert space H in which A acts?

2. What are the geometric transformations inducing modular automorphisms of II∞ inducing the
scaling down of the trace? Is the action of G induced by the boosts in Lorentz group. Could
also translations and scalings induce the action? What is the factor associated with the union
of Poincare transforms of CD? log(∆) is Hermitian algebraically: what does the non-unitarity
of exp(log(∆)it) mean physically?

3. Could Ω correspond to a vacuum which in conformal degrees of freedom depends on the choice
of the sphere S2 defining the radial coordinate playing the role of complex variable in the case
of the radial conformal algebra. Does ∗-operation in M correspond to Hermitian conjugation
for fermionic oscillator operators and change of sign of super conformal weights?

The exponent of the modified Dirac action gives rise to the exponent of Kähler function as Dirac
determinant and fermionic inner product defined by fermionic Feynman rules. It is implausible that
this exponent could as such correspond to ω or ∆it having conceptual roots in thermodynamics rather
than QFT. If one assumes that the exponent of the modified Dirac action defines a ”complex square
root” of ω the situation changes. This raises technical questions relating to the notion of square root
of ω.
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1. Does the square root of ω in the have a polar decomposition to a product of positive definite
matrix (square root of the density matrix) and unitary matrix and does ω1/2 correspond to
the modulus in the decomposition? Does the square root of ∆ have similar decomposition
with modulus equal equal to ∆1/2 in standard picture so that modular automorphism, which is
inherent property of von Neumann algebra, would not be affected?

2. ∆it or rather its generalization is defined modulo a unitary operator defined by some Hamiltonian
and is therefore highly non-unique as such. This non-uniqueness applies also to |∆|. Could this
non-uniqueness correspond to the thermodynamical degrees of freedom?

Zero energy ontology and factors

The first question concerns the identification of the Hilbert space associated with the factors in zero
energy ontology. As the positive or negative energy part of the zero energy state space or as the entire
space of zero energy states? The latter option would look more natural physically and is forced by
the condition that the vacuum state is cyclic and separating.

1. The commutant of HFF given as M′ = JMJ , where J is involution transforming fermionic
oscillator operators and bosonic vector fields to their Hermitian conjugates. Also conformal
weights would change sign in the map which conforms with the view that the light-like boundaries
of CD are analogous to upper and lower hemispheres of S2 in conformal field theory. The
presence of J representing essentially Hermitian conjugation would suggest that positive and
zero energy parts of zero energy states are related by this formula so that state space decomposes
to a tensor product of positive and negative energy states and M -matrix can be regarded as a
map between these two sub-spaces.

2. The fact that HFF of type II1 has the algebra of fermionic oscillator operators as a canonical
representation makes the situation puzzling for a novice. The assumption that the vacuum
is cyclic and separating means that neither creation nor annihilation operators can annihilate
it. Therefore Fermionic Fock space cannot appear as the Hilbert space in the Tomita-Takesaki
theorem. The paradox is circumvented if the action of ∗ transforms creation operators acting on
the positive energy part of the state to annihilation operators acting on negative energy part of
the state. If J permutes the two Fock vacuums in their tensor product, the action of S indeed
maps permutes the tensor factors associated with M and M′.

It is far from obvious whether the identification M = ∆it makes sense in zero energy ontology.

1. In zero energy ontology M -matrix defines time-like entanglement coefficients between positive
and negative energy parts of the state. M -matrix is essentially ”complex square root” of the
density matrix and quantum theory similar square root of thermodynamics. The notion of state
as it appears in the theory of HFFS is however essentially thermodynamical. Therefore it is good
to ask whether the ”complex square root of state” could make sense in the theory of factors.

2. Quantum field theory suggests an obvious proposal concerning the meaning of the square root:
one replaces exponent of Hamiltonian with imaginary exponential of action at T → 0 limit. In
quantum TGD the exponent of modified Dirac action giving exponent of Kähler function as
real exponent could be the manner to take this complex square root. Modified Dirac action can
therefore be regarded as a ”square root” of Kähler action.

3. The identification M = ∆it relies on the idea of unitary time evolution which is given up in zero
energy ontology based on CDs? Is the reduction of the quantum dynamics to a flow a realistic
idea? As will be found this automorphism could correspond to a time translation or scaling
for either upper or lower light-cone defining CD and can ask whether ∆it corresponds to the
exponent of scaling operator L0 defining single particle propagator as one integrates over t. Its
complex square root would correspond to fermionic propagator.

4. In this framework J∆it would map the positive energy and negative energy sectors to each
other. If the positive and negative energy state spaces can identified by isometry then M = J∆it

identification can be considered but seems unrealistic. S = J∆1/2 maps positive and negative
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energy states to each other: could S or its generalization appear in M -matrix as a part which
gives thermodynamics? The exponent of the modified Dirac action does not seem to provide
thermodynamical aspect and p-adic thermodynamics suggests strongly the presence exponent
of exp(−L0/Tp) with Tp chose in such manner that consistency with p-adic thermodynamics
is obtained. Could the generalization of J∆n/2 with ∆ replaced with its ”square root” give
rise to padic thermodynamics and also ordinary thermodynamics at the level of density matrix?
The minimal option would be that power of ∆it which imaginary value of t is responsible for
thermodynamical degrees of freedom whereas everything else is dictated by the unitary S-matrix
appearing as phase of the ”square root” of ω.

Zero modes and factors

The presence of zero modes justifies quantum measurement theory in TGD framework and the rela-
tionship between zero modes and HFFS involves further conceptual problems.

1. The presence of zero modes means that one has a direct integral over HFFs labeled by zero modes
which by definition do not contribute to the configuration space line element. The realization
of quantum criticality in terms of modified Dirac action [20] suggests that also fermionic zero
mode degrees of freedom are present and correspond to conserved charges assignable to the
critical deformations of the pace-time sheets. Induced Kähler form characterizes the values
of zero modes for a given space-time sheet and the symplectic group of light-cone boundary
characterizes the quantum fluctuating degrees of freedom. The entanglement between zero modes
and quantum fluctuating degrees of freedom is essential for quantum measurement theory. One
should understand this entanglement.

2. Physical intuition suggests that classical observables should correspond to longer length scale
than quantal ones. Hence it would seem that the interior degrees of freedom outside CD should
correspond to classical degrees of freedom correlating with quantum fluctuating degrees of free-
dom of CD.

3. Quantum criticality means that modified Dirac action allows an infinite number of conserved
charges which correspond to deformations leaving metric invariant and therefore act on zero
modes. Does this super-conformal algebra commute with the super-conformal algebra associated
with quantum fluctuating degrees of freedom? Could the restriction of elements of quantum
fluctuating currents to 3-D light-like 3-surfaces actually imply this commutativity. Quantum
holography would suggest a duality between these algebras. Quantum measurement theory
suggests even 1-1 correspondence between the elements of the two super-conformal algebras.
The entanglement between classical and quantum degrees of freedom would mean that prepared
quantum states are created by operators for which the operators in the two algebras are entangled
in diagonal manner.

4. The notion of finite measurement resolution has become key element of quantum TGD and
one should understand how finite measurement resolution is realized in terms of inclusions of
hyper-finite factors for which sub-factor defines the resolution in the sense that its action creates
states not distinguishable from each other in the resolution used. The notion of finite measure-
ment resolution suggests that one should speak about entanglement between sub-factors and
corresponding sub-spaces rather than between states. Connes tensor product would code for the
idea that the action of sub-factors is analogous to that of complex numbers and tracing over
sub-factor realizes this idea.

5. Just for fun one can ask whether the duality between zero modes and quantum fluctuating
degrees of freedom representing quantum holography could correspond to M′ = JMJ? This
interpretation must be consistent with the interpretation forced by zero energy ontology. If this
crazy guess is correct (very probably not!), both positive and negative energy states would be
observed in quantum measurement but in totally different manner. Since this identity would
simplify enormously the structure of the theory, it deserves therefore to be shown wrong.
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Crossed product construction in TGD framework

The identification of the von Neumann algebra by crossed product construction is the basic challenge.
Consider first the question how HFFs of type II∞ could emerge, how modular automorphisms act on
them, and how one can could understand the non-unitary character of the ∆it in an apparent conflict
with the hermiticity and positivity of ∆.

1. If the number of spinor modes is infinite, the Clifford algebra at a given point of WCW(CD)
(light-like 3-surfaces with ends at the boundaries of CD) defines HFF of type II1 or possibly a
direct integral of them. For a given CD having compact isotropy group SO(3) leaving the rest
frame defined by the tips of CD invariant the factor defined by Clifford algebra valued fields in
WCW(CD) is most naturally HFF of type II∞. The Hilbert space in which this Clifford algebra
acts, consists of spinor fields in WCW(CD). Also the symplectic transformations of light-cone
boundary leaving light-like 3-surfaces inside CD can be included to G. In fact all conformal
algebras leaving CD invariant could be included in CD.

2. The downwards scalings of the radial coordinate rM of the light-cone boundary applied to
the basis of WCW (CD) spinor fields could induce modular automorphism. These scalings
reduce the size of the portion of light-cone in which the WCW spinor fields are non-vanishing
and effectively scale down the size of CD. exp(iL0) as algebraic operator acts as a phase
multiplication on eigen states of conformal weight and therefore as apparently unitary operator.
The geometric flow however contracts the CD so that the interpretation of exp(itL0) as a
unitary modular automorphism is not possible. The scaling down of CD reduces the value of
the trace if it involves integral over the boundary of CD. A similar reduction is implied by
the downward shift of the upper boundary of CD so that also time translations would induce
modular automorphism. These shifts seem to be necessary to define rest energies of positive and
negative energy parts of the zero energy state.

3. The non-triviality of the modular automorphisms of II∞ factor reflects different choices of ω.
The degeneracy of ω could be due to the non-uniqueness of conformal vacuum which is part of the
definition of ω. The radial Virasoro algebra of light-cone boundary is generated by Ln = L∗−n,
n 6= 0 and L0 = L∗0 and negative and positive frequencies are in asymmetric position. The
conformal gauge is fixed by the choice of SO(3) subgroup of Lorentz group defining the slicing
of light-cone boundary by spheres and the tips of CD fix SO(3) uniquely. One can however
consider also alternative choices of SO(3) and each corresponds to a slicing of the light-cone
boundary by spheres but in general the sphere defining the intersection of the two light-cone
does not belong to the slicing. Hence the action of Lorentz transformation inducing different
choice of SO(3) can lead out from the preferred state space so that its representation must be
non-unitary unless Virasoro generators annihilate the physical states. The non-vanishing of the
conformal central charge c and vacuum weight h seems to be necessary and indeed can take
place for super-symplectic algebra and Super Kac-Moody algebra since only the differences of
the algebra elements are assumed to annihilate physical states.

The essential assumption in the above argument is that the number of modes DKΨ = 0 for the
induced spinor field is infinite. This assumption is highly non-trivial and need not hold true always
as the detailed considerations of [31] demonstrate.

1. The Dirac determinant defining the vacuum functional is identified as the product of generalized
eigenvalues of the 3-D dimensional reduction DK,3 of DK to light-like 3-surfaces Y 3

l . A physical
analogy for the modified Dirac equation is fermion in a magnetic field.

2. When the dimension D of the CP2 projection of the space-time sheet satisfies D > 2, the
counterpart of the Schrödinger amplitude - call it R- can depend on single CP2 coordinate only.
For D = 2 (cosmic strings would be the basic example) R can depend on 2 CP2 coordinates. In
this case infinite number of modes are possible and are analogous to 2-D spherical harmonics in
the cross section of the string like object. At least in the interior of cosmic strings this option
seems to be realized so that in this case the Clifford algebra would be infinite-dimensional.

3. What is essential is that for string like objects the slicings by light-like 3-surfaces associated with
the wormhole throats at the opposite ends of string like object can correspond to the same slicing.
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Hence the situation is expected to be the same for all string like objects irrespective of the value
of D. The coordinate on which R depends could be analogous to cylindrical angle coordinate and
one would have infinite number of rotational modes. For infinite-dimensional case zeta function
regularization must be used in the definition of Dirac determinant and under rather general
conditions on spectrum reduces to the analytic continuation used to define Riemann Zeta.

4. For D > 2 and for objects which are not string like objects situation is different. The slicings by
light-like 3-surfaces associated with different wormhole throats must be defined on finite-sized
basins separated by boundaries at which the spinor modes associated with particular throat
must vanish. The modes are therefore restricted to a finite region of space-time sheet with a
boundary. If R is analogous to a radial mode in constant magnetic field, there is a natural
cutoff in oscillator modes which are analogous harmonic oscillator wave functions and Dirac
determinant is automatically finite. Thus for D > 2 or at least for D = 4- a phase analogous
to QFT in M4 - the number of modes would be finite meaning that the Clifford algebra is
finite-dimensional and one obtains only factor of type In.

Modular automorphism of HFFs type III1 can be induced by several geometric transformations
for HFFs of type III1 obtained using the crossed product construction from II∞ factor by extending
CD to a union of its Lorentz transforms.

1. The crossed product would correspond to an extension of II∞ by allowing a union of some
geometric transforms of CD. If one assumes that only CDs for which the distance between
tips is quantized in powers of 2, then scalings of either upper or lower boundary of CD cannot
correspond to these transformations. Same applies to time translations acting on either boundary
but not to ordinary translations. As found, the modular automorphisms reducing the size of
CD could act in HFF of type II∞.

2. The geometric counterparts of the modular transformations would most naturally correspond to
any non-compact one parameter sub-group of Lorentz group as also QFT suggests. The Lorentz
boosts would replace the radial coordinate rM of the light-cone boundary associated with the
radial Virasoro algebra with a new one so that the slicing of light-cone boundary with spheres
would be affected and one could speak of a new conformal gauge. The temporal distance between
tips of CD in the rest frame would not be affected. The effect would seem to be however unitary
because the transformation does not only modify the states but also transforms CD.

3. Since Lorentz boosts affect the isotropy group SO(3) of CD and thus also the conformal gauge
defining the radial coordinate of the light-cone boundary, they affect also the definition of the
conformal vacuum so that also ω is affected so that the interpretation as a modular automorphism
makes sense. The simplistic intuition of the novice suggests that if one allows wave functions in
the space of Lorentz transforms of CD, unitarity of ∆it is possible. Note that the hierarchy of
Planck constants assigns to CD preferred M2 and thus direction of quantization axes of angular
momentum and boosts in this direction would be in preferred role.

4. One can also consider the HFF of type IIIλ if the radial scalings by negative powers of 2
correspond to the automorphism group of II∞ factor as the vision about allowed CDs suggests.
λ = 1/2 would naturally hold true for the factor obtained by allowing only the radial scalings.
Lorentz boosts would expand the factor to HFF of type III1. Why scalings by powers of 2 would
give rise to periodicity should be understood.

The identification ofM -matrix as modular automorphism ∆it, where t is complex number having as
its real part the temporal distance between tips of CD quantized as 2n and temperature as imaginary
part, looks at first highly attractive, since it would mean that M -matrix indeed exists mathematically.
The proposed interpretations of modular automorphisms do not support the idea that they could define
the S-matrix of the theory. In any case, the identification as modular automorphism would not lead
to a magic universal formula since arbitrary unitary transformation is involved.

6.3.5 Can one identify M-matrix from physical arguments?

Consider next the identification of M -matrix from physical arguments.
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Basic physical picture

The following physical picture could help in the attempt to guess what the complex square root of ω
is and also whether this idea makes sense at all. Consider first quantum TGD proper.

1. The exponent of Kähler function identified as Kähler action for preferred extremals defines the
bosonic vacuum functional appearing in the functional integral over WCW(CD). The exponent
of Kähler function depends on the real part of t identified as Minkowski distance between the
tips of CD. This dependence is not consistent with the dependence of ∆it on t and the natural
interpretation is that the vacuum functional can be included in the definition of the inner product
for spinors fields of WCW . More formally, the exponent of Kähler function defines ω in bosonic
degrees of freedom.

2. One can assign to the modified Dirac action Dirac determinant identified tentatively as the
exponent of Kähler function. This determinant is defined as the product of the generalized
eigenvalues of a 3-dimensional modified Dirac operator assignable to light-like 3-surfaces. The
definition relies on quantum holography involving the slicing of space-time surface both by
light-like 3-surfaces and by string world sheets. Hence also Kähler coupling strength follows as
a prediction so that the theory involves therefore no free coupling parameters. Kähler function
is defined only apart from an additive term which is sum of holomorphic and anti-holomorphic
functions of the configuration space and this would naturally correspond to the effect of the
modular automorphism. I have proposed that the choices of a particular light-like 3-surface
in the slicing of X4 by light-like 3-surfaces at which vacuum functional is defined as Dirac
determinant can differ by this kind of term having therefore interpretation also as a modular
automorphism for a factor of type II∞.

3. Quantum criticality -implied by the condition that the modified Dirac action gives rise to con-
served currents assignable to the deformations of the space-time surface - means the vanishing of
the second variation of Kähler action for these deformations. Preferred extremals correspond to
these 4-surfaces and M8−M4×CP2 duality allows to identify them also as hyper-quaternionic
space-time surfaces.

4. Second quantized spinor fields are the only quantum fields appearing at the space-time level.
This justifies to the notion of bosonic emergence [65] , which means that gauge bosons and
possible counterpart of Higgs particle are identified as bound states of fermion and antifermion
at opposite light-like throats of wormhole contact. This suggests that the M -matrix should allow
a formulation solely in terms of the modified Dirac action.

HFFs and the definition of Dirac determinant

The definition of the Dirac determinant -call it det(D)- discussed in [20] involves two assumptions.
First, finite measurement resolution is assumed to correspond to a replacement of light-like 3-surfaces
with braids whose strands carry fermion number. Secondly, the quantum holography justifies the
assumption about dimensional reduction to a determinant assignable to 3-D Dirac operator.

1. The finiteness of the trace for HFF of type II1 indeed encourages the question whether one
could define det(D) as the exponent of the trace of the logarithm of 3-D Dirac operator D3 even
without the assumption of finite measurement resolution. The trace would be induced from the
trace of the tensor product of hyper-finite factor of type II1 and factor of type I.

2. One might wonder whether holography could allow to define det(D) also in terms of the 4-D
modified Dirac operator. The basic problem is of course that only the spinor fields satisfying
D4Ψ = 0 are allowed and eigenvalue equation in standard sense breaks baryon and lepton
number conservation. The critical deformation representing zero modes might however allow
to circumvent this difficulty. The modified Dirac equation DΨ = 0 holding true for the 4-
surfaces obtained as critical deformations can be written in the form D0Ψ = D0δΨ = −δDΨ,
where the subscript 0 refers to the non-deformed surface and one has δΨ = OΨ0 which involves
propagator defined by D4. Maybe one could define det(D) as the determinant of the operator
−δD by identifying it as the exponent of the trace of the operator log(−δD). This would require
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a division by the deformation parameter δt at both sides of the modified Dirac equation and
means only the elimination of an infinite proportionality factor from the determinant.

Bosonic emergence and QFT limit of TGD

The QFT limit of TGD gives further valuable hints about the formulation of quantum TGD proper.
In QFT limit Dirac action coupled to gauge potentials (and possibly the TGD counterpart of Higgs)
defines the theory and bosonic propagators and vertices involving bosons as external particles emerge
as radiative corrections [65] . There are no free coupling constants in the theory.

1. The construction involves at the first step the coupling of spinor fields Ψ to fermionic sources ξ
leading to an expression of the effective action as a functional of gauge potentials and ξ containing
the counterpart of YM action in the purely bosonic sector plus interaction terms representing
N-boson vertices. Bosonic dynamics is therefore generated purely radiatively in accordance with
the emergence idea. At the next step the coupling to external YM currents leads to Feynman
rules in the standard manner.

2. The inverse of the bosonic propagator and N-boson vertices correspond to fermionic loops and
coupling constants are predicted completely in terms of them provided one can define the loop
integrals uniquely.

3. Fermionic loops do not make sense without cutoff in both mass squared and hyperbolic angle
defining the maximum Lorentz boost which can be applied to a virtual fermion in the rest
system of the virtual gauge boson. Zero energy ontology realized in terms of a hierarchy of
CDs provides a physical justification for the hierarchy of hyperbolic cutoffs. p-Adic length scale
hypothesis (the sizes of CDs come in powers of 2) allows to decompose momentum space to
shells corresponding to mass squared intervals [n, n + 1) using CP2 mass squared as a unit.
The hyperbolic cutoff can depend on p-adic mass scale and can differ for time-like and space-like
momenta: the relationship between these cutoffs is fixed from the condition that gauge bosons do
not generate mass radiatively. One can find a simple ansatz for the hyperbolic cutoff consistent
with the coupling constant evolution in standard model. The vanishing of all on-mass-shell
N > 2-boson vertices defined by the fermionic loops states their irreducibility to lower vertices
and serves as a candidate for the condition fixing the hyperbolic cutoff as a function of the p-adic
mass scale.

A proposal for M-matrix

This picture can be taken as a template as one tries to to imagine how the construction of M -matrix
could proceed in quantum TGD proper.

1. Modified Dirac action should replace the ordinary Dirac action and define the theory. The linear
couplings of spinors to fermionic external currents are needed. Also bosons represented as bound
states of fermion and antifermion to the analogs of gauge currents are needed to construct the
M -matrix and would correspond to an addition of quantum part to induced spinor connection.
One can consider also the addition of quantum parts to the induced metric and induced gamma
matrices.

2. The couplings of the induced spinor fields to external sources would be given as contractions
of the fermionic sources with conformal super-currents. Conformal currents would couple to
bosonic external currents analogous to external YM currents and M -matrix would result via
the usual procedure leading to generalized Feynman diagrams for which sub-CDs would contain
vertices.

One cannot however argue that everything would be crystal clear.

1. There are two kinds of super-conformal algebras corresponding to quantum fluctuating degrees
of freedom and zero modes. The super-conformal algebra associated with the zero modes fol-
lows from quantum criticality guaranteing the conservation of these currents. These currents
are defined in the interior of the space-time surface. By quantum holography the quantum fluc-
tuating super-conformal algebra is assigned with light-like 3-surfaces. Both these algebras form
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a hierarchy of inclusions identifiable as counterparts for inclusions of HFFs. Which of the two
super-conformal algebras one should use? Does quantum holography - interpreted as possibility
of 1-1 entanglement between the two kinds of conformal currents for prepared states- mean that
one can use either of them to construct M -matrix? How the dimensional reduction could be
understood in terms of this duality?

2. The bosonic conserved currents in the interior of X4 implied by quantum criticality involve a
purely local pairing of the induced spinor field and its conjugate. The problem is that gauge
bosons as wormhole throats appearing in the dimensionally reduced description correspond to a
non-local (in CP2 scale) pairing of spinor field and its conjugate at opposite wormhole throats.
Should one accept as a fact that dimensionally reduced quantum fluctuating counterparts for
the purely local zero mode currents are bi-local?

3. Only few days after posing these questions a plausible answer to them came through a resolu-
tion of several problems related to the formulation of quantum TGD (see the section ”Handful
of problems with a common resolution” of [24] ). One important outcome of the formulation
allowing to understand how stringy fermionic propagators emerge from the theory was that grav-
itational coupling vanishes for purely local composites of fermion and antifermion represented by
Kac-Moody algebra and super-conformal algebra associated with critical deformations. Hence
the only sensible identification of bosons seems to be as wormhole throats.

4. The construction of the bosonic propagators in terms of fermionic loops [65] as functionals
integral over Grassmann variables generalizes. Fermionic loops correspond geometrically to
wormhole contacts having fermion and anti-fermion at their opposite light-like throats. This
implies a cutoff for momentum squared and hyperbolic angle of the virtual fermion in the rest
system of boson crucial for the absence of loop divergences. Hence bosonic propagation is
emergent as is also fermionic propagation which can be seen as induced by the measurement
interaction for momentum. This justifies the cutoffs due to the finite measurement resolution.

5. It is essential that one first functionally integrates over the fermionic degrees of freedom and
over the small deformations of light-like 3-surfaces and only after that constructs diagrams
from tree diagrams with bosonic and fermionic lines by using generalized Cutkosky rules. Here
the generalization of twistors to 8-D context allowing to regard massive particles as massless
particles in 8-D framework is expected to be a crucial technical tool possibly allowing to achieve
summations over large classes of generalized Feynman diagrams. Also the hierarchy of CDs is
expected to be crucial in the construction.

The key idea is the addition of measurement interaction term to the modified Dirac action coupling
to the conserved currents defined by quantum critical deformations for which the second variation of
Kähler action vanishes. There remains a considerable freedom in choosing the precise form of the
measurement interaction but there is a long list of arguments supporting the identification of the
measurement interaction as the one defined by 3-D Chern-Simons term assignable with wormhole
throats so that the dynamics in the interior of space-time sheet is not affected. This means that 3-D
light-like wormhole throats carry induced spinor field which can be regarded as independent degrees
of freedom having the spinor fields at partonic 2-surfaces as sources and acting as 3-D sources for the
4-D induced spinor field. The most general measurement interaction would involve the corresponding
coupling also for Kähler action but is not physically motivated. Here are the arguments in favor of
Chern-Simons Dirac action and corresponding measurement interaction.

1. A correlation between 4-D geometry of space-time sheet and quantum numbers is achieved
by the identification of exponent of Kähler function as Dirac determinant making possible the
entanglement of classical degrees of freedom in the interior of space-time sheet with quantum
numbers.

2. Cartan algebra plays a key role not only at quantum level but also at the level of space-time
geometry since quantum critical conserved currents vanish for Cartan algebra of isometries
and the measurement interaction terms giving rise to conserved currents are possible only for
Cartan algebras. Furthermore, modified Dirac equation makes sense only for eigen states of
Cartan algebra generators. The hierarchy of Planck constants realized in terms of the book like
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structure of the generalized imbedding space assigns to each CD (causal diamond) preferred
Cartan algebra: in case of Poincare algebra there are two of them corresponding to linear and
cylindrical M4 coordinates.

3. Quantum holography and dimensional reduction hierarchy in which partonic 2-surface defined
fermionic sources for 3-D fermionic fields at light-like 3-surfaces Y 3

l in turn defining fermionic
sources for 4-D spinors find an elegant realization. Effective 2-dimensionality is achieved if the
replacement of light-like wormhole throat X3

l with light-like 3-surface Y 3
l ”parallel” with it in the

definition of Dirac determinant corresponds to the U(1) gauge transformation K → K + f + f
for Kähler function of WCW so that WCW Kähler metric is not affected. Here f is holomorphic
function of WCW (”world of classical worlds”) complex coordinates and arbitrary function of
zero mode coordinates.

4. An elegant description of the interaction between super-conformal representations realized at
partonic 2-surfaces and dynamics of space-time surfaces is achieved since the values of Cartan
charges are feeded to the 3-D Dirac equation which also receives mass term at the same time.
Almost topological QFT at wormhole throats results at the limit when four-momenta vanish:
this is in accordance with the original vision about TGD as almost topological QFT.

5. A detailed view about the physical role of quantum criticality results. Quantum criticality
fixes the values of Kähler coupling strength as the analog of critical temperature. Quantum
criticality implies that second variation of Kähler action vanishes for critical deformations and
the existence of conserved current except in the case of Cartan algebra of isometries. Quantum
criticality allows to fix the values of couplings appearing in the measurement interaction by
using the condition K → K+ f + f . p-Adic coupling constant evolution can be understood also
and corresponds to scale hierarchy for the sizes of causal diamonds (CDs). To achieve internal
consistency the quantum critical deformations for Kähler action must be also quantum critical
for Chern-Simons action which implies that the deformations are orthogonal to Kähler magnetic
field at each light-like 3-surface in the slicing of space-time sheet by light-like 3-surfaces.

6. CP breaking, irreversibility and the space-time description of dissipation are closely related. Also
the interpretation of preferred extremals of Kähler action in regions where [DC−S , DC−S,int] = 0
as asymptotic self organization patterns makes sense. Here DC−S denotes the 3-D modified
Dirac operator associated with Chern-Simons action and DC−S,int to the corresponding mea-
surement interaction term expressible as superposition of couplings to various observables to
critical conserved currents.

7. A radically new view about matter antimatter asymmetry based on zero energy ontology emerges
and one could understand the experimental absence of antimatter as being due to the fact
antimatter corresponds to negative energy states. The identification of bosons as wormhole
contacts is the only possible option in this framework.

8. Almost stringy propagators and a consistency with the identification of wormhole throats as
lines of generalized Feynman diagrams is achieved. The notion of bosonic emergence leads to a
long sought general master formula for the M -matrix elements. The counterpart for fermionic
loop defining bosonic inverse propagator at QFT limit is wormhole contact with fermion and
cutoffs in mass squared and hyperbolic angle for loop momenta of fermion and antifermion in
the rest system of emitting boson have precise geometric counterpart.

On basis of above considerations it seems that the idea about ”complex square root” of ω might
make sense in quantum TGD and that different measurement interactions correspond to various
choices of ω. Also the modular automorphism would make sense and because of its non-uniqueness ∆
could bring in the flexibility needed one wants thermodynamics. Stringy picture forces to ask whether
∆ could in some situation be proportional exp(L0), where L0 represents as the infinitesimal scaling
generator of either super-symplectic algebra or super Kac-Moody algebra (the choice does not matter
since the differences of the generators annihilate physical states in coset construction). This would
allow to reproduce real thermodynamics consistent with p-adic thermodynamics.

In string models exp(iL0τ) is identified as the time evolution operator at single particle level whose
integral over τ defines the propagator. The quantization for the sizes of CDs does not however allow
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integration over t in this sense. Could the integration over projectors with traces differing by scalings
parameterized by t correspond to this integral? Or should one give up this idea since modified Dirac
operator defines a propagator in any case?

6.3.6 Finite measurement resolution and HFFs

The finite resolution of quantum measurement leads in TGD framework naturally to the notion of
quantum M -matrix for which elements have values in sub-factor N of HFF rather than being complex
numbers. M-matrix in the factor space M/N is obtained by tracing over N . The condition that N
acts like complex numbers in the tracing implies that M-matrix elements are proportional to maximal
projectors to N so that M-matrix is effectively a matrix in M/N and situation becomes finite-
dimensional. It is still possible to satisfy generalized unitarity conditions but in general case tracing
gives a weighted sum of unitary M-matrices defining what can be regarded as a square root of density
matrix.

About the notion of observable in zero energy ontology

Some clarifications concerning the notion of observable in zero energy ontology are in order.

1. As in standard quantum theory observables correspond to hermitian operators acting on either
positive or negative energy part of the state. One can indeed define hermitian conjugation for
positive and negative energy parts of the states in standard manner.

2. Also the conjugation A→ JAJ is analogous to hermitian conjugation. It exchanges the positive
and negative energy parts of the states also maps the light-like 3-surfaces at the upper boundary
of CD to the lower boundary and vice versa. The map is induced by time reflection in the rest
frame of CD with respect to the origin at the center of CD and has a well defined action on
light-like 3-surfaces and space-time surfaces. This operation cannot correspond to the sought for
hermitian conjugation since JAJ and A commute. The formulation of quantum TGD in terms
of the modified Dirac action requires the addition of CP and T breaking fermionic counterpart
of instanton term to the modified Dirac action. An interesting question is what this term means
from the point of view of the conjugation.

3. Zero energy ontology gives Cartan sub-algebra of the Lie algebra of symmetries a special status.
Only Cartan algebra acting on either positive or negative states respects the zero energy property
but this is enough to define quantum numbers of the state. In absence of symmetry breaking
positive and negative energy parts of the state combine to form a state in a singlet representation
of group. Since only the net quantum numbers must vanish zero energy ontology allows a
symmetry breaking respecting a chosen Cartan algebra.

4. In order to speak about four-momenta for positive and negative energy parts of the states one
must be able to define how the translations act on CDs. The most natural action is a shift of
the upper (lower) tip of CD. In the scale of entire CD this transformation induced Lorentz
boost fixing the other tip. The value of mass squared is identified as proportional to the average
of conformal weight in p-adic thermodynamics for the scaling generator L0 for either super-
symplectic or Super Kac-Moody algebra.

Inclusion of HFFS as characterizer of finite measurement resolution at the level of S-
matrix

The inclusion N ⊂ M of factors characterizes naturally finite measurement resolution. This means
following things.

1. Complex rays of state space resulting usually in an ideal state function reduction are replaced
by N -rays since N defines the measurement resolution and takes the role of complex numbers in
ordinary quantum theory so that non-commutative quantum theory results. Non-commutativity
corresponds to a finite measurement resolution rather than something exotic occurring in Planck
length scales. The quantum Clifford algebra M/N creates physical states modulo resolution.
The fact that N takes the role of gauge algebra suggests that it might be necessary to fix a
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gauge by assigning to each element ofM/N a unique element ofM. Quantum Clifford algebra
with fractal dimension β = M : N creates physical states having interpretation as quantum
spinors of fractal dimension d =

√
β. Hence direct connection with quantum groups emerges.

2. The notions of unitarity, hermiticity, and eigenvalue generalize. The elements of unitary and
hermitian matrices andN -valued. Eigenvalues are Hermitian elements ofN and thus correspond
entire spectra of Hermitian operators. The mutual non-commutativity of eigenvalues guarantees
that it is possible to speak about state function reduction for quantum spinors. In the simplest
case of a 2-component quantum spinor this means that second component of quantum spinor
vanishes in the sense that second component of spinor annihilates physical state and second
acts as element of N on it. The non-commutativity of spinor components implies correlations
between then and thus fractal dimension is smaller than 2.

3. The intuition about ordinary tensor products suggests that one can decompose Tr in M as

TrM(X) = TrM/N × TrN (X) . (6.3.4)

Suppose one has fixed gauge by selecting basis |rk〉 for M/N . In this case one expects that
operator in M defines an operator in M/N by a projection to the preferred elements of M.

〈r1|X|r2〉 = 〈r1|TrN (X)|r2〉 . (6.3.5)

4. Scattering probabilities in the resolution defined by N are obtained in the following manner.
The scattering probability between states |r1〉 and |r2〉 is obtained by summing over the final
states obtained by the action of N from |r2〉 and taking the analog of spin average over the
states created in the similar from |r1〉. N average requires a division by Tr(PN ) = 1/M : N
defining fractal dimension of N . This gives

p(r1 → r2) = M : N × 〈r1|TrN (SPNS
†)|r2〉 . (6.3.6)

This formula is consistent with probability conservation since one has

∑
r2

p(r1 → r2) = M : N × TrN (SS†) =M : N × Tr(PN ) = 1 . (6.3.7)

5. Unitarity at the level ofM/N can be achieved if the unit operator Id forM can be decomposed
into an analog of tensor product for the unit operators ofM/N and N and M decomposes to a
tensor product of unitary M-matrices inM/N and N . For HFFs of type II projection operators
of N with varying traces are present and one expects a weighted sum of unitary M-matrices to
result from the tracing having interpretation in terms of square root of thermodynamics.

6. This argument assumes that N is HFF of type II1 with finite trace. For HFFs of type III1

this assumption must be given up. This might be possible if one compensates the trace over N
by dividing with the trace of the infinite trace of the projection operator to N . This probably
requires a limiting procedure which indeed makes sense for HFFs.
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Quantum M-matrix

The description of finite measurement resolution in terms of inclusion N ⊂ M seems to boil down
to a simple rule. Replace ordinary quantum mechanics in complex number field C with that in N .
This means that the notions of unitarity, hermiticity, Hilbert space ray, etc.. are replaced with their
N counterparts.

The full M -matrix in M should be reducible to a finite-dimensional quantum M -matrix in the
state space generated by quantum Clifford algebraM/N which can be regarded as a finite-dimensional
matrix algebra with non-commuting N -valued matrix elements. This suggests that full M -matrix can
be expressed as M -matrix with N -valued elements satisfying N -unitarity conditions.

Physical intuition also suggests that the transition probabilities defined by quantum S-matrix
must be commuting hermitian N -valued operators inside every row and column. The traces of these
operators give N -averaged transition probabilities. The eigenvalue spectrum of these Hermitian ma-
trices gives more detailed information about details below experimental resolution. N -hermicity and
commutativity pose powerful additional restrictions on the M -matrix.

Quantum M -matrix defines N -valued entanglement coefficients between quantum states with N -
valued coefficients. How this affects the situation? The non-commutativity of quantum spinors has
a natural interpretation in terms of fuzzy state function reduction meaning that quantum spinor
corresponds effectively to a statistical ensemble which cannot correspond to pure state. Does this
mean that predictions for transition probabilities must be averaged over the ensemble defined by
”quantum quantum states”?

Quantum fluctuations and inclusions

Inclusions N ⊂ M of factors provide also a first principle description of quantum fluctuations since
quantum fluctuations are by definition quantum dynamics below the measurement resolution. This
gives hopes for articulating precisely what the important phrase ”long range quantum fluctuations
around quantum criticality” really means mathematically.

1. Phase transitions involve a change of symmetry. One might hope that the change of the symme-
try group Ga×Gb could universally code this aspect of phase transitions. This need not always
mean a change of Planck constant but it means always a leakage between sectors of imbedding
space. At quantum criticality 3-surfaces would have regions belonging to at least two sectors of
H.

2. The long range of quantum fluctuations would naturally relate to a partial or total leakage of
the 3-surface to a sector of imbedding space with larger Planck constant meaning zooming up
of various quantal lengths.

3. For M -matrix inM/N regarded as calN module quantum criticality would mean a special kind
of eigen state for the transition probability operator defined by the M -matrix. The properties
of the number theoretic braids contributing to the M -matrix should characterize this state. The
strands of the critical braids would correspond to fixed points for Ga ×Gb or its subgroup.

M-matrix in finite measurement resolution

The following arguments relying on the proposed identification of the space of zero energy states give
a precise formulation for M -matrix in finite measurement resolution and the Connes tensor product
involved. The original expectation that Connes tensor product could lead to a unique M-matrix is
wrong. The replacement of ω with its complex square root could lead to a unique hierarchy of M-
matrices with finite measurement resolution and allow completely finite theory despite the fact that
projectors have infinite trace for HFFs of type III1.

1. In zero energy ontology the counterpart of Hermitian conjugation for operator is replaced with
M→ JMJ permuting the factors. Therefore N ∈ N acting to positive (negative) energy part
of state corresponds to N → N ′ = JNJ acting on negative (positive) energy part of the state.

2. The allowed elements of N much be such that zero energy state remains zero energy state. The
superposition of zero energy states involved can however change. Hence one must have that the
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counterparts of complex numbers are of form N = JN1J ∨ N2, where N1 and N2 have same
quantum numbers. A superposition of terms of this kind with varying quantum numbers for
positive energy part of the state is possible.

3. The condition that N1i and N2i act like complex numbers in N -trace means that the effect of
JN1iJ ∨N2i and JN2iJi∨N1i to the trace are identical and correspond to a multiplication by a
constant. If N is HFF of type II1 this follows from the decompositionM =M/N ⊗N and from
Tr(AB) = Tr(BA) assuming that M is of form M = MM/N × PN . Contrary to the original
hopes that Connes tensor product could fix the M-matrix there are no conditions on MM/N
which would give rise to a finite-dimensional M-matrix for Jones inclusions. One can replaced
the projector PN with a more general state if one takes this into account in ∗ operation.

4. In the case of HFFs of type III1 the trace is infinite so that the replacement of TrN with a state
ωN in the sense of factors looks more natural. This means that the counterpart of ∗ operation
exchanging N1 and N2 represented as SAΩ = A∗Ω involves ∆ via S = J∆1/2. The exchange of
N1 and N2 gives altogether ∆. In this case the KMS condition ωN (AB) = ωN∆A) guarantees
the effective complex number property [18] .

5. Quantum TGD more or less requires the replacement of ω with its ”complex square root” so that
also a unitary matrix U multiplying ∆ is expected to appear in the formula for S and guarantee
the symmetry. One could speak of a square root of KMS condition [18] in this case. The QFT
counterpart would be a cutoff involving path integral over the degrees of freedom below the
measurement resolution. In TGD framework it would mean a cutoff in the functional integral
over WCW and for the modes of the second quantized induced spinor fields and also cutoff in
sizes of causal diamonds. Discretization in terms of braids replacing light-like 3-surfaces should
be the counterpart for the cutoff.

6. If one has M -matrix in M expressible as a sum of M -matrices of form MM/N × MN with
coefficients which correspond to the square roots of probabilities defining density matrix the
tracing operation gives rise to square root of density matrix in M .

Is universal M-matrix possible?

The realization of the finite measurement resolution could apply only to transition probabilities in
which N -trace or its generalization in terms of state ωN is needed. One might however dream of
something more.

1. Maybe there exists a universal M-matrix in the sense that the same M-matrix gives the M-
matrices in finite measurement resolution for all inclusions N ⊂M. This would mean that one
can write

M = MM/N ⊗MN (6.3.8)

for any physically reasonable choice of N . This would formally express the idea that M is as
near as possible to M-matrix of free theory. Also fractality suggests itself in the sense that MN
is essentially the same as MM in the same sense as N is same asM. It might be that the trivial
solution M = 1 is the only possible solution to the condition.

2. MM/N would be obtained by the analog of TrN or ωN operation involving the ”complex square
root” of the state ω in case of HFFs of type III1. The QFT counterpart would be path integration
over the degrees of freedom below cutoff to get effective action.

3. Universality probably requires assumptions about the thermodynamical part of the universal
M-matrix. A possible alternative form of the condition is that it holds true only for canonical
choice of ”complex square root” of ω or for the S-matrix part of M :

S = SM/N ⊗ SN (6.3.9)
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for any physically reasonable choice N .

4. In TGD framework the condition would say that the M-matrix defined by the modified Dirac
action gives M-matrices in finite measurement resolution via the counterpart of integration over
the degrees of freedom below the measurement resolution.

An objection against the universality is that if the M-matrix is ”complex square root of state”
cannot be unique and there are infinitely many choices related by a unitary transformation induced
by the flows representing modular automorphism giving rise to new choices. This would actually
be a well-come result and make possible quantum measurement theory. In the section ”Handful of
problems with a common resolution” of [23] it was found that one must add to the modified Dirac
action a measurement interaction term characterizing the measured observables. This implies stringy
propagation as well as space-time correlates for quantum numbers characterizing the partonic states.
These different modified Dirac actions would give rise to different Kähler functions. The corresponding
Kähler metrics would not however differ if the real parts of the Kähler functions associated with the
two choices differ by a term f(Z) + f(Z), where Z denotes complex coordinates of WCW, the Kähler
metric remains the same. The function f can depend also on zero modes. If this is the case then one
can allow in given CD superpositions of WCW spinor fields for which the measurement interactions
are different.

Connes tensor product and space-like entanglement

Ordinary linear Connes tensor product makes sense also in positive/negative energy sector and also
now it makes sense to speak about measurement resolution. Hence one can ask whether Connes
tensor product should be posed as a constraint on space-like entanglement. The interpretation could
be in terms of the formation of bound states. The reducibility of HFFs and inclusions means that
the tensor product is not uniquely fixed and ordinary entanglement could correspond to this kind of
entanglement.

Also the counterpart of p-adic coupling constant evolution would makes sense. The interpretation
of Connes tensor product would be as the variance of the states with respect to some subgroup of U(n)
associated with the measurement resolution: the analog of color confinement would be in question.

2-vector spaces and entanglement modulo measurement resolution

John Baez and collaborators [50] are playing with very formal looking formal structures obtained by
replacing vectors with vector spaces. Direct sum and tensor product serve as the basic arithmetic
operations for the vector spaces and one can define category of n-tuples of vectors spaces with mor-
phisms defined by linear maps between vectors spaces of the tuple. n-tuples allow also element-wise
product and sum. They obtain results which make them happy. For instance, the category of linear
representations of a given group forms 2-vector spaces since direct sums and tensor products of repre-
sentations as well as n-tuples make sense. The 2-vector space however looks more or less trivial from
the point of physics.

The situation could become more interesting in quantum measurement theory with finite mea-
surement resolution described in terms of inclusions of hyper-finite factors of type II1. The reason is
that Connes tensor product replaces ordinary tensor product and brings in interactions via irreducible
entanglement as a representation of finite measurement resolution. The category in question could
give Connes tensor products of quantum state spaces and describing interactions. For instance, one
could multiply M -matrices via Connes tensor product to obtain category of M -matrices having also
the structure of 2-operator algebra.

1. The included algebra represents measurement resolution and this means that the infinite-D sub-
Hilbert spaces obtained by the action of this algebra replace the rays. Sub-factor takes the role of
complex numbers in generalized QM so that one obtains non-commutative quantum mechanics.
For instance, quantum entanglement for two systems of this kind would not be between rays but
between infinite-D subspaces corresponding to sub-factors. One could build a generalization of
QM by replacing rays with sub-spaces and it would seem that quantum group concept does more
or less this: the states in representations of quantum groups could be seen as infinite-dimensional
Hilbert spaces.



330 Chapter 6. An Overview About Quantum TGD: Part II

2. One could speak about both operator algebras and corresponding state spaces modulo finite
measurement resolution as quantum operator algebras and quantum state spaces with fractal
dimension defined as factor space like entities obtained from HFF by dividing with the action of
included HFF. Possible values of the fractal dimension are fixed completely for Jones inclusions.
Maybe these quantum state spaces could define the notions of quantum 2-Hilbert space and
2-operator algebra via direct sum and tensor production operations. Fractal dimensions would
make the situation interesting both mathematically and physically.

Suppose one takes the fractal factor spaces as the basic structures and keeps the information about
inclusion.

1. Direct sums for quantum vectors spaces would be just ordinary direct sums with HFF containing
included algebras replaced with direct sum of included HFFs.

2. The tensor products for quantum state spaces and quantum operator algebras are not anymore
trivial. The condition that measurement algebras act effectively like complex numbers would
require Connes tensor product involving irreducible entanglement between elements belonging
to the two HFFs. This would have direct physical relevance since this entanglement cannot be
reduced in state function reduction. The category would defined interactions in terms of Connes
tensor product and finite measurement resolution.

3. The sequences of super-conformal symmetry breakings identifiable in terms of inclusions of
super-conformal algebras and corresponding HFFs could have a natural description using the
2-Hilbert spaces and quantum 2-operator algebras.

6.3.7 Questions about quantum measurement theory in zero energy ontol-
ogy

In the following some questions about quantum measurement theory are posed. First however a result
about the relationship between U -matrix and M -matrix not known when the questions were made
will be represented. The background allowing a deeper understanding of this result can be found
from [52] discussing Negentropy Maximization Principle, which is the basic dynamical principle of
TGD inspired theory of consciousness and states that the information content of conscious experience
is maximal.

The relationship between U-matrix and M-matrix

Before proceeding it is a good idea to clarify the relationship between the notions of U -matrix and M -
matrix. If state function reduction associated with time-like entanglement leads always to a product of
positive and negative energy states (so that there is no counterpart of bound state entanglement and
negentropic entanglement possible for zero energy states: these notions are discussed below) U -matrix
and can be regarded as a collection of M -matrices

Um+n−,r+,s− = M(m+, n−)r+,s− (6.3.10)

labeled by the pairs (m+, n−) labelling zero energy states assumed to reduced to pairs of positive
and negative energy states. M -matrix element is the counterpart of S-matrix element Sr,s in positive
energy ontology. Unitarity conditions for U -matrix read as

(UU†)m+n−,r+s− =
∑
k+,l−

M(m+, n−)k+,l−M(r+, s−)k+,l− = δm+r+,n−s− ,

(U†U)m+n−,r+s− =
∑
k+,l−

M(k+, l−)m+,n−M(k+, l−)r+,s− = δm+r+,n−s− .

(6.3.11)

The conditions state that the zero energy states associated with different labels are orthogonal as zero
energy states and also that the zero energy states defined by the dual M -matrix
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M†(m+, n−)k+,l− ≡M(k+l−)m+,n− (6.3.12)

-perhaps identifiable as phase conjugate states- define an orthonormal basis of zero energy states.
When time-like binding and negentropic entanglement are allowed also zero energy states with

a label not implying a decomposition to a product state are involved with the unitarity condition
but this does not affect the situation dramatically. As a matter fact, the situation is mathematically
the same as for ordinary S-matrix in the presence of bound states. Here time-like bound states
are analogous to space-like bound states and by definition are unable to decay to product states (free
states). Negentropic entanglement makes sense only for entanglement probabilities, which are rationals
or belong to their algebraic extensions. This is possible in what might be called the intersection of
real and p-adic worlds (partonic surfaces in question have representation making sense for both real
and p-adic numbers). Number theoretic entropy is obtained by replacing in the Shannon entropy the
logarithms of probabilities with the logarithms of their p-adic norms. They satisfy the same defining
conditions as ordinary Shannon entropy but can be also negative. One can always find prime p for
which the entropy is maximally negative. The interpretation of negentropic entanglement is in terms
of formations of rule or association. Schrödinger cat knows that it is better to not open the bottle:
open bottle-dead cat, closed bottle-living cat and negentropic entanglement measures this information.

Fractal hierarchy of state function reductions

In accordance with fractality, the conditions for the Connes tensor product at a given time scale imply
the conditions at shorter time scales. On the other hand, in shorter time scales the inclusion would be
deeper and would give rise to a larger reducibility of the representation of N in M. Formally, as N
approaches to a trivial algebra, one would have a square root of density matrix and trivial S-matrix
in accordance with the idea about asymptotic freedom.

M -matrix would give rise to a matrix of probabilities via the expression P (P+ → P−) = Tr[P+M
†P−M ],

where P+ and P− are projectors to positive and negative energy energy N -rays. The projectors give
rise to the averaging over the initial and final states inside N ray. The reduction could continue step
by step to shorter length scales so that one would obtain a sequence of inclusions. If the U -process of
the next quantum jump can return the M -matrix associated with M or some larger HFF, U process
would be kind of reversal for state function reduction.

Analytic thinking proceeding from vision to details; human life cycle proceeding from dreams and
wild actions to the age when most decisions relate to the routine daily activities; the progress of science
from macroscopic to microscopic scales; even biological decay processes: all these have an intriguing
resemblance to the fractal state function reduction process proceeding to to shorter and shorter time
scales. Since this means increasing thermality of M -matrix, U process as a reversal of state function
reduction might break the second law of thermodynamics.

The conservative option would be that only the transformation of intentions to action by U process
giving rise to new zero energy states can bring in something new and is responsible for evolution. The
non-conservative option is that the biological death is the U -process of the next quantum jump leading
to a new life cycle. Breathing would become a universal metaphor for what happens in quantum
Universe. The 4-D body would be lived again and again.

How quantum classical correspondence is realized at parton level?

Quantum classical correspondence must assign to a given quantum state the most probable space-
time sheet depending on its quantum numbers. The space-time sheet X4(X3) defined by the Kähler
function depends however only on the partonic 3-surface X3, and one must be able to assign to a
given quantum state the most probable X3 - call it X3

max - depending on its quantum numbers.
X4(X3

max) should carry the gauge fields created by classical gauge charges associated with the
Cartan algebra of the gauge group (color isospin and hypercharge and electromagnetic and Z0 charge)
as well as classical gravitational fields created by the partons. This picture is very similar to that
of quantum field theories relying on path integral except that the path integral is restricted to 3-
surfaces X3 with exponent of Kähler function bringing in genuine convergence and that 4-D dynamics
is deterministic apart from the delicacies due to the 4-D spin glass type vacuum degeneracy of Kähler
action.
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Stationary phase approximation selects X3
max if the quantum state contains a phase factor depend-

ing not only on X3 but also on the quantum numbers of the state. A good guess is that the needed
phase factor corresponds to either Chern-Simons type action or an action describing the interaction
of the induced gauge field with the charges associated with the braid strand. This action would be
defined for the induced gauge fields. YM action seems to be excluded since it is singular for light-
like 3-surfaces associated with the light-like wormhole throats (not only

√
det(g3) but also

√
det(g4)

vanishes).

The challenge is to show that this is enough to guarantee that X4(X3
max) carries correct gauge

charges. Kind of electric-magnetic duality should relate the normal components Fni of the gauge
fields in X4(X3

max) to the gauge fields Fij induced at X3. An alternative interpretation is in terms
of quantum gravitational holography. The difference between Chern-Simons action characterizing
quantum state and the fundamental Chern-Simons type factor associated with the Kähler form would
be that the latter emerges as the phase of the Dirac determinant.

One is forced to introduce gauge couplings and also electro-weak symmetry breaking via the phase
factor. This is in apparent conflict with the idea that all couplings are predictable. The essential
uniqueness of M -matrix in the case of HFFs of type II1 (at least) however means that their values
as a function of measurement resolution time scale are fixed by internal consistency. Also quantum
criticality leads to the same conclusion. Obviously a kind of bootstrap approach suggests itself.

6.3.8 How p-adic coupling constant evolution and p-adic length scale hy-
pothesis emerge from quantum TGD proper?

What p-adic coupling constant evolution really means has remained for a long time more or less open.
The progress made in the understanding of the S-matrix of theory has however changed the situation
dramatically.

M-matrix and coupling constant evolution

The final breakthrough in the understanding of p-adic coupling constant evolution came through the
understanding of S-matrix, or actually M-matrix defining entanglement coefficients between positive
and negative energy parts of zero energy states in zero energy ontology [23] . M-matrix has interpreta-
tion as a ”complex square root” of density matrix and thus provides a unification of thermodynamics
and quantum theory. S-matrix is analogous to the phase of Schrödinger amplitude multiplying positive
and real square root of density matrix analogous to modulus of Schrödinger amplitude.

The notion of finite measurement resolution realized in terms of inclusions of von Neumann al-
gebras allows to demonstrate that the irreducible components of M-matrix are unique and possesses
huge symmetries in the sense that the hermitian elements of included factor N ⊂ M defining the
measurement resolution act as symmetries of M-matrix, which suggests a connection with integrable
quantum field theories.

It is also possible to understand coupling constant evolution as a discretized evolution associated
with time scales Tn, which come as octaves of a fundamental time scale: Tn = 2nT0. Number theoretic
universality requires that renormalized coupling constants are rational or at most algebraic numbers
and this is achieved by this discretization since the logarithms of discretized mass scale appearing in
the expressions of renormalized coupling constants reduce to the form log(2n) = nlog(2) and with
a proper choice of the coefficient of logarithm log(2) dependence disappears so that rational number
results. Recall that also the weaker condition Tp = pT0, p prime, would assign secondary p-adic time
scales to the size scale hierarchy of CDs: p ' 2n would result as an outcome of some kind of ”natural
selection” for this option. The highly satisfactory feature would be that p-adic time scales would
reflect directly the geometry of imbedding space and configuration space.

p-Adic coupling constant evolution

An attractive conjecture is that the coupling constant evolution associated with CDs in powers of 2
implying time scale hierarchy Tn = 2nT0 induces p-adic coupling constant evolution and explain why
p-adic length scales correspond to Lp ∝

√
pR, p ' 2k, R CP2 length scale? This looks attractive

but there seems to be a problem. p-Adic length scales come as powers of
√

2 rather than 2 and the
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strongly favored values of k are primes and thus odd so that n = k/2 would be half odd integer. This
problem can be solved.

1. The observation that the distance traveled by a Brownian particle during time t satisfies r2 = Dt
suggests a solution to the problem. p-Adic thermodynamics applies because the partonic 3-
surfaces X2 are as 2-D dynamical systems random apart from light-likeness of their orbit. For
CP2 type vacuum extremals the situation reduces to that for a one-dimensional random light-like
curve in M4. The orbits of Brownian particle would now correspond to light-like geodesics γ3 at
X3. The projection of γ3 to a time=constant section X2 ⊂ X3 would define the 2-D path γ2 of
the Brownian particle. The M4 distance r between the end points of γ2 would be given r2 = Dt.
The favored values of t would correspond to Tn = 2nT0 (the full light-like geodesic). p-Adic
length scales would result as L2(k) = DT (k) = D2kT0 for D = R2/T0. Since only CP2 scale is
available as a fundamental scale, one would have T0 = R and D = R and L2(k) = T (k)R.

2. p-Adic primes near powers of 2 would be in preferred position. p-Adic time scale would not relate
to the p-adic length scale via Tp = Lp/c as assumed implicitly earlier but via Tp = L2

p/R0 =√
pLp, which corresponds to secondary p-adic length scale. For instance, in the case of electron

with p = M127 one would have T127 = .1 second which defines a fundamental biological rhythm.
Neutrinos with mass around .1 eV would correspond to L(169) ' 5 µm (size of a small cell) and
T (169) ' 1. × 104 years. A deep connection between elementary particle physics and biology
becomes highly suggestive.

3. In the proposed picture the p-adic prime p ' 2k would characterize the thermodynamics of the
random motion of light-like geodesics of X3 so that p-adic prime p would indeed be an inherent
property of X3. For the weaker condition would be Tp = pT0, p prime, p ' 2n could be seen as
an outcome of some kind of ”natural selection”. In this case, p would a property of CD and all
light-like 3-surfaces inside it and also that corresponding sector of configuration space.

4. The fundamental role of 2-adicity suggests that the fundamental coupling constant evolution
and p-adic mass calculations could be formulated also in terms of 2-adic thermodynamics. With
a suitable definition of the canonical identification used to map 2-adic mass squared values to
real numbers this is possible, and the differences between 2-adic and p-adic thermodynamics
are extremely small for large values of for p ' 2k. 2-adic temperature must be chosen to be
T2 = 1/k whereas p-adic temperature is Tp = 1 for fermions. If the canonical identification is
defined as

∑
n≥0

bn2n →
∑
m≥1

2−m+1
∑

(k−1)m≤n<km

bn2n ,

it maps all 2-adic integers n < 2k to themselves and the predictions are essentially same as for
p-adic thermodynamics. For large values of p ' 2k 2-adic real thermodynamics with TR = 1/k
gives essentially the same results as the 2-adic one in the lowest order so that the interpretation
in terms of effective 2-adic/p-adic topology is possible.

6.4 Could one generalize the notion of twistor to 8-D case?

The basic problem of the twistor approach is that one cannot represent massive momenta in terms of
twistors in elegant manner. I have proposed a possible representation of massive states based on the
existence of preferred plane of M2 in the basic definition of theory allowing to express four-momentum
as some of two light-like momenta allowing twistor description. One could however ask whether some
more elegant representation of massive M4 momenta might be possible by generalizing the notion of
twistor -perhaps by starting from the number theoretic vision.

The basic idea is obvious: in quantum TGD massive states in M4 can be regarded as massless states
in M8 and CP2 (recall M8−H duality). One can therefore map any massive M4 momentum to a light-
like M8 momentum and hope that this association could be made in a unique manner. One should
assign to a massless 8-momentum an 8-dimensional spinor of fixed chirality. The spinor assigned with
the light-like four-momentum is not unique without additional conditions. The existence of covariantly
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constant right-handed neutrino in CP2 degrees generating the super-conformal symmetries could allow
to eliminate the non-uniqueness. 8-dimensional twistor in M8 would be a pair of this kind of spinors
fixing the momentum of massless particle and the point through which the corresponding light-geodesic
goes through: the set of these points forms 8-D light-cone and one can assign to each point a spinor.
In M4 × CP2 definitions makes also in the case of M4 × CP2 and twistor space would also now be a
lifting of the space of light-like geodesics.

The possibility to interpret M8 as hyperoctonionic space suggests also the possibility to define
the 8-D counterparts of sigma matrices to hyperoctonions to obtain a representation of sigma matrix
algebra which is not a matrix representation. The mapping of gamma matrices to this representation
allows to define a notion of hyper-quaternionicity in terms of the modified gamma matrices both in
M8 and H.

6.4.1 Octo-twistors defined in terms of ordinary spinors

It is possible to define octo-twistors in terms of ordinary spinors of M8 or H.

1. The condition for the octo-twistor makes sense also for ordinary spinors and the explicit repre-
sentation can be obtained by using triality. The ansatz is pk = ΨγkΨ. The condition pkpk = 0
gives Dirac equation pkγkΨ = 0 and its conjugate solved by Ψ = pkγkΨ0. The expression of pk

in turn gives the normalization condition Ψ0γ
kpkΨ0 = 1/2.

2. Without further conditions almost any Ψ0 not annihilated by γkpk is possible solution. One
can map the spinor basis to hyper-octonion basis and assume Ψ0 → 1 = σ0. This would give
octo-twistor spinors as Ψ = pkγkΨ0 and its conjugate and there would be natural mapping to
pkσk so that Ψ and pk would correspond to each other in 1-1 manner apart from the phase factor
of Ψ.

3. A highly unique choice for Ψ0 is the covariantly constant (with respect to CP2 coordinates) right-
handed neutrino spinor of M4 × CP2 since the Dirac operators of M8, H, and X4 reduce to
free Dirac operator when acting on it in both M8 and H and giving also rise to super-conformal
symmetry. The choice is unique apart from SO(3) rotation but the condition that spin eigen
state is in question for the choice of quantization axis fixed by the choice of hyper-octonion
units and also by the definition of the hierarchy of Planck constants fixes Ψ0 apart from the
sign of the spin if reality is assumed. When pkγkΨ0 = 0 holds true for fixed Ψ0, the ansatz fails
so that the gauge choice is not global. There are two gauge patches corresponding to the two
signs of the spin of Ψ0. Right handed neutrino spinor reflects directly the homological magnetic
monopole character of the Kähler form of CP2 so that the monopole property is in well defined
sense transferred from CP2 to M4. Note that this argument fails for quark spinors which do not
allow any covariantly constant spinor.

4. For ordinary twistors the existence of the antisymmetric tensor ε acting as Kähler form in the
space of spinors is what allows to define second spinor and these spinors together form twistor.
Ordinary twistors are pairs of spinors and also in the recent case one would have pairs of octo-
spinors. The geometric interpretation would be as a light-like geodesic of M8 or tangent vector
of light-like geodesic of M4×CP2 and the two spinors would code for the momentum associated
with the ray and the transverse position of the ray expressible in terms of a light-like vector.
This would double the dimension to D=16 which happens to be the dimension of complexified
octonions. The standard definition of twistors would suggest that one has 2 triplets of this kind
so that Dirac equation and above argument would reduce the situation to 16-dimensional one.
Twistors space would be C8 and 14-D projective twistor space would correspond to CP7.

5. 2-D spinor and its conjugate as independent representations of Lorentz group define twistor. In
an analogous manner M8 vector, M8-spinor, and its conjugate define a triplet as independent
representations. One can therefore ask whether a triplet of these independent representations
could define octo-twistor so that two triplets would not be needed. Together they would form
an entity with 24 components when the overall complex phase is eliminated and if no gauge
choice fixing Ψ0 is made apart from the assumption Ψ0 has real components. If the overall
phase is allowed, the number of components is 26 (the momentum constraint of course reduces
the number of degrees of freedom to 8). It seems that the magic dimensions of string models
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are unavoidable! Perhaps it might be a possible to reduce 26-D string theory to 8-D theory by
posing triality symmetry and additional gauge symmetry. The problem of this identification is
that one does not geometric interpretation as a lifting of the space of light-like geodesics. One
could of course define octo-twistors as a pair of triplets with the members of triplet obtained
from each other via triality symmetry.

6.4.2 Could right handed neutrino spinor modes define octo-twistors?

There is no absolute need to interpret induced spinor fields as parts of octo-twistors. One can how-
ever ask whether this might make sense for the solutions of the modified Dirac equation DΨ = 0
representing right-handed neutrino and expressible as Ψ = DΨ0.

1. In the modified Dirac equation gamma matrices are replaced by the modified gamma matrices
defined by the variation of Kähler action and the massless momentum pkσk is replaced with
the modified Dirac operator D. In plane wave basis the derivatives in D reduce to an algebraic
multiplication operators in the case of right handed neutrino since right-handed neutrino has no
gauge couplings.

2. A non-trivial consistency condition comes from the condition D2Ψ0 = 0 giving sum of two terms.

(a) The first term is the analog of scalar d’Alembertian and given by

GµνDµDνΨ0 , Gµν = hklT
µkT νl , Tµk = ∂LK

∂hkα
,

and has quantum numbers of right handed neutrino as it should.

(b) Second term is given by

TµkDµT
νlΣklDνΨ0 ,

and in the general case contains charged components. Only electromagnetically neutral
CP2 sigma matrices having right handed neutrino as eigen state are allowed if one wants
twistor interpretation. This is not be true in the general case but might be implied by the
preferred extremal property.

(c) This property would allow to choose the induced spinor fields to be eigenstates of elec-
tromagnetic charge globally and would be therefore physically very attractive. After all,
one of the basic interpretational problems has been the fact that classical W fields seems
to induce mixing of quarks and leptons with different electro-magnetic charges. If this is
the case one could assign to each point of the space-time surface octo-twistor like abstract
entity as the triplet (Ψ0D,D,DΨ0). This would map space-time sheet to a 4-D surface (in
real sense) in the space of 8-D (in complex sense) leptonic spinors.

6.4.3 Octo-twistors and modified Dirac equation

Classical number fields define one vision about quantum TGD. This vision about quantum TGD has
evolved gradually and involves several speculative ideas.

1. The hard core of the vision is that space-time surfaces as preferred extremals of Kähler action
can be identified as what I have called hyper-quaternionic surfaces of M8 or M4 × CP2. This
requires only the mapping of the modified gamma matrices to octonions or to a basis of subspace
of complexified octonions. This means also the mapping of spinors to octonionic spinors. There
is no need to assume that imbedding space-coordinates are octonionic.

2. I have considered also the idea that quantum TGD might emerge from the mere associativity.

(a) Consider Clifford algebra of WCW. Treat ”vibrational” degrees of freedom in terms second
quantized spinor fields and add center of mass degrees of freedom by replacing 8-D gamma
matrices with their octonionic counterparts - which can be constructed as tensor products of
octonions providing alternative representation for the basis of 7-D Euclidian gamma matrix
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algebra - and of 2-D sigma matrices. Spinor components correspond to tensor products of
octonions with 2-spinors: different spin states for these spinors correspond to leptons and
baryons.

(b) Construct a local Clifford algebra by considering Clifford algebra elements depending on
point of M8 or H. The octonionic 8-D Clifford algebra and its local variant are non-
accociative. Associative sub-algebra of 8-D Clifford algebra is obtained by restricting the
elements so any quaternionic 4-plane. Doing the same for the local algebra means restriction
of the Clifford algebra valued functions to any 4-D hyper-quaternionic sub-manifold of M8

or H which means that the gamma matrices span complexified quaternionic algebra at each
point of space-time surface. Also spinors must be quaternionic.

(c) The assignment of the 4-D gamma matrix sub-algebra at each point of space-time surface
can be done in many manners. If the gamma matrices correspond to the tangent space of
space-time surface, one obtains just induced gamma matrices and the standard definition of
quaternionic sub-manifold. In this case induced 4-volume is taken as the action principle.
If Kähler action defines the space-time dynamics, the modified gamma matrices do not
span the tangent space in general.

(d) An important additional element is involved. If the M4 projection of the space-time surface
contains a preferred subspace M2 at each point, the quaternionic planes are labeled by
points of CP2 and one can equivalently regard the surfaces of M8 as surfaces of M4×CP2

(number-theoretical ”compactification”). This generalizes: M2 can be replaced with a
distribution of planes of M4 which integrates to a 2-D surface of M4 (for instance, for
string like objects this is necessarily true). The presence of the preferred local plane M2

corresponds to the fact that octonionic spin matrices ΣAB span 14-D Lie-algebra of G2 ⊂
SO(7) rather than that 28-D Lie-algebra of SO(7, 1) whereas octonionic imaginary units
provide 7-D fundamental representation of G2. Also spinors must be quaternionic and
this is achieved if they are created by the Clifford algebra defined by induced gamma
matrices from two preferred spinors defined by real and preferred imaginary octonionic
unit. Therefore the preferred plane M3 ⊂ M4 and its local variant has direct counterpart
at the level of induced gamma matrices and spinors.

(e) This framework implies the basic structures of TGD and therefore leads to the notion of
world of classical worlds (WCW) and from this one ends up with the notion WCW spinor
field and WCW Clifford algebra and also hyper-finite factors of type II1 and III1. Note
that M8 is exceptional: in other dimensions there is no reason for the restriction of the
local Clifford algebra to lower-dimensional sub-manifold to obtain associative algebra.

The above line of ideas leads naturally to (hyper-)quaternionic sub-manifolds and to basic quantum
TGD (note that the ”hyper” is un-necessary if one accepts just the notion of quaternionic sub-manifold
formulated in terms of modified gamma matrices). One can pose some further questions.

1. Quantum TGD reduces basically to the second quantization of the induced spinor fields. Could
it be that the theory is integrable only for 4-D hyper-quaternionic space-time surfaces in M8

(equivalently in M4×CP2) in the sense than one can solve the modified Dirac equation exactly
only in these cases?

2. The construction of quantum TGD -including the construction of vacuum functional as exponent
of Kähler function reducing to Kähler action for a preferred extremal - should reduce to the
modified Dirac equation defined by Kähler action. Could it be that the modified Dirac equation
can be solved exactly only for Kähler action.

3. Is it possible to solve the modified Dirac equation for the octonionic gamma matrices and
octonionic spinors and map the solution as such to the real context by replacing gamma matrices
and sigma matrices with their standard counterparts? Could the associativity conditions for
octospinors and modified Dirac equation allow to pin down the form of solutions to such a high
degree that the solution can be constructed explicitly?

4. Octonionic gamma matrices provide also a non-associative representation for 8-D version of Pauli
sigma matrices and encourage the identification of 8-D twistors as pairs of octonionic spinors
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conjectured to be highly relevant also for quantum TGD. Does the quaternionicity condition
imply that octo-twistors reduce to something closely related to ordinary twistors as the fact
that 2-D sigma matrices provide a matrix representation of quaternions suggests?

In the following I will try to answer these questions by developing a detailed view about the
octonionic counterpart of the modified Dirac equation and proposing explicit solution ansätze for the
modes of the modified Dirac equation.

The replacement of SO(7, 1) with G2

The basic implication of octonionization is the replacement of SO(7, 1) as the structure group of spinor
connection with G2. This has some rather unexpected consequences.

1. Octonionic representation of 8-D gamma matrices

Consider first the representation of 8-D gamma matrices in terms of tensor products of 7-D gamma
matrices and 2-D Pauli sigma matrices.

1. The gamma matrices are given by

γ0 = 1× σ1 , γi = γi ⊗ σ2 , i = 1, .., 7 . (6.4.1)

7-D gamma matrices in turn can be expressed in terms of 6-D gamma matrices by expressing
γ7 as

γ
7)
i+1 = γ

6)
i , i = 1, ..., 6 , γ

7)
1 = γ

6)
7 =

6∏
i=1

γ
6)
i . (6.4.2)

2. The octonionic representation is obtained as

γ0 = 1× σ1 , γi = ei ⊗ σ2 . (6.4.3)

where ei are the octonionic units. e2
i = −1 guarantees that the M4 signature of the metric comes

out correctly. Note that γ7 =
∏
γi is the counterpart for choosing the preferred octonionic unit

and plane M2.

3. The octonionic sigma matrices are obtained as commutators of gamma matrices:

Σ0i = ei × σ3 , Σij = f k
ij ek ⊗ 1 . (6.4.4)

These matrices span G2 algebra having dimension 14 and rank 2 and having imaginary octonion
units and their conjugates as the fundamental representation and its conjugate. The Cartan
algebra for the sigma matrices can be chosen to be Σ01 and Σ23 and belong to a quaternionic
sub-algebra.

4. The lower dimension of the G2 algebra means that some combinations of sigma matrices vanish.
All left or right handed generators of the algebra are mapped to zero: this explains why the
dimension is halved from 28 to 14. From the octonionic triangle expressing the multiplication
rules for octonion units [23] one finds e4e5 = e1 and e6e7 = −e1 and analogous expressions for
the cyclic permutations of e4, e5, e6, e7. From the expression of the left handed sigma matrix
I3
L = σ23 + σ30 representing left handed weak isospin (see the Appendix about the geometry

of CP2 [5] , [5] ) one can conclude that this particular sigma matrix and left handed sigma
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matrices in general are mapped to zero. The quaternionic sub-algebra SU(2)L × SU(2)R is
mapped to that for the rotation group SO(3) since in the case of Lorentz group one cannot
speak of a decomposition to left and right handed subgroups. The elements of the complement
of the quaternionic sub-algebra are expressible in terms of Σij in the quaternionic sub-algebra.

2. Some physical implications of SO(7, 1)→ G2 reduction

This has interesting physical implications if one believes that the octonionic description is equiva-
lent with the standard one.

1. If SU(2)L is mapped to zero only the right-handed parts of electro-weak gauge field survive
octonization. The right handed part is neutral containing only photon and Z0 so that the
gauge field becomes Abelian. Z0 and photon fields become proportional to each other (Z0 →
sin2(θW )γ) so that classical Z0 field disappears from the dynamics, and one would obtain just
electrodynamics. This might provide a deeper reason for why electrodynamics is an excellent
description of low energy physics and of classical physics. This is consistent with the fact that
CP2 coordinates define 4 field degrees of freedom so that single Abelian gauge field should
be enough to describe classical physics. This would remove also the interpretational problems
caused by the transitions changing the charge state of fermion induced by the classical W boson
fields.

Also the realization of M8 −H duality led to the conclusion M8 spinor connection should have
only neutral components. The isospin matrix associated with the electromagnetic charge is e1×1
and represents the preferred imaginary octonionic unit so that that the image of the electro-weak
gauge algebra respects associativity condition. An open question is whether octonionization
is part of M8-H duality or defines a completely independent duality. The objection is that
information is lost in the mapping so that it becomes questionable whether the same solutions
to the modified Dirac equation can work as a solution for ordinary Clifford algebra.

2. If SU(2)R were mapped to zero only left handed parts of the gauge fields would remain. All
classical gauge fields would remain in the spectrum so that information would not be lost. The
identification of the electro-weak gauge fields as three covariantly constant quaternionic units
would be possible in the case of M8 allowing Hyper-Kähler structure [15] , which has been
speculated to be a hidden symmetry of quantum TGD at the level of WCW. This option would
lead to difficulties with associativity since the action of the charged gauge potentials would lead
out from the local quaternionic subspace defined by the octonionic spinor.

3. The gauge potentials and gauge fields defined by CP2 spinor connection are mapped to fields
in SO(2) ⊂ SU(2)×U(1) in quaternionic sub-algebra which in a well-defined sense corresponds
to M4 degrees of freedom! Since the resulting interactions are of gravitational character, one
might say that electro-weak interactions are mapped to manifestly gravitational interactions.
Since SU(2) corresponds to rotational group one cannot say that spinor connection would give
rise only to left or right handed couplings, which would be obviously a disaster.

3. Octo-spinors and their relation to ordinary imbedding space spinors

Octo-spinors are identified as octonion valued 2-spinors with basis

ΨL,i = ei

(
1
0

)
,

Ψq,i = ei

(
0
1

)
. (6.4.5)

One obtains quark and lepton spinors and conjugation for the spinors transforms quarks to leptons.
Note that octospinors can be seen as 2-dimensional spinors with components which have values in the
space of complexified octonions.

The leptonic spinor corresponding to real unit and preferred imaginary unit e1 corresponds nat-
urally to the two spin states of the right handed neutrino. In quark sector this would mean that
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right handed U quark corresponds to the real unit. The octonions decompose as 1 + 1 + 3 + 3 as
representations of SU(3) ⊂ G2. The concrete representations are given by

{1± ie1} , eR and νR with spin 1/2 ,
{e2 ± ie3} , eR and νL with spin -1/2 ,
{e4 ± ie5} eL and νL with spin 1/2 ,
{e6 ± ie7} eL and νL with spin 1/2 .

(6.4.6)

Instead of spin one could consider helicity. All these spinors are eigenstates of e1 (and thus of the
corresponding sigma matrix) with opposite values for the sign factor ε = ±. The interpretation is in
terms of vectorial isospin. States with ε = 1 can be interpreted as charged leptons and D type quarks
and those with ε = −1 as neutrinos and U type quarks. The interpretation would be that the states
with vanishing color isospin correspond to right handed fermions and the states with non-vanishing
SU(3) isospin (to be not confused with QCD color isospin) and those with non-vanishing SU(3) isospin
to left handed fermions. The only difference between quarks and leptons is that the induced Kähler
gauge potentials couple to them differently.

The importance of this identification is that it allows a unique map of the candidates for the
solutions of the octonionic modified Dirac equation to those of ordinary one. There are some delicacies
involved due to the possibility to chose the preferred unit e1 so that the preferred subspace M2 can
corresponds to a sub-manifold M2 ⊂M4.

Octonionic counterpart of the modified Dirac equation

The solution ansatz for the octonionic counterpart of the modified Dirac equation discussed below
makes sense also for ordinary modified Dirac equation which raises the hope that the same ansatz,
and even same solution could provide a solution in both cases.

1. The general structure of the modified Dirac equation

In accordance with quantum holography and the notion of generalized Feynman diagram, the
modified Dirac equation involves two equations which must be consistent with each other.

1. There is 3-dimensional generalized eigenvalue equation for which the modified gamma matrices
are defined by Chern-Simons action defined by the sum Jtot = J +J1 of Kähler forms of S2 and
CP2 [20, 31] .

D3Ψ = [DC−S +QC−S ] Ψ = λkγkΨ ,

QC−S = QαΓ̂αC−S , Qα = QAg
ABjBα .

(6.4.7)

The gamma matrices γk are M4 gamma matrices in standard Minkowski coordinates and thus
constant. Given eigenvalue λk defines pseudo momentum which is some function of the gen-
uine momenta pk and other quantum numbers via the boundary conditions associated with the
generalized eigenvalue equation.

The charges QA correspond to real four-momentum and charges in color Cartan algebra. The
term Q can be rather general since it provides a representation for the measurement interaction
by mapping observables to Cartan algebra of isometry group and to the infinite hierarchy of
conserved currents implied by quantum criticality. The operator O characterizes the quantum
critical conserved current. The surface Y 3

l can be chosen to be any light-like 3-surface ”parallel”
to the wormhole throat in the slicing of X4: this means an additional symmetry. Formally the
measurement interaction term can be regarded as an addition of a gauge term to the Kähler
gauge potential associated with the Kähler form Jtot of S2 × CP2.

The square of the equation gives the spinor analog of d’Alembert equation and generalized
eigenvalue as the analog of mass squared. The propagator associated with the wormhole throats
is formally massless Dirac propagator so that standard twistor formalism applies also without
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the octonionic representation of the gamma matrices although the physical particles propagating
along the opposite wormhole throats are massive on mass shell particles with both signs of
energy [31] .

2. Second equation is the 4-D modified Dirac equation defined by Kähler action.

DKΨ = 0 . (6.4.8)

The dimensional reduction of this operator to a sum corresponding to DK,3 acting on light-like 3-
surfaces and 1-D operator DK,1 acting on the coordinate labeling the 3-D light-like 3-surfaces in
the slicing would allow to assign eigenvalues to DK,3 as analogs of energy eigenvalues for ordinary
Schrödinger equation. One proposal has been that Dirac determinant could be identified as the
product of these eigen values. Another and more plausible identification is as the product of
pseudo masses assignable to D3 defined by Chern-Simons action [2] . It must be however made
clear that the identification of the exponent of the Kähler function to Chern-Simons term makes
the identification as Dirac determinant un-necessary.

3. There are two options depending on whether one requires that the eigenvalue equation applies
only on the wormhole throats and at the ends of the space-time surface or for all 3-surfaces
in the slicing of the space-time surface by light-like 3-surfaces. In the latter case the condition
that the pseudo four-momentum is same for all the light-like 3-surfaces in the slicing gives a
consistency condition stating that the commutator of the two Dirac operators vanishes for the
solutions in the case of preferred extremals, which depend on the momentum and color quantum
numbers also:

[DK , D3] Ψ = 0 . (6.4.9)

This condition is quite strong and there is no deep reason for it since λk does not correspond to
the physical conserved momentum so that its spectrum could depend on the light-like 3-surface
in the slicing. On the other hand, if the eigenvalues of D3 belong to the preferred hyper-complex
plane M2, D3 effectively reduces to a 2-dimensional algebraic Dirac operator λkγk commuting
with DK : the values of λk cannot depend on slice since this would mean that DK does not
commute with D3.

2. About the hyper-octonionic variant of the modified Dirac equation

What gives excellent hopes that the octonionic variant of modified Dirac equation could lead to a
provide precise information about the solution spectrum of modified Dirac equation is the condition
that everything in the equation should be associative. Hence the terms which are by there nature
non-associative should vanish automatically.

1. The first implication is that the besides octonionic gamma matrices also octonionic spinors should
belong to the local quaternionic plane at each point of the space-time surface. Spinors are also
generated by quaternionic Clifford algebra from two preferred spinors defining a preferred plane
in the space of spinors. Hence spinorial dynamics seems to mimic very closely the space-time
dynamics and one might even hope that the solutions of the modified Dirac action could be seen
as maps of the space-time surface to surfaces of the spinor space. The reduction to quaternionic
sub-algebra suggest that some variant of ordinary twistors emerges in this manner in matrix
representation.

2. The octonionic sigma matrices span G2 where as ordinary sigma matrices define SO(7, 1). On
the other hand, the holonomies are identical in the two cases if right-handed charge matrices
are mapped to zero so that there are indeed hopes that the solutions of the octonionic Dirac
equation cannot be mapped to those of ordinary Dirac equation. If left-handed charge matrices
are mapped to zero, the resulting theory is essentially the analog of electrodynamics coupled to
gravitation at classical level but it is not clear whether this physically acceptable. It is not clear
whether associativity condition leaves only this option under consideration.
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3. The solution ansatz to the modified Dirac equation is expected to be of the form Ψ = DK(Ψ0u0+
Ψ1u1), where u0 and u1 are constant spinors representing real unit and the preferred unit e1.
Hence constant spinors associated with right handed electron and neutrino and right-handed d
and u quark would appear in Ψ and Ψi could correspond to scalar coefficients of spinors with
different charge. This ansatz would reduce the modified Dirac equation to D2

KΨi = 0 since
there are no charged couplings present. The reduction of a d’Alembert type equation for single
scalar function coupling to U(1) gauge potential and U(1) ”gravitation” would obviously mean
a dramatic simplification raising hopes about integrable theory.

4. The condition D2
KΨ = 0 involves products of three octonions and involves derivatives of the

modified gamma matrices which might belong to the complement of the quaternionic sub-space.
The restriction of Ψ to the preferred hyper-complex plane M2 simplifies the situation dramati-
cally but (D2

K)DKΨ = DK(D2
K)Ψ = 0 could still fail. The problem is that the action of DK is

not algebraic so that one cannot treat reduce the associativity condition to (AA)A = A(AA).

Could the notion of octo-twistor make sense?

Twistors have led to dramatic successes in the understanding of Feynman diagrammatics of gauge
theories, N = 4 SUSYs, and N = 8 supergravity [65, 82, 59] . This motivated the question whether
they might be applied in TGD framework too [96] - at least in the description of the QFT limit. The
basic problem of the twistor program is how to overcome the difficulties caused by particle massivation
and TGD framework suggests possible clues in this respect.

1. In TGD it is natural to regard particles as massless particles in 8-D sense and to introduce 8-D
counterpart of twistors by relying on the geometric picture in which twistors correspond to a
pair of spinors characterizing light-like momentum ray and a point of M8 through which the
ray traverses. Twistors would consist of a pair of spinors and quark and lepton spinors define
the natural candidate for the spinors in question. This approach would allow to handle massive
on-mass-shell states but cannot cope with virtual momenta massive in 8-D sense.

2. The emergence of pseudo momentum λk from the generalized eigenvalue equation for DC−S
suggest a dramatically simpler solution to the problem. Since propagators are effectively massless
propagators for pseudo momenta, which are functions of physical on shell momenta (with both
signs of energy in zero energy ontology) and of other quantum numbers, twistor formalism can
be applied in its standard form. An attractive assumption is that also λk are conserved in the
vertices but a good argument justifying this is lacking. One can ask whether also N = 4 SUSY,
N = 8 super-gravity, and even QCD could have similar interpretation.

This picture should apply also in the case of octotwistors with minor modifications and one might
hope that octotwistors could provide new insights about what happens in the real case.

1. In the case of ordinary Clifford algebra unit matrix and six-dimensional gamma matrices γi,
i = 1, ..., 6 and γ7 =

∏
i γi would define the variant of Pauli sigma matrices as σ0 = 1, σk = γk,

k = 1, .., 7 The problem is that masslessness condition does not correspond to the vanishing of
the determinant for the matrix pkσ

k.

2. In the case of octo-twistors Pauli sigma matrices σk would correspond to hyper-octonion units
{σ0, σk} = {1, iek} and one could assign to pkσ

k a matrix by the linear map defined by the
multiplication with P = pkσ

k. The matrix is of form Pmn = pkfkmn, where fkmn are the
structure constants characterizing multiplication by hyper-octonion. The norm squared for
octonion is the fourth root for the determinant of this matrix. Since pkσ

k maps its octonionic
conjugate to zero so that the determinant must vanish (as is easy to see directly by reducing the
situation to that for hyper-complex numbers by considering the hyper-complex plane defined by
P ).

3. Associativity condition for the octotwistors requires that the gamma matrix basis appearing in
the generalized eigenvalue equation for Chern-Simons Dirac operator must differs by a local G2

rotation from the standard hyper-quaternionic gamma matrix for M4 so that it is always in the
local hyper-quaternionic plane. This suggests that octo-twistor can be mapped to an ordinary
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twistor by mapping the basis of hyper-quaternions to Pauli sigma matrices. A stronger condition
guaranteing the commutativity of D3 with λkγk is that λk belongs to a preferred hyper-complex
plane M2 assignable to a given CD. Also the two spinors should belong to this plane for the
proposed solution ansatz for the modified Dirac equation. Quaternionization would also allow
to assign momentum to the spinors in standard manner.

The spectrum of pseudo-momenta would be 2-dimensional (continuum at worst) and this should
certainly improve dramatically the convergence properties for the sum over the non-conserved
pseudo-momenta in propagators which in the worst possible of worlds might destroy the man-
ifest finiteness of the theory based on the generalized Feynman diagrams with the throats of
wormholes carrying always on mass shell momenta. This effective 2-dimensionality should apply
also in the real case and would have no catastrophic consequences since pseudo momenta are in
question.

As a matter fact, the assumption the decomposition of quark momenta to longitudinal and
transversal parts in perturbative QCD might have interpretation in terms of pseudo-momenta
if they are conserved.

4. M8 − H duality suggests a possible interpretation of the pseudo-momenta as M8 momenta
which by purely number theoretical reasons must be commutative and thus belong to M2 hyper-
complex plane. One ends up with the similar outcome as one constructs a representation for
the quantum states defined by WCW spinor fields as superpositions of real units constructed as
ratios of infinite hyper-octonionic integers with precisely defined number theoretic anatomy and
transformation properties under standard model symmetries having number theoretic interpre-
tation [84] .

6.4.4 What one really means with a virtual particle?

Massive particles are the basic problem of the twistor program. The twistorialization of massive
particles does not seem to be a problem in TGD framework thanks to the possibility to interpret them
as massless particles in 8-D sense but the situation is unsatisfactory for virtual particles.

The ideas possibly allowing to circumvent this problem emerged from a totally unexpected direc-
tion. The inspiration came from the finding of Martin Grusenick [20] who discovered that a Mickelson-
Morley interferometer rotating in plane gives rise a non-trivial interference pattern when the plane
is orthogonal to the Earth’s surface but no effect when parallel to the Earth’s surface. The effect
could be due to a contraction of the system in the vertical direction caused by the own weight of the
system and would thus involve no new physics. If not, then one must try to find General Relativistic
explanation for it. Schwartschild metric predicts this kind of effect but it is by a factor 10−4 too small.

In TGD framework one can however consider an explanation of the effect [91] .

1. By relaxing the empty space assumption to the assumption that only the energy density (that is
Gtt) vanishes but the other diagonal components of Einstein tensor in Schwartschild coordinates
can be non-vanishing allows to explain the effect in terms of the deviation of the radial component
grr of the metric from Schwartschild metric. The predicted deviation decreases as 1/r and does
not affect planetary orbits appreciably even if present for all astrophysical objects. The value
of G determined from radial acceleration at the surface of Earth is predicted to deviate from
the actual value as a consequence. The deviation of the metric from empty space metric could
also explain the known surprisingly large variation in the measured values of G since nearby
gravitational fields are involved.

2. The Einstein tensor in regions with vanishing energy density would obviously correspond to a
tachyonic matter. This led to a series of ideas allowing to sharpen the physical meaning of
Einstein’s equations in TGD framework. The basic result would be the extension of quantum
classical correspondence. The Einstein tensor in matter free regions would describe the presence
of virtual particles and would fail to satisfy causality constraint since it corresponds to the
space-like momentum exchange of the system with the external world (space-likeness follows if
the scattering is elastic).

3. It is difficult to understand how the energy momentum tensor of matter could behave like Gαβ

does if the latter describes tachyons. The resolution of the problem could be very simple in zero
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energy ontology. In zero energy ontology bosons (and their super counterparts) correspond to
wormhole contacts carrying fermion and antifermion numbers at the light-like wormhole throats
and having opposite signs of energy. This allows the possibility that the fermions at the throats
are on mass shell and the sum of their momenta gives rise to off mass shell momentum which
can be also space-like. In zero energy ontology Gαβ would naturally correspond to the sum
of on mass shell energy energy momentum tensors Tαβ± associated with positive and negative
energy fermions and their super-counterparts. Note that for the energy momentum tensor
Tαβ = (ρ + p)uαuβ − pgαβ of fluid with uαuα = 1 constraint stating on mass shell condition
the allowance of virtual particles would mean giving up the condition uαuα = 1 for the velocity
field.

Could virtual particles be regarded as pairs of on mass shell particles with opposite
energies?

This identification suggests a concrete identification of virtual particle as pairs of positive and negative
energy on mass shell particles allowing an elegant formulation of the twistor program in the case of
virtual particles [96, 32] .

1. The basic idea is that massive on mass shell states can be regarded as massless states in 8-
dimensional sense so that twistor program generalizes to the case of massive on mass shell
states associated with the representations of super-conformal algebras. One has however allow
now also off mass shell states, in particular those with space-like momenta, and the question
is how to describe them in terms of generalized twistors. In the case of wormhole contacts the
answer looks obvious. Bosons and their super partners could correspond to pairs of positive and
negative energy on mass shell states and could be described using a pair of twistors associated
with composite momenta massless in 8-D sense.

2. It took some time to realize that the most elegant identification of the on mass shall bosons
would be as wormhole contacts for which both throats have either positive or negative energy.
This would imply automatically on-mass shell property. The basic objection against this has
been that one cannot construct massless spin 1 states in this manner. Dirac equation in M4

implies that the momenta are parallel and for fermion and antifermion the helicities are therefore
opposite and only longitudinal polarization representing pure gauge degree of freedom is possible.
It is amazing how long time it required to realize that I had swallowed this objection completely
uncritically. After all, the first thing that I learned from the Dirac equation for massless induced
spinors is that it mixes unavoidably M4 chiralities except for very special vacuum extremals
like canonically imbedded M4. Same applies to the modified Dirac equation. Therefore there is
no problem! Of course, also the p-adic mass calculations involve imbedding spaced spinors for
which M4 helicities are mixed strongly since only covariantly constant right handed neutrino
is massless and possesses a well defined M4 helicity. At space-time level a pair of massless
extremals (topological light rays) with same (opposite) energies and connected by wormhole
contacts could serve as a space-time correlate for on (off) mass shell boson.

3. How can one then identify virtual fermions and their super-counterparts? These particles have
been assumed to consist of single wormhole throat associated with a deformation of CP2 vacuum
extremal so that the proposed definition would allow only on mass shell states. A possible reso-
lution of the problem is the identification of also virtual fermions and their super-counterparts
as wormhole contacts in the sense that the second wormhole throats is fermionic Fock vac-
uum carrying purely bosonic quantum numbers and corresponds to a state generated by purely
bosonic generators of the super-symplectic algebra whose elements are in 1-1 correspondence
with Hamiltonians of δM4

±×CP2. Thus the distinction between on mass shell and of mass shell
states would be purely topological for fermions and their super partners.

4. The concrete physical interpretation would be that particle scattering event involves at least
two parallel space-time sheets. Incoming (outgoing) fermion is topologically condensed at posi-
tive energy (negative energy) sheet and corresponds to single throat. In the interaction region
fermionic spaced-time sheet touches with a high probably the large space-time sheet sheet since
the distance between sheets is about 104 Planck lengths. The touching (topological sum) gen-
erates a second wormhole throat with a spherical topology and carrying no fermion number but



344 Chapter 6. An Overview About Quantum TGD: Part II

having on mass shell momentum. Virtual fermions would be interacting fermions. Since only
topological sum contacts are formed, also virtual fermions are labeled by the genus g of the 2-D
wormhole throat whereas bosons are labeled by the pair (g1, g2) of the genera of two wormhole
throats. This classification is consistent with the mechanism giving rise to virtual bosons.

The proposed identification of virtual and on mass shell particles is beautiful but it is of course
far from obvious whether it really make sense. Bosonic emergence means that the fundamental loop
integrals are for fermionic loops. One could in principle get rid of bosonic loop integrals by using
generalized Cutkosky rules [65, 32] but it would be highly satisfying to have a concrete physical
interpretation for the loops. It interesting to see whether the proposed picture picture works in
practice. Bosonic emergence means that one path integrates first over fermions to get bosonic action
as radiative corrections. Only 3-vertices (or rather, 3 momenta are associated with the vertex [32] )
are involved at the fermion level whereas at the bosonic level arbitrary high vertiecs appear.

How to treat the new degrees of freedom?

The identification of off mass shell states as on mass shell states of positive and negative energy throats
brings in new degrees of freedom. Let us first look what happens if the momenta of the two throats
of wormhole contact are completely uncorrelated apart from the condition p1 − p2 = p coming from
the energy conservation in the 3-vertex. Here p1 (−p2) is the momentum of on mass shell positive
(negative) energy throat and p is the momentum of outgoing (incoming) wormhole contact. On mass
shell conditions eliminate two degrees of freedom so that in absence of correlations the 4-D integral
over loop momenta should be extended to a 6-D integral. For a given time-like virtual momentum
p these degrees of freedom corresponds to 2-dimensional sphere as one finds by looking the situation
in the rest system of p (the direction of p1 = −p2 is arbitrary) so that additional loop integration is
finite. For light-like p the additional degrees of freedom correspond to 2-D light-cone boundary δM3

+

defined by the condition t2 − x2 − y2 = 0: δM3
+ SO(1, 2) invariant 2-volume does not exist. This is

not a catastrophe since massless momenta define lower-dimensional sub-manifold of the momentum
space. For space-like p one has hyperboloid t2 − x2 − y2 = −1 and the 2-D loop integral would be
infinite in absence of additional constraints.

A 2-dimensional integral appears at each line of Feynman diagram and if the only constraint comes
from p1 − p2 = p one obtains new divergences for space-like momenta p. One can imagine several
approaches to the problem.

1. The most conservative approach assumes that the freedom to select the decomposition p = p1+p2

is completely analogous to a gauge symmetry. This is the case if the propagators are just the
usual ones. Although this decomposition would take place it would not have any physical
consequences since scattering amplitudes do not depend on the choices of these decompositions.
For each line the integral over the decompositions normalized by the volume of S2 or hyperboloid
would give the same result as an arbitrary gauge choice fixing the decompositions.

2. For the second option the new degrees of freedom would be present for each line of the generalized
Feynman diagram in a non-trivial manner, and the dependence of the emission vertices on the
decompositions should allow to avoid the infinities for space-like p. The vertices would depend
on Lorentz invariant quantities such as k · ·p1 and k · ·p2, where k denotes the momentum of any
line coming to the vertex, and in an optimist mood one could ask whether this dependence could
allow to smooth out also the standard loop divergences by bringing in the effective momentum
cutoff through the new momentum degrees of freedom. In twistorial description this kind of
dependence could allow especially elegant realization. Note that also a sum over mass shells is
involved and can cause divergences.

3. For the third option the new degrees of freedom would be eliminated by some physical mechanism
fixing the direction of the projection of p1 (and p2) in the hyperplane normal to p. The minimum
option would eliminate the additional 2-dimensional integral but would not pose conditions on
the loop momenta p1 and p2. One should be able to fix the direction of the projection of p1 in
the hyperplane P (p) whose normal is p by some rule having a physical justification. As a matter
fact, this option would be special case of the first one.
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Bosonic sector (with super partners included) poses additional conditions. N-boson vertices are
defined by fermionic loops and N-boson vertices with arbitrary large value of N are possible. Bosonic
propagators emerge as inverses of 2-boson vertices defined by fermionic loops. Let pB = p1 +p2 denote
the sought for decomposition to on mass shell momenta. For the first and second options there are no
obvious problems in the bosonic sector. For the third option there is a serious difficulty involvedthe
decompositions pB = p1 + p2 defined by the vertices at the opposite ends of the boson line are not in
general consistent. This kind of conditions lead to a hopelessly clumsy formalism.

Could additional degrees of freedom allow natural cutoff in loop integrals?

Second option involving two new degrees of freedom for each internal line deserves a more detailed
discussion. The masses assignable to on mass shell throats define an inherent momentum cutoff
allowing to get rid of infinities without giving up conformal invariance. Of course, mass squared cutoff
comes also from the breakdown of the QFT limit at CP2 length scale but one might hope that this
cutoff is not actually needed.

1. To see what is involved, consider a BFF vertex with the fermionic momenta p1 = p11 + p12

and p2 = p21 + p22, and bosonic momentum p3 = p31 + p32. As a concrete example, one might
consider the calculation of bosonic propagator as the inverse of the bosonic 2-vertex involving
fermion loop for which a model was discussed in [65] . For definiteness restrict the consideration
to the decomposition of the fermionic momentum p1. The natural direction in the orthogonal
complement P (p1) of p1 is defined by p2 (equivalently by p3). The corresponding momentum
projections

Pi1 = pi −
pi · p1p1

p2
1

, i = 2, 3

are the same. Pi1 in general diverges for p2
1 = 0.

2. Conformal invariance allows only dimensionless Lorentz invariants constructed from the mo-
menta. Strong form of the conformal invariance does not allow dependence on the masses of the
throats. For time-like (space-like) p1 the dimensionless variable

c12 ≡
p11 · P21√
p2

11

√
P 2

21

= c13

describes the cosine (hyperbolic cosine) of the angle (hyperbolic angle) between p11 and P21.
The corresponding sine (hyperbolic sine) si,i+1 vanishes when p11 is parallel to the projection
of p2 (p3) in P (p1). Similar variables can be assigned to p2 and p3. Together with the three
analogous variables

ci,i =
pi1 · pi√
p2
i1

√
p2
i

measuring the hyperbolic angle between between pi1 and pi, one has 6 variables. p2
i1 and p2

i

can have both signs and also vanish and this might lead difficulties if one wants Gaussians and
analyticity.

3. The on mass shell property for throats allows to consider a milder form of conformal invariance
for which one has variables

C12 ≡
p11 · P21

m1m2
= C13 ,

where mi, i = 1, 2 denote that throat masses. This introduces a cutoff in P21 when p1 is
space-like. These variables have infinite values for massless throats so that massless throats
cannot appear as building bricks of the virtual particles. The assumption that on mass-shell
bosons involve massless wormhole throat would distinguish them from virtual bosons in a unique
manner.
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4. One can also identify dimensionless quantities formed from the loop momenta. Strong form of
conformal invariance allows only

dij =
pi · pj√
p2
i

√
p2
j

possible also for ordinary loops. These variables give hope about cutoff with respect to Lorentz
boost for pi in the rest system of pj but again the signs are problematic. The weaker form of
conformal invariance allows also the variables

Dij =
pi · pj
mimj

not plagued by the sign problems and giving hopes also about mass squared cutoff. Indeed, if on
mass shell throats are present they should take a key role in the physics of the virtual particles.

The following two simple examples give an idea about what might be involved.

1. Consider first a vertex factor which is a Gaussian of form exp(−
∑
ij S

2
ij) = exp(−2

∑
i(Si,i+1)2−∑

i S
2
i,i) suppressing the the momenta pi1 for which the projections in P (pi) are not parallel to

those of pj and also large boosts of pi1 in the rest system of pi. Massless throats would not
appear at all in internal lines. The additional 2-D integrals together with the correlation between
pk and pi1 do not probably smooth out the standard loop divergences in momentum squared and
hyperbolic angle. The replacement of Sij with sij together with analyticity leads to difficulties
since sij does not have a definite sign.

2. The exponential exp(−
∑
i 6=j D

2
ij) forces the decoupling of massless throats from virtual states,

is free of the sign difficulties, and allowes a stronger hyperbolic cutoff as well as mass scale
cutoff. The replacement of Dij with dij leads to the same problems as encountered in the first
example. The simple model for the hyperbolic cutoff discussed in [65] could allow a more refined
formulation in this framework. It is however important to realize that this kind of cutoffs look
rather adhoc for the generalization of supersymmetric action for fermions [32] . They might be
present in the radiatively generated bosonic action.

Could quantum classical correspondence fix the correct option?

Concerning the dynamics in the new degrees of freedom the above argument lead two options under
consideration. The first option assumes M2 gauge invariance and can be criticized as being somewhat
ad hoc unless one can find a convincing interpretation for the restriction of the momenta p1 and p2

to M2 ∩ P (p), where M2 denotes a sub-space of M4 defining the space of non-physical polarizations
and P (p) is the orthogonal complement of p = p1 + p2. For both options one can argue that the
decomposition p = p1 + p2 should have same space-time correlate.

1. Preferred extremals of Kähler action are characterized by a local choice of M2(x) ⊂M4 in such
a manner that the subspaces M2(x) integrate to a 2-D surface in M4. M2(x) has a physical
interpretation as the sub-space of non-physical polarizations. Number theoretical interpretation
is as a hyper-complex plane of complexified octonions. In the generalized Feynman diagram-
matics only the choice of M2(x) at the 2-D partonic 2-surfaces X2 identified as the ends the 3-D
light-like wormhole throats X3

l matters. For a given line one can also restrict the consideration
to single point x of X2 since fermion numbers is carried by a light-like curve along X3

l : the is an
integral over possible choices of course. The additional degrees of freedom would therefore have
a concrete interpretation in terms of space-time surfaces. The effective two-dimensionality states
that M -matrix depends only the partonic 2-surfaces and their 4-D tangent spaces containing
M2(x) at the ends of the lines of generalized Feynman diagrams.

2. The first option would mean a complete independence on M2(x) at partonic 2-surface implied
by the first option would mean actual 2-dimensionality instead of only effective one. This is not
quite in spirit of quantum TGD although it might make sense at QFT limit.
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3. For the second option preferred extremals would reflect in their properties the decomposition
p = p1 + p2 for the internal lines and the dependence of vertices on the decomposition could
correspond to the value of the vacuum functional for a given distribution of the planes M2(x).
The locality of the choice M2(x) would mean that p1 and p2 are not separately conserved during
the propagation along the internal line and physical picture suggests that the choice M2(x) is
constant for light-like 3-surfaces representing lines of the generalized Feynman diagrams.

Could the formulation of SUSY limit of TGD allow the new view about off mass shell
particles?

Could the proposed heuristic ideas about off mass shell particles and diagram-wise finiteness of the
perturbation theory, the suggested manner to fix the direction of the projections of p1 and p2 in P (p)
in terms of the preferred polarization plane M2 ⊂M4 characterizing a given line of Feynman diagram,
and the formulation of super-symmetric QFT limit of TGD [32] be consistent with each other?

1. There are good arguments that the generalized SUSY based on bosonic emergence and the
generalization of super field concept guarantees the cancelation of divergences associated with
particles and their super-partners. The new view about off mass shell particles encourages a
dream about the finiteness of the individual diagrams justifying the motivations for the primitive
model of [65] .

2. The description of bosons and their superpartners as wormhole throats requires at the fundamen-
tal level the introduction of new degrees of freedom associated with p = p1 − p2 decomposition.
On mass shell property is possible and would realize twistorial dreams. If one keeps the original
view about virtual fermions and their super-partners as single throated objects, there is no need
to describe virtual fermions as wormhole contacts.

3. Quantum classical correspondence suggests that the projections of p1 and p2 into P (p) lie in
the intersection M2 ∩ P (p), where M2 characterizes the line of the generalized Feynman di-
agram. If so, then the new degrees of freedom mean integral over the planes M2 labeled by
the points of s ∈ S2. If also virtual fermions correspond to wormhole contacts, BFF-vertices
would contain an amplitude f(α, s1, s2, s3) with si characterizing the lines. The parameters α
would code information about the momenta of virtual particles, about the masses of on mass
shell particles comprising the virtual particles, and also about the dynamics of Kähler action
involving exponent of Kähler function for the extremal in question. If virtual fermions are sin-
gle throated, one has f(α, s) with s characterizing the bosonic line. The generalization would
require a characterization of the form factor f(α, s1, s2, s3) or f(α, s) in principle predicted by
TGD proper but probably only modelable at QFT limit. The view about preferred extremals
allows the possibility that si is not conserved along line. If the values of si at the ends of the
line are not correlated, the integral over si gives a form factor F (α).

4. The propagators for the generalized chiral super-field describing fermions would not be affected,
and the effects of f would be only seen at the level of propagators and vertices for bosons and
their super-parterns. f could in principle guarantee the finiteness of individual contributions to
both fermionic and bosonic loops without the need for Wick rotation.

Trying to sum up

The proposed replacement of virtual particles as a convenient mathematical abstraction with some-
thing very real suggests that the black box of the loop integrals could be opened and one might even
construct concrete models for off mass shell particles using twistorial formulation. The conservative
approach would interpret the non-uniqueness of the decomposition of the loop momenta to on mass
shell momenta in terms of gauge invariance. A more radical approach would assign two additional
degrees of freedom to each line of generalized Feynman diagram and allow vertices to depend on the
decomposition. This would give even hopes about the smoothing out of the standard divergences.
As a matter fact, this idea was followed already in the chapter about bosonic emergence [65] , where
it was proposed that natural physical cutoffs on mass squared and hyperbolic angle characterizing
the energy of virtual particle could guarantee the finiteness of fermionic loops. The construction of
the super-symmetric QFT limit of TGD [32] however suggests that the cancelation of infinities takes
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place by super-symmetry even without cutoffs. One interpretation is that this cancelation justifies
the neglect of the physical cutoff as an excellent approximation. An interesting question is whether
the loop integrals could make sense even without Wick rotation.

6.5 QFT limit of TGD

The understanding of the QFT limit of TGD has been one of the long-longstanding challenges in
TGD. The considerations inspired by twistor approach to QFT led to the idea of bosonic emergence
meaning that Dirac action coupled to gauge bosons and other particles could define YM part of
the action as radiative corrections. This approach predicts the coupling constant evolution uniquely
provided one finds a principle fixing the mass cutoff and hyperbolic cutoff. Zero energy ontology
motivates the cutoffs and also leads to a set of conditions giving hopes of fixing hyperbolic cutoff
uniquely as a function of the p-adic mass scale. The requirement is that bosonic N > 2-vertices
defined by fermionic loops vanish for on mass-shell bosons by the defining property of vertex meaning
that it does not represent scattering amplitude for on mass shell particles. These condition generalize
also to the massive case and even to quantum TGD proper.

6.5.1 Twistors and QFT limit of TGD

Twistors - a notion discovered by Penrose [65] - have provided a fresh approach to the construction
of perturbative scattering amplitudes in Yang-Mills theories and in N = 4 supersymmetric Yang-
Mills theory. This approach was pioneered by Witten [82] . The latest step in the progress was
the proposal by Nima Arkani-Hamed and collaborators [59] that super Yang Mills and super gravity
amplitudes might be formulated in 8-D twistor space possessing real metric signature (4, 4). The
questions considered below are following.

1. Could twistor space could provide a natural realization of N = 4 super-conformal theory re-
quiring critical dimension D = 8 and signature metric (4, 4)? Could string like objects in TGD
sense be understood as strings in twistor space? More concretely, could one in some sense lift
quantum TGD from M4 ×CP2 to 8-D twistor space T so that one would have three equivalent
descriptions of quantum TGD.

2. Could one construct the preferred extremals of Kähler action in terms of twistors -may be by
mimicking the construction of hyper-quaternionic resp. co-hyper-quaternionic surfaces in M8

as surfaces having hyper-quaternionic tangent space resp. normal space at each point with the
additional property that one can assign to each point x a plane M2(x) ⊂ M4 as sub-space or
as sub-space defined by light-like tangent vector in M4. Could one mimic this construction by
assigning to each point of X4 regarded as a 4-surface in T a 4-D plane of twistor space satisfying
some conditions making possible the interpretation as a tangent plane and guaranteing the
existence of a map of X4 to a surface in M4×CP2. Could twistor formalism help to resolve the
integrability conditions involved?

3. Could one modify the notion of Feynman diagram by allowing only massless loop momenta so
that twistor formalism could be used in elegant manner to calculate loop integrals and whether
the resulting amplitudes are finite in TGD framework where only fermions are elementary par-
ticles? Could one modify Feynman diagrams to twistor diagrams by replacing momentum
eigenstates with light ray momentum eigenstates completely localized in transversal degrees
of freedom?

The arguments of [96] suggest some these questions might have affirmative answers.

Twistors and classical TGD

Consider first the twistorialization at the classical space-time level.

1. One can assign twistors to only 4-D Minkowski space (also to other than Lorentzian signature).
One of the challenges of the twistor program is how to define twistors in the case of a general
curved space-time. In TGD framework the structure of the imbedding space allows to circumvent
this problem.
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2. The lifting of classical TGD to twistor space level is a natural idea. Consider space-time surfaces
representable as graphs of maps M4 → CP2. At classical level the Hamilton-Jacobi structure [12]
required by the number theoretic compactification means dual slicings of the M4 projection of
the space-time surface X4 by stringy word sheets and partonic two-surfaces. Stringy slicing
allows to assign to each point of the projection of X4 two light-like tangent vectors U and V
parallel to light-like Hamilton-Jacobi coordinate curves. These vectors define components µ̃
and λ of a projective twistor, and twistor equation assigns to this pair a point m of M4. The
conjecture is that for preferred extremals of Kähler action this point corresponds to the M4

projection of the point in the natural M4 coordinates associated with the upper or lower tip of
causal diamond CD. If this conjecture is correct one can lift the M4 projection of the space-time
surface in CD × CP2 ⊂ M4 × CP2 to a surface in PT × CP2, where CP3 is projective twistor
space PT = CP3. Also induced spinor fields and induced gauge fields can be lifted to twistor
space.

3. If one can fix the scales of the tangent vectors U and V and fix the phase of spinor λ one
can consider also the lifting to 8-D twistor space T rather than 6-D projective twistor space
PT . Kind of symmetry breaking would be in question. The proposal for how to achieve this
relies on the notion of finite measurement resolution. The scale of V at partonic 2-surface
X2 ⊂ δCD×X3

l would naturally correlate with the energy of the massless particle assignable to
the light-like curve beginning from that point and thus fix the scale of V coordinate. Symplectic
triangulation discussed in [18] in turn allows to assign a phase factor to each strand of the number
theoretic braid as the Kähler magnetic flux associated with the triangle having the point at its
center. This allows to lift the stringy world sheets associated with number theoretic braids to
their twistor variants but not the entire space-time surface. String model in twistor space is
obtained in accordance with the fact that N = 4 super-conformal invariance is realized as a
string model in a target space with (4, 4) signature of metric. Note however that CP2 defines
additional degrees of freedom for the target space so that 12-D space is actually in question.

4. One can consider also a more general problem of identifying the counterparts for the preferred
extremals of Kähler action with arbitrary dimensions of M4 and CP2 projections in 10-D space
PT × CP2. The key idea is the reduction of field equations to holomorphy as in Penrose’s
twistor representation of solutions of positive and negative frequency parts of free fields in M4.
A very helpful observation is that CP2 as a sub-manifold of PT corresponds to the 2-D space of
null rays of the complexified Minkowski space M4

c . For the 5-D space N ⊂ PT of null twistors
this 2-D space contains 1-dimensional light ray in M4 so that N parametrizes the light-rays of
M4. The idea is to consider holomorphic surfaces in PT± × CP2 (± correlates with positive
and negative energy parts of zero energy state) having dimensions D = 6, 8, 10; restrict them
to N × CP2, select a sub-manifold of light-rays from N , and select from each light-ray subset
of points which can be discrete or portion of the light-ray in order to get a 4-D space-time
surface. If integrability conditions for the resulting distribution of light-like vectors U and V
can be satisfied (in other words they are gradients), a good candidate for a preferred extremal of
Kähler action is obtained. Note that this construction raises light-rays to a role of fundamental
geometric object.

Twistors and Feynman diagrams

The recent successes of twistor concept in the understanding of 4-D gauge theories and N = 4 SYM
motivate the question of how twistorialization could help to understand construction of M -matrix in
terms of Feynman diagrammatics or its generalization.

1. One of the basic problems of twistor program is how to treat massive particles. Massive four-
momentum can be described in terms of two twistors but their choice is uniquely only modulo
SO(3) rotation. This is ugly and one can consider several cures to the situation.

(a) Number theoretic compactification and hierarchy of Planck constants leading to a general-
ization of the notion of imbedding space assign to each sector of configuration space defined
by a particular CD a unique plane M2 ⊂ M4 defining quantization axes. The line con-
necting the tips of the CD selects also unique rest frame (time axis). The representation of
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a light-like four-momentum as a sum of four-momentum in this plane and second light-like
momentum is unique and same is true for the spinors λ apart from the phase factors (the
spinor associated with M2 corresponds to spin up or spin down eigen state).

(b) The tangent vectors of braid strands define light-like vectors in H and their M4 projection
is time-like vector allowing a representation as a combination of U and V . Could also
massive momenta be represented as unique combinations of U and V ?

(c) One can consider also the possibility to represent massive particles as bound states of
massless particles.

It will be found that one can lift ordinary Feynman diagrams to spinor diagrams and integrations
over loop momenta correspond to integrations over the spinors characterizing the momentum.

2. One assign to ordinary momentum eigen states spinor λ but it is not clear how to identify the
spinor µ̃ needed for a twistor.

(a) Could one assign µ̃ to spin polarization or perhaps to the spinor defined by the light-like M2

part of the massive momentum? Or could λ and µ̃ correspond to the vectors proportional
to V and U needed to represent massive momentum?

(b) Or is something more profound needed? The notion of light-ray is central for the proposed
construction of preferred extremals. Should momentum eigen states be replaced with light
ray momentum eigen states with a complete localization in degrees of freedom transversal
to light-like momentum? This concept is favored both by the notion of number theoretic
braid and by the massless extremals (MEs) representing ”topological light rays” as analogs
of laser beams and serving as space-time correlates for photons represented as wormhole
contacts connecting two parallel MEs. The transversal position of the light ray would bring
in µ̃. This would require a modification of the perturbation theory and the introduction
of the ray analog of Feynman propagator. This generalization would be M4 counterpart
for the highly successful twistor diagrammatics relying on twistor Fourier transform but
making sense only for the (2,2) signature of Minkowski space.

3. In perturbation theory one can also consider the crazy idea of restricting the loop momenta to
light-like momenta so that the auxiliary M2 twistors would not be needed at all. This idea
failed but led to a first precise proposal for how Feynman diagrammatics producing unitarity
and UV finite S-matrix could emerge from TGD, where only fermions are elementary particles
and all coupling constants are in principle predictions of the theory. Emergence would mean
that the fundamental action is just the Dirac action with gauge boson couplings and containing
no bosonic kinetic term, that the perturbative functional integral over the fermion fields in the
construction of the effective action induces bosonic kinetic term radiatively, and that a further
perturbative functional integral over the gauge boson fields gives an effective action in which
all bosonic n-point functions have emerged from the fermionic dynamics. Physically this would
mean that bosons interact only when the wormhole contact representing boson and carrying
fermion and antifermion quantum numbers at the opposite light-like wormhole throats decays
to a pair of fermion and anti-fermion represented by CP2 type extremals with single wormhole
throat only. Even fermionic propagators would emerge radiatively from the modified Dirac
operator in more fundamental description [23] . What is remarkable is that p-adic length scale
hypothesis and the notion of finite measurement resolution lead to a precise proposal how UV
divergences are tamed in a description taking into account the finite measurement resolution.
The model of QFT limit based on these is discussed in separate chapter [65] since the idea itself
only marginally relates to twistors.

Massive particles and the generalization of twistors to 8-D case

The basic problem of the twistor approach is that one cannot represent massive momenta in terms of
twistors in elegant manner. This problem might be circumvented.

1. In quantum TGD massive states in M4 can be regarded as massless states in M8 and CP2 (recall
M8 −H duality), and one can map any massive M4 momentum to a light-like M8 momentum
and hope that this association could be made in a unique manner.
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2. One should assign to a massless 8-momentum an 8-dimensional spinor of fixed chirality. The
spinor assigned with the light-like four-momentum is not unique without additional conditions.
The existence of covariantly constant right-handed neutrino in CP2 degrees generating the super-
conformal symmetries could allow to eliminate the non-uniqueness. 8-dimensional twistor in M8

would be a pair of this kind of spinors fixing the momentum of massless particle and the point
through which the corresponding light-geodesic goes through: the set of these points forms 8-D
light-cone and one can assign to each point a spinor. In M4 × CP2 definitions makes also in
the case of M4 × CP2 and twistor space would also now be a lifting of the space of light-like
geodesics.

3. The possibility to interpret M8 as hyperoctonionic space suggests also the possibility to define
the 8-D counterparts of sigma matrices to hyperoctonions to obtain a representation of sigma
matrix algebra which is not a matrix representation. The mapping of gamma matrices to this
representation allows to define a notion of hyper-quaternionicity in terms of the modified gamma
matrices both in M8 and H. In this case however hyper-quaternionic 4-plane associated with a
given point of X4 is not tangent plane in the general case.

To sum up, perhaps the most important outcome of the interaction of twistor approach with TGD
is a proposal for precise Feynman rules allowing to construct unitary and UV finite S-matrix discussed
in [65] . This realizes a 31 year old dream to a surprisingly high degree. Everything would emerge
radiatively from the modified Dirac operator and boson-fermion vertices dictated by the charge matrix
of the boson coding boson as a fermion-antifermion bilinear.

6.5.2 Bosonic emergence and QFT limit of TGD

In TGD framework S-matrix must be constructed without the help of path integral. In TGD only
fermions appear as fundamental particles. This suggests a bootstrap program in which one starts
from Dirac action for fermions with couplings to gauge potentials and generates the remaining n-
point functions for bosons as radiative corrections for fermionic action with effective action. The
success of twistorial unitary cut method in massless gauge theories suggests that its basic results such
as recursive generation of tree diagrams might be given a status of axioms. Also massive particles
should be treated in practical approach and this could be achieved by generalizing the twistors to 8-D
twistors.

1. In [20, 23] I have discussed how both field theoretic and stringy variants of the fermion propagator
could arise via radiative self energy insertions described by a fundamental 2-vertex giving a
contribution proportional to pkγk and leading a propagator containing the counterpart as a
mass term expressed in terms of CP2 gamma matrices so that massive particles can have fixed
M4 × CP2 chirality.

2. In TGD bosons are identified as bound states of fermion and antifermion at opposite wormhole
throats so that bosonic n-vertex would correspond to the decay of bosons to fermion pairs in
the loop. Purely bosonic gauge boson couplings would be generated radiatively from triangle
and box diagrams involving only fermion-boson couplings. Also bosonic propagator would be
generated as a self-energy loop: bosons would propagate by decaying to fermion-antifermion
pair and then fusing back to the boson. Gauge theory dynamics would be emergent and bosonic
couplings would have form factors with IR and UV behaviors allowing finiteness of the loops
constructed from them.

3. The problem of this approach are UV divergences present unless one introduces cutoff in mass
squared and hyperbolic angle. This kind of cutoffs are natural in zero energy ontology and would
state that the radiative corrections for given causal diamond (CD) correspond to CDs in shorter
scales and contained with the CD. p-Adic length scale hypothesis and the fractal structure of
CDs suggest that mass scales come as half octaves fundamental scale. CP2 mass scale defines
a natural upper cutoff for mass scale and hyperbolic cutoff is expected to depend on the p-adic
mass scale.

The considerations of [65] lead to the conclusion that bosonic propagators could emerge from
fermionic ones in the quantum field theory type description. This approach predicts all gauge couplings
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and assuming a geometrically very natural hyperbolic UV cutoff motivated by zero energy ontology
one can understand the evolution of standard model gauge couplings and reproduce correctly the
values of fine structure constant at electron and intermediate boson length scales. Also asymptotic
freedom follows as a basic prediction. The UV cutoff for the hyperbolic angle as a function of p-adic
length scale is the ad hoc element of the model in its recent form, and a quantitative model for how
this function could be fixed by quantum criticality is formulated and studied.

These considerations and numerical calculations lead to a general vision about how real and p-
adic variants of TGD relate to each other and how p-adic fractalization takes place. As in case
of twistorialization Cutkosky rules allowing unitarization of the tree amplitudes in terms of TT †

contribution involving only light-like momenta seems to be the only working option and requires that
TT † makes sense p-adically. The vanishing of the fermionic loops defining bosonic vertices for the
incoming massless momenta emerges as a consistency condition suggested also by quantum criticality
and by the fact that only BFF vertex is fundamental vertex if bosonic emergence is accepted. The
vanishing of on mass shell N > 3 bosonic vertices gives an infinite number of conditions on the
hyperbolic cutoff as function of the integer k labeling p-adic length scale at the limit when bosons
are massless and IR cutoff for the loop mass scale is taken to zero. It is not yet clear whether
dynamical symmetries, in particular super-conformal symmetries, are involved with the realization of
the vanishing conditions or whether hyperbolic cutoff is all that is needed.

6.5.3 Comparison of TGD and stringy views about super-conformal sym-
metries

The best manner to represent TGD based view about conformal symmetries is by comparison with
the conformal symmetries of super string models.

Basic differences between the realization of super conformal symmetries in TGD and in
super-string models

The realization super-symmetries in TGD framework differs from that in string models in several
fundamental aspects.

1. In TGD framework super-symmetry generators acting as configuration space gamma matrices
carry either lepton or quark number. Majorana condition required by the hermiticity of super
generators which is crucial for super string models would be in conflict with the conservation of
baryon and lepton numbers and is avoided. This is made possible by the realization of bosonic
generators represented as Hamiltonians of symplectic transformations rather than vector fields
generating them. This kind of representation applies also in Kac-Moody sector since the local
transversal isometries localized in X3

l and respecting light-likeness condition can be regarded
as X2 local symplectic transformations, whose Hamiltonians generate also isometries. The
fermionic representations of super-symplectic and super Kac-Moody generators can be identified
as Noether charges in standard manner.

2. Super-symmetry generators can be identified as configuration space gamma matrices carrying
quark and lepton numbers and the notion of super-space is not needed at all. Therefore no
super-variant of geometry is needed. The distinction between Ramond and N-S representations
important for N = 1 super-conformal symmetry and allowing only ground state weight 0 an
1/2 disappears. Indeed, for N = 2 super-conformal symmetry it is already possible to generate
spectral flow transforming these Ramond and N-S representations to each other (Gn is not
Hermitian anymore). This means that the interpretation of λ2

i (λi is generalized eigenvalue of
DK(X2)) as ground state conformal weight does not lead to difficulties.

3. Kac-Moody and symplectic algebras generate larger algebra obtained by making symplectic
algebra X2 local. This realization of super symmetries is what distinguishes between TGD and
super string models and leads to a totally different physical interpretation of super-conformal
symmetries. What makes spinor field mode a generator of gauge super-symmetry is that is c-
number and not an eigenmode of DK(X2) and thus represents non-dynamical degrees of freedom.
If the number of eigen modes of DK(X2) is indeed finite means that most of spinor field modes
represent super gauge degrees of freedom. One must be here somewhat cautious since bound
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state in the Coulomb potential associated with electric part of induced electro-weak gauge field
might give rise to an infinite number of bound states which eigenvalues converging to a fixed
eigenvalue (as in the case of hydrogen atom).

4. The finite number of spinor modes means that the representations of super-conformal algebras
reduces to finite-dimensional ones in TGD framework and the notion of number theoretic braid
indeed implies this. The physical interpretation is in terms of finite measurement resolution.

Basic super-conformal symmetries

The identification of explicit representations of super conformal algebras was for a long time plagued
by the lack of appropriate formalism. The modified Dirac operator DK associated with Kähler action
resolves this problem if one accepts the implications of number theoretic compactification supported by
what is known about preferred extremals of Kähler action and one can identify the charges associated
with symplectic and Kac-Moody algebra as Noether charges. Fermionic generators can in turn be
identified from the condition that they anticommute toX2 local Hamiltonians of corresponding bosonic
transformations. In case of Super Virasoro algebra Sugaware construction allows to construct super
generators G.

1. Covariantly constant right handed neutrino is the fundamental generator of dynamical super
conformal symmetries and appears in both leptonic and quark-like realizations of gamma matri-
ces. Γ matrices have also Super Kac-Moody counterparts and reduce in special case to symplectic
ones. Also super currents whose anti-commutators give products of corresponding Hamiltoni-
ans can be defined so that both ordinary product and Poisson bracket give rise to quark and
lepton like realizations of super-symmetries. Besides this there are also electric and magnetic
representations of the gamma matrices.

2. The zero modes of DK(X2) which do not depend on the light-like radial coordinate of X3
l de-

fine super conformal symmetries for which any c-number spinor field generates super conformal
symmetry. These symmetries are pure gauge symmetries but also them can be parameterized
by Hamiltonians and by functions depending only on the coordinates of the transverse section
X2 so that one obtains also now both function algebra and symplectic algebra localized with
respect to X2. Similar picture applies in both super-symplectic and super Kac-Moody sector.
In particular, one can deduce canonical expressions for the super currents associated with these
super symmetries. Since all charge states are possible for the generators of these super symme-
tries, these super symmetries naturally correspond to those assignable to electro-weak degrees
of freedom.

3. The notion of X2 local super-symmetry makes sense if the choice of coordinates x for X2

is specified by the inherent properties of X2 so that same coordinates x apply for all surfaces
obtained as deformations of X2. The regions, where induced Kähler form is non-vanishing define
good candidates for coordinate patches. The Hamilton-Jacobi coordinates associated with the
decomposition of M4 are a natural choice. Also geodesic coordinates can be considered. The
redundancy related to rotations of coordinate axis around origin can be reduced by choosing
second axis so that it connects the origin to nearest point of the number theoretic braid.

4. The diffeomorphisms of light-like coordinate of δM4
± and X3

l playing the role of conformal
transformations. One can construct fermionic representations of as Noether charges associated
with modified Dirac action. The problem is however that that super-generators cannot be derived
in this manner so that these transformations cannot be regarded as symplectic transformations.
The manner to circumvent the difficulty is to construct fermionic super charges ΓA as gamma
matrices for both super symplectic and super Kac-Moody algebras in terms of generators jAkΓk
and corresponding Kac-Moody algebra elements TA as fermionic super charges. From these
operators super generators G can be constructed by the standard Sugawara construction allowing
to interpret operators G = TAΓA as Dirac operators at the level of configuration space. By
coset construction the actions of super-symplectic and super Kac-Moody Dirac operators are
identical. Internal consistency requires that the Virasoro generators obtained as anticommutator
L = {G,G†} are equal to the Virasoro generators derived as fermionic Noether charges.
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Finite measurement resolution and cutoff in the spectrum of conformal weights

The basic properties of Kähler action imply that the number generalized eigenvalues λi of DK(X2)
is finite. The interpretation is that the notion of finite measurement resolution is coded by Kähler
action to space-time dynamics. This has also implications for the representations of super-conformal
algebras.

1. The fermionic representations of various super-algebras involve only finite number of oscillator
operators. Hence some kind of cutoff in the number of states reflecting the finiteness of the
measurement resolution is unavoidable. A cutoff reduce integers as labels of the generators of
super-conformal algebras to a finite number of integers. Finite field G(p, 1) for some prime p
would be a natural candidate. Since p-adic integers modulo p are in question the cutoff could
relate closely to effective p-adicity and p-adic length scale-hypothesis.

2. The interpretation of the eigenvalues of the modified Dirac operator as ground state confor-
mal weights raises the question how to represent states with conformal weights n + λ2

i , n > 0.
The notion of number theoretic braid allows to circumvent the difficulty. Since canonical anti-
commutation relations fail, one must replace the integral representations of super-conformal
generators with discrete sums over the points of number theoretic braid, the resulting represen-
tations of super-conformal algebras must reduce to representation of finite-dimensional algebras.
The cutoff on conformal weight must result from the fact that the higher Virasoro generators are
expressible in terms of lower ones. The cutoff is not a problem since n < 3 cutoff for conformal
weights gives an excellent accuracy in p-adic mass calculations. A not-very-educated guess but
the only one that one can imagine is that for p ' 2k, nmax = k defines the cutoff on allowed
conformal weights.

What are the counter parts of stringy conformal fields in TGD framework?

The experience with string models would suggest the conformal symmetries associated with the com-
plex coordinates of X2 as a candidate for conformal super-symmetries. One can imagine two coun-
terparts of the stringy coordinate z in TGD framework.

1. Super-symplectic and super Kac-Moody symmetries are local with respect to X2 in the sense
that the coefficients of generators depend on the invariant J = εαβJαβ

√
g2 rather than being

completely free [21] . Thus the real variable J replaces complex coordinate and effective 1-
dimensionality holds true also now but in different sense than for conformal field theories.

2. The slicing of X2 by string world sheets Y 2 and partonic 2-surfaces X2 implied by number theo-
retical compactification implies string-parton duality and involves the super conformal fermionic
gauge symmetries associated with the coordinates u and w in the dual dimensional reductions
to stringy and partonic dynamics. These coordinates define the natural analogs of stringy coor-
dinate.

3. An further identification for TGD parts of conformal fields is inspired by M8−H duality. Con-
formal fields would be fields in configuration space. The counterpart of z coordinate could be
the hyper-octonionic M8 coordinate m appearing as argument in the Laurent series of config-
uration space Clifford algebra elements. m would characterize the position of the tip of CD
and the fractal hierarchy of CDs within CDs would give a hierarchy of Clifford algebras and
thus inclusions of hyper-finite factors of type II1. Reduction to hyper-quaternionic field -that is
field in M4 center of mass degrees of freedom- would be needed to obtained associativity. The
arguments m at various level might correspond to arguments of N-point function in quantum
field theory.

Generalized coset representation

X2 local super-symplectic algebra as super Kac-Moody algebra as sub-algebra. Since X2 locality
corresponds to a full 2-D gauge invariance, one can conclude that SKM is in well defined sense sub-
algebra of super-symplectic algebra so that generalized coset construction makes sense and generalizes
Equivalence Principle in the sense that not only four-momenta but all analogous quantum numbers
associated with SKM and SS algebras are identical.
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1. In this framework the ground state conformal weights associated with both super-symplectic
and super Kac-Moody algebras can be identified as squares of the eigenvalues λi of DK(X2).
This identification together with p-adic mass thermodynamics predicts that λ2

i gives to mass
squared a contribution analogous to the square of Higgs vacuum expectation. This identification
would resolve the long-standing problem of identifying the values of these ground state conformal
weights for super-conformal algebras and give a direct connection with Higgs mechanism.

2. The identification of SKM as a sub-algebra of super-symplectic algebra becomes more convincing
if the light-like coordinate r allows lifting to a light-like coordinate of H. This is achieved if r
is identified as coordinate associated with a light-like curve whose tangent at point x ∈ X3

l is
light-like vector in M2(x) ⊂ T (X4(X3). With this interpretation of SKM algebra as sub-algebra
of super-symplectic algebra becomes natural.

3. The existence of a lifting of SS and SKM algebras to entire H would solve the problems. The
lifting problem is obviously non-trivial only inM4 degrees of freedom. Suppose that the existence
of an integrable distribution of planes M2(x) and their orthogonal complements E2(x) belonging
to the tangent space of M4 projection PM4(X4(X3)) characterizes the preferred extremals with
Minkowskian signature of induced metric. In this case the lifting of the super-symplectic and
super Kac-Moody algebras to entire H is possible. The local degrees of freedom contributing
to the configuration space metric would belong to the integrable distribution of orthogonal
complements E2(x) of M2(x) having physical interpretation as planes of physical polarizations.

6.6 Weak form electric-magnetic duality and its implications

The notion of electric-magnetic duality [8] was proposed first by Olive and Montonen and is central
in N = 4 supersymmetric gauge theories. It states that magnetic monopoles and ordinary particles
are two different phases of theory and that the description in terms of monopoles can be applied
at the limit when the running gauge coupling constant becomes very large and perturbation theory
fails to converge. The notion of electric-magnetic self-duality is more natural since for CP2 geometry
Kähler form is self-dual and Kähler magnetic monopoles are also Kähler electric monopoles and
Kähler coupling strength is by quantum criticality renormalization group invariant rather than running
coupling constant. The notion of electric-magnetic (self-)duality emerged already two decades ago
in the attempts to formulate the Kähler geometric of world of classical worlds. Quite recently a
considerable step of progress took place in the understanding of this notion [21] . What seems to be
essential is that one adopts a weaker form of the self-duality applying at partonic 2-surfaces. What
this means will be discussed in the sequel.

Every new idea must be of course taken with a grain of salt but the good sign is that this concept
leads to precise predictions. The point is that elementary particles do not generate monopole fields in
macroscopic length scales: at least when one considers visible matter. The first question is whether
elementary particles could have vanishing magnetic charges: this turns out to be impossible. The next
question is how the screening of the magnetic charges could take place and leads to an identification
of the physical particles as string like objects identified as pairs magnetic charged wormhole throats
connected by magnetic flux tubes.

1. The first implication is a new view about electro-weak massivation reducing it to weak confine-
ment in TGD framework. The second end of the string contains particle having electroweak
isospin neutralizing that of elementary fermion and the size scale of the string is electro-weak
scale would be in question. Hence the screening of electro-weak force takes place via weak
confinement realized in terms of magnetic confinement.

2. This picture generalizes to the case of color confinement. Also quarks correspond to pairs of
magnetic monopoles but the charges need not vanish now. Rather, valence quarks would be
connected by flux tubes of length of order hadron size such that magnetic charges sum up to
zero. For instance, for baryonic valence quarks these charges could be (2,−1,−1) and could be
proportional to color hyper charge.

3. The highly non-trivial prediction making more precise the earlier stringy vision is that elementary
particles are string like objects in electro-weak scale: this should become manifest at LHC
energies.
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4. The weak form electric-magnetic duality together with Beltrami flow property of Kähler leads to
the reduction of Kähler action to Chern-Simons action so that TGD reduces to almost topological
QFT and that Kähler function is explicitly calculable. This has enormous impact concerning
practical calculability of the theory.

5. One ends up also to a general solution ansatz for field equations from the condition that the
theory reduces to almost topological QFT. The solution ansatz is inspired by the idea that all
isometry currents are proportional to Kähler current which is integrable in the sense that the flow
parameter associated with its flow lines defines a global coordinate. The proposed solution ansatz
would describe a hydrodynamical flow with the property that isometry charges are conserved
along the flow lines (Beltrami flow). A general ansatz satisfying the integrability conditions
is found. The solution ansatz applies also to the extremals of Chern-Simons action and and
to the conserved currents associated with the modified Dirac equation defined as contractions
of the modified gamma matrices between the solutions of the modified Dirac equation. The
strongest form of the solution ansatz states that various classical and quantum currents flow
along flow lines of the Beltrami flow defined by Kähler current (Kähler magnetic field associated
with Chern-Simons action). Intuitively this picture is attractive. A more general ansatz would
allow several Beltrami flows meaning multi-hydrodynamics. The integrability conditions boil
down to two scalar functions: the first one satisfies massless d’Alembert equation in the induced
metric and the the gradients of the scalar functions are orthogonal. The interpretation in terms
of momentum and polarization directions is natural.

6. The general solution ansatz works for induced Kähler Dirac equation and Chern-Simons Dirac
equation and reduces them to ordinary differential equations along flow lines. The induced spinor
fields are simply constant along flow lines of indued spinor field for Dirac equation in suitable
gauge. Also the generalized eigen modes of the modified Chern-Simons Dirac operator can be
deduced explicitly if the throats and the ends of space-time surface at the boundaries of CD are
extremals of Chern-Simons action. Chern-Simons Dirac equation reduces to ordinary differential
equations along flow lines and one can deduce the general form of the spectrum and the explicit
representation of the Dirac determinant in terms of geometric quantities characterizing the 3-
surface (eigenvalues are inversely proportional to the lengths of strands of the flow lines in the
effective metric defined by the modified gamma matrices).

6.6.1 Could a weak form of electric-magnetic duality hold true?

Holography means that the initial data at the partonic 2-surfaces should fix the configuration space
metric. A weak form of this condition allows only the partonic 2-surfaces defined by the wormhole
throats at which the signature of the induced metric changes. A stronger condition allows all partonic
2-surfaces in the slicing of space-time sheet to partonic 2-surfaces and string world sheets. Number
theoretical vision suggests that hyper-quaternionicity resp. co-hyperquaternionicity constraint could
be enough to fix the initial values of time derivatives of the imbedding space coordinates in the space-
time regions with Minkowskian resp. Euclidian signature of the induced metric. This is a condition
on modified gamma matrices and hyper-quaternionicity states that they span a hyper-quaternionic
sub-space.

Definition of the weak form of electric-magnetic duality

One can also consider alternative conditions possibly equivalent with this condition. The argument
goes as follows.

1. The expression of the matrix elements of the metric and Kähler form of WCW in terms of
the Kähler fluxes weighted by Hamiltonians of δM4

± at the partonic 2-surface X2 looks very
attractive. These expressions however carry no information about the 4-D tangent space of the
partonic 2-surfaces so that the theory would reduce to a genuinely 2-dimensional theory, which
cannot hold true. One would like to code to the WCW metric also information about the electric
part of the induced Kähler form assignable to the complement of the tangent space of X2 ⊂ X4.

2. Electric-magnetic duality of the theory looks a highly attractive symmetry. The trivial manner
to get electric magnetic duality at the level of the full theory would be via the identification of
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the flux Hamiltonians as sums of of the magnetic and electric fluxes. The presence of the induced
metric is however troublesome since the presence of the induced metric means that the simple
transformation properties of flux Hamiltonians under symplectic transformations -in particular
color rotations- are lost.

3. A less trivial formulation of electric-magnetic duality would be as an initial condition which
eliminates the induced metric from the electric flux. In the Euclidian version of 4-D YM theory
this duality allows to solve field equations exactly in terms of instantons. This approach involves
also quaternions. These arguments suggest that the duality in some form might work. The full
electric magnetic duality is certainly too strong and implies that space-time surface at the
partonic 2-surface corresponds to piece of CP2 type vacuum extremal and can hold only in the
deep interior of the region with Euclidian signature. In the region surrounding wormhole throat
at both sides the condition must be replaced with a weaker condition.

4. To formulate a weaker form of the condition let us introduce coordinates (x0, x3, x1, x2) such
(x1, x2) define coordinates for the partonic 2-surface and (x0, x3) define coordinates labeling
partonic 2-surfaces in the slicing of the space-time surface by partonic 2-surfaces and string
world sheets making sense in the regions of space-time sheet with Minkowskian signature. The
assumption about the slicing allows to preserve general coordinate invariance. The weakest
condition is that the generalized Kähler electric fluxes are apart from constant proportional to
Kähler magnetic fluxes. This requires the condition

J03√g4 = KJ12 . (6.6.1)

A more general form of this duality is suggested by the considerations of [41] reducing the hierar-
chy of Planck constants to basic quantum TGD and also reducing Kähler function for preferred
extremals to Chern-Simons terms [2] at the boundaries of CD and at light-like wormhole throats.
This form is following

Jnβ
√
g4 = Kε× εnβγδJγδ

√
g4 . (6.6.2)

Here the index n refers to a normal coordinate for the space-like 3-surface at either boundary of
CD or for light-like wormhole throat. ε is a sign factor which is opposite for the two ends of CD.
It could be also opposite of opposite at the opposite sides of the wormhole throat. Note that the
dependence on induced metric disappears at the right hand side and this condition eliminates
the potentials singularity due to the reduction of the rank of the induced metric at wormhole
throat.

5. Information about the tangent space of the space-time surface can be coded to the configuration
space metric with loosing the nice transformation properties of the magnetic flux Hamiltonians
if Kähler electric fluxes or sum of magnetic flux and electric flux satisfying this condition are
used and K is symplectic invariant. Using the sum

Je + Jm = (1 +K)J , (6.6.3)

where J can denotes the Kähler magnetic flux, makes it possible to have a non-trivial configu-
ration space metric even for K = 0, which could correspond to the ends of a cosmic string like
solution carrying only Kähler magnetic fields. This condition suggests that it can depend only
on Kähler magnetic flux and other symplectic invariants. Whether local symplectic coordinate
invariants are possible at all is far from obvious, If the slicing itself is symplectic invariant then
K could be a non-constant function of X2 depending on string world sheet coordinates. The
light-like radial coordinate of the light-cone boundary indeed defines a symplectically invariant
slicing and this slicing could be shifted along the time axis defined by the tips of CD.
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Electric-magnetic duality physically

What could the weak duality condition mean physically? For instance, what constraints are obtained
if one assumes that the quantization of electro-weak charges reduces to this condition at classical
level?

1. The first thing to notice is that the flux of J over the partonic 2-surface is analogous to magnetic
flux

Qm =
e

~

∮
BdS = n .

n is non-vanishing only if the surface is homologically non-trivial and gives the homology charge
of the partonic 2-surface.

2. The expressions of classical electromagnetic and Z0 fields in terms of Kähler form [5] , [5] read
as

γ =
eFem
~

= 3J − sin2(θW )R03 ,

Z0 =
gZFZ
~

= 2R03 . (6.6.4)

Here R03 is one of the components of the curvature tensor in vielbein representation and Fem
and FZ correspond to the standard field tensors. From this expression one can deduce

J =
e

3~
Fem + sin2(θW )

gZ
6~
FZ . (6.6.5)

3. The weak duality condition when integrated over X2 implies

e2

3~
Qem +

g2
Zp

6
QZ,V = K

∮
J = Kn ,

QZ,V =
I3
V

2
−Qem , p = sin2(θW ) . (6.6.6)

Here the vectorial part of the Z0 charge rather than as full Z0 charge QZ = I3
L + sin2(θW )Qem

appears. The reason is that only the vectorial isospin is same for left and right handed compo-
nents of fermion which are in general mixed for the massive states.

The coefficients are dimensionless and expressible in terms of the gauge coupling strengths and
using ~ = r~0 one can write

αemQem + p
αZ
2
QZ,V =

3

4π
× rnK ,

αem =
e2

4π~0
, αZ =

g2
Z

4π~0
=

αem
p(1− p)

. (6.6.7)

4. There is a great temptation to assume that the values of Qem and QZ correspond to their
quantized values and therefore depend on the quantum state assigned to the partonic 2-surface.
The linear coupling of the modified Dirac operator to conserved charges implies correlation
between the geometry of space-time sheet and quantum numbers assigned to the partonic 2-
surface. The assumption of standard quantized values for Qem and QZ would be also seen as
the identification of the fine structure constants αem and αZ . This however requires weak isospin
invariance.
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The value of K from classical quantization of Kähler electric charge

The value of K can be deduced by requiring classical quantization of Kähler electric charge.

1. The condition that the flux of F 03 = (~/gK)J03 defining the counterpart of Kähler electric field
equals to the Kähler charge gK would give the condition K = g2

K/~, where gK is Kähler cou-
pling constant which should invariant under coupling constant evolution by quantum criticality.
Within experimental uncertainties one has αK = g2

K/4π~0 = αem ' 1/137, where αem is finite
structure constant in electron length scale and ~0 is the standard value of Planck constant.

2. The quantization of Planck constants makes the condition highly non-trivial. The most general
quantization of r is as rationals but there are good arguments favoring the quantization as
integers corresponding to the allowance of only singular coverings of CD andn CP2. The point
is that in this case a given value of Planck constant corresponds to a finite number pages of
the ”Big Book”. The quantization of the Planck constant implies a further quantization of K
and would suggest that K scales as 1/r unless the spectrum of values of Qem and QZ allowed
by the quantization condition scales as r. This is quite possible and the interpretation would
be that each of the r sheets of the covering carries (possibly same) elementary charge. Kind
of discrete variant of a full Fermi sphere would be in question. The interpretation in terms of
anyonic phases [66] supports this interpretation.

3. The identification of J as a counterpart of eB/~ means that Kähler action and thus also Kähler
function is proportional to 1/αK and therefore to ~. This implies that for large values of ~
Kähler coupling strength g2

K/4π becomes very small and large fluctuations are suppressed in
the functional integral. The basic motivation for introducing the hierarchy of Planck constants
was indeed that the scaling α→ α/r allows to achieve the convergence of perturbation theory:
Nature itself would solve the problems of the theoretician. This of course does not mean that
the physical states would remain as such and the replacement of single particles with anyonic
states in order to satisfy the condition for K would realize this concretely.

4. The condition K = g2
K/~ implies that the Kähler magnetic charge is always accompanied by

Kähler electric charge. A more general condition would read as

K = n× g2
K

~
, n ∈ Z . (6.6.8)

This would apply in the case of cosmic strings and would allow vanishing Kähler charge possible
when the partonic 2-surface has opposite fermion and antifermion numbers (for both leptons and
quarks) so that Kähler electric charge should vanish. For instance, for neutrinos the vanishing
of electric charge strongly suggests n = 0 besides the condition that abelian Z0 flux contributing
to em charge vanishes.

It took a year to realize that this value of K is natural at the Minkowskian side of the wormhole
throat. At the Euclidian side much more natural condition is

K =
1

hbar
. (6.6.9)

In fact, the self-duality of CP2 Kähler form favours this boundary condition at the Euclidian side of
the wormhole throat. Also the fact that one cannot distinguish between electric and magnetic charges
in Euclidian region since all charges are magnetic can be used to argue in favor of this form. The
same constraint arises from the condition that the action for CP2 type vacuum extremal has the value
required by the argument leading to a prediction for gravitational constant in terms of the square of
CP2 radius and αK the effective replacement g2

K → 1 would spoil the argument.
The boundary condition JE = JB for the electric and magnetic parts of Kählwer form at the

Euclidian side of the wormhole throat inspires the question whether all Euclidian regions could be
self-dual so that the density of Kähler action would be just the instanton density. Self-duality follows if
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the deformation of the metric induced by the deformation of the canonically imbedded CP2 is such that
in CP2 coordinates for the Euclidian region the tensor (gαβgµν −gανgµβ)/

√
g remains invariant. This

is certainly the case for CP2 type vacuum extremals since by the light-likeness of M4 projection the
metric remains invariant. Also conformal scalings of the induced metric would satisfy this condition.
Conformal scaling is not consistent with the degeneracy of the 4-metric at the wormhole throat. Full
self-duality is indeed an un-necessarily strong condition.

Reduction of the quantization of Kähler electric charge to that of electromagnetic charge

The best manner to learn more is to challenge the form of the weak electric-magnetic duality based
on the induced Kähler form.

1. Physically it would seem more sensible to pose the duality on electromagnetic charge rather
than Kähler charge. This would replace induced Kähler form with electromagnetic field, which
is a linear combination of induced K”ahler field and classical Z0 field

γ = 3J − sin2θWR03 ,

Z0 = 2R03 . (6.6.10)

Here Z0 = 2R03 is the appropriate component of CP2 curvature form [5]. For a vanishing
Weinberg angle the condition reduces to that for Kähler form.

2. For the Euclidian space-time regions having interpretation as lines of generalized Feynman dia-
grams Weinberg angle should be non-vanishing. In Minkowskian regions Weinberg angle could
however vanish. If so, the condition guaranteing that electromagnetic charge of the partonic
2-surfaces equals to the above condition stating that the em charge assignable to the fermion
content of the partonic 2-surfaces reduces to the classical Kähler electric flux at the Minkowskian
side of the wormhole throat. One can argue that Weinberg angle must increase smoothly from a
vanishing value at both sides of wormhole throat to its value in the deep interior of the Euclidian
region.

3. The vanishing of the Weinberg angle in Minkowskian regions conforms with the physical intu-
ition. Above elementary particle length scales one sees only the classical electric field reducing
to the induced Kähler form and classical Z0 fields and color gauge fields are effectively ab-
sent. Only in phases with a large value of Planck constant classical Z0 field and other classical
weak fields and color gauge field could make themselves visible. Cell membrane could be one
such system [69]. This conforms with the general picture about color confinement and weak
massivation.

The GRT limit of TGD suggests a further reason for why Weinberg angle should vanish in
Minkowskian regions.

1. The value of the Kähler coupling strength mut be very near to the value of the fine structure
constant in electron length scale and these constants can be assumed to be equal.

2. GRT limit of TGD with space-time surfaces replaced with abstract 4-geometries would naturally
correspond to Einstein-Maxwell theory with cosmological constant which is non-vanishing only
in Euclidian regions of space-time so that both Reissner-Nordström metric and CP2 are allowed
as simplest possible solutions of field equations [91]. The extremely small value of the observed
cosmological constant needed in GRT type cosmology could be equal to the large cosmological
constant associated with CP2 metric multiplied with the 3-volume fraction of Euclidian regions.

3. Also at GRT limit quantum theory would reduce to almost topological QFT since Einstein-
Maxwell action reduces to 3-D term by field equations implying the vanishing of the Maxwell
current and of the curvature scalar in Minkowskian regions and curvature scalar + cosmological
constant term in Euclidian regions. The weak form of electric-magnetic duality would guarantee
also now the preferred extremal property and prevent the reduction to a mere topological QFT.
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4. GRT limit would make sense only for a vanishing Weinberg angle in Minkowskian regions. A
non-vanishing Weinberg angle would make sense in the deep interior of the Euclidian regions
where the approximation as a small deformation of CP2 makes sense.

The weak form of electric-magnetic duality has surprisingly strong implications for the basic view
about quantum TGD as following considerations show.

6.6.2 Magnetic confinement, the short range of weak forces, and color
confinement

The weak form of electric-magnetic duality has surprisingly strong implications if one combines it with
some very general empirical facts such as the non-existence of magnetic monopole fields in macroscopic
length scales.

How can one avoid macroscopic magnetic monopole fields?

Monopole fields are experimentally absent in length scales above order weak boson length scale and one
should have a mechanism neutralizing the monopole charge. How electroweak interactions become
short ranged in TGD framework is still a poorly understood problem. What suggests itself is the
neutralization of the weak isospin above the intermediate gauge boson Compton length by neutral
Higgs bosons. Could the two neutralization mechanisms be combined to single one?

1. In the case of fermions and their super partners the opposite magnetic monopole would be a
wormhole throat. If the magnetically charged wormhole contact is electromagnetically neutral
but has vectorial weak isospin neutralizing the weak vectorial isospin of the fermion only the
electromagnetic charge of the fermion is visible on longer length scales. The distance of this
wormhole throat from the fermionic one should be of the order weak boson Compton length.
An interpretation as a bound state of fermion and a wormhole throat state with the quantum
numbers of a neutral Higgs boson would therefore make sense. The neutralizing throat would
have quantum numbers of X−1/2 = νLνR or X1/2 = νLνR. νLνR would not be neutral Higgs
boson (which should correspond to a wormhole contact) but a super-partner of left-handed
neutrino obtained by adding a right handed neutrino. This mechanism would apply separately
to the fermionic and anti-fermionic throats of the gauge bosons and corresponding space-time
sheets and leave only electromagnetic interaction as a long ranged interaction.

2. One can of course wonder what is the situation situation for the bosonic wormhole throats feeding
gauge fluxes between space-time sheets. It would seem that these wormhole throats must always
appear as pairs such that for the second member of the pair monopole charges and I3

V cancel
each other at both space-time sheets involved so that one obtains at both space-time sheets
magnetic dipoles of size of weak boson Compton length. The proposed magnetic character of
fundamental particles should become visible at TeV energies so that LHC might have surprises
in store!

Magnetic confinement and color confinement

Magnetic confinement generalizes also to the case of color interactions. One can consider also the
situation in which the magnetic charges of quarks (more generally, of color excited leptons and quarks)
do not vanish and they form color and magnetic singles in the hadronic length scale. This would mean
that magnetic charges of the state q±1/2−X∓1/2 representing the physical quark would not vanish and
magnetic confinement would accompany also color confinement. This would explain why free quarks
are not observed. To how degree then quark confinement corresponds to magnetic confinement is an
interesting question.

For quark and antiquark of meson the magnetic charges of quark and antiquark would be opposite
and meson would correspond to a Kähler magnetic flux so that a stringy view about meson emerges.
For valence quarks of baryon the vanishing of the net magnetic charge takes place provided that the
magnetic net charges are (±2,∓1,∓1). This brings in mind the spectrum of color hyper charges
coming as (±2,∓1,∓1)/3 and one can indeed ask whether color hyper-charge correlates with the
Kähler magnetic charge. The geometric picture would be three strings connected to single vertex.
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Amusingly, the idea that color hypercharge could be proportional to color hyper charge popped up
during the first year of TGD when I had not yet discovered CP2 and believed on M4 × S2.

p-Adic length scale hypothesis and hierarchy of Planck constants defining a hierarchy of dark
variants of particles suggest the existence of scaled up copies of QCD type physics and weak physics.
For p-adically scaled up variants the mass scales would be scaled by a power of

√
2 in the most general

case. The dark variants of the particle would have the same mass as the original one. In particular,
Mersenne primes Mk = 2k − 1 and Gaussian Mersennes MG,k = (1 + i)k − 1 has been proposed to
define zoomed copies of these physics. At the level of magnetic confinement this would mean hierarchy
of length scales for the magnetic confinement.

One particular proposal is that the Mersenne prime M89 should define a scaled up variant of the
ordinary hadron physics with mass scaled up roughly by a factor 2(107−89)/2 = 512. The size scale
of color confinement for this physics would be same as the weal length scale. It would look more
natural that the weak confinement for the quarks of M89 physics takes place in some shorter scale
and M61 is the first Mersenne prime to be considered. The mass scale of M61 weak bosons would
be by a factor 2(89−61)/2 = 214 higher and about 1.6× 104 TeV. M89 quarks would have virtually no
weak interactions but would possess color interactions with weak confinement length scale reflecting
themselves as new kind of jets at collisions above TeV energies.

In the biologically especially important length scale range 10 nm -2500 nm there are as many as
four Gaussian Mersennes corresponding to MG,k, k = 151, 157, 163, 167. This would suggest that the
existence of scaled up scales of magnetic-, weak- and color confinement. An especially interesting
possibly testable prediction is the existence of magnetic monopole pairs with the size scale in this
range. There are recent claims about experimental evidence for magnetic monopole pairs [12] .

Magnetic confinement and stringy picture in TGD sense

The connection between magnetic confinement and weak confinement is rather natural if one recalls
that electric-magnetic duality in super-symmetric quantum field theories means that the descriptions
in terms of particles and monopoles are in some sense dual descriptions. Fermions would be replaced
by string like objects defined by the magnetic flux tubes and bosons as pairs of wormhole contacts
would correspond to pairs of the flux tubes. Therefore the sharp distinction between gravitons and
physical particles would disappear.

The reason why gravitons are necessarily stringy objects formed by a pair of wormhole contacts
is that one cannot construct spin two objects using only single fermion states at wormhole throats.
Of course, also super partners of these states with higher spin obtained by adding fermions and anti-
fermions at the wormhole throat but these do not give rise to graviton like states [32] . The upper and
lower wormhole throat pairs would be quantum superpositions of fermion anti-fermion pairs with sum
over all fermions. The reason is that otherwise one cannot realize graviton emission in terms of joining
of the ends of light-like 3-surfaces together. Also now magnetic monopole charges are necessary but
now there is no need to assign the entities X± with gravitons.

Graviton string is characterized by some p-adic length scale and one can argue that below this
length scale the charges of the fermions become visible. Mersenne hypothesis suggests that some
Mersenne prime is in question. One proposal is that gravitonic size scale is given by electronic
Mersenne prime M127. It is however difficult to test whether graviton has a structure visible below
this length scale.

What happens to the generalized Feynman diagrams is an interesting question. It is not at all
clear how closely they relate to ordinary Feynman diagrams. All depends on what one is ready to
assume about what happens in the vertices. One could of course hope that zero energy ontology could
allow some very simple description allowing perhaps to get rid of the problematic aspects of Feynman
diagrams.

1. Consider first the recent view about generalized Feynman diagrams which relies zero energy
ontology. A highly attractive assumption is that the particles appearing at wormhole throats
are on mass shell particles. For incoming and outgoing elementary bosons and their super
partners they would be positive it resp. negative energy states with parallel on mass shell
momenta. For virtual bosons they the wormhole throats would have opposite sign of energy
and the sum of on mass shell states would give virtual net momenta. This would make possible
twistor description of virtual particles allowing only massless particles (in 4-D sense usually and
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in 8-D sense in TGD framework). The notion of virtual fermion makes sense only if one assumes
in the interaction region a topological condensation creating another wormhole throat having
no fermionic quantum numbers.

2. The addition of the particles X± replaces generalized Feynman diagrams with the analogs of
stringy diagrams with lines replaced by pairs of lines corresponding to fermion and X±1/2. The
members of these pairs would correspond to 3-D light-like surfaces glued together at the vertices
of generalized Feynman diagrams. The analog of 3-vertex would not be splitting of the string to
form shorter strings but the replication of the entire string to form two strings with same length
or fusion of two strings to single string along all their points rather than along ends to form a
longer string. It is not clear whether the duality symmetry of stringy diagrams can hold true
for the TGD variants of stringy diagrams.

3. How should one describe the bound state formed by the fermion and X±? Should one describe
the state as superposition of non-parallel on mass shell states so that the composite state would
be automatically massive? The description as superposition of on mass shell states does not
conform with the idea that bound state formation requires binding energy. In TGD framework
the notion of negentropic entanglement has been suggested to make possible the analogs of
bound states consisting of on mass shell states so that the binding energy is zero [52] . If this
kind of states are in question the description of virtual states in terms of on mass shell states is
not lost. Of course, one cannot exclude the possibility that there is infinite number of this kind
of states serving as analogs for the excitations of string like object.

4. What happens to the states formed by fermions and X±1/2 in the internal lines of the Feynman
diagram? Twistor philosophy suggests that only the higher on mass shell excitations are possible.
If this picture is correct, the situation would not change in an essential manner from the earlier
one.

The highly non-trivial prediction of the magnetic confinement is that elementary particles should
have stringy character in electro-weak length scales and could behaving to become manifest at LHC
energies. This adds one further item to the list of non-trivial predictions of TGD about physics at
LHC energies [53] .

Should J + J1 appear in Kähler action?

The presence of the S2 Kähler form J1 in the weak form of electric-magnetic duality was originally
suggested by an erratic argument about the reduction to almost topological QFT to be described in
the next subsection. In any case this argument raises the question whether one could replace J with
J +J1 in the Kähler action. This would not affect the basic non-vacuum extremals but would modify
the vacuum degeneracy of the Kähler action. Canonically imbedded M4 would become a monopole
configuration with an infinite magnetic energy and Kähler action due to the monopole singularity at
the line connecting tips of the CD. Action and energy can be made small by drilling a small hole
around origin. This is however not consistent with the weak form of electro-weak duality. Amusingly,
the modified Dirac equation reduces to ordinary massless Dirac equation in M4.

This extremal can be transformed to a vacuum extremal by assuming that the solution is also
a CP2 magnetic monopole with opposite contribution to the magnetic charge so that J + J1 = 0
holds true. This is achieved if one can regard space-time surface as a map M4 → CP2 reducing to
a map (Θ,Φ) = (θ,±φ) with the sign chosen by properly projecting the homologically non-trivial
rM = constant spheres of CD to the homologically non-trivial geodesic sphere of CP2. Symplectic
transformations of S2×CP2 produce new vacuum extremals of this kind. Using Darboux coordinates
in which one has J =

∑
k=1,2 PkdQ

k and assuming that (P1, Q1) corresponds to the CP2 image of

S2, one can take Q2 to be arbitrary function of P 2, which in turn is an arbitrary function of M4

coordinates to obtain even more general vacuum extremals with 3-D CP2 projection. Therefore the
spectrum of vacuum extremals, which is very relevant for the TGD based description of gravitation
in long length scales because it allows to satisfy Einstein’s equations as an additional condition, looks
much richer than for the original option, and it is natural to ask whether this option might make
sense.

An objection is that J1 is a radial monopole field and this breaks Lorentz invariance to SO(3).
Lorentz invariance is broken to SO(3) for a given CD also by the presence of the preferred time
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direction defined by the time-like line connecting the tips of the CD becoming carrying the monopole
charge but is compensated since Lorentz boosts of CDs are possible. Could one consider similar com-
pensation also now? Certainly the extremely small breaking of Lorentz invariance and the vanishing
of the monopole charge for the vacuum extremals is all that is needed at the space-time level. No
new gauge fields would be introduced since only the Kähler field part of photon and Z0 boson would
receive an additional contribution.

The ultimate fate of the modification depends on whether it is consistent with the general relativis-
tic description of gravitation. Since a breaking of spherical symmetry is involved, it is not at all clear
whether one can find vacuum extremals which represent small deformations of the Reissner-Nordström
metric and Robertson-Walker metric. The argument below shows that this option does not allow the
imbedding of small deformations of physically plausible space-time metrics as vacuum extremals.

The basic vacuum extremal whose deformations should give vacuum extremals allowing interpre-
tation as solutions of Einstein’s equations is given by a map M4 → CP2 projecting the rM constant
spheres S2 of M2 to the homologically non-trivial geodesic sphere of CP2. The winding number of
this map is −1 in order to achieve vanishing of the induced Kähler form J + J1. For instance, the
following two canonical forms of the map are possible

(Θ,Ψ) = (θM ,−φM ) ,

(Θ,Ψ) = (π − θM , φM ) .

(6.6.11)

Here (Θ,Ψ) refers to the geodesic sphere of CP2 and (θM , φM ) to the sphere of M4.
The resulting space-time surface is not flat and Einstein tensor is non-vanishing. More complex metrics
can be constructed from this metric by a deformation making the CP2 projection 3-dimensional.

Using the expression of the CP2 line element in Eguchi-Hanson coordinates [19]

ds2

R2
=

dr2

F 2
+
r2

F
(dΨ + cosΘdΦ)2 +

r2

4F
(dΘ2 + fracr24Fsin2ΘdΦ2)

(6.6.12)

and s the relationship r = tan(Θ), one obtains following expression for the CP2 metric

ds2

R2
= dθ2

M + sin2(θM )

[
(dφM + cos(θ)dΦ)2 +

1

4
(dθ2 + sin2(θ)dΦ2

]
.

(6.6.13)

The resulting metric is obtained from the metric of S2 by replacing dφ2 which 3-D line element. The
factor sin2(θM ) implies that the induced metric becomes singular at North and South poles of S2.
In particular, the gravitational potential is proportional to sin2(θM ) so that gravitational force in
the radial direction vanishes at equators. It is very difficult to imagine any manner to produce a
small deformation of Reissner-Nordstrm metric or Robertson-Walker metric. Hence it seems that the
vacuum extremals produce by J + J1 option are not physical.

6.6.3 Could Quantum TGD reduce to almost topological QFT?

There seems to be a profound connection with the earlier unrealistic proposal that TGD reduces to
almost topological quantum theory in the sense that the counterpart of Chern-Simons action assigned
with the wormhole throats somehow dictates the dynamics. This proposal can be formulated also
for the modified Dirac action action. I gave up this proposal but the following argument shows that
Kähler action with weak form of electric-magnetic duality effectively reduces to Chern-Simons action
plus Coulomb term.

1. Kähler action density can be written as a 4-dimensional integral of the Coulomb term jαKAα plus
and integral of the boundary term JnβAβ

√
g4 over the wormhole throats and of the quantity

J0βAβ
√
g4 over the ends of the 3-surface.
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2. If the self-duality conditions generalize to Jnβ = 4παKε
nβγδJγδ at throats and to J0β =

4παKε
0βγδJγδ at the ends, the Kähler function reduces to the counterpart of Chern-Simons

action evaluated at the ends and throats. It would have same value for each branch and the
replacement ~0 → r~0 would effectively describe this. Boundary conditions would however give
1/r factor so that ~ would disappear from the Kähler function! The original attempt to real-
ize quantum TGD as an almost topological QFT was in terms of Chern-Simons action but was
given up. It is somewhat surprising that Kähler action gives Chern-Simons action in the vacuum
sector defined as sector for which Kähler current is light-like or vanishes.

Holography encourages to ask whether also the Coulomb interaction terms could vanish. This
kind of dimensional reduction would mean an enormous simplification since TGD would reduce to an
almost topological QFT. The attribute ”almost” would come from the fact that one has non-vanishing
classical Noether charges defined by Kähler action and non-trivial quantum dynamics in M4 degrees
of freedom. One could also assign to space-time surfaces conserved four-momenta which is not possible
in topological QFTs. For this reason the conditions guaranteeing the vanishing of Coulomb interaction
term deserve a detailed analysis.

1. For the known extremals jαK either vanishes or is light-like (”massless extremals” for which
weak self-duality condition does not make sense [12] ) so that the Coulombic term vanishes
identically in the gauge used. The addition of a gradient to A induces terms located at the ends
and wormhole throats of the space-time surface but this term must be cancelled by the other
boundary terms by gauge invariance of Kähler action. This implies that the M4 part of WCW
metric vanishes in this case. Therefore massless extremals as such are not physically realistic:
wormhole throats representing particles are needed.

2. The original naive conclusion was that since Chern-Simons action depends on CP2 coordinates
only, its variation with respect to Minkowski coordinates must vanish so that the WCW met-
ric would be trivial in M4 degrees of freedom. This conclusion is in conflict with quantum
classical correspondence and was indeed too hasty. The point is that the allowed variations of
Kähler function must respect the weak electro-magnetic duality which relates Kähler electric
field depending on the induced 4-metric at 3-surface to the Kähler magnetic field. Therefore the
dependence on M4 coordinates creeps via a Lagrange multiplier term

∫
Λα(Jnα −KεnαβγJβγ)

√
g4d

3x . (6.6.14)

The (1,1) part of second variation contributing to M4 metric comes from this term.

3. This erratic conclusion about the vanishing of M4 part WCW metric raised the question about
how to achieve a non-trivial metric in M4 degrees of freedom. The proposal was a modification of
the weak form of electric-magnetic duality. Besides CP2 Kähler form there would be the Kähler
form assignable to the light-cone boundary reducing to that for rM = constant sphere - call it
J1. The generalization of the weak form of self-duality would be Jnβ = εnβγδK(Jγδ + εJ1

γδ).

This form implies that the boundary term gives a non-trivial contribution to the M4 part of
the WCW metric even without the constraint from electric-magnetic duality. Kähler charge is
not affected unless the partonic 2-surface contains the tip of CD in its interior. In this case the
value of Kähler charge is shifted by a topological contribution. Whether this term can survive
depends on whether the resulting vacuum extremals are consistent with the basic facts about
classical gravitation.

4. The Coulombic interaction term is not invariant under gauge transformations. The good news
is that this might allow to find a gauge in which the Coulomb term vanishes. The vanishing
condition fixing the gauge transformation φ is

jαK∂αφ = −jαAα . (6.6.15)
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This differential equation can be reduced to an ordinary differential equation along the flow
lines jK by using dxα/dt = jαK . Global solution is obtained only if one can combine the flow
parameter t with three other coordinates- say those at the either end of CD to form space-
time coordinates. The condition is that the parameter defining the coordinate differential is
proportional to the covariant form of Kähler current: dt = φjK . This condition in turn implies
d2t = d(φjK) = d(φjK) = dφ ∧ jK + φdjK = 0 implying jK ∧ djK = 0 or more concretely,

εαβγδjKβ ∂γj
K
δ = 0 . (6.6.16)

jK is a four-dimensional counterpart of Beltrami field [47] and could be called generalized Bel-
trami field.

The integrability conditions follow also from the construction of the extremals of Kähler action
[12] . The conjecture was that for the extremals the 4-dimensional Lorentz force vanishes (no
dissipation): this requires jK ∧ J = 0. One manner to guarantee this is the topologization of
the Kähler current meaning that it is proportional to the instanton current: jK = φjI , where
jI = ∗(J ∧ A) is the instanton current, which is not conserved for 4-D CP2 projection. The
conservation of jK implies the condition jαI ∂αφ = ∂αj

αφ and from this φ can be integrated if the
integrability condition jI∧djI = 0 holds true implying the same condition for jK . By introducing
at least 3 or CP2 coordinates as space-time coordinates, one finds that the contravariant form of
jI is purely topological so that the integrability condition fixes the dependence onM4 coordinates
and this selection is coded into the scalar function φ. These functions define families of conserved
currents jαKφ and jαI φ and could be also interpreted as conserved currents associated with the
critical deformations of the space-time surface.

5. There are gauge transformations respecting the vanishing of the Coulomb term. The vanishing
condition for the Coulomb term is gauge invariant only under the gauge transformations A →
A+∇φ for which the scalar function the integral

∫
jαK∂αφ reduces to a total divergence a giving

an integral over various 3-surfaces at the ends of CD and at throats vanishes. This is satisfied
if the allowed gauge transformations define conserved currents

Dα(jαφ) = 0 . (6.6.17)

As a consequence Coulomb term reduces to a difference of the conserved chargesQeφ =
∫
j0φ
√
g4d

3x
at the ends of the CD vanishing identically. The change of the imons type term is trivial if the
total weighted Kähler magnetic flux Qmφ =

∑∫
JφdA over wormhole throats is conserved. The

existence of an infinite number of conserved weighted magnetic fluxes is in accordance with the
electric-magnetic duality. How these fluxes relate to the flux Hamiltonians central for WCW
geometry is not quite clear.

6. The gauge transformations respecting the reduction to almost topological QFT should have some
special physical meaning. The measurement interaction term in the modified Dirac interaction
corresponds to a critical deformation of the space-time sheet and is realized as an addition
of a gauge part to the Kähler gauge potential of CP2. It would be natural to identify this
gauge transformation giving rise to a conserved charge so that the conserved charges would
provide a representation for the charges associated with the infinitesimal critical deformations
not affecting Kähler action. The gauge transformed Kähler potential couples to the modified
Dirac equation and its effect could be visible in the value of Kähler function and therefore also
in the properties of the preferred extremal. The effect on WCW metric would however vanish
since K would transform only by an addition of a real part of a holomorphic function. Kähler
function is identified as a Dirac determinant for Chern-Simons Dirac action and the spectrum
of this operator should not be invariant under these gauge transformations if this picture is
correct. This is is achieved if the gauge transformation is carried only in the Dirac action
corresponding to the Chern-Simons term: this assumption is motivated by the breaking of time
reversal invariance induced by quantum measurements. The modification of Kähler action can
be guessed to correspond just to the Chern-Simons contribution from the instanton term.
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7. A reasonable looking guess for the explicit realization of the quantum classical correspondence
between quantum numbers and space-time geometry is that the deformation of the preferred
extremal due to the addition of the measurement interaction term is induced by a U(1) gauge
transformation induced by a transformation of δCD×CP2 generating the gauge transformation
represented by φ. This interpretation makes sense if the fluxes defined by Qmφ and corresponding
Hamiltonians affect only zero modes rather than quantum fluctuating degrees of freedom.

To sum up, one could understand the basic properties of WCW metric in this framework. Effec-
tive 2-dimensionality would result from the existence of an infinite number of conserved charges in
two different time directions (genuine conservation laws plus gauge fixing). The infinite-dimensional
symmetric space for given values of zero modes corresponds to the Cartesian product of the WCWs
associated with the partonic 2-surfaces at both ends of CD and the generalized Chern-Simons term
decomposes into a sum of terms from the ends giving single particle Kähler functions and to the terms
from light-like wormhole throats giving interaction term between positive and negative energy parts of
the state. Hence Kähler function could be calculated without any knowledge about the interior of the
space-time sheets and TGD would reduce to almost topological QFT as speculated earlier. Needless
to say this would have immense boost to the program of constructing WCW Kähler geometry.

6.6.4 Kähler action for Euclidian regions as Kähler function and Kähler
action for Minkowskian regions as Morse function?

One of the nasty questions about the interpretation of Kähler action relates to the square root of
the metric determinant. If one proceeds completely straightforwardly, the only reason conclusion is
that the square root is imaginary in Minkowskian space-time regions so that Kähler action would be
complex. The Euclidian contribution would have a natural interpretation as positive definite Kähler
function but how should one interpret the imaginary Minkowskian contribution? Certainly the path
integral approach to quantum field theories supports its presence. For some mysterious reason I
was able to forget this nasty question and serious consideration of the obvious answer to it. Only
when I worked betweeen possibile connections between TGD and Floer homology [100] I realized
that the Minkowskian contribution is an excellent candidate for Morse function whose critical points
give information about WCW homology. This would fit nicely with the vision about TGD as almost
topological QFT.

Euclidian regions would guarantee the convergence of the functional integral and one would have
a mathematically well-defined theory. Minkowskian contribution would give the quantal interference
effects and stationary phase approximation. The analog of Floer homology would represent quantum
superpositions of critical points identifiable as ground states defined by the extrema of Kähler action
for Minkowskian regions. Perturbative approach to quantum TGD would rely on functional integrals
around the extrema of Kähler function. One would have maxima also for the Kähler function but
only in the zero modes not contributing to the WCW metric.

There is a further question related to almost topological QFT character of TGD. Should one assume
that the reduction to Chern-Simons terms occurs for the preferred extremals in both Minkowskian and
Euclidian regions or only in Minkowskian regions?

1. All arguments for this have been represented for Minkowskian regions [31] involve local light-
like momentum direction which does not make sense in the Euclidian regions. This does not
however kill the argument: one can have non-trivial solutions of Laplacian equation in the
region of CP2 bounded by wormhole throats: for CP2 itself only covariantly constant right-
handed neutrino represents this kind of solution and at the same time supersymmetry. In the
general case solutions of Laplacian represent broken super-symmetries and should be in one-one
correspondences with the solutions of the modified Dirac equation. The interpretation for the
counterparts of momentum and polarization would be in terms of classical representation of
color quantum numbers.

If the reduction occurs in Euclidian regions, it gives in the case of CP2 two 3-D terms corre-
sponding to two 3-D gluing regions for three coordinate patches needed to define coordinates
and spinor connection for CP2 so that one would have two Chern-Simons terms. Without any
other contributions the first term would be identical with that from Minkowskian region apart
from imaginary unit. Second Chern-Simons term would be however independent of this. For
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wormhole contacts the two terms could be assigned with opposite wormhole throats and would
be identical with their Minkowskian cousins from imaginary unit. This looks a little bit strange.

2. There is however a very delicate issue involved. Quantum classical correspondence requires that
the quantum numbers of partonic states must be coded to the space-time geometry, and this is
achieved by adding to the action a measurement interaction term which reduces to what is almost
a gauge term present only in Chern-Simons-Dirac equation but not at space-time interior [31].
This term would represent a coupling to Poincare quantum numbers at the Minkowskian side
and to color and electro-weak quantum numbers at CP2 side. Therefore the net Chern-Simons
contributions and would be different.

3. There is also a very beautiful argument stating that Dirac determinant for Chern-Simons-Dirac
action equals to Kähler function, which would be lost if Euclidian regions would not obey
holography. The argument obviously generalizes and applies to both Morse and Kähler function.

The Minkowskian contribution of Kähler action is imaginary due to the negative of the metric
determinant and gives a phase factor to vacuum functional reducing to Chern-Simons terms at worm-
hole throats. Ground state degeneracy due to the possibility of having both signs for Minkowskian
contribution to the exponent of vacuum functional provides a general view about the description of
CP breaking in TGD framework.

1. In TGD framework path integral is replaced by inner product involving integral over WCV. The
vacuum functional and its conjugate are associated with the states in the inner product so that
the phases of vacuum functionals cancel if only one sign for the phase is allowed. Minkowskian
contribution would have no physical significance. This of course cannot be the case. The ground
state is actually degenerate corresponding to the phase factor and its complex conjugate since√
g can have two signs in Minkowskian regions. Therefore the inner products between states

associated with the two ground states define 2 × 2 matrix and non-diagonal elements contain
interference terms due to the presence of the phase factor. At the limit of full CP2 type vacuum
extremal the two ground states would reduce to each other and the determinant of the matrix
would vanish.

2. A small mixing of the two ground states would give rise to CP breaking and the first principle
description of CP breaking in systems like K − K and of CKM matrix should reduce to this
mixing. K0 mesons would be CP even and odd states in the first approximation and correspond
to the sum and difference of the ground states. Small mixing would be present having exponential
sensitivity to the actions of CP2 type extremals representing wormhole throats. This might allow
to understand qualitatively why the mixing is about 50 times larger than expected for B0 mesons.

3. There is a strong temptation to assign the two ground states with two possible arrows of geo-
metric time. At the level of M-matrix the two arrows would correspond to state preparation at
either upper or lower boundary of CD. Do long- and shortlived neutral K mesons correspond
to almost fifty-fifty orthogonal superpositions for the two arrow of geometric time or almost
completely to a fixed arrow of time induced by environment? Is the dominant part of the arrow
same for both or is it opposite for long and short-lived neutral measons? Different lifetimes
would suggest that the arrow must be the same and apart from small leakage that induced by
environment. CP breaking would be induced by the fact that CP is performed only K0 but not
for the environment in the construction of states. One can probably imagine also alternative
interpretations.

Remark: The proportionality of Minkowskian and Euclidian contributions to the same Chern-
Simons term implies that the critical points with respect to zero modes appear for both the phase
and modulus of vacuum functional. The Kähler function property does not allow extrema for vacuum
functional as a function of complex coordinates of WCW since this would mean Kähler metric with
non-Euclidian signature. If this were not the case. the stationary values of phase factor and extrema
of modulus of the vacuum functional would correspond to different configurations.
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6.7 How to define generalized Feynman diagrams?

S-matrix codes to a high degree the predictions of quantum theories. The longstanding challenge
of TGD has been to construct or at least demonstrate the mathematical existence of S-matrix- or
actually M-matrix which generalizes this notion in zero energy ontology (ZEO) [73] . This work has
led to the notion of generalized Feynman diagram and the challenge is to give a precise mathematical
meaning for this object. The attempt to understand the counterpart of twistors in TGD framework [96]
has inspired several key ideas in this respect but it turned out that twistors themselves need not be
absolutely necessary in TGD framework.

1. The notion of generalized Feyman diagram defined by replacing lines of ordinary Feynman dia-
gram with light-like 3-surfaces (elementary particle sized wormhole contacts with throats carry-
ing quantum numbers) and vertices identified as their 2-D ends - I call them partonic 2-surfaces
is central. Speaking somewhat loosely, generalized Feynman diagrams (plus background space-
time sheets) define the ”world of classical worlds” (WCW). These diagrams involve the analogs
of stringy diagrams but the interpretation is different: the analogs of stringy loop diagrams have
interpretation in terms of particle propagating via two different routes simultaneously (as in the
classical double slit experiment) rather than as a decay of particle to two particles. For stringy
diagrams the counterparts of vertices are singular as manifolds whereas the entire diagrams
are smooth. For generalized Feynman diagrams vertices are smooth but entire diagrams rep-
resent singular manifolds just like ordinary Feynman diagrams do. String like objects however
emerge in TGD and even ordinary elementary particles are predicted to be magnetic flux tubes
of length of order weak gauge boson Compton length with monopoles at their ends as shown in
accompanying article. This stringy character should become visible at LHC energies.

2. Zero energy ontology (ZEO) and causal diamonds (intersections of future and past directed
lightcones) is second key ingredient. The crucial observation is that in ZEO it is possible to
identify off mass shell particles as pairs of on mass shell particles at throats of wormhole contact
since both positive and negative signs of energy are possible. The propagator defined by modified
Dirac action does not diverge (except for incoming lines) although the fermions at throats are on
mass shell. In other words, the generalized eigenvalue of the modified Dirac operator containing
a term linear in momentum is non-vanishing and propagator reduces to G = i/λγ, where γ is so
called modified gamma matrix in the direction of stringy coordinate [20] . This means opening
of the black box of the off mass shell particle-something which for some reason has not occurred
to anyone fighting with the divergences of quantum field theories.

3. A powerful constraint is number theoretic universality requiring the existence of Feynman am-
plitudes in all number fields when one allows suitable algebraic extensions: roots of unity are
certainly required in order to realize p-adic counter parts of plane waves. Also imbedding space,
partonic 2-surfaces and WCW must exist in all number fields and their extensions. These con-
straints are enormously powerful and the attempts to realize this vision have dominated quantum
TGD for last two decades.

4. Representation of 8-D gamma matrices in terms of octonionic units and 2-D sigma matrices is
a further important element as far as twistors are considered [96] . Modified gamma matrices
at space-time surfaces are quaternionic/associative and allow a genuine matrix representation.
As a matter fact, TGD and WCW can be formulated as study of associative local sub-algebras
of the local Clifford algebra of 8-D imbedding space parameterized by quaternionic space-time
surfaces. Central conjecture is that quaternionic 4-surfaces correspond to preferred extremals
of Kähler action [20] identified as critical ones (second variation of Kähler action vanishes for
infinite number of deformations defining super-conformal algebra) and allow a slicing to string
worldsheets parametrized by points of partonic 2-surfaces.

5. As far as twistors are considered, the first key element is the reduction of the octonionic twistor
structure to quaternionic one at space-time surfaces and giving effectively 4-D spinor and twistor
structure for quaternionic surfaces.

Quite recently quite a dramatic progress took place in this approach [96] .
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1. The progress was stimulated by the simple observation that on mass shell property puts enor-
mously strong kinematic restrictions on the loop integrations. With mild restrictions on the
number of parallel fermion lines appearing in vertices (there can be several since fermionic
oscillator operator algebra defining SUSY algebra generates the parton states)- all loops are
manifestly finite and if particles has always mass -say small p-adic thermal mass also in case of
massless particles and due to IR cutoff due to the presence largest CD- the number of diagrams is
finite. Unitarity reduces to Cutkosky rules [20] automatically satisfied as in the case of ordinary
Feynman diagrams.

2. Ironically, twistors which stimulated all these development do not seem to be absolutely necessary
in this approach although they are of course possible. Situation changes if one does not assume
small p-adically thermal mass due to the presence of massless particles and one must sum infinite
number of diagrams. Here a potential problem is whether the infinite sum respects the algebraic
extension in question.

This is about fermionic and momentum space aspects of Feynman diagrams but not yet about the
functional (not path-) integral over small deformations of the partonic 2-surfaces. The basic challenges
are following.

1. One should perform the functional integral over WCW degrees of freedom for fixed values of
on mass shell momenta appearing in the internal lines. After this one must perform integral or
summation over loop momenta. Note that the order is important since the space-time surface
assigned to the line carries information about the quantum numbers associated with the line by
quantum classical correspondence realized in terms of modified Dirac operator.

2. One must define the functional integral also in the p-adic context. p-Adic Fourier analysis relying
on algebraic continuation raises hopes in this respect. p-Adicity suggests strongly that the loop
momenta are discretized and ZEO predicts this kind of discretization naturally.

It indeed seems that the functional integrals over WCW could be carried out at general level both in
real and p-adic context. This is due to the symmetric space property (maximal number of isometries)
of WCW required by the mere mathematical existence of Kähler geometry [41] in infinite-dimensional
context already in the case of much simpler loop spaces [85] .

1. The p-adic generalization of Fourier analysis allows to algebraize integration- the horrible looking
technical challenge of p-adic physics- for symmetric spaces for functions allowing the analog
of discrete Fourier decomposion. Symmetric space property is indeed essential also for the
existence of Kähler geometry for infinite-D spaces as was learned already from the case of loop
spaces. Plane waves and exponential functions expressible as roots of unity and powers of p
multiplied by the direct analogs of corresponding exponent functions are the basic building
bricks and key functions in harmonic analysis in symmetric spaces. The physically unavoidable
finite measurement resolution corresponds to algebraically unavoidable finite algebraic dimension
of algebraic extension of p-adics (at least some roots of unity are needed). The cutoff in roots
of unity is very reminiscent to that occurring for the representations of quantum groups and
is certainly very closely related to these as also to the inclusions of hyper-finite factors of type
II¡sub¿1¡/sub¿ defining the finite measurement resolution.

2. WCW geometrization reduces to that for a single line of the generalized Feynman diagram defin-
ing the basic building brick for WCW. Kähler function decomposes to a sum of ”kinetic” terms
associated with its ends and interaction term associated with the line itself. p-Adicization boils
down to the condition that Kähler function, matrix elements of Kähler form, WCW Hamilto-
nians and their super counterparts, are rational functions of complex WCW coordinates just as
they are for those symmetric spaces that I know of. This allows straightforward continuation to
p-adic context.

3. As far as diagrams are considered, everything is manifestly finite as the general arguments (non-
locality of Kähler function as functional of 3-surface) developed two decades ago indeed allow to
expect. General conditions on the holomorphy properties of the generalized eigenvalues λ of the
modified Dirac operator can be deduced from the conditions that propagator decomposes to a
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sum of products of harmonics associated with the ends of the line and that similar decomposition
takes place for exponent of Kähler action identified as Dirac determinant. This guarantees that
the convolutions of propagators and vertices give rise to products of harmonic functions which
can be Glebsch-Gordanized to harmonics and only the singlet contributes to the WCW integral
in given vertex. The still unproven central conjecture is that Dirac determinant equals the
exponent of Kähler function.

In the following this vision about generalized Feynman diagrams is discussed in more detail.

6.7.1 Questions

The goal is a proposal for how to perform the integral over WCW for generalized Feynman digrams
and the best manner to proceed to to this goal is by making questions.

What does finite measurement resolution mean?

The first question is what finite measurement resolution means.

1. One expects that the algebraic continuation makes sense only for a finite measurement resolution
in which case one obtains only finite sums of what one might hope to be algebraic functions.
The finiteness of the algebraic extension would be in fact equivalent with the finite measurement
resolution.

2. Finite measurement resolution means a discretization in terms of number theoretic braids. p-
Adicization condition suggests that that one must allow only the number theoretic braids. For
these the ends of braid at boundary of CD are algebraic points of the imbedding space. This
would be true at least in the intersection of real and p-adic worlds.

3. The question is whether one can localize the points of the braid. The necessity to use momen-
tum eigenstates to achieve quantum classical correspondence in the modified Dirac action [20]
suggests however a delocalization of braid points, that is wave function in space of braid points.
In real context one could allow all possible choices for braid points but in p-adic context only
algebraic points are possible if one wants to replace integrals with sums. This implies finite
measurement resolution analogous to that in lattice. This is also the only possibility in the
intersection of real and p-adic worlds.

A non-trivial prediction giving a strong correlation between the geometry of the partonic 2-
surface and quantum numbers is that the total number nF +nF of fermions and antifermions is
bounded above by the number nalg of algebraic points for a given partonic 2-surface: nF +nF ≤
nalg. Outside the intersection of real and p-adic worlds the problematic aspect of this definition
is that small deformations of the partonic 2-surface can radically change the number of algebraic
points unless one assumes that the finite measurement resolution means restriction of WCW to
a sub-space of algebraic partonic surfaces.

4. One has also a discretization of loop momenta if one assumes that virtual particle momentum
corresponds to ZEO defining rest frame for it and from the discretization of the relative position
of the second tip of CD at the hyperboloid isometric with mass shell. Only the number of braid
points and their momenta would matter, not their positions. The measurement interaction term
in the modified Dirac action gives coupling to the space-time geometry and Kähler function
through generalized eigenvalues of the modified Dirac operator with measurement interaction
term linear in momentum and in the color quantum numbers assignable to fermions [20] .

How to define integration in WCW degrees of freedom?

The basic question is how to define the integration over WCW degrees of freedom.

1. What comes mind first is Gaussian perturbation theory around the maxima of Kähler function.
Gaussian and metric determinants cancel each other and only algebraic expressions remain.
Finiteness is not a problem since the Kähler function is non-local functional of 3-surface so that
no local interaction vertices are present. One should however assume the vanishing of loops



372 Chapter 6. An Overview About Quantum TGD: Part II

required also by algebraic universality and this assumption look unrealistic when one considers
more general functional integrals than that of vacuum functional since free field theory is not
in question. The construction of the inverse of the WCW metric defining the propagator is also
a very difficult challenge. Duistermaat-Hecke theorem states that something like this known as
localization might be possible and one can also argue that something analogous to localization
results from a generalization of mean value theorem.

2. Symmetric space property is more promising since it might reduce the integrations to group
theory using the generalization of Fourier analysis for group representations so that there would
be no need for perturbation theory in the proposed sense. In finite measurement resolution the
symmetric spaces involved would be finite-dimensional. Symmetric space structure of WCW
could also allow to define p-adic integration in terms of p-adic Fourier analysis for symmetric
spaces. Essentially algebraic continuation of the integration from the real case would be in
question with additional constraints coming from the fact that only phase factors corresponding
to finite algebraic extensions of rationals are used. Cutoff would emerge automatically from the
cutoff for the dimension of the algebraic extension.

How to define generalized Feynman diagrams?

Integration in symmetric spaces could serve as a model at the level of WCW and allow both the
understanding of WCW integration and p-adicization as algebraic continuation. In order to get a
more realistic view about the problem one must define more precisely what the calculation of the
generalized Feynman diagrams means.

1. WCW integration must be carried out separately for all values of the momenta associated with
the internal lines. The reason is that the spectrum of eigenvalues λi of the modified Dirac
operator D depends on the momentum of line and momentum conservation in vertices translates
to a correlation of the spectra of D at internal lines.

2. For tree diagrams algebraic continuation to the p-adic context if the expression involves only
the replacement of the generalized eigenvalues of D as functions of momenta with their p-adic
counterparts besides vertices. If these functions are algebraically universal and expressible in
terms of harmonics of symmetric space , there should be no problems.

3. If loops are involved, one must integrate/sum over loop momenta. In p-adic context difficulties
are encountered if the spectrum of the momenta is continuous. The integration over on mass
shell loop momenta is analogous to the integration over sub-CDs, which suggests that internal
line corresponds to a sub − CD in which it is at rest. There are excellent reasons to believe
that the moduli space for the positions of the upper tip is a discrete subset of hyperboloid of
future light-cone. If this is the case, the loop integration indeed reduces to a sum over discrete
positions of the tip. p-Adizication would thus give a further good reason why for zero energy
ontology.

4. Propagator is expressible in terms of the inverse of generalized eigenvalue and there is a sum
over these for each propagator line. At vertices one has products of WCW harmonics assignable
to the incoming lines. The product must have vanishing quantum numbers associated with the
phase angle variables of WCW. Non-trivial quantum numbers of the WCW harmonic correspond
to WCW quantum numbers assignable to excitations of ordinary elementary particles. WCW
harmonics are products of functions depending on the ”radial” coordinates and phase factors
and the integral over the angles leaves the product of the first ones analogous to Legendre
polynomials Pl,m, These functions are expected to be rational functions or at least algebraic
functions involving only square roots.

5. In ordinary QFT incoming and outgoing lines correspond to propagator poles. In the recent case
this would mean that the generalized eigenvalues λ = 0 characterize them. Internal lines coming
as pairs of throats of wormhole contacts would be on mass shell with respect to momentum but
off shell with respect to λ.
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6.7.2 Generalized Feynman diagrams at fermionic and momentum space
level

Negative energy ontology has already led to the idea of interpreting the virtual particles as pairs of
positive and negative energy wormhole throats. Hitherto I have taken it as granted that ordinary
Feynman diagrammatics generalizes more or less as such. It is however far from clear what really
happens in the verties of the generalized Feynmann diagrams. The safest approach relies on the
requirement that unitarity realized in terms of Cutkosky rules in ordinary Feynman diagrammatics
allows a generalization. This requires loop diagrams. In particular, photon-photon scattering can
take place only via a fermionic square loop so that it seems that loops must be present at least in the
topological sense.

One must be however ready for the possibility that something unexpectedly simple might emerge.
For instance, the vision about algebraic physics allows naturally only finite sums for diagrams and
does not favor infinite perturbative expansions. Hence the true believer on algebraic physics might
dream about finite number of diagrams for a given reaction type. For simplicity generalized Feyn-
man diagrams without the complications brought by the magnetic confinement since by the previous
arguments the generalization need not bring in anything essentially new.

The basic idea of duality in early hadronic models was that the lines of the dual diagram repre-
senting particles are only re-arranged in the vertices. This however does not allow to get rid of off
mass shell momenta. Zero energy ontology encourages to consider a stronger form of this principle in
the sense that the virtual momenta of particles could correspond to pairs of on mass shell momenta
of particles. If also interacting fermions are pairs of positive and negative energy throats in the in-
teraction region the idea about reducing the construction of Feynman diagrams to some kind of lego
rules might work.

Virtual particles as pairs of on mass shell particles in ZEO

The first thing is to try to define more precisely what generalized Feynman diagrams are. The direct
generalization of Feynman diagrams implies that both wormhole throats and wormhole contacts join
at vertices.

1. A simple intuitive picture about what happens is provided by diagrams obtained by replacing
the points of Feynman diagrams (wormhole contacts) with short lines and imagining that the
throats correspond to the ends of the line. At vertices where the lines meet the incoming on
mass shell quantum numbers would sum up to zero. This approach leads to a straightforward
generalization of Feynman diagrams with virtual particles replaced with pairs of on mass shell
throat states of type ++, −−, and +−. Incoming lines correspond to ++ type lines and outgoing
ones to −− type lines. The first two line pairs allow only time like net momenta whereas +−
line pairs allow also space-like virtual momenta. The sign assigned to a given throat is dictated
by the the sign of the on mass shell momentum on the line. The condition that Cutkosky
rules generalize as such requires ++ and −− type virtual lines since the cut of the diagram in
Cutkosky rules corresponds to on mass shell outgoing or incoming states and must therefore
correspond to ++ or −− type lines.

2. The basic difference as compared to the ordinary Feynman diagrammatics is that loop integrals
are integrals over mass shell momenta and that all throats carry on mass shell momenta. In
each vertex of the loop mass incoming on mass shell momenta must sum up to on mass shell
momentum. These constraints improve the behavior of loop integrals dramatically and give
excellent hopes about finiteness. It does not however seem that only a finite number of dia-
grams contribute to the scattering amplitude besides tree diagrams. The point is that if a the
reactions N1 → N2 and N2 → N3,, where Ni denote particle numbers, are possible in a common
kinematical region for N2-particle states then also the diagrams N1 → N2 → N2 → N3 are
possible. The virtual states N2 include all all states in the intersection of kinematically allow
regions for N1 → N2 and N2 → N3. Hence the dream about finite number possible diagrams is
not fulfilled if one allows massless particles. If all particles are massive then the particle number
N2 for given N1 is limited from above and the dream is realized.

3. For instance, loops are not possible in the massless case or are highly singular (bringing in mind
twistor diagrams) since the conservation laws at vertices imply that the momenta are parallel.
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In the massive case and allowing mass spectrum the situation is not so simple. As a first example
one can consider a loop with three vertices and thus three internal lines. Three on mass shell
conditions are present so that the four-momentum can vary in 1-D subspace only. For a loop
involving four vertices there are four internal lines and four mass shell conditions so that loop
integrals would reduce to discrete sums. Loops involving more than four vertices are expected
to be impossible.

4. The proposed replacement of the elementary fermions with bound states of elementary fermions
and monopoles X± brings in the analog of stringy diagrammatics. The 2-particle wave functions
in the momentum degrees of freedom of fermiona and X± migh allow more flexibility and allow
more loops. Note however that there are excellent hopes about the finiteness of the theory also
in this case.

Loop integrals are manifestly finite

One can make also more detailed observations about loops.

1. The simplest situation is obtained if only 3-vertices are allowed. In this case conservation of
momentum however allows only collinear momenta although the signs of energy need not be
the same. Particle creation and annihilation is possible and momentum exchange is possible
but is always light-like in the massless case. The scattering matrices of supersymmetric YM
theories would suggest something less trivial and this raises the question whether something is
missing. Magnetic monopoles are an essential element of also these theories as also massivation
and symmetry breaking and this encourages to think that the formation of massive states as
fermion X± pairs is needed. Of course, in TGD framework one has also high mass excitations
of the massless states making the scattering matrix non-trivial.

2. In YM theories on mass shell lines would be singular. In TGD framework this is not the case
since the propagator is defined as the inverse of the 3-D dimensional reduction of the modified
Dirac operator D containing also coupling to four-momentum (this is required by quantum
classical correspondence and guarantees stringy propagators),

D = iΓ̂αpα + Γ̂αDα ,

pα = pk∂αh
k . (6.7.1)

The propagator does not diverge for on mass shell massless momenta and the propagator lines
are well-defined. This is of course of essential importance also in general case. Only for the
incoming lines one can consider the possibility that 3-D Dirac operator annihilates the induced
spinor fields. All lines correspond to generalized eigenstates of the propagator in the sense
that one has D3Ψ = λγΨ, where γ is modified gamma matrix in the direction of the stringy
coordinate emanating from light-like surface and D3 is the 3-dimensional dimensional reduction
of the 4-D modified Dirac operator. The eigenvalue λ is analogous to energy. Note that the
eigenvalue spectrum depends on 4-momentum as a parameter.

3. Massless incoming momenta can decay to massless momenta with both signs of energy. The
integration measure d2k/2E reduces to dx/x where x ≥ 0 is the scaling factor of massless
momentum. Only light-like momentum exchanges are however possible and scattering matrix
is essentially trivial. The loop integrals are finite apart from the possible delicacies related to
poles since the loop integrands for given massless wormhole contact are proportional to dx/x3

for large values of x.

4. Irrrespective of whether the particles are massless or not, the divergences are obtained only if
one allows too high vertices as self energy loops for which the number of momentum degrees
of freedom is 3N − 4 for N -vertex. The construction of SUSY limit of TGD in [32] led to the
conclusion that the parallelly propagating N fermions for given wormhole throat correspond to a
product of N fermion propagators with same four-momentum so that for fermions and ordinary
bosons one has the standard behavior but for N > 2 non-standard so that these excitations are
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not seen as ordinary particles. Higher vertices are finite only if the total number NF of fermions
propagating in the loop satisfies NF > 3N−4. For instance, a 4-vertex from which N = 2 states
emanate is finite.

Taking into account magnetic confinement

What has been said above is not quite enough. The weak form of electric-magnetic duality [8] leads
to the picture about elementary particles as pairs of magnetic monopoles inspiring the notions of
weak confinement based on magnetic monopole force. Also color confinement would have magnetic
counterpart. This means that elementary particles would behave like string like objects in weak boson
length scale. Therefore one must also consider the stringy case with wormhole throats replaced with
fermion-X± pairs (X± is electromagnetically neutral and ± refers to the sign of the weak isospin
opposite to that of fermion) and their super partners.

1. The simplest assumption in the stringy case is that fermion-X± pairs behave as coherent objects,
that is scatter elastically. In more general case only their higher excitations identifiable in terms
of stringy degrees of freedom would be created in vertices. The massivation of these states
makes possible non-collinear vertices. An open question is how the massivation fermion-X±
pairs relates to the existing TGD based description of massivation in terms of Higgs mechanism
and modified Dirac operator.

2. Mass renormalization could come from self energy loops with negative energy lines as also vertex
normalization. By very general arguments supersymmetry implies the cancellation of the self
energy loops but would allow non-trivial vertex renormalization [32] .

3. If only 3-vertices are allowed, the loops containing only positive energy lines are possible if on
mass shell fermion-X± pair (or its superpartner) can decay to a pair of positive energy pair
particles of same kind. Whether this is possible depends on the masses involved. For ordinary
particles these decays are not kinematically possible below intermediate boson mass scale (the
decays F1 → F2 + γ are forbidden kinematically or by the absence of flavor changing neutral
currents whereas intermediate gauge bosons can decay to on mass shell fermion-antifermion
pair).

4. The introduction of IR cutoff for 3-momentum in the rest system associated with the largest
CD (causal diamond) looks natural as scale parameter of coupling constant evolution and p-adic
length scale hypothesis favors the inverse of the size scale of CD coming in powers of two. This
parameter would define the momentum resolution as a discrete parameter of the p-adic coupling
constant evolution. This scale does not have any counterpart in standard physics. For electron,
d quark, and u quark the proper time distance between the tips of CD corresponds to frequency
of 10 Hz, 1280 Hz, and 160 Hz: all these frequencies define fundamental bio-rhythms [27] .

These considerations have left completely untouched one important aspect of generalized Feynman
diagrams: the necessity to perform a functional integral over the deformations of the partonic 2-
surfaces at the ends of the lines- that is integration over WCW. Number theoretical universality
requires that WCW and these integrals make sense also p-adically and in the following these aspects
of generalized Feynman diagrams are discussed.

6.7.3 How to define integration and p-adic Fourier analysis, integral cal-
culus, and p-adic counterparts of geometric objects?

p-Adic differential calculus exists and obeys essentially the same rules as ordinary differental calcu-
lus. The only difference from real context is the existence of p-adic pseudoconstants: any function
which depends on finite number of pinary digits has vanishing p-adic derivative. This implies non-
determinism of p-adic differerential equations. One can defined p-adic integral functions using the fact
that indefinite integral is the inverse of differentiation. The basis problem with the definite integrals
is that p-adic numbers are not well-ordered so that the crucial ordering of the points of real axis in
definite integral is not unique. Also p-adic Fourier analysis is problematic since direct counterparts of
ep(ix) and trigonometric functions are not periodic. Also exp(-x) fails to converse exponentially since



376 Chapter 6. An Overview About Quantum TGD: Part II

it has p-adic norm equal to 1. Note also that these functions exists only when the p-adic norm of x
is smaller than 1.

The following considerations support the view that the p-adic variant of a geometric objects,
integration and p-adic Fourier analysis exists but only when one considers highly symmetric geometric
objects such as symmetric spaces. This is wellcome news from the point of view of physics. At the
level of space-time surfaces this is problematic. The field equations associated with Kähler action
and modified Dirac equation make sense. Kähler action defined as integral over p-adic space-time
surface fails to exist. If however the Kähler function identified as Kähler for a preferred extremal of
Kähler action is rational or algebraic function of preferred complex coordinates of WCW with ratonal
coefficients, its p-adic continuation is expected to exist.

Circle with rotational symmetries and its hyperbolic counterparts

Consider first circle with emphasis on symmetries and Fourier analysis.

1. In this case angle coordinate φ is the natural coordinate. It however does not make sense as such
p-adically and one must consider either trigonometric functions or the phase exp(iφ) instead.
If one wants to do Fourier analysis on circle one must introduce roots Un,N = exp(in2π/N) of
unity. This means discretization of the circle. Introducing all roots Un,p = exp(i2πn/p), such
that p divides N , one can represent all Uk,n up to n = N . Integration is naturally replaced with
sum by using discrete Fourier analysis on circle. Note that the roots of unity can be expressed
as products of powers of roots of unity exp(in2π/pk), where pk divides N .

2. There is a number theoretical delicacy involved. By Fermat’s theorem ap−1 mod p = 1 for
a = 1, ...p−1 for a given p-adic prime so that for any integer M divisible by a factor of p−1 the
M :th roots of unity exist as ordinary p-adic numbers. The problem disappears if these values
of M are excluded from the discretization for a given value of the p-adic prime. The manner to
achieve this is to assume that N contains no divisors of p−1 and is consistent with the notion of
finite measurement resolution. For instance, N = pn is an especially natural choice guaranteing
this.

3. The p-adic integral defined as a Fourier sum does not reduce to a mere discretization of the
real integral. In the real case the Fourier coefficients must approach to zero as the wave vector
k = n2π/N increases. In the p-adic case the condition consistent with the notion of finite
measurement resolution for angles is that the p-adic valued Fourier coefficients approach to zero
as n increases. This guarantees the p-adic convergence of the discrete approximation of the
integral for large values of N as n increases. The map of p-adic Fourier coefficients to real ones
by canonical identification could be used to relate p-adic and real variants of the function to
each other.

This finding would suggests that p-adic geometries -in particular the p-adic counterpart of CP2,
are discrete. Variables which have the character of a radial coordinate are in natural manner p-
adically continuous whereas phase angles are naturally discrete and described in terms of algebraic
extensions. The conclusion is disappoing since one can quite well argue that the discrete structures
can be regarded as real. Is there any manner to escape this conclusion?

1. Exponential function exp(ix) exists p-adically for |x|p ≤ 1/p but is not periodic. It provides rep-
resentation of p-adic variant of circle as group U(1). One obtains actually a hierarchy of groups
U(1)p,n corresponding to |x|p ≤ 1/pn. One could consider a generalization of phases as products
Expp(N,n2π/N + x) = exp(in2πn/N)exp(ix) of roots of unity and exponent functions with
an imaginary exponent. This would assign to each root of unity p-adic continuum interpreted
as the analog of the interval between two subsequent roots of unity at circle. The hierarchies
of measurement resolutions coming as 2π/pn would be naturally accompanied by increasingly
smaller p-adic groups U(1)p,n.

2. p-Adic integration would involve summation plus possibly also an integration over each p-adic
variant of discretization interval. The summation over the roots of unity implies that the integral
of
∫
exp(inx)dx would appear for n = 0. Whatever the value of this integral is, it is compensated

by a normalization factor guaranteing orthonormality.



6.7. How to define generalized Feynman diagrams? 377

3. If one interprets the p-adic coordinate as p-adic integer without the identification of points
differing by a multiple of n as different points the question whether one should require p-adic
continuity arises. Continuity is obtained if Un(x + mpm) = Un(x) for large values of m. This
is obtained if one has n = pk. In the spherical geometry this condition is not needed and
would mean quantization of angular momentum as L = pk, which does not look natural. If
representations of translation group are considered the condition is natural and conforms with
the spirit of the p-adic length scale hypothesis.

The hyperbolic counterpart of circle corresponds to the orbit of point under Lorentz group in
two 2-D Minkowski space. Plane waves are replaced with exponentially decaying functions of the
coordinate η replacing phase angle. Ordinary exponent function exp(x) has unit p-adic norm when it
exists so that it is not a suitable choice. The powers pn existing for p-adic integers however approach
to zero for large values of x = n. This forces discretization of η or rather the hyperbolic phase as
powers of px, x = n. Also now one could introduce products of Expp(nlog(p) + z) = pnexp(x) to
achieve a p-adic continuum. Also now the integral over the discretization interval is compensated
by orthonormalization and can be forgotten. The integral of exponential function would reduce to
a sum

∫
Exppdx =

∑
k p

k = 1/(1 − p). One can also introduce finite-dimensional but non-algebraic
extensions of p-adic numbers allowing e and its roots e1/n since ep exists p-adically.

Plane with translational and rotational symmetries

Consider first the situation by taking translational symmetries as a starting point. In this case
Cartesian coordinates are natural and Fourier analysis based on plane waves is what one wants to
define. As in the previous case, this can be done using roots of unity and one can also introduce
p-adic continuum by using the p-adic variant of the exponent function. This would effectively reduce
the plane to a box. As already noticed, in this case the quantization of wave vectors as multiples of
1/pk is required by continuity.

One can take also rotational symmetries as a starting point. In this case cylindrical coordinates
(ρ, φ) are natural.

1. Radial coordinate can have arbitrary values. If one wants to keep the connection ρ =
√
x2 + y2

with the Cartesian picture square root allowing extension is natural. Also the values of radial
coordinate proportional to odd power of p are problematic since one should introduce

√
p: is

this extension internally consistent? Does this mean that the points ρ ∝ p2n+1 are excluded so
that the plane decomposes to annuli?

2. As already found, angular momentum eigen states can be described in terms of roots of unity
and one could obtain continuum by allowing also phases defined by p-adic exponent functions.

3. In radial direction one should define the p-adic variants for the integrals of Bessel functions and
they indeed might make sense by algebraic continuation if one consistently defines all functions
as Fourier expansions. Delta-function renormalization causes technical problems for a continuum
of radial wave vectors. One could avoid the problem by using expontentially decaying variants
of Bessel function in the regions far from origin, and here the already proposed description of
the hyperbolic counterparts of plane waves is suggestive.

4. One could try to understand the situation also using Cartesian coordinates. In the case of sphere
this is achieved by introducing two coordinate patches with Cartesian coordinates. Pythagorean
phases are rational phases (orthogonal triangles for which all sides are integer valued) and form
a dense set on circle. Complex rationals (orthogonal triangles with integer valued short sides)
define a more general dense subset of circle. In both cases it is difficult to imagine a discretized
version of integration over angles since discretization with constant angle increrement is not
possible.

The case of sphere and more general symmetric space

In the case of sphere spherical coordinates are favored by symmetry considerations. For spherical
coordinates sin(θ) is analogous to the radial coordinate of plane. Legedre polynomials expressible
as polynomials of sin(θ) and cos(θ) are expressible in terms of phases and the integration measure
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sin2(θ)dθdφ reduces the integral of S2 to summation. As before one can introduce also p-adic contin-
uum. Algebraic cutoffs in both angular momentum l and m appear naturally. Similar cutoffs appear
in the representations of quantum groups and there are good reasons to expect that these phenomena
are correlated.

Exponent of Kähler function appears in the integration over configuration space. From the ex-
pression of Kähler gauge potential given by Aα = J θ

α ∂θK one obtains using Aα = cos(θ)δα,φ and
Jθφ = sin(θ) the expression exp(K) = sin(θ). Hence the exponent of Kähler function is expressible
in terms of spherical harmonics.

The completion of the discretized sphere to a p-adic continuum- and in fact any symmetric space-
could be performed purely group theoretically.

1. Exponential map maps the elements of the Lie-algebra to elements of Lie-group. This recipe
generalizes to arbitrary symmetric space G/H by using the Cartan decomposition g = t + h,
[h, h] ⊂ h,[h, t] ⊂ t,[t, t] ⊂ h. The exponentiation of t maps t to G/H in this case. The
exponential map has a p-adic generalization obtained by considering Lie algebra with coefficients
with p-adic norm smaller than one so that the p-adic exponent function exists. As a matter fact,
one obtains a hierarchy of Lie-algebras corresponding to the upper bounds of the p-adic norm
coming as p−k and this hierarchy naturally corresponds to the hierarchy of angle resolutions
coming as 2π/pk. By introducing finite-dimensional transcendental extensions containing roots
of e one obtains also a hierarchy of p-adic Lie-algebras associated with transcendental extensions.

2. In particular, one can exponentiate the complement of the SO(2) sub-algebra of SO(3) Lie-
algebra in p-adic sense to obtain a p-adic completion of the discrete sphere. Each point of the
discretized sphere would correspond to a p-adic continuous variant of sphere as a symmetric
space. Similar construction applies in the case of CP2. Quite generally, a kind of fractal or
holographic symmetric space is obtained from a discrete variant of the symmetric space by
replacing its points with the p-adic symmetric space.

3. In the N-fold discretization of the coordinates of M-dimensional space t one (N−1)M discretiza-
tion volumes which is the number of points with non-vanishing t-coordinates. It would be nice
if one could map the p-adic discretization volumes with non-vanishing t-coordinates to their
positive valued real counterparts by applying canonical identification. By group invariance it is
enough to show that this works for a discretization volume assignable to the origin. Since the
p-adic numbers with norm smaller than one are mapped to the real unit interval, the p-adic Lie
algebra is mapped to the unit cell of the discretization lattice of the real variant of t. Hence by
a proper normalization this mapping is possible.

The above considerations suggest that the hierarchies of measurement resolutions coming as ∆φ =
2π/pn are in a preferred role. One must be however cautious in order to avoid too strong assumptions.
The following arguments however support this identification.

1. The vision about p-adicization characterizes finite measurement resolution for angle measure-
ment in the most general case as ∆φ = 2πM/N , where M and N are positive integers having
no common factors. The powers of the phases exp(i2πM/N) define identical Fourier basis irre-
spective of the value of M unless one allows only the powers exp(i2πkM/N) for which kM < N
holds true: in the latter case the measurement resolutions with different values of M corre-
spond to different numbers of Fourier components. Otherwise themeasurement ersolution is just
∆φ = 2π/pn. If one regards N as an ordinary integer, one must have N = pn by the p-adic
continuity requirement.

2. One can also interpret N as a p-adic integer and assume that state function reduction selects one
particular prime (no superposition of quantum states with different p-adic topologies). For N =
pnM , where M is not divisible by p, one can express 1/M as a p-adic integer 1/M =

∑
k≥0Mkp

k,

which is infinite as a real integer but effectively reduces to a finite integer K(p) =
∑N−1
k=0 Mkp

k.
As a root of unity the entire phase exp(i2πM/N) is equivalent with exp(i2πR/pn), R = K(p)M
mod pn. The phase would non-trivial only for p-adic primes appearing as factors in N . The
corresponding measurement resolution would be ∆φ = R2π/N . One could assign to a given
measurement resolution all the p-adic primes appearing as factors in N so that the notion of
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multi-p p-adicity would make sense. One can also consider the identification of the measurement
resolution as ∆φ = |N/M |p = 2π/pk. This interpretation is supported by the approach based
on infinite primes [84] .

What about integrals over partonic 2-surfaces and space-time surface?

One can of course ask whether also the integrals over partonic 2-surfaces and space-time surface could
be p-adicized by using the proposed method of discretization. Consider first the p-adic counterparts
of the integrals over the partonic 2-surface X2.

1. WCW Hamiltonians and Kähler form are expressible using flux Hamiltonians defined in terms
of X2 integrals of JHA, where HA is δCD × CP2 Hamiltonian, which is a rational function of
the preferred coordinates defined by the exponentials of the coordinates of the sub-space t in
the appropriate Cartan algebra decomposition. The flux factor J = εαβJαβ

√
g2 is scalar and

does not actually depend on the induced metric.

2. The notion of finite measurement resolution would suggest that the discretization of X2 is
somehow induced by the discretization of δCD × CP2. The coordinates of X2 could be taken
to be the coordinates of the projection of X2 to the sphere S2 associated with δM4

± or to the
homologically non-trivial geodesic sphere of CP2 so that the discretization of the integral would
reduce to that for S2 and to a sum over points of S2.

3. To obtain an algebraic number as an outcome of the summation, one must pose additional
conditions guaranteing that both HA and J are algebraic numbers at the points of discretization
(recall that roots of unity are involved). Assume for definiteness that S2 is rM = constant sphere.
If the remaining preferred coordinates are functions of the preferred S2 coordinates mapping
phases to phases at discretization points, one obtains the desired outcome. These conditions are
rather strong and mean that the various angles defining CP2 coordinates -at least the two cyclic
angle coordinates- are integer multiples of those assignable to S2 at the points of discretization.
This would be achieved if the preferred complex coordinates of CP2 are powers of the preferred
complex coordinate of S2 at these points. One could say that X2 is algebraically continued from
a rational surface in the discretized variant of δCD × CP2. Furthermore, if the measurement
resolutions come as 2π/pn as p-adic continuity actually requires and if they correspond to the
p-adic group Gp,n for which group parameters satisfy |t|p ≤ p−n, one can precisely characterize
how a p-adic prime characterizes the real partonic 2-surface. This would be a fulfilment of one
of the oldest dreams related to the p-adic vision.

A even more ambitious dream would be that even the integral of the Kähler action for preferred
extremals could be defined using a similar procedure. The conjectured slicing of Minkowskian space-
time sheets by string world sheets and partonic 2-surfaces encourages these hopes.

1. One could introduce local coordinates of H at both ends of CD by introducing a continuous
slicing of M4×CP2 by the translates of δM4

±×CP2 in the direction of the time-like vector con-
necting the tips of CD. As space-time coordinates one could select four of the eight coordinates
defining this slicing. For instance, for the regions of the space-time sheet representable as maps
M4 → CP2 one could use the preferred M4 time coordinate, the radial coordinate of δM4

+, and
the angle coordinates of rM = constant sphere.

2. Kähler action density should have algebraic values and this would require the strengthening
of the proposed conditions for X2 to apply to the entire slicing meaning that the discretized
space-time surface is a rational surface in the discretized CD×CP2. If this condition applies to
the entire space-time surface it would effectively mean the discretization of the classical physics
to the level of finite geometries. This seems quite strong implication but is consistent with
the preferred extremal property implying the generalized Bohr rules. The reduction of Kähler
action to 3-dimensional boundary terms is implied by rather general arguments. In this case
only the effective algebraization of the 3-surfaces at the ends of CD and of wormhole throats is
needed [41] . By effective 2-dimensionality these surfaces cannot be chosen freely.
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3. If Kähler function and WCW Hamiltonians are rational functions, this kind of additional condi-
tions are not necessary. It could be that the integrals of defining Kähler action flux Hamiltonians
make sense only in the intersection of real and p-adic worlds assumed to be relevant for the
physics of living systems.

Tentative conclusions

These findings suggest following conclusions.

1. Exponent functions play a key role in the proposed p-adicization. This is not an accident since
exponent functions play a fundamental role in group theory and p-adic variants of real geometries
exist only under symmetries- possibly maximal possible symmetries- since otherwise the notion
of Fourier analysis making possible integration does not exist. The inner product defined in
terms of integration reduce for functions representable in Fourier basis to sums and can be
carried out by using orthogonality conditions. Convolution involving integration reduces to a
product for Fourier components. In the case of imbedding space and WCW these conditions are
satisfied but for space-time surfaces this is not possible.

2. There are several manners to choose the Cartan algebra already in the case of sphere. In the
case of plane one can consider either translations or rotations and this leads to different p-adic
variants of plane. Also the realization of the hierarchy of Planck constants leads to the conclusion
that the extended imbedding space and therefore also WCW contains sectors corresponding to
different choices of quantization axes meaning that quantum measurement has a direct geometric
correlate.

3. The above described 2-D examples represent symplectic geometries for which one has natural
decomposition of coordinates to canonical pairs of cyclic coordinate (phase angle) and cor-
responding canonical conjugate coordinate. p-Adicization depends on whether the conjugate
corresponds to an angle or noncompact coordinate. In both cases it is however possible to define
integration. For instance, in the case of CP2 one would have two canonically conjugate pairs
and one can define the p-adic counterparts of CP2 partial waves by generalizing the procedure
applied to spherical harmonics. Products of functions expressible using partial waves can be
decomposed by tensor product decomposition to spherical harmonics and can be integrated.
In particular inner products can be defined as integrals. The Hamiltonians generating isome-
tries are rational functions of phases: this inspires the hope that also WCW Hamiltonians also
rational functions of preferred WCW coordinates and thus allow p-adic variants.

4. Discretization by introducing algebraic extensions is unavoidable in the p-adicization of geomet-
rical objects but one can have p-adic continuum as the analog of the discretization interval and
in the function basis expressible in terms of phase factors and p-adic counterparts of exponent
functions. This would give a precise meaning for the p-adic counterparts of the imbedding space
and WCW if the latter is a symmetric space allowing coordinatization in terms of phase angles
and conjugate coordinates.

5. The intersection of p-adic and real worlds would be unique and correspond to the points defining
the discretization.

6.7.4 Harmonic analysis in WCW as a manner to calculate WCW func-
tional integrals

Previous examples suggest that symmetric space property, Kähler and symplectic structure and the
use of symplectic coordinates consisting of canonically conjugate pairs of phase angles and correspond-
ing ”radial” coordinates are essential for WCW integration and p-adicization. Kähler function, the
components of the metric, and therefore also metric determinant and Kähler function depend on the
”radial” coordinates only and the possible generalization involves the identification the counterparts
of the ”radial” coordinates in the case of WCW.
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Conditions guaranteing the reduction to harmonic analysis

The basic idea is that harmonic analysis in symmetric space allows to calculate the functional integral
over WCW.

1. Each propagator line corresponds to a symmetric space defined as a coset space G/H of the
symplectic group and Kac-Moody group and one might hope that the proposed p-adicization
works for it- at least when one considers the hierarchy of measurement resolutions forced by
the finiteness of algebraic extensions. This coset space is as a manifold Cartesian product
(G/H) × (G/H) of symmetric spaces G/H associated with ends of the line. Kähler metric
contains also an interaction term between the factors of the Cartesian product so that Kähler
function can be said to reduce to a sum of ”kinetic” terms and interaction term.

2. Effective 2-dimensionality and ZEO allow to treat the ends of the propagator line independently.
This means an enormous simplification. Each line contributes besides propagator a piece to
the exponent of Kähler action identifiable as interaction term in action and depending on the
propagator momentum. This contribution should be expressible in terms of generalized spherical
harmonics. Essentially a sum over the products of pairs of harmonics associated with the ends of
the line multiplied by coefficients analogous to 1/(p2−m2) in the case of the ordinary propagator
would be in question. The optimal situation is that the pairs are harmonics and their conjugates
appear so that one has invariance under G analogous to momentum conservation for the lines
of ordinary Feynman diagrams.

3. Momentum conservation correlates the eigenvalue spectra of the modified Dirac operator D at
propagator lines [20] . G-invariance at vertex dictates the vertex as the singlet part of the
product of WCW harmonics associated with the vertex and one sums over the harmonics for
each internal line. p-Adicization means only the algebraic continuation to real formulas to p-adic
context.

4. The exponent of Kähler function depends on both ends of the line and this means that the ge-
ometries at the ends are correlated in the sense that that Kähler form contains interaction terms
between the line ends. It is however not quite clear whether it contains separate ”kinetic” or self
interaction terms assignable to the line ends. For Kähler function the kinetic and interaction
terms should have the following general expressions as functions of complex WCW coordinates:

Kkin,i =
∑
n

fi,n(Zi)fi,n(Zi) + c.c ,

Kint =
∑
n

g1,n(Z1)g2,n(Z2) + c.c , i = 1, 2 . (6.7.2)

Here Kkin,i define ”kinetic” terms and Kint defines interaction term. One would have what
might be called holomorphic factorization suggesting a connection with conformal field theories.

Symmetric space property -that is isometry invariance- suggests that one has

fi,n = f2,n ≡ fn , g1,n = g2,n ≡ gn (6.7.3)

such that the products are invariant under the group H appearing in G/H and therefore have
opposite H quantum numbers. The exponent of Kähler function does not factorize although the
terms in its Taylor expansion factorize to products whose factors are products of holomorphic
and antihilomorphic functions.

5. If one assumes that the exponent of Kähler function reduces to a product of eigenvalues of the
modified Dirac operator eigenvalues must have the decomposition
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λk =
∏
i=1,2

exp

[∑
n

ck,ngn(Zi)gn(Zi) + c.c

]
× exp

[∑
n

dk,ngn(Z1)gn(Z2) + c.c

]
.(6.7.4)

Hence also the eigenvalues coming from the Dirac propagators have also expansion in terms
of G/H harmonics so that in principle WCW integration would reduce to Fourier analysis in
symmetric space.

Generalization of WCW Hamiltonians

This picture requires a generalization of the view about configuration space Hamiltonians since also
the interaction term between the ends of the line is present not taken into account in the previous
approach.

1. The proposed representation of WCW Hamiltonians as flux Hamiltonians [21, 20]

Q(HA) =

∫
HA(1 +K)Jd2x ,

J = εαβJαβ , J03√g4 = KJ12 . (6.7.5)

works for the kinetic terms only since J cannot be the same at the ends of the line. The formula
defining K assumes weak form of self-duality (03 refers to the coordinates in the complement
of X2 tangent plane in the 4-D tangent plane). K is assumed to be symplectic invariant and
constant for given X2. The condition that the flux of F 03 = (~/gK)J03 defining the counterpart
of Kähler electric field equals to the Kähler charge gK gives the condition K = g2

K/~, where gK

is Kähler coupling constant. Within experimental uncertainties one has αK = g
/
K4π~0 = αem '

1/137, where αem is finite structure constant in electron length scale and ~0 is the standard
value of Planck constant.

The assumption that Poisson bracket of WCW Hamiltonians reduces to the level of imbed-
ding space - in other words {Q(HA), Q(HB} = Q({HA, HB}) - can be justified. One starts
from the representation in terms of say flux Hamiltonians Q(HA) and defines JA,B as JA,B ≡
Q({HA, HB}). One has ∂HA/∂tB = {HB , HA}, where tB is the parameter associated with the
exponentiation of HB . The inverse JAB of JA,B = ∂HB/∂tA is expressible as JA,B = ∂tA/∂HB .
From these formulas one can deduce by using chain rule that the bracket {Q(HA), Q(HB} =
∂tCQ(HA)JCD∂tDQ(HB) of flux Hamiltonians equals to the flux Hamiltonian Q({HA, HB}).

2. One should be able to assign to WCW Hamiltonians also a part corresponding to the interac-
tion term. The symplectic conjugation associated with the interaction term permutes the WCW
coordinates assignable to the ends of the line. One should reduce this apparently non-local sym-
plectic conjugation (if one thinks the ends of line as separate objects) to a non-local symplectic
conjugation for δCD × CP2 by identifying the points of lower and upper end of CD related
by time reflection and assuming that conjugation corresponds to time reflection. Formally this
gives a well defined generalization of the local Poisson brackets between time reflected points at
the boundaries of CD. The connection of Hermitian conjugation and time reflection in quantum
field theories is is in accordance with this picture.

3. The only manner to proceed is to assign to the flux Hamiltonian also a part obtained by the
replacement of the flux integral over X2 with an integral over the projection of X2 to a sphere
S2 assignable to the light-cone boundary or to a geodesic sphere of CP2, which come as two
varieties corresponding to homologically trivial and non-trivial spheres. The projection is defined
as by the geodesic line orthogonal to S2 and going through the point of X2. The hierarchy of
Planck constants assigns to CD a preferred geodesic sphere of CP2 as well as a unique sphere
S2 as a sphere for which the radial coordinate rM or the light-cone boundary defined uniquely
is constant: this radial coordinate corresponds to spherical coordinate in the rest system defined
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by the time-like vector connecting the tips of CD. Either spheres or possibly both of them could
be relevant.

Recall that also the construction of number theoretic braids and symplectic QFT [23] led to
the proposal that braid diagrams and symplectic triangulations could be defined in terms of
projections of braid strands to one of these spheres. One could also consider a weakening for
the condition that the points of the number theoretic braid are algebraic by requiring only that
the S2 coordinates of the projection are algebraic and that these coordinates correspond to the
discretization of S2 in terms of the phase angles associated with θ and φ.

This gives for the corresponding contribution of the WCW Hamiltonian the expression

Q(HA)int =

∫
S2
±

HAXδ
2(s+, s−)d2s± =

∫
P (X2

+)∩P (X2
−)

∂(s1, s2)

∂(x1
±, x

2
±)
d2x± . (6.7.6)

Here the Poisson brackets between ends of the line using the rules involve delta function
δ2(s+, s−) at S2 and the resulting Hamiltonians can be expressed as a similar integral of H[A,B]

over the upper or lower end since the integral is over the intersection of S2 projections.

The expression must vanish when the induced Kähler form vanishes for either end. This is
achieved by identifying the scalar X in the following manner:

X = Jkl+ J
−
kl ,

Jkl± = (1 +K±)∂αs
k∂βs

lJαβ± . (6.7.7)

The tensors are lifts of the induced Kähler form of X2
± to S2 (not CP2).

4. One could of course ask why these Hamiltonians could not contribute also to the kinetic terms
and why the brackets with flux Hamiltonians should vanish. This relate to how one defines
the Kähler form. It was shown above that in case of flux Hamiltonians the definition of Kähler
form as brackets gives the basic formula {Q(HA), Q(HB)} = Q({HA, HB} and same should hold
true now. In the recent case JA,B would contain an interaction term defined in terms of flux
Hamiltonians and the previous argument should go through also now by identifying Hamiltonians
as sums of two contributions and by introducing the doubling of the coordinates tA.

5. The quantization of the modified Dirac operator must be reconsidered. It would seem that one
must add to the super-Hamiltonian completely analogous term obtained by replacing (1 +K)J
with X∂(s1, s2)/∂(x1

±, x
2
±). Besides the anticommutation relations defining correct anticom-

mutators to flux Hamiltonians, one should pose anticommutation relations consistent with the
anticommutation relations of super Hamiltonians. In these anticommutation relations (1 +
K)Jδ2(x, y) would be replaced with Xδ2(s+, s−). This would guarantee that the oscillator op-
erators at the ends of the line are not independent and that the resulting Hamiltonian reduces
to integral over either end for H[A,B].

6. In the case of CP2 the Hamiltonians generating isometries are rational functions. This should
hold true also now so that p-adic variants of Hamiltonians as functions in WCW would make
sense. This in turn would imply that the components of the WCW Kähler form are rational
functions. Also the exponentiation of Hamiltonians make sense p-adically if one allows the
exponents of group parameters to be functions Expp(t).

Does the expansion in terms of partial harmonics converge?

The individual terms in the partial wave expansion seem to be finite but it is not at all clear whether
the expansion in powers of K actually converges.
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1. In the proposed scenario one performs the expansion of the vacuum functional exp(K) in powers
of K and therefore in negative powers of αK . In principle an infinite number of terms can be
present. This is analogous to the perturbative expansion based on using magnetic monopoles
as basic objects whereas the expansion using the contravariant Kähler metric as a propagator
would be in positive powers of αK and analogous to the expansion in terms of magnetically
bound states of wormhole throats with vanishing net value of magnetic charge. At this moment
one can only suggest various approaches to how one could understand the situation.

2. Weak form of self-duality and magnetic confinement could change the sitution. Performing
the perturbation around magnetic flux tubes together with the assumed slicing of the space-
time sheet by stringy world sheets and partonic 2-surfaces could mean that the perturbation
corresponds to the action assignable to the electric part of Kähler form proportional to αK by
the weak self-duality. Hence by K = 4παK relating Kähler electric field to Kähler magnetic
field the expansion would come in powers of a term containing sum of terms proportional to α0

K

and αK . This would leave to the scattering amplitudes the exponents of Kähler function at the
maximum of Kähler function so that the non-analytic dependence on αK would not disappear.

A further reason to be worried about is that the expansion containing infinite number of terms
proportional to α0

K could fail to converge.

1. This could be also seen as a reason for why magnetic singlets are unavoidable except perhaps
for ~ < ~0. By the holomorphic factorization the powers of the interaction part of Kähler
action in powers of 1/αK would naturally correspond to increasing and opposite net values of
the quantum numbers assignable to the WCW phase coordinates at the ends of the propagator
line. The magnetic bound states could have similar expansion in powers of αK as pairs of
states with arbitrarily high but opposite values of quantum numbers. In the functional integral
these quantum numbers would compensate each other. The functional integral would leave only
an expansion containing powers of αK starting from some finite possibly negative (unless one
assumes the weak form of self-duality) power. Various gauge coupling strengths are expected to
be proportional to αK and these expansions should reduce to those in powers of αK .

2. Since the number of terms in the fermionic propagator expansion is finite, one might hope on
basis of super-symmetry that the same is true in the case of the functional integral expansion.
By the holomorpic factorization the expansion in powers of K means the appearance of terms
with increasingly higher quantum numbers. Quantum number conservation at vertices would
leave only a finite number of terms to tree diagrams. In the case of loop diagrams pairs of
particles with opposite and arbitrarily high values of quantum numbers could be generated at
the vertex and magnetic confinement might be necessary to guarantee the convergence. Also
super-symmetry could imply cancellations in loops.

Could one do without flux Hamiltonians?

The fact that the Kähler functions associated with the propagator lines can be regarded as interaction
terms inspires the question whether the Kähler function could contain only the interaction terms so
that Kähler form and Kähler metric would have components only between the ends of the lines.

1. The basic objection is that flux Hamiltonians too beautiful objects to be left without any role
in the theory. One could also argue that the WCW metric would not be positive definite if only
the non-diagonal interaction term is present. The simplest example is Hermitian 2 × 2-matrix
with vanishing diagonal for which eigenvalues are real but of opposite sign.

2. One could of course argue that the expansions of exp(K) and λk give in the general powers
(fnfn)m analogous to diverging tadpole diagrams of quantum field theories due to local in-
teraction vertices. These terms do not produce divergences now but the possibility that the
exponential series of this kind of terms could diverge cannot be excluded. The absence of the
kinetic terms would allow to get rid of these terms and might be argued to be the symmetric
space counterpart for the vanishing of loops in WCW integral.



6.8. General vision about real and p-adic coupling constant evolution 385

3. In zero energy ontology this idea does not look completely non-sensical since physical states are
pairs of positive and negative energy states. Note also that in quantum theory only creation
operators are used to create positive energy states. The manifest non-locality of the interaction
terms and absence of the counterparts of kinetic terms would provide a trivial manner to get rid
of infinities due to the presence of local interactions. The safest option is however to keep both
terms.

Summary

The discussion suggests that one must treat the entire Feynman graph as single geometric object
with Kähler geometry in which the symmetric space is defined as product of what could be regarded
as analogs of symmetric spaces with interaction terms of the metric coming from the propagator
lines. The exponent of Kähler function would be the product of exponents associated with all lines
and contributions to lines depend on quantum numbers (momentum and color quantum numbers)
propagating in line via the coupling to the modified Dirac operator. The conformal factorization
would allow the reduction of integrations to Fourier analysis in symmetric space. What is of decisive
importance is that the entire Feynman diagrammatics at WCW level would reduce to the construction
of WCW geometry for a single propagator line as a function of quantum numbers propagating on the
line.

6.8 General vision about real and p-adic coupling constant
evolution

The unification of super-symplectic and Super Kac-Moody symmetries allows new view about p-adic
aspects of the theory forcing a considerable modification and refinement of the almost decade old first
picture about color coupling constant evolution.

Perhaps the most important questions about coupling constant evolution relate to the basic hy-
pothesis about preferred role of primes p ' 2k, k an integer. Why integer values of k are favored,
why prime values are even more preferred, and why Mersenne primes Mn = 2n − 1 and Gaussian
Mersennes seem to be at the top of the hierarchy?

Second bundle of questions relates to the color coupling constant evolution. Do Mersenne primes
really define a hierarchy of fixed points of color coupling constant evolution for a hierarchy of asymptot-
ically non-free QCD type theories both in quark and lepton sector of the theory? How the transitions
Mn →Mn(next) occur? What are the space-time correlates for the coupling constant evolution and for
for these transitions and how space-time description relates to the usual description in terms of parton
loops? How the condition that p-adic coupling constant evolution reflects the real coupling constant
evolution can be satisfied and how strong conditions it poses on the coupling constant evolution?

6.8.1 A general view about coupling constant evolution

Zero energy ontology

In zero energy ontology one replaces positive energy states with zero energy states with positive and
negative energy parts of the state at the boundaries of future and past direct light-cones forming a
causal diamond. All conserved quantum numbers of the positive and negative energy states are of
opposite sign so that these states can be created from vacuum. ”Any physical state is creatable from
vacuum” becomes thus a basic principle of quantum TGD and together with the notion of quantum
jump resolves several philosophical problems (What was the initial state of universe?, What are the
values of conserved quantities for Universe, Is theory building completely useless if only single solution
of field equations is realized?).

At the level of elementary particle physics positive and negative energy parts of zero energy state
are interpreted as initial and final states of a particle reaction so that quantum states become physical
events. Equivalence Principle would hold true in the sense that the classical gravitational four-
momentum of the vacuum extremal whose small deformations appear as the argument of configuration
space spinor field is equal to the positive energy of the positive energy part of the zero energy quantum
state. Equivalence Principle is expected to hold true for elementary particles and their composites
but not for the quantum states defined around non-vacuum extremals.
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Does the finiteness of measurement resolution dictate the laws of physics?

The hypothesis that the mere finiteness of measurement resolution could determine the laws of quan-
tum physics [23] completely belongs to the category of not at all obvious first principles. The basic ob-
servation is that the Clifford algebra spanned by the gamma matrices of the ”world of classical worlds”
represents a von Neumann algebra [76] known as hyperfinite factor of type II1 (HFF) [23, 97, 30] .
HFF [69, 96] is an algebraic fractal having infinite hierarchy of included subalgebras isomorphic to
the algebra itself [5] . The structure of HFF is closely related to several notions of modern theoret-
ical physics such as integrable statistical physical systems [130] , anyons [23] , quantum groups and
conformal field theories [97] , and knots and topological quantum field theories [120, 136] .

Zero energy ontology is second key element. In zero energy ontology these inclusions allow an
interpretation in terms of a finite measurement resolution: in the standard positive energy ontology this
interpretation is not possible. Inclusion hierarchy defines in a natural manner the notion of coupling
constant evolution and p-adic length scale hypothesis follows as a prediction. In this framework
the extremely heavy machinery of renormalized quantum field theory involving the elimination of
infinities is replaced by a precisely defined mathematical framework. More concretely, the included
algebra creates states which are equivalent in the measurement resolution used. Zero energy states
are associated with causal diamond formed by a pair of future and past directed light-cones having
positive and negative energy parts of state at their boundaries. Zero energy state can be modified in
a time scale shorter than the time scale of the zero energy state itself.

On can imagine two kinds of measurement resolutions. The element of the included algebra can
leave the quantum numbers of the positive and negative energy parts of the state invariant, which
means that the action of subalgebra leaves M-matrix invariant. The action of the included algebra
can also modify the quantum numbers of the positive and negative energy parts of the state such that
the zero energy property is respected. In this case the Hermitian operators subalgebra must commute
with M-matrix.

The temporal distance between the tips of light-cones corresponds to the secondary p-adic time
scale Tp,2 =

√
pTp by a simple argument based on the observation that light-like randomness of light-

like 3-surface is analogous to Brownian motion. This gives the relationship Tp = L2
p/Rc, where R is

CP2 size. The action of the included algebra corresponds to an addition of zero energy parts to either
positive or negative energy part of the state and is like addition of quantum fluctuation below the time
scale of the measurement resolution. The natural hierarchy of time scales is obtained as Tn = 2−nT
since these insertions must belong to either upper or lower half of the causal diamond. This implies
that preferred p-adic primes are near powers of 2. For electron the time scale in question is .1 seconds
defining the fundamental biorhythm of 10 Hz.

M-matrix representing a generalization of S-matrix and expressible as a product of a positive square
root of the density matrix and unitary S-matrix would define the dynamics of quantum theory [23] .
The notion of thermodynamical state would cease to be a theoretical fiction and in a well-defined sense
quantum theory could be regarded as a square root of thermodynamics. The original hope was that
Connes tensor product realizing mathematical the finite measurement resolution could fix M-matrix
to high degree turned out be too optimistic.

How do p-adic coupling constant evolution and p-adic length scale hypothesis emerge?

Zero energy ontology in which zero energy states have as imbedding space correlates causal diamonds
for which the distance between the tips of future and past directed light-cones are power of 2 multiples
of fundamental time scale (Tn = 2nT0) implies in a natural manner coupling constant evolution. One
must however emphasize that also the weaker condition Tp = pT0, p prime, is possible, and would
assign all p-adic time scales to the size scale hierarchy of CDs.

Could the coupling constant evolution in powers of 2 implying time scale hierarchy Tn = 2nT0

induce p-adic coupling constant evolution and explain why p-adic length scales correspond to Lp ∝√
pR, p ' 2k, R CP2 length scale? This looks attractive but there is a problem. p-Adic length scales

come as powers of
√

2 rather than 2 and the strongly favored values of k are primes and thus odd so
that n = k/2 would be half odd integer. This problem can be solved.

1. The observation that the distance traveled by a Brownian particle during time t satisfies r2 = Dt
suggests a solution to the problem. p-Adic thermodynamics applies because the partonic 3-
surfaces X2 are as 2-D dynamical systems random apart from light-likeness of their orbit. For



6.8. General vision about real and p-adic coupling constant evolution 387

CP2 type vacuum extremals the situation reduces to that for a one-dimensional random light-like
curve in M4. The orbits of Brownian particle would now correspond to light-like geodesics γ3 at
X3. The projection of γ3 to a time=constant section X2 ⊂ X3 would define the 2-D path γ2 of
the Brownian particle. The M4 distance r between the end points of γ2 would be given r2 = Dt.
The favored values of t would correspond to Tn = 2nT0 (the full light-like geodesic). p-Adic
length scales would result as L2(k) = DT (k) = D2kT0 for D = R2/T0. Since only CP2 scale is
available as a fundamental scale, one would have T0 = R and D = R and L2(k) = T (k)R.

2. p-Adic primes near powers of 2 would be in preferred position. p-Adic time scale would not relate
to the p-adic length scale via Tp = Lp/c as assumed implicitly earlier but via Tp = L2

p/R0 =√
pLp, which corresponds to secondary p-adic length scale. For instance, in the case of electron

with p = M127 one would have T127 = .1 second which defines a fundamental biological rhythm.
Neutrinos with mass around .1 eV would correspond to L(169) ' 5 µm (size of a small cell) and
T (169) ' 1. × 104 years. A deep connection between elementary particle physics and biology
becomes highly suggestive.

3. In the proposed picture the p-adic prime p ' 2k would characterize the thermodynamics of the
random motion of light-like geodesics of X3 so that p-adic prime p would indeed be an inherent
property of X3.

6.8.2 Both symplectic and conformal field theories are needed in TGD
framework

Before one can say anything quantitative about coupling constant evolution, one must have a for-
mulation for its TGD counterpart and thus also a more detailed formulation for how to calculate
M-matrix elements. There is also the question about infinities. By very general arguments infinities
of quantum field theories are predicted to cancel in TGD Universe - basically by the non-locality of
Kähler function as a functional of 3-surface and by the general properties of the vacuum functional
identified as the exponent of Kähler function. The precise mechanism leading to the cancellation
of infinities of local quantum field theories has remained unspecified. Only the realization that the
symplectic invariance of quantum TGD provides a mechanism regulating the short distance behavior
of N-point functions changed the situation in this respect. This also leads to concrete view about the
generalized Feynman diagrams giving M-matrix elements and rather close resemblance with ordinary
Feynman diagrammatics.

Symplectic invariance

Symplectic (or canonical as I have called them) symmetries of δM4
+ × CP2 (light-cone boundary

briefly) act as isometries of the ”world of classical worlds”. One can see these symmetries as analogs
of Kac-Moody type symmetries with symplectic transformations of S2 × CP2, where S2 is rM =
constant sphere of lightcone boundary, made local with respect to the light-like radial coordinate rM
taking the role of complex coordinate. Thus finite-dimensional Lie group G is replaced with infinite-
dimensional group of symplectic transformations. This inspires the question whether a symplectic
analog of conformal field theory at δM4

+ × CP2 could be relevant for the construction of n-point
functions in quantum TGD and what general properties these n-point functions would have. This
section appears already in the previous chapter about symmetries of quantum TGD [24] but because
the results of the section provide the first concrete construction recipe of M-matrix in zero energy
ontology, it is included also in this chapter.

Symplectic QFT at sphere

Actually the notion of symplectic QFT emerged as I tried to understand the properties of cosmic
microwave background which comes from the sphere of last scattering which corresponds roughly to
the age of 5 × 105 years [63] . In this situation vacuum extremals of Kähler action around almost
unique critical Robertson-Walker cosmology imbeddable in M4 × S2, where there is homologically
trivial geodesic sphere of CP2. Vacuum extremal property is satisfied for any space-time surface
which is surface in M4 × Y 2, Y 2 a Lagrangian sub-manifold of CP2 with vanishing induced Kähler
form. Symplectic transformations of CP2 and general coordinate transformations of M4 are dynamical
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symmetries of the vacuum extremals so that the idea of symplectic QFT emerges natural. Therefore
I shall consider first symplectic QFT at the sphere S2 of last scattering with temperature fluctution
∆T/T proportional to the fluctuation of the metric component gaa in Robertson-Walker coordinates.

1. In quantum TGD the symplectic transformation of the light-cone boundary would induce action
in the ”world of classical worlds” (light-like 3-surfaces). In the recent situation it is convenient
to regard perturbations of CP2 coordinates as fields at the sphere of last scattering (call it S2) so
that symplectic transformations of CP2 would act in the field space whereas those of S2 would
act in the coordinate space just like conformal transformations. The deformation of the metric
would be a symplectic field in S2. The symplectic dimension would be induced by the tensor
properties of R-W metric in R-W coordinates: every S2 coordinate index would correspond
to one unit of symplectic dimension. The symplectic invariance in CP2 degrees of freedom is
guaranteed if the integration measure over the vacuum deformations is symplectic invariant.
This symmetry does not play any role in the sequel.

2. For a symplectic scalar field n ≥ 3-point functions with a vanishing anomalous dimension would
be functions of the symplectic invariants defined by the areas of geodesic polygons defined by
subsets of the arguments as points of S2. Since n-polygon can be constructed from 3-polygons
these invariants can be expressed as sums of the areas of 3-polygons expressible in terms of
symplectic form. n-point functions would be constant if arguments are along geodesic circle
since the areas of all sub-polygons would vanish in this case. The decomposition of n-polygon to
3-polygons brings in mind the decomposition of the n-point function of conformal field theory to
products of 2-point functions by using the fusion algebra of conformal fields (very symbolically
ΦkΦl = cmklΦm). This intuition seems to be correct.

3. Fusion rules stating the associativity of the products of fields at different points should generalize.
In the recent case it is natural to assume a non-local form of fusion rules given in the case of
symplectic scalars by the equation

Φk(s1)Φl(s2) =

∫
cmklf(A(s1, s2, s3))Φm(s)dµs . (6.8.1)

Here the coefficients cmkl are constants and A(s1, s2, s3) is the area of the geodesic triangle of
S2 defined by the sympletic measure and integration is over S2 with symplectically invariant
measure dµs defined by symplectic form of S2. Fusion rules pose powerful conditions on n-point
functions and one can hope that the coefficients are fixed completely.

4. The application of fusion rules gives at the last step an expectation value of 1-point function of
the product of the fields involves unit operator term

∫
cklf(A(s1, s2, s))Iddµs so that one has

〈Φk(s1)Φl(s2)〉 =

∫
cklf(A(s1, s2, s))dµs . (6.8.2)

Hence 2-point function is average of a 3-point function over the third argument. The absence of
non-trivial symplectic invariants for 1-point function means that n = 1- an are constant, most
naturally vanishing, unless some kind of spontaneous symmetry breaking occurs. Since the
function f(A(s1, s2, s3)) is arbitrary, 2-point correlation function can have both signs. 2-point
correlation function is invariant under rotations and reflections.

Symplectic QFT with spontaneous breaking of rotational and reflection symmetries

CMB data suggest breaking of rotational and reflection symmetries of S2. A possible mechanism of
spontaneous symmetry breaking is based on the observation that in TGD framework the hierarchy of
Planck constants assigns to each sector of the generalized imbedding space a preferred quantization
axes. The selection of the quantization axis is coded also to the geometry of ”world of classical
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worlds”, and to the quantum fluctuations of the metric in particular. Clearly, symplectic QFT with
spontaneous symmetry breaking would provide the sought-for really deep reason for the quantization
of Planck constant in the proposed manner.

1. The coding of angular momentum quantization axis to the generalized imbedding space geometry
allows to select South and North poles as preferred points of S2. To the three arguments s1, s2, s3

of the 3-point function one can assign two squares with the added point being either North or
South pole. The difference

∆A(s1, s2, s3) ≡ A(s1, s2, s3, N)−A(s1, s2, s3, S) (6.8.3)

of the corresponding areas defines a simple symplectic invariant breaking the reflection symmetry
with respect to the equatorial plane. Note that ∆A vanishes if arguments lie along a geodesic
line or if any two arguments co-incide. Quite generally, symplectic QFT differs from conformal
QFT in that correlation functions do not possess singularities.

2. The reduction to 2-point correlation function gives a consistency conditions on the 3-point
functions

〈(Φk(s1)Φl(s2))Φm(s3)〉 = crkl

∫
f(∆A(s1, s2, s))〈Φr(s)Φm(s3)〉dµs

= (6.8.4)

crklcrm

∫
f(∆A(s1, s2, s))f(∆A(s, s3, t))dµsdµt . (6.8.5)

Associativity requires that this expression equals to 〈Φk(s1)(Φl(s2)Φm(s3))〉 and this gives ad-
ditional conditions. Associativity conditions apply to f(∆A) and could fix it highly uniquely.

3. 2-point correlation function would be given by

〈Φk(s1)Φl(s2)〉 = ckl

∫
f(∆A(s1, s2, s))dµs (6.8.6)

4. There is a clear difference between n > 3 and n = 3 cases: for n > 3 also non-convex polygons
are possible: this means that the interior angle associated with some vertices of the polygon is
larger than π. n = 4 theory is certainly well-defined, but one can argue that so are also n > 4
theories and skeptic would argue that this leads to an inflation of theories. TGD however allows
only finite number of preferred points and fusion rules could eliminate the hierarchy of theories.

5. To sum up, the general predictions are following. Quite generally, for f(0) = 0 n-point cor-
relation functions vanish if any two arguments co-incide which conforms with the spectrum of
temperature fluctuations. It also implies that symplectic QFT is free of the usual singularities.
For symmetry breaking scenario 3-point functions and thus also 2-point functions vanish also if
s1 and s2 are at equator. All these are testable predictions using ensemble of CMB spectra.

Generalization to quantum TGD

Since number theoretic braids are the basic objects of quantum TGD, one can hope that the n-point
functions assignable to them could code the properties of ground states and that one could separate
from n-point functions the parts which correspond to the symplectic degrees of freedom acting as
symmetries of vacuum extremals and isometries of the ’world of classical worlds’.

1. This approach indeed seems to generalize also to quantum TGD proper and the n-point func-
tions associated with partonic 2-surfaces can be decomposed in such a manner that one obtains
coefficients which are symplectic invariants associated with both S2 and CP2 Kähler form.
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2. Fusion rules imply that the gauge fluxes of respective Kähler forms over geodesic triangles
associated with the S2 and CP2 projections of the arguments of 3-point function serve basic
building blocks of the correlation functions. The North and South poles of S2 and three poles
of CP2 can be used to construct symmetry breaking n-point functions as symplectic invariants.
Non-trivial 1-point functions vanish also now.

3. The important implication is that n-point functions vanish when some of the arguments co-
incide. This might play a crucial role in taming of the singularities: the basic general prediction
of TGD is that standard infinities of local field theories should be absent and this mechanism
might realize this expectation.

Next some more technical but elementary first guesses about what might be involved.

1. It is natural to introduce the moduli space for n-tuples of points of the symplectic manifold as
the space of symplectic equivalence classes of n-tuples. In the case of sphere S2 convex n-polygon
allows n+ 1 3-sub-polygons and the areas of these provide symplectically invariant coordinates
for the moduli space of symplectic equivalence classes of n-polygons (2n-D space of polygons is
reduced to n + 1-D space). For non-convex polygons the number of 3-sub-polygons is reduced
so that they seem to correspond to lower-dimensional sub-space. In the case of CP2 n-polygon
allows besides the areas of 3-polygons also 4-volumes of 5-polygons as fundamental symplectic
invariants. The number of independent 5-polygons for n-polygon can be obtained by using
induction: once the numbers N(k, n) of independent k ≤ n-simplices are known for n-simplex,
the numbers of k ≤ n+1-simplices for n+1-polygon are obtained by adding one vertex so that by
little visual gymnastics the numbers N(k, n+1) are given by N(k, n+1) = N(k−1, n)+N(k, n).
In the case of CP2 the allowance of 3 analogs {N,S, T} of North and South poles of S2 means that
besides the areas of polygons (s1, s2, s3), (s1, s2, s3, X), (s1, s2, s3, X, Y ), and (s1, s2, s3, N, S, T )
also the 4-volumes of 5-polygons (s1, s2, s3, X, Y ), and of 6-polygon (s1, s2, s3, N, S, T ), X,Y ∈
{N,S, T} can appear as additional arguments in the definition of 3-point function.

2. What one really means with symplectic tensor is not clear since the naive first guess for the
n-point function of tensor fields is not manifestly general coordinate invariant. For instance, in
the model of CMB, the components of the metric deformation involving S2 indices would be
symplectic tensors. Tensorial n-point functions could be reduced to those for scalars obtained as
inner products of tensors with Killing vector fields of SO(3) at S2. Again a preferred choice of
quantization axis would be introduced and special points would correspond to the singularities
of the Killing vector fields.

The decomposition of Hamiltonians of the ”world of classical worlds” expressible in terms of
Hamiltonians of S2 × CP2 to irreps of SO(3) and SU(3) could define the notion of symplectic
tensor as the analog of spherical harmonic at the level of configuration space. Spin and gluon
color would have natural interpretation as symplectic spin and color. The infinitesimal action of
various Hamiltonians on n-point functions defined by Hamiltonians and their super counterparts
is well-defined and group theoretical arguments allow to deduce general form of n-point functions
in terms of symplectic invariants.

3. The need to unify p-adic and real physics by requiring them to be completions of rational
physics, and the notion of finite measurement resolution suggest that discretization of also
fusion algebra is necessary. The set of points appearing as arguments of n-point functions
could be finite in a given resolution so that the p-adically troublesome integrals in the formu-
las for the fusion rules would be replaced with sums. Perhaps rational/algebraic variants of
S2 × CP2 = SO(3)/SO(2) × SU(3)/U(2) obtained by replacing these groups with their ratio-
nal/algebraic variants are involved. Tedrahedra, octahedra, and dodecahedra suggest themselves
as simplest candidates for these discretized spaces. Also the symplectic moduli space would be
discretized to contain only n-tuples for which the symplectic invariants are numbers in the al-
lowed algebraic extension of rationals. This would provide an abstract looking but actually very
concrete operational approach to the discretization involving only areas of n-tuples as internal
coordinates of symplectic equivalence classes of n-tuples. The best that one could achieve would
be a formulation involving nothing below measurement resolution.



6.8. General vision about real and p-adic coupling constant evolution 391

4. This picture based on elementary geometry might make sense also in the case of conformal sym-
metries. The angles associated with the vertices of the S2 projection of n-polygon could define
conformal invariants appearing in n-point functions and the algebraization of the corresponding
phases would be an operational manner to introduce the space-time correlates for the roots of
unity introduced at quantum level. In CP2 degrees of freedom the projections of n-tuples to the
homologically trivial geodesic sphere S2 associated with the particular sector of CH would allow
to define similar conformal invariants. This framework gives dimensionless areas (unit sphere is
considered). p-Adic length scale hypothesis and hierarchy of Planck constants would bring in
the fundamental units of length and time in terms of CP2 length.

The recent view about M-matrix described in [23] is something almost unique determined by
Connes tensor product providing a formal realization for the statement that complex rays of state
space are replaced with N rays where N defines the hyper-finite sub-factor of type II1 defining the
measurement resolution. M -matrix defines time-like entanglement coefficients between positive and
negative energy parts of the zero energy state and need not be unitary. It is identified as square root
of density matrix with real expressible as product of of real and positive square root and unitary
S-matrix. This S-matrix is what is measured in laboratory. There is also a general vision about how
vertices are realized: they correspond to light-like partonic 3-surfaces obtained by gluing incoming and
outgoing partonic 3-surfaces along their ends together just like lines of Feynman diagrams. Note that
in string models string world sheets are non-singular as 2-manifolds whereas 1-dimensional vertices
are singular as 1-manifolds. These ingredients we should be able to fuse together. So we try once
again!

1. Iteration starting from vertices and propagators is the basic approach in the construction of
n-point function in standard QFT. This approach does not work in quantum TGD. Symplectic
and conformal field theories suggest that recursion replaces iteration in the construction. One
starts from an n-point function and reduces it step by step to a vacuum expectation value of a
2-point function using fusion rules. Associativity becomes the fundamental dynamical principle
in this process. Associativity in the sense of classical number fields has already shown its power
and led to a hyper-octoninic formulation of quantum TGD promising a unification of various
visions about quantum TGD [86] .

2. Let us start from the representation of a zero energy state in terms of a causal diamond defined by
future and past directed light-cones. Zero energy state corresponds to a quantum superposition
of light-like partonic 3-surfaces each of them representing possible particle reaction. These
3-surfaces are very much like generalized Feynman diagrams with lines replaced by light-like 3-
surfaces coming from the upper and lower light-cone boundaries and glued together along their
ends at smooth 2-dimensional surfaces defining the generalized vertices.

3. It must be emphasized that the generalization of ordinary Feynman diagrammatics arises and
conformal and symplectic QFTs appear only in the calculation of single generalized Feynman
diagram. Therefore one could still worry about loop corrections. The fact that no integration
over loop momenta is involved and there is always finite cutoff due to discretization together
with recursive instead of iterative approach gives however good hopes that everything works.
Note that this picture is in conflict with one of the earlier approaches based on positive energy
ontology in which the hope was that only single generalized Feynman diagram could define the
U-matrix thought to correspond to physical S-matrix at that time.

4. One can actually simplify things by identifying generalized Feynman diagrams as maxima of
Kähler function with functional integration carried over perturbations around it. Thus one
would have conformal field theory in both fermionic and configuration space degrees of freedom.
The light-like time coordinate along light-like 3-surface is analogous to the complex coordinate
of conformal field theories restricted to some curve. If it is possible continue the light-like
time coordinate to a hyper-complex coordinate in the interior of 4-D space-time sheet, the
correspondence with conformal field theories becomes rather concrete. Same applies to the
light-like radial coordinates associated with the light-cone boundaries. At light-cone boundaries
one can apply fusion rules of a symplectic QFT to the remaining coordinates. Conformal fusion
rules are applied only to point pairs which are at different ends of the partonic surface and there
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are no conformal singularities since arguments of n-point functions do not co-incide. By applying
the conformal and symplectic fusion rules one can eventually reduce the n-point function defined
by the various fermionic and bosonic operators appearing at the ends of the generalized Feynman
diagram to something calculable.

5. Finite measurement resolution defining the Connes tensor product is realized by the discretiza-
tion applied to the choice of the arguments of n-point functions so that discretion is not only a
space-time correlate of finite resolution but actually defines it. No explicit realization of the mea-
surement resolution algebra N seems to be needed. Everything should boil down to the fusion
rules and integration measure over different 3-surfaces defined by exponent of Kähler function
and by imaginary exponent of Chern-Simons action. The continuation of the configuration
space Clifford algebra for 3-surfaces with cm degrees of freedom fixed to a hyper-octonionic vari-
ant of gamma matrix field of super-string models defined in M8 (hyper-octonionic space) and
M8 ↔M4×CP2 duality leads to a unique choice of the points, which can contribute to n-point
functions as intersection of M4 subspace of M8 with the counterparts of partonic 2-surfaces
at the boundaries of light-cones of M8. Therefore there are hopes that the resulting theory is
highly unique. Symplectic fusion algebra reduces to a finite algebra for each space-time surface
if this picture is correct.

6. Consider next some of the details of how the light-like 3-surface codes for the fusion rules as-
sociated with it. The intermediate partonic 2- surfaces must be involved since otherwise the
construction would carry no information about the properties of the light-like 3-surface, and
one would not obtain perturbation series in terms of the relevant coupling constants. The nat-
ural assumption is that partonic 2-surfaces belong to future/past directed light-cone boundary
depending on whether they are on lower/upper half of the causal diamond. Hyper-octonionic
conformal field approach fixes the nint points at intermediate partonic two-sphere for a given
light-like 3-surface representing generalized Feynman diagram, and this means that the contri-
bution is just N -point function with N = nout + nint + nin calculable by the basic fusion rules.
Coupling constant strengths would emerge through the fusion coefficients, and at least in the
case of gauge interactions they must be proportional to Kähler coupling strength since n-point
functions are obtained by averaging over small deformations with vacuum functional given by
the exponent of Kähler function. The first guess is that one can identify the spheres S2 ⊂ δM4

±
associated with initial, final and, and intermediate states so that symplectic n-points functions
could be calculated using single sphere.

These findings raise the hope that quantum TGD is indeed a solvable theory. The coupling
constant evolution is based on the same mechanism as in QFT and symplectic invariance replaces ad
hoc UV cutoff with a genuine dynamical regulation mechanism. Causal diamond itself defines the
physical IR cutoff. p-Adic and real coupling constant evolutions reflect the underlying evolution in
powers of two for the temporal distance between the tips of the light-cones of the causal diamond and
the association of macroscopic time scale as secondary p-adic time scale to elementary particles (.1
seconds for electron) serves as a first test for the picture. Even if one is not willing to swallow any
bit of TGD, the classification of the symplectic QFTs remains a fascinating mathematical challenge
in itself. A further challenge is the fusion of conformal QFT and symplectic QFT in the construction
of n-point functions. One might hope that conformal and symplectic fusion rules could be treated
independently.

More detailed view about the construction of M-matrix elements

After three decades there are excellent hopes of building an explicit recipe for constructing M-matrix
elements but the devil is in the details.

1. Elimination of infinities and coupling constant evolution

The elimination of infinities would follow from the symplectic QFT part of the theory. The sym-
plectic contribution to n-point functions vanishes when two arguments co-incide. The UV cancellation
mechanism has nothing to do with the finite measurement resolution which corresponds to the size of
the causal diamonds inside which the space-time sheets representing radiative corrections are. There
is also IR cutoff due to the presence of largest causal diamond.
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On can decompose the radiative corrections two two types. First kind of corrections appear both
at the level of positive/and negative energy parts of zero energy states. Second kind of corrections
appear at the level of interactions between them. This decomposition is standard in quantum field
theories and corresponds to the renormalization constants of fields resp. renormalization of coupling
constants. The corrections due to the increase of measurement resolution in time comes as very
specific corrections to positive and negative energy states involving gluing of smaller causal diamonds
to the upper and lower boundaries of causal diamonds along any radial light-like ray. The radiative
corresponds to the interactions correspond to the addition of smaller causal diamonds in the interior
of the larger causal diamond. Scales for the corrections come as scalings in powers of 2 rather than
as continuous scaling of measurement resolution.

2. Conformal symmetries

The basic questions are the following ones. How hyper-octonionic/-quaternionic/-complex super-
conformal symmetry relates to the super-symplectic conformal symmetry at the imbedding space
level and the super Kac-Moody symmetry associated with the light-like 3-surfaces? How do the dual
HO = M8 and H = M4 × CP2 descriptions (number theoretic compactifcation) relate?

Concerning the understanding of these issues, the earlier construction of physical states poses
strong constraints [24] .

1. The state construction utilizes both super-symplectic and super Kac-Moody algebras. super-
symplectic algebra has negative conformal weights and creates tachyonic ground states from
which Super Kac-Moody algebra generates states with non-negative conformal weight determin-
ing the mass squared value of the state. The commutator of these two algebras annihilates the
physical states. This requires that both super conformal algebras must allow continuation to
hyper-octonionic algebras, which are independent.

2. The light-like radial coordinate at δM4
± can be continued to a hyper-complex coordinate in

M2
± defined the preferred commutative plane of non-physical polarizations, and also to a hyper-

quaternionic coordinate in M4
±. Hence it would seem that super-symplectic algebra can be

continued to an algebra in M2
± or perhaps in the entire M4

±. This would allow to continue also
the operators G, L and other super-symplectic operators to operators in hyper-quaternionic M4

±
needed in stringy perturbation theory.

3. Also the super KM algebra associated with the light-like 3-surfaces should be continueable to
hyper-quaternionic M4

±. Here HO −H duality comes in rescue. It requires that the preferred
hyper-complex plane M2 is contained in the tangent plane of the space-time sheet at each point,
in particular at light-like 3-surfaces. We already know that this allows to assign a unique space-
time surface to a given collection of light-like 3-surfaces as hyper-quaternionic 4-surface of HO
hypothesized to correspond to (an obviously preferred) extremal of Kähler action. An equally
important implication is that the light-like coordinate of X3 can be continued to hyper-complex
coordinate M2 coordinate and thus also to hyperquaternionic M4 coordinate.

4. The four-momentum appears in super generators Gn and Ln. It seems that the formal Fourier
transform of four-momentum components to gradient operators to M4

± is needed and defines
these operators as particular elements of the CH Clifford algebra elements extended to fields in
imbedding space.

3. What about stringy perturbation theory?

The analog of stringy perturbation theory does not seems only a highly attractive but also an
unavoidable outcome since a generalization of massless fermionic propagator is needed. The inverse
for the sum of super Kac-Moody and super-symplectic super-Virasoro generators G (L) extended
to an operator acting on the difference of the M4 coordinates of the end points of the propagator
line connecting two partonic 2-surfaces should appear as fermionic (bosonic) propagator in stringy
perturbation theory. Virasoro conditions imply that only G0 and L0 appear as propagators. Mo-
mentum eigenstates are not strictly speaking possible since since discretization is present due to the
finite measurement resolution. One can however represent these states using Fourier transform as a
superposition of momentum eigenstates so that standard formalism can be applied.
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Symplectic QFT gives an additional multiplicative contribution to n-point functions and there
would be also braiding S-matrices involved with the propagator lines in the case that partonic 2-
surface carriers more than 1 point. This leaves still modular degrees of freedom of the partonic
2-surfaces describable in terms of elementary particle vacuum functionals and the proper treatment
of these degrees of freedom remains a challenge.

4. What about non-hermiticity of the CH super-generators carrying fermion number?

TGD represents also a rather special challenge, which actually represents the fundamental differ-
ence between quantum TGD and super string models. The assignment of fermion number to CH
gamma matrices and thus also to the super-generator G is unavoidable. Also M4 and H gamma
matrices carry fermion number. This has been a long-standing interpretational problem in quantum
TGD and I have been even ready to give up the interpretation of four-momentum operator appearing
in Gn and Ln as actual four-momenta. The manner to get rid of this problem would be the assumption
of Majorana property but this would force to give up the interpretation of different imbedding space
chiralities in terms of conserved lepton and quark numbers and would also lead to super-string theory
with critical dimension 10 or 11. A further problem is how to obtain amplitudes which respect fermion
number conservation using string perturbation theory if 1/G = G†/L0 carries fermion number.

The recent picture does not leave many choices so that I was forced to face the truth and see how
everything falls down to this single nasty detail! It became as a total surprise that gamma matrices
carrying fermion number do not cause any difficulties in zero energy ontology and make sense even in
the ordinary Feynman diagrammatics.

1. Non-hermiticity of G means that the center of mass terms CH gamma matrices must be distin-

guished from their Hermitian conjugates. In particular, one has γ0 6= γ
dagger
0 . One can interpret

the fermion number carrying M4 gamma matrices of the complexified quaternion space.

2. One might think that M4 × CP2 gamma matrices carrying fermion number is a catastrophe
but this is not the case in massless theory. Massless momentum eigen states can be created
by the operator pkγ†k from a vacuum annihilated by gamma matrices and satisfying massless
Dirac equation. The conserved fermion number defined by the integral of Ψγ0Ψ over 3-space
gives just its standard value. A further experimentation shows that Feynman diagrams with
non-hermitian gamma matrices give just the standard results since fermionic propagator and
boson-emission vertices give compensating fermion numbers.

3. If the theory would contain massive fermions or a coupling to a scalar Higgs, a catastrophe
would result. Hence ordinary Higgs mechanism is not possible in this framework. Of course,
also the quantization of fermions is totally different. In TGD fermion mass is not a scalar in H.
Part of it is given by CP2 Dirac operator, part by p-adic thermodynamics for L0, and part by
Higgs field which behaves like vector field in CP2 degrees of freedom, so that the catastrophe is
avoided.

4. In zero energy ontology zero energy states are characterized by M-matrix elements constructed
by applying the combination of stringy and symplectic Feynman rules and fermionic propagator
is replaced with its super-conformal generalization reducing to an ordinary fermionic propagator
for massless states. The norm of a single fermion state is given by a propagator connecting
positive energy state and its conjugate with the propagator G0/L0 and the standard value of
the norm is obtained by using Dirac equation and the fact that Dirac operator appears also in
G0.

5. The hermiticity of super-generators G would require Majorana property and one would end
up with superstring theory with critical dimension D = 10 or D = 11 for the imbedding space.
Hence the new interpretation of gamma matrices, proposed already years ago, has very profound
consequences and convincingly demonstrates that TGD approach is indeed internally consistent.

In this framework coupling constant evolution would have interpretation in terms of addition of
intermediate zero energy states corresponding to the generalized Feynman diagrams obtained by the
insertion of causal diamonds with a new shorter time scale T = Tprev/2 to the previous Feynman
diagram. p-Adic length scale hypothesis follows naturally. A very close correspondence with ordinary
Feynman diagrammatics arises and and ordinary vision about coupling constant evolutions arises. The
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absence of infinities follows from the symplectic invariance which is genuinely new element. p-Adic
and real coupling constant evolutions can be seen as completions of coupling constant evolutions for
physics based on rationals and their algebraic extensions.

6.9 The recent view about p-adic coupling constant evolution

One of the basic problems of quantum TGD is the understanding of p-adic coupling constant evolu-
tion. This evolution is discrete by p-adic length scale hypothesis justified by zero energy ontology.
Discreteness means that continuous mass scale is replaced by mass scales coming as half octaves of
CP2 mass. One key question has been whether it is Kähler coupling strength αK or gravitational
coupling constant, which remains invariant under p-adic coupling constant evolution. Second problem
relates to the value of αK .

The realization that modified Dirac action assignable to Chern-Simons action for light-like 3-
surfaces could be the fundamental variational principle initiated the process, which led to an answer
to these and many other questions. The idea that some kind of Dirac determinant gives the vacuum
functional identifiable as exponent of Kähler function in turn identifiable as Kähler action SK for
a preferred extremal came first. The basic challenges were to understand the conditions fixing this
preferred extremal, how this information is feeded to the spectrum of generalized eigenvalues of the
modified Dirac operator defined by C-S action, and how to define the Dirac determinant. A precise
realization of the idea that light-like 3-surfaces can be regarded as spinorial shock waves provided a
solution to these problems.

The most important outcome is a formula for Kähler coupling strength in terms of a calculable and
manifestly finite Dirac determinant without any need for zeta function regularization. The formula
fixes completely the number theoretic anatomy of Kähler coupling strength and of other gauge coupling
strengths. When the formula for the gravitational constant involving Kähler coupling strength and
the exponent of Kähler action for CP2 type vacuum extremal - which remains still a conjecture -
is combined with the number theoretical results and with the constraints from the predictions of p-
adic mass calculations, one ends up to an identification of Kähler coupling strength as fine structure
constant at electron length scale characterized by p-adic prime M127. Also the number theoretic
anatomy of the ratio R2/~G, where R is CP2 size, can be understood to high degree and a relationship
between the p-adic evolutions of electromagnetic and color coupling strengths emerges.

6.9.1 The bosonic action defining Kähler function as the effective action
associated with the induced spinor fields

One could define the classical action defining Kähler function as the bosonic action giving rise to the
divergences of the isometry currents. In this manner bosonic action, especially the value of the Kähler
coupling strength, would come out as prediction of the theory containing no free parameters.

Thus the Kähler action SB of preferred extremal of Käction defining Kähler function could be
defined by the functional integral over the Grassmann variables for the exponent of the massless Dirac
action. Formally the functional integral is defined as

exp(SB(X4)) =

∫
exp(SF )DΨDΨ̄ ,

SF = Ψ̄
[
Γ̂αD→α −D←α Γ̂α

]
Ψ
√
g .

(6.9.1)

Formally the bosonic effective action is expressible as a logarithm of the fermionic functional deter-
minant resulting from the functional integral over the Grassmann variables

SB(X4) = log(det(D)) ,

D = Γ̂αD→α . (6.9.2)
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Can one do without zeta function regularization?

The rigorous definition of the fermionic determinant has been already discussed in [20] . The best one
hope that the formal definition of the determinant as the the product of the generalized eigenvalues
of DC−S works as such. This is the case if the number of eigenvalues is finite; if the eigenvalues
approach to constant which can be chosen to be equal to unity; or if the eigenvalues have approximate
symmetry λ→ 1/λ.

1. Somewhat surprisingly the detailed construction of the eigenvalue spectrum discussed in [20]
shows that the number of eigenvalues is indeed finite and that eigenvalues are bounded from
above. The basic idea of the construction is following. The eigenvalues correspond to the
generalized eigenvalues of the modified Dirac operator DC−S for Chern-Simons action at X3

l .
The modified Dirac equation for DC−S does not however fix the eigenvalues but allows them to
be arbitrary functions of the transversal coordinates of X3

l . Therefore the data about preferred
extremal of Kähler action can be feeded to the eigenvalue spectrum by assuming that spinor
modes at X3

l can be also regarded as spinorial shock waves in the sense that they correspond to
singular solutions of 4-D modified Dirac operator DK assignable to Kähler action.

2. Since modified Dirac equation for DK is equivalent with the conservation of super current, the
shock wave property means that the super current is restricted to X3

l and thus has a vanish-
ing normal component. In the case of wormhole throats the construction requires boundary
conditions stating that there exist coordinates in which Jni = 0 and gni = 0 at X3

l [20] . There-
fore classical gravitational field is effectively static at X3

l and the Maxwell field defined by the
induced Kähler form has only the magnetic part in these coordinates.

3. The generalized eigenvalues of DC−S appearing in Dirac determinant can be identified as eigen-
values of the transversal part of 3-D Dirac operator defined by the restriction of DK to X3

l

describing fermions in the electro-weak magnetic field associated with X3
l . The physical analog

is energy spectrum for Dirac operator in external magnetic field. The effective metric appearing
in the modified Dirac operator corresponds to

ĝαβ =
∂LK
∂hkα

∂LK
∂hlβ

hkl ,

and vanishes at the boundaries of regions carrying non-vanishing Kähler magnetic field. Hence
the shock waves must be localized to regions X3

l,i containing a non-vanishing Kähler magnetic
field. Cyclotron states in constant magnetic field serve as a good analog for the situation and
only a finite number of cyclotron states are possible since for higher cyclotron states the wave
function -essentially harmonic oscillator wave function- would concentrate outside X3

l,i.

4. A more precise argument goes as follows. Assume that it is induced Kähler magnetic field
BK that matters. The vanishing of the effective contravariant metric near the boundary of
X3
l,i corresponds to an infinite effective mass for massive particle in constant magnetic field so

that the counterpart for the cyclotron frequency scale eB/m reduces to zero. The radius of
the cyclotron orbit is proportional to 1/

√
eB and approaches to infinity. Hence the required

localization is not possible only for cyclotron states for which the cyclotron radius is below that
the transversal size scale of X3

l,i.

5. The eigenvalues of the modified Dirac operator vanish for the vacuum extremals but the Dirac
determinant equals to one in this case since zero eigenvalues do not correspond to localized
solutions and by definition do not contribute to it.

Zeta function regularization

In the more general case regularization is needed. The sum over the logarithms of the eigen values in
turn can be identified as the derivative of the logarithm of the generalized Zeta function
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ζF (s) ≡
∑
n

λ−sn ,

DΨn = λnoΨn ,

o = nαγα , [D, 0] = 0 . (6.9.3)

at s = 0:

SB(X4) = log(det(D)) =
∑
n

log(λn) = − d

ds
log(ζF )(s,X4) . (6.9.4)

The vector nα identified as the gradient of a coordinate xN normal to X3. As shown in [20] , the
hermiticity of the modified Dirac operator is guaranteed if X3 is minimal hyper-surface or if Kähler
action density LK vanishes at X3.

The vanishing of the normal components Tnk of the conserved currents associated with the isome-
tries of H is necessary in order to have effective 3-dimensionality in the sense that the modified
Dirac equation contains only derivatives acting on X3 coordinates. The reduction to the boundary
and the dependence on the normal derivatives of the imbedding space coordinates realizes quantum
gravitational holography.

The definition relying on the generalized Zeta function allows to circumvent the possible technical
difficulties related to the precise definition of the Grassmannian functional integral and of the func-
tional determinant since the possibly divergent sum over the logarithms of the eigenvalues can be
identified as the derivative of Zeta function at s = 0, which can be defined by analytically continuing
the zeta function outside the domain where the definition in terms of the eigenvalues works.

Formula for the Kähler coupling strength

The identification of exponent of Kähler function as Dirac determinant leads to a formula relating
Kähler action for the preferred extremal to the Dirac determinant. The eigenvalues are proportional
to 1/αK since the matrices Γ̂α have this proportionality. This gives the formula

exp(
SK(X4(X3))

8παK
) =

∏
i

λi =

∏
i λ0,i

αNK
. (6.9.5)

Here λ0,i corresponds to αK = 1. SK =
∫
J∗J is the reduced Kähler action.

For SK = 0, which might correspond to so called massless extremals [12] one obtains the formula

αK = (
∏
i

λ0,i)
1/N . (6.9.6)

Thus for SK = 0 extremals one has an explicit formula for αK having interpretation as the geometric
mean of the eigenvalues λ0,i. Several values of αK are in principle possible.

p-Adicization suggests that λ0,i are rational or at most algebraic numbers. This would mean that
αK is N :th root of this kind of number. SK in turn would be

SK = 8παK log(

∏
i λ0,i

αNK
) . (6.9.7)

so that SK would be expressible as a product of the transcendental π, N :th root of rational, and
logarithm of rational. This result would provide a general answer to the question about number
theoretical anatomy of Kähler coupling strength and SK . Note that SK makes sense p-adically only
if one adds π and its all powers to the extension of p-adic numbers. The exponent of Kähler function
however makes sense also p-adically.
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6.9.2 A revised view about coupling constant evolution

The development of the ideas related to number theoretic aspects has been rather tortuous and based
on guess work since basic theory has been lacking.

1. The original hypothesis was that Kähler coupling strength is invariant under p-adic coupling
constant evolution. Later I gave up this hypothesis and replaced it with the invariance of grav-
itational coupling since otherwise the prediction would have been that gravitational coupling
strength is proportional to p-adic length scale squared. Second first guess was that Kähler
coupling strength equals to the value of fine structure constant at electron length scale corre-
sponding to Mersenne prime M127. Later I replaced fine structure constant with electro-weak
U(1) coupling strength at this length scale. The recent discussion returns back to the roots in
both aspects.

2. The recent discussion relies on the progress made in the understanding of quantum TGD at
partonic level [20] . What comes out is an explicit formula for Kähler couplings strength in
terms of Dirac determinant involving only a finite number of eigenvalues of the modified Dirac
operator. This formula dictates the number theoretical anatomy of g2

K and also of other coupling
constants: the most general option is that αK is a root of rational. The requirement that the
rationals involved are simple combined with simple experimental inputs leads to very powerful
predictions for the coupling parameters.

3. A further simplification is due to the discreteness of p-adic coupling constant evolution allowing
to consider only length scales coming as powers of

√
2. This kind of discretization is necessary

also number theoretically since logarithms can be replaced with 2-adic logarithms for powers
of 2 giving integers. This raises the question whether p ' 2k should be replaced with 2k in all
formulas as the recent view about quantum TGD suggests.

4. The prediction is that Kähler coupling strength αK is invariant under p-adic coupling constant
evolution and from the constraint coming from electron and top quark masses very near to fine
structure constant so that the identification as fine structure constant is natural. Gravitational
constant is predicted to be proportional to p-adic length scale squared and corresponds to the
largest Mersenne prime (M127), which does not correspond to a completely super-astronomical p-
adic length scale. For the parameter R2/G p-adicization program allows to consider two options:
either this constant is of form eq or 2q: in both cases q is rational number. R2/G = exp(q) allows
only M127 gravitons if number theory is taken completely seriously. R2/G = 2q allows all p-adic
length scales for gravitons and thus both strong and weak variants of ordinary gravitation.

5. A relationship between electromagnetic and color coupling constant evolutions based on the
formula 1/αem+1/αs = 1/αK is suggested by the induced gauge field concept, and would mean
that the otherwise hard-to-calculate evolution of color coupling strength is fixed completely. The
predicted value of αs at intermediate boson length scale is correct.

It seems fair to conclude that the attempts to understand the implications of p-adicization for
coupling constant evolution have begun to bear fruits.

Identifications of Kähler coupling strength and gravitational coupling strength

To construct an expression for gravitational constant one can use the following ingredients.

1. The exponent exp(2SK(CP2)) defining the value of Kähler function in terms of the Kähler action
SK(CP2) of CP2 type extremal representing elementary particle expressible as

SK(CP2) =
SK,R(CP2)

8παK
=

π

8αK
. (6.9.8)

Since CP2 type extremals suffer topological condensation, one expects that the action is modified:
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SK(CP2) → a× SK(CP2) . (6.9.9)

a < 1 conforms with the idea that a piece of CP2 type extremal defining a wormhole contact is
in question. One must however keep mind open in this respect.

2. The p-adic length scale Lp assignable to the space-time sheet along which gravitational inter-
actions are mediated. Since Mersenne primes seem to characterized elementary bosons and
since the Mersenne prime M127 = 2127 − 1 defining electron length scale is the largest non-
super-astronomical length scale it is natural to guess that M127 characterizes these space-time
sheets.

1. The formula for the gravitational constant

A long standing basic conjecture has been that gravitational constant satisfies the following formula

~G ≡ r~0G = L2
p × exp(−2aSK(CP2)) ,

Lp =
√
pR . (6.9.10)

Here R is CP2 radius defined by the length 2πR of the geodesic circle. What was noticed before is
that this relationship allows even constant value of G if a has appropriate dependence on p.

This formula seems to be correct but the argument leading to it was based on two erratic assump-
tions compensating each other.

1. I assumed that modulus squared for vacuum functional is in question: hence the factor 2a in the
exponent. The interpretation of zero energy state as a generalized Feynman diagram requires
the use of vacuum functional so that the replacement 2a→ a is necessary.

2. Second wrong assumption was that graviton corresponds to CP2 type vacuum extremal- that is
wormhole contact in the recent picture. This does allow graviton to have spin 2. Rather, two
wormhole contacts represented by CP2 vacuum extremals and connected by fluxes associated
with various charges at their throats are needed so that graviton is string like object. This saves
the factor 2a in the exponent.

The highly non-trivial implication to be discussed later is that ordinary coupling constant strengths
should be proportional to exp(−aSK(CP2)).

The basic constraint to the coupling constant evolution comes for the invariance of g2
K in p-adic

coupling constant evolution:

g2
K =

a(p, r)π2

log(pK)
,

K =
R2

~G(p)
=

1

r

R2

~0G(p)
≡ K0(p)

r
. (6.9.11)

2. How to guarantee that g2
K is RG invariant and N :th root of rational?

Suppose that g2
K is N :th root of rational number and invariant under p-adic coupling constant

evolution.

1. The most general manner to guarantee the expressibility of g2
K as N :th root of rational is

guaranteed for both options by the condition

a(p, r) =
g2
K

π2
log(

pK0

r
) . (6.9.12)

That a would depend logarithmically on p and r = ~/~0 looks rather natural. Even the invariance
of G under p-adic coupling constant evolution can be considered.
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2. The condition

r

p
< K0(p) . (6.9.13)

must hold true to guarantee the condition a > 0. Since the value of gravitational Planck
constant is very large, also the value of corresponding p-adic prime must very large to guarantee
this condition. The condition a < 1 is guaranteed by the condition

r

p
> exp(− π

2

g2
K

)×K0(p) . (6.9.14)

The condition implies that for very large values of p the value of Planck constant must be larger
than ~0.

3. The two conditions are summarized by the formula

K0(p)× exp(− π
2

g2
K

) <
r

p
< K0(p) (6.9.15)

characterizing the allowed interval for r/p. If G does not depend on p, the minimum value for

r/p is constant. The factor exp(− π2

g2
K

) equals to 1.8 × 10−47 for αK = αem so that r > 1 is

required for p ≥ 4.2 × 10−40. M127 ∼ 1038 is near the upper bound for p allowing r = 1. The
constraint on r would be roughly r ≥ 2k−131 and p ' 2131 is the first p-adic prime for which
~ > 1 is necessarily. The corresponding p-adic length scale is .1 Angstroms.

This conclusion need not apply to elementary particles such as neutrinos but only to the space-
time sheets mediating gravitational interaction so that in the minimal scenario it would be
gravitons which must become dark above this scale. This would bring a new aspect to vision
about the role of gravitation in quantum biology and consciousness.

The upper bound for r behaves roughly as r < 2.3× 107p. This condition becomes relevant for
gravitational Planck constant GM1M2/v0 having gigantic values. For Earth-Sun system and for
v0 = 2−11 the condition gives the rough estimate p > 6× 1063. The corresponding p-adic length
scale would be of around L(215) ∼ 40 meters.

4. p-Adic mass calculations predict the mass of electron as m2
e = (5+Ye)2

−127/R2 where Ye ∈ [0, 1)
parameterizes the not completely known second order contribution. Top quark mass favors a
small value of Ye (the original experimental estimates for mt were above the range allowed by
TGD but the recent estimates are consistent with small value Ye [58] ). The range [0, 1) for Ye
restricts K0 = R2/~0G to the range [2.3683, 2.5262]× 107.

5. The best value for the inverse of the fine structure constant is 1/αem = 137.035999070(98) and
would correspond to 1/g2

K = 10.9050 and to the range (0.9757, 0.9763) for a for ~ = ~0 and
p = M127. Hence one can seriously consider the possibility that αK = αem(M127 holds true. As
a matter fact, this was the original hypothesis but was replaced later with the hypothesis that
αK corresponds to electro-weak U(1) coupling strength in this length scale. The fact that M127

defines the largest Mersenne prime, which does not correspond to super-astrophysical length
scale might relate to this co-incidence.

To sum up, the recent view about coupling constant evolution differs strongly from previous much
more speculative scenarios. It implies that g2

K is root of rational number, possibly even rational, and
can be assumed to be equal to e2. Also R2/~G could be rational. The new element is that G need
not be proportional to p and can be even invariant under coupling constant evolution since the the
parameter a can depend on both p and r. An unexpected constraint relating p and r for space-time
sheets mediating gravitation emerges.
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Are the color and electromagnetic coupling constant evolutions related?

Classical theory should be also able to say something non-trivial about color coupling strength αs too
at the general level. The basic observations are following.

1. Both classical color YM action and electro-weak U(1) action reduce to Kähler action.

2. Classical color holonomy is Abelian which is consistent also with the fact that the only signature
of color that induced spinor fields carry is anomalous color hyper charge identifiable as an electro-
weak hyper charge.

Suppose that αK is a strict RG invariant. One can consider two options.

1. The original idea was that the sum of classical color action and electro-weak U(1) action is RG
invariant and thus equals to its asymptotic value obtained for αU(1) = αs = 2αK . Asymptot-
ically the couplings would approach to a fixed point defined by 2αK rather than to zero as in
asymptotically free gauge theories.

Thus one would have

1

αU(1)
+

1

αs
=

1

αK
. (6.9.16)

The relationship between U(1) and em coupling strengths is

αU(1) =
αem

cos2(θW )
' 1

104.1867
,

sin2(θW )|10 MeV ' 0.2397(13) ,

αem(M127) = 0.00729735253327 . (6.9.17)

Here Weinberg angle corresponds to 10 MeV energy is reasonably near to the value at electron
mass scale. The value sin2(θW ) = 0.2397(13) corresponding to 10 MeV mass scale [35] is used.
Note however that the previous argument implying αK = αem(M127) excludes α = αU(1)(M127)
option.

2. Second option is obtained by replacing U(1) with electromagnetic gauge U(1)em.

1

αem
+

1

αs
=

1

αK
. (6.9.18)

Possible justifications for this assumption are following. The notion of induced gauge field
makes it possible to characterize the dynamics of classical electro-weak gauge fields using only
the Kähler part of electro-weak action, and the induced Kähler form appears only in the elec-
tromagnetic part of the induced classical gauge field. A further justification is that em and color
interactions correspond to unbroken gauge symmetries.

The following arguments are consistent with this conclusion.

1. In TGD framework coupling constant is discrete and comes as powers of
√

2 corresponding to
p-adic primes p ' 2k. Number theoretic considerations suggest that coupling constants g2

i are
algebraic or perhaps even rational numbers, and that the logarithm of mass scale appearing as
argument of the renormalized coupling constant is replaced with 2-based logarithm of the p-adic
length scale so that one would have g2

i = g2
i (k). g2

K is predicted to be N :th root of rational but
could also reduce to a rational. This would allow rational values for other coupling strengths too.
This is possible if sin(θW ) and cos(θW ) are rational numbers which would mean that Weinberg
angle corresponds to a Pythagorean triangle as proposed already earlier. This would mean the
formulas sin(θW ) = (r2 − s2)/(r2 + s2) and cos(θW ) = 2rs(r2 + s2).
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2. A very strong prediction is that the beta functions for color and U(1) degrees of freedom are
apart from sign identical and the increase of U(1) coupling compensates the decrease of the
color coupling. This allows to predict the hard-to-calculate evolution of QCD coupling constant
strength completely.

3. α(M127) = αK implies that M127 defines the confinement length scale in which the sign of
αs becomes negative. TGD predicts that also M127 copy of QCD should exist and that M127

quarks should play a key role in nuclear physics [82, 6] , [6] . Hence one can argue that color cou-
pling strength indeed diverges at M127 (the largest not completely super-astrophysical Mersenne
prime) so that one would have αK = α(M127). Therefore the precise knowledge of α(M127) in
principle fixes the value of parameter K = R2/G and thus also the second order contribution to
the mass of electron.

4. αs(M89) is predicted to be 1/αs(M89) = 1/αK − 1/α(M89). sin2(θW ) = .23120, αem(M89) '
1/127, and αU(1) = αem/cos

2(θW ) give 1/αU(1)(M89) = 97.6374. α = αem option gives
1/αs(M89) ' 10, which is consistent with experimental facts. α = αU(1) option gives αs(M89) =
0.1572, which is larger than QCD value. Hence α = αem option is favored.

To sum up, the proposed formula would dictate the evolution of αs from the evolution of the electro-
weak parameters without any need for perturbative computations. Although the formula of proposed
kind is encouraged by the strong constraints between classical gauge fields in TGD framework, it
should be deduced in a rigorous manner from the basic assumptions of TGD before it can be taken
seriously.

Can one deduce formulae for gauge couplings?

The improved physical picture behind gravitational constant allows also to consider a general formula
for gauge couplings.

1. The natural guess for the general formula would be as

g2(p, r) = kg2
K × exp[−ag(p, r)× SK(CP2)] . (6.9.19)

here k is a numerical constant.

2. The condition

g2
K = e2(M127) fixes the value of k if it’s value does not depend on the character of gauge

interaction:

k = exp[agr(M127, r = 1)× SK(CP2)] . (6.9.20)

Hence the general formula reads as

g2(p, r) = g2
K × exp[(−ag(p, r) + agr(M127), r = 1))× SK(CP2)] .

(6.9.21)

The value of a(M127, r = 1) is near to its maximum value so that the exponential factor tends
to increase the value of g2 from e2. The formula can reproduce αs and various electro-weak
couplings although it is quite possibile that Weinberg angle corresponds to a group theoretic
factor not representable in terms of ag(p, r). The volume of the CP2 type vacuum extremal
would characterize gauge bosons. Analogous formula should apply also in the case of Higgs.
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3. αem in very long length scales would correspond to

e2(p→∞, r = 1) = e2 × exp[(−1 + a(M127), r = 1))× SK(CP2)] = e2x ,

(6.9.22)

where x is in the range [0.6549, 0.6609].

Formula relating v0 to αK and R2/G

The parameter v0 = 2−11 plays a key role in the formula for gravitational Planck constant and can
be also seen as a fundamental constant in TGD framework. As a matter, factor v0 has interpretation
as velocity parameter and is dimensionless when c = 1 is used.

If v0 is identified as the rotation velocity of distant stars in galactic plane, one can use the Newto-
nian model for the motion of mass in the gravitational field of long straight string giving v0 =

√
TG.

String tension T can be expressed in terms of Kähler coupling strength as

T =
b

2αKR2
,

where R is the radius of geodesic circle. The factor b ≤ 1 would explain reduction of string tension in
topological condensation caused by the fact that not entire geodesic sphere contributes to the action.

This gives

v0 =
b

2
√
αKK

,

αK(p) =
aπ

4log(pK)
,

K =
R2

~G
. (6.9.23)

The condition that αK has the desired value for p = M127 = 2127−1 defining the p-adic length scale of
electron fixes the value of b for given value of a. The value of b should be smaller than 1 corresponding
to the reduction of string tension in topological condensation.

The condition 8.5.20 for v0 = 2−m, say m = 11, allows to deduce the value of a/b as

a

b
=

4 ∗ log(pK)

π

22m−1

K
. (6.9.24)

For both K = eq with q = 17 and K = 2q option with q = 24 + 1/2 m = 10 is the smallest integer
giving b < 1. K = eq option gives b = .3302 (.0826) and K = 2q option gives b = .3362 (.0841) for
m = 10 (m = 11).

m = 10 corresponds to one third of the action of free cosmic string. m = 11 corresponds to much
smaller action smaller by a factor rather near 1/12. The interpretation would be that as m increases
the action of the topologically condensed cosmic string decreases. This would correspond to a gradual
transformation of the cosmic string to a magnetic flux tube.

Is the p-adic temperature proportional to the Chern-Simons coupling strength?

Chern-Simons coupling strength has the same spectrum as p-adic temperature Tp apart from a multi-
plicative factor. The identification Tp = 1/k is indeed very natural since also 1/k is temperature like
parameter. The simplest guess is

Tp =
1

k
. (6.9.25)
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αK is also temperature like parameter and the original conjecture was that αK and also other coupling
strengths are expressible in terms of k. The recent view about how the information about Kähler
action is feeded to the eigenvalue spectrum of the modified Dirac operator DC−S associated with
Chern-Simons action [20] does not encourage this conjecture.

For fermions one has Tp = 1 so that fermionic light-like wormhole throats would correspond
to k = 1. Since photon, graviton, and gluons are massless in an excellent approximation, p-adic
temperature Tp = 1/k should be small for them. This holds true for intermediate gauge bosons
too since Higgs gives the dominating contribution to their mass. Gauge bosons are identified as
pairs of light-like wormhole throats associated with wormhole contacts, and one can consider the
possibility that there is maximal p-adic temperature at which gauge boson wormhole contacts are
stable against splitting to fermion-antifermion pair. Fermions and possible exotic bosons created by
bosonic generators of super-symplectic algebra would correspond to single wormhole throat and could
also naturally correspond to the maximal value of p-adic temperature since there is nothing to which
they can decay.

What could go wrong with this picture? The different values of k for fermions and bosons make
sense only if the 4-D space-time sheets associated with fermions and bosons can be regarded as
disjoint space-time regions. Gauge bosons correspond to wormhole contacts connecting (deformed
pieces of CP2 type extremal) positive and negative energy space-time sheets whereas fermions would
correspond to deformed CP2 type extremal glued to single space-time sheet having either positive
or negative energy. These space-time sheets should make contact only in interaction vertices of the
generalized Feynman diagrams, where partonic 3-surfaces are glued together along their ends. If this
gluing together occurs only in these vertices, fermionic and bosonic space-time sheets are disjoint. For
stringy diagrams this picture would fail.

To sum up, the resulting overall vision seems to be internally consistent and is consistent with
generalized Feynman graphics, predicts exactly the spectrum of αK , suggests the identification of
the inverse of p-adic temperature with k, allows to understand the differences between fermionic and
bosonic massivation. One might hope that the additional objections (to be found sooner or later!)
could allow to develop a more detailed picture.
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[109] S. Okubo. Angular momentum, quaternion, octonion, and Lie-super algebra Osp(1, 2). http:

//arxiv.org/pdf/physics/9710038, 1997.

[110] A. Kent P. Goddard and D. Olive. Unitary representations of the Virasoro and super-Virasoro
algebras. Comm. Math. Phys., 103(1), 1986.

[111] N. Pope, C. Eigenfunctions and Spinc Structures on CP2, 1980.

[112] M. Rainer. Algebraic Quantum Field Theory on Manifolds: A Haag-Kastler Setting for Quantum
Geometry. http://arxiv.org/abs/gr-qc/9911076, 2000.
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Chapter 7

TGD and M-Theory

7.1 Introduction

In this chapter a critical comparison of M-theory [53] and TGD (see [94, 72, 61, 55, 73, 83, 80]
and [87, 15, 67, 13, 38, 47, 50, 79] ) as two competing theories is carried out. Also some comments
about the sociology of Big Science are made.

7.1.1 From hadronic string model to M-theory

The evolution of string theories began 1968 from Veneziano formula realizing duality symmetry of
hadronic interactions. It took two years to realize that Veneziano amplitude could be interpreted in
terms of interacting strings: Nambu, Susskind and Nielsen made the discovery simultaneously 1970.
The need to describe also fermions led to the discovery of super-symmetry [70] and Ramond and
Neveu-Schwartz type superstrings in the beginning of seventies.

Gradually it became however clear that the strings do not describe hadrons: for instance, the
critical dimensions for strings resp. superstrings where 26 resp. 10, and the breakthrough of QCD
at 1973 meant an end for the era of hadronic string theory. 1974 Schwartz and Scherk proposed
that strings might provide a quantum theory of gravitation [71] if one accepts that space-time has
compactified dimensions.

The first superstring revolution was initiated around 1984 by the paper by Green and Schwartz
demonstrating the cancellation of anomalies in certain superstring theories [33, 49] . The proposal was
that superstrings might provide a divergence-free and anomaly-free quantum theory of gravitation. A
crucial boost was given by Witten’s interest on superstrings. Also the highly effective use of media
played a key role in establishing superstring hegemony.

It became clear that superstrings come in five basic types [61] . There are type I strings (both
open and closed) with N = 1 super-symmetry and gauge group SO(32), type IIA and IIB closed
strings with N = 2 super-symmetry, and heterotic strings, which are closed and possess N = 1
super-symmetry with gauge groups SO(32) and E8 × E8. There is an entire landscape of solutions
associated with each superstring theory defined by the compactifications whose dynamics is partially
determined by the vanishing of conformal anomalies. For a moment it was believed that it would be
an easy task to find which of the superstrings would allow the compactification which corresponds to
the observed Universe but it became clear that this was too much to hope. In particular, the number
4 for non-compact space-time dimensions is by no means in a special position.

Around 1995 came the second superstring revolution with the idea that various superstring species
could be unified in terms of an 11-dimensional M-theory with M meaning membrane in the lowest
approximation [53] . M-theory allowed to see various superstrings as limiting situations when 11-D
theory reduces to 10-D one so that very special kind of membranes reduce to strings. This allowed
to justify heuristically the claimed dualities between various superstrings [61] . Matrix Theory as a
proposal for a non-perturbative formulation of M-theory appeared 2 years later [78] .

Now, almost a decade later, M-theory is in a deep crisis: the few predictions that the theory can
make are definitely wrong and even anthropic principle is advocated as a means to save the theory [77] .
Despite this, very many people continue to work with M-theory and fill hep-th with highly speculative
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preprints proving that this is dual with that although the flow of papers dealing with strings and
M-theory has reduced dramatically.

A reader interested in critical views about string theory can consult the article of Smolin [75]
criticizing anthropic principle, the web-lectures ”Fantasy, Fashion, and Faith in Theoretical Physics”
of Penrose [66] as well as his article in New Scientist [67] criticizing the notion of hidden space time
dimensions, and the articles of Peter [76] [83] . Also the discussion group ”Not Even Wrong” [9] gives
a critical perspective to the situation almost a decade after the birth of M-theory.

7.1.2 Evolution of TGD briefly

The first superstring revolution shattered the world at 1984, about two years after my own doctoral
dissertation (1982), and four years after the Esalem conference in which the quantum consciousness
movement started. Remarkably, David Finkelstein was one of the organizers of the conference besides
being the chief editor of ”International Journal of Theoretical Physics”, in which I managed to publish
first articles about TGD. The first and last contact with stars was Wheeler’s review of my first article
published in IJTP, and I cannot tell what my and TGD’s fate had been without Wheeler’s highly
encouraging review.

During the 31 years after the discovery that space-times could be regarded as 4-surfaces as well as
extended objects generalizing strings, I have devoted my time to the development of TGD. Without
exaggeration I can say that life devoted to TGD has been much more successful project than I dared
or even could dream and has led outside the very narrow realms of particle physics and quantum
gravity. Indeed, without knowing anything about Finkelstein and Esalem at that time, I started to
write a book about consciousness around 1995 when the second superstring revolution occurred. TGD
inspired theory of consciousness has now materialized as 8 online books at my home page.

Altogether these 31 years boil down to seven online books [94, 72, 61, 55, 73, 83, 80] about
TGD proper and eight online books about TGD inspired theory of consciousness and of quantum
biology [87, 15, 67, 13, 38, 47, 50, 79] plus printed book about TGD [3] . This makes about 8000 pages
of TGD spanning everything between elementary particle physics and cosmology. One might expect
that the sheer waste amount of material at my web site might have stirred some interest in the physics
community despite the fact that it became impossible to publish anything and to get anything into
Los Alamos archives after the second super-string revolution. The only visible reaction has been from
my Finnish colleagues and guarantees that I will remain unemployed in the foreseeable future. I will
discuss some reasons for this state of affairs after comparing string models and TGD, and considering
the reasons for the failure of the theory formerly known as superstring model.

Before continuing, I hasten to admit that I am not a string specialist and I do not handle the
technicalities of M-theory. On the other hand, TGD has given quite a good perspective about the
real problems of TOEs and provides also solutions to them. Hence it is relatively easy to identify
the heuristic and usually slippery parts of various arguments from the formula jungle. Also I want to
express my deep admiration for the people living in the theory world but from my own experience I
know how easy it is to fall on wishful thinking and how necessary but painful it is to lose face now
and then.

My humble suggestion is that M-theorists might gain a lot by asking what ”What possibly went
wrong?”. This chapter suggests answers to this question. Perhaps M-theorists might also spend few
hours in the web to check whether M-theory is indeed the only viable approach to quantum gravity:
the material at my own home page might provide a surprise in this respect.

7.2 A summary about the evolution of TGD

The basic idea about space-time as a 4-surface popped in my mind in autumn at 1978. The first
implication was that I lost my job at Helsinki University. During the next 4 years this idea led to a
thesis with the title ”Topological GeometroDynamics” (TGD), which I think was suggested by David
Finkelstein to distinguish TGD from Wheeler’s GeometroDynamics.
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7.2.1 Space-times as 4-surfaces

TGD (for a summary about the evolution of TGD see [9, 8] ) can be seen as as a solution to the energy
problem of General Relativity via the unification of special and general relativities by assuming that
space-times are representable as 4-surfaces in certain 8-dimensional space-time with the symmetries
of empty Minkowski space. An alternative interpretation is as a generalization of string models by
replacing strings with 3-dimensional surfaces: depending on their size they would represent elementary
particles or the space we live in and anything between these extremes. From this point of view
superstring theories are unique candidates for a Theory of Everything if space-time were 2- rather
than 4-dimensional.

The first superstring revolution made me happy since I was convinced that it would be a matter
of few years before TGD would replace superstring models as a natural generalization allowing to
understand the four-dimensionality of the space-time. After all, only a half-page argument, a simple
exercise in the realization of standard model symmetries, leads to a unique identification of the higher-
dimensional imbedding space as a Cartesian product of Minkowski space and complex projective space
CP2 unifying electro-weak and color symmetries in terms of its holonomy and isometry groups. By
the 4-dimensionality of the basic objects there was no need for the imbedding space geometry to be
dynamical. Theory realized the dream about the geometrization of fundamental interactions and pre-
dicted the observed quantum numbers. In particular, the horrors of spontaneous compactification to
be crystallized in the notion of M-theory landscape two decades later can be circumvented completely.

7.2.2 Uniqueness of the imbedding space from the requirement of infinite-
dimensional Kähler geometric existence

Later I discovered heuristic mathematical arguments suggesting but not proving that the choice of
the imbedding space is unique. The arguments relied on the uniqueness of the infinite-dimensional
Kähler geometry of the configuration space of 3-surfaces. This uniqueness was discovered already in
the context of loop spaces by Dan Freed [85] .

CH, the ”world of the classical worlds” serves as the arena of quantum dynamics [21] , which
reduces to the theory of classical spinor fields in CH and geometrizes fermionic anti-commutation
relations and the notion of super-symmetry in terms of the gamma matrices of CH [20] . Only
quantum jump is the genuinely non-classical element of the theory in CH context. The heuristic
argument states that CH geometry exists only for H = M4 × CP2.

In particular, number theoretical arguments relating to quaternions and octonions fix the dimen-
sions of space-time and imbedding space to four and 8 respectively. The fact that the space of
quaternionic sub-spaces of octonion space containing preferred plane complex plane is CP2 suggest
an explanation for the special role of CP2.

This stimulated a development, which led to notion of number theoretic compactification. Space-
time surfaces can be regarded either as hyper-quaternionic, and thus maximally associative, 4-surfaces
in M8 or as surfaces in M4×CP2 [86] . What makes this duality possible is that CP2 parameterizes dif-
ferent quaternionic planes of octonion space containing a fixed imaginary unit. Hyper-quaternions/-
octonions form a sub-space of complexified quaternions/-octonions for which imaginary units are mul-
tiplied by

√
−1: they are needed in order to have a number theoretic norm with Minkowski signature.

The weakest form of number theoretical compactification states that light-like 3-surfaces X3
l ⊂ HO

are mapped to X3
l ⊂M4×CP2 and requires only that one can assign preferred plane M2 ⊂M4 to any

connected component of X3
l . This hyper-complex plane of hyper-quaternionic M4 has interpretation

as the plane of non-physical polarizations so that the gauge conditions of super string theories are
obtained purely number theoretically. M2 corresponds also to the degrees of freedom which do not
contribute to the metric of the configuration space. The un-necessarily strong form would require that
hyper-quaternionic 4-surfaces correspond to preferred extremals of Kähler action.

The requirement that M2 belongs to the tangent space T (X4(X3
l )) at each point point of X3

l fixes
also the boundary conditions for the preferred extremal of Kähler action. The construction of con-
figuration space spinor structure supports the conclusion that there must exist preferred coordinates
of X4 in which additional conditions gni = 0 and Jni = 0 at X3

l . The conditions state that induced
metric and Kähler form are stationary at X3

l . M2 plays a key role also in many other constructions
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of quantum TGD, in particular the generalization of the imbedding space needed to realize the idea
about hierarchy of Planck constant allowing to identify dark matter as matter with a non-standard
value of Planck constant.

The realization of 4-D general coordinate invariance forces to assume that Kähler function assigns a
unique space-time surface to a given 3-surface: by the breakdown of the strict classical determinism of
Kähler action unions of 3-surfaces with time like separations must be however allowed as 3-D causal
determinants and quantum classical correspondence allows to interpret them as representations of
quantum jump sequences at space-time level. Space-time surface defined as absolute minimum or
some more general preferred extremal [86] of Kähler action is analogous to Bohr orbit so that classical
physics becomes part of the definition of configuration space geometry rather than being a result of a
stationary phase approximation.

7.2.3 TGD inspired theory of consciousness and other developments

During the last decade a lot has happened in TGD and it is sad that only those colleagues with
mind open enough to make a visit my home page have had opportunity to be informed about this.
Knowing the fact that a typical theoretical physicist reads only the articles published in respected
journals about his own speciality, one can expect that the number of these physicists is not very high.
Some examples of the work done during this decade are in order.

I have developed quantum TGD in a considerable detail with highly non-trivial number theoretical
speculations relating to Riemann hypothesis and Riemann Zeta in general [75] . One outcome is a
proposal for the proof of Riemann hypothesis [1] .

During the same period I have constructed TGD inspired theory of consciousness [87] . One
outcome is a theory of quantum measurement and of observer having direct implications for the
quantum TGD itself. The results of the modification of the double slit experiment carried out by
Afshar [8] , [15] provides a difficult challenge for the existing interpretations of quantum theory and a
support for the TGD view about quantum measurement in which space-time provides correlates for
the non-deterministic process in question. The new views about energy and time have also profound
technological implications.

TGD has forced the introduction of p-adic number fields besides real numbers and led to a gener-
alization of number concept: p-adic number fields play a key role in the proposed physics of cognition
and intentionality [56, 34] . The notion of infinite primes [84] leads to a generalization of the notion of
space-time point [84] . Space-time point becomes infinitely structured in various p-adic senses but not
in real sense (that is cognitively) so that the vision of Leibniz about monads reflecting the external
world in their structure is realized in terms of algebraic holography. Space-time becomes algebraic
hologram and realizes also Brahman=Atman idea of Eastern philosophies.

p-Adic number fields lead to the notion of a p-adic length scale hierarchy quantifying the notion of
the many-sheeted space-time [56, 34] . One of the first applications was the calculation of elementary
particle masses [49, 49] . The basic predictions are only weakly model independent since only p-adic
thermodynamics for Super Virasoro algebra is involved. Not only the fundamental mass scales reduce
to number theory but also individual masses are predicted correctly under very mild assumptions.
Also predictions such as the possibility of neutrinos to have several mass scales were made on the
basis of number theoretical arguments and have found experimental support [49] .

TGD inspired cosmology can be regarded as a fractal cosmology containing cosmologies within
cosmologies [78] . Sub-cosmology is defined in extremely general sense so that even the evolution of
living organisms shares some crucial common aspects with cosmology in this sense. Initial singularities
are absent. A period of flatness of 3-space following ”big bang” is predicted by quantum criticality.
The explanation of dark energy and dark matter are basically in terms of many-sheeted space-time
although also new kinds of elementary particles are predicted (an entire hierarchy of asymptotically
non-free standard model physics is possible). Dark matter and energy reside at larger space-time
sheets, mainly magnetic flux quanta carrying magnetic and Z0 magnetic fields. Solar corona represent
a leakage of dark matter to our space-time sheets from magnetic flux tubes. Cosmological constant is
predicted to have a spectrum given in terms of p-adic length scales characterizing the sizes of space-
time sheets, and the deep puzzle produced by 1052-fold discrepancy between experiment and theory
disappears. Both the acceleration of cosmic expansion and the observed jerk [15] is understood.

The work with TGD inspired model for quantum computation led to the realization that von
Neumann algebras, in particular hyper-finite factors of type II1 could provide the mathematics needed
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to develop a more explicit view about the construction of S-matrix. This has turned out to be the case
to the extend that a general master formula for S-matrix with interactions described as a deformation
of ordinary tensor product to Connes tensor products emerges. The theory leads also to a prediction
for the spectrum of Planck constants associated with M4 and CP2 degrees of freedom.

7.2.4 Von Neumann algebras and TGD

It has been for few years clear that TGD could emerge from the mere infinite-dimensionality of
the Clifford algebra of infinite-dimensional ”world of classical worlds” and from number theoretical
vision in which classical number fields play a key role and determine imbedding space and space-time
dimensions. This would fix completely the ”world of classical worlds”.

Infinite-dimensional Clifford algebra is a standard representation for von Neumann algebra known
as a hyper-finite factor of type II1. In TGD framework the infinite tensor power of C(8), Clifford
algebra of 8-D space would be the natural representation of this algebra.

How to localize infinite-dimensional Clifford algebra?

The basic new idea is to make this algebra local: local Clifford algebra as a generalization of gamma
field of string models.

1. Represent Minkowski coordinate ofMd as linear combination of gamma matrices of D-dimensional
space. This is the first guess. One fascinating finding is that this notion can be quantized and
classical Md is genuine quantum Md with coordinate values eigenvalues of quantal commuting
Hermitian operators built from matrix elements. Euclidian space is not obtained in this manner.
Minkowski signature is something quantal and the standard quantum group Gl(2, q)(C) with
(non-Hermitian matrix elements) gives M4.

2. Form power series of the Md coordinate represented as linear combination of gamma matrices
with coefficients in corresponding infinite-D Clifford algebra. You would get tensor product of
two algebra.

3. There is however a problem: one cannot distinguish the tensor product from the original infinite-
D Clifford algebra. D = 8 is however an exception! You can replace gammas in the expansion
of M8 coordinate by hyper-octonionic units which are non-associative (or octonionic units in
quantum complexified-octonionic case). Now you cannot anymore absorb the tensor factor to the
Clifford algebra and you get genuine M8-localized factor of type II1. Everything is determined
by infinite-dimensional gamma matrix fields analogous to conformal super fields with z replaced
by hyperoctonion.

4. Octonionic non-associativity actually reproduces whole classical and quantum TGD: space-time
surface must be associative sub-manifolds hence hyper-quaternionic surfaces of M8. Repre-
sentability as surfaces in M4 × CP2 follows naturally, the notion of configuration space of 3-
surfaces, etc....

Connes tensor product for free fields as a universal definition of interaction quantum
field theory

This picture has profound implications. Consider first the construction of S-matrix.

1. A non-perturbative construction of S-matrix emerges. The deep principle is simple. The canon-
ical outer automorphism for von Neumann algebras defines a natural candidate unitary trans-
formation giving rise to propagator. This outer automorphism is trivial for II1 factors meaning
that all lines appearing in Feynman diagrams must be on mass shell states satisfying Super
Virasoro conditions. You can allow all possible diagrams: all on mass shell loop corrections
vanish by unitarity and what remains are diagrams with single N-vertex.

2. At 2-surface representing N-vertex space-time sheets representing generalized Bohr orbits of
incoming and outgoing particles meet. This vertex involves von Neumann trace (finite!) of
localized gamma matrices expressible in terms of fermionic oscillator operators and defining free
fields satisfying Super Virasoro conditions.
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3. For free fields ordinary tensor product would not give interacting theory. What makes S-matrix
non-trivial is that Connes tensor product is used instead of the ordinary one. This tensor product
is a universal description for interactions and we can forget perturbation theory! Interactions
result as a deformation of tensor product. Unitarity of resulting S-matrix is unproven but I dare
believe that it holds true.

4. The subfactorN defining the Connes tensor product has interpretation in terms of the interaction
between experimenter and measured system and each interaction type defines its own Connes
tensor product. Basically N represents the limitations of the experimenter. For instance, IR
and UV cutoffs could be seen as primitive manners to describe what N describes much more
elegantly. At the limit when N contains only single element, theory would become free field
theory but this is ideal situation never achievable.

5. Large ~ phases provide good hopes of realizing topological quantum computation. There is an
additional new element. For quantum spinors state function reduction cannot be performed
unless quantum deformation parameter equals to q = 1. The reason is that the components of
quantum spinor do not commute: it is however possible to measure the commuting operators
representing moduli squared of the components giving the probabilities associated with ’true’
and ’false’. The universal eigenvalue spectrum for probabilities does not in general contain (1,0)
so that quantum qbits are inherently fuzzy. State function reduction would occur only after a
transition to q=1 phase and decoherence is not a problem as long as it does not induce this
transition.

7.2.5 Does dark matter at larger space-time sheets define super-quantal
phase?

The last step in the rapid evolution of quantum TGD [77] , [4] was stimulated when I learned that D.
Da Rocha and Laurent Nottale [27] have proposed that Schrödinger equation with Planck constant ~
replaced with what might be called gravitational Planck constant ~gr = GmM

v0
(~ = c = 1). v0 is a

velocity parameter having the value v0 = 144.7 ± .7 km/s giving v0/c = 4.82 × 10−4. This is rather
near to the peak orbital velocity of stars in galactic halos. Also subharmonics and harmonics of v0

seem to appear. The support for the hypothesis coming from empirical data is impressive.
Nottale and Da Rocha believe that their Schrödinger equation results from a fractal hydrodynamics.

Many-sheeted space-time however suggests astrophysical systems are not only quantum systems at
larger space-time sheets but correspond to a gigantic value of gravitational Planck constant. The
gravitational (ordinary) Schrödinger equation would provide a solution of the black hole collapse (IR
catastrophe) problem encountered at the classical level. The basic objection is that astrophysical
systems are extremely classical whereas TGD predicts macrotemporal quantum coherence in the scale
of life time of gravitational bound states. The resolution of the problem inspired by TGD inspired
theory of living matter is that it is the dark matter at larger space-time sheets which is quantum
coherent in the required time scale.

The earlier work with topological quantum computation [95] had already led to the idea that Planck
constant could depend on the quantum phase q = exp(iπ/n). The first attempts to understand the
large values of the Planck constant led to a badly wrong formula for this dependence. The improved
understanding of Jones inclusions and their role in TGD [97] allowed to deduce an extremely simple
formula for the Planck constant, as a matter fact, for the two separate Planck constants assignable to
with M4 and CP2 degrees of freedom appearing as scaling factors of the corresponding metrics. These
Planck constants are given by the formulas ~(M4) = n(CP2)~0 and ~(CP2) = n(M4)~0 in terms of
integers defining the corresponding quantum phases. The far reaching implication is that Planck
constants can have arbitrarily large values. In this framework even imbedding space is a concept
emerging from infinite-dimensional Clifford algebra but only the scaling factors of the metric can vary.

The general philosophy would be that when the quantum system becomes non-perturbative, a
phase transition increasing the value of ~ occurs to preserve the perturbative character. This would
apply to QCD and to atoms with Z > 137 and to any other system. q 6= 1 quantum groups characterize
non-perturbative phases.

The values of n for which the quantum phase is expressible using only iterated square root operation
(corresponding polygon is obtained by ruler and compass construction) are of special interest since
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they correspond to the lowest evolutionary levels for cognition so that corresponding systems should be
especially abundant in the Universe. It should be noticed that this quantization does not depend at all
on the parameter v0 appearing in the formula of Nottale and this gives strong additional constraints to
the ratios of planetary masses and also on the masses themselves if one assumes that the gravitational
Planck constant corresponds to the values allowed by ruler and compass construction. Also correct
prediction for the ratio of densities of visible and dark matter emerges.

TGD predicts correctly the value of the parameter v0 assuming that cosmic strings and their
decay remnants are responsible for the dark matter. The value of v0 has interpretation as velocity
of distant stars around galaxies in the gravitational field of long cosmic string like objects traversing
through galactic plane. The harmonics of v0 can be understood as corresponding to perturbations
replacing cosmic strings with their n-branched coverings so that tension becomes n2-fold: much like
the replacement of a closed orbit with an orbit closing only after n turns. Sub-harmonics would
result when cosmic strings decay to magnetic flux tubes: magnetic energy density per unit length
is quantized by the preferred extremal property and the simplest possibility is the reduction of the
energy density by a factor 1/n2.

v0 can be expressed in terms of Kähler coupling strength αK and the parameter R2/G character-
izing CP2 size. The value v0 = 2−11 favored both by the planetary Bohr orbitology and quantum
model for living matter leads to new insights about coupling constant evolution. The surprising find
was that αK is very nearly equal to the electro-weak coupling αU(1). This observation led to new
insights about coupling constant evolution.

1. Contrary to the earlier beliefs, it is possible to assume that αK is renormalization group invariant
in strong sense if one assumes that gravitational interactions are mediated by space-time sheets
labelled by M127, the largest Mersenne prime which does not correspond to super-astronomical
length scale.

2. Since classical color action reduces to Kähler action as does also electro-weak U(1) action, and
since color holonomy is Abelian and induced spinors fields carry only anomalous color hyper
charge as spinlike color quantum number identical with electroweak hypercharge, one can argue
that the sum of color and U(1) actions equals to Kähler action implying 1/αs+1/αU(1) = 1/αK
reducing the difficult-to-calculate evolution of color coupling strength to that of electroweak
coupling constant evolution calculable perturbatively. The resulting predictions are consistent
with the empirical facts and electron mass and αU(1) at electron length scale in principle fix the
basic parameters of TGD completely.

The rather amazing coincidences between basic bio-rhythms and the periods associated with the
states of orbits in solar system suggest that the frequencies defined by the energy levels of the gravi-
tational Schrödinger equation might entrain with various biological frequencies such as the cyclotron
frequencies associated with the magnetic flux tubes. For instance, the period associated with n=1
orbit in the case of Sun is 24 hours within experimental accuracy for v0.

Needless to add, if the proposed general picture is correct, not much is left from the super-string/M-
theory approach to quantum gravitation since perturbative quantum field theory as the fundamental
corner stone must be given up and because the underlying physical picture about gravitational inter-
action is simply wrong.

7.3 Quantum TGD in nutshell

This section provides a summary about quantum TGD. The discussions are based on the general vision
that quantum states of the Universe correspond to the modes of classical spinor fields in the ”world of
the classical worlds” identified as the infinite-dimensional configuration space of light-like 3-surfaces
of H = M4 × CP2 (more or less-equivalently, the corresponding 4-surfaces defining generalized Bohr
orbits).

7.3.1 Geometric ideas

TGD relies heavily on geometric ideas, which have gradually generalized during the years. Symme-
tries play a key role as one might expect on basis of general definition of geometry as a structure
characterized by a given symmetry.
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Physics as infinite-dimensional Kähler geometry

1. The basic idea is that it is possible to reduce quantum theory to configuration space geometry
and spinor structure. The geometrization of loop spaces inspires the idea that the mere exis-
tence of Riemann connection fixes configuration space Kähler geometry uniquely. Accordingly,
configuration space can be regarded as a union of infinite-dimensional symmetric spaces labelled
by zero modes labelling classical non-quantum fluctuating degrees of freedom.

The huge symmetries of the configuration space geometry deriving from the light-likeness of
3-surfaces and from the special conformal properties of the boundary of 4-D light-cone would
guarantee the maximal isometry group necessary for the symmetric space property. Quantum
criticality is the fundamental hypothesis allowing to fix the Kähler function and thus dynamics of
TGD uniquely. Quantum criticality leads to surprisingly strong predictions about the evolution
of coupling constants.

2. Configuration space spinors correspond to Fock states and anti-commutation relations for fermionic
oscillator operators correspond to anti-commutation relations for the gamma matrices of the con-
figuration space. Configuration space gamma matrices contracted with Killing vector fields give
rise to a super-algebra which together with Hamiltonians of the configuration space forms what
I have used to called super-symplectic algebra.

Super-symplectic degrees of freedom represent completely new degrees of freedom and have no
electroweak couplings. In the case of hadrons super-symplectic quanta correspond to what has
been identified as non-perturbative sector of QCD: they define TGD correlate for the degrees of
freedom assignable to hadronic strings. They are responsible for the most of the mass of hadron
and resolve spin puzzle of proton.

Besides super-symplectic symmetries there are Super-Kac Moody symmetries assignable to light-
like 3-surfaces and together these algebras extend the conformal symmetries of string models
to dynamical conformal symmetries instead of mere gauge symmetries. The construction of
the representations of these symmetries is one of the main challenges of quantum TGD. The
assumption that the commutator algebra of these super-symplectic and super Kac-Moody alge-
bras annihilates physical states gives rise to Super Virasoro conditions which could be regarded
as analogs of configuration space Dirac equation.

Modular invariance is one aspect of conformal symmetries and plays a key role in the under-
standing of elementary particle vacuum functionals and the description of family replication
phenomenon in terms of the topology of partonic 2-surfaces.

3. Configuration space spinors define a von Neumann algebra known as hyper-finite factor of type
II1 (HFFs). This realization has led also to a profound generalization of quantum TGD through a
generalization of the notion of imbedding space to characterize quantum criticality. The resulting
space has a book like structure with various almost-copies of imbedding space representing the
pages of the book meeting at quantum critical sub-manifolds. The outcome of this approach
is that the exponents of Kähler function and Chern-Simons action are not fundamental objects
but reduce to the Dirac determinant associated with the modified Dirac operator assigned to
the light-like 3-surfaces.

p-Adic physics as physics of cognition and intentionality

p-Adic mass calculations relying on p-adic length scale hypothesis led to an understanding of elemen-
tary particle masses using only super-conformal symmetries and p-adic thermodynamics. The need
to fuse real physics and various p-adic physics to single coherent whole led to a generalization of the
notion of number obtained by gluing together reals and p-adics together along common rationals and
algebraics. The interpretation of p-adic space-time sheets is as correlates for cognition and intentional-
ity. p-Adic and real space-time sheets intersect along common rationals and algebraics and the subset
of these points defines what I call number theoretic braid in terms of which both configuration space
geometry and S-matrix elements should be expressible. Thus one would obtain number theoretical
discretization which involves no adhoc elements and is inherent to the physics of TGD.

Perhaps the most dramatic implication relates to the fact that points, which are p-adically in-
finitesimally close to each other, are infinitely distant in the real sense (recall that real and p-adic
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imbedding spaces are glued together along rational imbedding space points). This means that any
open set of p-adic space-time sheet is discrete and of infinite extension in the real sense. This means
that cognition is a cosmic phenomenon and involves always discretization from the point of view of the
real topology. The testable physical implication of effective p-adic topology of real space-time sheets
is p-adic fractality meaning characteristic long range correlations combined with short range chaos.

Also a given real space-time sheets should correspond to a well-defined prime or possibly several of
them. The classical non-determinism of Kähler action should correspond to p-adic non-determinism
for some prime(s) p in the sense that the effective topology of the real space-time sheet is p-adic in some
length scale range. p-Adic space-time sheets with same prime should have many common rational
points with the real space-time and be easily transformable to the real space-time sheet in quantum
jump representing intention-to-action transformation. The concrete model for the transformation of
intention to action leads to a series of highly non-trivial number theoretical conjectures assuming that
the extensions of p-adics involved are finite-dimensional and can contain also transcendentals.

An ideal realization of the space-time sheet as a cognitive representation results if the CP2 coordi-
nates as functions of M4

+ coordinates have the same functional form for reals and various p-adic number
fields and that these surfaces have discrete subset of rational numbers with upper and lower length
scale cutoffs as common. The hierarchical structure of cognition inspires the idea that S-matrices form
a hierarchy labelled by primes p and the dimensions of algebraic extensions.

The number-theoretic hierarchy of extensions of rationals appears also at the level of configuration
space spinor fields and allows to replace the notion of entanglement entropy based on Shannon entropy
with its number theoretic counterpart having also negative values in which case one can speak about
genuine information. In this case case entanglement is stable against Negentropy Maximization Prin-
ciple stating that entanglement entropy is minimized in the self measurement and can be regarded
as bound state entanglement. Bound state entanglement makes possible macro-temporal quantum
coherence. One can say that rationals and their finite-dimensional extensions define islands of order
in the chaos of continua and that life and intelligence correspond to these islands.

TGD inspired theory of consciousness and number theoretic considerations inspired for years ago
the notion of infinite primes [84] . It came as a surprise, that this notion might have direct rele-
vance for the understanding of mathematical cognition. The ideas is very simple. There is infinite
hierarchy of infinite rationals having real norm one but different but finite p-adic norms. Thus single
real number (complex number, (hyper-)quaternion, (hyper-)octonion) corresponds to an algebraically
infinite-dimensional space of numbers equivalent in the sense of real topology. Space-time and imbed-
ding space points ((hyper-)quaternions, (hyper-)octonions) become infinitely structured and single
space-time point would represent the Platonia of mathematical ideas. This structure would be com-
pletely invisible at the level of real physics but would be crucial for mathematical cognition and
explain why we are able to imagine also those mathematical structures which do not exist physically.
Space-time could be also regarded as an algebraic hologram. The connection with Brahman=Atman
idea is also obvious.

Hierarchy of Planck constants and dark matter hierarchy

The work with hyper-finite factors of type II1 (HFFs) combined with experimental input led to the
notion of hierarchy of Planck constants interpreted in terms of dark matter [30] . The hierarchy is
realized via a generalization of the notion of imbedding space obtained by gluing infinite number
of its variants along common lower-dimensional quantum critical sub-manifolds. These variants of
imbedding space are characterized by discrete subgroups of SU(2) acting in M4 and CP2 degrees of
freedom as either symmetry groups or homotopy groups of covering. Among other things this picture
implies a general model of fractional quantum Hall effect.

This framework also leads to the identification of number theoretical braids as points of partonic
2-surface which correspond to the minima of a generalized eigenvalue of Dirac operator, a scalar field
to which Higgs vacuum expectation is proportional to. Higgs vacuum expectation has thus a purely
geometric interpretation. The outcome is an explicit formula for the Dirac determinant consistent with
the vacuum degeneracy of Kähler action and its finiteness and algebraic number property required by p-
adicization requiring number theoretic universality. The zeta function associated with the eigenvalues
(rather than Riemann Zeta as believed originally) in turn defines the super-symplectic conformal
weights as its zeros so that a highly coherent picture result.
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What is especially remarkable is that the construction gives also the 4-D space-time sheets as-
sociated with the light-like orbits of the partonic 2-surfaces: it remains to be shown whether they
correspond to preferred extremals of Kähler action. It is clear that the hierarchy of Planck constants
has become an essential part of the construction of quantum TGD and of mathematical realization of
the notion of quantum criticality rather than a possible generalization of TGD.

Number theoretical symmetries

TGD as a generalized number theory vision leads to the idea that also number theoretical symmetries
are important for physics.

1. There are good reasons to believe that the strands of number theoretical braids can be assigned
with the roots of a polynomial with suggests the interpretation corresponding Galois groups
as purely number theoretical symmetries of quantum TGD. Galois groups are subgroups of
the permutation group S∞ of infinitely manner objects acting as the Galois group of algebraic
numbers. The group algebra of S∞ is HFF which can be mapped to the HFF defined by
configuration space spinors. This picture suggest a number theoretical gauge invariance stating
that S∞ acts as a gauge group of the theory and that global gauge transformations in its
completion correspond to the elements of finite Galois groups represented as diagonal groups of
G×G× .... of the completion of S∞. The groups G should relate closely to finite groups defining
inclusions of HFFs.

2. HFFs inspire also an idea about how entire TGD emerges from classical number fields, actually
their complexifications. In particular, SU(3) acts as subgroup of octonion automorphisms leaving
invariant preferred imaginary unit and M4 × CP2 can be interpreted as a structure related to
hyper-octonions which is a subspace of complexified octonions for which metric has naturally
Minkowski signature. This would mean that TGD could be seen also as a generalized number
theory. This conjecture predicts the existence of two dual formulations of TGD based on the
identification space-times as 4-surfaces in hyper-octonionic space M8 resp. M4 × CP2.

3. The vision about TGD as a generalized number theory involves also the notion of infinite primes.
This notion leads to a further generalization of the ideas about geometry: this time the notion
of space-time point generalizes so that it has an infinitely complex number theoretical anatomy
not visible in real topology.

7.3.2 The notions of imbedding space, 3-surface, and configuration space

The notions of imbedding space, 3-surface (and 4-surface), and configuration space (world of classical
worlds (WCW)) are central to quantum TGD. The original idea was that 3-surfaces are space-like
3-surfaces of H = M4 × CP2 or H = M4

+ × CP2, and WCW consists of all possible 3-surfaces in
H. The basic idea was that the definition of Kähler metric of WCW assigns to each X3 a unique
space-time surface X4(X3) allowing in this manner to realize general coordinate invariance. During
years these notions have however evolved considerably.

The notion of imbedding space

Two generalizations of the notion of imbedding space were forced by number theoretical vision [85,
86, 84] .

1. p-Adicization forced to generalize the notion of imbedding space by gluing real and p-adic
variants of imbedding space together along rationals and common algebraic numbers. The
generalized imbedding space has a book like structure with reals and various p-adic number
fields (including their algebraic extensions) representing the pages of the book.

2. With the discovery of zero energy ontology [20, 24] it became clear that the so called causal
diamonds (CDs) interpreted as intersections M4

+ ∩M4
− of future and past directed light-cones

of M4 × CP2 define correlates for the quantum states. The position of the ”lower” tip of CD
characterizes the position of CD in H. If the temporal distance between upper and lower tip
of CD is quantized in power-of-two multiples of CP2 length, p-adic length scale hypothesis [60]
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follows as a consequence. The upper resp. lower light-like boundary δM4
+×CP2 resp. δM4

−×CP2

of CD can be regarded as the carrier of positive resp. negative energy part of the state. All
net quantum numbers of states vanish so that everything is creatable from vacuum. Space-time
surfaces assignable to zero energy states would would reside inside CD × CP2s and have their
3-D ends at the light-like boundaries of CD × CP2. Fractal structure is present in the sense
that CDs can contains CDs within CDs, and measurement resolution dictates the length scale
below which the sub-CDs are not visible.

3. The realization of the hierarchy of Planck constants [30] led to a further generalization of the
notion of imbedding space. Generalized imbedding space is obtained by gluing together Cartesian
products of singular coverings and factor spaces of CD and CP2 to form a book like structure.
The particles at different pages of this book behave like dark matter relative to each other.
This generalization also brings in the geometric correlate for the selection of quantization axes
in the sense that the geometry of the sectors of the generalized imbedding space with non-
standard value of Planck constant involves symmetry breaking reducing the isometries to Cartan
subalgebra. Roughly speaking, each CD and CP2 is replaced with a union of CDs and CP2s
corresponding to different choices of quantization axes so that no breaking of Poincare and color
symmetries occurs at the level of entire WCW.

4. The construction of quantum theory at partonic level brings in very important delicacies related
to the Kähler gauge potential of CP2. Kähler gauge potential must have what one might call
pure gauge parts in M4 in order that the theory does not reduce to mere topological quantum
field theory. Hence the strict Cartesian product structure M4 × CP2 breaks down in a delicate
manner. These additional gauge components -present also in CP2- play key role in the model
of anyons, charge fractionization, and quantum Hall effect [66] .

The notions of 3-surface and space-time surface

The question what one exactly means with 3-surface turned out to be non-trivial.

1. The original identification of 3-surfaces was as arbitrary space-like 3-surfaces subject to Equiva-
lence implied by General Coordinate Invariance. There was a problem related to the realization
of Equivalence Principle since it was not at all obvious why the absolute minimum X4(Y 3) for
Y 3 at X4(X3) and Diff4 related X3 should satisfy X4(Y 3) = X4(X3) .

2. Much later it became clear that light-like 3-surfaces have unique properties for serving as basic
dynamical objects, in particular for realizing the General Coordinate Invariance in 4-D sense
(obviously the identification resolves the above mentioned problem) and understanding the con-
formal symmetries of the theory. On basis of these symmetries light-like 3-surfaces can be
regarded as orbits of partonic 2-surfaces so that the theory is locally 2-dimensional. It is how-
ever important to emphasize that this indeed holds true only locally. At the level of WCW metric
this means that the components of the Kähler form and metric can be expressed in terms of
data assignable to 2-D partonic surfaces. It is however essential that information about normal
space of the 2-surface is needed.

3. Rather recently came the realization that light-like 3-surfaces can have singular topology in the
sense that they are analogous to Feynman diagrams. This means that the light-like 3-surfaces
representing lines of Feynman diagram can be glued along their 2-D ends playing the role of
vertices to form what I call generalized Feynman diagrams. The ends of lines are located at
boundaries of sub-CDs. This brings in also a hierarchy of time scales: the increase of the
measurement resolution means introduction of sub-CDs containing sub-Feynman diagrams. As
the resolution is improved, new sub-Feynman diagrams emerge so that effective 2-D character
holds true in discretized sense and in given resolution scale only.

The basic vision has been that space-time surfaces correspond to preferred extremals X4(X3) of
Kähler action. Kähler function K(X3) defining the Kähler geometry of the world of classical worlds
would correspond to the Kähler action for the preferred extremal. The precise identification of the
preferred extremals actually has however remained open.
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1. The obvious guess motivated by physical intuition was that preferred extremals correspond to
the absolute minima of Kähler action for space-time surfaces containing X3. This choice has
some nice implications. For instance, one can develop an argument for the existence of an
infinite number of conserved charges. If X3 is light-like surface- either light-like boundary of
X4 or light-like 3-surface assignable to a wormhole throat at which the induced metric of X4

changes its signature- this identification circumvents the obvious objections.

2. Much later number theoretical vision led to the conclusion that X4(X3
l,i), where X3

l,i denotes

a connected component of the light-like 3-surfaces X3
l , contain in their 4-D tangent space

T (X4(X3
l,i)) a subspace M2

i ⊂ M4 having interpretation as the plane of non-physical polar-
izations. This means a close connection with super string models. Geometrically this would
mean that the deformations of 3-surface in the plane of non-physical polarizations would not
contribute to the line element of WCW. This is as it must be since complexification does not
make sense in M2 degrees of freedom.

In number theoretical framework M2
i has interpretation as a preferred hyper-complex sub-space

of hyper-octonions defined as 8-D subspace of complexified octonions with the property that
the metric defined by the octonionic inner product has signature of M8. A stronger condition
would be that the condition holds true at all points of X4(X3) for a global choice M2 but this
is un-necessary and leads to strong un-proven conjectures. The condition M2

i ⊂ T (X4(X3
l,i))

in principle fixes the tangent space at X3
l,i, and one has good hopes that the boundary value

problem is well-defined and fixes X4(X3) uniquely as a preferred extremal of Kähler action.
This picture is rather convincing since the choice M2

i ⊂M3 plays also other important roles.

3. The next step [20] was the realization that the construction of the configuration space geometry
in terms of modified Dirac action strengthens the boundary conditions to the condition that
there exists space-time coordinates in which the induced CP2 Kähler form and induced metric
satisfy the conditions Jni = 0, gni = 0 hold at X3

l . One could say that at X3
l situation is static

both metrically and for the Maxwell field defined by the induced Kähler form. There are reasons
to hope that this is the final step in a long process.

4. The weakest form of number theoretic compactification [86] states that light-like 3-surfaces
X3 ⊂ X4(X3) ⊂ M8, where X4(X3) hyper-quaternionic surface in hyper-octonionic M8 can
be mapped to light-like 3-surfaces X3 ⊂ X4(X3) ⊂M4 × CP2, where X4(X3) is now preferred
extremum of Kähler action. The natural guess is that X4(X3) ⊂M8 is a preferred extremal of
Kähler action associated with Kähler form of E4 in the decomposition M8 = M4×E4, where M4

corresponds to hyper-quaternions. The conjecture would be that the value of the Kähler action
in M8 is same as in M4 × CP2. A second interesting conjecture is that the hyper-quaternionic
surfaces correspond to Kähler calibrations giving rise to absolute minima or maxima of Kähler
action for M8 [86] .

The notion of configuration space

From the beginning there was a problem related to the precise definition of the configuration space
(”world of classical worlds” (WCW)). Should one regard CH as the space of 3-surfaces of M4 ×CP2

or M4
+ × CP2 or perhaps something more delicate.

1. For a long time I believed that the question ”M4
+ or M4?” had been settled in favor of M4

+ by
the fact that M4

+ has interpretation as empty Roberson-Walker cosmology. The huge conformal
symmetries assignable to δM4

+ × CP2 were interpreted as cosmological rather than laboratory
symmetries. The work with the conceptual problems related to the notions of energy and time,
and with the symmetries of quantum TGD, however led gradually to the realization that there
are strong reasons for considering M4 instead of M4

+.

2. With the discovery of zero energy ontology it became clear that the so called causal diamonds
(CDs) define excellent candidates for the fundamental building blocks of the configuration space
or ”world of classical worlds” (WCW). The spaces CD ×CP2 regarded as subsets of H defined
the sectors of WCW.
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3. This framework allows to realize the huge symmetries of δM4
±×CP2 as isometries of WCW. The

gigantic symmetries associated with the δM4
± × CP2 are also laboratory symmetries. Poincare

invariance fits very elegantly with the two types of super-conformal symmetries of TGD. The first
conformal symmetry corresponds to the light-like surfaces δM4

± × CP2 of the imbedding space
representing the upper and lower boundaries of CD. Second conformal symmetry corresponds
to light-like 3-surface X3

l , which can be boundaries of X4 and light-like surfaces separating
space-time regions with different signatures of the induced metric. This symmetry is identifiable
as the counterpart of the Kac Moody symmetry of string models.

A rather plausible conclusion is that configuration space (WCW) is a union of configuration spaces
associated with the spaces CD×CP2. CDs can contain CDs within CDs so that a fractal like hierarchy
having interpretation in terms of measurement resolution results. Since the complications due to p-
adic sectors and hierarchy of Planck constants are not relevant for the basic construction, it reduces
to a high degree to a study of a simple special case δM4

+ × CP2.

7.3.3 The construction of M-matrix

The construction of S-matrix involves several ideas that have emerged during last years and involve
symmetries in an essential manner.

Zero energy ontology

Zero energy ontology motivated originally by TGD inspired cosmology means that physical states
have vanishing conserved net quantum numbers and are decomposable to positive and negative energy
parts separated by a temporal distance characterizing the system as a space-time sheet of finite size in
time direction. The particle physics interpretation is as initial and final states of a particle reaction.
Obviously a profound modification of existing views about realization of symmetries is in question.

S-matrix and density matrix are unified to the notion of M-matrix defining time-like entanglement
and expressible as a product of square root of density matrix and of unitary S-matrix. Thermody-
namics becomes therefore a part of quantum theory. One must distinguish M-matrix from U-matrix
defined between zero energy states and analogous to S-matrix and characterizing the unitary process
associated with quantum jump. U-matrix is most naturally related to the description of intentional
action since in a well-defined sense it has elements between physical systems corresponding to different
number fields.

Quantum TGD as almost topological QFT

Light-likeness of the basic fundamental objects implies that TGD is almost topological QFT so that
the formulation in terms of category theoretical notions is expected to work. M-matrices form in a
natural manner a functor from the category of cobordisms to the category of pairs of Hilbert spaces
and this gives additional strong constraints on the theory. Super-conformal symmetries implied by the
light-likeness pose very strong constraints on both state construction and on M-matrix and U-matrix.
The notions of n-category and n-groupoid which represents a generalization of the notion of group
could be very relevant to this view about M-matrix.

Quantum measurement theory with finite measurement resolution

The notion of measurement resolution represented in terms of inclusions N ⊂ M of HFFs is an
essential element of the picture. Measurement resolution corresponds to the action of the included
sub-algebra creating zero energy states in time scales shorter than the cutoff scale. This means that
complex rays of state space are effectively replaced with N rays. The condition that the action of
N commutes with the M-matrix is a powerful symmetry and implies that the time-like entanglement
characterized by M-matrix corresponds to Connes tensor product. Together with super-conformal
symmetries this symmetry should fix possible M-matrices to a very high degree.

The notion of number theoretical braid realizes the notion of finite measurement resolution at
space-time level and gives a direct connection to topological QFTs describing braids. The connection
with quantum groups is highly suggestive since already the inclusions of HFFs involve these groups.
Effective non-commutative geometry for the quantum critical sub-manifolds M2 ⊂M4 and S2 ⊂ CP2
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might provide an alternative notion for the reduction of stringy anti-commutation relations for induced
spinor fields to anti-commutations at the points of braids.

Generalization of Feynman diagrams

An essential difference between TGD and string models is the replacement of stringy diagrams with
generalized Feynman diagrams obtained by gluing 3-D light-like surfaces (instead of lines) together at
their ends represented as partonic 2-surfaces. This makes the construction of vertices very simple. The
notion of number theoretic braid in turn implies discretization having also interpretation in terms of
non-commutativity due to finite measurement resolution replacing anti-commutativity along stringy
curves with anti-commutativity at points of braids. Braids can replicate at vertices which suggests an
interpretation in terms of topological quantum computation combined with non-faithful copying and
communication of information. The analogs of stringy diagrams have quite different interpretation in
TGD: for instance, photons travelling via two different paths in double slit experiment are represented
in terms of stringy branching of the photonic 2-surface.

Symplectic variant of QFT as basic building block of construction

The latest discovery related to the construction of M-matrix was the realization that a symplectic vari-
ant of conformal field theories might be a further key element in the concrete construction of n-point
functions and M-matrix in zero energy ontology. Although I have known super-symplectic (super-
symplectic) symmetries to be fundamental symmetries of quantum TGD for almost two decades, I
failed for some reason to realize the existence of symplectic QFT, and discovered it while trying to
understand quite different problem - the fluctuations of cosmic microwave background! The sym-
plectic contribution to the n-point function satisfies fusion rules and involves only variables which are
symplectic invariants constructed using geodesic polygons assignable to the sub-polygons of n-polygon
defined by the arguments of n-point function. Fusion rules lead to a concrete recursive formula for
n-point functions and M-matrix in contrast to the iterative construction of n-point functions used in
perturbative QFT.

7.4 Victories of M-theory from TGD view point

The basic victories of the M-theory relate to conformal symmetries and dualities and black hole physics
and it is useful perform comparison with TGD.

7.4.1 Super-conformal symmetries

Space-time super-symmetries are regarded as one of the basic predictions of the super string model.
Typically these super-symmetries appear at the level of effective quantum field theory limit derived
from spontaneous compactification and predict that massless particles possess massless super part-
ners, sparticles. The problem has been how to generalize Higgs mechanism to break the space-time
super-symmetry. That sparticles have relatively low mass scale has been seen as one of the absolute
predictions of M-theory and the ability to predict at least something has been counted as a success.
Since sparticles have hitherto escaped the attempts to detect them, even this belief has been now
challenged, and proposals has been made that perhaps M-theory might after all predict sparticles to
be very massive.

Before continuing it must be emphasized that TGD and standard views about super-symmetry
differ in many respects.

1. The standard view is inspired by the mathematically awkward and formal idea of assigning to the
space-time coordinates anti-commuting super part. The belief is that string world sheet super-
symmetries give rise to the space-time super symmetries of the low energy effective quantum
field theory assigned to the string model.

2. In TGD the super-symmetry generators of the spectrum generating super-conformal algebra act
as gamma matrices of the configuration space (”world of classical worlds”). The counterparts of
the word sheet super-symmetries act as gauge super-symmetries at space-time level but do not
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give rise to global space-time super-symmetries at the level of imbedding space. Anti-commuting
infinitesimals are encountered nowhere.

Super-symmetry at the space-time level

The interpretation of the bosonic Kac Moody symmetries is as deformations preserving the light
likeness of the light like 3-D CD X3

l . Gauge symmetries are in question when the intersections of X3
l

with 7-D causal determinants X7 are not changed. Since general coordinate invariance corresponds
to gauge degeneracy of the metric it is possible to consider reduced configuration space consisting
of the light like 3-D CDs. The conformal symmetries in question imply a further degeneracy of the
configuration space metric and effective metric 2-dimensionality of 3-surfaces as a consequence. These
conformal symmetries are accompanied by N = 4 local super conformal symmetries defined by the
solutions of the induced spinor fields.

Contrary to the original beliefs, these conformal symmetries do not seem to be continuable to
quaternion conformal super symmetries in the interior of the space-time surface realized as real analytic
power series of a quaternionic space-time coordinate. The reason is that these symmetries involve both
transversal complex coordinate and light like coordinate as independent variables whereas quaternion
conformal symmetries are algebraically one-dimensional.

A resolution of the interpretational problems came with the realization that it is hyper-quaternionic
and -octonionic conformal symmetries, which are in question and that these symmetries are naturally
associated with the description of the space-time surface as a 4-surface in hyper-quaternionic HO =
M8 rather than in H. These symmetries are realized also at the level of H. Note that hyper-
quaternionic symmetries act trivially in the interior of X4 but induce deformations of boundaries of
X4.

The solutions of the modified Dirac equation DΨ = 0, define the modes which do not contribute
to the Dirac determinant of the modified Dirac operator in terms of which the vacuum functional
assumed to correspond to the exponent of the Kähler action is defined. Thus they define gauge super-
symmetries. Usually D selects the physical helicities by the requirement that it annihilates physical
states: now the situation is just the opposite. D2 annihilates the generalized eigen states both at
space-like and light like 3-surfaces. Hence the roles of the physical and non-physical helicities are
switched. It is the generalized eigen modes of D with non-vanishing eigenvalues λ, which code for the
physics whereas the solutions of the modified Dirac equation define super gauge symmetries.

At the space-like 3-surfaces associated with 7-D causal determinants the spinor harmonics of the
configuration space satisfy the M4 × CP2 counterpart of the massless Dirac equation so that non-
physical helicities are eliminated in the standard sense at the imbedding space level. The righthanded
neutrino does not generate an N = 1 space-time super-symmetry contrary to the long held belief.

Super-symmetry at the level of configuration space

The gamma matrices of the configuration space are defined as matrix elements of properly cho-
sen operators between right-handed neutrino and second quantized induced spinor field at space-like
boundaries X3 [20] . These generators define the fermionic generators of what I call super-symplectic
algebra. The right handed neutrino can be replaced with any spinor harmonic of the imbedding space
to obtain an extended super-algebra, which can be used to construct the physical states.

The requirement that super-generators vanish for the vacuum extremals requires that the modified
Dirac operator D+ or the inverse of D− appearing in the matrix element of the ”Hermitian conjugate”
S− = (S+)† of the super charge S+. Here ± refers to the negative and positive energy space-time
sheets meeting at X3 or to the two maximally deterministic space-time regions separated by the causal
determinant. The operators D+ and D−1

− are restricted to the spinor modes not annihilated by D±.
The super-generator generated by the covariantly constant right handed neutrino vanishes identically:
a more rigorous argument showing that N = 1 global super symmetry is indeed absent.

If the configuration space decomposes into a union of sectors labelled by unions of light cones
having tips at arbitrary points of M4, the spinor harmonics can be assumed to define plane waves
in M4 and even possess well-defined four-momenta and mass squared values. Same applies to the
super-symplectic generators defined by their commutators. This means that the generators of the
super-symplectic algebra generated in this manner would possess well defined four-momenta and thus
their action would change the mass of the state. Space-time super-symmetries would be absent. Similar
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argument applies to the Kac Moody algebras associated with the light like 3-D causal determinants
if super-symplectic Super Kac-Moody algebras provide dual representations of quantum states.

If the gist of these admittedly heuristic arguments is correct, they force to modify drastically
the existing view about space-time super-symmetries. The problem how to break super-symmetry
disappears since there is no space-time symmetry be broken down. Super-symmetries are realized as
a spectrum generating algebra rather than symmetries in the standard sense.

I hasten to admit that I have myself believed that right handed neutrino defines a global super-
symmetry and proposed that the topological condensation of sparticles and particles at space-time
sheets with different p-adic primes would provide an elegant model for super-symmetry breaking using
same general mass formulas but only a different mass scale. Giving up this assumption causes however
only a sigh of relief. The predicted spectrum of massless states is reduced dramatically [49] . p-Adic
mass calculations based on p-adic thermodynamics and representations of super-conformal algebra are
not affected since the global N = 1 super-symmetry implies only an additional vacuum degeneracy.
Most predictions of TGD remain intact. The speculation that sneutrinos might be light and play a
role in TGD based condensed matter physics is the only possible exception. One can however consider
the possibility of light colored sneutrinos obtained by applying to a neutrino state a colored and thus
non-vanishing super-symplectic generator defined by right handed antineutrino.

It deserves to be noticed that the notion super-symmetry in configuration space sense was discov-
ered with the advent of super string models and generalized to a space-time super-symmetry when
gauge theories made their breakthrough. The notion of spontaneous compactification (we meet our
friend again and again!) inspired then the hypothesis that this super-symmetry has a space-time
counterpart and everyone believed. There is now an entire industry making similar purely formal out
of context applications and generalizations of quantum groups, which originally emerged naturally in
knot and braid theory and in the theory of von Neumann algebras [84, 95] .

7.4.2 Dualities

The starting point of duality physics was the classical paper of Montonen and Olive about electric-
magnetic duality [57] which was generalized to what are known as S and T dualities in superstring
context. The notion of duality is central also in TGD framework.

Dualities as victories of M-theory

Dualities [61] allowing to unify various superstring models are regarded as basic victories of M-theory.
The heuristic proofs for various dualities between various variants of superstring model that I have
seen apply what might be called M-logic. Consider special examples defined by 11-dimensional super-
gravity using a particular background and particular spontaneous compactification and demonstrate
that these examples are consistent with the duality. Then generalize from special to general. For a
non-specialist, it is difficult to decide, whether all this is just wishful thinking and clever choices of
compactifications.

Mirror symmetry of Calabi-Yau manifolds

String theory has stimulated very general conjectures about the properties of Calabi-Yau manifolds,
which have turned out to be correct. Calabi-Yau manifolds are 3-dimensional Kähler manifolds with
SU(3) (rather than U(3)) holonomy group and thus satisfy empty space Einstein equations implied by
the requirement of the vanishing of conformal anomaly in closed super string models. The prediction
of the mirror symmetry for Calabi-Yau manifolds [62] emerged before the era of M-theory from the
study of N = 2 super-conformal sigma models with Calabi-Yau manifold as a target space and closed
string world sheet as the ”space-time”. In the 11-dimensional M-theory context Calabi-Yau manifolds
are obtained only by a special compactication for which 11th dimension corresponds to a circle. The
argument taken from [62] written in a physicist friendly manner runs as follows.

1. In conformal field theories the so called marginal operators correspond to the deformations of
the original conformal field theory respecting the property of being a conformal field theory,
and thus the criticality of the physical system. In particular, the deformations of complex and
Kähler structures of the target space, now Calabi-Yau space, induce this kind of deformations.
The basic finding was that the operators inducing these two kinds of deformations differ only by
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the opposite sign of their U(1) charge associated with the U(1) current of N = 2 super-symmetry
algebra.

2. The mere change of the sign of U(1) charge would correspond to a permutation of the spaces
of complex and Kähler moduli which means a rather drastic geometric and even a topological
change. On the other hand, the physical change must be marginal since the system remains
critical. Both signs of U(1) charge seem highly plausible so that the hypothesis is that the
Calabi-Yau manifolds appear a mirror pairs so that in a rough sense the moduli for Kähler and
complex structures are permuted for the members of the mirror pair by performing a change of
sign of U(1) charge for the left moving modes of string. Actually a generalization of the notion of
Kähler moduli is necessary. This is achieved by combining the Kähler form and antisymmetric
field B defining a generalization of U(1) gauge potential to form a imaginary and complex parts
of a more general structure for which Kähler moduli space (Kähler cone) is complexified and by
introducing so called extended Kähler cone combining the Kähler moduli associated with several
Calabi-Yau spaces so that single Calabi-Yau manifold can have several mirrors [62] .

There are two implications. First, two different Calabi-Yau geometries and even topologies give rise
to the same conformally invariant physics: the physics↔ geometry identification of General Relativity
is not strictly true anymore. Secondly, the continuous change of the complex moduli for the Calabi-
Yau manifold corresponds to a topology change for the mirror manifold so that even topology change
corresponds to a quite smooth change of physics, in fact a change respecting 2-dimensional criticality.
Even the possibility that the change involves a temporary contraction of the Calabi-Yau to a point
during the change cannot be excluded [62] , which looks really weird. Also singular Calabi-Yau
manifolds are possible and not mere limiting cases of non-singular ones [62] .

These implications might be also seen as a failure of the theory basically due to the spontaneous
compactification trick. In TGD imbedding space is fixed and similar phenomenon does not occur. The
moduli space of conformal structures of the metrically 2-dimensional light like causal determinants
effectively corresponding to closed string word sheets is however involved also now, and implies nat-
urally the concept of elementary particle vacuum functional defined in the moduli space of complex
structures characterizing the effectively 2-D induced metrics at causal determinants [22] . The notion
is essential for p-adic mass calculations and predicts correct ratios for electron, muon, and tau lepton
masses [49] .

To conclude, the discovery of the mirror symmetry is quite beautiful and impressive but as such
does not provide support for the super string theory as a physical theory. The discovery could have
been made by a conformal field theorist interested in two-dimensional critical statistical systems.

7.4.3 Dualities and conformal symmetries in TGD framework

The reason for discussing the rather speculative notion of dualities before considering the definition
of the modified Dirac action and discussing the proposal how to define Kähler function in terms of
Dirac determinants, is that the duality thinking gives the necessary overall view about the complex
situation: even wrong vision is better than no vision at all.

The first candidate for a duality in TGD is electric-magnetic duality appearing in the construction
of configuration space geometry.

Electric-magnetic duality

Electric-magnetic duality for the induced Kähler induced field is present also in TGD (CP2 Kähler
form is self-dual). My original belief was that it corresponds to a self duality leaving Kähler coupling
constant invariant as an analog of critical temperature: αK → αK in this transformation [21] . This
duality would allow to construct configuration space Kähler metric in terms of Kähler electric or
magnetic fluxes.

This duality relates in an interesting manner to the idea that space-time surfaces can be regarded
either hyper-quaternionic sub-manifolds of M8 endowed with hyper-octonionic tangent space or as
4-surfaces in M4 × CP2 [86] . The point is that one can consider also the dual definition for which
the 4-D normal space defines 4-D subalgebra of 8-D algebra at each point of the space-time surface.
One might speak of number theoretical spontaneous compactification. This duality corresponds to
naturally to the decomposition of space-time surface to regions for which the signature of the induced
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metric is Minkowskian resp. Euclidian. Therefore there are reasons to expect that the dichotomies
electric-magnetic, associative -co-assosociative, and Minkowskian-Euclidian correspond to one and
same duality.

Are the two super-conformal symmetries dual to each other?

TGD predicts two kinds of super-conformal symmetries corresponding to 7-D surfaces δM4
± of imbed-

ding space and 3-D causal determinants of space-time surface. The innocent question of the novice
is whether some kind of 7-3 duality might prevail in some sense so that these two kinds of causal
determinants might provide alternative descriptions.

It has turned out [24, 23, 97, 30] that 3-7 duality does not make in the strong sense that one
could describe TGD based physics using either 3-D or 7-D symmetries. Generalized coset construction
stating that the differences of corresponding Super-Virasoro generators annihilate physical states looks
highly attractive and would provide a generalization of Equivalence Principle assigning inertial and
gravitational masses to the two conformal symmetries.

Since I took 7-3 duality quite seriously for some time, it deserves to be described in detail

1. A duality between space-time surfaces and light-like 3-surfaces, which I have referred earlier as
7-3 duality has simplified a lot the construction of the theory. The basic idea behind this duality
is that space-time surface is fixed completely once either 3-D light-like 3-surfaces or space-like
3-surfaces at 7-D surfaces δCD×CP2 are given: one cannot fix both arbitrarily. Second aspect
of the duality was that super-symplectic conformal symmetries acting in δCD×CP2 and super
Kac-Moody type symmetries acting in X3

l could provide dual descriptions and represent different
coordinate choices for the world of classical worlds.

2. This picture re-emerged in a modified form in the construction of S-matrix [24, 23] accompanied
by a more detailed formulation of the TGD counterpart of the quantum measurement theory.
One can say that the classical dynamics in the interior dictated by the Kähler action (or number
theoretically) is in a precise correspondence with the quantum dynamics at light-like partonic
3-surfaces X3

l in the sense that conserved classical charges correspond to a maximum commuting
set of quantal charges. Furthermore, the Dirac determinant associated with the modified Dirac
action at X3

l gives rise to the exponent of Kähler function of CH. The modified Dirac action
would be simply Chern-Simons action for the induced Kähler gauge potential so that TGD would
reduce to almost-topological QFT.

3. The strongest form of this duality would be quantum gravitational holography in a strong
form: light-like 3-surfaces would provide a representation for the theory and a very intimate
connection with closed super-string models would result. This alternative leads to a remarkable
simplification of the basic formulas for configuration space Hamiltonians, Kähler metric, and
gamma matrices since one can restrict the integrals in the defining formulas to 2-D intersections
X2 of 3-D light-like 3-surfaces δCD×CP2 identifiable as sub-manifolds of space-like 3-surfaces.

Duality in strong sense woul means that configuration space gamma matrices identified as should
also anticommute to configuration space metric just like the super-symplectic charges do. This is
quite possible: the representations would correspond to two different coordinates for the tangent
space of CH determined by the Hamiltonians of δM4

± × CP2 and by Kac Moody Lie-algebra
and if the coordinatizations are faithful 7–3 duality corresponds to a change of CH coordinates.

Consider now the objections against 7-3 duality in strong form.

1. The first objection is that Super-Kac-Moody algebra might act in zero modes of configuration
space metric. In this case the duality could be mediated by classical-quantum duality in the
sense that zero modes would provide classical representation of quantum physics in quantum
fluctuating degrees of freedom.

2. Second objection is that super-symplectic representations associated with δCD×CP2 and Super-
Kac Moody algebras associated with 3-D light-like 3-surfaces do not seem to be in dual relation.
Super-symplectic and Super Kac-Moody representations can be realized at the above mentioned
2-D intersections X2

i , and the action of Kac Moody algebra on super-symplectic algebra is well
defined and does not lead out of super-symplectic algebra. Hence one can hope that same
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representation space defines representations of both algebras, at least when one allows the rep-
resentation to consist of several irreducible representations of both algebras.

There are however good reasons to consider a weaker form of the duality. The two super-conformal
algebras could be in same relation and Virasoro algebras of group G and its subgroup H in giving
rise to super Virasoro representation with a vanishing central charge using differences of the super
Virasoro generators in question. Hence the super Virasoro algebras would be dual in the sense that
their actions cancel each other. Together with the so called zero energy ontology [24, 23] according
to which physical states in TGD Universe have always vanishing net conserved charges, this leads
to a very elegant general picture about super-conformal symmetries and about the construction of
S-matrix in TGD framework.

The realization that coset construction is possible for super-symplectic and Super Kac-Moody alge-
bras provides a more convincing justification and more precise formulation for what I called originally
7-3 duality. Coset Super-Virasoro conditions provide TGD counterparts of Einstein’s equations and
realize generalization of Equivalence Principle in TGD framework. Coset construction justifies also
p-adic thermodynamics. The construction will be discussed in detail in the last section of the book
devoted to conformal symmetries.

Quantum gravitational holography

The so called AdS/CFT duality of Maldacena [54] correspondence relates to quantum-gravitational
holography states roughly that the gravitational theory in 10-dimensional AdS10−n × Sn manifold is
equivalent with the conformal field theory at the boundary of AdSD factor, which is D−1-dimensional
Minkowski space. This duality has been seen as a manifestation of a duality between super-gravity
with Kaluza-Klein quantum numbers (closed strings) and super Yang-Mills theories (open strings with
quantum numbers at the ends of string).

In TGD quantum gravitational holography is realized in terms of the modified Dirac action at
light like 3-D causal determinants [20] , which by their metric 2-dimensionality allow superconformal
invariance and are very much like world sheets of closed super string or the ends of an open string.

There are could reasons to believe that the value of Kähler action at maximally deterministic region
of space-time sheets are expressible in terms of a Dirac determinant for the modified Dirac action
associated with Chern-Simonas action at light-like 3-surfaces [20, 84] . This would reduce enormously
difficult problem of identifying preferred extremals of Kähler action and calculating corresponding
Kähler action to local data at light-light-like 3-surfaces.

1. Number theoretical compactification states that light-like 3-surfaces in M8 can be mapped to
light-like 3-surfaces in M4×CP2. This require that the tangent space of X4(X3

l ) at X3
l contains

preferred plane M2 ⊂ M4 having interpretation as hyper-complex sub-space. M2 is same for
each connected component of X3

l . Hence the boundary values are fixed at X3
l to a high degree.

The physical interpretation of M2 is as the plane of non-physical polarization so that gauge
invariance would have purely number theoretic interpretation.

2. One must code the information about the preferred extremal of Kähler action to the spectrum
of the modified Dirac operator DC−S associated with Chern-Simons Dirac action, whose gener-
alized eigenvalues are arbitrary functions of transversal coordinates of X3

l . This is achieved by
requiring that the spinor field at X3

l can be regarded as spinorial shock waves. This means that
they are singular solutions of the modified Dirac operator DK associated with Kähler action
in the interior of X4 and concentrated to X3

l . Since modified Dirac equation reduces to super
current conservation, the condition states that the 4-D super current is concentrated at X3

l and
flows along it. Therefore the singular solutions of DK correspond to generalized eigenmodes
of DC−S and the Dirac determinant is simply the product of the eigen values analogous to
cyclotron energies in the electro-weak magnetic field associated with X3

l .

3. By the special properties of Kähler action, eigenmodes are localized into regions where induced
Kähler form is non-vanishing and the number of modes is finite. Hence no regularization proce-
dure is needed to define Dirac determinant, and it indeed carries information about the preferred
extremal specified by the condition M2 ⊂ T (X4(X3

l )) and boundary conditions gni = 0 and
Jni = 0 for induced metric and Kähler form [20] .
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This reduction has enormous importance for the calculability of the theory. For instance, an explicit
form for the Kähler coupling strength in terms of Dirac determinant fixing the number theoretic
anatomy of also other couplings. The values of Kähler coupling strength and gravitational constant
can be predicted by using the results of p-adic mass calculations [8, 20] . As a matter fact, Kähler
coupling strength can be identified as fine structure constant in electron length scale.

Perhaps the most practical form of the quantum gravitational holography is implied by the gen-
eralized conformal invariance implying effective 2-dimensionality. This means that X3

l represent gen-
eralized Feynman diagrams with lines representing by light-like 3-surfaces and vertices as 2-surfaces
X2 ⊂ δCD×CP2 at which these lines meet. Vertices can be expressed as N-point functions of super-
conformal field theory at these 2-surfaces. Only effective two-dimensionality is in question since one
has hierarchy of CDs within CDs and improvement of measurement resolution brings into consider-
ation CDs with smaller size. Effective 2-dimensionality obvious means quantum holography in lower
dimensional sense and this sequence of holographies continues down to the level of number theoretic
braids with information about M-matrix coded by a set of discrete points at partonic 2-surfaces X2.

Computationally TGD would reduce to almost string model since light like 3-surfaces are analogous
to closed string word sheets on one hand, and to the ends of open string on the other hand. There is also
an analogy with the Wess-Zumino-Witten model: light like causal determinants would correspond to
the 2-D space of WZW model and 4-surface to the associated 3-D space defining the central extension
of the Kac-Moody algebra.

7.4.4 Number theoretic compactification and M8 −H duality

This section summarizes the basic vision about number theoretic compactification reducing the clas-
sical dynamics to number theory. In strong form M8 − H duality boils down to the assumption
that space-time surfaces can be regarded either as surfaces of H or as surfaces of M8 composed of
hyper-quaternionic and co-hyper-quaternionic regions identifiable as regions of space-time possessing
Minkowskian resp. Euclidian signature of the induced metric.

Basic idea behind M8 −M4 × CP2 duality

The hopes of giving M4×CP2 hyper-octonionic structure are meager. This circumstance forces to ask
whether four-surfaces X4 ⊂M8 could under some conditions define 4-surfaces in M4×CP2 indirectly
so that the spontaneous compactification of super string models would correspond in TGD to two
different manners to interpret the space-time surface. The following arguments suggest that this is
indeed the case.

The hard mathematical fact behind number theoretical compactification is that the quaternionic
sub-algebras of octonions with fixed complex structure (that is complex sub-space) are parameterized
by CP2 just as the complex planes of quaternion space are parameterized by CP1 = S2. Same applies
to hyper-quaternionic sub-spaces of hyper-octonions. SU(3) would thus have an interpretation as the
isometry group of CP2, as the automorphism sub-group of octonions, and as color group.

1. The space of complex structures of the octonion space is parameterized by S6. The subgroup
SU(3) of the full automorphism group G2 respects the a priori selected complex structure and
thus leaves invariant one octonionic imaginary unit, call it e1. Hyper-quaternions can be identi-
fied as U(2) Lie-algebra but it is obvious that hyper-octonions do not allow an identification as
SU(3) Lie algebra. Rather, octonions decompose as 1⊕1⊕3⊕3 to the irreducible representations
of SU(3).

2. Geometrically the choice of a preferred complex (quaternionic) structure means fixing of complex
(quaternionic) sub-space of octonions. The fixing of a hyper-quaternionic structure of hyper-
octonionic M8 means a selection of a fixed hyper-quaternionic sub-space M4 ⊂ M8 implying
the decomposition M8 = M4 ×E4. If M8 is identified as the tangent space of H = M4 × CP2,
this decomposition results naturally. It is also possible to select a fixed hyper-complex structure,
which means a further decomposition M4 = M2 × E2.

3. The basic result behind number theoretic compactification and M8 −H duality is that hyper-
quaternionic sub-spaces M4 ⊂M8 containing a fixed hyper-complex sub-space M2 ⊂M4 or its
light-like line M± are parameterized by CP2. The choices of a fixed hyper-quaternionic basis
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1, e1, e2, e3 with a fixed complex sub-space (choice of e1) are labeled by U(2) ⊂ SU(3). The choice
of e2 and e3 amounts to fixing e2 ±

√
−1e3, which selects the U(2) = SU(2) × U(1) subgroup

of SU(3). U(1) leaves 1 invariant and induced a phase multiplication of e1 and e2 ± e3. SU(2)
induces rotations of the spinor having e2 and e3 components. Hence all possible completions of
1, e1 by adding e2, e3 doublet are labeled by SU(3)/U(2) = CP2.

4. Space-time surface X4 ⊂M8 is by definition hyper-quaternionic if the tangent spaces of X4 are
hyper-quaternionic planes. Co-hyper-quaternionictity means the same for normal spaces. The
presence of fixed hyper-complex structure means at space-time level that the tangent space of
X4 contains fixed M2 at each point. Under this assumption one can map the points (m, e) ∈M8

to points (m, s) ∈ H by assigning to the point (m, e) of X4 the point (m, s), where s ∈ CP2

characterize T (X4) as hyper-quaternionic plane.

5. The choice of M2 can be made also local in the sense that one has T (X4) ⊃ M2(x) ⊂ M4 ⊂
H. It turns out that strong form of number theoretic compactification requires this kind of
generalization. In this case one must be able to fix the convention how the point of CP2 is
assigned to a hyper-quaternionic plane so that it applies to all possible choices of M2 ⊂ M4.
Since SO(3) hyper-quaternionic rotation relates the hyper-quaternionic planes to each other,
the natural assumption is hyper-quaternionic planes related by SO(3) rotation correspond to
the same point of CP2. Under this assumption it is possible to map hyper-quaternionic surfaces
of M8 for which M2 ⊂M4 depends on point of X4 to H.

Minimal form of M8 −H duality

The basic problem in the construction of quantum TGD has been the identification of the preferred
extremals of Kähler action playing a key role in the definition of the theory. The most elegant manner
to do this is by fixing the 4-D tangent space T (X4(X3

l )) of X4(X3
l ) at each point of X3

l so that the
boundary value problem is well defined. What I called number theoretical compactification allows to
achieve just this although I did not fully realize this in the original vision. The minimal picture is
following.

1. The basic observations are following. Let M8 be endowed with hyper-octonionic structure. For
hyper-quaternionic space-time surfaces inM8 tangent spaces are by definition hyper-quaternionic.
If they contain a preferred plane M2 ⊂M4 ⊂M8 in their tangent space, they can be mapped to
4-surfaces in M4 × CP2. The reason is that the hyper-quaternionic planes containing preferred
the hyper-complex plane M2 of M± ⊂ M2 are parameterized by points of CP2. The map is
simply (m, e) → (m, s(m, e)), where m is point of M4, e is point of E4, and s(m, 2) is point of
CP2 representing the hyperquaternionic tangent plane. The inverse map assigns to each point
(m, s) in M4×CP2 point m of M4, undetermined point e of E4 and 4-D plane. The requirement
that the distribution of planes containing the preferred M2 or M± corresponds to a distribution
of planes for 4-D surface is expected to fix the points e. The physical interpretation of M2 is
in terms of plane of non-physical polarizations so that gauge conditions have purely number
theoretical interpretation.

2. In principle, the condition that T (X4) contains M2 can be replaced with a weaker condition
that either of the two light-like vectors of M2 is contained in it since already this condition
assigns to T (X4) M2 and the map H → M8 becomes possible. Only this weaker form applies
in the case of massless extremals [12] as will be found.

3. The original idea was that hyper-quaternionic 4-surfaces in M8 containing M2 ⊂ M4 in their
tangent space could correspond to preferred extremals of Kähler action. This condition does
not seem to be consistent with what is known about the extremals of Kähler action. The
weaker form of the hypothesis is that hyper-quaternionicity holds only for 4-D tangent spaces
of X3

l ⊂ H = M4 × CP2 identified as wormhole throats or boundary components lifted to 3-
surfaces in 8-D tangent space M8 of H. The minimal hypothesis would be that only T (X4(X3

l ))
at X3

l is associative that is hyper-quaternionic for fixed M2. X3
l ⊂ M8 and T (X4(X3

l )) at X3
l

can be mapped to X3
l ⊂ H if tangent space contains also M± ⊂ M2 or M2 ⊂ M4 ⊂ M8 itself

having interpretation as preferred hyper-complex plane. This condition is not satisfied by all
surfaces X3

l as is clear from the fact that the inverse map involves local E4 translation. The
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requirements that the distribution of hyper-quaternionic planes containing M2 corresponds to
a distribution of 4-D tangent planes should fix the E4 translation to a high degree.

4. A natural requirement is that the image of X3
l ⊂ H in M8 is light-like. The condition that the

determinant of induced metric vanishes gives an additional condition reducing the number of
free parameters by one. This condition cannot be formulated as a condition on CP2 coordinate
characterizing the hyper-quaternionic tangent plane. Since M4 projections are same for the two
representations, this condition is satisfied if the contributions from CP2 and E4 and projections
to the induced metric are identical: skl∂αs

k∂βs
l = ekl∂αe

k∂βe
l. This condition means that only

a subset of light-like surfaces of M8 are realized physically. One might argue that this is as it
must be since the volume of E4 is infinite and that of CP2 finite: only an infinitesimal portion
of all possible light-like 3-surfaces in M8 can can have H counterparts. The conclusion would
be that number theoretical compactification is 4-D isometry between X4 ⊂ H and X4 ⊂M8 at
X3
l . This unproven conjecture is unavoidable.

5. M2 ⊂ T (X4(X3
l )) condition fixes T (X4(X3

l )) in the generic case by extending the tangent space
of X3

l , and the construction of configuration space spinor structure fixes boundary conditions
completely by additional conditions necessary when X3

l corresponds to a light-like 3 surfaces
defining wormhole throat at which the signature of induced metric changes. What is especially
beautiful that only the data in T (X4(X3

l )) at X3
l is needed to calculate the vacuum functional of

the theory as Dirac determinant: the only remaining conjecture (strictly speaking un-necessary
but realistic looking) is that this determinant gives exponent of Kähler action for the preferred
extremal and there are excellent hopes for this by the structure of the basic construction.

The basic criticism relates to the condition that light-like 3-surfaces are mapped to light-like 3-
surfaces guaranteed by the condition that M8 −H duality is isometry at X3

l .

Strong form of M8 −H duality

The proposed picture is the minimal one. One can of course ask whether the original much stronger
conjecture that the preferred extrema of Kähler action correspond to hyper-quaternionic surfaces could
make sense in some form. One can also wonder whether one could allow the choice of the plane M2

of non-physical polarization to be local so that one would have M2(x) ⊂M4 ⊂M4 × E4, where M4

is fixed hyper-quaternionic sub-space of M8 and identifiable as M4 factor of H.

1. If M2 is same for all points of X3
l , the inverse map X3

l ⊂ H → X3
l ⊂ M8 is fixed apart from

possible non-uniquencess related to the local translation in E4 from the condition that hyper-
quaternionic planes represent light-like tangent 4-planes of light-like 3-surfaces. The question is
whether not only X3

l but entire four-surface X4(X3
l ) could be mapped to the tangent space of

M8. By selecting suitably the local E4 translation one might hope of achieving the achieving
this. The conjecture would be that the preferred extrema of Kähler action are those for which
the distribution integrates to a distribution of tangent planes.

2. There is however a problem. What is known about extremals of Kähler action is not consistent
with the assumption that fixed M2 of M± ⊂ M2is contained in the tangent space of X4. This
suggests that one should relax the condition that M2 ⊂M4 ⊂M8 is a fixed hyper-complex plane
associated with the tangent space or normal space X4 and allow M2 to vary from point to point
so that one would have M2 = M2(x). In M8 → H direction the justification comes from the
observation (to be discussed below) that it is possible to uniquely fix the convention assigning
CP2 point to a hyper-quaternionic plane containing varying hyper-complex plane M2(x) ⊂M4.

Number theoretic compactification fixes naturally M4 ⊂M8 so that it applies to any M2(x) ⊂
M4. Under this condition the selection is parameterized by an element of SO(3)/SO(2) = S2.
Note that M4 projection of X4 would be at least 2-dimensional in hyper-quaternionic case. In
co-hyper-quaternionic case E4 projection would be at least 2-D. SO(2) would act as a number
theoretic gauge symmetry and the SO(3) valued chiral field would approach to constant at X3

l

invariant under global SO(2) in the case that one keeps the assumption that M2 is fixed ad X3
l .

3. This picture requires a generalization of the map assigning to hyper-quaternionic plane a point
of CP2 so that this map is defined for all possible choices of M2 ⊂M4. Since the SO(3) rotation
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of the hyper-quaternionic unit defining M2 rotates different choices parameterized by S2 to each
other, a natural assumption is that the hyper-quaternionic planes related by SO(3) rotation
correspond to the same point of CP2. Denoting by M2 the standard representative of M2, this
means that for the map M8 → H one must perform SO(3) rotation of hyper-quaternionic plane
taking M2(x) to M2 and map the rotated tangent plane to CP2 point. In M8 → H case one
must first map the point of CP2 to hyper-quaternionic plane and rotate this plane by a rotation
taking M2(x) to M2.

4. In this framework local M2 can vary also at the surfaces X3
l , which considerably relaxes the

boundary conditions at wormhole throats and light-like boundaries and allows much more general
variety of light-like 3-surfaces since the basic requirement is that M4 projection is at least 1-
dimensional. The physical interpretation would be that a local choice of the plane of non-physical
polarizations is possible everywhere in X4(X3

l ). This does not seem to be in any obvious conflict
with physical intuition.

These observation provide support for the conjecture that (classical) S2 = SO(3)/SO(2) conformal
field theory might be relevant for (classical) TGD.

1. General coordinate invariance suggests that the theory should allow a formulation using any
light-like 3-surface X3 inside X4(X3

l ) besides X3
l identified as union of wormhole throats and

boundary components. For these surfaces the element g(x) ∈ SO(3) would vary also at partonic
2-surfaces X2 defined as intersections of δCD×CP2 and X3 (here CD denotes causal diamond
defined as intersection of future and past directed light-cones). Hence one could have S2 =
SO(3)/SO(2) conformal field theory at X2 (regarded as quantum fluctuating so that also g(x)
varies) generalizing to WZW model for light-like surfaces X3.

2. The presence of E4 factor would extend this theory to a classical E4×S2 WZW model bringing
in mind string model with 6-D Euclidian target space extended to a model of light-like 3-surfaces.
A further extension to X4 would be needed to integrate the WZW models associated with 3-
surfaces to a full 4-D description. General Coordinate Invariance however suggests that X3

l

description is enough for practical purposes.

3. The choices of M2(x) in the interior of X3
l is dictated by dynamics and the first optimistic

conjecture is that a classical solution of SO(3)/SO(2) Wess-Zumino-Witten model obtained by
coupling SO(3) valued field to a covariantly constant SO(2) gauge potential characterizes the
choice of M2(x) in the interior of M8 ⊃ X4(X3

l ) ⊂ H and thus also partially the structure of
the preferred extremal. Second optimistic conjecture is that the Kähler action involving also E4

degrees of freedom allows to assign light-like 3-surface to light-like 3-surface.

4. The best that one can hope is that M8−H duality could allow to transform the extremely non-
linear classical dynamics of TGD to a generalization of WZW-type model. The basic problem
is to understand how to characterize the dynamics of CP2 projection at each point.

In H picture there are two basic types of vacuum extremals: CP2 type extremals representing
elementary particles and vacuum extremals having CP2 projection which is at most 2-dimensional
Lagrange manifold and representing say hadron. Vacuum extremals can appear only as limiting cases
of preferred extremals which are non-vacuum extremals. Since vacuum extremals have so decisive role
in TGD, it is natural to requires that this notion makes sense also in M8 picture. In particular, the
notion of vacuum extremal makes sense in M8.

This requires that Kähler form exist in M8. E4 indeed allows full S2 of covariantly constant Kähler
forms representing quaternionic imaginary units so that one can identify Kähler form and construct
Kähler action. The obvious conjecture is that hyper-quaternionic space-time surface is extremal of
this Kähler action and that the values of Kähler actions in M8 and H are identical. The elegant
manner to achieve this, as well as the mapping of vacuum extremals to vacuum extremals and the
mapping of light-like 3-surfaces to light-like 3-surfaces is to assume that M8 − H duality is Kähler
isometry so that induced Kähler forms are identical.

This picture contains many speculative elements and some words of warning are in order.
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1. Light-likeness conjecture would boil down to the hypothesis that M8 − H correspondence is
Kähler isometry so that the metric and Kähler form of X4 induced from M8 and H would be
identical. This would guarantee also that Kähler actions for the preferred extremal are identical.
This conjecture is beautiful but strong.

2. The slicing of X4(X3
l ) by light-like 3-surfaces is very strong condition on the classical dynamics

of Kähler action and does not make sense for pieces of CP2 type vacuum extremals.

1. Minkowskian-Euclidian ↔ associative–co-associative

The 8-dimensionality of M8 allows to consider both associativity (hyper-quaternionicity) of the
tangent space and associativity of the normal space- let us call this co-assosiativity of tangent space-
as alternative options. Both options are needed as has been already found. Since space-time surface
decomposes into regions whose induced metric possesses either Minkowskian or Euclidian signature,
there is a strong temptation to propose that Minkowskian regions correspond to associative and
Euclidian regions to co-associative regions so that space-time itself would provide both the description
and its dual.

The proposed interpretation of conjectured associative-co-associative duality relates in an inter-
esting manner to p-adic length scale hypothesis selecting the primes p ' 2k, k positive integer as
preferred p-adic length scales. Lp ∝

√
p corresponds to the p-adic length scale defining the size of

the space-time sheet at which elementary particle represented as CP2 type extremal is topologically
condensed and is of order Compton length. Lk ∝

√
k represents the p-adic length scale of the worm-

hole contacts associated with the CP2 type extremal and CP2 size is the natural length unit now.
Obviously the quantitative formulation for associative-co-associative duality would be in terms p→ k
duality.

2. Are the known extremals of Kähler action consistent with the strong form of M8 −H duality

It is interesting to check whether the known extremals of Kähler action [12] are consistent with
strong form of M8−H duality assuming that M2 or its light-like ray is contained in T (X4) or normal
space.

1. CP2 type vacuum extremals correspond cannot be hyper-quaternionic surfaces but co-hyper-
quaternionicity is natural for them. In the same manner canonically imbedded M4 can be only
hyper-quaternionic.

2. String like objects are associative since tangent space obviously contains M2(x). Objects of form
M1 ×X3 ⊂M4 × CP2 do not have M2 either in their tangent space or normal space in H. So
that the map from H →M8 is not well defined. There are no known extremals of Kähler action
of this type. The replacement of M1 random light-like curve however gives vacuum extremal
with vanishing volume, which need not mean physical triviality since fundamental objects of the
theory are light-like 3-surfaces.

3. For canonically imbedded CP2 the assignment of M2(x) to normal space is possible but the
choice of M2(x) ⊂ N(CP2) is completely arbitrary. For a generic CP2 type vacuum extremals
M4 projection is a random light-like curve in M4 = M1 × E3 and M2(x) can be defined
uniquely by the normal vector n ∈ E3 for the local plane defined by the tangent vector dxµ/dt
and acceleration vector d2xµ/dt2 assignable to the orbit.

4. Consider next massless extremals. Let us fix the coordinates ofX4 as (t, z, x, y) = (m0,m2,m1,m2).
For simplest massless extremals CP2 coordinates are arbitrary functions of variables u = k ·m =
t−z and v = ε ·m = x, where k = (1, 1, 0, 0) is light-like vector of M4 and ε = (0, 0, 1, 0) a polar-
ization vector orthogonal to it. Obviously, the extremals defines a decomposition M4 = M2×E2.
Tangent space is spanned by the four H-vectors ∇αhk with M4 part given by ∇αmk = δkα and
CP2 part by ∇αsk = ∂us

kkα + ∂vs
kεα.

The normal space cannot contain M4 vectors since the M4 projection of the extremal is M4.
To realize hyper-quaternionic representation one should be able to from these vector two vectors
of M2, which means linear combinations of tangent vectors for which CP2 part vanishes. The
vector ∂th

k−∂zhk has vanishing CP2 part and corresponds to M4 vector (1,−1, 0, 0) fix assigns
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to each point the plane M2. To obtain M2 one would need (1, 1, 0, 0) too but this is not
possible. The vector ∂yh

k is M4 vector orthogonal to ε but M2 would require also (1, 0, 0, 0).
The proposed generalization of massless extremals allows the light-like line M± to depend on
point of M4 [12] , and leads to the introduction of Hamilton-Jacobi coordinates involving a
local decomposition of M4 to M2(x) and its orthogonal complement with light-like coordinate
lines having interpretation as curved light rays. M2(x) ⊂ T (X4) assumption fails fails also for
vacuum extremals of form X1 × X3 ⊂ M4 × CP2, where X1 is light-like random curve. In
the latter case, vacuum property follows from the vanishing of the determinant of the induced
metric.

5. The deformations of string like objects to magnetic flux quanta are basic conjectural extremals
of Kähler action and the proposed picture supports this conjecture. In hyper-quaternionic case
the assumption that local 4-D tangent plane of X3 contains M2(x) but that T (X3) does not
contain it, is very strong. It states that T (X4) at each point can be regarded as a product
M2(x) × T 2, T 2 ⊂ T (CP2), so that hyper-quaternionic X4 would be a collection of Cartesian
products of infinitesimal 2-D planes M2(x) ⊂M4 and T 2(x) ⊂ CP2. The extremals in question
could be seen as local variants of string like objects X2×Y 2 ⊂M4×CP2, where X2 is minimal
surface and Y 2 holomorphic surface of CP2. One can say that X2 is replaced by a collection of
infinitesimal pieces of M2(x) and Y 2 with similar pieces of homologically non-trivial geodesic
sphere S2(x) of CP2, and the Cartesian products of these pieces are glued together to form a
continuous surface defining an extremal of Kähler action. Field equations would pose conditions
on how M2(x) and S2(x) can depend on x. This description applies to magnetic flux quanta,
which are the most important must-be extremals of Kähler action.

3. Geometric interpretation of strong M8 −H duality

In the proposed framework M8 − H duality would have a purely geometric meaning and there
would nothing magical in it.

1. X4(X3
l ) ⊂ H could be seen a curve representing the orbit of a light-like 3-surface defining a

4-D surface. The question is how to determine the notion of tangent vector for the orbit of X3
l .

Intuitively tangent vector is a one-dimensional arrow tangential to the curve at point X3
l . The

identification of the hyper-quaternionic surface X4(X3
l ) ⊂M8 as tangent vector conforms with

this intuition.

2. One could argue that M8 representation of space-time surface is kind of chart of the real space-
time surface obtained by replacing real curve by its tangent line. If so, one cannot avoid the
question under which conditions this kind of chart is faithful. An alternative interpretation is
that a representation making possible to realize number theoretical universality is in question.

3. An interesting question is whether X4(X3
l ) as orbit of light-like 3-surface is analogous to a

geodesic line -possibly light-like- so that its tangent vector would be parallel translated in the
sense that X4(X3) for any light-like surface at the orbit is same as X4(X3

l ). This would give
justification for the possibility to interpret space-time surfaces as a geodesic of configuration
space: this is one of the first -and practically forgotten- speculations inspired by the construction
of configuration space geometry. The light-likeness of the geodesic could correspond at the level
of X4 the possibility to decompose the tangent space to a direct sum of two light-like spaces and
2-D transversal space producing the foliation of X4 to light-like 3-surfaces X3

l along light-like
curves.

4. M8−H duality would assign to X3
l classical orbit and its tangent vector at X3

l as a generalization
of Bohr orbit. This picture differs from the wave particle duality of wave mechanics stating that
once the position of particle is known its momentum is completely unknown. The outcome is
however the same: for X3

l corresponding to wormhole throats and light-like boundaries of X4,
canonical momentum densities in the normal direction vanish identically by conservation laws
and one can say that the the analog of (q, p) phase space as the space carrying wave functions
is replaced with the analog of subspace consisting of points (q, 0). The dual description in M8

would not be analogous to wave functions in momentum space space but to those in the space
of unique tangents of curves at their initial points.
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4. The Kähler and spinor structures of M8

If one introduces M8 as dual of H, one cannot avoid the idea that hyper-quaternionic surfaces
obtained as images of the preferred extremals of Kähler action in H are also extremals of M8 Kähler
action with same value of Kähler action. As found, this leads to the conclusion that theM8 − H
duality is Kähler isometry. Coupling of spinors to Kähler potential is the next step and this in turn
leads to the introduction of spinor structure so that quantum TGD in H should have full M8 dual.

There are strong physical constraints on M8 dual and they could kill the hypothesis. The basic
constraint to the spinor structure of M8 is that it reproduces basic facts about electro-weak inter-
actions. This includes neutral electro-weak couplings to quarks and leptons identified as different
H-chiralities and parity breaking.

1. By the flatness of the metric of E4 its spinor connection is trivial. E4 however allows full S2 of
covariantly constant Kähler forms so that one can accommodate free independent Abelian gauge
fields assuming that the independent gauge fields are orthogonal to each other when interpreted
as realizations of quaternionic imaginary units.

2. One should be able to distinguish between quarks and leptons also inM8, which suggests that one
introduce spinor structure and Kähler structure in E4. The Kähler structure of E4 is unique
apart form SO(3) rotation since all three quaternionic imaginary units and the unit vectors
formed from them allow a representation as an antisymmetric tensor. Hence one must select one
preferred Kähler structure, that is fix a point of S2 representing the selected imaginary unit.
It is natural to assume different couplings of the Kähler gauge potential to spinor chiralities
representing quarks and leptons: these couplings can be assumed to be same as in case of H.

3. Electro-weak gauge potential has vectorial and axial parts. Em part is vectorial involving cou-
pling to Kähler form and Z0 contains both axial and vector parts. The free Kähler forms could
thus allow to produce M8 counterparts of these gauge potentials possessing same couplings as
their H counterparts. This picture would produce parity breaking in M8 picture correctly.

4. Only the charged parts of classical electro-weak gauge fields would be absent. This would
conform with the standard thinking that charged classical fields are not important. The predicted
classical W fields is one of the basic distinctions between TGD and standard model and in this
framework. A further prediction is that this distinction becomes visible only in situations,
where H picture is necessary. This is the case at high energies, where the description of quarks
in terms of SU(3) color is convenient whereas SO(4) QCD would require large number of E4

partial waves. At low energies large number of SU(3) color partial waves are needed and the
convenient description would be in terms of SO(4) QCD. Proton spin crisis might relate to this.

5. Also super-symmetries of quantum TGD crucial for the construction of configuration space
geometry force this picture. In the absence of coupling to Kähler gauge potential all constant
spinor fields and their conjugates would generate super-symmetries so that M8 would allow N =
8 super-symmetry. The introduction of the coupling to Kähler gauge potential in turn means
that all covariantly constant spinor fields are lost. Only the representation of all three neutral
parts of electro-weak gauge potentials in terms of three independent Kähler gauge potentials
allows right-handed neutrino as the only super-symmetry generator as in the case of H.

6. The SO(3) element characterizing M2(x) is fixed apart from a local SO(2) transformation, which
suggests an additional U(1) gauge field associated with SO(2) gauge invariance and representable
as Kähler form corresponding to a quaternionic unit of E4. A possible identification of this gauge
field would be as a part of electro-weak gauge field.

5. M8 dual of configuration space geometry and spinor structure?

If one introduces M8 spinor structure and preferred extremals of M8 Kähler action, one cannot
avoid the question whether it is possible or useful to formulate the notion of configuration space
geometry and spinor structure for light-like 3-surfaces in M8 using the exponent of Kähler action as
vacuum functional.
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1. The isometries of the configuration space in M8 and H formulations would correspond to sym-
plectic transformation of δM4

± × E4 and δM4
± × CP2 and the Hamiltonians involved would

belong to the representations of SO(4) and SU(3) with 2-dimensional Cartan sub-algebras.
In H picture color group would be the familiar SU(3) but in M8 picture it would be SO(4).
Color confinement in both SU(3) and SO(4) sense could allow these two pictures without any
inconsistency.

2. For M4×CP2 the two spin states of covariantly constant right handed neutrino and antineutrino
spinors generate super-symmetries. This super-symmetry plays an important role in the pro-
posed construction of configuration space geometry. As found, this symmetry would be present
also in M8 formulation so that the construction of M8 geometry should reduce more or less
to the replacement of CP2 Hamiltonians in representations of SU(3) with E4 Hamiltonians in
representations of SO(4). These Hamiltonians can be taken to be proportional to functions of
E4 radius which is SO(4) invariant and these functions bring in additional degree of freedom.

3. The construction of Dirac determinant identified as a vacuum functional can be done also in M8

picture and the conjecture is that the result is same as in the case of H. In this framework the
construction is much simpler due to the flatness of E4. In particular, the generalized eigen modes
of the Chern-Simons Dirac operator DC−S identified as zero modes of 4-D Dirac operator DK

restricted to the X3
l correspond to a situation in which one has fermion in induced Maxwell field

mimicking the neutral part of electro-weak gauge field in H as far as couplings are considered.
Induced Kähler field would be same as in H. Eigen modes are localized to regions inside which
the Kähler magnetic field is non-vanishing and apart from the fact that the metric is the effective
metric defined in terms of canonical momentum densities via the formula Γ̂α = ∂LK/∂h

k
αΓk

for effective gamma matrices. This in fact, forces the localization of modes implying that their
number is finite so that Dirac determinant is a product over finite number eigenvalues. It is clear
that M8 picture could dramatically simplify the construction of configuration space geometry.

4. The eigenvalue spectra of the transversal parts of DK operators in M8 and H should identical.
This motivates the question whether it is possible to achieve a complete correspondence between
H and M8 pictures also at the level of spinor fields at X3 by performing a gauge transformation
eliminating the classical W gauge boson field altogether at X3

l and whether this allows to trans-
form the modified Dirac equation in H to that in M8 when restricted to X3

l . That something like
this might be achieved is supported by the fact that in Coulombic gauge the component of gauge
potential in the light-like direction vanishes so that the situation is effectively 2-dimensional and
holonomy group is Abelian.

6. Why M8 −H duality is useful?

Skeptic could of course argue that M8 −H duality produces only an inflation of unproven conjec-
tures. There are however strong reasons for M8 −H duality: both theoretical and physical.

1. The map of X3
l ⊂ H → X3

l ⊂ M8 and corresponding map of space-time surfaces would al-
low to realize number theoretical universality. M8 = M4 × E4 allows linear coordinates as
natural coordinates in which one can say what it means that the point of imbedding space is
rational/algebraic. The point of X4 ⊂ H is algebraic if it is mapped to an algebraic point
of M8 in number theoretic compactification. This of course restricts the symmetry groups to
their rational/algebraic variants but this does not have practical meaning. Number theoretical
compactication could in fact be motivated by the number theoretical universality.

2. M8−H duality could provide much simpler description of preferred extremals of Kähler action
since the Kähler form in E4 has constant components. If the spinor connection in E4 is com-
bination of the three Kähler forms mimicking neutral part of electro-weak gauge potential, the
eigenvalue spectrum for the modified Dirac operator would correspond to that for a fermion in
U(1) magnetic field defined by an Abelian magnetic field whereas in M4 × CP2 picture U(2)ew
magnetic fields would be present.

3. M8 − H duality provides insights to low energy hadron physics. M8 description might work
when H-description fails. For instance, perturbative QCD which corresponds to H-description
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fails at low energies whereas M8 description might become perturbative description at this limit.
Strong SO(4) = SU(2)L × SU(2)R invariance is the basic symmetry of the phenomenological
low energy hadron models based on conserved vector current hypothesis (CVC) and partially
conserved axial current hypothesis (PCAC). Strong SO(4) = SU(2)L × SU(2)R relates closely
also to electro-weak gauge group SU(2)L × U(1) and this connection is not well understood in
QCD description. M8−H duality could provide this connection. Strong SO(4) symmetry would
emerge as a low energy dual of the color symmetry. Orbital SO(4) would correspond to strong
SU(2)L×SU(2)R and by flatness of E4 spin like SO(4) would correspond to electro-weak group
SU(2)L × U(1)R ⊂ SO(4). Note that the inclusion of coupling to Kähler gauge potential is
necessary to achieve respectable spinor structure in CP2. One could say that the orbital angular
momentum in SO(4) corresponds to strong isospin and spin part of angular momentum to the
weak isospin.

M8 −H duality and low energy hadron physics

The description of M8 −H at the configuration space level can be applied to gain a view about color
confinement and its dual for electro-weak interactions at short distance limit. The basic idea is that
SO(4) and SU(3) provide provide dual descriptions of quark color using E4 and CP2 partial waves and
low energy hadron physics corresponds to a situation in which M8 picture provides the perturbative
approach whereas H picture works at high energies. The basic prediction is that SO(4) should appear
as dynamical symmetry group of low energy hadron physics and this is indeed the case.

Consider color confinement at the long length scale limit in terms of M8 −H duality.

1. At high energy limit only lowest color triplet color partial waves for quarks dominate so that
QCD description becomes appropriate whereas very higher color partial waves for quarks and
gluons are expected to appear at the confinement limit. Since configuration space degrees of
freedom begin to dominate, color confinement limit transcends the descriptive power of QCD.

2. The success of SO(4) sigma model in the description of low lying hadrons would directly relate to
the fact that this group labels also the E4 Hamiltonians in M8 picture. Strong SO(4) quantum
numbers can be identified as orbital counterparts of right and left handed electro-weak isospin
coinciding with strong isospin for lowest quarks. In sigma model pion and sigma boson form
the components of E4 valued vector field or equivalently collection of four E4 Hamiltonians
corresponding to spherical E4 coordinates. Pion corresponds to S3 valued unit vector field with
charge states of pion identifiable as three Hamiltonians defined by the coordinate components.
Sigma is mapped to the Hamiltonian defined by the E4 radial coordinate. Excited mesons
corresponding to more complex Hamiltonians are predicted.

3. The generalization of sigma model would assign to quarks E4 partial waves belonging to the
representations of SO(4). The model would involve also 6 SO(4) gluons and their SO(4) partial
waves. At the low energy limit only lowest representations would be be important whereas at
higher energies higher partial waves would be excited and the description based on CP2 partial
waves would become more appropriate.

4. The low energy quark model would rely on quarks moving SO(4) color partial waves. Left resp.
right handed quarks could correspond to SU(2)L resp. SU(2)R triplets so that spin statistics
problem would be solved in the same manner as in the standard quark model.

5. Family replication phenomenon is described in TGD framework the same manner in both cases
so that quantum numbers like strangeness and charm are not fundamental. Indeed, p-adic mass
calculations allowing fractally scaled up versions of various quarks allow to replace Gell-Mann
mass formula with highly successful predictions for hadron masses [58] .

To my opinion these observations are intriguing enough to motivate a concrete attempt to construct
low energy hadron physics in terms of SO(4) gauge theory.

The notion of number theoretical braid

The notion of number theoretic braid is essential for the view about quantum TGD as almost topo-
logical quantum field theory. It also realization discretization as a space-time correlate for the finite
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measurement resolution. Number theoretical universality leads to this notion also and requires that
the points in the intersection of the number theoretic braid with partonic 2-surface correspond to
rational or at most algebraic points of H in preferred coordinates fixed by symmetry considerations.
The challenge has been to find a unique identification of the number theoretic braid. Number theoretic
vision indeed makes this possible.

The core element of number theoretic vision is that the laws of physics could be reduced to
associativity conditions. One realization for associativity conditions is the level of M8 endowed with
hyper-octonionic structure as a condition that the points sets possible as arguments ofN -point function
in X4 are associative and thus belong to hyper-quaternionic subspace M4 ⊂M8. This decomposition
must be consistent with the M4×E4 decomposition implied by M4×CP2 decomposition of H. What
comes first in mind is that partonic 2-surfaces X2 belong to δM4

± ⊂M8 defining the ends of the causal
diamond and are thus associative. This boundary condition however freezes E4 degrees of freedom
completely so that M8 configuration space geometry trivializes.

One can also consider the commutativity condition by requiring that arguments belong to a pre-
ferred commutative hyper-complex sub-space M2 of M8 which can be regarded as a curve in complex
plane. Fixing preferred real and imaginary units means a choice of M2 interpreted as a partial choice of
quantization axes at the level of M8. One must distinguish this choice from the hyper-quaternionicity
of space-time surfaces and from the condition that each tangent space of X4 contains M2(x) ⊂ M4

in its tangent space or normal space. Commutativity condition indeed implies the notion of number
theoretic braid and fixes it uniquely once a global selection of M2 ⊂ M8 is made. There is also an
alternative identification of number theoretic braid based on the assumption that braids are light-like
curves with tangent vector in M2(x).

1. The strong form of commutativity condition would require that the arguments of the n-point
function at partonic 2-surface belong to the intersection X2 ∩M±. This however allows quite
too few points since an intersection of 2-D and 1-D objects in 7-D space would be in question.
Associativity condition would reduce cure the problem but would trivialize configuration space
geometry.

2. The weaker condition that only δM4
± projections for the points of X2 commute is however

sensible since the intersection of 1-D and 2-D surfaces of 3-D space results. This condition is
also invariant under number theoretical duality. In the generic case this gives a discrete set
of points as intersection of light-like radial geodesic and the projection PδM4

±
(X2). This set

is naturally identifiable in terms of points in the intersection of number theoretic braids with
δCD × E4. One should show that this set of points consists of rational or at most algebraic
points. Here the possibility to choose X2 to some degree could be essential. Any radial light
ray from the tip of light-cone allows commutativity and one can consider the possibility of
integrating over n-point functions with arguments at light ray to obtain maximal information.

3. For the pre-images of light-like 3-surfaces commutativity of the points in δM4
± projection would

allow the projections to be one-dimensional curves of M2 having thus interpretation as braid
strands. M2 would play exactly the same role as the plane into which braid strands are projected
in the construction of braid invariants. Therefore the plane of non-physical polarizations in
gauge theories corresponds to the plane to which braids and knots are projected in braid and
knot theories. A further constraint is that the braid strand connects algebraic points of M8 to
algebraic points of M8. It seems that this can be guaranteed only by posing some additional
conditions to the light-like 3-surfaces themselves which is of course possible since they are in the
role of fundamental dynamical objects.

4. An alternative identification of the number theoretic braid would give up commutativity con-
dition for M4 projection and assume braid strand to be as a light-like curve having light-like
tangent belonging to the local hyper-complex tangent sub-space M2(x) at point x. This defini-
tion would apply both in X3 ⊂ δM4

± × CP2 and in X3
l . Also now one would have a continuous

distribution of number theoretic braids, with one braid assignable to each light-like curve with
tangent δM4

+ ⊃ M+(x) ⊂ M2(x). In this case each light-like curve at δM4
+ with tangent in

M+(x) would define a number theoretic braid so that the only difference would be the replace-
ment of light-like ray with a more general light-like curve.
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There are reasons why the identification of the number theoretic braid strand as a curve having
hyper-complex light-like tangent looks more attractive.

1. The preferred plane M2(x) can be interpreted as the local plane of non-physical polarizations so
that the interpretation as a number theoretic analog of gauge conditions posed in both quantum
field theories and string models is possible. In TGD framework this would mean that super-
conformal degrees of freedom are restricted to the orthogonal complement of M2(x) and M2(x)
does not contribute to the configuration space metric. In Hamilton-Jacobi coordinates the pairs
of light-like curves associated with coordinate lines can be interpreted as curved light rays. Hence
the partonic planes M2(xi) associated with the points of the number theoretic braid could be
also regarded as carriers four-momenta of fermions associated with the braid strands so that
the standard gauge conditions ε · p = 0 for polarization vector and four-momentum would be
realized geometrically. The possibility of M2 to depend on point of X3

l would be essential to
have non-collinear momenta and for a classical description of interactions between braid strands.

2. One could also define analogs of string world sheets as sub-manifolds of PM4
+

(X4) having

M2(x) ⊂ M4 as their tangent space or being assignable to their tangent containing M+(x)
in the case that the distribution defined by the planes M2(x) exists and is integrable. It must be
emphasized that in the case of massless extremals one can assign only M+(x) ⊂M4 to T (X4(x))
so that only a foliation of X4 by light-like curves in M4 is possible. For PM4

+
(X4) however a fo-

liation by 2-D stringy surfaces is obtained. Integrability of this distribution and thus the duality
with stringy description has been suggested to be a basic feature of the preferred extremals and
is equivalent with the existence of Hamilton-Jacobi coordinates for a large class of extremals of
Kähler action [12] .

3. The possibility of dual descriptions based on integrable distribution of planes M2(x) allowing
identification as 2-dimensional stringy sub-manifolds of X4(X3) and the flexibility provided
by the hyper-complex conformal invariance raise the hopes of achieving the lifting of super-
symplectic algebra SS and super Kac-Moody algebra SKM to H. At the light-cone boundary
the light-like radial coordinate could be lifted to a hyper-complex coordinate defining coordinate
for M2. At X3

l one could fix the light-like coordinate varying along the braid strands and it can
can be lifted to a light-like hyper-complex coordinate in M4 by requiring that the tangent to
the coordinate curve is light-like line of M2(x) at point x. The total four-momenta and color
quantum numbers assignable to SS and SKM degrees of freedom are naturally identical since
they can be identified as the four-momentum of the partonic 2-surface X2 ⊂ X3 ∩ δM4

± ×CP2.
Equivalence Principle would emerge as an identity.

7.4.5 Configuration gamma matrices as hyper-octonionic conformal fields

The fact that the Clifford algebra generated by configuration space gamma matrices forms a canonical
representation for hyper-finite factor of type II1 (HFFs) and led to a breakthrough in the understand-
ing of quantum TGD. The inclusions of hyper-finite factors of type II1 led to a realization of finite
quantum measurement resolution as a basic principle govering dynamics and together with zero en-
ergy ontology this approach led to the generalization of S-matrix to M-matrix identified as time like
entanglement coefficients between positive and negative energy parts of zero energy state and its
identification as Connes tensor product. HFFs generated also ideas about how quantum TGD might
be reducible to a generalization of HFFs to its local variant which is necessarily complex-octonionic
as also to a construction of quantum variant of gamma matrix algebra leading to identification of
quantum counterparts of hyper-octonions and hyper-quaternions as unique structures.

Only the quantum variants of M4 and M8 emerge from local hyper-finite II1 factors

The fantastic properties of hyperfinite factors of type II1 (HFFs) inspire the idea that a localized
hyper-octonionic version of Clifford algebra of configuration space might allow to see space-time,
embedding space, and configuration space as structures emerging from a hyper-octonionic version of
HFF. Surprisingly, commutativity and associativity imply most of the speculative ”must-be-true’s” of
quantum TGD.
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Configuration space gamma matrices act only in vibrational degrees of freedom of 3-surface. One
must also include center of mass degrees of freedom which appear as zero modes. The natural idea is
that the resulting local gamma matrices define a local version of HFF of type II1 as a generalization
of conformal field of gamma matrices appearing super string models obtained by replacing complex
numbers with hyper-octonions identified as a subspace of complexified octonions.

As a matter fact, one can generalize octonions to quantum octonions for which quantum commu-
tativity means restriction to a hyper-octonionic subspace of quantum octonions. Non-associativity
is essential for obtaining something non-trivial: otherwise this algebra reduces to HFF of type II1

since matrix algebra as a tensor factor would give an algebra isomorphic with the original one. The
octonionic variant of conformal invariance fixes the dependence of local gamma matrix field on the
coordinate of HO. The coefficients of Laurent expansion of this field must commute with octonions. !

Super-symmetry suggests that the representations of CH Clifford algebraM as N moduleM/N
should have bosonic counterpart in the sense that the coordinate for M8 representable as a particular
M2(Q) element should have quantum counterpart. Same would apply to M4 coordinate representable
as M2(C) element. Quantum matrix representation of M/N as SLq(2, F ) matrix, F = C,H is the
natural candidate for this representation. As a matter fact, this guess is not quite correct. It is the
interpretation of M2(C) as a quaternionic quantum algebra whose generalization to the octonionic
quantum algebra works.

Quantum variants of MD exist for all dimensions but only spaces M4 and M8 and their linear
sub-spaces emerge from hyper-finite factors of type II1. This is due to the non-associativity of the
octonionic representation of the gamma matrices making it impossible to absorb the powers of the
octonionic coordinate to the Clifford algebra element so that the local algebra character would dis-
appear. Even more: quantum coordinates for these spaces are commutative operators so that their
spectra define ordinary M4 and M8 which are thus already quantal concepts.

Consider first hyper-quaternions and the emergence of M4.

1. The commutation relations for M2,q(C) matrices

(
a b
c d

)
,

(7.4.1)

read as

ab = qba , ac = qac , bd = qdb , cd = qdc ,
[a, d] = (q − q−1)bc , bc = cb .

(7.4.2)

2. These relations could be extended by postulating complex conjugates of these relations for
complex conjugates a†, b†, c†, d† plus the following non-vanishing commutators of type [x, y†]:

[a, a†] = [b, b†] = [c, c†] = [d, d†] = 1 . (7.4.3)

This extension is not necessary for what comes.

3. The matrices representing M4 point must be expressible as sums of Pauli spin matrices. This
can be represented as following conditions on physical states

O|phys〉 = 0 ,

O ∈ {a− a†, d− d†, b− c†, c− b†} . (7.4.4)
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For instance, the first two conditions follow from the reality of Pauli sigma matrices σx, σy, σz.
These conditions are compatible only if the operators O commute. These conditions need not
be consistent with the commutation relations between a,b,c,d and their Hermitian conjugates.
This is easy to see by noticing that the difference of J+ − J− acts apart from imaginary unit
like Jy and annihilates jy = 0 state for every representation of rotation group diagonalized with
respect to Jy.

4. What is essential is that the operators of O are of form A−A† and their commutators are also
of the same form that the commutativity conditions reduce the condition that the Lie-algebra
like structure generated by these operators annihilates the physical state. Hence it is possible to
define quantum states for which M4 coordinates have well-defined eigenvalues so that ordinary
M4 emerges purely quantally from quaternions whose real coefficients are made non-Hermitian
operators to obtain operator complexificiation of quaternions. Also the quantum states in which
M4 coordinates are emerge naturally.

5. M2,q(C) matrices define the quantum analog of C4 and one can wonder whether also other linear
sub-spaces can be defined consistently or whether M4

q and thus Minkowski signature is unique.

This seems to be not the case. For instance, the replacement a− a† → a+ a† making also time
variable Euclidian is impossible since [a+ a†, d− d†] = 2(q − q−1)(bc+ b†c† is not proportional
to a difference of operator and its hermitian conjugate and one does not obtain closed algebra.

What about M8: does it have analogous description in terms of physical states annihilated by the
Lie algebra generated by the differences ai − a†i , i = 0, ..7?

1. The representation of M4 point as M2(C) matrix can be interpreted a combination of 4-D gamma
matrices defining hyper-quaternionic units. Hyper-octonionic units indeed have anticommuta-
tion relations of gamma matrices of M8 and would give classical representation of M8. The
counterpart of M2,q(C) would thus be obtained by replacing the coefficients of hyper-octonionic
units with operators satisfying the generalization of M2,q(C) commutation relations. One should
identify the reality conditions and find whether they are mutually consistent.

2. In quaternionic case basis for matrix algebra is formed by the sigma matrices and M4 point is
represented by a hermitian matrix expressible as linear combination of hermitian sigma matrices
with coefficients which act on physical states like hermitian operators. In the hyper-octonionic
case would expect that real octonion unit and octonionic imaginary units multiplied by com-
muting imaginary unit to define the counterparts of sigma matrices and that the physically
representable sub-space of complex quantum octonions corresponds to operator valued coordi-
nates which act like hermitian matrices. The restriction to complex quaternionic sub-space must
give hyper-quaternions and M4 so that the only sensible generalization is that M8 holds quite
generally. This is also required by SO7 invariance allowing to choose the sub-space M4 freely.
Again the key point should be that the conditions giving rise to real eigenvalues give rise to a
Lie-algebra which must annihilate the physical state. For other signatures one would not obtain
Lie algebra.

3. One can also make guess for the concrete realization of the algebra. Introduce the coefficients
of E4 gamma matrices having interpretation as quaternionic units as

a0 = ix(a+ d) , a3 = x(a− d) ,
a1 = x(ib+ c) , a2 = x(ib− c) ,
x = 1√

2
,

and write the commutations relations for them to see how the generalization should be performed.

4. The selections of complex and quaternionic sub-algebras of octonions are fundamental for TGD
and quantum octonionic algebra should reflect these selections in its structure. In the case of
hyper-quaternions the selection of commutative sub-algebra implies the breaking of 4-D Lorentz
symmetry. In the case of hyper-octonions the selection of hyper-quaternion sub-algebra should
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induce the breaking of 8-D Lorentz symmetry. Hyper-quaternionic sub-algebra obeys the com-
mutations of Mq(2, C) whereas the coefficients in the complement commute mutually and quan-
tum commute with the complex sub-algebra. This nails down the commutation relations com-
pletely:

[a0, a3] =
i

2
(q − q−1)(a2

1 − a2
2) ,

[ai, aj ] = 0 , i, j 6= 0, 3 ,

a0ai = qaia0 , i 6= 0, 3 ,

a3ai = qaia3 , i 6= 0, 3 . (7.4.5)

Note that there is symmetry breaking in the sense that the commutation relations for sub-
algebras relating to both M4 and M2 are in distinguished role.

Dimensions D = 4 and D = 8 are indeed unique if one takes this argument seriously.

1. For dimensions other than D = 4 and D = 8 a representation of the point of MD as element of
Clifford algebra of MD is needed. The coefficients should be real for the signatures and this re-
quires that the elements of Clifford algebra are Hermitian. Gamma matrices are the only natural
candidates and when Majorana conditions can be satisfied one obtains quantum representation
of MD. 10-D Minkowski space of super-string models would represent one example of this kind
of situation.

2. For other dimensions D ≥ 8 but now octonionic units must be replaced by gamma matrices and
an explicit matrix representation can be introduced. These gamma matrices can be included as a
tensor factor to the infinite-dimensional Clifford algebra so that the local Clifford algebra reduces
to a mere Clifford algebra. The units of quantum octonions which are just ordinary octonion
units do not however allow matrix representation so that this reduction is not possible and
imbedding space and space-time indeed emerge genuinely. The non-associativity of octonions
would determine the laws of physics in TGD Universe!

Configuration space spinor fields as hyper-octonionic conformal fields

A further proposed application of this picture is to the construction of configuration space spinor
fields as generalizations of conformal fields. The basic problem is to treat center of mass degrees of
freedom properly, and the idea that conformal invariance generalizes to hyper-octonionic - or at least
hyper-quaternionic - conformal invariance is attractive. If so, the usual expansion in powers of complex
coordinate z would be replaced in powers of hyper-octonionic coordinate h and the coefficients would
be elements of Clifford algebra for sub-configuration space consisting of light-like 3-surfaces with frozen
center of mass degrees of freedom. This is possible if one can map the points of H to those of M8 and
M8 −H duality allows to achieve this.

The natural condition would be that N-point functions defined by configuration space spinor fields
for which M8 coordinate labels the position of the tip of the causal diamond containing the zero
energy state involve only those points which are mutually associative and would thus belong to a
hyper-quaternionic sub-space M4 ⊂ M8 would be in question and the outcome would be the analog
of M4 quantum field theory.

Commutativity would restrict the points to M2 ⊂M4 ⊂M8 and hyper-complex variant conformal
field theory would result: this theory would be analogous with integrable models known as factorizing
quantum field theories in M2 in which particle scattering is almost trivial (interactions generate only
phase lag).

7.4.6 Black hole physics

The hierarchy of Planck constants has forced to modify dramatically TGD based view about black
holes. TGD black holes however have a lot of common with ordinary black holes.
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M-theory and black holes

The reproduction of the formula for the black hole entropy [76, 61] has been sold as a victory of
M-theory. The first thing that has been forgotten is that GRT based formula has never been experi-
mentally verified and could be even wrong.

One can also criticize the procedure leading to the formula.

1. First M-theory is replaced by 11-D super gravity in order to calculate something. What this
effectively means that, although the aim was to replace General Relativity with something more
fundamental, one ends up with 11-D classical super-gravity after all.

2. After this one finds black-hole type solutions and identifies them with M-branes. At this step one
could protest by saying that the fundamental theory should replace black holes with something
less singular.

3. Next quantum gravitational holography is assumed and a conformal field theory on brane iden-
tified as a black hole horizon leads to an estimate for the entropy and estimates for what are
known as greyness factors. The last step is nice in the 4-D situation and also TGD would suggest
something very similar.

In Matrix Theory based estimate things look even less elegant. In [78] a matrix theory based
estimate for the entropy is made producing the correct order of magnitude for the entropy estimate
using conformal field theory. An essential step is the estimate for the number N of 0-branes (ordinary
particles) and is ad hoc (in particular one does not take the limit N → ∞). I do not whether the
arguments are more rigorous in other estimates but, to put it mildly, I do not find this argument is
not too convincing.

Black holes in TGD framework

Black holes in the standard sense are possible in TGD framework but would be basically astrophysical
objects and putting black holes and elementary particles in the same basket would be mixing apples
with oranges. The vision about dark matter as a macroscopic quantum phases with large value of
Planck constant (the value of gravitational Planck constant is enormous) forces to reconsider the
identification of black holes. One can view TGD counterparts of black hole horizons as light-like
3-surfaces at which the signature of the induced metric changes. Black holes would be gigantic
elementary particle (or rather parton-) like objects containing particles in anyonic phase with fractional
charges guaranteing confinement. Dark anyonic matter at light-like 3-surfaces of astrophysical size
analogous to stringy black holes thought to be tightly tangled strings has several basic characteristics
of black hole and would populate TGD Universe in all length scales.

In TGD Universe the role of black hole horizons is taken by light like 3-surfaces which are funda-
mental objects of the theory whereas the role of big bang is taken by the boundary δM4

+ of causal
diamond (CD). The basic difference to black hole horizons is that the signature of induced metric
changes at the wormhole throat.

1. The basic example is provided by elementary particle horizons surrounding the ends of the worm-
hole contacts having Euclidian signature of the induced metric and connecting with each other
space-time sheets with Minkowskian signature of the induced metric. The light-like wormhole
throats are carriers of fermion numbers. The interpretation of wormhole contacts is in terms
of gauge bosons and Higgs bosons consisting of fermion and antifermion at the two wormhole
throats. By its spin the only possible identification of graviton is as a pair of wormhole con-
tacts connected by a flux tube carrying various gauge fluxes. Elementary fermions correspond
to wormhole throats associated with CP2 type vacuum extremals (note Euclidian signature of
induced metric) glued to the background space-time with Minkowskian signature of metric.

2. Second example is provided by light-like surfaces separating maximal deterministic regions of the
space-time sheet. Light-like boundaries is a further example. By their metric 2-dimensionality
various causal determinants indeed allow conformal field theory in an effectively 2-dimensional
sense.

3. The formula for the black hole entropy generalizes to elementary particle level and involves
p-adic length scale hypothesis and p-adic mass calculations [60] .
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4. The new element is the hierarchy of Planck constants [77, 63, 30] inspired by the findings that
gravitational Planck constant might have gigantic value [27] . This leads to a vision about
dark matter as phases of matter with large Planck constant and hence macroscopically quantum
coherent since all quantum scales are scaled up. The space-time sheets mediating gravitational
interaction would have gigantic value of Planck constant: ~gr = GM1M2/v0, v0 = 2−11 gives a
good example about the situation. The implication is that black hole entropy proportional to
1/~ is of order unity if ~gr = GM2/v0, v0 = 1/4 holds true for black holes. This would change
completely the view about black holes as highly entropic objects. In particular, Planck length
scales as

√
~ so that Schwartschild radius represents Planck length for this kind of black hole and

defines naturally kind of minimum length scales below which the signature of induced metric
becomes Euclidian in TGD Universe.

5. The progress in the understanding of the realization of the hierarchy of Planck constants in
terms of book like structure of imbedding space with the pages of book representing Cartesian
products of singular coverings and factor spaces of causal diamond CD and CP2 led to a detailed
picture about identification of anyonic systems as macroscopic light-like 3-surfaces containing
dark matter in anyonic form possessing fractional quantum numbers. Anyonicity means that the
”partonic” 2-surface of macroscopic size system surrounds the tip of CD so that homologically
non-trivial 2-surface is in question. Anyonic phase could be even responsible for the properties
of living matter [66, 26] . This also inspired the proposal that dark matter resides at light-like
3-surfaces of astrophysical and even cosmological size scale possessing very complex topology:
typically spherical topologies glued together by flux tubes. Black holes in standard sense would
result in gravitational collapse of this kind of systems. An open question is whether the topol-
ogy actually transforms to simple spherical topology in this process or whether it is more or
less conserved so that huge information about the topology of orbits of dark matter particles
surrounding the object would be preserved.

More concrete ideas about black hole like structures emerged from the attempts to understand the
strange events reported by RHIC (Relativistic Heavy Ion Collider) [68, 59] during last years. This
work led to a dramatic increase of understanding of TGD and allowed to fuse together separate threads
of TGD [78] .

1. The scaled down TGD inspired cosmology involving (not so) big crunch followed by (not so)
big bang serves as a model for the events, and predicts a new phase identifiable as color glass
condensate identifiable as tightly tangled color magnetic flux tube modelable as a hadronic string
in Hagedorn temperature.

This state makes a phase transition to quark gluon plasma during a period of critical cosmology
analogous to inflationary cosmology characterized completely by its duration and quark gluon
plasma analogous to radiation dominated cosmology in turn hadronizes giving rise to the analog
of matter dominated cosmology.

The assumption that anyonicity is responsible for the formation of the gluonic Bose-Einstein
condensate explains the liquid like character of color glass condensate. Anyonicity forces the
system to behave like a single particle like unit since fractionally charged particles cannot leave
the light-like 2-surface surrounding the tip of CD.

2. RHIC events suggest processes analogous to the formation and evaporation of black hole. The
TGD inspired description in terms of the formation of hadronic black hole and its evaporation
and essentially identical with the description as a mini bang. The hadronic black hole is the
same tightly tangled color magnetic flux tube that defines the initial state of the hadronic mini
bang. The attribute ’hadronic’ means that Planck length is replaced with hadronic length so that
strong gravitation is in question. Black hole temperature is identifiable as Hagedorn temperature
and predicted to be 195 MeV for bosonic strings in 4-D space-time and slightly higher than the
hadronization temperature measured to be about 176 MeV [78] .

3. As also the small value of black hole entropy suggests, black holes and their scaled counterparts
would not be merciless information destroyers in TGD Universe. The entanglement of particles
possessing different conformal weights to give states with a vanishing net conformal weight and
having particle like integrity would make black hole like states ideal candidates for quantum
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computer like systems [95] . One could even imagine that the galactic black hole is a highly tan-
gled cosmic string in Hagedorn temperature performing quantum computations the complexity
of which is totally out of reach of human intellect! Indeed, TGD inspired consciousness predicts
that evolution leads to the increase of information and intelligence, and the evolution of stars
should not form exception to this. Also the interpretation of black hole as consisting of dark
matter follows from this picture [26] .

Concerning the mathematical description of dark matter - and of matter quite generally- TGD
has led to amazingly simple mathematical framework, which might have something to with Matrix
theory approach. The characteristic aspects of the classical dynamic determined by Kähler action is its
vacuum degeneracy and this not only allows but even forces the notion of finite measurement resolution
originally inspired by the inclusions of hyper-finite factors of type II1 (HFFs) having configuration
space Clifford algebra as a canonical representative. The notion of finite measurement resolution
leads to a discretization of physics in terms of number theoretic braids and finite number of fermionic
oscillator operators characterizing any subsystem [20] . Even the infinite-dimensional world of classical
worlds can be described with arbitrary accuracy as a finite-dimensional space and these descriptions
define a hierarchy of inclusions of HFFs associated with configuration space Clifford algebra.

7.4.7 Zero energy ontology and Witten’s approach to 3-D quantum grav-
itation

There is an interesting relationship of quantum TGD to the recent yet unpublished work of Witten
related to 3-D quantum blackholes [58] , which - despite that it does not directly relate to M-theory
- provides additional perspective.

1. The motivation of Witten is to find an exact quantum theory for blackholes in 3-D case. Witten
proposes that the quantum theory for 3-D AdS3 blackhole with a negative cosmological constant
can be reduced by AdS3/CFT2 correspondence to a 2-D conformal field theory at the 2-D
boundary of AdS3 analogous to blackhole horizon. This conformal field theory would be a
Chern-Simons theory associated with the isometry group SO(1, 2)× SO(1, 2) of AdS3. Witten
restricts the consideration to Λ < 0 solutions because Λ = 0 does not allow black-hole solutions
and Witten believes that Λ > 0 solutions are non-perturbatively unstable.

2. This conformal theory would have the so called monster group [58, 7] as the group of its discrete
hidden symmetries. The primary fields of the corresponding conformal field theory would form
representations of this group. The existence of this kind of conformal theory has been demon-
strated already [45] . In particular, it has been shown that this theory does not allow massless
states. On the other hand, for the 3-D vacuum Einstein equations the vanishing of the Einstein
tensor requires the vanishing of curvature tensor, which means that gravitational radiation is
not possible. HenceAdS3 theory in Witten’s sense might define this conformal field theory.

Witten’s construction has obviously a strong structural similarity to TGD.

1. Chern-Simons action for the induced Kähler form - or equivalently, for the induced classical
color gauge field proportional to Kähler form and having Abelian holonomy - corresponds to the
Chern-Simons action in Witten’s theory.

2. Light-like 3-surfaces can be regard as 3-D solutions of vacuum Einstein equations. Due to the
effective 2-dimensionality of the induced metric Einstein tensor vanishes identically and vacuum
Einstein equations are satisfied for Λ = 0. One can say that light-like partonic 3-surfaces
correspond to empty space solutions of Einstein equations. Even more, partonic 3-surfaces are
very much analogous to 3-D black-holes if one identifies the counterpart of black-hole horizon
with the intersection of δM4

± × CP2 with the partonic 2-surface.

3. For light-like 3-surfaces curvature tensor is non-vanishing which raises the question whether one
obtains gravitons in this case. The fact that time direction does not contribute to the metric
means that propagating waves are not possible so that no 3-D gravitational radiation is obtained.
There is analog for this result at quantum level. If partonic fermions are assumed to be free
fields as is done in the recent formulation of quantum TGD, gravitons can be obtained only
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as parton-antiparton bound states connected by flux tubes and are therefore genuinely stringy
objects. Hence it is not possible to speak about 3-D gravitons as single parton states.

4. Vacuum Einstein equations can be regarded as gauge fixing allowing to eliminate partially the
gauge degeneracy due to the general coordinate invariance. Additional super conformal symme-
tries are however present and have an identification in terms of additional symmetries related
to the fact that space-time surfaces correspond to preferred extremals of Kähler action whose
existence was concluded before the discovery of the formulation in terms of light-like 3-surfaces.

There are also interesting differences.

1. According to Witten, his theory has no obvious generalization to 4-D black-holes whereas 3-
D light-like determinants define the generalization of blackhole horizons which are also light-
like 3-surfaces in the induced metric. In particular, light-like 3-surfaces define a 4-D quantum
holography.

2. Also the fermionic counterpart of Chern-Simons action for the induced spinors whose form is
dictated by the super-conformal symmetry is present. Furthermore, partonic 3-surfaces are
dynamical unlike AdS3 and the analog of Witten’s theory results by freezing the vibrational
degrees of freedom in TGD framework.

3. The very notion of light-likeness involves the induced metric implying that the theory is almost-
topological but not quite. This small but important distinction indeed guarantees that the
theory is physically interesting.

4. In Witten’s theory the gauge group corresponds to the isometry group SO(1, 2) × SO(1, 2) of
AdS3. The group of isometries of light-like 3-surface is something much much mightier. It cor-
responds to the conformal transformations of 2-dimensional section of the 3-surfaces made local
with respect to the radial light-like coordinate in such a manner that radial scaling compensates
the conformal scaling of the metric produced by the conformal transformation.

The direct TGD counterpart of the Witten’s gauge group would be thus infinite-dimensional
and essentially same as the group of 2-D conformal transformations. Presumably this can
be interpreted in terms of the extension of conformal invariance implied by the presence of
ordinary conformal symmetries associated with 2-D cross section plus ”conformal” symmetries
with respect to the radial light-like coordinate. This raises the question about the possibility to
formulate quantum TGD as something analogous to string field theory using using Chern-Simons
action for this infinite-dimensional group.

5. Monster group does not have any special role in TGD framework. However, all finite groups
and - as it seems - also compact groups can appear as groups of dynamical symmetries at the
partonic level in the general framework provided by the inclusions of hyper-finite factors of type
II1 [30] . Compact groups and their quantum counterparts would closely relate to a hierarchy
of Jones inclusions associated with the TGD based quantum measurement theory with finite
measurement resolution defined by inclusion as well as to the generalization of the imbedding
space related to the hierarchy of Planck constants [30] . Discrete groups would correspond to the
number theoretical braids providing representations of Galois groups for extensions of rationals
realized as braidings [43] .

6. To make it clear, I am not suggesting that AdS3/CFT2 correspondence should have a TGD
counterpart. If it had, a reduction of TGD to a closed string theory would take place. The
almost-topological QFT character of TGD excludes this on general grounds. More concretely,
the dynamics would be effectively 2-dimensional if the radial superconformal algebras associated
with the light-like coordinate would act as pure gauge symmetries. Concrete manifestations of
the genuine 3-D character are following.

(a) Generalized super-conformal representations decompose into infinite direct sums of stringy
super-conformal representations.

(b) In p-adic thermodynamics explaining successfully particle massivation radial conformal
symmetries act as dynamical symmetries crucial for the particle massivation interpreted as
a generation of a thermal conformal weight.
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(c) The maxima of Kähler function defining Kähler geometry in the world of classical worlds
correspond to special light-like 3-surfaces analogous to bottoms of valleys in spin glass
energy landscape meaning that there is infinite number of different 3-D lightlike surfaces
associated with given 2-D partonic configuration each giving rise to different background
affecting the dynamics in quantum fluctuating degrees of freedom. This is the analogy of
landscape in TGD framework but with a direct physical interpretation in say living matter.

As noticed, Witten’s theory is essentially for 2-D fundamental objects. It is good to sum up what
is needed to get a theory for 3-D fundamental objects in TGD framework from an approach similar
to Witten’s in many respects. This connection is obtained if one brings in 4-D holography, replaces
3-metrics with light-like 3-surfaces (light-likeness constraint is possible by 4-D general coordinate
invariance), and accepts the new view about M -matrix implied by the zero energy ontology.

1. Light-like 3-surfaces can be regarded as solutions vacuum Einstein equations with vanishing
cosmological constant (Witten considers solutions with non-vanishing cosmological constant).
The effective 2-D character of the induced metric is what makes this possible.

2. Zero energy ontology is also an essential element: quantum states of 3-D theory in zero en-
ergy ontology correspond to generalized S-matrices: Matrix or M -matrix might be a proper
term. Matrix is a ”complex square root” of density matrix -matrix valued generalization of
Schrodinger amplitude - defining time like entanglement coefficients. Its ”phase” is unitary ma-
trix and might be rather universal. Matrix is a functor from the category of Feyman cobordisms
and matrices have groupoid like structure (see discussion below). Without this generalization
theory would reduce to a theory for 2-D fundamental objects.

3. Theory becomes genuinely 4-D because M -matrix is not universal anymore but characterizes
zero energy states.

4. 4-D holography is obtained via the Kähler metric of the world of classical worlds assigning to
light-like 3-surface a preferred extremal of Kähler action as the analog of Bohr orbit containing 3-
D lightlike surfaces as submanifolds (analogs of blackhole horizons and lightlike boundaries) [21]
. Interiors of 4-D space-time sheets corresponds to zero modes of the metric and to the classical
variables of quantum measurement theory (quantum classical correspondence). The conjecture is
that Dirac determinant for the modified Dirac action associated with partonic 3-surfaces defines
the vacuum functional as the exponent of Kähler function with Kähler coupling strength fixed
completely as the analog of critical temperature so that everything reduces to almost topological
QFT [20] .

7.5 What went wrong with string models?

As will be found, the few physical predictions of M-theory are wrong. It is instructive to try to
understand what went wrong with M-theories and string models by comparing it with earlier successful
theories and with TGD.

7.5.1 Problems of M-theory

At the physical side the situation in M-theory can be regarded as a catastrophe and without the
association of the attribute ”the only known candidate for the quantum theory of gravitation...” to
the letter M bringing in mind Pavlov dogs, no-one could take it seriously. The various problems of
M-theory have been discussed in the article of Smolin [75] as also by Penrose in his lecture series
”Fashion, Faith and Fantasy in Theoretical Physics” [66] . The discussions of ”Not Even Wrong” [9]
group provide a vivid critical view about the situation.

1. M-theory has not been able to explain why the dimension of the space-time is four and has even
failed to reproduce the standard model. Unless one assumes that the small dimensions form
a singular manifold (something so ugly that it turns my stomach around), M-theory predicts
chiral symmetry just like Kaluza-Klein theories: the symmetry is inconsistent with the standard
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model. Ironically, just this was the reason why superstrings replaced Kaluza-Klein theories in
the first superstring revolution. This full π twist represents a good example of M-logic.

The predicted massless scalar fields have not been observed. The predicted low energy super-
symmetry is experimentally absent, and now papers have begun to appear suggesting that M-
theory after all might predict only high energy super-symmetry. One of the first findings after
the second superstring revolution was that the prediction for the unification scale was wrong. I
remember that Witten proposed at that time a suitable compactification of the 11th dimension
to a circle to circumvent this problem.

2. Cosmological constant is now believed to be non-vanishing and positive [17] whereas the cosmo-
logical constant predicted by M-theory is negative. M-theories provide no explanation for the
accelerated expansion [17] . There is a plethora of cosmological observations which M-theory
cannot even address.

This sad state of affairs has led to the introduction of the anthropic principle [77] but not in
the sense that it would really predict something but as an M-logic proof that M-theory after all
predicts among other things also the cosmological constant correctly. The premise is that M-theory
is correct and the conclusion is that the observed universe must represent some distant corner of the
M-landscape, and we must be ready to accept as a fact, that we will never be able to find our way to
this distant part of the Theory Universe, and be happy with learning new dualities.

7.5.2 Mouse as a tailor

The history of string models differs dramatically from that for theories which has been successful as
physical theories. As a rule, new theories have started from a precise problem which earlier theories
have not been able to solve, and have led to a new ontology and inspired new mathematics.

String model was born as a model of hadrons. It however became gradually clear that the con-
straints on space-time dimensions make it unrealistic for this purpose. The conclusion of the mouse
was not so humble as in the tale: admittedly string models fail for hadrons but who knows, they might
describe everything.

After a decade of tailoring the cat was told that superstrings do not seem to make a TOE after
all. The mouse said that he could tailor even something more grandiose just by sewing together all
the previous failures. Now it has become clear that the result is an enormous bundle of solutions of
the possibly existing M-theory, which at practical level is reduced after few heuristic arguments to
compactifications of 11-D super gravity. There is still however a little problem: not a single one of
these solutions seems to describe the Universe we live in. Now the mouse suggests that we should
give up the dream about a theory of the observable universe as unrealistic, stop complaining and be
happy with all these beautiful dualities.

Is the time ripe for the story to end as its original version did or shall the cat provide still another
decade of financial support for the expensive tailor?

7.5.3 The dogma of reductionism

M-theory as an outcome of hard-nosed reductionism

The philosophical background of string models is hard-nosed reductionism taken down to Planck
length: something taken to be so self-evident that it has not been even mentioned. Hence the theory
cannot make any predictions about or utilize the rich experimental input coming from the known
physics.

This means that string theorists do not pay any attention to the pressing problems of quantum
measurement theory, to the problems related to the relationship between experienced and geometric
time, and to the problems surrounding to the poor understanding of second law. Not to even mention
the questions about the difference between animate and in-animate matter, and about what it means
to be a conscious system.

The belief that the action defining functional integral summarizes the physics leads to an approach
which is extremely pragmatic: start from the existing formulas of perturbative field theories and try to
combine them in order to cook up a more general theory. The danger that theoreticians fall into a kind



466 Chapter 7. TGD and M-Theory

of mathematical insanity in this kind of situation is obvious, and the possible failure of reductionism
means a tragic failure of the entire approach.

Giving up reductionism

TGD cannot be regarded as a success from the point of view of sociology of science but the success
of TGD as a physical theory is undeniable and basically due to the facts that TGD emerged as a
solution to a well-defined problem, and that the notion of many-sheeted space-time plus p-adic length
scale hypothesis [60] provide a precise quantitative formulation for how reductionism fails.

1. I ended up with TGD by starting from a very real problem of general relativity and soon found
that I could end up to TGD also from string models. From the beginning the contact of TGD
with experimental physics was very intimate. Later the quantum classical correspondence has
become a basic guide line in the construction of the theory.

2. One cannot deny that string theories partially solved the divergence problem of perturbative
quantum field theories. Unfortunately, is is highly implausible that the sum of the perturbation
series would converge so that as such it is useless. This has in fact been seen as a victory of the
theory since one can hope that a genuinely non-perturbative approach could lead to a unique
theory.

In TGD framework the absence of the basic divergences is highly plausible already from the basic
construction involving new ontology of space-time. Vacuum functional identified as an exponent
of Kähler function is not anymore a local functional of 3-surface so that basic perturbative
divergences resulting from the micro-locality are absent. Also Gaussian and metric determinants
cancel and the definition of Kähler function in terms of Dirac determinant is free of divergencies
[20] .

3. The construction of quantum TGD was not possible without the theory of consciousness. Key
element is the replacement of space-time micro-locality with classical locality in the ”world of
classical worlds” making possible to understand how macroscopic and macro-temporal quantum
coherence are possible [44, 14, 45] . Thanks to the notion of self [76, 93, 19] , observer ceases
to be an outsider and quantum measurement theory is becomes an essential part of the theory.
Completely un-expected outcomes were the already mentioned generalizations of the number
concept and the identification of the space-time correlates of cognition and intentionality.

4. TGD generalizes in a dramatic manner the ontology of space-time in terms of the notion of
the many-sheeted space-time involving also the new view about numbers. The identification of
space-time sheets as space-time counterparts of physical objects resolves the question about the
generation of structures. The ontology of quantum TGD is discussed in [19] from the point of
view of category theory. One important implication is that even quantum superposition and
quantum logic can have space-time correlates at the level of many-sheeted space-time.

5. TGD resolves the paradoxes due to the conflict between the non-determinism of quantum jump
and determinism of Schrödinger equation and, by the classical non-determinism, quantum-
classical correspondence can be realized at the space-time level even for quantum jump se-
quences. TGD leads to a new view about the relationship between geometric and subjectively
experienced time rather than just identifying them [93] .

6. In a dual manner TGD makes a distinction between inertial and gravitational masses: quite
generally, gravitational quantum numbers are differences for those associated with positive and
negative energy matter. The prediction is that Equivalence Principle in its standard form holds
true only when the interaction between positive and negative energy matter can be neglected
[91, 78] . Thus the conservation of the inertial momenta is consistent with the non-conservation
of gravitational momenta. This should have been obvious from the beginning from the fact that
Robertson-Walker cosmologies correspond to vacuum extremals in TGD [78] : it however took
25 years to realize that Einstein was probably wrong. Implications are rather dramatic. For
instance, Universe as a whole has vanishing inertial quantum numbers and is created again in
every quantum jump in 4-D sense so that the question about what were the initial values at the
moment of big bang becomes obsolete [78] .
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Negative energies make possible what I call remote metabolism playing in key role in TGD in-
spired theory of consciousness and of quantum biology: the system can gain energy by sending
negative energy to geometric past [93, 44, 45] . Time mirror mechanism makes possible commu-
nications with geometric past and future and communications with an effectively super-luminal
velocity become possible.

7. The duality between theory and reality is resolved. TGD based ontology postulates only three
levels of existence corresponding to existences in these sense of classical and quantum physics,
and conscious existence which corresponds to the quantum jumps between the quantum states
[19] . The possibility that space-time points are infinitely structured in p-adic sense although this
structure is not visible in real sense [84] , would resolve the challenge posed by the question why
all those structures that we can imagine mathematically, are not realized physically. Obviously,
a reincarnation of the monad idea of Leibniz is in question.

7.5.4 The loosely defined M

In a sharp contrast with M-theory [53] , Newton’s mechanics and gravitational theory, Maxwell’s
electrodynamics, Special and General Relativities, and even Bohr’s rules were from the beginning
relatively precisely defined theories able to make testable predictions. The lack of a precise definition
of what ”M” means has led to a flood of speculations based on speculations based on...

”M” as ”membrane” would be a rather precise definition but does not really make sense since the
huge conformal invariance of string models is lost as objects become 2-dimensional. For this reason one
prefers to replace ”M” with Mystery, Mother, or perhaps Matrix, but still think in terms of membranes
which behave like strings. It became however clear that also branes of various dimensions are needed
as discovered by Polchinski [68] and identified as non-perturbative objects at which string ends are
attached to: this interpretation is the only possible one since otherwise momentum conservation would
be lost for D-branes.

Needless to say, a theory using geometric structures consisting of parts possessing different dimen-
sions does not satisfy the standards of the conventional mathematical aesthetics. An outsider could
argue that the non-uniqueness of the boundary conditions (Neumann, Dirichlet and mixtures of them)
is the fundamental failure of the string theory, and that a viable theory should predict the dynamics
of boundaries. This is indeed the case in TGD where the criticality of the Kähler action guaranteing
general coordinate invariance in 4-D sense does this and implies that the space-time surface is a field
theory counterpart of Bohr orbit.

A good example of brave new M-logic is provided by the construction of what is called Matrix
Theory [78] . One starts from M-theory ”known” to have 11-D supergravity as a low energy limit,
replaces it with a 11-D supergravity, restricts the consideration to N 0-branes (point particles) living
in an effectively 10-D space, in an ad hoc manner replaces their position coordinates in 10-D space with
non-commuting N ×N -matrix valued coordinates assuming that eigenvalues correspond to N space-
time points, postulates a non-relativistic Schrödinger equation for this matrix, and by generalizing
bravely the notion of holography, concludes that the original theory and even more follows from this
very-very special theory at N → ∞ limit. From Matrix Theory one then deduces all superstring
dualities and and black hole physics using an argumentation with a comparable rigor.

It must be added that TGD predicts a rich variety of objects resulting as asymptotic self-organization
patterns for which Kähler-Lorentz 4-force vanishes by quantum classical correspondence. The solu-
tions are classified by the dimension of either their M4 or CP2 projection [12] . This variety includes
cosmic strings and magnetic flux tubes besides space-time sheets. Magnetic flux tubes and string like
objects can indeed attach to the boundaries of space-time sheets and there are obvious correspon-
dences with branes with dimensions of branes restricted to run from 0 to 4 (p = −1, .., 3) but only as
objects obtained by idealizing 4-dimensional object with a lower-dimensional object.

Even the possibility of single space-time point or space-time curve to mimic the quantum dynamics
of the quantum state of Universe is predicted but only at the level of cognition and relying on the
new notion about what mathematical point is [84] . I however do not think that this has much to do
with Matrix Theory.
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7.5.5 Los Alamos, M-theory, and TGD

String models have been seen not only as a kind of holy grail of modern physics but also as an ideology
promising an Utopia. As a rule, ideologies have tried to establish the new world order using censorship.
String model hegemony has followed the tradition.

For about decade ago it became impossible for me to get anything to hep-th and other physics
related archives. Interestingly, for few years ago my article about Riemann hypothesis was accepted to
the math archives of Los Alamos and is also published [1] : it was however not possible to get it cross-
listed to hep-th. For a few years American Mathematical Society has had a link to my homepage [1]
as one of the few examples about new mathematics related to quantum physics.

I have learned that I am not the only victim of the string revolution (see the comments in ”Not
Even Wrong” discussion group [9] ). Despite the official statement that anyone can contribute to
LANL, an invisible peer system is acting. After 20 years of string revolutions it seems that physics
itself has become the victim which has suffered the most severe injuries.

7.6 K-theory, branes, and TGD

K-theory has played important role in brane classification in super string models and M-theory. The
excellent lectures by Harah Evslin with title What doesn’t K-theory classify? [28] make it possible to
learn the basic motivations for the classification, what kind of classifications are possible, and what are
the failures. Also the Wikipedia article [6] gives a bird’s eye of view about problems. As a by-product
one learns something about the basic ideas of K-theory and about possible mathematical and physical
problems of string theories and M-theory.

In the sequel I will discuss critically the basic assumptions of brane world scenario, sum up my
understanding about the problems related to the topological classification of branes and also to the
notion itself, ask what goes wrong with branes and demonstrate how the problems are avoided in TGD
framework, and conclude with a proposal for a natural generalization of K-theory to include also the
division of bundles inspired by the generalization of Feynman diagrammatics in quantum TGD, by
zero energy ontology, and by the notion of finite measurement resolution.

7.6.1 Brane world scenario

The brane world scenario looks attractive from the mathematical point of view ine one is able to get
accustomed with the idea that basic geometric objects have varying dimensions. Even accepting the
varying dimensions, the basic physical assumptions behind this scenario are vulnerable to criticism.

1. Branes are geometric objects of varying dimension in the 10-/11-dimensional space-time -call it
M - of superstring theory/M-theory. In M-theory the fundamental strings are replaced with M-
branes, which are 2-D membranes with 3-dimensional orbit having as its magnetic dual 6-D M5-
brane. Branes are thought to emerge non-perturbatively from fundamental 2-branes but what
this really means is not understood. One has D-p-branes with Dirichlet boundary conditions
fixing a p + 1-dimensional surface of M as brane orbit: one of the dimensions corresponds to
time. Also S-branes localized in time have been proposed.

2. In the description of the classical limit branes interact with the classical fields of the target space
by the generalization of the minimal coupling of charged point-like particle to electromagnetic
gauge potential. The coupling is simply the integral of the gauge potential over the world-line
- the value of 1-form for the wordline. Point like particle represents 0-brane and in the case of
p-brane the generalization is obtained by replacing the gauge potential represented by a 1-from
with p+ 1-form. The exterior derivative of this p+ 1-form is p+ 2-form representing the analog
of electromagnetic field. Complete dimensional democracy strongly suggests that string world
sheets should be regarded as 1-branes.

3. From TGD point of view the introduction of branes looks a rather ad hoc trick. By generalizing
the coupling of electromagnetic gauge potential to the word line of point like particle one could
introduce extended objects of various dimensions also in the ordinary 4-D Maxwell theory but
they would be always interpreted as idealizations for the carriers of 4- currents. Therefore the

http://arxiv.org/pdf/hep-th/0610328
http://en.wikipedia.org/wiki/K-theory_(physics)
http://en.wikipedia.org/wiki/Membrane_(M-theory)
http://en.wikipedia.org/wiki/D-brane


7.6. K-theory, branes, and TGD 469

crucial step leading to branes involves classical idealization in conflict with Uncertainty Principle
and the genuine quantal description in terms of fields coupled to gauge potentials.

My view is that the most natural interpretation for what is behind branes is in terms of currents
in D=10 or D= 11 space-time. In this scheme branes have role only as semi-classical idealizations
making sense only above some scale. Both the reduction of string theories to quantum field
theories by holography and the dynamical character of the metric of the target space conforms
with super-gravity interpretation. Internal consistency requires also the identification of strings
as branes so that superstring theories and M-theory would reduce to an idealization to 10-/11-
dimensional quantum gravity.

In this framework the brave brane world episode would have been a very useful Odysseia. The
possibility to interpret various geometric objects physically has proved to be an extremely powerful
tool for building provable conjectures and has produced lots of immensely beautiful mathematics. As
a fundamental theory this kind of approach does not look convincing to me.

7.6.2 The basic challenge: classify the conserved brane charges associated
with branes

One can of course forget these critical arguments and look whether this general picture works. The
first thing that one can do is to classify the branes topologically. I made the same question about 32
years ago in TGD framework: I thought that cobordism for 3-manifolds might give highly interesting
topological conservation laws. I was disappointed. The results of Thom’s classical article about
manifold cobordism demonstrated that there is no hope for really interesting conservation laws. The
assumption of Lorentz cobordism meaning the existence of global time-like vector field would make the
situation more interesting but this condition looked too strong and I could not see a real justification
for it. In generalized Feynman diagrammatics there is no need for this kind of condition.

There are many alternative approaches to the classification problem. One can use homotopy,
homology, cohomology and their relative and other variants, topological or algebraic K-theory, twisted
K-theory, and variants of K-theory not yet existing but to be proposed within next years. The list is
probably endless unless something like motivic cohomology brings in enlightment.

1. First of all one must decide whether one classifies p-dimensional time=constant sections of p-
branes or their p+ 1-dimensional orbits. Both approaches have been applied although the first
one is natural in the standard view about spontaneous compactification. For the first option
topological invariants could be seen as conserved charges: homotopy invariants and homological
and cohomological characteristics of branes provide this kind of invariants. For the latter option
the invariants would be analogous to instanton number characterizing the change of magnetic
charge.

2. Purely topological invariants come first in mind. Homotopy groups of the brane are invariants
inherent to the brane (the brane topology can however change). Homological and cohomological
characteristics of branes in singular homology characterize the imbedding to the target space.
There are also more delicate differential topological invariants such as de Rham cohomology
defining invariants analogous to magnetic charges. Dolbeault cohomology emerges naturally for
even-dimensional branes with complex structure.

3. Gauge theories - both abelian and non-Abelian - define a standard approach to the construc-
tion of brane charges for the bundle structures assigned with branes. Chern-Simons classes are
fundamental invariants of this kind. Also more delicate invariants associated with gauge po-
tentials can be considered. Chern-Simons theory with vanishing field strengths for solutions of
field equations provides a basic example about this. For intance, SU(2) Chern-Simons theory
provides 3-D topological invariants and knot invariants.

4. More refined approaches involve K-theory -closely related to motivic cohomology - and its twisted
version. The idea is to reduce the classification of branes to the classification of the bundle
structures associated with them. This approach has had remarkable successes but has also its
short-comings.
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The challenge is to find the mathematical classification which suits best the physical intuitions (,
which might be fatally wrong as already proposed) but is universal at the same time. This challenge
has turned out to be tough. The Ramond-Ramond (RR) p-form fields of type II superstring theory
are rather delicate objects and a source of most of the problems. The difficulties emerge also by the
presence of Neveu-Schwartz 3-form H = dB defining classical background field.

K-theory has emerged as a good candidate for the classification of branes. It leaves the confines
of homology and uses bundle structures associated with branes and classifies these. There are many
K-theories. In topological K-theory bundles form an algebraic structure with sum, difference, and
multiplication. Sum is simply the direct sum for the fibers of the bundle with common base space.
Product reduces to a tensor product for the fibers. The difference of bundles represents a more
abstract notion. It is obtained by replacing bundles with pairs in much the same way as rationals
can be thought of as pairs of integers with equivalence (m,n) = (km, kn), k integer. Pairs (n, 1)
representing integers and pairs (1, n) their inverses. In the recent case one replaces multiplication
with sum and regards bundle pairs and (E,F ) and (E +G,F +G) equivalent. Although the pair as
such remains a formal notion, each pair must have also a real world representativs. Therefore the sign
for the bundle must have meaning and corresponds to the sign of the charges assigned to the bundle.
The charges are analogous to winding of the brane and one can call brane with negative winding
antibrane. The interpretation in terms of orientation looks rather natural. Later a TGD inspired
concrete interpretation for the bundle sum, difference, product and also division will be proposed.

7.6.3 Problems

The classification of brane structures has some problems and some of them could be argued to be not
only technical but reflect the fact that the physical picture is wrong.

Problems related to the existence of spinor structure

Many problems in the classification of brane charges relate to the existence of spinor structure. The
existence of spinor structure is a problem already in general general relativity since ordinary spinor
structure exists only if the second Stiefel-Whitney class [35] of the manifold is non-vanishing: if the
third Stiefel-Whitney class vanishes one can introduce so called spinc structure. This kind of problems
are encountered already in lattice QCD, where periodic boundary conditions imply non-uniqueness
having interpretation in terms of 16 different spinor structures with no obvious physical interpretation.
One the strengths of TGD is that the notion of induced spinor structure eliminates all problems of
this kind completely. One can therefore find direct support for TGD based notion of spinor structure
from the basic inconsistency of QCD lattice calculations!

1. Freed-Witten anomaly [22] appearing in type II string theories represents one of the problems.
Freed and Witten show that in the case of 2-branes for which the generalized gauge potential
is 3-form so called spinc structure is needed and exists if the third Stiefel-Whitney class w3

related to second Stiefel Whitney class whose vanishing guarantees the existence of ordinary
spin structure (in TGD framework spinc structure for CP2 is absolutely essential for obtaining
standard model symmetries).

It can however happen that w3 is non-vanishing. In this case it is possible to modify the spinc

structure if the condition w3 + [H] = 0 holds true. It can however happen that there is an
obstruction for having this structure - in other words w3 + [H] does not vanish - known as
Freed-Witten anomaly. In this case K-theory classification fails. Witten and Freed argue that
physically the wrapping of cycle with non-vanishing w3+[H] by a Dp-brane requires the presence
of D(p−2) brane cancelling the anomaly. If D(p−2) brane ends to anti-Dp in which case charge
conservation is lost. If there is not place for it to end one has semi-infinite brane with infinite
mass, which is also problematic physically. Witten calls these branes baryons: these physically
very dubious objects are not classified by K-theory.

2. The non-vanishing of w3 + [H] = 0 forces to generalize K-theory to twisted K-theory [42].
This means a modification of the exterior derivative to get twisted de Rham cohomology and
twisted K-theory and the condition of closedness in this cohomology for certain form becomes the
condition guaranteeing the existence of the modified spinc structure. D-branes act as sources of
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these fields and the coupling is completely analogous to that in electrodynamics. In the presence
of classical Neveu-Schwartz (NS-NS) 3-form field H associated with the back-ground geometry
the field strength Gp+1 = dCp is not gauge invariant anymore. One must replace the exterior
derivative with its twisted version to get twisted de Rham cohomology:

d→ d+H ∧ .

There is a coupling between p- and p+2-forms together and gauge symmetries must be modified
accordingly. The fluxes of twisted field strengths are not quantized but one can return to original
p-forms which are quantized. The coupling to external sources also becomes more complicated
and in the case of magnetic charges one obtains magnetically charged Dp-branes. Dp-brane
serves as a source for D(p− 2)- branes.

This kind of twisted cohomology is known by mathematicians as Deligne cohomology. At the
level of homology this means that if branes with dimension of p are presented then also branes
with dimension p+2 are there and serve as source of Dp-branes emanating from them or perhaps
identifiable as their sub-manifolds. Ordinary homology fails in this kind of situation and the
proposal is that so called twisted K-theory could allow to classify the brane charges.

3. A Lagrangian formulation of brane dynamics based on the notion of p-brane democracy [79] due
to Peter Townsend has been developed by various authors.

Ashoke Sen has proposed a grand vision for understanding the brane classification in terms of
tachyon condensation in absence of NS-NS field H [74]. The basic observation is that stacks of space-
filling D- and anti D-branes are unstable against process called tachyon condensation which however
means fusion of p + 1-D brane orbits rather than p-dimensional time slicse of branes. These branes
are however accompanied by lower-dimensional branes and the decay process cannot destroy these.
Therefore the idea arises that suitable stacks of D9 branes and anti-D9-branes could code for all
lower-dimensional brane configurations as the end products of the decay process.

This leads to a creation of lower-dimensional branes. All decay products of branes resulting in the
decay cascade would be by definition equivalent. The basic step of the decay process is the fusion
of D-branes in stack to single brane. In bundle theoretic language one can say that the D-branes
and anti-D branes in the stack fuse together to single brane with bundle fiber which is direct sum of
the fibers on the stack. This fusion process for the branes of stack would correspond in topological
K-theory. The fusion of D-branes and anti-D branes would give rise to nothing since the fibers would
have opposite sign. The classification would reduce to that for stacks of D9-branes and anti D9-branes.

Problems with Hodge duality and S-duality

The K-theory classification is plagued by problems all of which need not be only technical.

1. R-R fields are self dual and since metric is involved with the mapping taking forms to their duals
one encounters a problem. Chern characters appearing in K-theory are rational valued but the
presence of metric implies that the Chern characters for the duals need not be rational valued.
Hence K-theory must be replaced with something less demanding.

The geometric quantization inspired proposal of Diaconescu, Moore and Witten [21] is based
on the polarization using only one half of the forms to get rid of the proboem. This is like
thinking the 10-D space-time as phase space and reducing it effectively to 5-D space: this brings
strongly in mind the identification of space-time surfaces as hyper-quaternionic (associative)
sub-manifolds of imbedding space with octonionic structure and one can ask whether the basic
objects also in M-theory should be taken 5-dimensional if this line of thought is taken seriously.
An alternative approach uses K-theory to classify the intersections of branes with 9-D space-time
slice as has been porposed by Maldacena, Moore and Seiberg [40].

2. There another problem related to classification of the brane charges. Witten, Moore and Dia-
conescu [21] have shown that there are also homology cycles which are unstable against decay
and this means that twisted K-theory is inconsistent with the S-duality of type IIB string theory.
Also these cycles should be eliminated in an improved classification if one takes charge conser-
vation as the basic condition and an hitherto un-known modification of cohomology theory is
needed.
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3. There is also the problem that K-theory for time slices classifies only the R-R field strengths. Also
R-R gauge potentials carry information just as ordinary gauge potentials and this information
is crucial in Chern-Simons type topological QFTs. K-theory for entire target space classifies
D-branes as p+ 1-dimensional objects but in this case the classification of R-R field strengths is
lost.

The existence of non-representable 7-D homology classes for targent space dimension
D > 9

There is a further nasty problem which destroys the hopes that twisted K-theory could provide a
satisfactory classification. Even worse, something might be wrong with the superstring theory itself.
The problem is that not all homology classes allow a representation as non-singular manifolds. The
first dimension in which this happens is D = 10, the dimension of super-string models! Situation is
of course the same in M-theory. The existence of the non-representables was demonstrated by Thom
- the creator of catastrophe theory and of cobordism theory for manifolds- for a long time ago.

What happens is that there can exist 7-D cycles which allow only singular imbeddings. A good
example would be the imbedding of twistor space CP3, whose orbit would have conical singularity for
which CP3 would contract to a point at the ”moment of big bang”. Therefore homological classification
not only allows but demands branes which are orbifolds. Should orbifolds be excluded as unphysical?
If so then homology gives too many branes and the singular branes must be excluded by replacing the
homology with something else. Could twisted K-theory exclude non-representable branes as unstable
ones by having non-vanishing w3 + [H]? The answer to the question is negative: D6-branes with
w3 + [H] = 0 exist for which K-theory charges can be both vanishing or non-vanishing.

One can argue that non-representability is not a problem in superstring models (M-theory) since
spontaneous compactification leads to M × X6 (M × X7). On the other hand, Cartesian product
topology is an approximation which is expected to fail in high enough length scale resolution and
near big bang so that one could encounter the problem. Most importantly, if M-theory is theory of
everything it cannot contain this kind of beauty spots.

7.6.4 What could go wrong with super string theory and how TGD cir-
cumvents the problems?

As a proponent of TGD I cannot avoid the temptation to suggest that at least two things could go
wrong in the fundamental physical assumptions of superstrings and M-theory.

1. The basic failure would be the construction of quantum theory starting from semiclassical
approximation assuming localization of currents of 10 - or 11-dimensional theory to lower-
dimensional sub-manifolds. What should have been a generalization of QFT by replacing
pointlike particles with higher-dimensional objects would reduce to an approximation of 10-
or 11-dimensional supergravity.

This argument does not bite in TGD. 4-D space-time surfaces are indeed fundamental objects
in TGD as also partonic 2-surfaces and braids. This role emerges purely number theoretically
inspiring the conjecture that space-time surfaces are associative sub-manifolds of octonionic
imbedding spaces, from the requirement of extended conformal invariance, and from the non-
dynamical character of the imbedding space.

2. The condition that all homology equivalence classes are representable as manifolds excludes all
dimensions D > 9 and thus super-strings and M-theory as a physical theory. This would be
the case since branes are unavoidable in M-theory as is also the landscape of compactifications.
In semiclassical supergravity interpretation this would not be catastrophe but if branes are
fundamental objects this shortcoming is serious. If the condition of homological representability
is accepted then target space must have dimension D < 10 and the arguments sequence leading
to D=8 and TGD is rather short. The number theoretical vision provides the mathematical
justification for TGD as the unique outcome.

3. The existence of spin structure is clearly the source of many problems related to R-R form. In
TGD framework the induction of spinc structure of the imbedding space resolves all problems
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associated with sub-manifold spin structures. For some reason the notion of induced spinor
structure has not gained attention in super string approach.

4. Conservative experimental physicist might criticize the emergence of branes of various dimen-
sions as something rather weird. In TGD framework electric-magnetic duality can be understood
in terms of general coordinate invariance and holography and branes and their duals have di-
mension 2, 3, and 4 organize to sub-manifolds of space-time sheets. The TGD counterpart for
the fundamental M-2-brane is light-like 3-surface. Its magnetic dual has dimension given by
the general formula pdual = D − p − 4, where D is the dimension of the target space [26]. In
TGD one has D = 8 giving pdual = 2. The first interpretation is in terms of self-duality. A
more plausible interpretation relies on the identification of the duals of light-like 3-surfaces as
spacelike-3-surfaces at the light-like boundaries of CD. General Coordinate Invariance in strong
sense implies this duality. For partonic 2-surface one would have p = 1 and pdual = 3. The
identification of the dual would be as space-time surface. The crucial distinction to M-theory
would be that branes of different dimension would be sub-manifolds of space-time surface.

5. For p = 0 one would have pdual = 4 assigning five-dimensional surface to orbits of point-like
particles identifiable most naturally as braid strands. One cannot assign to it any direct physical
meaning in TGD framework and gauge invariance for the analogs of brane gauge potentials
indeed excludes even-dimensional branes in TGD since corresponding forms are proportional to
Kähler gauge potential (so that they would be analogous to odd-dimensional branes allowed by
type IIB superstrings).

4-branes could be however mathematically useful by allowing to define Morse theory for the
critical points of the Minkowskian part of Kähler action. While writing this I learned that
Witten has proposed a 4-D gauge theory approach with N = 4 SUSY to the classification
of knots. Witten also ends up with a Morse theory using 5-D space-times in the category-
theoretical formulation of the theory [71]. For some time ago I also proposed that TGD as
almost topological QFT defines a theory of knots, knot braidings, and of 2-knots in terms of
string world sheets [42]. Maybe the 4-branes could be useful for understanding of the extrema
of TGD of the Minkowskian part of Kähler action which would take take the same role as
Hamiltonian in Floer homology: the extrema of 5-D brane action would connect these extrema.

6. Light-like 3-surfaces could be seen as the analogs von Neuman branes for which the boundary
conditions state that the ends of space-like 3-brane defined by the partonic 2-surfaces move with
light-velocity. The interpretation of partonic 2-surfaces as space-like branes at the ends of CD
would in turn make them D-branes so that one would have a duality between D-branes and
N-brane interpretations. T-duality exchanges von Neumann and Dirichlet boundary conditions
so that strong from of general coordinate invariance would correspond to both electric-magnetic
and T-duality in TGD framework. Note that T-duality exchanges type IIA and type IIB super-
strings with each other.

7. What about causal diamonds and their 7-D lightlike boundaries? Could one regard the light-like
boundaries of CDs as analogs of 6-branes with light-like direction defining time-like direction
so that space-time surfaces would be seen as 3-branes connecting them? This brane would not
have magnetic dual since the formula for the dimensions of brane and its magnetic dual allows
positive brane dimension p only in the range (1,3).

7.6.5 Can one identify the counterparts of R-R and NS-NS fields in TGD?

R-R and NS-NS 3-forms are clearly in fundamental role in M-theory. Since in TGD partonic 2-surfaces
define the analogs of fundamental M-2-branes, one can wonder whether these 3-forms could have TGD
counterparts.

1. In TGD framework the 3-forms G3,A = dC2,A defined as the exterior derivatives of the two-forms
C2,A identified as products C2,A = HAJ of Hamiltonians HA of δM4

±×CP2 with Kähler forms of
factors of δM4

±×CP2 define an infinite family of closed 3-forms belonging to various irreducible
representations of rotation group and color group. One can consider also the algebra generated
by products HAA, HAJ , HAA∧J , HAJ∧J , where A resp. J denotes the Kähler gauge potential
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resp. Kähler form or either δM4
± or CP2. A resp. Also the sum of Kähler potentials resp. forms

of δM4
± and CP2 can be considered.

2. One can define the counterparts of the fluxes
∫
Adx as fluxes of HAA over braid strands, HAJ

over partonic 2-surfaces and string world sheets, HAA∧J over 3-surfaces, andHAJ∧J over space-
time sheets.Gauge invariance however suggests that for non-constant Hamiltonians one must
exclude the fluxes assigned to odd dimensional surfaces so that only odd-dimensional branes
would be allowed. This would exclude 0-branes and the problematic 4-branes. These fluxes
should be quantized for the critical values of the Minkowskian contributions and for the maxima
with respect to zero modes for the Euclidian contributions to Kähler action. The interpretation
would be in terms of Morse function and Kähler function if the proposed conjecture holds
true. One could even hope that the charges in Cartan algebra are quantized for all preferred
extremals and define charges in these irreducible representations for the isometry algebra of
WCW. The quantization of electric fluxes for string world sheets would give rise to the familiar
quantization of the rotation

∫
E · dl of electric field over a loop in time direction taking place in

superconductivity.

3. Should one interpret these fluxes as the analogs of NS-NS-fluxes or R-R fluxes? The exterior
derivatives of the forms G3 vanish which is the analog for the vanishing of magnetic charge
densities (it is however possible to have the analogs of homological magnetic charge). The
self-duality of Ramond p-forms could be posed formally (Gp =∗ G8−p) but does not have any
implications for p < 4 since the space-time projections vanish in this case identically for p > 3.
For p = 4 the dual of the instanton density J ∧ J is proportional to volume form if M4 and is
not of topological interest. The approach of Witten eliminating one half of self dual R-R-fluxes
would mean that only the above discussed series of fluxes need to be considered so that one would
have no troubles with non-rational values of the fluxes nor with the lack of higher dimensional
objects assignable to them. An interesting question is whether the fluxes could define some kind
of K-theory invariants.

4. In TGD imbedding space is non-dynamical and there seems to be no counterpart for the NS
3-form field H = dB. The only natural candidate would correspond to Hamiltonian B = J
giving H = dB = 0. At quantum level this might be understood in terms of bosonic emergence
[65] meaning that only Ramond representations for fermions are needed in the theory since
bosons correspond to wormhole contacts with fermion and anti-fermions at opposite throats.
Therefore twisted cohomology is not needed and there is no need to introduce the analogy
of brane democracy and 4-D space-time surfaces containing the analogs of lower-dimensional
brains as sub-manifolds are enough. The fluxes of these forms over partonic 2-surfaces and
string world sheets defined non-abelian analogs of ordinary gauge fluxes reducing to rotations
of vector potentials and suggested be crucial for understanding braidings of knots and 2-knots
in TGD framework. [42]. Note also that the unique dimension D=4 for space-time makes 4-D
space-time surfaces homologically self-dual so that only they are needed.

7.6.6 What about counterparts of S and U dualities in TGD framework?

The natural question is what could be the TGD counterparts of S−, T− and U -dualities. If one
accepts the identification of U -duality as product U = ST and the proposed counterpart of T duality
as a strong form of general coordinate invariance, it remains to understand the TGD counterpart of
S-duality - in other words electric-magnetic duality - relating the theories with gauge couplings g and
1/g. Quantum criticality selects the preferred value of gK : Kähler coupling strength is very near to
fine structure constant at electron length scale and can be equal to it. Since there is no coupling
constant evolution associated with αK , it does not make sense to say that gK becomes strong and is
replaced with its inverse at some point. One should be able to formulate the counterpart of S-duality
as an identity following from the weak form of electric-magnetic duality and the reduction of TGD to
almost topological QFT. This seems to be the case.

1. For preferred extremals the interior parts of Kähler action reduces to a boundary term be-
cause the term jµAµ vanishes. The weak form of electric-magnetic duality requires that Kähler
electric charge is proportional to Kähler magnetic charge, which implies reduction to abelian

http://tgd.wippiespace.com/public_html/tgdgeom/tgdgeom.html#knotstgd
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Chern-Simons term: the Kähler coupling strength does not appear at all in Chern-Simons term.
The proportionality constant beween the electric and magnetic parts JE and JB of Kähler form
however enters into the dynamics through the boundary conditions stating the weak form of
electric-magnetic duality. At the Minkowskian side the proportionality constant must be pro-
portional to g2

K to guarantee a correct value for the unit of Kähler electric charge - equal to
that for electric charge in electron length scale- from the assumption that electric charge is
proportional to the topologically quantized magnetic charge. It has been assumed that

JE = αKJB

holds true at both sides of the wormhole throat but this is an un-necessarily strong assumption
at the Euclidian side. In fact, the self-duality of CP2 Kähler form stating

JE = JB

favours this boundary condition at the Euclidian side of the wormhole throat. Also the fact
that one cannot distinguish between electric and magnetic charges in Euclidian region since all
charges are magnetic can be used to argue in favor of this form. The same constraint arises
from the condition that the action for CP2 type vacuum extremal has the value required by the
argument leading to a prediction for gravitational constant in terms of the square of CP2 radius
and αK the effective replacement g2

K → 1 would spoil the argument.

2. Minkowskian and Euclidian regions should correspond to a strongly/weakly interacting phase
in which Kähler magnetic/electric charges provide the proper description. In Euclidian regions
associated with CP2 type extremals there is a natural interpretation of interactions between
magnetic monopoles associated with the light-like throats: for CP2 type vacuum extremal itself
magnetic and electric charges are actually identical and cannot be distinguished from each
other. Therefore the duality between strong and weak coupling phases seems to be trivially
true in Euclidian regions if one has JB = JE at Euclidian side of the wormhole throat. This is
however an un-necessarily strong condition as the following argument shows.

3. In Minkowskian regions the interaction is via Kähler electric charges and elementary particles
have vanishing total Kähler magnetic charge consisting of pairs of Kähler magnetic monopoles so
that one has confinement characteristic for strongly interacting phase. Therefore Minkowskian
regions naturally correspond to a weakly interacting phase for Kähler electric charges. One can
write the action density at the Minkowskian side of the wormhole throat as

(J2
E − J2

B)

αK
= αKJ

2
B −

J2
B

αK
.

The exchange JE ↔ JB accompanied by αK → −1/αK leaves the action density invariant.
Since only the behavior of the vacuum functional infinitesimally near to the wormhole throat
matters by almost topological QFT property, the duality is realized. Note that the argument
goes through also in Euclidian regions so that it does not allow to decide which is the correct
form of weak form of electric-magnetic duality.

4. S-duality could correspond geometrically to the duality between partonic 2-surfaces responsible
for magnetic fluxes and string worlds sheets responsible for electric fluxes as rotations of Kähler
gauge potentials around them and would be very closely related with the counterpart of T -
duality implied by the strong form of general coordinate invariance and saying that space-like
3-surfaces at the ends of space-time sheets are equivalent with light-like 3-surfaces connecting
them.

The boundary condition JE = JB at the Euclidian side of the wormhole throat inspires the
question whether all Euclidian regions could be self-dual so that the density of Kähler action would
be just the instanton density. Self-duality follows if the deformation of the metric induced by the
deformation of the canonically imbedded CP2 is such that in CP2 coordinates for the Euclidian region
the tensor (gαβgµν − gανgµβ)/

√
g remains invariant. This is certainly the case for CP2 type vacuum
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extremals since by the light-likeness of M4 projection the metric remains invariant. Also conformal
scalings of the induced metric would satisfy this condition. Conformal scaling is not consistent with
the degeneracy of the 4-metric at the wormhole throat. Self-duality is indeed an un-necessarily strong
condition.

Comparison with standard view about dualities

One can compare the proposed realization of T , S and U to the more general dualities defined by
the modular group SL(2, Z), which in QFT framework can hold true for the path integral over all
possible gauge field configurations. In the resent case the dualities hold true for every preferred
extremal separately and the functional integral is only over the space-time projections of fixed Kähler
form of CP2. Modular invariance for Maxwell action was discussed by E. Verlinde for Maxwell action
with θ term for a general 4-D compact manifold with Euclidian signature of metric in [80]. In this case
one has path integral giving sum over infinite number of extrema characterized by the cohomological
equivalence class of the Maxwell field the action exponential to a high degree. Modular invariance is
broken for CP2: one obtains invariance only for τ → τ + 2 whereas S induces a phase factor to the
path integral.

1. In the recent case these homology equivalence classes would correspond to homology equivalence
classes of holomorphic partonic 2-surfaces associated with the critical points of Kähler function
with respect to zero modes.

2. In the case that the Euclidian contribution to the Kähler action is expressible solely in terms of
wormhole throat Chern-Simons terms, and one can neglect the measurement interaction terms,
the exponent of Kähler action can be expressed in terms of Chern-Simons action density as

L = τLC−S ,

LC−S = J ∧A ,

τ =
1

g2
K

+ i
k

4π
, k = 1 . (7.6.1)

Here the parameter τ transforms under full SL(2, Z) group as

τ → aτ + b

cτ + d
. (7.6.2)

The generators of SL(2, Z) transformations are T : τ → τ + 1, S : τ → −1/τ . The imaginary
part in the exponents corresponds to Kac-Moody central extension k = 1.

This form corresponds also to the general form of Maxwell action with CP breaking θ term given
by

L =
1

g2
K

J ∧∗ J + i
θ

8π2
J ∧ J , θ = 2π . (7.6.3)

Hence the Minkowskian part mimicks the θ term but with a value of θ for which the term does
not give rise to CP breaking in the case that the action is full action for CP2 type vacuum
extremal so that the phase equals to 2π and phase factor case is trivial. It would seem that the
deviation from the full action for CP2 due to the presence of wormhole throats reducing the value
of the full Kähler action for CP2 type vacuum extremal could give rise to CP breaking. One can
visualize the excluded volume as homologically non-trivial geodesic spheres with some thickness
in two transverse dimensions. At the limit of infinitely thin geodesic spheres CP breaking would
vanish. The effect is exponentially sensitive to the volume deficit.

http://arxiv.org/abs/hep-th/9506011v3
http://arxiv.org/abs/hep-th/9506011v3
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CP breaking and ground state degeneracy

Ground state degeneracy due to the possibility of having both signs for Minkowskian contribution to
the exponent of vacuum functional provides a general view about the description of CP breaking in
TGD framework.

1. In TGD framework path integral is replaced by inner product involving integral over WCV. The
vacuum functional and its conjugate are associated with the states in the inner product so that
the phases of vacuum functionals cancel if only one sign for the phase is allowed. Minkowskian
contribution would have no physical significance. This of course cannot be the case. The ground
state is actually degenerate corresponding to the phase factor and its complex conjugate since√
g can have two signs in Minkowskian regions. Therefore the inner products between states

associated with the two ground states define 2 × 2 matrix and non-diagonal elements contain
interference terms due to the presence of the phase factor. At the limit of full CP2 type vacuum
extremal the two ground states would reduce to each other and the determinant of the matrix
would vanish.

2. A small mixing of the two ground states would give rise to CP breaking and the first principle
description of CP breaking in systems like K − K and of CKM matrix should reduce to this
mixing. K0 mesons would be CP even and odd states in the first approximation and correspond
to the sum and difference of the ground states. Small mixing would be present having exponential
sensitivity to the actions of CP2 type extremals representing wormhole throats. This might allow
to understand qualitatively why the mixing is about 50 times larger than expected for B0 mesons.

3. There is a strong temptation to assign the two ground states with two possible arrows of geo-
metric time. At the level of M-matrix the two arrows would correspond to state preparation at
either upper or lower boundary of CD. Do long- and shortlived neutral K mesons correspond
to almost fifty-fifty orthogonal superpositions for the two arrow of geometric time or almost
completely to a fixed arrow of time induced by environment? Is the dominant part of the arrow
same for both or is it opposite for long and short-lived neutral measons? Different lifetimes
would suggest that the arrow must be the same and apart from small leakage that induced by
environment. CP breaking would be induced by the fact that CP is performed only K0 but not
for the environment in the construction of states. One can probably imagine also alternative
interpretations.

Remark: The proportionality of Minkowskian and Euclidian contributions to the same Chern-
Simons term implies that the critical points with respect to zero modes appear for both the phase
and modulus of vacuum functional. The Kähler function property does not allow extrema for vacuum
functional as a function of complex coordinates of WCW since this would mean Kähler metric with
non-Euclidian signature. If this were not the case. the stationary values of phase factor and extrema
of modulus of the vacuum functional would correspond to different configurations.

7.6.7 Could one divide bundles?

TGD differs from string models in one important aspects: stringy diagrams do not have interpretation
as analogs of vertices of Feynman diagrams: the stringy decay of partonic 2-surface to two pieces does
not represent particle decay but a propagation along different paths for incoming particle. Particle
reactions in turn are described by the vertices of generalized Feynman diagrams in which the ends
of incoming and outgoing particles meet along partonic 2-surface. This suggests a generalization of
K-theory for bundles assignable to the partonic 2-surfaces. It is good to start with a guess for the
concrete geometric realization of the sum and product of bundles in TGD framework.

1. The analogs of string diagrams could represent the analog for direct sum. Difference between
bundles could be defined geometrically in terms of trouser vertex A + B → C. B would by
definition represent C − A. Direct sum could make sense for single particle states and have as
space-time correlate the conservation of braid strands.

2. A possible concretization in TGD framework for the tensor product is in terms of the vertices
of generalized Feynman diagrams at which incoming light-like 3-D orbits of partons meet along
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their ends. The tensor product of incoming state spaces defined by fermionic oscillator algebras
is naturally formed. Tensor product would have also now as a space-time correlate conservation
of braid strands. This does not mean that the number of braid strands is conserved in reactions
if also particular exchanges can carry the braid strands of particles coming to the vertex.

Why not define also division of bundles in terms of the division for tensor product? In terms of
the 3-vertex for generalized Feynman diagrams A ⊗ B = C representing tensor product B would be
by definition C/A. Therefore TGD would extend the K-theory algebra by introducing also division as
a natural operation necessitated by the presence of the join along ends vertices not present in string
theory. I would be surprised if some mathematician would not have published the idea in some exotic
journal. Below I represent an argument that this notion could be also applied in the mathematical
description of finite measurement resolution in TGD framework using inclusions of hyper-finite factor.
Division could make possible a rigorous definition for for non-commutative quantum spaces.

Tensor division could have also other natural applications in TGD framework.

1. One could assign bundles M+ and M− to the upper and lower light-like boundaries of CD.
The bundle M+/M− would be obtained by formally identifying the upper and lower light-like
boundaries. More generally, one could assign to the boundaries of CD positive and negative
energy parts of WCW spinor fields and corresponding bundle structures in ”half WCW”. Zero
energy states could be seen as sections of the unit bundle just like infinite rationals reducing to
real units as real numbers would represent zero energy states.

2. Finite measurement resolution would encourage tensor division since finite measurement resolu-
tion means essentially the loss of information about everything below measurement resolution
represented as a tensor product factor. The notion of coset space formed by hyper-finite factor
and included factor could be understood in terms of tensor division and give rise to quan-
tum group like space with fractional quantum dimension in the case of Jones inclusions [97].
Finite measurement resolution would therefore define infinite hierarchy of finite dimensional non-
commutative spaces characterized by fractional quantum dimension. In this case the notion of
tensor product would be somewhat more delicate since complex numbers are effectively replaced
by the included algebra whose action creates states not distinguishable from each other [97].
The action of algebra elements to the state |B〉 in the inner product 〈A|B〉 must be equivalent
with the action of its hermitian conjugate to the state 〈A|. Note that zero energy states are in
question so that the included algebra generates always modifications of states which keep it as
a zero energy state.
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Chapter 8

The Geometry of the World of
Classical Worlds

8.1 Introduction

In this chapter a summary about basic ideas related to the construction of the Kähler geometry of
infinite-dimensional configuration space of 3-surfaces (more or less-equivalently, the corresponding
4-surfaces defining generalized Bohr orbits).

8.1.1 The quantum states of Universe as modes of classical spinor field in
the ”world of classical worlds”

The vision behind the construction of configuration space geometry is that physics reduces to the
geometry of classical spinor fields in the infinite-dimensional configuration space of 3-surfaces of M4

+×
CP2 or M4 × CP2, where M4 and M4

+ denote Minkowski space and its light cone respectively. This
configuration space might be called the ”world of classical worlds”.

a) Hermitian conjugation is the basic operation in quantum theory and its geometrization requires
that configuration space possesses Kähler geometry. One of the basic features of the Kähler geometry
is that it is solely determined by the so called , which defines both the J and the components of the
g in complex coordinates via the general formulas [128]

J = i∂k∂l̄Kdz
k ∧ dz̄l ,

ds2 = 2∂k∂l̄Kdz
kdz̄l . (8.1.1)

Kähler form is covariantly constant two-form and can be regarded as a representation of imaginary
unit in the tangent space of the configuration space

JmrJ
rn = −g n

m . (8.1.2)

As a consequence Kähler form defines also symplectic structure in configuration space.

8.1.2 Definition of Kähler function

The task of finding Kähler geometry for the configuration space reduces to that of finding Kähler
function and identifying the complexification. The main constraints on the Kähler function result
from the requirement of Diff4 symmetry and degeneracy. requires that the definition of the Kähler
function assigns to a given 3-surface X3 a unique space-time surface X4(X3), the generalized Bohr
orbit defining the classical physics associated with X3. The natural guess is that Kähler function
is defined by what might be called Kähler action, which is essentially Maxwell action with Maxwell
field expressible in terms of CP2 coordinates. Absolute minimization is the first guess for how to fix
X4(X3) uniquely.
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It has however become clear that this option might well imply that Kähler is negative and infinite
for the entire Universe so that the vacuum functional would be identically vanishing. Quantum
criticality suggests the correct principle to be the criticality, that is vanishing of the second variation
of Kähler action - at least for deformation identifiable as dynamical symmetries. This principle now
follows from the conservation of Nöether currents the modified Dirac action.

If Kähler action would define a strictly deterministic variational principle, Diff4 degeneracy and
general coordinate invariance would be achieved by restricting the consideration to 3-surfaces Y 3 at
the boundary of M4

+ and by defining Kähler function for 3-surfaces X3 at X4(Y 3) and diffeo-related
to Y 3 as K(X3) = K(Y 3). This reduction might be called . The classical non-determinism of the
Kähler action however introduces complications which might be however overcome by generalizing the
notion of quantum gravitational holography.

8.1.3 Configuration space metric from symmetries

A complementary approach to the problem of constructing configuration space geometry is based on
symmetries. The work of Dan [85] [85] has demonstrated that the Kähler geometry of loop spaces is
unique from the existence of Riemann connection and fixed completely by the Kac Moody symmetries
of the space. In 3-dimensional context one has even better reasons to expect uniqueness. The guess is
that configuration space is a union of symmetric spaces labelled by zero modes not appearing in the
line element as differentials. The generalized conformal invariance of metrically 2-dimensional light
like 3-surfaces acting as causal determinants is the corner stone of the construction. The construction
works only for 4-dimensional space-time and imbedding space which is a product of four-dimensional
Minkowski space or its future light cone with CP2.

8.1.4 What principle selects the preferred extremals?

Space-time surfaces should be analogous to Bohr orbits in order to make possible possible realization of
general coordinate invariance. The first guess is that absolute minimization of Kähler action might be
the principle selecting preferred extremals. One can criticize the assumption that extremals correspond
to the absolute minima of Kähler action. Any other principle allowing to assign to a given 3-surface
a unique space-time surface in principle must in principle be considered as a viable alternative.

The construction of quantum TGD in terms of the modified Dirac action associated with Kähler
action led to what looks like a final answer to the question about the principle selecting preferred
extremals. The Noether currents associated with modified Dirac action are conserved if second vari-
ations of Kähler action vanish- at least for the deformations corresponding to dynamical symmetries.
This is nothing but space-time correlate for quantum criticality and it is amusing that I failed to
realize this for so long time.

In this chapter I will first consider the basic properties of the configuration space, discuss briefly
the various approaches to the geometrization of the configuration space, and introduce the two com-
plementary strategies based on a direct guess of Kähler function and on the group theoretical approach
assuming that configuration space can be regarded as a union of symmetric spaces. After these pre-
liminaries a definition of the Kähler function is proposed and various physical and mathematical
motivations behind the proposed definition are discussed. The key feature of the Kähler action is
classical non-determinism, and various implications of the classical non-determinism are discussed.

8.2 How to generalize the construction of configuration space
geometry to take into account the classical non-determinism?

If the imbedding space were H+ = M4
+×CP2 and if Kähler action were deterministic, the construction

of configuration space geometry reduces to δM4
+×CP2. Thus in this limit quantum holography prin-

ciple [23, 54] would be satisfied also in TGD framework and actually reduce to the general coordinate
invariance. The classical non-determinism of Kähler action however means that this construction is
not quite enough and the challenge is to generalize the construction.



8.2. How to generalize the construction of configuration space geometry to take into
account the classical non-determinism? 509

8.2.1 Quantum holography in the sense of quantum gravity theories

In string theory context quantum holography is more or less synonymous with Maldacena conjecture
[54] which (very roughly) states that string theory in Anti-de-Sitter space AdS is equivalent with a
conformal field theory at the boundary of AdS. In purely quantum gravitational context [23] , quantum
holography principle states that quantum gravitational interactions at high energy limit in AdS can
be described using a topological field theory reducing to a conformal (and non-gravitational) field
theory defined at the time like boundary of the AdS. Thus the time like boundary plays the role of a
dynamical hologram containing all information about correlation functions of d+1 dimensional theory.
This reduction also conforms with the fact that black hole entropy is proportional to the horizon area
rather than the volume inside horizon.

Holography principle reduces to general coordinate invariance in TGD. If the action principle as-
signing space-time surface to a given 3-surface X3 at light cone boundary were completely determinis-
tic, four-dimensional general coordinate invariance would reduce the construction of the configuration
geometry for the space of 3-surfaces in M4

+ ×CP2 to the construction of the geometry at the bound-
ary of the configuration space consisting of 3-surfaces in δM4

+ ×CP2 (moment of big bang). Also the
quantum theory would reduce to the boundary of the future light cone.

The classical non-determinism of Kähler action however implies that quantum holography in this
strong form fails. This is very desirable from the point of view of both physics and consciousness theory.
Classical determinism would also mean that time would be lost in TGD as it is lost in GRT. Classical
non-determinism is also absolutely essential for quantum consciousness and makes possible conscious
experiences with contents localized into finite time interval despite the fact that quantum jumps occur
between configuration space spinor fields defining what I have used to call quantum histories. Classical
non-determinism makes it also possible to generalize quantum-classical correspondence in the sense
that classical non-determinism at the space-time level provides correlate for quantum non-determinism.
The failure of classical determinism is a difficult challenge for the construction of the configuration
space geometry. One might however hope that the notion of quantum holography generalizes.

8.2.2 How the classical determinism fails in TGD?

One might hope that determinism in a generalized sense might be achieved by generalizing the notion
of 3-surface by allowing unions of space-like 3-surfaces with time like separations with very strong
but not complete correlations between the space-like 3-surfaces. In this case the non-determinism
would mean that the 3-surfaces Y 3 at light cone boundary correspond to at most enumerable number
of preferred extremals X4(Y 3) of Kähler action so that one would get finite or at most enumerably
infinite number of replicas of a given configuration space region and the construction would still reduce
to the light cone boundary.

1. This is probably quite too simplistic view. Any 4-surface which has CP2 projection which
belongs to so called Lagrange manifold of CP2 having by definition vanishing induced Kähler
form is vacuum extremal. Thus there is an infinite variety of 6-dimensional sub-manifolds of H
for which all extremals of Kähler action are vacua.

2. CP2 type vacuum extremals are different since they possess non-vanishing Kähler form and
Kähler action. They are identifiable as classical counterparts of elementary particles have M4

+

projection which is a random light like curve (this in fact gives rise to conformal invariance
identifiable as counterpart of quaternion conformal invariance). Thus there are good reasons to
suspect that classical non-determinism might destroy the dream about complete reduction to
the light cone boundary.

3. The wormhole contacts connecting different space-time sheets together can be seen as pieces
of CP2 type extremals and one expects that the non-determinism is still there and that the
metrically 2-dimensional elementary particle horizons (light like 3-surfaces of H surrounding
wormhole contacts and having time-like M4

+ projection) might be a crucial element in the un-
derstanding of quantum TGD. The non-determinism of CP2 type extremals is absolutely crucial
for the ordinary elementary particle physics. It seems that the conformal symmetries responsible
for the ordinary elementary particle quantum numbers acting in these degrees of freedom do not
contribute to the configuration space metric line element.
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4. The possibility of space-time sheets with a negative time orientation with ensuing negative sign
of classical energy is a further blow against δM4

+ reductionism. Space-time sheets can be created
as pairs of positive and negative energy space-time sheet from vacuum and this forces to modify
radically the ontology of physics. Crossing symmetry allows to interpret particle reactions as a
creation of zero energy states from vacuum, and the identification of the gravitational energy as
the difference between positive and negative energies of matter supports the view that the net
inertial (conserved Poincare-) energy of the universe vanishes both in quantal and classical sense.
This option resolves unpleasant questions about net conserved quantum numbers of Universe,
and provides an elegant interpretation of the vacuum extremals as correlates for systems with
vanishing Poincare energy. This option is the only possible alternative from the point of view of
TGD inspired cosmology where Robertson-Walker metrics are vacuum extremals with respect to
inertial energy. In particular, super-symplectic invariance transforms to a fundamental symmetry
of elementary particle physics besides the conformal symmetry associated with 3-D light like
causal determinants which means a dramatic departure from string models unless it is somehow
equivalent with the super-symplectic symmetry.

The treatment of the non-determinism in a framework in which the prediction of time evolution is
seen as initial value problem, seems to be difficult. Also the notion of configuration space becomes a
messy concept. Zero energy ontology changes the situation completely. Light-like 3-surfaces become
representations of generalized Feynman diagrams and brings in the notion of finite time resolution.
One obtains adirect connection with the concepts of quantum field theory with path integral with
cutoff replaced with a sum over various preferred extremals with cutoff in time resolution.

8.2.3 The notions of imbedding space, 3-surface, and configuration space

The notions of imbedding space, 3-surface (and 4-surface), and configuration space (world of classical
worlds (WCW)) are central to quantum TGD. The original idea was that 3-surfaces are space-like
3-surfaces of H = M4 × CP2 or H = M4

+ × CP2, and WCW consists of all possible 3-surfaces in
H. The basic idea was that the definition of Kähler metric of WCW assigns to each X3 a unique
space-time surface X4(X3) allowing in this manner to realize general coordinate invariance. During
years these notions have however evolved considerably. Therefore it seems better to begin directly
from the recent picture.

The notion of imbedding space

Two generalizations of the notion of imbedding space were forced by number theoretical vision [85,
86, 84] .

1. p-Adicization forced to generalize the notion of imbedding space by gluing real and p-adic
variants of imbedding space together along rationals and common algebraic numbers. The
generalized imbedding space has a book like structure with reals and various p-adic number
fields (including their algebraic extensions) representing the pages of the book.

2. With the discovery of zero energy ontology [20, 24] it became clear that the so called causal
diamonds (CDs) interpreted as intersections M4

+ ∩M4
− of future and past directed light-cones

of M4 × CP2 define correlates for the quantum states. The position of the ”lower” tip of CD
characterizes the position of CD in H. If the temporal distance between upper and lower tip of
CD is quantized power of 2 multiples of CP2 length, p-adic length scale hypothesis [60] follows
as a consequence. The upper resp. lower light-like boundary δM4

+ × CP2 resp. δM4
− × CP2

of CD can be regarded as the carrier of positive resp. negative energy part of the state. All
net quantum numbers of states vanish so that everything is creatable from vacuum. Space-time
surfaces assignable to zero energy states would would reside inside CD × CP2s and have their
3-D ends at the light-like boundaries of CD × CP2. Fractal structure is present in the sense
that CDs can contains CDs within CDs, and measurement resolution dictates the length scale
below which the sub-CDs are not visible.

3. The realization of the hierarchy of Planck constants [30] led to a further generalization of the
notion of imbedding space. Generalized imbedding space is obtained by gluing together Cartesian
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products of singular coverings and factor spaces of CD and CP2 to form a book like structure.
The particles at different pages of this book behave like dark matter relative to each other.
This generalization also brings in the geometric correlate for the selection of quantization axes
in the sense that the geometry of the sectors of the generalized imbedding space with non-
standard value of Planck constant involves symmetry breaking reducing the isometries to Cartan
subalgebra. Roughly speaking, each CD and CP2 is replaced with a union of CDs and CP2s
corresponding to different choices of quantization axes so that no breaking of Poincare and color
symmetries occurs at the level of entire WCW.

4. The construction of quantum theory at partonic level brings in very important delicacies related
to the Kähler gauge potential of CP2. Kähler gauge potential must have what one might call
pure gauge parts in M4 in order that the theory does not reduce to mere topological quantum
field theory. Hence the strict Cartesian product structure M4 × CP2 breaks down in a delicate
manner. These additional gauge components -present also in CP2- play key role in the model
of anyons, charge fractionization, and quantum Hall effect [66] .

The notions of 3-surface and space-time surface

The question what one exactly means with 3-surface turned out to be non-trivial.

1. The original identification of 3-surfaces was as arbitrary space-like 3-surfaces subject to Equiva-
lence implied by General Coordinate Invariance. There was a problem related to the realization
of General Coordinate Invariance since it was not at all obvious why the preferred extremal
X4(Y 3) for Y 3 at X4(X3) and Diff4 related X3 should satisfy X4(Y 3) = X4(X3) .

2. Much later it became clear that light-like 3-surfaces have unique properties for serving as basic
dynamical objects, in particular for realizing the General Coordinate Invariance in 4-D sense
(obviously the identification resolves the above mentioned problem) and understanding the con-
formal symmetries of the theory. On basis of these symmetries light-like 3-surfaces can be
regarded as orbits of partonic 2-surfaces so that the theory is locally 2-dimensional. It is how-
ever important to emphasize that this indeed holds true only locally. At the level of WCW metric
this means that the components of the Kähler form and metric can be expressed in terms of
data assignable to 2-D partonic surfaces. It is however essential that information about normal
space of the 2-surface is needed.

3. At some stage came the realization that light-like 3-surfaces can have singular topology in the
sense that they are analogous to Feynman diagrams. This means that the light-like 3-surfaces
representing lines of Feynman diagram can be glued along their 2-D ends playing the role of
vertices to form what I call generalized Feynman diagrams. The ends of lines are located at
boundaries of sub-CDs. This brings in also a hierarchy of time scales: the increase of the
measurement resolution means introduction of sub-CDs containing sub-Feynman diagrams. As
the resolution is improved, new sub-Feynman diagrams emerge so that effective 2-D character
holds true in discretized sense and in given resolution scale only.

4. A further complication relates to the hierarchy of Planck constants forcing to generalize the
notion of imbedding space and also to the fact that for non-standard values of Planck constant
there is symmetry breaking due to preferred plane M2 preferred homologically trivial geodesic
sphere of CP2 having interpretation as geometric correlate for the selection of quantization axis.
For given sector of CH this means union over choices of this kind.

The basic vision forced by the generalization of General Coordinate Invariance has been that space-
time surfaces correspond to preferred extremals X4(X3) of Kähler action and are thus analogous to
Bohr orbits. Kähler function K(X3) defining the Kähler geometry of the world of classical worlds
would correspond to the Kähler action for the preferred extremal. The precise identification of the
preferred extremals actually has however remained open.

The obvious but rather ad hoc guess motivated by physical intuition was that preferred extremals
correspond to the absolute minima of Kähler action for space-time surfaces containing X3. This choice
has some nice implications. For instance, one can develop an argument for the existence of an infinite
number of conserved charges. If X3 is light-like surface- either light-like boundary of X4 or light-like
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3-surface assignable to a wormhole throat at which the induced metric of X4 changes its signature-
this identification circumvents the obvious objections. This option however failed to have a direct
analog in the p-adic sectors of the world of classical worlds (WCW). The reason is that minimization
does not make sense for the p-adic valued counterpart of Kähler action since it is not even well-defined
although the field equations make sense p-adically. Therefore, if absolute minimization makes sense
it must have expression as purely algebraic conditions.

Much later number theoretical compactication led to important progress in the understanding of
the preferred extremals and the conjectures were consistent with what is known about the known
extremals.

1. The conclusion was that one can assign to the 4-D tangent space T (X4(X3
l )) ⊂M8 a subspace

M2(x) ⊂M4 having interpretation as the plane of non-physical polarizations. This in the case
that the induced metric has Minkowskian signature. If not, and if co-hyper-quaternionic surface
is in question, similar assigned should be possible in normal space. This means a close connection
with super string models. Geometrically this would mean that the deformations of 3-surface in
the plane of non-physical polarizations would not contribute to the line element of WCW. This
is as it must be since complexification does not make sense in M2 degrees of freedom.

2. In number theoretical framework M2(x) has interpretation as a preferred hyper-complex sub-
space of hyper-octonions defined as 8-D subspace of complexified octonions with the property
that the metric defined by the octonionic inner product has signature of M8. The condition
M2(x) ⊂ T (X4(X3

l ))) in principle fixes the tangent space at X3
l , and one has good hopes that

the boundary value problem is well-defined and could fix X4(X3) at least partially as a preferred
extremal of Kähler action. This picture is rather convincing since the choice M2(x) ⊂M4 plays
also other important roles.

3. At the level of H the counterpart for the choice of M2(x) seems to be following. Suppose
that X4(X3

l ) has Minkowskian signature. One can assign to each point of the M4 projection
PM4(X4(X3

l )) a sub-space M2(x) ⊂ M4 and its complement E2(x), and the distributions of
these planes are integrable and define what I have called Hamilton-Jacobi coordinates which can
be assigned to the known extremals of Kähler with Minkowskian signature. This decomposition
allows to slice space-time surfaces by string world sheets and their 2-D partonic duals. Also a
slicing to 1-D light-like surfaces and their 3-D light-like duals Y 3

l parallel to X3
l follows under

certain conditions on the induced metric of X4(X3
l ). This decomposition exists for known

extremals and has played key role in the recent developments. Physically it means that 4-
surface (3-surface) reduces effectively to 3-D (2-D) surface and thus holography at space-time
level.

4. The weakest form of number theoretic compactification [86] states that light-like 3-surfaces
X3 ⊂ X4(X3) ⊂ M8, where X4(X3) hyper-quaternionic surface in hyper-octonionic M8 can
be mapped to light-like 3-surfaces X3 ⊂ X4(X3) ⊂M4 × CP2, where X4(X3) is now preferred
extremum of Kähler action. The natural guess is that X4(X3) ⊂M8 is a preferred extremal of
Kähler action associated with Kähler form of E4 in the decomposition M8 = M4 × E4, where
M4 corresponds to hyper-quaternions. The conjecture would be that the value of the Kähler
action in M8 is same as in M4×CP2: in fact that 2-surface would have identical induced metric
and Kähler form so that this conjecture would follow trivial. M8−H duality would in this sense
be Kähler isometry.

The study of the modified Dirac equation meant further steps of progress and lead to a rather
detailed view about what preferred extremals are.

1. The detailed construction of the generalized eigen modes of the modified Dirac operator DK

associated with Kähler action [20] relies on the vision that the generalized eigenvalues of this
operator code for information about preferred extremal of Kähler action. The view about TGD
as almost topological QFT is realized if the eigenmodes correspond to the solutions of DK ,
which are effectively 3-dimensional. Otherwise almost topological QFT property would require
Chern-Simons action alone and this choice is definitely un-physical. The first guess was that the
eigenmodes are restricted to X3

l and therefore analogous to spinorial shock waves. As I realized
that number theoretical compactification requires the slicing of X4(X3

l ) by light-like 3-surfaces
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Y 3
l parallel to X3

l , it became clear that super-conformal gauge invariance with respect to the
coordinate labeling the slices is a more natural manner to realized effective 3-dimensionality and
guarantees that Y 3

l is gauge equivalent with X3
l (General Coordinate Invariance).

2. The eigen modes of the modified Dirac operator DK have the defining property that they
are localized in regions of X3

l , where the induced Kähler gauge field is non-vanishing. This
guarantees that the number of generalized eigen modes is finite so that Dirac determinant is
also finite and algebraic number if eigenvalues are algebraic numbers, and therefore makes sense
also in p-adic context although Kähler action itself does not make sense p-adically.

3. The construction of the configuration space geometry in terms of modified Dirac action strength-
ens also the boundary conditions to the condition that there exists space-time coordinates in
which the induced CP2 Kähler form and induced metric satisfy the conditions Jni = 0, gni = 0
hold at X3

l . One could say that at X3
l situation is static both metrically and for the Maxwell

field defined by the induced Kähler form.

4. The final step in the rapid evolution of ideas that too place during three months - at least I hope
so since I do not want to continue this updating endlessly - was the realization that the introduc-
tion of imaginary CP breaking instanton part to the Kähler action is possible and also necessary
if one wants a stringy variant of Feynman rules. Imaginary part does not contribute to the
configuration space metric. This enriches the spectrum of the modified Dirac operator with an
infinite number of conformal excitations breaking the effective 2-dimensionality of 3-surfaces and
exact holography. Conformal excitations make possible stringy Feynman diagrammatics [23] . A
breaking of effective 3-dimensionality of space-time surface comes through the non-determinism
of Kähler action which indeed is the mechanism breaking the effective 2-dimensionality. Dirac
determinant can be defined in terms of zeta function regularization using Riemann Zeta. Finite
measurement resolution realized in terms of braids defined on basis of purely physical criteria
however forces a cutoff in conformal weight and finiteness so that number theoretical universality
is not lost.

5. This picture relying crucially on the the slicing of X4(X3) did not yet fix the definition of pre-
ferred extremals analytically at the level of field equations. The next step of progress was the
realization that the requirement that the conservation of the Noether currents associated with
the modified Dirac equation requires that the second variation of the Kähler action vanishes.
In strongest form this condition would be satisfied for all variations and in weak sense only for
those defining dynamical symmetries. The interpretation is as space-time correlate for quan-
tum criticality and the vacuum degeneracy of Kähler action makes the criticality plausible. A
generalization of the ideas of the catastrophe theory to infinite-dimensional context results [41]
. These conditions make sense also in p-adic context and have a number theoretical universal
form.

Although the details of this vision might change it can be defended by its ability to fuse together
all great visions about quantum TGD. In the sequel the considerations are restricted to 3-surfaces in
M4

+×CP2. The basic outcome is that Kähler metric is expressible using the data at partonic 2-surfaces
X2 ⊂ δM4

+ × CP2. The generalization to the actual physical situation requires the replacement of
X2 ⊂ δM4

± × CP2 with unions of partonic 2-surfaces located at light-like boundaries of CDs and
sub-CDs.

The notion of configuration space

From the beginning there was a problem related to the precise definition of the configuration space
(”world of classical worlds” (WCW)). Should one regard CH as the space of 3-surfaces of M4 ×CP2

or M4
+ × CP2 or perhaps something more delicate.

1. For a long time I believed that the question ”M4
+ or M4?” had been settled in favor of M4

+ by
the fact that M4

+ has interpretation as empty Roberson-Walker cosmology. The huge conformal
symmetries assignable to δM4

+ × CP2 were interpreted as cosmological rather than laboratory
symmetries. The work with the conceptual problems related to the notions of energy and time,
and with the symmetries of quantum TGD, however led gradually to the realization that there
are strong reasons for considering M4 instead of M4

+.
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2. With the discovery of zero energy ontology it became clear that the so called causal diamonds
(CDs) define excellent candidates for the fundamental building blocks of the configuration space
or ”world of classical worlds” (WCW). The spaces CD ×CP2 regarded as subsets of H defined
the sectors of WCW.

3. This framework allows to realize the huge symmetries of δM4
±×CP2 as isometries of WCW. The

gigantic symmetries associated with the δM4
± × CP2 are also laboratory symmetries. Poincare

invariance fits very elegantly with the two types of super-conformal symmetries of TGD. The first
conformal symmetry corresponds to the light-like surfaces δM4

± × CP2 of the imbedding space
representing the upper and lower boundaries of CD. Second conformal symmetry corresponds
to light-like 3-surface X3

l , which can be boundaries of X4 and light-like surfaces separating
space-time regions with different signatures of the induced metric. This symmetry is identifiable
as the counterpart of the Kac Moody symmetry of string models.

A rather plausible conclusion is that configuration space (WCW) is a union of configuration spaces
associated with the spaces CD×CP2. CDs can contain CDs within CDs so that a fractal like hierarchy
having interpretation in terms of measurement resolution results. Since the complications due to p-
adic sectors and hierarchy of Planck constants are not relevant for the basic construction, it reduces
to a high degree to a study of a simple special case δM4

+ × CP2.
A further piece of understanding emerged from the following observations.

1. The induced Kähler form at the partonic 2-surface X2 - the basic dynamical object if holography
is accepted- can be seen as a fundamental symplectic invariant so that the values of εαβJαβ at
X2 define local symplectic invariants not subject to quantum fluctuations in the sense that they
would contribute to the configuration space metric. Hence only induced metric corresponds
to quantum fluctuating degrees of freedom at configuration space level and TGD is a genuine
theory of gravitation at this level.

2. Configuration space can be divided into slices for which the induced Kähler forms of CP2 and
δM4
± at the partonic 2-surfaces X2 at the light-like boundaries of CDs are fixed. The symplectic

group of δM4
±×CP2 parameterizes quantum fluctuating degrees of freedom in given scale (recall

the presence of hierarchy of CDs).

3. This leads to the identification of the coset space structure of the sub-configuration space asso-
ciated with given CD in terms of the generalized coset construction for super-symplectic and
super Kac-Moody type algebras (symmetries respecting light-likeness of light-like 3-surfaces).
Configuration space in quantum fluctuating degrees of freedom for given values of zero modes
can be regarded as being obtained by dividing symplectic group with Kac-Moody group. Equiv-
alently, the local coset space S2 × CP2 is in question: this was one of the first ideas about
configuration space which I gave up as too naive!

4. Generalized coset construction and coset space structure have very deep physical meaning since
they realize Equivalence Principle at quantum level: the identical actions of Super Virasoro
generators for super-symplectic and super Kac-Moody algebras implies that inertial and gravi-
tational four-momenta are identical.

8.2.4 The treatment of non-determinism of Kähler action in zero energy
ontology

The non-determinism of Kähler action means that the reduction of the construction of the configura-
tion space geometry to the light cone boundary fails. Besides degeneracy of the preferred extrema of
Kähler action, the non-determinism should manifest itself as a presence of causal determinants also
other than light cone boundary.

One can imagine two kinds of causal determinants.

1. Elementary particle horizons and light-like boundaries X3
l ⊂ X4 of 4-surfaces representing worm-

hole throats act as causal determinants for the space-time dynamics defined by Kähler action.
The boundary values of this dynamics have been already considered.
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2. At imbedding space level causal determinants correspond to light like CD forming a fractal
hierarchy of CDs within CDs. These causal determinants determine the dynamics of zero energy
states having interpretation as pairs of initial and final states in standard quantum theory.

The manner to treat the classical non-determinism would be roughly following.

1. The replacement of space-like 3-surface X3 with X3
l transforms initial value problem for X3 to

a boundary value problem for X3
l . In principle one can also use the surfaces X3 ⊂ δCD × CP2

if X3
l fixes X4(X3

l ) and thus X3 uniquely. For years an important question was whether both
X3 and X3

l contribute separately to the configuration space geometry or whether they provide
descriptions, which are in some sense dual. This lead to the notion of 7-3 duality and I even
considered the possibility that δM4

+ ×CP2 could be replaced with a more general surface X3
l ×

CP2 allowing also generalized symplectic and conformal symmetries. 7-3 duality is not a good
term since the actual duality actually relates descriptions based on space-like 3-surfaces X3 and
light-like 3-surfaces X3

l . Hence it seems that the proper place for 7-3 duality is in paper basked.

2. Only Super-Kac-Moody type conformal algebra makes sense in the interior of X3
l . In the 2-D

intersections of X3
l with the boundary of causal diamond (CD) defined as intersection of future

and past directed light-cones super-symplectic algebra makes sense. This implies effective two-
dimensionality which is broken by the non-determinism represented using the hierarchy of CDs
meaning that the data from these 2-D surfaces and their normal spaces at boundaries of CDs
in various scales determine the configuration space metric.

3. An important question has been whether Kac-Moody and super-symplectic algebras provide
descriptions which are dual in some sense. At the level of Super-Virasoro algebras duality seems
to be satisfied in the sense of generalized coset construction meaning that the differences of
Super Virasoro generators of super-symplectic and super Kac-Moody algebras annihilate physical
states. Among other things this means that four-momenta assignable to the two Super Virasoro
representations are identical. T he interpretation is in terms of a generalization of Equivalence
Principle [20, 24] . This gives also a justification for p-adic thermodynamics applying only to
Super Kac-Moody algebra.

4. Light-like 3-surfaces can be regarded also as generalized Feynman diagrams. The finite length
resolution mean means also a cutoff in the number of generalized Feynman diagrams and this
number remains always finite if the light-like 3-surfaces identifiable as maxima of Kähler function
correspond to the diagrams. The finiteness of this number is also essential for number theoretic
universality since it guarantees that the elements of M -matrix are algebraic numbers if momenta
and other quantum numbers have this property. The introduction of new sub-CDs means also
introduction of zero energy states in corresponding time scale.

5. The notion of finite measurement resolution expressed in terms of hierarchy of CDs within
CDs is important for the treatment of classical non-determinism. In a given resolution the non-
determinism of Kähler action remains invisible below the time scale assigned to the smallest CDs.
One could also say that complete non-determinism characterized in terms path integral with
cutoff is replaced in TGD framework with the partial failure of classical non-determinism leading
to generalized Feynman diagrams. This gives rise to to discrete coupling constant evolution and
avoids the mathematical ill-definedness and infinities plaguing path integral formalism since the
functional integral over 3-surfaces is well defined.

6. Dirac determinant defining vacuum functional is assumed to correspond to exponent of Kähler
action for its preferred extremal. Dirac determinant is defined as a product of finite number
of eigenvalues of the transverse part DK(X2) of the modified Dirac operator DK assumed
to have decomposition DK = DK(X2) + DK(Y 2) reflecting the dual slicings of X4 to string
world sheets Y 2 and partonic 2-surfaces X2. The existence of the slicing is supported by the
properties of known extremals of Kähler action and strongly suggested by number theoretical
compactification, and it implies among other things dimensional reduction to Minkowskian string
model like theory and its Euclidian equivalent allowing to understand how Equivalence Principle
is realized at space-time level. Finite number for the eigenvalues raises even hope that in a given
resolution the functional integral reduces to Gaussian integral over a finite-dimensional space of
logarithms of eigenvalues.
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7. One can ask why Kähler action and playing with all these delicacies related to the failure of
complete determinism. After all, one could formally replace Kähler action with 4-volume as
in brane models. Space-time surfaces would be minimal surfaces and Dirac operator would
be standard Dirac operator for the induced metric. Dirac determinant would however become
infinite since the modes would not be anymore analogs of cyclotron states necessarily localized
to a finite region of X3

l . Recall that for Kähler action X3
l indeed decomposes into patches

inside with induced Kähler form is non-vanishing and Dirac determinant defining the exponent
of Kähler function is well-defined and finite without any regularization procedure. Hence Kähler
action is completely unique.

8.2.5 Category theory and configuration space geometry

Due the effects caused by the classical non-determinism even classical TGD universes are very far from
simple Cartesian clockworks, and the understanding of the general structure of the configuration space
is a formidable challenge. Category theory is a branch of mathematics which is basically a theory
about universal aspects of mathematical structures. Thus category theoretical thinking might help
in disentangling the complexities of the configuration space geometry and the basic ideas of category
theory are discussed in this spirit and as an innocent layman. It indeed turns out that the approach
makes highly non-trivial predictions.

In zero energy ontology the effects of non-determinism are taken into account in terms of causal
diamonds forming a hierarchical fractal structure. One must allow also the unions of CDs, CDs
within CDs, and probably also overlapping of CDs, and there are good reasons to expert that CDs
and corresponding algebraic structures could define categories. If one does not allow overlapping CDs
then set theoretic inclusion map defines a natural arrow. If one allows both unions and intersections
then CDs would form a structure analogous to the set of open sets used in set theoretic topology.
One could indeed see CDs (or rather their Cartesian products with CP2) as analogs of open sets in
Minkowskian signature.

So called ribbon categories seem to be tailor made for the formulation of quantum TGD and allow
to build bridge to topological and conformal field theories. This discussion based on standard ontology.
In [18] rather detailed category theoretical constructions are discussed. Important role is played by the
notion of operad [24, 103] : this structure can be assigned with both generalized Feynman diagrams
and with the hierarchy of symplectic fusion algebras realizing symplectic analogs of the fusion rules
of conformal field theories.

8.3 Constraints on the configuration space geometry

The constraints on the configuration space geometry result both from the infinite dimension of the
configuration space and from physically motivated symmetry requirements. There are three basic
physical requirements on the configuration space geometry: namely four-dimensional Diff invariance,
Kähler property and the decomposition of configuration space into a union ∪iG/Hi of symmetric
spaces G/Hi, each coset space allowing G-invariant metric such that G is subgroup of some ’universal
group’ having natural action on 3-surfaces. Together with the infinite dimensionality of the configura-
tion space these requirements pose extremely strong constraints on the configuration space geometry.
In the following we shall consider these requirements in more detail.

8.3.1 Configuration space as ”the world of classical worlds”

The first naive view about the configuration space of TGD was that it consists of all 3-surfaces of
M4

+ × CP2 containing sets of

1. surfaces with all possible manifold topologies and arbitrary numbers of components (N-particle
sectors)

2. singular surfaces topologically intermediate between two manifold topologies (see Fig. 8.3.1)

The symbol C(H) will be used to denote the set of 3-surfaces X3 ⊂ H. It should be emphasized
that surfaces related by Diff3 transformations will be regarded as different surfaces in the sequel.
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Figure 8.1: Structure of the configuration space: two-dimensional visualization

Figure 8.2: Two-dimensional visualization of topological description of particle reactions. a) Gen-
eralization of stringy diagram describing particle decay: 4-surface is smooth manifold and vertex a
non-unique singular 3-manifold, b) Topological description of particle decay in terms of a singular
4-manifold but smooth and unique 3-manifold at vertex. c) Topological origin of Cabibbo mixing.

These surfaces form a connected(!) space since it is possible to glue various N-particle sectors
to each other along their boundaries consisting of sets of singular surfaces topologically intermediate
between corresponding manifold topologies. The connectedness of the configuration space is a nec-
essary prerequisite for the description of topology changing particle reactions as continuous paths in
configuration space (see Fig. 8.3.1).

8.3.2 Diff4 invariance and Diff4 degeneracy

Diff4 plays fundamental role as the gauge group of General Relativity. In string models Diff2

invariance (Diff2 acts on the orbit of the string) plays central role in making possible the elimination
of the time like and longitudinal vibrational degrees of freedom of string. Also in the present case the
elimination of the tachyons (time like oscillatory modes of 3-surface) is a physical necessity and Diff4

invariance provides an obvious manner to do the job.

In the standard functional integral formulation the realization of Diff4 invariance is an easy task
at the formal level. The problem is however that the path integral over four-surfaces is plagued by
divergences and doesn’t make sense. In the present case the configuration space consists of 3-surfaces
and only Diff3 emerges automatically as the group of re-parameterizations of 3-surface. Obviously
one should somehow define the action of Diff4 in the space of 3-surfaces. Whatever the action of Diff4

is it must leave the configuration space metric invariant. Furthermore, the elimination of tachyons is
expected to be possible only provided the time like deformations of the 3-surface correspond to zero
norm vector fields of the configuration space so that 3-surface and its Diff4 image have zero distance.
The conclusion is that configuration space metric should be both Diff4 invariant and Diff4 degenerate.
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The problem is how to define the action of Diff4 in C(H). Obviously the only manner to achieve
Diff4 invariance is to require that the very definition of the configuration space metric somehow
associates a unique space-time surface to a given 3-surface for Diff4 to act on! The obvious physical
interpretation of this space time surface is as ”classical space time” so that ”Classical Physics” would
be contained in configuration space geometry. It is this requirement, which has turned out to be
decisive concerning the understanding of the configuration space geometry. Amusingly enough, the
historical development was not this: the definition of Diff4 degenerate Kähler metric was found by a
guess and only later it was realized that Diff4 invariance and degeneracy could have been postulated
from beginning!

8.3.3 Decomposition of the configuration space into a union of symmetric
spaces G/H

The extremely beautiful theory of finite-dimensional symmetric spaces constructed by Elie Car-
tan suggests that configuration space should possess a decomposition into a union of coset spaces
CH = ∪iG/Hi such that the metric inside each coset space G/Hi is left invariant under the infi-
nite dimensional isometry group G. The metric equivalence of surfaces inside each coset space G/Hi

does not mean that 3-surfaces inside G/Hi are physically equivalent. The reason is that the vacuum
functional is exponent of Kähler action which is not isometry invariant so that the 3-surfaces, which
correspond to maxima of Kähler function for a given orbit, are in a preferred position physically. For
instance, one can calculate functional integral around this maximum perturbatively. The sum of over
i means actually integration over the zero modes of the metric (zero modes correspond to coordinates
not appearing as coordinate differentials in the metric tensor).

The coset space G/H is a symmetric space only under very special Lie-algebraic conditions. De-
noting the Cartan decomposition of the Lie-algebra g of G to the direct sum of H Lie-algebra h and
its complement t by g = h⊕ t, one has

[h, h] ⊂ h , [h, t] ⊂ t , [t, t] ⊂ h .

This decomposition turn out to play crucial role in guaranteing that G indeed acts as isometries and
that the metric is Ricci flat.

The four-dimensional Diff invariance indeed suggests to a beautiful solution of the problem of
identifying G. The point is that any 3-surface X3 is Diff4 equivalent to the intersection of X4(X3)
with the light cone boundary. This in turn implies that 3-surfaces in the space δH = δM4

+ × CP2

should be all what is needed to construct configuration space geometry. The group G can be identified
as some subgroup of diffeomorphisms of δH and Hi contains that subgroup of G, which acts as
diffeomorphisms of the 3-surface X3. Since G preserves topology, configuration space must decompose
into union ∪iG/Hi, where i labels 3-topologies and various zero modes of the metric. For instance,
the elements of the Lie-algebra of G invariant under configuration space complexification correspond
to zero modes.

The reduction to the light cone boundary, identifiable as the moment of big bang, looks perhaps
odd at first. In fact, it turns out that the classical non-determinism of Kähler action forces does
not allow the complete reduction to the light cone boundary: physically this is a highly desirable
implication but means a considerable mathematical challenge.

Kähler property implies that the tangent space of the configuration space allows complexification
and that there exists a covariantly constant two-form Jkl, which can be regarded as a representation
of the imaginary unit in the tangent space of the configuration space:

J r
k Jrl = −Gkl . (8.3.1)

There are several physical and mathematical reasons suggesting that configuration space metric should
possess Kähler property in some generalized sense.

1. Kähler property turns out to be a necessary prerequisite for defining divergence free configuration
space integration. We will leave the demonstration of this fact later although the argument as
such is completely general.
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2. Kähler property very probably implies an infinite-dimensional isometry group. The study of the
loop groups Map(S1, G) [85] shows that loop group allows only single Kähler metric with well
defined Riemann connection and this metric allows local G as its isometries!

To see this consider the construction of Riemannian connection for Map(X3, H). The defining
formula for the connection is given by the expression

2(∇XY,Z) = X(Y,Z) + Y (Z,X)− Z(X,Y )

+ ([X,Y ], Z) + ([Z,X], Y )− ([Y,Z], X) (8.3.2)

X,Y, Z are smooth vector fields in Map(X3, G). This formula defines ∇XY uniquely provided
the tangent space of Map is complete with respect to Riemann metric. In the finite-dimensional
case completeness means that the inverse of the covariant metric tensor exists so that one can
solve the components of connection from the conditions stating the covariant constancy of the
metric. In the case of the loop spaces with Kähler metric this is however not the case.

Now the symmetry comes into the game: if X,Y, Z are left (local gauge) invariant vector fields
defined by the Lie-algebra of local G then the first three terms drop away since the scalar
products of left invariant vector fields are constants. The expression for the covariant derivative
is given by

∇XY = (AdXY −Ad∗XY −Ad∗YX)/2 (8.3.3)

where Ad∗X is the adjoint of AdX with respect to the metric of the loop space.

At this point it is important to realize that Freed’s argument does not force the isometry group
of the configuration space to be Map(X3,M4×SU(3))! Any symmetry group, whose Lie algebra
is complete with respect to the configuration space metric ( in the sense that any tangent space
vector is expressible as superposition of isometry generators modulo a zero norm tangent vector)
is an acceptable alternative.

The Kähler property of the metric is quite essential in one-dimensional case in that it leads to
the requirement of left invariance as a mathematical consistency condition and we expect that
dimension three makes no exception in this respect. In 3-dimensional case the degeneracy of the
metric turns out to be even larger than in 1-dimensional case due to the four-dimensional Diff
degeneracy. So we expect that the metric ought to possess some infinite-dimensional isometry
group and that the above formula generalizes also to the 3-dimensional case and to the case of
local coset space. Note that in M4 degrees of freedom Map(X3,M4) invariance would imply
the flatness of the metric in M4 degrees of freedom.

The physical implications of the above purely mathematical conjecture should not be underes-
timated. For example, one natural looking manner to construct physical theory would be based
on the idea that configuration space geometry is dynamical and this approach is followed in the
attempts to construct string theories [18] . Various physical considerations (in particular the
need to obtain oscillator operator algebra) seem to imply that configuration space geometry is
necessarily Kähler. The above result however states that configuration space Kähler geometry
cannot be dynamical quantity and is dictated solely by the requirement of internal consistency.
This result is extremely nice since it has been already found that the definition of the configura-
tion space metric must somehow associate a unique classical space time and ”classical physics” to
a given 3-surface: uniqueness of the geometry implies the uniqueness of the ”classical physics”.

3. The choice of the imbedding space becomes highly unique. In fact, the requirement that con-
figuration space is not only symmetric space but also (contact) Kähler manifold inheriting its
(degenerate) Kähler structure from the imbedding space suggests that spaces, which are products
of four-dimensional Minkowski space with complex projective spaces CPn, are perhaps the only
possible candidates for H. The reason for the unique position of the four-dimensional Minkowski
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space turns out to be that the boundary of the light cone of D-dimensional Minkowski space
is metrically a sphere SD−2 despite its topological dimension D − 1: for D = 4 one obtains
two-sphere allowing Kähler structure and infinite parameter group of conformal symmetries!

4. It seems possible to understand the basic mathematical structures appearing in string model in
terms of the Kähler geometry rather nicely.

(a) The projective representations of the infinite-dimensional isometry group (not necessarily
Map!) correspond to the ordinary representations of the corresponding centrally extended
group [87]. The representations of Kac Moody group indeed play central role in string
models [73, 32] and configuration space approach would explain their occurrence, not as a
result of some quantization procedure, but as a consequence of symmetry of the underlying
geometric structure.

(b) The bosonic oscillator operators of string models would correspond to centrally extended
Lie-algebra generators of the isometry group acting on spinor fields of the configuration
space.

(c) The ”fermionic” fields ( Ramond fields, [73, 32] ) should correspond to gamma matrices
of the configuration space. Fermionic oscillator operators would correspond simply to
contractions of isometry generators jkA with complexified gamma matrices of configuration
space

Γ±A = jkAΓ±k

Γ±k = (Γk ± JklΓl)/
√

2 (8.3.4)

(Jkl is the Kähler form of the configuration space) and would create various spin excita-
tions of the configuration space spinor field. Γ±k are the complexified gamma matrices,
complexification made possible by the Kähler structure of the configuration space.

This suggests that some generalization of the so called Super Kac Moody algebra of string models
[73, 32] should be regarded as a spectrum generating algebra for the solutions of field equations in
configuration space.

Although the Kähler structure seems to be physically well motivated there is a rather heavy counter
argument against the whole idea. Kähler structure necessitates complex structure in the tangent space
of the configuration space. In CP2 degrees of freedom no obvious problems of principle are expected:
configuration space should inherit in some sense the complex structure of CP2.

In Minkowski degrees of freedom the signature of the Minkowski metric seems to pose a serious
obstacle for complexification: somehow one should get rid of two degrees of freedom so that only two
Euclidian degrees of freedom remain. An analogous difficulty is encountered in quantum field theories:
only two of the four possible polarizations of gauge boson correspond to physical degrees of freedom:
mathematically the wrong polarizations correspond to zero norm states and transverse states span a
complex Hilbert space with Euclidian metric. Also in string model analogous situation occurs: in case
of D-dimensional Minkowski space only D−2 transversal degrees of freedom are physical. The solution
to the problem seems therefore obvious: configuration space metric must be degenerate so that each
vibrational mode spans effectively a 2-dimensional Euclidian plane allowing complexification.

We shall find that the definition of Kähler function to be proposed indeed provides a solution to
this problem and also to the problems listed before.

1. The definition of the metric doesn’t differentiate between 1- and N-particle sectors, avoids spin
statistics difficulty and has the physically appealing property that one can associate to each
3-surface a unique classical space time: classical physics is described by the geometry of the
configuration space! And the geometry of the configuration space is determined uniquely by the
requirement of mathematical consistency!

2. Complexification is possible only provided the dimension of the Minkowski space equals to
four(!).
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3. It is possible to identify a unique candidate for the necessary infinite-dimensional isometry group
G. G is subgroup of the diffeomorphism group of δM4

+ × CP2. Essential role is played by the
fact that the boundary of the four-dimensional light cone, which, despite being topologically
3-dimensional, is metrically two-dimensional(!) Euclidian sphere, and therefore allows infinite-
parameter groups of isometries as well as conformal and symplectic symmetries and also Kähler
structure unlike the higher-dimensional light cone boundaries. Therefore configuration space
metric is Kähler only in the case of four-dimensional Minkowski space and allows symplectic
U(1) central extension without conflict with the no-go theorems about higher dimensional central
extensions.

The study of the vacuum degeneracy of Kähler function defined by Kähler action forces to
conclude that the isometry group must consist of the symplectic transformations of δH = δM4

+×
CP2. The corresponding Lie algebra can be regarded as a loop algebra associated with the
symplectic group of S2 ×CP2, where S2 is rM = constant sphere of light cone boundary. Thus
the finite-dimensional group G defining loop group in case of string models extends to an infinite-
dimensional group in TGD context. This group is a real monster! The radial Virasoro localized
with respect to S2 × CP2 defines naturally complexification for both G and H. The general
form of the Kähler metric deduced on basis of this symmetry has same qualitative properties as
that deduced from Kähler function identified as the absolute minimum of Kähler action. Also
the zero modes, among them isometry invariants, can be identified.

4. The construction of the configuration space spinor structure is based on the identification of
the configuration space gamma matrices as linear superpositions of the oscillator operators
associated with the second quantized induced spinor fields. The extension of the symplectic
invariance to super symplectic invariance fixes the anti-commutation relations of the induced
spinor fields, and configuration space gamma matrices correspond directly to the super genera-
tors. Physics as number theory vision suggests strongly that configuration space geometry exists
for 8-dimensional imbedding space only and that the choice M4

+×CP2 for the imbedding space
is the only possible one.

8.4 Identification of the Kähler function

There are two approaches to the construction of the configuration space geometry: a direct physics
based guess of the Kähler function and a group theoretic approach based on the hypothesis that CH
can be regarded as a union of symmetric spaces. The rest of this chapter is devoted to the first
approach.

8.4.1 Definition of Kähler function

Quite generally, Kähler function K defines Kähler metric in complex coordinates via the following
formula

Jkl = igkl = i∂k∂lK . (8.4.1)

Kähler function is defined only modulo a real part of holomorphic function so that one has the gauge
symmetry

K → K + f + f . (8.4.2)

Let X3 be a given 3-surface and let X4 be any four-surface containing X3 as a sub-manifold:
X4 ⊃ X3. The 4-surface X4 possesses in general boundary. If the 3-surface X3 has nonempty
boundary δX3 then the boundary of X3 belongs to the boundary of X4: δX3 ⊂ δX4.

The projection of CP2 Kähler form J (induced Kähler form) defines Maxwell field on X4. One
can associate to Kähler form Maxwell action and also Chern-Simons anomaly term proportional to∫
X4 J ∧ J in well known manner. Chern Simons term is purely topological term and well defined for

orientable 4-manifolds, only. Since there is no deep reason for excluding non-orientable space-time
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surfaces it seems reasonable to drop Chern Simons term from consideration. Therefore Kähler action
SK(X4) can be defined as

SK(X4) = k1

∫
X4;X3⊂X4

J ∧ (∗J) . (8.4.3)

The sign of the square root of the metric determinant, appearing implicitly in the formula, is defined
in such a manner that the action density is negative for the Euclidian signature of the induced metric
and such that for a Minkowskian signature of the induced metric Kähler electric field gives a negative
contribution to the action density.

The notational convention

k1 ≡ 1

16παK
, (8.4.4)

where αK will be referred as Kähler coupling strength will be used in the sequel. If the preferred
extremals minimize/maximize [86] the absolute value of the action in each region where action density
has a definite sign, the value of αK can depend on space-time sheet.

Induced Kähler form defines a Maxwell field and it is important to characterize precisely its
relationship to the gauge fields as they are defined in gauge theories. Kähler form J is related to the
corresponding Maxwell field F via the formula

J =
gK
~
F . (8.4.5)

Similar relationship holds true also for the other induced gauge fields. The inverse proportionality
of J to ~ does not matter in the ordinary gauge theory context where one routinely choses units by
putting ~ = 1 but becomes very important when one considers a hierachy of Planck constants [30] . By
αK = g2

K/4π~ the large Planck constant means weaker interactions and convergence of the functional
integral defined by the exponent of Kähler function and one can argue that the convergence of the
functional integral is what forces the hierarchy of Planck constants. This is in accordance with the
vision that Mother Nature likes theoreticians and takes care that the perturbation theory works
by making a phase transition increasing the value of the Planck constant in the situation when
perturbation theory fails. This leads to a replacement of the M4 (or more precisely, causal diamond
CD) and CP2 factors of the imbedding space (CD×CP2) with its r = ~/~0-fold singular covering (one
can consider also singular factor spaces). If the components of the space-time surfaces at the sheets
of the covering are identical, one can interpret r-fold value of Kähler action as a sum of r identical
contributions from the sheets of the covering with ordinary value of Planck constant and forget the
presence of the covering. Physical states are however different even in the case that one assumes that
sheets carry identical quantum states and anyonic phase could correspond to this kind of phase [66] .

One can define the Kähler function in the following manner. Consider first the case H = M4
+×CP2

and neglect for a moment the non-determinism of Kähler action. Let X3 be a 3-surface at the light-
cone boundary δM4

+ ×CP2. Define the value K(X3) of Kähler function K as the value of the Kähler
action for some preferred extremal in the set of four-surfaces containing X3 as a sub-manifold:

K(X3) = K(X4
pref ) , X4

pref ⊂ {X4|X3 ⊂ X4} . (8.4.6)

The original hypothesis was that the intersections of the four-surface with the boundary of the light
cone (δM4

+ × CP2) defined by the condition a =
√

(m0)2 − r2
M = 0 and with the surface a → ∞ are

not subject to variational conditions since this would have meant that all universes have vanishing
classical conserved quantities. Define the value K(Y 3) of Kähler function for all Diff4 related 3-surfaces
at X4(X3) as K(X3) so that the metric is Diff4 degenerate.

Absolute minimization of Kähler action was the first identification for the principle selecting the
preferred extremal. The worst that can happen for this option is that the value of Kähler action is
negative and infinite for the entire Universe so that the vacuum functional defined by its exponent
vanishes. A more plausible choice of the preferred extremal is based on the assumption that the
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absolute values of the contributions to Kähler action are separately minimized in regions of definite
sign for Kähler action density. This implies the minimization of the absolute value of the net action
and extremals are as near as possible to vacuum extremals, and minimize their energy: this gives
hopes of constructing the extremals using only data at X3. I ended up to this option from number
theoretical vision, which also leads to an explicit proposal for how to construct these extremals of
Kähler action [86] .

This simple picture is too simple to be true and must be generalized even in case of M4
+. It has

however become clear that the gigantic symmetries associated with δM4
+ × CP2 are also symmetries

at the laboratory scale. Furthermore, M4 is as a good option as M4
+, and number theoretically even

better since it allows interpretation as the space of hyperquaternions. Also exact Poincare invariance
favors M4 option.

M4 option makes sense only if X3 is selected uniquely by the internal geometry of X4. The
possibility of negative Poincare energies inspires the hypothesis that the total quantum numbers and
classical conserved quantities of the Universe vanish. By crossing symmetry this view is consistent with
elementary particle physics. Consistency with macroscopic physics can be achieved if gravitational
energy is defined as the difference of Poincare energies of positive and negative energy matter. This
definition indeed resolves the long lasting puzzle created by the fact that Robertson-Walker cosmologies
correspond to vacuum extremals with respect to inertial energy and momentum. Space-time surfaces
consists of pairs of positive and negative energy space-time sheets created at some moment from
vacuum and branching at that moment to separate space-time sheets. This allows to select X3

uniquely and define X4(X3) as the absolute minimum of Kähler action. Also a natural fixing of Diff4

gauge becomes possible. This view is also consistent with the non-determinism of Kähler action. This
option works for both M4

+ and M4 and is very probably the correct one.

8.4.2 Minkowski space or its future light cone or something else?

The basic question is whether one should choose the imbedding space to be M4×CP2 or M4
+×CP2.

M4
+ option has several nice features.

1. Since future light cone corresponds to vacuum cosmology (cosmic time is Lorentz invariant
distance) the latter choice seems to be more physical since it makes big bang cosmology a geo-
metrical necessity and implies the arrow of time naturally. The loss of exact Poincare invariance
could be seen as a problem. Even if one accepts light cone alternative as the correct one (as we
shall cautiously do) there are two alternative definitions of the Kähler function.

2. For M4
+ option minimizing four-surfaces belong to the future light cone so that the presence of

the light cone boundary reflects itself in the properties of minimizing four-surfaces: big bang
cosmology is expected to manifest itself in the time development of four-surfaces. This alternative
implies the loss of Poincare invariance in cosmological scales: in the laboratory scale Poincare
invariance is of course practically exact since Poincare invariance is a symmetry of the extremals
of Kähler action and broken only in the set of absolute minima.

3. One could avoid the loss of Poincare invariance without totally giving up the light cone cosmology
by defining the metric of C(M4

+ × CP2) as the restriction of the metric of C(M4 × CP2):
minimizing four-surfaces would belong to M4 although 3-surfaces belong to light cone. Poincare
invariance becomes exact symmetry at the Lie algebra level broken only ”kinematically”. One
can however heavily criticize this alternative: if one wants to interpret four-surface as an actual
space-time then it is highly artificial to allow four-surfaces, which do not belong to the actual
imbedding space. A second questionable feature is that the presence of the light cone boundary
does not reflect itself in the properties of 4-surfaces as it should.

M4 option makes many highly non-trivial and nice predictions which are allowed but not pre-
dicted by M4

+ option. The mathematical elegance of M4 option is definitely superior to that of M4
+

alternative.

1. Suppose that the classical non-determinism of Kähler action indeed implies that all light like
7-surfaces X3

l × CP2, where X3
l is light like surface of M4

+, can act as causal determinants. As
already noticed, this makes sense if pairs of space-time sheets having opposite time orientation
and opposite energies can be created from vacuum at these 7-surfaces.
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2. For M4 option the total energy of classical and by quantum-classical correspondence of also
quantum universes must vanish and all matter would be created from vacuum. There would be
no need to ponder the academic but very nasty question about total fermion numbers of the
universe: all states of the universe would be vacua as far net quantum numbers are considered.
Of course, also in the case of M4

+ it is possible and natural to postulate that nothing flows out
from the future light cone or into it and this would imply vanishing total quantum numbers.

3. M4 option allows both maximal space-time symmetries and forces the fractal hierarchy of cos-
mologies inside cosmologies defined by light cones inside light cones as does in fact also M4

+

option. These cosmologies would be a result of dynamics rather than of the properties of the
imbedding space. If the separation of positive and negative energy densities can be achieved in
cosmological length scales, this option might work. The nice feature is that configuration space
becomes a union of configuration spaces associated with various light-like causal determinants
X3
l × CP2 with the most plausible identification of X3

l being as a union of future and past
directed light cone boundaries.

4. Poincare transformations act as symmetries and one can assign to given space-time sheet unique
value of geometric time as the moment of geometric time when it was created. This is of utmost
importance concerning the understanding of the relationship between subjective and geometric
time in TGD inspired theory of consciousness. It makes also possible to assign to S-matrix time
parameter identifiable as interaction time without problems with energy conservation.

5. For M4 option the super conformal invariance associated with light like 3-surfaces X3
l × CP2

and super-conformal invariance associated with 3-dimensional light-like boundaries and ”ele-
mentary particle” horizons of space-time surfaces interact very naturally. The super conformal
invariance associated with 3-dimensional light-like surfaces corresponds to the Super Kac Moody
symmetries of string models with Poincare symmetry being exact, and determines mass squared
formula. The super-symplectic invariance associated with X3

l × CP2 is something new and it
modifies that the stringy mass formula. The interaction of super Kac-Moody conformal algebra
in super-symplectic algebra is of special significance in the construction of quantum theory.

6. M4 can be interpreted as the space of quaternions with Minkowski metric identifiable as the
imaginary part of q2. The imbedding space can be interpreted as a space having hyper-octonionic
tangent space structure [86] , and space-time surfaces as maximal associative sub-manifolds
with hyper-quaternionic tangent space structure. Furthermore, the fact that CP2 parameterizes
hyper-quaternionic planes of hyper-octonion space, raises M4 × CP2 in a completely unique
position number theoretically.

Which of this alternatives is correct? At the practical laboratory level there are no testable
differences between these options and it is very difficult to test whether the first moments of our
cosmology are associated with a cosmology inside cosmology or M4

+. One could however say that
whereas M4

+ option allows what seems to be the correct interpretation, M4 option forces it, and its
mathematical elegance is superior. For a long time I nearly-believed that M4

+ alternative is the correct
one but after a long period of certainty I began to feel more and more empathy towards M4 option.

It actually turned out that both options are in a well-defined sense correct. The notion of zero
energy ontology leads to the conclusion that configuration space can be regarded as a union of sub-
configuration spaces associated with spaces CD × CP2, where CD denotes what I have called causal
diamond and defined as intersection of future and past directed light-cones of M4. The position for
the lower tip of CD varies in M4 and defines the position of CD in M4 since the temporal distance
between lower and upper tips is assumed to be quantized as power of two multiple of CP2 size (this
predicts p-adic length scale hypothesis). At the level of single CD Poincare invariance is broken to
Lorentz invariance but the union over sub-configuration spaces associated with CDs guarantees global
Poincare invariance. These aspects are discussed in more detail in the next section.

8.4.3 The values of the Kähler coupling strength?

Since the vacuum functional of the theory turns out to be essentially the exponent exp(K) of the
Kähler function, the dynamics depends on the normalization of the Kähler function. Since the Theory
of Everything should be unique it would be highly desirable to find arguments fixing the normalization
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or equivalently the possible values of the Kähler coupling strength αK . Also a discrete spectrum of
values is acceptable.

The quantization of Kähler form could result in the following manner. It will be found that Abelian
extension of the isometry group results by coupling spinors of the configuration space to a multiple
of Kähler potential. This means that Kähler potential plays role of gauge connection so that Kähler
form must be integer valued by Dirac quantization condition for magnetic charge. So, if Kähler form
is co-homologically nontrivial it is quantized.

Unfortunately, the exact definition of renormalization group concept is not at all obvious. There
is however a much more general but more or less equivalent manner to formulate the condition fixing
the value of αK . Vacuum functional exp(K) is analogous to the exponent exp(−H/T ) appearing
in the definition of the partition function of a statistical system and S-matrix elements and other
interesting physical quantities are integrals of type 〈O〉 =

∫
exp(K)O

√
GdV and therefore analogous

to the thermal averages of various observables. αK is completely analogous to temperature. The
critical points of a statistical system correspond to critical temperatures Tc for which the partition
function is nonanalytic function of T − Tc and according RGE hypothesis critical systems correspond
to fixed points of renormalization group evolution. Therefore, a mathematically more precise manner
to fix the value of αK is to require that some integrals of type 〈O〉 (not necessary S-matrix elements)
become nonanalytic at 1/αK − 1/αcK .

This analogy suggests also a physical motivation for the unique value or value spectrum of αK . Be-
low the critical temperature critical systems suffer something analogous to spontaneous magnetization.
At the critical point critical systems are characterized by long range correlations and arbitrarily large
volumes of magnetized and non-magnetized phases are present. Spontaneous magnetization might
correspond to the generation of Kähler magnetic fields: the most probable 3-surfaces are Kähler mag-
netized for subcritical values of αK . At the critical values of αK the most probable 3-surfaces contain
regions dominated by either Kähler electric and or Kähler magnetic fields: by the compactness of CP2

these regions have in general outer boundaries.

This suggests that 3-space has hierarchical, fractal like structure: 3-surfaces with all sizes (and
with outer boundaries) are possible and they have suffered topological condensation on each other.
Therefore the critical value of αK allows the richest possible topological structure for the most probable
3-space. In fact, this hierarchical structure is in accordance with the basic ideas about renormalization
group invariance. This hypothesis has highly nontrivial consequences even at the level of ordinary
condensed matter physics.

The assumption about single critical value of αK is probably too strong. p-Adic length scale
hierarchy together with the immense vacuum degeneracy of the Kähler action leads to the hypothesis
that different p-adic length scales correspond to different critical values of αK , and that ordinary
coupling constant evolution is replaced by a piecewise constant evolution induced by that for αK .

Renormalization group invariance is closely related with criticality. The self duality of the Kähler
form and Weyl tensor of CP2 indeed suggest RG invariance. The point is that in N = 1 super-
symmetric field theories duality transformation relates the strong coupling limit for ordinary particles
with the weak coupling limit for magnetic monopoles and vice versa. If the theory is self dual these
limits must be identical so that action and coupling strength must be RG invariant quantities. The
geometric realization of the duality transformation is easy to guess in the standard complex coordinates
ξ1, ξ2 of CP2 (see Appendix of the book). In these coordinates the metric and Kähler form are invariant
under the permutation ξ1 ↔ ξ2 having Jacobian −1.

Consistency requires that particles of the theory are equivalent with magnetic monopoles: the so
called CP2 type extremals identified as elementary particles are isometric imbeddings of CP2 and can
be regarded as monopoles. The magnetic flux however flows in internal degrees of freedom (possible
by nontrivial homology of CP2) so that no long range 1/r2 magnetic field is created. The magnetic
contribution to Kähler action is positive and this suggests that ordinary magnetic monopoles are
not stable, since they do not minimize Kähler action: a cautious conclusion in accordance with the
experimental evidence is that TGD does not predict magnetic monopoles. It must be emphasized that
the prediction of monopoles of practically all gauge theories and string theories and follows from the
existence of a conserved electromagnetic charge.
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8.4.4 Absolute minimization or something else?

The requirement that the 4-surface having given 3-surface as its sub-manifold is absolute minimum
of the Kähler action is the most obvious guess for the principle selecting the preferred extremals and
has been taken as a working hypothesis for about one and half decades.

The principle admittedly looks somewhat ad hoc, and in the beginning of 2005 I proposed that
that absolute minimization principle should be perhaps relaxed in the sense that the absolute values
of the contributions to the net Kähler action coming from regions where the action density has definite
sign [86] are separately minimized (or maximized in dual case). This would allow αK to depend on
space-time sheet and allow to understand p-adic evolution of αK .

Later further number theoretical ideas and the proposal for the formulation of quantum TGD
in terms of second quantized induced spinor fields at light-like 3-surfaces led to a mathematically
beautiful and physically transparent vision about the choice of the preferred extremals X4(X3) of
Kähler action discussed in detail in [20, 86] .

Preferred extremal property as classical correlate for quantum criticality, holography,
and quantum classical correspondence

Further insights emerged through the realization that Noether currents assignable to the modified
Dirac equation are conserved only if the first variation of the modified Dirac operator DK defined
by Kähler action vanishes. This is equivalent with the vanishing of the second variation of Kähler
action -at least for the variations corresponding to dynamical symmetries having interpretation as
dynamical degrees of freedom which are below measurement resolution and therefore effectively gauge
symmetries.

The vanishing of the second variation in interior of X4(X3
l ) is what corresponds exactly to quantum

criticality so that the basic vision about quantum dynamics of quantum TGD would lead directly to a
precise identification of the preferred extremals. Something which I should have noticed for more than
decade ago! The question whether these extremals correspond to absolute minima remains however
open.

The vanishing of second variations of preferred extremals -at least for deformations representing
dynamical symmetries, suggests a generalization of catastrophe theory of Thom, where the rank of
the matrix defined by the second derivatives of potential function defines a hierarchy of criticalities
with the tip of bifurcation set of the catastrophe representing the complete vanishing of this matrix.
In the recent case this theory would be generalized to infinite-dimensional context. There are three
kind of variables now but quantum classical correspondence (holography) allows to reduce the types
of variables to two.

1. The variations of X4(X3
l ) vanishing at the intersections of X4(X3

l ) wth the light-like boundaries
of causal diamonds CD would represent behavior variables. At least the vacuum extremals of
Kähler action would represent extremals for which the second variation vanishes identically (the
”tip” of the multi-furcation set).

2. The zero modes of Kähler function would define the control variables interpreted as classical
degrees of freedom necessary in quantum measurement theory. By effective 2-dimensionality (or
holography or quantum classical correspondence) meaning that the configuration space metric
is determined by the data coming from partonic 2-surfaces X2 at intersections of X3

l with
boundaries of CD, the interiors of 3-surfaces X3 at the boundaries of CDs in rough sense
correspond to zero modes so that there is indeed huge number of them. Also the variables
characterizing 2-surface, which cannot be complexified and thus cannot contribute to the Kähler
metric of configuration space represent zero modes. Fixing the interior of the 3-surface would
mean fixing of control variables. Extremum property would fix the 4-surface and behavior
variables if boundary conditions are fixed to sufficient degree.

3. The complex variables characterizing X2 would represent third kind of variables identified as
quantum fluctuating degrees of freedom contributing to the configuration space metric. Quantum
classical correspondence requires 1-1 correspondence between zero modes and these variables.
This would be essentially holography stating that the 2-D ”causal boundary” X2 of X3(X2)
codes for the interior. Preferred extremal property identified as criticality condition would
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realize the holography by fixing the values of zero modes once X2 is known and give rise to
the holographic correspondence X2 → X3(X2). The values of behavior variables determined by
extremization would fix then the space-time surface X4(X3

l ) as a preferred extremal.

4. Clearly, the presence of zero modes would be absolutely essential element of the picture. Quan-
tum criticality, quantum classical correspondence, holography, and preferred extremal property
would all represent more or less the same thing. One must of course be very cautious since the
boundary conditions at X3

l involve normal derivative and might bring in delicacies forcing to
modify the simplest heuristic picture.

Is criticality consistent with absolute minimization?

The basic question is whether number theoretic view about preferred extremals imply absolute mini-
mization or something analogous to it.

1. The number theoretic conditions defining preferred extremals are purely algebraic and make
sense also p-adically and this is enough since p-adic variants of field equations make sense al-
though the notion of Kähler action does not make sense as integral. Despite this the identification
of the vacuum functional as exponent of Kähler function as Dirac determinant allows to define
the exponent of Kähler function as a p-adic number [20] .

2. The general objection against all extremization principles is that they do not make sense p-
adically since p-adic numbers are not well-ordered.

3. These observations do not encourage the idea about equivalence of the two approaches. On the
other hand, real and p-adic sectors are related by algebraic continuation and it could be quite
enough if the equivalence were true in real context alone.

The finite-dimensional analogy allows to compare absolute minimization and criticality with each
other.

1. Absolute minimization would select the branch of Thom’s catastrophe surface with the smallest
value of potential function for given values of control variables. In general this value would not
correspond to criticality since absolute minimization says nothing about the values of control
variables (zero modes).

2. Criticality forces the space-time surface to belong to the bifurcation set and thus fixes the values
of control variables, that is the interior of 3-surface assignable to the partonic 2-surface, and
realized holography. If the catastrophe has more than N = 3 sheets, several preferred extremals
are possible for given values of control variables fixing X3(X2) unless one assumes that absolute
minimization or some other criterion is applied in the bifurcation set. In this sense absolute
minimization might make sense in the real context and if the selection is between finite number
of alternatives is in question, it should be possible carry out the selection in number theoretically
universal manner.

The most general expectation is that configuration space can be regarded as a union of coset spaces
which are infinite-dimensional symmetric spaces with Kähler structure: C(H) = ∪iG/H(i). Index i
labels 3-topology and zero modes. The group G, which can depend on 3-surface, can be identified as
a subgroup of diffeomorphisms of δM4

+ × CP2 and H must contain as its subgroup a group, whose
action reduces to Diff(X3) so that these transformations leave 3-surface invariant.

The task is to identify plausible candidate for G and to show that the tangent space of the
configuration space allows Kähler structure, in other words that the Lie-algebras of G and H(i)
allow complexification. One must also identify the zero modes and construct integration measure
for the functional integral in these degrees of freedom. Besides this one must deduce information
about the explicit form of configuration space metric from symmetry considerations combined with
the hypothesis that Kähler function is Kähler action for a preferred extremal of Kähler action.
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8.4.5 How to identify the preferred extremals of Kähler action?

The identification of the preferred extremals turned out to be far from trivial and almost two decades
was needed to achieve this goal (or at least to have strong arguments for believing that the goal is
achieved, says the skeptic inside me).

1. The original physically motivated but otherwise ad hoc assumption was that preferred extremals
correspond to absolute minima of Kähler action. This option failed to have a direct analog in the
p-adic sectors of the world of classical worlds (WCW). The reason is that minimization does not
make sense for the p-adic valued counterpart of Kähler action since it is not even well-defined
although the field equations make sense p-adically. Therefore, if absolute minimization makes
sense it must have expression as purely algebraic conditions.

2. Much later number theoretic vision [86] led to a more realistic proposal relying on the notion
of number theoretic compactification stating that light-like 3-surfaces X3

l or even space-time
surfaces X4(X3

l ) themselves can be regarded as surfaces in either M8 or M4 × CP2.

(a) Light-like 3-surfaces X3
l are the basic dynamical objects of quantum TGD and are de-

fined by the throats of wormhole contacts and of topological condensed CP2 type vacuum
extremals and have interpretation as elementary particles.

(b) M8 is regarded as a sub-space of complexified octonions with Minkowskian signature of
natural metric (I have referred to M8 as the space HO of hyperoctonions). The mapping of
connected components of X3

l ⊂M8 to X3
l ⊂M4×CP2 is possible if X4(X3

l ) has M2
i ⊂M4

as a subspace of its tangent space at each point of X3
l,i. X

4(X3
l ) ⊂M8 would correspond to

hyper-quaternionic 4-surface meaning that its tangent space is hyper-quaternionic at each
point. X4(X3

l ) ⊂ M4 × CP2 would in turn be a preferred extremal of Kähler action. The
condition that M2

i belongs to the tangent space of X4(X3
l ) at X3

l,i fixes at least partially

the boundary conditions selecting preferred extremals of Kähler action in M4 × CP2 and
preferred hyper-quaternionic surfaces in M8. M2 has interpretation as the plane of non-
physical polarizations.

(c) The detailed construction of the generalized eigen modes of the modified Dirac operator
associated with Chern-Simons action [20] relies on the requirement that the generalized
eigenvalues of this operator code for information about preferred extremal of Kähler action.
This is achieved if the eigenmodes correspond to singular shockwave type solutions of
modified Dirac operator defined by Kähler action restricted to X3

l . In the case of wormhole
throats this leads to boundary conditions stating that there exist coordinates in which
Jni = 0 and gni = 0 at X3

l [20] . Therefore classical gravitational field is effectively static
at X3

l and the Maxwell field defined by the induced Kähler form has only the magnetic
part in these coordinates.

(d) The basic conjecture motivating the construction is that the exponent of Kähler action
defining vacuum functional equals to Dirac determinant for the eigenmodes having the
defining property that they are localized in regions of X3

l , where the induced Kähler gauge
field is non-vanishing. This guarantees that the number of generalized eigen modes is finite
so that Dirac determinant is finite and can be algebraic number, and therefore makes sense
also in p-adic context although Kähler action does not make sense p-adically.

(e) My basic sin during these years have been the strong tendency to make un-necessarily
strong conjectures. Also now the original proposal stated that entire 4-surface X4(X3

l )
must contain M2 in its tangent space in both M8 and M4 × CP2. This condition would
force same plane of non-physical polarizations for all light-like 3-surfaces assignable to
X4. This condition is unnecessarily strong since light-like 3-surfaces are the basic physical
objects. If the statement were true, it would allow to identify the preferred extremals
of Kähler action as images of hyper-quaternionic surfaces of M8 - an extremely powerful
statement. Cosmic strings X2 × Y 2 ⊂ M4 × CP2 and also quite general class of known
extremals of Kähler action however fail to satisfy this condition, which suggests that it
is un-necessary strong. The weaker conjecture that X4(X3) can be also regarded as a
preferred extremal of Kähler action associated with M4 × E4 might however make sense.



8.5. Construction of the WCW geometry from symmetry principles 529

3. A further step in progress was the emergence of zero energy ontology implying that causal
diamonds CDs defined as intersections of future and past directed light-cones define the sectors
of WCW as the set of light-like 3-surfaces in CD × CP2. The positions of the tips of CD in
M4 characterize the position of CD in M4 and if the temporal distance between tips of CD is
quantized in powers of two - as suggested by the geometry of CD - p-adic length scale hypothesis
follows.

4. The interpretation of light-like 3-surfaces as generalized Feynman diagrams - meaning that
they are singular as 3-manifolds - is an important element of picture. The lines of diagrams
represented by light-like 3-surfaces intersect at vertices, which are 2-D partonic surfaces at light-
like boundaries of sub-CDs, and the fractal hierarchy of CDs within CDs is behind coupling
constant evolution with improved measurement resolution described as addition of sub-CDs.
The presence of sub-CDs also breaks effective 2-dimensionality implied by conformal invariants
in light-like direction, and the outcome is 3-dimensionality in discretized sense.

5. A further complication relates to the hierarchy of Planck constants forcing to generalize the
notion of imbedding space and also to the fact that for non-standard values of Planck constant
there is symmetry breaking due to preferred plane M2 preferred homologically trivial geodesic
sphere of CP2 having interpretation as geometric correlate for the selection of quantization axis.
For given sector of CH this means union over choices of this kind.

In the sequel the considerations are restricted to 3-surfaces in M4
+×CP2. The basic outcome is that

Kähler metric is expressible using the data at partonic 2-surfaces X2 ⊂ δM4
+×CP2. The generalization

to the actual physical situation requires the replacement of X2 ⊂ δM4
+×CP2 with unions of partonic

2-surfaces located at light-like boundaries of CDs and sub-CDs. It will be found that in the case
of M4

+ × CP2 Kähler geometry, or strictly speaking contact Kähler geometry, characterized by a
degenerate Kähler form (Diff4 degeneracy and plus possible other degeneracies) seems possible.

8.5 Construction of the WCW geometry from symmetry prin-
ciples

Besides the direct guess of Kähler function one can also try to construct WCW geometry using
symmetry principles. The mere existence of WCW geometry as a union of symmetric spaces requires
maximal possible symmetries and means a reduction to single point of WCW with fixed values of zero
modes. Therefore there are good hopes that the construction might work in practice.

8.5.1 General Coordinate Invariance and generalized quantum gravita-
tional holography

The basic motivation for the construction of configuration space geometry is the vision that physics
reduces to the geometry of classical spinor fields in the infinite-dimensional configuration space of
3-surfaces of M4

+ × CP2 or of M4 × CP2. Hermitian conjugation is the basic operation in quantum
theory and its geometrization requires that configuration space possesses Kähler geometry. Kähler
geometry is coded into Kähler function.

The original belief was that the four-dimensional general coordinate invariance of Kähler function
reduces the construction of the geometry to that for the boundary of configuration space consisting
of 3-surfaces on δM4

+×CP2, the moment of big bang. The proposal was that Kähler function K(Y 3)
could be defined as a preferred extremal of so called Kähler action for the unique space-time surface
X4(Y 3) going through given 3-surface Y 3 at δM4

+×CP2. For Diff4 transforms of Y 3 at X4(Y 3) Kähler
function would have the same value so that Diff4 invariance and degeneracy would be the outcome.
The proposal was that the preferred extremal is absolute minimum of Kähler action.

This picture turned out to be too simple.

1. Absolute minima had to be replaced by preferred extremals containing M2 in the tangent space
of X4 at light-like 3-surfaces X3

l . The reduction to the light cone boundary which in fact
corresponds to what has become known as quantum gravitational holography must be replaced
with a construction involving light-like boundaries of causal diamonds CD already described.
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2. It has also become obvious that the gigantic symmetries associated with δM4
±×CP2 ⊂ CD×CP2

manifest themselves as the properties of propagators and vertices. Cosmological considerations,
Poincare invariance, and the new view about energy favor the decomposition of the configu-
ration space to a union of configuration spaces assignable to causal diamonds CDs defined as
intersections of future and past directed light-cones. The minimum assumption is that CDs
label the sectors of CH: the nice feature of this option is that the considerations of this chapter
restricted to δM4

+ ×CP2 generalize almost trivially. This option is beautiful because the center
of mass degrees of freedom associated with the different sectors of CH would correspond to M4

itself and its Cartesian powers.

The definition of the Kähler function requires that the many-to-one correspondence X3 → X4(X3)
must be replaced by a bijective correspondence in the sense that X3 as light-like 3-surface is unique
among all its Diff4 translates. This also allows physically preferred ”gauge fixing” allowing to get rid
of the mathematical complications due to Diff4 degeneracy. The internal geometry of the space-time
sheet X4(X3) must define the preferred 3-surface X3.

This is indeed possible. The possibility of negative Poincare energies inspires the hypothesis that
the total quantum numbers and classical conserved quantities of the Universe vanish. This view is
consistent with experimental facts if gravitational energy is defined as a difference of Poincare energies
of positive and negative energy matter. Space-time surface consists of pairs of positive and negative
energy space-time sheets created at some moment from vacuum and branching at that moment. This
allows to select X3 uniquely and define X4(X3) as a preferred extremal Kähler action in the set of
4-surfaces going through X3.

The realization of this vision means a considerable mathematical challenge. The effective metric
2-dimensionality of 3-dimensional light-like surfaces X3

l of M4 implies generalized conformal and sym-
plectic invariances allowing to generalize quantum gravitational holography from light like boundary
so that the complexities due to the non-determinism can be taken into account properly.

8.5.2 Light like 3-D causal determinants and effective 2-dimensionality

The light like 3-surfaces X3
l of space-time surface appear as 3-D causal determinants. Examples are

boundaries and elementary particle horizons at which Minkowskian signature of the induced metric
transforms to Euclidian one. This brings in a second conformal symmetry related to the metric 2-
dimensionality of the 3-D light-like 3-surface. This symmetry is identifiable as TGD counterpart of
the Kac Moody symmetry of string models. The challenge is to understand the relationship of this
symmetry to configuration space geometry and the interaction between the two conformal symmetries.

The analog of conformal invariance in the light-like direction of X3
l and in the light-like radial

direction of δM4
± implies that the data at either X3 or X3

l are enough to determine configuration
space geometry. This implies that the relevant data is contained to their intersection X2 plus 4-D
tangent space of X2 at least for finite regions of X3. This is the case if the deformations of X3

l not
affecting X2 and preserving light likeness corresponding to zero modes or gauge degrees of freedom
and induce deformations of X3 also acting as zero modes. The outcome is effective 2-dimensionality.
One must be however cautious in order to not make over-statements. The reduction to 2-D theory in
global sense would trivialize the theory to string model like theory and does not occur even locally.
Morever, the reduction to effectively 2-D theory must takes places for finite region of X3 only so
one has in well defined sense three-dimensionality in discrete sense. A more precise formulation of
this vision is in terms of hierarchy of causal diamonds (CDs) containing CDs containing.... The
introduction of sub-CD:s brings in improved measurement resolution and means also that effective
2-dimensionality is realized in the scale of sub-CD only.

One cannot over-emphasize the importance of the effective 2-dimensionality. It indeed simplifies
dramatically the earlier formulas for configuration space metric involving 3-dimensional integrals over
X3 ⊂ M4

+ × CP2 reducing now to 2-dimensional integrals. Note that X3 is determined by preferred
extremal property of X4(X3

l ) once X3
l is fixed and one can hope that this mapping is one-to-one.

The reduction of data to that associated with 2-D surfaces and their 4-D tangent space distributions
conforms with the number theoretic vision about imbedding space as having hyper-octonionic structure
[86] : the commutative sub-manifolds of H have dimension not larger than two and for them tangent
space is complex sub-space of complexified octonion tangent space. Number theoretic counterpart of
quantum measurement theory forces the reduction of relevant data to 2-D commutative sub-manifolds
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of X3. These points are discussed in more detail in the next chapter whereas in this chapter the
consideration will be restricted to X3

l = δM4
+ case which involves all essential aspects of the problem.

8.5.3 Magic properties of light cone boundary and isometries of configu-
ration space

The special conformal, metric and symplectic properties of the light cone of four-dimensional Minkowski
space: δM4

+, the boundary of four-dimensional light cone is metrically 2-dimensional(!) sphere allowing
infinite-dimensional group of conformal transformations and isometries(!) as well as Kähler structure.
Kähler structure is not unique: possible Kähler structures of light cone boundary are paramet3rized
by Lobatchevski space SO(3, 1)/SO(3). The requirement that the isotropy group SO(3) of S2 cor-
responds to the isotropy group of the unique classical 3-momentum assigned to X4(Y 3) defined as
absolute minimum of Kähler action, fixes the choice of the complex structure uniquely. Therefore
group theoretical approach and the approach based on Kähler action complement each other.

The allowance of an infinite-dimensional group of isometries isomorphic to the group of conformal
transformations of 2-sphere is completely unique feature of the 4-dimensional light cone boundary.
Even more, in case of δM4

+×CP2 the isometry group of δM4
+ becomes localized with respect to CP2!

Furthermore, the Kähler structure of δM4
+ defines also symplectic structure.

Hence any function of δM4
+ × CP2 would serve as a Hamiltonian transformation acting in both

CP2 and δM4
+ degrees of freedom. These transformations obviously differ from ordinary local gauge

transformations. This group leaves the symplectic form of δM4
+ × CP2, defined as the sum of light

cone and CP2 symplectic forms, invariant. The group of symplectic transformations of δM4
+×CP2 is

a good candidate for the isometry group of the configuration space.
The approximate symplectic invariance of Kähler action is broken only by gravitational effects and

is exact for vacuum extremals. This suggests that Kähler function is in a good approximation invari-
ant under the symplectic transformations of CP2 would mean that CP2 symplectic transformations
correspond to zero modes having zero norm in the Kähler metric of configuration space.

The groupsG andH, and thus configuration space itself, should inherit the complex structure of the
light cone boundary. The diffeomorphims of M4 act as dynamical symmetries of vacuum extremals.
The radial Virasoro localized with respect to S2 × CP2 could in turn act in zero modes perhaps
inducing conformal transformations: note that these transformations lead out from the symmetric
space associated with given values of zero modes.

8.5.4 Symplectic transformations of δM4
+ × CP2 as isometries of configura-

tion space

The symplectic transformations of δM4
+×CP2 are excellent candidates for inducing symplectic trans-

formations of the configuration space acting as isometries. There are however deep differences with
respect to the Kac Moody algebras.

1. The conformal algebra of the configuration space is gigantic when compared with the Virasoro +
Kac Moody algebras of string models as is clear from the fact that the Lie-algebra generator of
a symplectic transformation of δM4

+×CP2 corresponding to a Hamiltonian which is product of
functions defined in δM4

+ and CP2 is sum of generator of δM4
+-local symplectic transformation

of CP2 and CP2-local symplectic transformations of δM4
+. This means also that the notion of

local gauge transformation generalizes.

2. The physical interpretation is also quite different: the relevant quantum numbers label the
unitary representations of Lorentz group and color group, and the four-momentum labeling
the states of Kac Moody representations is not present. Physical states carrying no energy and
momentum at quantum level are predicted. The appearance of a new kind of angular momentum
not assignable to elementary particles might shed some light to the longstanding problem of
baryonic spin (quarks are not responsible for the entire spin of proton). The possibility of a new
kind of color might have implications even in macroscopic length scales.

3. The central extension induced from the natural central extension associated with δM4
+ × CP2

Poisson brackets is anti-symmetric with respect to the generators of the symplectic algebra
rather than symmetric as in the case of Kac Moody algebras associated with loop spaces. At
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first this seems to mean a dramatic difference. For instance, in the case of CP2 symplectic
transformations localized with respect to δM4

+ the central extension would vanish for Cartan
algebra, which means a profound physical difference. For δM4

+ × CP2 symplectic algebra a
generalization of the Kac Moody type structure however emerges naturally.

The point is that δM4
+-local CP2 symplectic transformations are accompanied by CP2 local

δM4
+ symplectic transformations. Therefore the Poisson bracket of two δM4

+ local CP2 Hamil-
tonians involves a term analogous to a central extension term symmetric with respect to CP2

Hamiltonians, and resulting from the δM4
+ bracket of functions multiplying the Hamiltonians.

This additional term could give the entire bracket of the configuration space Hamiltonians at
the maximum of the Kähler function where one expects that CP2 Hamiltonians vanish and have
a form essentially identical with Kac Moody central extension because it is indeed symmetric
with respect to indices of the symplectic group.

8.5.5 Symmetric space property reduces to conformal and symplectic in-
variance

The idea about symmetric space is extremely beautiful but it millenium had to change before time
was ripe for identifying the precise form of the Cartan decomposition. The solution of the puzzle
turned out to be amazingly simple.

The inspiration came from the finding that quantum TGD leads naturally to an extension of Super
Algebras by combining Ramond and Neveu-Schwartz algebras into single algebra. This led to the
introduction Virasoro generators and generators of symplectic algebra of CP2 localized with respect
to the light cone boundary and carrying conformal weights with a half integer valued real part.

Soon came the realization that the conformal weights h = −1/2 − i
∑
i yi, where zi = 1/2 + yi

are non-trivial zeros of Riemann Zeta, are excellent candidates for the super-symplectic ground state
conformal weights. It took some time to answer affirmatively the question whether also the negatives
of the trivial zeros z = −2n, n > 0 could be included. Thus the conjecture inspired by the work
with Riemann hypothesis stating that the zeros of Riemann Zeta appear at the level of basic quantum
TGD gets some support.

The main objection against this conjecture is that Riemann Zeta has no direct connection with
basic quantum TGD. Rather, the zeta function ζD =

∑
n λ
−s
n - call it Dirac Zeta - defined by the

eigenvaluesλ of the modified Dirac operator [20] analogous to cyclotron energies looks physically better
motivated than Riemann Zeta. The number of eigenvalues is finite and this has natural connection
with the finite measurement resolution meaning that finite number of CDs contribute to the Dirac
determinant. As a consequence the analytic continuation to all values of s exists automatically. The
general vision about the spectrum of zeros for this zeta is lacking. In particular, the question under
what conditions Riemann hypothesis holds true is lacking.

If the conjecture holds true, the generators whose commutators define the basis of the entire algebra
have conformal weights given by the negatives of the zeros of Rieman Zeta or Dirac Zeta. The algebra
is a direct sum g = g1⊕g2 such that g1 has h = n as conformal weights and g2 h = n−1/2+iy, where y
is sum over imaginary parts yi of non-trivial zeros of Zeta. Only h = 2n, n > 1, and h = −1/2−iy+n,
such that n is even (odd) if y is sum of odd (even) number of yi correspond to the weights labeling
the generators of t in the Cartan decomposition g = h + t. The resulting super-symplectic algebra
would quite well be christened as Riemann (or Dirac) algebra.

The requirement that ordinary Virasoro and Kac Moody generators annihilate physical states
corresponds now to the fact that the generators of h vanish at the point of configuration space, which
remains invariant under the action of h. The maximum of Kähler function corresponds naturally to
this point and plays also an essential role in the integration over configuration space by generalizing
the Gaussian integration of free quantum field theories.

The light cone conformal invariance differs in many respects from the conformal invariance of
string theories. Finite-dimensional Kac-Moody group is replaced by an infinite-dimensional symplectic
group. Conformal weights could correspond to zeros of Riemann zeta and suitable superpositions of
them in case of trivial zeros, and physical states can have non-vanishing but real conformal weights
just as the representations of color group in CP2 can have non-vanishing color isospin and hyper
charge. The conformal weights have also interpretation as quantum numbers associated with unitary
representations of Lorentz group: thus there is no conflict between conformal invariance and Lorentz
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invariance in TGD framework. Complex conformal weights however correspond to complex values of
mass squared and super-conformal invariance for physical plays fundamental role in string models.
This suggest that 7-3-duality could in TGD framework translate to the statement that the sums
of super-symplectic and Super Kac-Moody type super-conformal generators annihilate the physical
states. This would generalize Goddard-Olive-Kent construction [127] .

8.5.6 Attempts to identify configuration space Hamiltonians

I have made several attempts to identify configuration space Hamiltonians. The first two candidates
referred to as magnetic and electric Hamiltonians, emerged in a relatively early stage. The third
candidate represents the recent view based on the the formulation of quantum TGD using 3-D light-
like surfaces identified as orbits of partons.

Magnetic Hamiltonians

Assuming that the elements of the radial Virasoro algebra of δM4
+ have zero norm, one ends up with

an explicit identification of the symplectic structures of the configuration space. There is almost
unique identification for the symplectic structure. Configuration space counterparts of δM4 × CP2

Hamiltonians are defined by the generalized signed and and unsigned Kähler magnetic fluxes

Qm(HA, X
2) = Z

∫
X2 HAJ

√
g2d

2x ,

Q+
m(HA, rM ) = Z

∫
X2 HA|J |

√
g2d

2x ,

J ≡ εαβJαβ .

HA is CP2 Hamiltonian multiplied by a function of coordinates of light cone boundary belonging
to a unitary representation of the Lorentz group. Z is a conformal factor depending on symplectic
invariants. The symplectic structure is induced by the symplectic structure of CP2.

The most general flux is superposition of signed and unsigned fluxes Qm and Q+
m.

Qα,βm (HA, X
2) = αQm(HA, X

2) + βQ+
m(HA, X

2) .

Thus it seems that symmetry arguments fix the form of the configuration space metric apart from
the presence of a conformal factor Z multiplying the magnetic flux and the degeneracy related to the
signed and unsigned fluxes.

Electric Hamiltonians and electric-magnetic duality

Absolute minimization of Kähler action in turn suggests that one can identify configuration space
Hamiltonians as classical charges Qe(HA) associated with the Hamiltonians of the symplectic trans-
formations of the light cone boundary, that is as variational derivatives of the Kähler action with
respect to the infinitesimal deformations induced by δM4

+ × CP2 Hamiltonians. Alternatively, one
might simply replace Kähler magnetic field J with Kähler electric field defined by space-time dual ∗J
in the formulas of previous section. These Hamiltonians are analogous to Kähler electric charge and
the hypothesis motivated by the experience with the instantons of the Euclidian Yang Mills theories
and ’Yin-Yang’ principle, as well as by the duality of CP2 geometry, is that for the absolute minima
of the Kähler action these Hamiltonians are affinely related:

Qe(HA) = Z [Qm(HA) + qe(HA)] .

Here Z and qe are constants depending on symplectic invariants only. Thus the equivalence of the
two approaches to the construction of configuration space geometry boils down to the hypothesis of a
physically well motivated electric-magnetic duality.

The crucial technical idea is to regard configuration space metric as a quadratic form in the entire
Lie-algebra of the isometry group G such that the matrix elements of the metric vanish in the sub-
algebra H of G acting as Diff3(X3). The Lie-algebra of G with degenerate metric in the sense that
H vector fields possess zero norm, can be regarded as a tangent space basis for the configuration space
at point X3 at which H acts as an isotropy group: at other points of the configuration space H is
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different. For given values of zero modes the maximum of Kähler function is the best candidate for
X3. This picture applies also in symplectic degrees of freedom.

8.5.7 General expressions for the symplectic and Kähler forms

One can derive general expressions for symplectic and Kähler forms as well as Kähler metric of the
configuration space. The fact that these expressions involve only first variation of the Kähler action
implies huge simplification of the basic formulas. Duality hypothesis leads to further simplifications
of the formulas.

Closedness requirement

The fluxes of Kähler magnetic and electric fields for the Hamiltonians of δM4
+×CP2 suggest a general

representation for the components of the symplectic form of the configuration space. The basic
requirement is that Kähler form satisfies the defining condition

X · J(Y,Z) + J([X,Y ], Z) + J(X, [Y, Z]) = 0 , (8.5.1)

where X,Y, Z are now vector fields associated with Hamiltonian functions defining configuration space
coordinates.

Matrix elements of the symplectic form as Poisson brackets

Quite generally, the matrix element of J(X(HA), X(HB)) between vector fields X(HA)) and X(HB))
defined by the Hamiltonians HA and HB of δM4

+ × CP2 isometries is expressible as Poisson bracket

JAB = J(X(HA), X(HB)) = {HA, HB} . (8.5.2)

JAB denotes contravariant components of the symplectic form in coordinates given by a subset of
Hamiltonians. The magnetic flux Hamiltonians Qα,βm (HA,k) provide an explicit representation for the
Hamiltonians at the level of configuration space so that the components of the symplectic form of the
configuration space are expressible as classical charges for the Poisson brackets of the Hamiltonians
of the light cone boundary:

J(X(HA), X(HB)) = Qα,βm ({HA, HB}) .

(8.5.3)

Recall that the superscript α, β refers the coefficients of J and |J | in the superposition of these
Kähler magnetic fluxes. Note that Qα,βm contains unspecified conformal factor depending on symplectic
invariants characterizing Y 3 and is unspecified superposition of signed and unsigned magnetic fluxes.

This representation does not carry information about the tangent space of space-time surface at
the partonic 2-surface, which motivates the proposal that also electric fluxes are present and propor-
tional to magnetic fluxes with a factor K, which is symplectic invariant so that commutators of flux
Hamiltonians come out correctly. This would give

Qα,βm (HA)em = Qα,βe (HA) +Qα,βm (HA) = (1 +K)Qα,βm (HA) . (8.5.4)

Since Kähler form relates to the standard field tensor by a factor e/~, flux Hamiltonians are dimen-
sionless so that commutators do not involve ~. The commutators would come as

Qα,βem ({HA, HB})→ (1 +K)Qα,βm ({HA, HB}) . (8.5.5)

The factor 1 +K plays the same role as Planck constant in the commutators.
WCW Hamiltonians vanish for the extrema of the Kähler function as variational derivatives of the

Kähler action. Hence Hamiltonians are good candidates for the coordinates appearing as coordinates in
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the perturbative functional integral around extrema (with maxima giving dominating contribution). It
is clear that configuration space coordinates around a given extremum include only those Hamiltonians,
which vanish at extremum (that is those Hamiltonians which span the tangent space of G/H) In
Darboux coordinates the Poisson brackets reduce to the symplectic form

{P I , QJ} = JIJ = JIδ
I,J .

JI = 1 . (8.5.6)

It is not clear whether Darboux coordinates with JI = 1 are possible in the recent case: probably the
unit matrix on right hand side of the defining equation is replaced with a diagonal matrix depending
on symplectic invariants so that one has JI 6= 1. The integration measure is given by the symplectic
volume element given by the determinant of the matrix defined by the Poisson brackets of the Hamil-
tonians appearing as coordinates. The value of the symplectic volume element is given by the matrix
formed by the Poisson brackets of the Hamiltonians and reduces to the product

V ol =
∏
I

JI

in generalized Darboux coordinates.
Kähler potential (that is gauge potential associated with Kähler form) can be written in Darboux

coordinates as

A =
∑
I

JIPIdQ
I . (8.5.7)

General expressions for Kähler form, Kähler metric and Kähler function

The expressions of Kähler form and Kähler metric in complex coordinates can obtained by transform-
ing the contravariant form of the symplectic form from symplectic coordinates provided by Hamilto-
nians to complex coordinates:

JZ
iZ̄j = iGZ

iZ̄j = ∂HAZ
i∂HB Z̄

jJAB , (8.5.8)

where JAB is given by the classical Kähler charge for the light cone Hamiltonian {HA, HB}. Complex
coordinates correspond to linear coordinates of the complexified Lie-algebra providing exponentiation
of the isometry algebra via exponential mapping. What one must know is the precise relationship
between allowed complex coordinates and Hamiltonian coordinates: this relationship is in principle
calculable. In Darboux coordinates the expressions become even simpler:

JZ
iZ̄j = iGZ

iZ̄j =
∑
I

J(I)(∂P iZ
i∂QI Z̄

j − ∂QIZi∂P I Z̄j) . (8.5.9)

Kähler function can be formally integrated from the relationship

AZi = i∂ZiK ,

AZ̄i = −i∂ZiK . (8.5.10)

holding true in complex coordinates. Kähler function is obtained formally as integral

K =

∫ Z

0

(AZidZ
i −AZ̄idZ̄i) . (8.5.11)



536 Chapter 8. The Geometry of the World of Classical Worlds

Diff(X3) invariance and degeneracy and conformal invariances of the symplectic form

J(X(HA), X(HB)) defines symplectic form for the coset space G/H only if it is Diff(X3) degenerate.
This means that the symplectic form J(X(HA), X(HB)) vanishes whenever Hamiltonian HA or HB

is such that it generates diffeomorphism of the 3-surface X3. If effective 2-dimensionality holds true,
J(X(HA), X(HB)) vanishes if HA or HB generates two-dimensional diffeomorphism d(HA) at the
surface X2

i .
One can always write

J(X(HA), X(HB)) = X(HA)Q(HB |X2
i ) .

If HA generates diffeomorphism, the action of X(HA) reduces to the action of the vector field XA of
some X2

i -diffeomorphism. Since Q(HB |rM ) is manifestly invariant under the diffemorphisms of X2,
the result is vanishing:

XAQ(HB |X2
i ) = 0 ,

so that Diff2 invariance is achieved.
The radial diffeomorphisms possibly generated by the radial Virasoro algebra do not produce

trouble. The change of the flux integrand X under the infinitesimal transformation rM → rM + εrnM
is given by rnMdX/drM . Replacing rM with r−n+1

M /(−n + 1) as variable, the integrand reduces to
a total divergence dX/du the integral of which vanishes over the closed 2-surface X2

i . Hence radial
Virasoro generators having zero norm annihilate all matrix elements of the symplectic form. The
induced metric of X2

i induces a unique conformal structure and since the conformal transformations
of X2

i can be interpreted as a mere coordinate changes, they leave the flux integrals invariant.

Complexification and explicit form of the metric and Kähler form

The identification of the Kähler form and Kähler metric in symplectic degrees of freedom follows
trivially from the identification of the symplectic form and definition of complexification. The re-
quirement that Hamiltonians are eigen states of angular momentum (and possibly Lorentz boost
generator), isospin and hypercharge implies physically natural complexification. In order to fix the
complexification completely one must introduce some convention fixing which states correspond to
’positive’ frequencies and which to ’negative frequencies’ and which to zero frequencies that is to
decompose the generators of the symplectic algebra to three sets Can+, Can− and Can0. One must
distinguish between Can0 and zero modes, which are not considered here at all. For instance, CP2

Hamiltonians correspond to zero modes.
The natural complexification relies on the imaginary part of the radial conformal weight whereas

the real part defines the g = t + h decomposition naturally. The wave vector associated with the
radial logarithmic plane wave corresponds to the angular momentum quantum number associated
with a wave in S1 in the case of Kac Moody algebra. One can imagine three options.

1. It is quite possible that the spectrum of k2 does not contain k2 = 0 at all so that the sector Can0

could be empty. This complexification is physically very natural since it is manifestly invariant
under SU(3) and SO(3) defining the preferred spherical coordinates. The choice of SO(3) is
unique if the classical four-momentum associated with the 3-surface is time like so that there
are no problems with Lorentz invariance.

2. If k2 = 0 is possible one could have

Can+ = {Ha
m,n,k=k1+ik2

, k2 > 0} ,

Can− = {Ha
m,n,k, k2 < 0} ,

Can0 = {Ha
m,n,k, k2 = 0} . (8.5.12)

3. If it is possible to n2 6= 0 for k2 = 0, one could define the decomposition as
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Can+ = {Ha
m,n,k, k2 > 0 or k2 = 0, n2 > 0} ,

Can− = {Ha
m,n,k, k2 < 0 ork2 = 0, n2 < 0} ,

Can0 = {Ha
m,n,k, k2 = n2 = 0} . (8.5.13)

In this case the complexification is unique and Lorentz invariance guaranteed if one can fix the
SO(2) subgroup uniquely. The quantization axis of angular momentum could be chosen to be
the direction of the classical angular momentum associated with the 3-surface in its rest system.

The only thing needed to get Kähler form and Kähler metric is to write the half Poisson bracket
defined by Eq. 8.5.15

Jf (X(HA), X(HB)) = 2Im (iQf ({HA, HB}−+)) ,

Gf (X(HA), X(HB)) = 2Re (iQf ({HA, HB}−+)) . (8.5.14)

Symplectic form, and thus also Kähler form and Kähler metric, could contain a conformal factor
depending on the isometry invariants characterizing the size and shape of the 3-surface. At this stage
one cannot say much about the functional form of this factor.

Comparison of CP2 Kähler geometry with configuration space geometry

The explicit discussion of the role of g = t+h decomposition of the tangent space of the configuration
space provides deep insights to the metric of the symmetric space. There are indeed many questions
to be answered. To what point of configuration space (that is 3-surface) the proposed g = t + h
decomposition corresponds to? Can one derive the components of the metric and Kähler form from
the Poisson brackets of complexified Hamiltonians? Can one characterize the point in question in terms
of the properties of configuration space Hamiltonians? Does the central extension of the configuration
space reduce to the symplectic central extension of the symplectic algebra or can one consider also
other options?

1. Cartan decomposition for CP2

A good manner to gain understanding is to consider the CP2 metric and Kähler form at the origin
of complex coordinates for which the sub-algebra h = u(2) defines the Cartan decomposition.

1. g = t + h decomposition depends on the point of the symmetric space in general. In case of
CP2 u(2) sub-algebra transforms as g ◦ u(2) ◦ g−1 when the point s is replaced by gsg−1. This
is expected to hold true also in case of configuration space (unless it is flat) so that the task is
to identify the point of the configuration space at which the proposed decomposition holds true.

2. The Killing vector fields of h sub-algebra vanish at the origin of CP2 in complex coordinates.
The corresponding Hamiltonians need not vanish but their Poisson brackets must vanish. It is
possible to add suitable constants to the Hamiltonians in order to guarantee that they vanish
at origin.

3. It is convenient to introduce complex coordinates and decompose isometry generators to holo-
morphic components Ja+ = jak∂k and ja− = jak̄∂k̄. One can introduce what might be called half
Poisson bracket and half inner product defined as

{Ha, Hb}−+ ≡ ∂k̄H
aJ k̄l∂lH

b

= jakJkl̄j
bl̄ = −i(ja+, jb−) . (8.5.15)

One can express Poisson bracket of Hamiltonians and the inner product of the corresponding
Killing vector fields in terms of real and imaginary parts of the half Poisson bracket:
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{Ha, Hb} = 2Im
(
i{Ha, Hb}−+

)
,

(ja, jb) = 2Re
(
i(ja+, j

b
−)
)

= 2Re
(
i{Ha, Hb}−+

)
. (8.5.16)

What this means that Hamiltonians and their half brackets code all information about metric
and Kähler form. Obviously this is of utmost importance in the case of the configuration space
metric whose symplectic structure and central extension are derived from those of CP2.

Consider now the properties of the metric and Kähler form at the origin.

1. The relations satisfied by the half Poisson brackets can be written symbolically as

{h, h}−+ = 0 ,

Re (i{h, t}−+) = 0 , Im (i{h, t}−+) = 0 ,

Re (i{t, t}−+) 6= 0 , Im (i{t, t}−+) 6= 0 .

(8.5.17)

2. The first two conditions state that h vector fields have vanishing inner products at the origin.
The first condition states also that the Hamiltonians for the commutator algebra [h, h] = SU(2)
vanish at origin whereas the Hamiltonian for U(1) algebra corresponding to the color hyper
charge need not vanish although it can be made vanishing. The third condition implies that the
Hamiltonians of t vanish at origin.

3. The last two conditions state that the Kähler metric and form are non-vanishing between the
elements of t. Since the Poisson brackets of t Hamiltonians are Hamiltonians of h, the only pos-
sibility is that {t, t} Poisson brackets reduce to a non-vanishing U(1) Hamiltonian at the origin
or that the bracket at the origin is due to the symplectic central extension. The requirement
that all Hamiltonians vanish at origin is very attractive aesthetically and forces to interpret
{t, t} brackets at origin as being due to a symplectic central extension. For instance, for S2 the
requirement that Hamiltonians vanish at origin would mean the replacement of the Hamiltonian
H = cos(θ) representing a rotation around z-axis with H3 = cos(θ) − 1 so that the Poisson
bracket of the generators H1 and H2 can be interpreted as a central extension term.

4. The conditions for the Hamiltonians of u(2) sub-algebra state that their variations with respect
to g vanish at origin. Thus u(2) Hamiltonians have extremum value at origin.

5. Also the Kähler function of CP2 has extremum at the origin. This suggests that in the case of
the configuration space the counterpart of the origin corresponds to the maximum of the Kähler
function.

2. Cartan algebra decomposition at the level of configuration space

The discussion of the properties of CP2 Kähler metric at origin provides valuable guide lines in
an attempt to understand what happens at the level of the configuration space. The use of the half
bracket for the configuration space Hamiltonians in turn allows to calculate the matrix elements of
the configuration space metric and Kähler form explicitly in terms of the magnetic or electric flux
Hamiltonians.

The earlier construction was rather tricky and formula-rich and not very convincing physically.
Cartan decomposition had to be assigned with something and in lack of anything better it was assigned
with Super Virasoro algebra, which indeed allows this kind of decompositions but without any strong
physical justification. The realization that super-symplectic and super Kac-Moody symmetries define
coset construction at the level of basic quantum TGD, and that this construction provides a realization
of Equivalence Principle at microscopic level, forced eventually the realization that also the coset space
decomposition of configuration space realizes Equivalence Principle geometrically.
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It must be however emphasized that holography implying effective 2-dimensionality of 3-surfaces
in some length scale resolution is absolutely essential for this construction since it allows to effectively
reduce Kac-Moody generators associated with X3

l to X2 = X3
l ∩ δM4

± × CP2. In the similar manner
super-symplectic generators can be dimensionally reduced to X2. Number theoretical compactification
forces the dimensional reduction and the known extremals are consistent with it [12] . The construction
of configuration space spinor structure and metric in terms of the second quantized spinor fields [20]
relies to this picture as also the recent view about M -matrix [23] .

In this framework the coset space decomposition becomes trivial.

1. The algebra g is labeled by color quantum numbers of CP2 Hamiltonians and by the label
(m,n, k) labeling the function basis of the light cone boundary. Also a localization with respect
to X2 is needed. This is a new element as compared to the original view.

2. Super Kac-Moody algebra is labeled by color octet Hamiltonians and function basis of X2. Since
Lie-algebra action does not lead out of irreps, this means that Cartan algebra decomposition is
satisfied.

Comparison with loop groups

It is useful to compare the recent approach to the geometrization of the loop groups consisting of
maps from circle to Lie group G [85] , which served as the inspirer of the configuration space geometry
approach but later turned out to not apply as such in TGD framework.

In the case of loop groups the tangent space T corresponds to the local Lie-algebra T (k,A) =
exp(ikφ)TA, where TA generates the finite-dimensional Lie-algebra g and φ denotes the angle variable
of circle; k is integer. The complexification of the tangent space corresponds to the decomposition

T = {X(k > 0, A)} ⊕ {X(k < 0, A)} ⊕ {X(k = 0, A)} = T+ ⊕ T− ⊕ T0

of the tangent space. Metric corresponds to the central extension of the loop algebra to Kac Moody
algebra and the Kähler form is given by

J(X(k1 < 0, A), X(k2 > 0, B)) = k2δ(k1 + k2)δ(A,B) .

In present case the finite dimensional Lie algebra g is replaced with the Lie-algebra of the symplectic
transformations of δM4

+ × CP2 centrally extended using symplectic extension. The scalar function
basis on circle is replaced with the function basis on an interval of length ∆rM with periodic boundary
conditions; effectively one has circle also now.

The basic difference is that one can consider two kinds of central extensions now.

1. Central extension is most naturally induced by the natural central extension ({p, q} = 1) defined
by Poisson bracket. This extension is anti-symmetric with respect to the generators of the
symplectic group: in the case of the Kac Moody central extension it is symmetric with respect
to the group G. The symplectic transformations of CP2 might correspond to non-zero modes
also because they are not exact symmetries of Kähler action. The situation is however rather
delicate since k = 0 light cone harmonic has a diverging norm due to the radial integration
unless one poses both lower and upper radial cutoffs although the matrix elements would be
still well defined for typical 3-surfaces. For Kac Moody group U(1) transformations correspond
to the zero modes. Light cone function algebra can be regarded as a local U(1) algebra defining
central extension in the case that only CP2 symplectic transformations local with respect to
δM4

+ act as isometries: for Kac Moody algebra the central extension corresponds to an ordinary
U(1) algebra. In the case that entire light cone symplectic algebra defines the isometries the
central extension reduces to a U(1) central extension.

Symmetric space property implies Ricci flatness and isometric action of symplectic trans-
formations

The basic structure of symmetric spaces is summarized by the following structural equations

g = h+ t ,
[h, h] ⊂ h , [h, t] ⊂ t , [t, t] ⊂ h .

(8.5.18)
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In present case the equations imply that all commutators of the Lie-algebra generators of Can(6= 0)
having non-vanishing integer valued radial quantum number n2, possess zero norm. This condition is
extremely strong and guarantees isometric action of Can(δM4

+ ×CP2) as well as Ricci flatness of the
configuration space metric.

The requirement [t, t] ⊂ h and [h, t] ⊂ t are satisfied if the generators of the isometry algebra possess
generalized parity P such that the generators in t have parity P = −1 and the generators belonging
to h have parity P = +1. Conformal weight n must somehow define this parity. The first possibility
to come into mind is that odd values of n correspond to P = −1 and even values to P = 1. Since
n is additive in commutation, this would automatically imply h⊕ t decomposition with the required
properties. This assumption looks however somewhat artificial. TGD however forces a generalization
of Super Algebras and N-S and Ramond type algebras can be combined to a larger algebra containing
also Virasoro and Kac Moody generators labeled by half-odd integers. This suggests strongly that
isometry generators are labeled by half integer conformal weight and that half-odd integer conformal
weight corresponds to parity P = −1 whereas integer conformal weight corresponds to parity P = 1.
Coset space would structure would state conformal invariance of the theory since super-symplectic
generators with integer weight would correspond to zero modes.

Quite generally, the requirement that the metric is invariant under the flow generated by vector
field X leads together with the covariant constancy of the metric to the Killing conditions

X · g(Y,Z) = 0 = g([X,Y ], Z) + g(Y, [X,Z]) . (8.5.19)

If the commutators of the complexified generators in Can( 6= 0) have zero norm then the two terms
on the right hand side of Eq. (8.5.19) vanish separately. This is true if the conditions

Qα,βm ({HA, {HB , HC}}) = 0 , (8.5.20)

are satisfied for all triplets of Hamiltonians in Can6=0. These conditions follow automatically from the
[t, t] ⊂ h property and guarantee also Ricci flatness as will be found later.

It must be emphasized that for Kähler metric defined by purely magnetic fluxes, one cannot pose
the conditions of Eq. (8.5.20) as consistency conditions on the initial values of the time derivatives of
imbedding space coordinates whereas in general case this is possible. If the consistency conditions are
satisfied for a single surface on the orbit of symplectic group then they are satisfied on the entire orbit.
Clearly, isometry and Ricci flatness requirements and the requirement of time reversal invariance might
well force Kähler electric alternative.

How to find Kähler function?

If one has found the expansion of configuration space Kähler form in terms of electric fluxes one
can solve also the Kähler function from the defining partial differential equations Jkl̄ = ∂k∂l̄K. The
solution is not unique since the equation allows the symmetry

K → K + f(zk) + f(zk) ,

where f is arbitrary holomorphic function of zk. This non-uniqueness is probably eliminated by the
requirement that Kähler function vanishes for vacuum extremals. This in turn makes in principle
possible to find the maxima of Kähler function and to perform functional integration perturbatively
around them.

Electric-magnetic duality implies that, apart from conformal factor depending on isometry invari-
ants, one can solve Kähler metric without any knowledge on the initial values of the time derivatives
of the imbedding space coordinates. Apart from conformal factor the resulting geometry is purely
intrinsic to δCH. The role of Kähler action is only to to define Diff4 invariance and give the rule how
the metric is translated to metric on arbitrary point of CH. The degeneracy of the preferred extrema
also implies that configuration space has multi-sheeted structure analogous to that encountered in
case of Riemann surfaces.

The most promising concrete construction recipe for Kähler function is in terms of the modified
Dirac operator [20] . The recipe is described briefly in the introduction. If the conjecture that Dirac
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determinant coincides with the exponent of Kähler action for a preferred extremal is correct, the value
of the Kähler coupling strength follows as a prediction of the theory. From the construction it is clear
that Dirac determinant involves only a finite number of eigenvalues of the modified Dirac operator
and can thus be an algebraic or even rational number if eigenvalues have this property. The most
satisfactory property of the construction is that one can use the intuition from the behavior of 2-D
magnetic systems.

8.6 Ricci flatness and divergence cancelation

Divergence cancelation in configuration space integration requires Ricci flatness and in this section
the arguments in favor of Ricci flatness are discussed in detail.

8.6.1 Inner product from divergence cancelation

Forgetting the delicacies related to the non-determinism of the Kähler action, the inner product is
given by integrating the usual Fock space inner product defined at each point of the configuration space
over the reduced configuration space containing only the 3-surfaces Y 3 belonging to δH = δM4

+×CP2

(’lightcone boundary’) using the exponent exp(K) as a weight factor:

〈Ψ1|Ψ2〉 =

∫
Ψ1(Y 3)Ψ2(Y 3)exp(K)

√
GdY 3 ,

Ψ1(Y 3)Ψ2(Y 3) ≡ 〈Ψ1(Y 3)|Ψ2(Y 3)〉Fock . (8.6.1)

The degeneracy for the preferred extremals of Kähler action implies additional summation over the
degenerate extremals associated with Y 3. The restriction of the integration on light cone boundary is
Diff4 invariant procedure and resolves in elegant manner the problems related to the integration over
Diff4 degrees of freedom. A variant of the inner product is obtained dropping the bosonic vacuum
functional exp(K) from the definition of the inner product and by assuming that it is included into
the spinor fields themselves. Probably it is just a matter of taste how the necessary bosonic vacuum
functional is included into the inner product: what is essential that the vacuum functional exp(K) is
somehow present in the inner product.

The unitarity of the inner product follows from the unitary of the Fock space inner product and
from the unitarity of the standard L2 inner product defined by configuration space integration in
the set of the L2 integrable scalar functions. It could well occur that Diff4 invariance implies the
reduction of the configuration space integration to C(δH).

Consider next the bosonic integration in more detail. The exponent of the Kähler function appears
in the inner product also in the context of the finite dimensional group representations. For the
representations of the noncompact groups (say SL(2, R)) in coset spaces (now SL(2, R)/U(1) endowed
with Kähler metric) the exponent of Kähler function is necessary in order to get square integrable
representations [81]. The scalar product for two complex valued representation functions is defined as

(f, g) =

∫
fgexp(nK)

√
gdV . (8.6.2)

By unitarity, the exponent is an integer multiple of the Kähler function. In the present case only
the possibility n = 1 is realized if one requires a complete cancelation of the determinants. In finite
dimensional case this corresponds to the restriction to single unitary representation of the group in
question.

The sign of the action appearing in the exponent is of decisive importance in order to make
theory stable. The point is that the theory must be well defined at the limit of infinitely large
system. Minimization of action is expected to imply that the action of infinitely large system is bound
from above: the generation of electric Kähler fields gives negative contributions to the action. This
implies that at the limit of the infinite system the average action per volume is non-positive. For
systems having negative average density of action vacuum functional exp(K) vanishes so that only
configurations with vanishing average action per volume have significant probability. On the other
hand, the choice exp(−K) would make theory unstable: probability amplitude would be infinite for
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all configurations having negative average action per volume. In the fourth part of the book it will be
shown that the requirement that average Kähler action per volume cancels has important cosmological
consequences.

Consider now the divergence cancelation in the bosonic integration. One can develop the Kähler
function as a Taylor series around maximum of Kähler function and use the contravariant Kähler
metric as a propagator. Gaussian and metric determinants cancel each other for a unique vacuum
functional. Ricci flatness guarantees that metric determinant is constant in complex coordinates so
that one avoids divergences coming from it. The non-locality of the Kähler function as a functional
of the 3-surface serves as an additional regulating mechanism: if K(X3) were a local functional of X3

one would encounter divergences in the perturbative expansion.
The requirement that quantum jump corresponds to a quantum measurement in the sense of quan-

tum field theories implies that quantum jump involves localization in zero modes. Localization in the
zero modes implies automatically p-adic evolution since the decomposition of the configuration space
into sectors DP labeled by the infinite primes P is determined by the corresponding decomposition in
zero modes. Localization in zero modes would suggest that the calculation of the physical predictions
does not involve integration over zero modes: this would dramatically simplify the calculational appa-
ratus of the theory. Probably this simplification occurs at the level of practical calculations if U -matrix
separates into a product of matrices associated with zero modes and fiber degrees of freedom.

One must also calculate the predictions for the ratios of the rates of quantum transitions to different
values of zero modes and here one cannot actually avoid integrals over zero modes. To achieve this
one is forced to define the transition probabilities for quantum jumps involving a localization in zero
modes as

P (x, α→ y, β) =
∑
r,s

|S(r, α→ s, β)|2|Ψr(x)|2|Ψs(y)|2 ,

where x and y correspond to the zero mode coordinates and r and s label a complete state functional
basis in zero modes and S(r,m → s, n) involves integration over zero modes. In fact, only in this
manner the notion of the localization in the zero modes makes mathematically sense at the level of
S-matrix. In this case also unitarity conditions are well-defined. In zero modes state function basis
can be freely constructed so that divergence difficulties could be avoided. An open question is whether
this construction is indeed possible.

Some comments about the actual evaluation of the bosonic functional integral are in order.

1. Since configuration space metric is degenerate and the bosonic propagator is essentially the
contravariant metric, bosonic integration is expected to reduce to an integration over the zero
modes. For instance, isometry invariants are variables of this kind. These modes are analogous
to the parameters describing the conformal equivalence class of the orbit of the string in string
models.

2. αK is a natural small expansion parameter in configuration space integration. It should be
noticed that αK , when defined by the criticality condition, could also depend on the coordinates
parameterizing the zero modes.

3. Semiclassical approximation, which means the expansion of the functional integral as a sum
over the extrema of the Kähler function, is a natural approach to the calculation of the bosonic
integral. Symmetric space property suggests that for the given values of the zero modes there
is only single extremum and corresponds to the maximum of the Kähler function. There are
theorems (Duistermaat-Hecke theorem) stating that semiclassical approximation is exact for
certain systems (for example for integrable systems [77] ). Symmetric space property suggests
that Kähler function might possess the properties guaranteing the exactness of the semiclassical
approximation. This would mean that the calculation of the integral

∫
exp(K)

√
GdY 3 and even

more complex integrals involving configuration space spinor fields would be completely analogous
to a Gaussian integration of free quantum field theory. This kind of reduction actually occurs
in string models and is consistent with the criticality of the Kähler coupling constant suggesting
that all loop integrals contributing to the renormalization of the Kähler action should vanish.
Also the condition that configuration space integrals are continuable to p-adic number fields
requires this kind of reduction.
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8.6.2 Why Ricci flatness

It has been already found that the requirement of divergence cancelation poses extremely strong
constraints on the metric of the configuration space. The results obtained hitherto are the following.

1. If the vacuum functional is the exponent of Kähler function one gets rid of the divergences
resulting from the Gaussian determinants and metric determinants: determinants cancel each
other.

2. The non-locality of the Kähler action gives good hopes of obtaining divergence free perturbation
theory.

The following arguments show that Ricci flatness of the metric is a highly desirable property.

1. Dirac operator should be a well defined operator. In particular its square should be well defined.
The problem is that the square of Dirac operator contains curvature scalar, which need not
be finite since it is obtained via two infinite-dimensional trace operations from the curvature
tensor. In case of loop spaces [85] the Kähler property implies that even Ricci tensor is only
conditionally convergent. In fact, loop spaces with Kähler metric are Einstein spaces (Ricci
tensor is proportional to metric) and Ricci scalar is infinite.

In 3-dimensional case situation is even worse since the trace operation involves 3 summation
indices instead of one! The conclusion is that Ricci tensor had better to vanish in vibrational
degrees of freedom.

2. For Ricci flat metric the determinant of the metric is constant in geodesic complex coordinates
as is seen from the expression for Ricci tensor [128]

Rkl̄ = ∂k∂l̄ln(det(g)) (8.6.3)

in Kähler metric. This obviously simplifies considerably functional integration over the config-
uration space: one obtains just the standard perturbative field theory in the sense that metric
determinant gives no contributions to the functional integration.

3. The constancy of the metric determinant results not only in calculational simplifications: it also
eliminates divergences. This is seen by expanding the determinant as a functional Taylor series
with respect to the coordinates of the configuration space. In local complex coordinates the first
term in the expansion of the metric determinant is determined by Ricci tensor

δ
√
g ∝ Rkl̄zkz̄l . (8.6.4)

In configuration space integration using standard rules of Gaussian integration this term gives
a contribution proportional to the contraction of the propagator with Ricci tensor. But since
the propagator is just the contravariant metric one obtains Ricci scalar as result. So, in order
to avoid divergences, Ricci scalar must be finite: this is certainly guaranteed if Ricci tensor
vanishes.

4. The following group theoretic argument suggests that Ricci tensor either vanishes or is divergent.
The holonomy group of the configuration space is a subgroup of U(n = ∞) (D = 2n is the
dimension of the Kähler manifold) by Kähler property and Ricci flatness is guaranteed if the
U(1) factor is absent from the holonomy group. In fact Ricci tensor is proportional to the trace of
the U(1) generator and since this generator corresponds to an infinite dimensional unit matrix
the trace diverges: therefore given element of the Ricci tensor is either infinite or vanishes.
Therefore the vanishing of the Ricci tensor seems to be a mathematical necessity. This naive
argument doesn’t hold true in the case of loop spaces, for which Kähler metric with finite non-
vanishing Ricci tensor exists [85] . Note however that also in this case the sum defining Ricci
tensor is only conditionally convergent.
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There are indeed good hopes that Ricci tensor vanishes. By the previous argument the vanishing
of the Ricci tensor is equivalent with the absence of divergences in configuration space integration.
That divergences are absent is suggested by the non-locality of the Kähler function as a functional of
3-surface: the divergences of local field theories result from the locality of interaction vertices. Ricci
flatness in vibrational degrees of freedom is not only necessary mathematically. It is also appealing
physically: one can regard Ricci flat configuration space as a vacuum solution of Einstein’s equations
Gαβ = 0.

8.6.3 Ricci flatness and Hyper Kähler property

Ricci flatness property is guaranteed if configuration space geometry is Hyper Kähler [118, 49] (there
exists 3 covariantly constant antisymmetric tensor fields, which can be regarded as representations
of quaternionic imaginary units). Hyper Kähler property guarantees Ricci flatness because the con-
tractions of the curvature tensor appearing in the components of the Ricci tensor transform to traces
over Lie algebra generators, which are SU(n) generators instead of U(n) generators so that the traces
vanish. In the case of the loop spaces left invariance implies that Ricci tensor in the vibrational degrees
is a multiple of the metric tensor so that Ricci scalar has an infinite value. This is basically due to
the fact that Kac-Moody algebra has U(1) central extension.

Consider now the arguments in favor of Ricci flatness of the configuration space.

1. The symplectic algebra of δM4
+ takes effectively the role of the U(1) extension of the loop

algebra. More concretely, the SO(2) group of the rotation group SO(3) takes the role of U(1)
algebra. Since volume preserving transformations are in question, the traces of the symplectic
generators vanish identically and in finite-dimensional this should be enough for Ricci flatness
even if Hyper Kähler property is not achieved.

2. The comparison with CP2 allows to link Ricci flatness with conformal invariance. The elements
of the Ricci tensor are expressible in terms of traces of the generators of the holonomy group
U(2) at the origin of CP2, and since U(1) generator is non-vanishing at origin, the Ricci tensor
is non-vanishing. In recent case the origin of CP2 is replaced with the maximum of Kähler
function and holonomy group corresponds to super-symplectic generators labelled by integer
valued real parts k1 of the conformal weights k = k1 + iρ. If generators with k1 = n vanish at
the maximum of the Kähler function, the curvature scalar should vanish at the maximum and by
the symmetric space property everywhere. These conditions correspond to Virasoro conditions
in super string models.

A possible source of difficulties are the generators having k1 = 0 and resulting as commutators
of generators with opposite real parts of the conformal weights. It might be possible to assume
that only the conformal weights k = k1 + iρ, k1 = 0, 1, ... are possible since it is the imaginary
part of the conformal weight which defines the complexification in the recent case. This would
mean that the commutators involve only positive values of k1.

3. In the infinite-dimensional case the Ricci tensor involves also terms which are non-vanishing even
when the holonomy algebra does not contain U(1) factor. It will be found that symmetric space
property guarantees Ricci flatness even in this case and the reason is essentially the vanishing
of the generators having k1 = n at the maximum of Kähler function.

There are also arguments in favor of the Hyper Kähler property.

1. The dimensions of the imbedding space and space-time are 8 and 4 respectively so that the
dimension of configuration space in vibrational modes is indeed multiple of four as required by
Hyper Kähler property. Hyper Kähler property requires a quaternionic structure in the tangent
space of the configuration space. Since any direction on the sphere S2 defined by the linear com-
binations of quaternionic imaginary units with unit norm defines a particular complexification
physically, Hyper Kähler property means the possibility to perform complexification in S2-fold
manners.

2. S2-fold degeneracy is indeed associated with the definition of the complex structure of the
configuration space. First of all, the direction of the quantization axis for the spherical harmonics
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or for the eigen states of Lorentz Cartan algebra at δM4
+ can be chosen in S2-fold manners.

Quaternion conformal invariance means Hyper Kähler property almost by definition and the
S2-fold degeneracy for the complexification is obvious in this case.

If these naive arguments survive a more critical inspection, the conclusion would be that the effec-
tive 2-dimensionality of light like 3-surfaces implying generalized conformal and symplectic symmetries
would also imply Hyper Kähler property of the configuration space and make the theory well-defined
mathematically. This obviously fixes the dimension of space-time surfaces as well as the dimension of
Minkowski space factor of the imbedding space.

In the sequel we shall show that Ricci flatness is guaranteed provided that the holonomy group
of the configuration space is isomorphic to some subgroup of SU(n = ∞) instead of U(n = ∞) (n
is the complex dimension of the configuration space) implied by the Kähler property of the metric.
We also derive an expression for the Ricci tensor in terms of the structure constants of the isometry
algebra and configuration space metric. The expression for the Ricci tensor is formally identical with
that obtained by Freed for loop spaces: the only difference is that the structure constants of the
finite-dimensional group are replaced with the group Can(δH). Also the arguments in favor of Hyper
Kähler property are discussed in more detail.

8.6.4 The conditions guaranteing Ricci flatness

In the case of Kähler geometry Ricci flatness condition can be characterized purely Lie-algebraically:
the holonomy group of the Riemann connection, which in general is subgroup of U(n) for Kähler
manifold of complex dimension n, must be subgroup of SU(n) so that the Lie-algebra of this group
consists of traceless matrices. This condition is easy to derive using complex coordinates. Ricci tensor
is given by the following expression in complex vielbein basis

RAB̄ = RAC̄BC̄ , (8.6.5)

where the latter summation is only over the antiholomorphic indices C̄. Using the cyclic identities

∑
cycl C̄BD̄

RAC̄BD̄ = 0 , (8.6.6)

the expression for Ricci tensor reduces to the form

RAB̄ = RAB̄CC , (8.6.7)

where the summation is only over the holomorphic indices C. This expression can be regarded as
a trace of the curvature tensor in the holonomy algebra of the Riemann connection. The trace is
taken over holomorphic indices only: the traces over holomorphic and anti-holomorphic indices cancel
each other by the antisymmetry of the curvature tensor. For Kähler manifold holonomy algebra is
subalgebra of U(n), when the complex dimension of manifold is n and Ricci tensor vanishes if and
only if the holonomy Lie-algebra consists of traceless matrices, or equivalently: holonomy group is
subgroup of SU(n). This condition is expected to generalize also to the infinite-dimensional case.

We shall now show that if configuration space metric is Kähler and possesses infinite-dimensional
isometry algebra with the property that its generators form a complete basis for the tangent space
(every tangent vector is expressible as a superposition of the isometry generators plus zero norm
vector) it is possible to derive a representation for the Ricci tensor in terms of the structure constants
of the isometry algebra and of the components of the metric and its inverse in the basis formed by
the isometry generators and that Ricci tensor vanishes identically for the proposed complexification
of the configuration space provided the generators {HA,m 6=0, HB,n6=0} correspond to zero norm vector
fields of configuration space.

The general definition of the curvature tensor as an operator acting on vector fields reads

R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z . (8.6.8)
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If the vector fields considered are isometry generators the covariant derivative operator is given by the
expression

∇XY = (AdXY −Ad∗XY −Ad∗YX)/2 ,

(Ad∗XY,Z) = (Y,AdXZ) , (8.6.9)

where AdXY = [X,Y ] and Ad∗X denotes the adjoint of AdX with respect to configuration space metric.
In the sequel we shall assume that the vector fields in question belong to the basis formed by the

isometry generators. The matrix representation of AdX in terms of the structure constants CX,Y :Z of
the isometry algebra is given by the expression

AdmXn = CX,Y :Z ŶnZ
m ,

[X,Y ] = CX,Y :ZZ ,

Ŷ = g−1(Y, V )V , (8.6.10)

where the summation takes place over the repeated indices and Ŷ denotes the dual vector field of Y
with respect to the configuration space metric. From its definition one obtains for Ad∗X the matrix
representation

Ad∗mXn = CX,Y :Z Ŷ
mZn ,

Ad∗XY = CX,U :V g(Y, U)g−1(V,W )W = g(Y,U)g−1([X,U ],W )W , (8.6.11)

where the summation takes place over the repeated indices.
Using the representations of ∇X in terms of AdX and its adjoint and the representations of

AdX and Ad∗X in terms of the structure constants and some obvious identities (such as C[X,Y ],Z:V =
CX,Y :UCU,Z:V ) one can by a straightforward but tedious calculation derive a more detailed expression
for the curvature tensor and Ricci tensor. Straightforward calculation of the Ricci tensor has however
turned to be very tedious even in the case of the diagonal metric and in the following we shall use a
more convenient representation [85] of the curvature tensor applying in case of the Kähler geometry.

The expression of the curvature tensor is given in terms of the so called Toeplitz operators TX
defined as linear operators in the ”positive energy part” G+ of the isometry algebra spanned by the
(1, 0) parts of the isometry generators. In present case the positive and negative energy parts and cm
part of the algebra can be defined just as in the case of loop spaces:

G+ = {HAk|k > 0} ,

G− = {HAk|k < 0} ,

G0 = {HAk|k = 0} . (8.6.12)

Here HAk denote the Hamiltonians generating the symplectic transformations of δH. The positive
energy generators with non-vanishing norm have positive radial scaling dimension: k ≥ 0, which
corresponds to the imaginary part of the scaling momentum K = k1 + iρ associated with the factors
(rM/r0)K . A priori the spectrum of ρ is continuous but it is quite possible that the spectrum of ρ
is discrete and ρ = 0 does not appear at all in the spectrum in the sense that the flux Hamiltonians
associated with ρ = 0 elements vanish for the maximum of Kähler function which can be taken to be
the point where the calculations are done.

TX differs from AdX in that the negative energy part of AdXY = [X,Y ] is dropped away:

TX : G+ → G+ ,

Y → [X,Y ]+ . (8.6.13)

Here ” + ” denotes the projection to ”positive energy” part of the algebra. Using Toeplitz operators
one can associate to various isometry generators linear operators Φ(X0), Φ(X−) and Φ(X+) acting
on G+:
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Φ(X0) = TX0
, X0εG0 ,

Φ(X−) = TX− , X−εG− ,

Φ(X+) = −T ∗X− , X+εG+ . (8.6.14)

Here ”*” denotes hermitian conjugate in the diagonalized metric: the explicit representation Φ(X+)
is given by the expression [85]

Φ(X+) = D−1TX−D ,

DX+ = d(X)X− ,

d(X) = g(X−, X+) . (8.6.15)

Here d(X) is just the diagonal element of metric assumed to be diagonal in the basis used. denotes
the conformal factor associated with the metric.

The representations for the action of ,Φ(X0), Φ(X−) and Φ(X+) in terms of metric and structure
constants of the isometry algebra are in the case of the diagonal metric given by the expressions

Φ(X0)Y+ = CX0,Y+:U+U+ ,

Φ(X−)Y+ = CX−,Y+:U+U+ ,

Φ(X+)Y+ =
d(Y )

d(U)
CX−,Y−:U−U+ . (8.6.16)

The expression for the action of the curvature tensor in positive energy part G+ of the isometry
algebra in terms of the these operators is given as [85] :

R(X,Y )Z+ = {[Φ(X),Φ(Y )]− Φ([X,Y ])}Z+ . (8.6.17)

The calculation of the Ricci tensor is based on the observation that for Kähler manifolds Ricci tensor
is a tensor of type (1, 1), and therefore it is possible to calculate Ricci tensor as the trace of the
curvature tensor with respect to indices associated with G+.

Ricci(X+, Y−) = (Ẑ+, R(X+, Y−)Z+) ≡ Trace(R(X+, Y−)) ,

(8.6.18)

where the summation over Z+ generators is performed.
Using the explicit representations of the operators Φ one obtains the following explicit expression

for the Ricci tensor

Ricci(X+, Y−) = Trace{[D−1TX+
D,TY− ]− T[X+,Y−]|G0+G−

− D−1T[X+,Y−]|G+
D} . (8.6.19)

This expression is identical to that encountered in case of loop spaces and the following arguments
are repetition of those applying in the case of loop spaces.

The second term in the Ricci tensor is the only term present in the finite-dimensional case. This
term vanishes if the Lie-algebra in question consists of traceless matrices. Since symplectic transfor-
mations are volume-preserving the traces of Lie-algebra generators vanish so that this term is absent.
The last term gives a non-vanishing contribution to the trace for the same reason.

The first term is quadratic in structure constants and does not vanish in case of loop spaces. It
can be written explicitly using the explicit representations of the various operators appearing in the
formula:
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Trace{[D−1TX−D,TY− ]} =
∑
Z+,U+

[CX−,U−:Z−CY−,Z+:U+

d(U)

d(Z)

− CX−,Z−:U−CY−,U+:Z+

d(Z)

d(U)
] . (8.6.20)

Each term is antisymmetric under the exchange of U and Z and one might fail to conclude that
the sum vanishes identically. This is not the case. By the diagonality of the metric with respect to
radial quantum number, one has m(X−) = m(Y−) for the non-vanishing elements of the Ricci tensor.
Furthermore, one has m(U) = m(Z) − m(Y ), which eliminates summation over m(U) in the first
term and summation over m(Z) in the second term. Note however, that summation over other labels
related to symplectic algebra are present.

By performing the change U → Z in the second term one can combine the sums together and as
a result one has finite sum

∑
0<m(Z)<m(X)

[CX−,U−:Z−CY−,Z+:U+

d(U)

d(Z)
= C

∑
0<m(Z)<m(X)

m(X)

m(Z)−m(X)
,

C =
∑
Z,U

CX,U :ZCY,Z:U
d0(U)

d0(Z)
. (8.6.21)

Here the dependence of d(X) = |m(X)|d0(X) on m(X) is factored out; d0(X) does not depend on kX .
The dependence on m(X) in the resulting expression factorizes out, and one obtains just the purely
group theoretic term C, which should vanish for the space to be Ricci flat.

The sum is quadratic in structure constants and can be visualized as a loop sum. It is instructive
to write the sum in terms of the metric in the symplectic degrees of freedom to see the geometry
behind the Ricci flatness:

C =
∑
Z,U

g([Y, Z], U)g−1([X,U ], Z) . (8.6.22)

Each term of this sum involves a commutator of two generators with a non-vanishing norm. Since
tangent space complexification is inherited from the local coset space, the non-vanishing commutators
in complexified basis are always between generators in Can6=0; that is they do not not belong to rigid
su(2)× su(3).

The condition guaranteing Ricci flatness at the maximum of Kähler function and thus everywhere
is simple. All elements of type [X6=0, Y6=0] vanish or have vanishing norm. In case of CP2 Kähler
geometry this would correspond to the vanishing of the U(2) generators at the origin of CP2 (note
that the holonomy group is U(2) in case of CP2). At least formally stronger condition is that the
algebra generated by elements of this type, the commutator algebra associated with Can6=0, consist of
elements of zero norm. Already the (possibly) weaker condition implies that adjoint map AdX 6=0 and
its hermitian adjoint Ad∗X6=0

create zero norm states. Since isometry conditions involve also adjoint
action the condition also implies that Can6=0 acts as isometries. More concrete form for the condition
is that all flux factors involving double Poisson bracket and three generators in Can6=0 vanish:

Qe({HA, {HB , HC}}) = 0 , for HA, HB , HC in Can6=0 . (8.6.23)

The vanishing of fluxes involving two Poisson brackets and three Hamiltonians guarantees isometry
invariance and Ricci flatness and, as found in [21] , is implied by the [t, t] ⊂ h property of the
Lie-algebra of coset space G/H having symmetric space structure.

The conclusion is that the mere existence of the proposed isometry group (guaranteed by the
symmetric space property) implies the vanishing of the Ricci tensor and vacuum Einstein equations.
The existence of the infinite parameter isometry group in turn follows basically from the condition
guaranteing the existence of the Riemann connection. Therefore vacuum Einstein equations seem to
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arise, not only as a consequence of a physically motivated variational principle but as a mathematical
consistency condition in infinite dimensional Kähler geometry. The flux representation seems to
provide elegant manner to formulate and solve these conditions and isometry invariance implies Ricci
flatness.

8.6.5 Is configuration space metric Hyper Kähler?

The requirement that configuration space integral integration is divergence free implies that configura-
tion space metric is Ricci flat. The so called Hyper-Kähler metrics [118, 49] , [41] are particularly nice
representatives of Ricci flat metrics. In the following the basic properties of Hyper-Kähler metrics are
briefly described and the problem whether Hyper Kähler property could realized in case of M4

+×CP2

is considered.

Hyper-Kähler property

Hyper-Kähler metric is a generalization of the Kähler metric. For Kähler metric metric tensor and
Kähler form correspond to the complex numbers 1 and i and therefore define complex structure in
the tangent space of the manifold. For Hyper Kähler metric tangent space allows three closed Kähler
forms I, J,K, which with respect to the multiplication obey the algebra of quaternionic imaginary
units and have square equal to - 1, which corresponds to the metric of Hyper Kähler space.

I2 = J2 = K2 = −1 IJ = −JI = K, etc. . (8.6.24)

To define Kähler structure one must choose one of the Kähler forms or any linear combination
of I, J and K with unit norm. The group SO(3) rotates different Kähler structures to each other
playing thus the role of quaternion automorphisms. This group acts also as coordinate transformations
in Hyper Kähler manifold but in general fails to act as isometries.

If K is chosen to define complex structure then K is tensor of type (1, 1) in complex coordinates,
I and J being tensors of type (2, 0) + (0, 2). The forms I + iJ and I − iJ are holomorphic and anti-
holomorphic forms of type (2, 0) and (0, 2) respectively and defined standard step operators I+ and
I− of SU(2) algebra. The holonomy group of Hyper-Kähler metric is always Sp(k), k ≤ dimM/4, the
group of k × k unitary matrices with quaternionic entries. This group is indeed subgroup of SU(2k),
so that its generators are traceless and Hyper Kähler metric is therefore Ricci flat.

Hyper Kähler metrics have been encountered in the context of 3-dimensional super symmetric
sigma models: a necessary prerequisite for obtaining N = 4 super-symmetric sigma model is that
target space allows Hyper Kähler metric [41, 13] . In particular, it has been found that Hyper Kähler
property is decisive for the divergence cancelation.

Hyper-Kähler metrics arise also in monopole and instanton physics [49] . The moduli spaces for
monopoles have Hyper Kähler property. This suggests that Hyper Kähler property is characteristic
for the configuration (or moduli) spaces of 4-dimensional Yang Mills types systems. Since YM action
appears in the definition of configuration space metric there are hopes that also in present case the
metric possesses Hyper-Kähler property.

CP2 allows what might be called almost Hyper-Kähler structure known as quaternionion structure.
This means that the Weil tensor of CP2 consists of three components in one-one correspondence with
components of iso-spin and only one of them- the one corresponding to Kähler form- is covariantly
constant. The physical interpretation is in terms of electroweak symmetry breaking selecting one
isospin direction as a favored direction.

Does the ’almost’ Hyper-Kähler structure of CP2 lift to a genuine Hyper-Kähler structure
in configuration space?

The Hyper-Kähler property of configuration space metric does not seem to be in conflict with the
general structure of TGD.

1. In string models the dimension of the ”space-time” is two and Weyl invariance and complex
structures play a decisive role in the theory. In present case the dimension of the space-time is
four and one therefore might hope that quaternions play a similar role. Indeed, Weyl invariance
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implies YM action in dimension 4 and as already mentioned moduli spaces of instantons and
monopoles enjoy the Hyper Kähler property.

2. Also the dimension of the imbedding space is important. The dimension of Hyper Kähler
manifold must be multiple of 4. The dimension of configuration space is indeed infinite multiple
of 8: each vibrational mode giving one ”8”.

3. The complexification of the configuration space in symplectic degrees of freedom is inherited
from S2 × CP2 and CP2 Kähler form defines the symplectic form of configuration space. The
point is that CP2 Weyl tensor has 3 covariantly constant components, having as their square
metric apart from sign. One of them is Kähler form, which is closed whereas the other two are
non-closed forms and therefore fail to define Kähler structure. The group SU(2) of electro-weak
isospin rotations rotate these forms to each other. It would not be too suprising if one could
identify the configuration space counterparts of these forms as representations of quaternionic
units at the level of configuration space. The failure of the Hyper Kähler property at the level of
CP2 geometry is due to the electro-weak symmetry breaking and physical intuition (in particular,
p-adic mass calculations [55] ) suggests that electro-weak symmetry might not be broken at the
level of configuration space geometry).

A possible topological obstruction for the Hyper Kähler property is related to the cohomology
of the configuration space: the three Kähler forms must be co-homologically trivial as is clear from
the following argument. If any of 3 quaternionic 2-form is cohomologically nontrivial then by SO(3)
symmetry rotating Kähler forms to each other all must be co-homologically nontrivial. On the other
hand, electro-weak isospin rotation leads to a linear combination of 3 Kähler forms and the flux
associated with this form is in general not integer valued. The point is however that Kähler form
forms only the (1, 1) part of the symplectic form and must be co-homologically trivial whereas the
zero mode part is same for all complexifications and can be co-homologically nontrivial. The co-
homological non-triviality of the zero mode part of the symplectic form is indeed a nice feature since
it fixes the normalization of the Kähler function apart from a multiplicative integer. On the other
hand the hypothesis that Kähler coupling strength is analogous to critical temperature provides a
dynamical (and perhaps equivalent) manner to fix the normalization of the Kähler function.

Since the properties of the configuration space metric are inherited from M4
+ × CP2 then also

the Hyper Kähler property should be understandable in terms of the imbedding space geometry. In
particular, the complex structure in CP2 vibrational degrees of freedom is inherited from CP2. Hyper
Kähler property implies the existence of a continuum (sphere S2) of complex structures: any linear
superposition of 3 independent Kähler forms defines a respectable complex structure. Therefore also
CP2 should have this continuum of complex structures and this is certainly not the case.

Indeed, if we had instead of CP2 Hyper Kähler manifold with 3 covariantly constant 2-forms
then it would be easy to understand the Hyper Kähler structure of configuration space. Given the
Kähler structure of the configuration space would be obtained by replacing induced Kähler electric
and magnetic fields in the definition of flux factors Q(HA,m) with the appropriate component of the
induced Weyl tensor. CP2 indeed manages to be very nearly Hyper Kähler manifold!

How CP2 fails to be Hyper Kähler manifold can be seen in the following manner. The Weyl tensor
of CP2 allows three independent components, which are self dual as 2-forms and rotated to each other
by vielbein rotations.

W03 = W12 ≡ 2I3 = 2(e0 ∧ e3 + e1 ∧ e2) ,

W01 = W23 ≡ I1 = −e0 ∧ e1 − e2 ∧ e3 ,

W02 = W31 ≡ I2 = −e0 ∧ e2 − e3 ∧ e1 . (8.6.25)

The component I3 is just the Kähler form of CP2. Remaining components are covariantly constant
only with respect to spinor connection and not closed forms so that they cannot be interpreted as
Maxwell fields. Their squares equal however apart from sign with the metric of CP2, when appropriate
normalization factor is used. If these forms were covariantly constant Kähler action defined by any
linear superposition of these forms would indeed define Kähler structure in configuration space and
the group SO(3) would rotate these forms to each other. The projections of the components of
the Weyl tensor on 3-surface define 3 vector fields as their duals and only one of these vector fields
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(Kähler magnetic field) is divergenceless. One might regard these 3 vector fields as counter parts of
quaternion units associated with the broken Hyper Kähler structure, that is quaternion structure.
The interpretation in terms of electro-weak symmetry breaking is obvious.

One cannot exclude the possibility that the symplectic invariance of the induced Kähler electric
field implies that the electric parts of the other two components of induced Weyl tensor are symplectic
invariants. This is the minimum requirement. What is however obvious is that the magnetic parts
cannot be closed forms for arbitrary 3-surfaces at light cone boundary. One counter example is enough
and CP2 type extremals seem to provide this counter example: the components of the induced Weyl
tensor are just the same as they are for CP2 and clearly not symplecticly invariant.

Thus it seems that configuration space could allow Hyper Kähler structure broken by electro-weak
interactions but it cannot be inherited from CP2. An open question is whether it allows genuine
quaternionic structure. Good prospects for obtaining quaternionic structure are provided by the
quaternionic counterpart QP2 of CP2, which is 8-dimensional and has coset space structure QP2 =
Sp(3)/Sp(2)×Sp(1). This choice does not seem to be consistent with the symmetries of the standard
model. Note however that the over all symmetry group is obtained by replacing complex numbers
with quaternions on the matrix representation of the standard model group.

Could different complexifications for M4
+ and light like surfaces induce Hyper Kähler

structure for configuration space?

Quaternionic structure means also the existence of a family of complex structures parameterized by a
sphere S2. The complex structure of the configuration space is inherited from the complex structure
of some light like surface.

In the case of the light cone boundary δM4
+ the complex structure corresponds to the choice

of quantization axis of angular momentum for the sphere rM = constant so that the coordinates
orthogonal to the quantization axis define a complex coordinate: the sphere S2 parameterizes these
choices. Thus there is a temptation to identify the choice of quantization axis with a particular
imaginary unit and Hyper Kähler structure would directly relate to the properties rotation group.
This would bring an additional item to the list of miraculous properties of light like surfaces of 4-
dimensional space-times.

This might relate to the fact that configuration space geometry is not determined by the symplectic
algebra of CP2 localized with respect to the light cone boundary as one might first expect but consists
of M4

+ × CP2 Hamiltonians so that infinitesimal symplectic transformation of CP2 involves always
also M4

+-symplectic transformation. M4
+ Hamiltonians are defined by a function basis generated as

products of the Hamiltonians H3 and H1± iH2 generating rotations with respect to three orthogonal
axes, and two of these Hamiltonians are complexified.

Also the light like 3-surfaces X3
l associated with quaternion conformal invariance are determined

by some 2-surface X2 and the choice of complex coordinates and if X2 is sphere the choices are labelled
by S2. In this case, the presence of quaternion conformal structure would be almost obvious since it
is possible to choose some complex coordinate in several manners and the choices are labelled by S2.
The choice of the complex coordinate in turn fixes 2-surface X2 as a surface for which the remaining
coordinates are constant. X2 need not however be located at the elementary particle horizon unless
one poses additional constraint. One might hope that different choices of X2 resulting in this manner
correspond to all possible different selections of the complex structure and that this choice could fix
uniquely the conformal equivalence class of X2 appearing as argument in elementary particle vacuum
functionals. If X2 has a more complex topology the identification is not so clear but since conformal
algebra SL(2,C) containing algebra of rotation group is involved, one might argue that the choice of
quantization axis also now involves S2 degeneracy. If these arguments are correct one could conclude
that Hyper Kähler structure is implicitly involved and guarantees Ricci flatness of the configuration
space metric.

8.7 Does modified Dirac action define the fundamental action
principle?

Although quantum criticality in principle predicts the possible values of Kähler coupling strength,
one might hope that there exists even more fundamental approach involving no coupling constants
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and predicting even quantum criticality and realizing quantum gravitational holography. The Dirac
determinant associated with the modified Dirac action is an excellent candidate in this respect.

The original working hypothesis was that Dirac determinant defines the vacuum functional of the
theory having interpretation as the exponent of Kähler function of world of classical worlds (WCW)
expressible and that Kähler function reduces to Kähler action for a preferred extremal of Kähler
action.

8.7.1 What are the basic equations of quantum TGD?

A good place to start is to as what might the basic equations of quantum TGD. There are two kinds
of equations at the level of space-time surfaces.

1. Purely classical equations define the dynamics of the space-time sheets as preferred extremals
of Kähler action. Preferred extremals are quantum critical in the sense that second variation
vanishes for critical deformations representing zero modes. This condition guarantees that corre-
sponding fermionic currents are conserved. There is infinite hierarchy of these currents and they
define fermionic counterparts for zero modes. Space-time sheets can be also regarded as hyper-
quaternionic surfaces. What these statements precisely mean has become clear only during this
year. A rigorous proof for the equivalence of these two identifications is still lacking.

2. The purely quantal equations are associated with the representations of various super-conformal
algebras and with the modified Dirac equation. The requirement that there are deformations
of the space-time surface -actually infinite number of them- giving rise to conserved fermionic
charges implies quantum criticality at the level of Kähler action in the sense of critical de-
formations. The precise form of the modified Dirac equation is not however completely fixed
without further input. Quantal equations involve also generalized Feynman rules for M -matrix
generalizing S-matrix to a ”complex square root” of density matrix and defined by time-like
entanglement coefficients between positive and negative energy parts of zero energy states is
certainly the basic goal of quantum TGD.

3. The notion of weak electric-magnetic duality generalizing the notion of electric-magnetic duality
[31] , [18] leads to a detailed understanding of how TGD reduces to almost topological quantum
field theory [31] , [18] . If Kähler current defines Beltrami flow [47] it is possible to find a gauge
in which Coulomb contribution to Kähler action vanishes so that it reduces to Chern-Simons
term. If light-like 3-surfaces and ends of space-time surface are extremals of Chern-Simons
action also effective 2-dimensionality is realized. The condition that the theory reduces to
almost topological QFT and the hydrodynamical character of field equations leads to a detailed
ansatz for the general solution of field equations and also for the solutions of the modified Dirac
equation relying on the notion of Beltrami flow for which the flow parameter associated with
the flow lines defined by a conserved current extends to a global coordinate. This makes the
theory is in well-defined sense completely integrable. Direct connection with massless theories
emerges: every conserved Beltrami currents corresponds to a pair of scalar functions with the
first one satisfying massless d’Alembert equation in the induced metric. The orthogonality of
the gradients of these functions allows interpretation in terms of polarization and momentum
directions. The Beltrami flow property can be also seen as one aspect of quantum criticality
since the conserved currents associated with critical deformations define this kind of pairs.

4. The hierarchy of Planck constants provides also a fresh view to the quantum criticality. The
original justification for the hierarchy of Planck constants came from the indications that Planck
constant could have large values in both astrophysical systems involving dark matter and also
in biology. The realization of the hierarchy in terms of the singular coverings and possibly
also factor spaces of CD and CP2 emerged from consistency conditions. It however seems
that TGD actually predicts this hierarchy of covering spaces. The extreme non-linearity of
the field equations defined by Kähler action means that the correspondence between canonical
momentum densities and time derivatives of the imbedding space coordinates is 1-to-many. This
leads naturally to the introduction of the covering space of CD×CP2, where CD denotes causal
diamond defined as intersection of future and past directed light-cones.
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At the level of WCW there is the generalization of the Dirac equation which can be regarded as a
purely classical Dirac equation. The modified Dirac operators associated with quarks and leptons carry
fermion number but the Dirac equations are well-defined. An orthogonal basis of solutions of these
Dirac operators define in zero energy ontology a basis of zero energy states. The M -matrices defining
entanglement between positive and negative energy parts of the zero energy state define what can be
regarded as analogs of thermal S-matrices. The M-matrices associated with the solution basis of the
WCW Dirac equation define by their orthogonality unitary U-matrix between zero energy states. This
matrix finds the proper interpretation in TGD inspired theory of consciousness. WCW Dirac equation
as the analog of super-Virasoro conditions for the ”gamma fields” of superstring models defining super
counterparts of Virasoro generators was the main focus during earlier period of quantum TGD but
has not received so much attention lately and will not be discussed in this chapter.

8.7.2 Quantum criticality and modified Dirac action

The precise mathematical formulation of quantum criticality has remained one of the basic challenges
of quantum TGD. The question leading to a considerable progress in the problem was simple: Under
what conditions the modified Dirac action allows to assign conserved fermionic currents with the
deformations of the space-time surface? The answer was equally simple: These currents exists only
if these deformations correspond to vanishing second variations of Kähler action - which is what
criticality is. The vacuum degeneracy of Kähler action strongly suggests that the number of critical
deformations is always infinite and that these deformations define an infinite inclusion hierarchy of
super-conformal algebras. This inclusion hierarchy would correspond to a fractal hierarchy of breakings
of super-conformal symmetry generalizing the symmetry breaking hierarchies of gauge theories. These
super-conformal inclusion hierarchies would realize the inclusion hierarchies for hyper-finite factors of
type II1.

Quantum criticality and fermionic representation of conserved charges associated with
second variations of Kähler action

It is rather obvious that TGD allows a huge generalizations of conformal symmetries. The development
of the understanding of conservation laws has been slow. Modified Dirac action provides excellent
candidates for quantum counterparts of Noether charges. Unfortunately, the isometry charges vanish
for Cartan algebras. The only manner to obtain non-trivial isometry charges is to add a direct coupling
to the charges in Cartan algebra as will be found later. This addition involves Chern-Simons Dirac
action so that the original intuition guided by almost TQFT idea was not wrong after all.

1. Conservation of the fermionic current requires the vanishing of the second variation of Kähler
action

1. The modified Dirac action assigns to a deformation of the space-time surface a conserved charge
expressible as bilinears of fermionic oscillator operators only if the first variation of the modified
Dirac action under this deformation vanishes. The vanishing of the first variation for the modified
Dirac action is equivalent with the vanishing of the second variation for the Kähler action. This
can be seen by the explicit calculation of the second variation of the modified Dirac action and
by performing partial integration for the terms containing derivatives of Ψ and Ψ to give a total
divergence representing the difference of the charge at upper and lower boundaries of the causal
diamond plus a four-dimensional integral of the divergence term defined as the integral of the
quantity

∆SD = ΨΓkDαJ
α
k Ψ ,

Jαk =
∂2LK
∂hkα∂h

l
β

δhkβ +
∂2LK
∂hkα∂h

l
δhl . (8.7.1)

Here hkβ denote partial derivative of the imbedding space coordinate with respect to space-time
coordinates. This term must vanish:
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DαJ
α
k = 0 .

The condition states the vanishing of the second variation of Kähler action. This can of course
occur only for preferred deformations of X4. One could consider the possibility that these
deformations vanish at light-like 3-surfaces or at the boundaries of CD. Note that covariant
divergence is in question so that Jαk does not define conserved classical charge in the general
case.

2. It is essential that the modified Dirac equation holds true so that the modified Dirac action
vanishes: this is needed to cancel the contribution to the second variation coming from the
determinant of the induced metric. The condition that the modified Dirac equation is satisfied
for the deformed space-time surface requires that also Ψ suffers a transformation determined by
the deformation. This gives

δΨ = − 1

D
× ΓkJαk Ψ . (8.7.2)

Here 1/D is the inverse of the modified Dirac operator defining the counterpart of the fermionic
propagator.

3. The fermionic conserved currents associated with the deformations are obtained from the stan-
dard conserved fermion current

Jα = ΨΓαΨ . (8.7.3)

Note that this current is conserved only if the space-time surface is extremal of Kähler action:
this is also needed to guarantee Hermiticity and same form for the modified Dirac equation for Ψ
and its conjugate as well as absence of mass term essential for super-conformal invariance [32, 36]
. Note also that ordinary divergence rather only covariant divergence of the current vanishes.

The conserved currents are expressible as sums of three terms. The first term is obtained by
replacing modified gamma matrices with their increments in the deformation keeping Ψ and its
conjugate constant. Second term is obtained by replacing Ψ with its increment δΨ. The third
term is obtained by performing same operation for δΨ.

Jα = ΨΓkJαk Ψ + ΨΓ̂αδΨ + δΨΓ̂αΨ . (8.7.4)

These currents provide a representation for the algebra defined by the conserved charges analo-
gous to a fermionic representation of Kac-Moody algebra [16] .

4. Also conserved super charges corresponding to super-conformal invariance are obtained. The
first class of super currents are obtained by replacing Ψ or Ψ right-handed neutrino spinor or
its conjugate in the expression for the conserved fermion current and performing the above
procedure giving two terms since nothing happens to the covariantly constant right handed-
neutrino spinor. Second class of conserved currents is defined by the solutions of the modified
Dirac equation interpreted as c-number fields replacing Ψ or Ψ and the same procedure gives
three terms appearing in the super current.
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5. The existence of vanishing of second variations is analogous to criticality in systems defined by a
potential function for which the rank of the matrix defined by second derivatives of the potential
function vanishes at criticality. Quantum criticality becomes the prerequisite for the existence
of quantum theory since fermionic anti-commutation relations in principle can be fixed from
the condition that the algebra in question is equivalent with the algebra formed by the vector
fields defining the deformations of the space-time surface defining second variations. Quantum
criticality in this sense would also select preferred extremals of Kähler action as analogs of Bohr
orbits and the the spectrum of preferred extremals would be more or less equivalent with the
expected existence of infinite-dimensional symmetry algebras.

2. About the general structure of the algebra of conserved charges

Some general comments about the structure of the algebra of conserved charges are in order.

1. Any Cartan algebra of the isometry group P × SU(3) (there are two types of them for P
corresponding to linear and cylindrical Minkowski coordinates) defines critical deformations
(one could require that the isometries respect the geometry of CD). The corresponding charges
are conserved but vanish since the corresponding conjugate coordinates are cyclic for the Kähler
metric and Kähler form so that the conserved current is proportional to the gradient of a Killing
vector field which is constant in these coordinates. Therefore one cannot represent isometry
charges as fermionic bilinears. Four-momentum and color quantum numbers are defined for
Kähler action as classical conserved quantities but this is probably not enough. This can be
seen as a problem.

(a) Four-momentum and color Cartan algebra emerge naturally in the representations of super-
conformal algebras. In the case of color algebra the charges in the complement of the Cartan
algebra can be constructed in standard manner as extension of those for the Cartan algebra
using free field representation of Kac-Moody algebras. In string theories four-momentum
appears linearly in bosonic Kac-Moody generators and in Sugawara construction [127] of
super Virasoro generators as bilinears of bosonic Kac-Moody generators and fermionic super
Kac-Moody generators [16] . Also now quantized transversal parts for M4 coordinates could
define a second quantized field having interpretation as an operator acting on spinor fields
of WCW. The angle coordinates conjugate to color isospin and hyper charge take the role
of M4 coordinates in case of CP2.

(b) Somehow one should be able to feed the information about the super-conformal repre-
sentation of the isometry charges to the modified Dirac action by adding to it a term
coupling fermionic current to the Cartan charges in general coordinate invariant and isom-
etry invariant manner. As will be shown later, this is possible. The interpretation is as
measurement interaction guaranteeing also the stringy character of the fermionic propaga-
tors. The values of the couplings involved are fixed by the condition of quantum criticality
assumed in the sense that Kähler function of WCW suffers only a U(1) gauge transforma-
tion K → K + f + f , where f is a holomorphic function of WCW coordinates depending
also on zero modes.

(c) The simplest addition involves the modified gamma matrices defined by a Chern-Simon
term at the light-like wormhole throats and is sum of Chern-Simons Dirac action and
corresponding coupling term linear in Cartan charges assignable to the partonic 2-surfaces
at the ends of the throats. Hence the modified Dirac equation in the interior of the space-
time sheet is not affected and nothing changes as far as quantum criticality in interior is
considered.

2. The action defined by four-volume gives a first glimpse about what one can expect. In this
case modified gamma matrices reduce to the induced gamma matrices. Second variations satisfy
d’Alembert type equation in the induced metric so that the analogs of massless fields are in
question. Mass term is present only if some dimensions are compact. The vanishing of excitations
at light-like boundaries is a natural boundary condition and might well imply that the solution
spectrum could be empty. Hence it is quite possible that four-volume action leads to a trivial
theory.
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3. For the vacuum extremals of Kähler action the situation is different. There exists an infinite
number of second variations and the classical non-determinism suggests that deformations van-
ishing at the light-like boundaries exist. For the canonical imbedding of M4 the equation for
second variations is trivially satisfied. If the CP2 projection of the vacuum extremal is one-
dimensional, the second variation contains a on-vanishing term and an equation analogous to
massless d’Alembert equation for the increments of CP2 coordinates is obtained. Also for the
vacuum extremals of Kähler action with 2-D CP2 projection all terms involving induced Kähler
form vanish and the field equations reduce to d’Alembert type equations for CP2 coordinates.
A possible interpretation is as the classical analog of Higgs field. For the deformations of non-
vacuum extremals this would suggest the presence of terms analogous to mass terms: these kind
of terms indeed appear and are proportional to δsk. M4 degrees of freedom decouple completely
and one obtains QFT type situation.

4. The physical expectation is that at least for the vacuum extremals the critical manifold is
infinite-dimensional. The notion of finite measurement resolution suggests infinite hierarchies of
inclusions of hyper-finite factors of type II1 possibly having interpretation in terms of inclusions
of the super conformal algebras defined by the critical deformations.

5. The properties of Kähler action give support for this expectation. The critical manifold is
infinite-dimensional in the case of vacuum extremals. Canonical imbedding of M4 would corre-
spond to maximal criticality analogous to that encountered at the tip of the cusp catastrophe.
The natural guess would be that as one deforms the vacuum extremal the previously critical
degrees of freedom are transformed to non-critical ones. The dimension of the critical manifold
could remain infinite for all preferred extremals of the Kähler action. For instance, for cosmic
string like objects any complex manifold of CP2 defines cosmic string like objects so that there
is a huge degeneracy is expected also now. For CP2 type vacuum extremals M4 projection is
arbitrary light-like curve so that also now infinite degeneracy is expected for the deformations.

3. Critical super algebra and zero modes

The relationship of the critical super-algebra to configuration space geometry is interesting.

1. The vanishing of the second variation plus the identification of Kähler function as a Kähler action
for preferred extremals means that the critical variations are orthogonal to all deformations of
the space-time surface with respect to the configuration space metric and thus correspond to
zero modes. This conforms with the fact that configuration space metric vanishes identically for
canonically imbedded M4. Zero modes do not seem to correspond to gauge degrees of freedom so
that the super-conformal algebra associated with the zero modes has genuine physical content.

2. Since the action of X4 local Hamiltonians of δM4
×CP2 corresponds to the action in quantum

fluctuating degrees of freedom, critical deformations cannot correspond to this kind of Hamilto-
nians.

3. The notion of finite measurement resolution suggests that the degrees of freedom which are
below measurement resolution correspond to vanishing gauge charges. The sub-algebras of
critical super-conformal algebra for which charges annihilate physical states could correspond to
this kind of gauge algebras.

4. The conserved super charges associated with the vanishing second variations cannot give con-
figuration space metric as their anti-commutator. This would also lead to a conflict with the
effective 2-dimensionality stating that the configuration space line-element is expressible as sum
of contribution coming from partonic 2-surfaces as also with fermionic anti-commutation rela-
tions.

4. Connection with quantum criticality

The vanishing of the second variation for some deformations means that the system is critical, in the
recent case quantum critical. Basic example of criticality is bifurcation diagram for cusp catastrophe.
For some mysterious reason I failed to realize that quantum criticality realized as the vanishing of
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the second variation makes possible a more or less unique identification of preferred extremals and
considered alternative identifications such as absolute minimization of Kähler action which is just the
opposite of criticality. Both the super-symmetry of DK and conservation Dirac Noether currents for
modified Dirac action have thus a connection with quantum criticality.

1. Finite-dimensional critical systems defined by a potential function V (x1, x2, ..) are characterized
by the matrix defined by the second derivatives of the potential function and the rank of sys-
tem classifies the levels in the hierarchy of criticalities. Maximal criticality corresponds to the
complete vanishing of this matrix. Thom’s catastrophe theory classifies these hierarchies, when
the numbers of behavior and control variables are small (smaller than 5). In the recent case the
situation is infinite-dimensional and the criticality conditions give additional field equations as
existence of vanishing second variations of Kähler action.

2. The vacuum degeneracy of Kähler action allows to expect that this kind infinite hierarchy of
criticalities is realized. For a general vacuum extremal with at most 2-D CP2 projection the
matrix defined by the second variation vanishes because Jαβ = 0 vanishes and also the matrix

(Jαk +J α
k )(Jβl+J β

l ) vanishes by the antisymmetry Jαk = −J α
k . Recall that the formulation of

Equivalence Principle in string picture demonstrated that the reduction of stringy dynamics to
that for free strings requires that second variation with respect to M4 coordinates vanish. This
condition would guarantee the conservation of fermionic Noether currents defining gravitational
four-momentum and other Poincare quantum numbers but not those for gravitational color
quantum numbers. Encouragingly, the action of CP2 type vacuum extremals having random
light-like curve as M4 projection have vanishing second variation with respect to M4 coordinates
(this follows from the vanishing of Kähler energy momentum tensor, second fundamental form,
and Kähler gauge current). In this case however the momentum is vanishing.

3. Conserved bosonic and fermionic Noether charges would characterize quantum criticality. In
particular, the isometries of the imbedding space define conserved currents represented in terms
of the fermionic oscillator operators if the second variations defined by the infinitesimal isometries
vanish for the modified Dirac action. For vacuum extremals the dimension of the critical manifold
is infinite: maybe there is hierarchy of quantum criticalities for which this dimension decreases
step by step but remains always infinite. This hierarchy could closely relate to the hierarchy of
inclusions of hyper-finite factors of type II1. Also the conserved charges associated with Super-
symplectic and Super Kac-Moody algebras would require infinite-dimensional critical manifold
defined by the spectrum of second variations.

4. Phase transitions are characterized by the symmetries of the phases involved with the tran-
sitions, and it is natural to expect that dynamical symmetries characterize the hierarchy of
quantum criticalities. The notion of finite quantum measurement resolution based on the hi-
erarchy of Jones inclusions indeed suggests the existence of a hierarchy of dynamical gauge
symmetries characterized by gauge groups in ADE hierarchy [30] with degrees of freedom below
the measurement resolution identified as gauge degrees of freedom.

5. A breakthrough in understanding of the criticality was the discovery that the realization that
the hierarchy of singular coverings of CD × CP2 needed to realize the hierarchy of Planck
constants could correspond directly to a similar hierarchy of coverings forced by the factor that
classical canonical momentum densities correspond to several values of the time derivatives
of the imbedding space coordinates led to a considerable progress if the understanding of the
relationship between criticality and hierarchy of Planck constants [41] , [11] . Therefore the
problem which led to the geometrization program of quantum TGD, also allowed to reduce the
hierarchy of Planck constants introduced on basis of experimental evidence to the basic quantum
TGD. One can say that the 3-surfaces at the ends of CD resp. wormhole throats are critical
in the sense that they are unstable against splitting to nb resp. na surfaces so that one obtains
space-time surfaces which can be regarded as surfaces in na × nb fold covering of CD × CP2.
This allows to understand why Planck constant is effectively replaced with nanb~0 and explains
charge fractionization.
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Preferred extremal property as classical correlate for quantum criticality, holography,
and quantum classical correspondence

The Noether currents assignable to the modified Dirac equation are conserved only if the first variation
of the modified Dirac operator DK defined by Kähler action vanishes. This is equivalent with the
vanishing of the second variation of Kähler action -at least for the variations corresponding to dynam-
ical symmetries having interpretation as dynamical degrees of freedom which are below measurement
resolution and therefore effectively gauge symmetries.

The vanishing of the second variation in interior of X4(X3
l ) is what corresponds exactly to quantum

criticality so that the basic vision about quantum dynamics of quantum TGD would lead directly to a
precise identification of the preferred extremals. Something which I should have noticed for more than
decade ago! The question whether these extremals correspond to absolute minima remains however
open.

The vanishing of second variations of preferred extremals -at least for deformations representing
dynamical symmetries, suggests a generalization of catastrophe theory of Thom, where the rank of
the matrix defined by the second derivatives of potential function defines a hierarchy of criticalities
with the tip of bifurcation set of the catastrophe representing the complete vanishing of this matrix.
In the recent case this theory would be generalized to infinite-dimensional context. There are three
kind of variables now but quantum classical correspondence (holography) allows to reduce the types
of variables to two.

1. The variations of X4(X3
l ) vanishing at the intersections of X4(X3

l ) wth the light-like boundaries
of causal diamonds CD would represent behavior variables. At least the vacuum extremals of
Kähler action would represent extremals for which the second variation vanishes identically (the
”tip” of the multi-furcation set).

2. The zero modes of Kähler function would define the control variables interpreted as classical
degrees of freedom necessary in quantum measurement theory. By effective 2-dimensionality (or
holography or quantum classical correspondence) meaning that the configuration space metric
is determined by the data coming from partonic 2-surfaces X2 at intersections of X3

l with
boundaries of CD, the interiors of 3-surfaces X3 at the boundaries of CDs in rough sense
correspond to zero modes so that there is indeed huge number of them. Also the variables
characterizing 2-surface, which cannot be complexified and thus cannot contribute to the Kähler
metric of configuration space represent zero modes. Fixing the interior of the 3-surface would
mean fixing of control variables. Extremum property would fix the 4-surface and behavior
variables if boundary conditions are fixed to sufficient degree.

3. The complex variables characterizing X2 would represent third kind of variables identified as
quantum fluctuating degrees of freedom contributing to the configuration space metric. Quantum
classical correspondence requires 1-1 correspondence between zero modes and these variables.
This would be essentially holography stating that the 2-D ”causal boundary” X2 of X3(X2)
codes for the interior. Preferred extremal property identified as criticality condition would
realize the holography by fixing the values of zero modes once X2 is known and give rise to
the holographic correspondence X2 → X3(X2). The values of behavior variables determined by
extremization would fix then the space-time surface X4(X3

l ) as a preferred extremal.

4. Clearly, the presence of zero modes would be absolutely essential element of the picture. Quan-
tum criticality, quantum classical correspondence, holography, and preferred extremal property
would all represent more or less the same thing. One must of course be very cautious since the
boundary conditions at X3

l involve normal derivative and might bring in delicacies forcing to
modify the simplest heuristic picture.

5. There is a possible connection with the notion of self-organized criticality [11] introduced to
explain the behavior of systems like sand piles. Self-organization in these systems tends to lead
”to the edge”. The challenge is to understand how system ends up to a critical state, which by
definition is unstable. Mechanisms for this have been discovered and based on phase transitions
occurring in a wide range of parameters so that critical point extends to a critical manifold. In
TGD Universe quantum criticality suggests a universal mechanism of this kind. The criticality
for the preferred extremals of Kähler action would mean that classically all systems are critical
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in well-defined sense and the question is only about the degree of criticality. Evolution could
be seen as a process leading gradually to increasingly critical systems. One must however
distinguish between the criticality associated with the preferred extremals of Kähler action and
the criticality caused by the spin glass like energy landscape like structure for the space of the
maxima of Kähler function.

8.7.3 Handful of problems with a common resolution

Theory building could be compared to pattern recognition or to a solving a crossword puzzle. It is
essential to make trials, even if one is aware that they are probably wrong. When stares long enough
to the letters which do not quite fit, one suddenly realizes what one particular crossword must actually
be and it is soon clear what those other crosswords are. In the following I describe an example in
which this analogy is rather concrete. Let us begin by listing the problems.

1. The condition that modified Dirac action allows conserved charges leads to the condition that
the symmetries in question give rise to vanishing second variations of Kähler action. The in-
terpretation is as quantum criticality and there are good arguments suggesting that the critical
symmetries define an infinite-dimensional super-conformal algebra forming an inclusion hierar-
chy related to a sequence of symmetry breakings closely related to a hierarchy of inclusions
of hyper-finite factors of types II1 and III1. This means an enormous generalization of the
symmetry breaking patterns of gauge theories.

There is however a problem. For the translations of M4 and color hyper charge and isospin
(more generally, any Cartan algebra of P × SU(3)) the resulting fermionic charges vanish. The
trial for the crossword in absence of nothing better would be the following argument. By the
abelianity of these charges the vanishing of quantal representation of four-momentum and color
Cartan charges is not a problem and that classical representation of these charges or their
super-conformal representation is enough.

2. Modified Dirac equation is satisfied in the interior of space-time surface always. This means that
one does not obtain off-mass shell propagation at all in 4-D sense. Effective 2-dimensionality
suggests that off mass shell propagation takes place along wormhole throats. The reduction to
almost topological QFT with Kähler function reducing to Chern-Simonst type action implied
by the weak form of electric-magnetic duality and a proper gauge choice for the induced Kähler
gauge potential implies effective 3-dimensionality at classical level. This inspires the question
whether Chern-Simons type action resulting from an instanton term could define the modified
gamma matrices appearing in the 3-D modified Dirac action associated with wormhole throats
and the ends of the space-time sheet at the boundaries of CD.

The assumption that modified Dirac equation is satisfied also at the ends and wormhole throats
would realize effective 2-dimensionality as conditions on the boundary values of the 4-D Dirac
equation but would would not allow off mass shell propagation. Therefore one could argue that
effective 2-dimensionality in this sense holds true only for incoming and outgoing particles.

The reduction of Kähler action to Chern-Simons term together with effective 2-dimensionality
suggests that Kähler function corresponds to an extremum of this action with a constraint term
due to the weak form of electric-magnetic duality. Without this term the extrema of Chern-
Simons action have 2-D CP2 projection not consistent with the weak form of electric-magnetic
duality. The extrema are not maxima of Kähler function: they are obtained by varying with
respect to tangent space data of the partonic 2-surfaces. Lagrange multiplier term induces also
to the modified gamma matrices a contribution which is of the same general form as for any
general coordinate invariant action.

3. Quantum classical correspondence requires that the geometry of the space-time sheet should
correlate with the quantum numbers characterizing positive (negative) energy part of the quan-
tum state. One could argue that by multiplying WCW spinor field by a suitable phase factor
depending on the charges of the state, the correspondence follows from stationary phase approx-
imation. This crossword looks unconvincing. A more precise connection between quantum and
classical is required.
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4. In quantum measurement theory classical macroscopic variables identified as degrees of freedom
assignable to the interior of the space-time sheet correlate with quantum numbers. Stern Gerlach
experiment is an excellent example of the situation. The generalization of the imbedding space
concept by replacing it with a book like structure implies that imbedding space geometry at
given page and for given causal diamond (CD) carries information about the choice of the
quantization axes (preferred plane M2 of M4 resp. geodesic sphere of CP2 associated with
singular covering/factor space of CD resp. CP2 ). This is a big step but not enough. Modified
Dirac action as such does not seem to provide any hint about how to achieve this correspondence.
One could even wonder whether dissipative processes or at least the breaking of T and CP
characterizing the outcome of quantum jump sequence should have space-time correlate. How
to achieve this?

Each of these problems makes one suspect that something is lacking from the modified Dirac
action: there should exist an elegant manner to feed information about quantum numbers of the state
to the modified Dirac action in turn determining vacuum functional as an exponent Kähler function
identified as Kähler action for the preferred extremal assumed to be dictated by by quantum criticality
and equivalently by hyper-quaternionicity.

This observation leads to what might be the correct question. Could a general coordinate invariant
and Poincare invariant modification of the modified Dirac action consistent with the vacuum degen-
eracy of Kähler action allow to achieve this information flow somehow? In the following one manner
to achieve this modification is discussed. It must be however emphasized that I have considered many
alternatives and the one discussed below finds its justification only from the fact that it is the simplest
one found hitherto.

The identification of the measurement interaction term

The idea is simple: add to the modified Dirac action a term which is analogous to the Dirac action in
M4 × CP2. One can consider two options according to whether the term is assigned with interior or
with a 3-D light-like 3-surface and last years have been continual argumentation about which option
is the correct one.

1. The additional term would be essentially the analog of the ordinary Dirac action at the imbedding
space level.

Sint =
∑
A

QA

∫
ΨgABjBαΓ̂αΨ

√
gd4x ,

gAB = jkAhklj
l
B , gABgBC = δAC ,

jBα = jkBhkl∂αh
l . (8.7.5)

The sum is over isometry charges QA interpreted as quantal charges and jAk denotes the Killing
vector field of the isometry. gAB is the inverse of the tensor gAB defined by the local inner
products of Killing vectors fields in M4 and CP2. The space-time projections of the Killing
vector fields jBα have interpretation as classical color gauge potentials in the case of SU(3). In
M4 degrees of freedom and for Cartan algebra of SU(3) jBα reduce to the gradients of linear
M4 coordinates in case of translations. Modified gamma matrices could be assigned to Kähler
action or its instanton term or with Chern-Simons action.

2. The added term containing quantal charges must make sense in the modified Dirac equation.
This requires that the physical state is an eigenstate of momentum and color charges. This
allows only color hyper-charge and color isospin so that there is no hope of obtaining exactly
the stringy formula for the propagator. The modified Dirac operator is given by

D = D +Dint = Γ̂αDα + Γ̂α
∑
A

QAg
ABjBα

= Γ̂α(Dα + ∂αφ) , ∂αφ =
∑
A

QAg
ABjBα . (8.7.6)
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The conserved fermionic isometry currents are

JAα =
∑
B

QBΨgBCjkChklj
l
AΓ̂αΨ = QAΨΓ̂αΨ . (8.7.7)

Here the sum is restricted to a Cartan sub-algebra of Poincare group and color group.

3. An important restriction is that by four-dimensionality of M4 and CP2 the rank of gAB is 4 so
that gAB exists only when one considers only four conserved charges. In the case of M4 this is
achieved by a restriction to translation generators QA = pA. gAB reduces to Minkowski metric
and Killing vector fields are constants. The Cartan sub-algebra could be however replaced by
any four commuting charges in the case of Poincare algebra (second one corresponds to time
translation plus translation, boost and rotation in given direction). In the case of SU(3) one must
restrict the consideration either to U(2) sub-algebra or its complement. CP2 = SU(3)/SU(2)
decomposition would suggest the complement as the correct choice. One can indeed build the
generators of U(2) as commutators of the charges in the complement. On the other hand, Cartan
algebra is enough in free field construction of Kac-Moody algebras.

4. What is remarkable that for the Cartan algebra of M4 × SU(3) the measurement interaction
term is equivalent with the addition of gauge part ∂αφ of the induced Kähler gauge potential Aα.
This property might hold true for any measurement interaction term. This also suggests that the
change in Kähler function is only the transformation Aα → Aα + ∂αφ, ∂αφ =

∑
AQAg

ABjBα.

5. Recall that the φ for U(1) gauge transformations respecting the vanishing of the Coulomb
interaction term of Kähler action [41] , [11] the current jαKφ is conserved, which implies that the
change of the Kähler action is trivial. These properties characterize the gauge transformations
respecting the gauge in which Coulombic interaction term of the Kähler action vanishes so
that Kähler action reduces to 3-dimensional generalized Chern-Simons term if the weak form of
electric-magnetic duality holds true guaranteeing among other things that the induced Kähler
field is not too singular at the wormhole throats [41] , [11] . The scalar function assignable to the
measurement interaction terms does not have this property and this is what is expected since it
must change the value of the Kähler function and therefore affect the preferred extremal.

Concerning the precise form of the modified Dirac action the basic clue comes from the observation
that the measurement interaction term corresponds to the addition of a gauge part to the induced CP2

Kähler gauge potential Aα. The basic question is what part of the action one assigns the measurement
interaction term.

1. One could define the measurement interaction term using either the four-dimensional instanton
term or its reduction to Chern-Simons terms. The part of Dirac action defined by the instanton
term in the interior does not reduce to a 3-D form unless the Dirac equation defined by the
instanton term is satisfied : this cannot be true. Hence Chern-Simons term is the only possibility.

The classical field equations associated with the Chern-Simons term cannot be assumed since
they would imply that the CP2 projection of the wormhole throat and space-like 3-surface are
2-dimensional. This might hold true for space-like 3-surfaces at the ends of CD and incoming
and outgoing particles but not for off mass shell particles. This is however not a problem since
DαΓ̂αC−S for the modified gamma matrices for Chern-Simons action does not contain second
derivatives. This is due to the topological character of this term. For Kähler action second
derivatives are present and this forces extremal property of Kähler action in the modified Dirac
Kähler action so that classical physics results as a consistency condition.

2. If one assigns measurement interaction term to both DK and DC−S the measurement interaction
corresponds to a mere gauge transformation for ASα and is trivial. Therefore it seems that one
must choose between DK or DC−S . At least formally the measurement interaction term asso-
ciated with DK is gauge equivalent with its negative DC−S . The addition of the measurement
interaction to DK changes the basis for the 4-D induced spinors by the phase exp(−iQKφ) and
therefore also the basis for the generalized eigenstates of DC−S and this brings in effectively the
measurement interaction term affecting the Dirac determinant.
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3. The definition of Dirac determinant should be in terms of Chern-Simons action induced by the
instanton term and identified as a product of the generalized eigenvalues of this operator. The
modified Dirac equation for Ψ is consistent with that for its conjugate if the coefficient of the
instanton term is real and one uses the Dirac action Ψ(D→ − D←)Ψ giving modified Dirac
equation as

DC−SΨ +
1

2
(DαΓ̂αC−S)Ψ = 0 . (8.7.8)

As noticed, the divergence of gamma matrices does not contain second derivatives in the case of
Chern-Simons action. In the case of Kähler action they occur unless field equations equivalent
with the vanishing of the divergence term are satisfied.

Also the fermionic current is conserved in this case, which conforms with the idea that fermions
flow along the light-like 3-surfaces. If one uses the action ΨD→Ψ, Ψ does not satisfy the Dirac
equation following from the variational principle and fermion current is not conserved. Also if
the Chern-Simons term is imaginary - as a naive idea about dissipation would suggest- the Dirac
equation fails to be consistent with the conjugation.

4. Off mass shell states appear in the lines of the generalized Feynman diagrams and for these
DC−S cannot annihilate the spinor field. The generalized eigen modes lf DC−S should be such
that one obtains the counterpart of Dirac propagator which is purely algebraic and does not
therefore depend on the coordinates of the throat. This is satisfied if the generalized eigenvalues
are expressible in terms of covariantly constant combinations of gamma matrices and here only
M4 gamma matrices are possible. Therefore the eigenvalue equation reqards as

DΨ = λkγkΨ , D = DC−S +DαΓ̂αC−S , DC−S = Γ̂αC−SDα .

(8.7.9)

Here the covariant derivatives Dα contain the measurement interaction term as an apparent
gauge term. Covariant constancy allows to take the square of this equation and one has

(D2 +
[
D,λkγk

]
)Ψ+ = λkλkΨ . (8.7.10)

The commutator term is analogous to magnetic moment interaction. The generalized eigenvalues
correspond to λ =

√
λkλk and Dirac determinant is defined as a product of the eigenvalues.

λ is completely analogous to mass. For incoming lines this mass would vanish so that all
incoming particles irrespective their actual quantum numbers would be massless in this sense
and the propagator is indeed that for a massless particle. Note that the eigen modes define
the boundary values for the solutions of DKΨ = 0 so that the values of λ indeed define the
counterpart of the momentum space.

This transmutation of massive particles to effectively massless ones might make possible the
application of the twistor formalism as such in TGD framework [96] . N = 4 SUSY is one
of the very few gauge theory which might be UV finite but it is definitely unphysical due to
the masslessness of the basic quanta. Could the resolution of the interpretational problems
be that the four-momenta appearing in this theory do not directly correspond to the observed
four-momenta?
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Objections

The alert reader has probably raised several critical questions. Doesn’t the need to solve λk as func-
tions of incoming quantum numbers plus the need to construct the measurement interactions makes
the practical application of the theory hopelessly difficult? Could the resulting pseudo-momentum
λk correspond to the actual four-momentum? Could one drop the measurement interaction term
altogether and assume that the quantum classical correspondence is through the identification of the
eigenvalues as the four-momenta of the on mass shell particles propagating at the wormhole throats?
Could one indeed assume that the momenta have a continuous spectrum and thus do not depend on
the boundary conditions at all? Usually the thinking is just the opposite and in the general case would
lead to to singular eigen modes.

1. Only the information about four-momentum would be fed into the space-time geometry. TGD
however allows much more general measurement interaction terms and it would be very strange
if the space-time geometry would not correlate also with the other quantum numbers. Mass
formulas would of course contain information also about other quantum numbers so that this
claim is not quite justified.

2. Number theoretic considerations and also the construction of octonionic variant of Dirac equa-
tion [84] , [16] force the conclusion that the spectrum of pseudo four-momentum is restricted
to a preferred plane M2 of M4 and this excludes the interpretation of λk as a genuine four-
momentum. It also improves the hopes that the sum over pseudo-momenta does not imply
divergences.

3. Dirac determinant would depend on the mass spectrum only and could not be identified as
exponent of Kähler function. Note that the original guideline was the dream about stringy
propagators. This is achieved for λAλ

A = n in suitable units. This spectrum would of course
also imply that Dirac determinant defined in terms of ζ function regularization is independent
of the space-time surface and could not be identified with the exponent of Kähler function. One
must of course take the identification of exponent of Kähler function as Dirac determinant as an
additional conjecture which is not necessary for the calculation of Kähler function if the weak
form of electric-magnetic duality is accepted.

4. All particles would behave as massless particles and this would not be consistent with the
proposed Feynman diagrammatics inspired by zero energy ontology. Since wormhole throats
carry on mass shell particles with positive or negative energy so that the net momentum can be
also space-like propagators diverge for massless particles. One might overcome this problem by
assuming small thermal mass (from p-adic thermodynamics [55] ) and this is indeed assumed to
reduce the number of generalized Feynman diagrams contributing to a given reaction to finite
number.

Second objection of the skeptic reader relates to the delicacies of U(1) gauge invariance. The
modified Dirac action seems to break gauge symmetries and this breaking of gauge symmetry is
absolutely essential for the dependence of the Dirac determinant on the quantum numbers. It however
seems that this breaking of gauge invariance is only apparent.

1. One must distinguish between genuine U(1) gauge transformations carried out for the induced
Kähler gauge potential Aα and apparent gauge transformations of the Kähler gauge potential
Ak of S2 × CP2 induced by symplectic transformations deforming the space-time surface and
affect also induced metric. This delicacy of U(1) gauge symmetry explains also the apparent
breaking of U(1) gauge symmetry of Chern-Simons Dirac action due to the presence of explicit
terms Ak and Aα.

2. CP2 Kähler gauge potential is obtained in complex coordinates from Kähler function as (Kξi ,Kξi
) =

(∂ξiK,−∂ξiK). Gauge transformations correspond to the additions K → K+f+f , where f is a
holomorphic function. Kähler gauge potential has a unique gauge in which the Kähler function
of CP2 is U(2) invariant and contains no holomorphic part. Hence Ak is defined in a preferred
gauge and is a gauge invariant quantity in this sense. Same applies to S2 part of the Kähler
potential if present.
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3. Aα should be also gauge invariant under gauge transformation respecting the vanishing of
Coulombic interaction energy. The allowed gauge transformations Aα → Aα + ∂αφ must satisfy
Dα(jαKφ) = 0. If the scalar function φ reduces to constant at the wormhole throats and at the
ends of the space-time surface DC−S is gauge invariant. The gauge transformations for which φ
does not satisfy this condition are identified as representations of critical deformations of space-
time surface so that the change of Aα would code for this kind of deformation and indeed affect
the modified Dirac operator and Kähler function (the change would be due to the change of zero
modes).

Some details about the modified Dirac equation defined by Chern-Simons action

First some general comments about DC−S are in order.

1. Quite generally, there is vacuum avoidance in the sense that Ψ must vanish in the regions where
the modified gamma matrices vanish. A physical analogy for the system consider is a charged
particle in an external magnetic field. The effective metric defined by the anti-commutators of
the modified gamma matrices so that standard intuitions might not help much. What one would
naively expect would be analogs of bound states in magnetic field localized into regions inside
which the magnetic field is non-vanishing.

2. If only CP2 Kähler form appears in the Kähler action, the modified Dirac action defined by
the Chern-Simons term is non-vanishing only when the dimension of the CP2 projection of the
3-surface is D(CP2) ≥ 2 and the induced Kähler field is non-vanishing. This conforms with
the properties of Kähler action. The solutions of the modified Dirac equation with a vanishing
eigenvalue λ would naturally correspond to incoming and outgoing particles.

3. D(CP2) ≤ 2 is apparently inconsistent with the weak form of electric-magnetic duality requiring
D(CP2) = 3. The conclusion is wrong: the variations of Chern-Simons action are subject to the
constraint that electric-magnetic duality holds true expressible in terms of Lagrange multiplier
term

∫
Λα(Jnα −KεnαβγJβγ)

√
g4d

3x . (8.7.11)

This gives a constraint force to the field equations and also a dependence on the induced 4-metric
so that one has only almost topological QFT. This term also guarantees the M4 part of WCW
Kähler metric is non-trivial. The condition that the ends of space-time sheet and wormhole
throats are extrema of Chern-Simons action subject to the electric-magnetic duality constraint
is strongly suggested by the effective 2-dimensionality.

4. Electric-magnetic duality constraint gives an additional term to the Dirac action determined
by the Lagrange multiplier term. This term gives an additional contribution to the modified
gamma matrices having the same general form as coming from Kähler action and Chern-Simons
action. In the following this term will not be considered. For the extremals it only affects the
modified gamma matrices and leaves the general form of solutions unchanged.

In absence of the constraint from the weak form of electric-magnetic duality the explicit expression
of DC−S is given by

D = Γ̂µDµ +
1

2
DµΓ̂µ ,

Γ̂µ =
∂LC−S
∂µhk

Γk = εµαβ
[
2Jkl∂αh

lAβ + JαβAk
]

ΓkDµ ,

DµΓ̂µ = BαK(Jkα + ∂αAk) ,

BαK = εαβγJβγ , Jkα = Jkl∂αs
l , ε̂αβγ = εαβγ

√
g3 . (8.7.12)
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Note ε̂αβγ = does not depend on the induced metric.
The extremals of Chern-Simons action without constraint term satisfy

BαK(Jkl + ∂lAk)∂αh
l = 0 , BαK = εαβγJβγ . (8.7.13)

For a non-vanishing Kähler magnetic field Bα these equations hold true when CP2 projection is
2-dimensional. This implies a vanishing of Chern-Simons action in absence of the constraint term
realizing electric-magnetic duality, which is therefore absolutely essential in order for having a non-
vanishing WCW metric.

Consider now the situation in more detail.

1. Suppose that one can assign a global coordinate to the flow lines of the Kähler magnetic field.
In this case one might hope that ordinary intuitions about motion in constant magnetic field
might be helpful. The repetition of the discussion of [41] , [11] leads to the condition B∧dB = 0
implying that a Beltrami flow for which current flows along the field lines and Lorentz forces
vanishes is in question. This need not be the generic case.

2. With this assumption the modified Dirac operator reduces to a one-dimensional Dirac operator

D = ε̂rαβ
[
2Jkl∂αh

lAβ + JαβAk
]

ΓkDr . (8.7.14)

3. The general solutions of the modified Dirac equation is covariantly constant with respect to the
coordinate r:

DrΨ = 0 . (8.7.15)

The solution to this condition can be written immediately in terms of a non-integrable phase
factor Pexp(i

∫
Ardr), where integration is along curve with constant transversal coordinates.

If Γ̂v is light-like vector field also Γ̂vΨ0 defines a solution of DC−S . This solution corresponds
to a zero mode for DC−S and does not contribute to the Dirac determinant. Note that the
dependence of these solutions on transversal coordinates of X3

l is arbitrary.

4. The formal solution associated with a general eigenvalue can be constructed by integrating the
eigenvalue equation separately along all coordinate curves. This makes sense if r indeed assigned
to light-like curves indeed defines a global coordinate. What is strange that there is no correlation
between the behaviors with respect longitudinal coordinate and transversal coordinates. System
would be like a collection of totally uncorrelated point like particles reflecting the flow of the
current along flux lines. It is difficult to say anything about the spectrum of the generalized
eigenvalues in this case: it might be that the boundary conditions at the ends of the flow lines
fix the allowed values of λ. Clearly, the Beltrami flow property is what makes this case very
special.

A connection with quantum measurement theory

It is encouraging that isometry charges and also other charges could make themselves visible in the
geometry of space-time surface as they should by quantum classical correspondence. This suggests an
interpretation in terms of quantum measurement theory.

1. The interpretation resolves the problem caused by the fact that the choice of the commuting
isometry charges is not unique. Cartan algebra corresponds naturally to the measured observ-
ables. For instance, one could choose the Cartan algebra of Poincare group to consist of energy
and momentum, angular momentum and boost (velocity) in particular direction as generators
of the Cartan algebra of Poincare group. In fact, the choices of a preferred plane M2 ⊂ M4

and geodesic sphere S2 ⊂ CP2 allowing to fix the measurement sub-algebra to a high degree
are implied by the replacement of the imbedding space with a book like structure forced by the
hierarchy of Planck constants. Therefore the hierarchy of Planck constants seems to be required
by quantum measurement theory. One cannot overemphasize the importance of this connection.
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2. One can add similar couplings of the net values of the measured observables to the currents
whose existence and conservation is guaranteed by quantum criticality. It is essential that one
maps the observables to Cartan algebra coupled to critical current characterizing the observable
in question. The coupling should have interpretation as a replacement of the induced Kähler
gauge potential with its gauge transform. Quantum classical correspondence encourages the
identification of the classical charges associated with Kähler action with quantal Cartan charges.
This would support the interpretation in terms of a measurement interaction feeding information
to classical space-time physics about the eigenvalues of the observables of the measured system.
The resulting field equations remain second order partial differential equations since the second
order partial derivatives appear only linearly in the added terms.

3. What about the space-time correlates of electro-weak charges? The earlier proposal explains this
correlation in terms of the properties of quantum states: the coupling of electro-weak charges to
Chern-Simons term could give the correlation in stationary phase approximation. It would be
however very strange if the coupling of electro-weak charges with the geometry of the space-time
sheet would not have the same universal description based on quantum measurement theory as
isometry charges have.

(a) The hint as how this description could be achieved comes from a long standing un-answered
question motivated by the fact that electro-weak gauge group identifiable as the holonomy
group of CP2 can be identified as U(2) subgroup of color group. Could the electro-weak
charges be identified as classical color charges? This might make sense since the color
charges have also identification as fermionic charges implied by quantum criticality. Or
could electro-weak charges be only represented as classical color charges by mapping them
to classical color currents in the measurement interaction term in the modified Dirac action?
At least this question might make sense.

(b) It does not make sense to couple both electro-weak and color charges to the same fermion
current. There are also other fundamental fermion currents which are conserved. All the
following currents are conserved.

Jα = ΨOΓ̂αΨ

O ∈ {1 , J ≡ JklΣkl , ΣAB , ΣABJ} . (8.7.16)

Here Jkl is the covariantly constant CP2 Kähler form and ΣAB is the (also covariantly)
constant sigma matrix of M4 (flatness is absolutely essential).

(c) Electromagnetic charge can be expressed as a linear combination of currents corresponding
to O = 1 and O = J and vectorial isospin current corresponds to J . It is natural to couple
of electromagnetic charge to the the projection of Killing vector field of color hyper charge
and coupling it to the current defined by Oem = a+bJ . This allows to interpret the puzzling
finding that electromagnetic charge can be identified as anomalous color hyper-charge for
induced spinor fields made already during the first years of TGD. There exist no conserved
axial isospin currents in accordance with CVC and PCAC hypothesis which belong to the
basic stuff of the hadron physics of old days.

(d) Color charges would couple naturally to lepton and quark number current and the U(1)
part of electro-weak charges to the n = 1 multiple of quark current and n = 3 multiple of
the lepton current (note that leptons resp. quarks correspond to t = 0 resp. t = ±1 color
partial waves). If electro-weak resp. couplings to H-chirality are proportional to 1 resp.
Γ9, the fermionic currents assigned to color and electro-weak charges can be regarded as
independent. This explains why the possibility of both vectorial and axial couplings in 8-D
sense does not imply the doubling of gauge bosons.

(e) There is also an infinite variety of conserved currents obtained as the quantum critical
deformations of the basic fermion currents identified above. This would allow in principle
to couple an arbitrary number of observables to the geometry of the space-time sheet by
mapping them to Cartan algebras of Poincare and color group for a particular conserved
quantum critical current. Quantum criticality would therefore make possible classical space-
time correlates of observables necessary for quantum measurement theory.
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(f) The coupling constants associated with the deformations would appear in the couplings.
Quantum criticality (K → K + f + f condition) should predict the spectrum of these
couplings. In the case of momentum the coupling would be proportional to

√
G/~0= kR/~0

and k ∼ 211 should follow from quantum criticality. p-Adic coupling constant evolution
should follow from the dependence on the scale of CD coming as powers of 2.

4. Quantum criticality implies fluctuations in long length and time scales and it is not surprising
that quantum criticality is needed to produce a correlation between quantal degrees of free-
dom and macroscopic degrees of freedom. Note that quantum classical correspondence can be
regarded as an abstract form of entanglement induced by the entanglement between quantum
charges QA and fermion number type charges assignable to zero modes.

5. Space-time sheets can have an arbitrary number of wormhole contacts so that the interpretation
in terms of measurement theory coupling short and long length scales suggests that the measure-
ment interaction terms are localizable at the wormhole throats. This would favor Chern-Simons
term or possibly instanton term if reducible to Chern-Simons terms. The breaking of CP and
T might relate to the fact that state function reductions performed in quantum measurements
indeed induce dissipation and breaking of time reversal invariance.

6. The experimental arrangement quite concretely splits the quantum state to a quantum su-
perposition of space-time sheets such that each eigenstate of the measured observables in the
superposition corresponds to different space-time sheet already before the realization of state
function reduction. This relates interestingly to the question whether state function reduction
really occurs or whether only a branching of wave function defined by WCW spinor field takes
place as in multiverse interpretation in which different branches correspond to different observers.
TGD inspired theory consciousness requires that state function reduction takes place. Maybe
multiversalist might be able to find from this picture support for his own beliefs.

7. One can argue that ”free will” appears not only at the level of quantum jumps but also as the
possibility to select the observables appearing in the modified Dirac action dictating in turn
the Kähler function defining the Kähler metric of WCW representing the ”laws of physics”.
This need not to be the case. The choice of CD fixes M2 and the geodesic sphere S2: this
does not fix completely the choice of the quantization axis but by isometry invariance rotations
and color rotations do not affect Kähler function for given CD and for a given type of Cartan
algebra. In M4 degrees of freedom the possibility to select the observables in two manners
corresponding to linear and cylindrical Minkowski coordinates could imply that the resulting
Kähler functions are different. The corresponding Kähler metrics do not differ if the real parts
of the Kähler functions associated with the two choices differ by a term f(Z) + f(Z), where Z
denotes complex coordinates of WCW, the Kähler metric remains the same. The function f can
depend also on zero modes. If this is the case then one can allow in given CD superpositions
of WCW spinor fields for which the measurement interactions are different. This condition
is expected to pose non-trivial constraints on the measurement action and quantize coupling
parameters appearing in it.

New view about gravitational mass and matter antimatter asymmetry

The physical interpretation of the additional term in the modified Dirac action might force quite a
radical revision of the ideas about matter and antimatter.

1. The term pA∂αm
A contracted with the fermion current is analogous to a gauge potential cou-

pling to fermion number. Since the additional terms in the modified Dirac operator induce
stringy propagation, a natural interpretation of the coupling to the induced spinor fields is in
terms of gravitation. One might perhaps say that the measurement of four momentum in-
duces gravitational interaction. Besides momentum components also color charges take the role
of gravitational charges. As a matter fact, any observable takes this role via coupling to the
projections of Killing vector fields of Cartan algebra. The analogy of color interactions with
gravitational interactions is indeed one of the oldest ideas in TGD.



568 Chapter 8. The Geometry of the World of Classical Worlds

2. The coupling to four-momentum is through fermion number (both quark number and lepton
number). For states with a vanishing fermion number isometry charges therefore vanish. In
this framework matter antimatter asymmetry would be due to the fact that matter (antimatter)
corresponds to positive (negative) energy parts of zero energy states for massive systems so that
the contributions to the net gravitational four-momentum are of same sign. Could antimatter
be unobservable to us because it resides at negative energy space-time sheets? As a matter fact,
I proposed already years ago that gravitational mass is essentially the magnitude of the inertial
mass but gave up this idea.

3. Bosons do not couple at all to gravitation if they are purely local bound states of fermion and
anti-fermion at the same space-time sheet (say represented by generators of super Kac-Moody
algebra). Therefore the only possible identification of gauge bosons is as wormhole contacts.
If the fermion and anti-fermion at the opposite throats of the contact correspond to positive
and negative energy states the net gravitational energy receives a positive contribution from
both sheets. If both correspond to positive (negative) energy the contributions to the net four-
momentum have opposite signs. It is not yet clear which identification is the correct one.

8.7.4 Generalized eigenvalues of DC−S and General Coordinate Invariance

The fixing of light-like 3-surface to be the wormhole throat at which the signature of induced metric
changes from Minkowskian to Euclidian corresponds to a convenient fixing of gauge. General Coordi-
nate Invariance however requires that any light-like surface Y 3

l parallel to X3
l in the slicing is equally

good choice. In particular, it should give rise to same Kähler metric but not necessarily the same
exponent of Kähler function identified as the product of the generalized eigenvalues of DC,S at Y 3

l .
General Coordinate Invariance requires that the components of Kähler metric of configuration

space defined in terms of Kähler function as

Gkl = ∂k∂lK =
∑
i

∂k∂lλi

remain invariant under this flow. Here complex coordinate are of course associated with the configu-
ration space. This is the case if the flow corresponds to the addition of sum of holomorphic function
f(z) and its conjugate f(z)) which is anti-holomorphic function to K. This boils down to the scaling
of eigenvalues λi by

λi → exp(fi(z) + fi(z))λi . (8.7.17)

If the eigenvalues are interpreted as vacuum conformal weights, general coordinate transformations
correspond to a spectral flow scaling the eigenvalues in this manner. This in turn would induce spectral
flow of ground state conformal weights if the squares of λi correspond to ground state conformal
weights.

8.8 Representations for the configuration space gamma ma-
trices in terms of super-symplectic charges at light cone
boundary

During years I have considered several variants for the representation of WCW gamma matrices and
each of these proposals has had some weakness.

1. One question has been whether the Noether currents assignable to WCW Hamiltonians should
play any role in the construction or whether one can use only the generalization of flux Hamil-
tonians. Magnetic flux Hamiltonians do not refer to the space-time dynamics implying genuine
2-dimensionality, which is a catastrophe. If the sum of the magnetic and electric flux Hamil-
tonians and the weak form of self duality is assumed effective 2-dimensionality is achieved.
The challenge is to identify the super-partners of the flux Hamiltonians and postulate correct
anti-commutation relations for the induced spinor fields to achieve anti-commutation to flux
Hamiltonians.
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2. In the original proposal for WCW gamma matrices the covariantly constant right handed spinors
played a key role. This led to interpretational problems with quarks. Are they needed at all or
do leptons and quarks define somehow equivalent representations? I discovered only recently a
brutally simple but deadly objection against this approach: the resulting WCW gamma matrices
do not generate all WCW spinors from Fock vacuum. Therefore all modes of the induced spinor
fields must be used.

The latter objection forced to realize that nothing is changed if one replaces the covariantly constant
right handed neutrino with the collection of quark spinor modes qn resp. leptonic spinor modes Ln
multiplied by the contractions JA+ = jAkΓk resp. its conjugate JA− = jAkΓk. It is essential that
only of these contractions is used for a given H-chirality.

1. If the anti-commutator of the spinor fields is or form J = Jαβε
αβδ2(x, y) at X2 for magnetic

flux Hamiltonians and appropriate generalization of this fro the sum of magnetic and electric

flux Hamiltonians, the ”half-Poisson bracket” ∂kHAJ
kl∂lHB from the quark spinor field and

its conjugate as anti-commutator from the leptonic spinor field can combine to the full Poisson
bracket if the remaining factors are identical.

2. This happens if the quark modes and lepton-like modes are in 1-1 correspondence and the
contractions of the eigenmodes resulting in the contraction satisfy qmγ

0qn = Lmγ
0Ln = Φmn.

The resulting Hamiltonians define an X2-local algebra: that this extension is needed became
obvious already earlier. A stronger condition is that the spinors can be expressed in terms of
scalar function bases {Φm} so that one would have qm,i = {Φm}qi and Lm,i = {Φm}Li so that
one would assign to the super-currents the local Hamiltonians ΦmHA.

3. One could of course still argue that it is questionable to use sum of quark and lepton gamma
matrices since this the resulting objects to not have a well defined fermion number and cannot
be used to generate physical states from vacuum. How seriously this argument should be taken
is not clear to me at this moment. One could of course consider also a scenario in which one
divides leptonic (or quark) modes to two classes analogous to quark and lepton modes and uses
JA+

resp. JA− for these two classes.

In any case, the recent view is that all modes of the induced spinor fields must be used, that
lepton-quark degeneracy is absolutely essential for the construction of WCW geometry, and that the
original super-symmetrization of the flux Hamiltonians combined with weak electric-magnetic duality
is the correct approach. There are also fermionic Noether charges and their super counterparts implied
by the criticality but these can be assigned with zero modes.

This section represents both the earlier version of the construction of configuration gamma ma-
trices and the construction introducing explicitly the notion of finite measurement resolution. The
motivation for the latter option is that if the number the generalized eigen modes of modified Dirac
operator is finite, strictly local anti-commutation relations fail unless one restricts the set of points
included to that corresponding to number theoretic braid. In the following integral expressions for
configuration space Hamiltonians and their super-counterparts are derived first. After that the moti-
vations for replacing integrals with sums are discussed and the expressions for Hamiltonians and super
Hamiltonians are derived.

8.8.1 Magnetic flux representation of the super-symplectic algebra

In order to derive representation of the configuration space gamma matrices and super charges it
is good to restate the basic facts about the magnetic flux representation of the configuration space
gamma matrices using the original approach based on 2-dimensional integrals.

8.8.2 Quantization of the modified Dirac action and configuration space
geometry

The quantization of the modified Dirac action involves a fusion of various number theoretical ideas.
The naive approach would be based on standard canonical quantization of induced spinor fields by
posing anti-commutation relations between Ψ and canonical momentum density ∂L/∂(∂tΨ).
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Generalized magnetic and electric fluxes

Isometry invariants are just a special case of fluxes defining natural coordinate variables for the
configuration space. Canonical transformations of CP2 act as U(1) gauge transformations on the
Kähler potential of CP2 (similar conclusion holds at the level of δM4

+ × CP2).
One can generalize these transformations to local symplectic transformations by allowing the

Hamiltonians to be products of the CP2 Hamiltonians with the real and imaginary parts of the
functions fs,n,k defining the Lorentz covariant function basis HA, A ≡ (a, s, n, k) at the light cone
boundary: HA = Ha × f(s, n, k), where a labels the Hamiltonians of CP2.

One can associate to any Hamiltonian HA of this kind magnetic or electric flux via the following
formulas:

Qm/e(HA|X2) =

∫
X2

HAJm/e . (8.8.1)

Here the magnetic (electric) flux Jm (Je) denotes the flux associated with induced Kähler field and
its dual which is well-defined since X2 is part of 4-D space-time surface.

The flux Hamiltonians

Qi(HA|X2) = Qi(HA|X2) , A ≡ (a, s, n, k) (8.8.2)

provide a representation of WCW Hamiltonians as far as the ”kinetic” part of Kähler form is consid-
ered.

Anti-commutation relations between oscillator operators associated with same partonic
2-surface

The construction of WCW gamma matrices leads to the anti-commutation relations given by

{Ψ(x)γ0,Ψ(x)} = [Je + Jm)δ2
x,y ,

Je =

∫
J03√g4 . (8.8.3)

Kähler magnetic flux Jm = εαβJαβ
√
g2 has no dependence on the induced metric.

If the weak- form of the electric-magnetic duality holds true, Kähler electric flux relates to it via
the formula

J03√g4 = KJ12 ,

where K is symplectic invariant and identifiable in terms of Kähler coupling strength from classical
charge quantization condition for Kähler electric flux. The condition that the flux of F 03 = (~/gK)J03

defining the counterpart of Kähler electric field equals to the Kähler charge gK gives the condition
K = g2

K/~ = 4παK , where gK is Kähler coupling constant. Within experimental uncertainties one
has αK = g2

K/4π~0 = αem ' 1/137, where αem is finite structure constant in electron length scale and
~0 is the standard value of Planck constant. The arguments leading to the identification ε± 1 at the
opposite boundaries of CD are discussed in [41] , [11] . An alternative identification is as ε = 0 but
predicts that WCW is trivial in M4 degrees of freedom if Kähler function reduces to Chern-Simons
terms.

The general form of the anti-commutation relations is therefore

{Ψ(x)γ0,Ψ(x)} = (1 +K)Jδ2
x,y . (8.8.4)

What is nice that at the limit of vacuum extremals the right hand side vanishes when both J and
J1 vanish so that spinor fields become non-dynamical. One can criticize the non-vanishing of the
anti-commutator for vacuum extremals of Kähler action.
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For the latter option the fermionic counterparts of local flux Hamiltonians can be written in the
form

HA,±,n = εq(A,∓, n)HA,±,q,n + εL(A,±)HA,∓,L,n ,

HA,+,q,n =

∮
ΨJA+qnd

2x ,

HA,−,q,n =

∮
qnJ

A
−Ψd2x ,

HA,−,L,n =

∮
ΨJA+Lnd

2x ,

HA,+,L,n =

∮
LnJ

A
−Ψd2x ,

JA+ = jAkΓk , JA− = jAkΓk . (8.8.5)

The commutative parameters εq(A,±, n) resp. εL(A,±, n) are assumed to carry quark resp. lepton
number opposite to that of HA,∓,q,n resp. HA,∓,L,n and satisfy εi(A,+, n)εi(A,−, n) = 1. One en-
counters a hierarchy discrete algebras satisfying this condition in the construction of a symplectic
analog of conformal quantum field theory required by the construction of quantum TGD [73] . Asso-
ciativity condition fixes uniquely the commutative multiplication of these units and analogs of plane
waves with discrete momentum are in question.

Suppose that there is a one-one correspondence between quark modes and leptonic modes is sat-
isfied and the label n decomposes as n = (m, i), where n labels a scalar function basis and i labels
spinor components. This would give

qn = qm,i = Φmqi ,

Ln = Lm,i = ΦmLi ,

qiγ
0qj = Liγ

0Lj = gij . (8.8.6)

Suppose that the inner products gij are constant. The simplest possibility is gij = δij Under these
assumptions the anti-commutators of the super-symmetric flux Hamiltonians give flux Hamiltonians.

{HA,+,n, HA,−,n} = gij

∮
ΦmΦnHAJd

2x . (8.8.7)

The product of scalar functions can be expressed as

ΦmΦn = c k
mnΦk . (8.8.8)

Note that the notion of symplectic QFT [23] led to a scalar function algebra of similar kind consisting
of phase factors and there excellent reasons to consider the possibility that there is a deep connection
with this approach.

One expects that the symplectic algebra is restricted to a direct sum of symplectic algebras lo-
calized to the regions where the induced Kähler form is non-vanishing implying that the algebras
associated with different region form to a direct sum. Also the contributions to configuration space
metric are direct sums. The symplectic algebras associated with different region can be truncated
to finite-dimensional spaces of symplectic algebras associated with the regions in question. As far
as coordinatization of the reduced configuration space is considered, these symplectic sub-spaces are
enough. These truncated algebras naturally correspond to the hyper-finite factor property of the
Clifford algebra of configuration space.
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Generalization of WCW Hamiltonians and anti-commutation relations between flux
Hamiltonians belonging to different ends of CD

This picture requires a generalization of the view about configuration space Hamiltonians since also
the interaction term between the ends of the line is present not taken into account in the previous
approach.

1. The proposed representation of WCW Hamiltonians as flux Hamiltonians [21, 20] , [12]

Q(HA) =

∫
HAJd

2x . (8.8.9)

works for the kinetic terms only since J is not expectred to be the same at the ends of the line.

The assumption that Poisson bracket of WCW Hamiltonians reduces to the level of imbed-
ding space - in other words {Q(HA), Q(HB} = Q({HA, HB}) - can be justified. One starts
from the representation in terms of say flux Hamiltonians Q(HA) and defines JA,B as JA,B ≡
Q({HA, HB}). One has ∂HA/∂tB = {HB , HA}, where tB is the parameter associated with the
exponentiation of HB . The inverse JAB of JA,B = ∂HB/∂tA is expressible as JA,B = ∂tA/∂HB .
From these formulas one can deduce by using chain rule that the bracket {Q(HA), Q(HB} =
∂tCQ(HA)JCD∂tDQ(HB) of flux Hamiltonians equals to the flux Hamiltonian Q({HA, HB}).

2. One should be able to assign to WCW Hamiltonians also a part corresponding to the interac-
tion term. The symplectic conjugation associated with the interaction term permutes the WCW
coordinates assignable to the ends of the line. One should reduce this apparently non-local sym-
plectic conjugation (if one thinks the ends of line as separate objects) to a non-local symplectic
conjugation for δCD × CP2 by identifying the points of lower and upper end of CD related
by time reflection and assuming that conjugation corresponds to time reflection. Formally this
gives a well defined generalization of the local Poisson brackets between time reflected points at
the boundaries of CD. The connection of Hermitian conjugation and time reflection in quantum
field theories is is in accordance with this picture.

3. Perhaps the only manner to proceed is to assign to the flux Hamiltonian also a part obtained
by the replacement of the flux integral over X2 with an integral over the projection of X2 to
a sphere S2 assignable to the light-cone boundary or to a geodesic sphere of CP2, which come
as two varieties corresponding to homologically trivial and non-trivial spheres. The projection
is defined as by the geodesic line orthogonal to S2 and going through the point of X2. The
hierarchy of Planck constants assigns to CD a preferred geodesic sphere of CP2 as well as a
unique sphere S2 as a sphere for which the radial coordinate rM or the light-cone boundary
defined uniquely is constant: this radial coordinate corresponds to spherical coordinate in the
rest system defined by the time-like vector connecting the tips of CD. Either spheres or possibly
both of them could be relevant.

Recall that also the construction of number theoretic braids and symplectic QFT [23] led to
the proposal that braid diagrams and symplectic triangulations could be defined in terms of
projections of braid strands to one of these spheres. One could also consider a weakening for
the condition that the points of the number theoretic braid are algebraic by requiring only that
the S2 coordinates of the projection are algebraic and that these coordinates correspond to the
discretization of S2 in terms of the phase angles associated with θ and φ.

This gives for the corresponding contribution of the WCW Hamiltonian the expression

Q(HA)int = (1 +K)

∫
S2
±

HAXδ
2(s+, s−)d2s± = (1 +K)

∫
P (X2

+)∩P (X2
−)

∂(s1, s2)

∂(x1
±, x

2
±)
d2x± .(8.8.10)

Here the Poisson brackets between ends of the line using the rules involve delta function
δ2(s+, s−) at S2 and the resulting Hamiltonians can be expressed as a similar integral of H[A,B]

over the upper or lower end since the integral is over the intersection of S2 projections.
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The expression must vanish when the induced Kähler form vanishes for either end. This is
achieved by identifying the scalar X in the following manner:

X = J+
kl + J−kl ,

Jkl± = ∂αs
k∂βs

lJαβ± . (8.8.11)

The tensors are lifts of the induced Kähler form of X2
± to S2 (not CP2).

4. One could of course ask why these Hamiltonians could not contribute also to the kinetic terms
and why the brackets with flux Hamiltonians should vanish. This relate to how one defines
the Kähler form. It was shown above that in case of flux Hamiltonians the definition of Kähler
form as brackets gives the basic formula {Q(HA), Q(HB)} = Q({HA, HB} and same should hold
true now. In the recent case JA,B would contain an interaction term defined in terms of flux
Hamiltonians and the previous argument should go through also now by identifying Hamiltonians
as sums of two contributions and by introducing the doubling of the coordinates tA.

5. The quantization of the modified Dirac operator must be reconsidered. It would seem that one
must add to the super-Hamiltonian completely analogous term obtained by replacing J with
X∂(s1, s2)/∂(x1

±, x
2
±). Besides the anti-commutation relations defining correct anti-commutators

to flux Hamiltonians, one should pose anti-commutation relations consistent with the anti-
commutation relations of super Hamiltonians. In these anti-commutation relations Jδ2(x, y)
would be replaced with Xδ2(s+, s−). This would guarantee that the oscillator operators at the
ends of the line are not independent and that the resulting Hamiltonian reduces to integral over
either end for H[A,B].

8.8.3 Expressions for configuration space super-symplectic generators in
finite measurement resolution

The expressions of configuration space Hamiltonians and their super counterparts just discussed were
based on 2-dimensional integrals. This is problematic for several reasons.

1. In p-adic context integrals do not makes sense so that this representation fails in p-adic context
(for pe-adic numbers see [55] ). Sums would be more appropriate if one wants number theoretic
universality at the level of basic formulas.

2. The use of sums would also conform with the notion of finite measurement resolution having
discretization in terms of intersections of X2 with number theoretic braids as a space-time
correlate.

3. Number theoretic duality suggests a unique realization of the discretization in the sense that
only the points of partonic 2-surface X2 whose δM4

± projections commute in hyper-octonionic
sense and thus belong to the intersections of the projection PM4(X2) with radial light-like
geodesics M± representing intersections of M2 ⊂ M4 ⊂ M8 with δM4

± × CP2 contribute to
the configuration space Hamiltonians and super Hamiltonians and therefore to the configuration
space metric.

Clearly, finite measurement resolution seems to be an unavoidable aspect of the geometrization of
the configuration space as one can expect on basis of the fact that configuration space Clifford algebra
provides representation for hyper-finite factors of type II1 whose inclusions provide a representation
for the finite measurement resolution. This means that the infinite-dimensional configuration space
can be represented as a finite-dimensional space in arbitrary precise approximation so that also also
configuration Clifford algebra and configuration space spinor fields becomes finite-dimensional.

The modification of anti-commutation relations to this case is

{Ψ(xm)γ0,Ψ(xn)} = (1 +K)Jδxm,xn . (8.8.12)
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Note that the constancy of γ0 implies a complete symmetry between the two points. The number of
points must be the maximal one consistent with the Kronecker delta type anti-commutation relations
so that information is not lost.

The question arises about the choice of the points xm. This choice should general coordinate
invariant. The number theoretic vision leads to the notion of number theoretic braid defined as the
set of points common to real and p-adic variant of X2. The points of the number theoretic braid are
excellent candidates for points xn. The p-adic variant exists only if X2 is defined by rational functions
with coefficients which are possibly algebraic and thus make sense both in real and p-adic sense. These
points belong to the algebraic extension of rational numbers appearing in the representation of X2 as
an algebraic surface but one can consider quite generally the possibility that the points of the number
theoretic braid are rational or in a finite algebraic extension of rationals. What is important that if
one restricts the consideration to rational points this criterion makes sense even if X2 is not algebraic.
In the generic case one can expect that the number of these points is finite.

8.8.4 Configuration space geometry and hierarchy of inclusions of hyper-
finite factors of II1

The configuration space metric defined as anti-commutators of the configuration space gamma matrices
is extremely degenerate since it effectively corresponds to a quadratic form in N -dimensional space,
where Nm is the total number of the eigenmodes of DK . Since two Hamiltonians whose values and
corresponding Killing vector fields co-incide at the points of B are equivalent for given ray M±, it
is natural to pose a cutoff in the number of Hamiltonians used for the representation of reduced
configuration space in given region inside which induced Kähler form is non-vanishing. The natural
manner to pose this cutoff is by ordering the representations with respect to dimension and eigenvalue
of Casimir operator for the irreducible representations of SO(3) × SO(4) in case of M8 and for the
representations of SO(3)× SU(3) in case of H.

This boils down to a hierarchy of approximate representations of the configuration space as Kähler
manifold with spinor structure with a truncation of the Clifford algebra to a finite dimensional Clifford
algebra. This is in spirit with the proposed interpretation of the inclusion sequence of hyper-finite
factors of type II1 and with the very notion of hyper-finiteness. A surprisingly concrete connection of
the configuration space geometry with generalized eigenvalue spectrum of DK(X3) and basic quantum
physics results. For instance, from the general expression of Kähler metric in terms of Kähler function

Gkl = ∂k∂lK =
∂k∂lexp(K)

exp(K)
− ∂kexp(K)

exp(K)

∂lexp(K)

exp(K)
, (8.8.13)

and from the expression of exp(K) =
∏
i λi as the product of of finite number of eigenvalues of

DK(X3), the expression

Gkl =
∑
i

∂k∂lλi
λi

− ∂kλi
λi

∂lλi
λi

(8.8.14)

for the configuration space metric follows. Here complex coordinates refer to the complex coordinates
of configuration space.

A good candidate for these complex coordinates are the complex coordinates of S2 × S, S =
CP2 or E4, for the points of B so that a close connection with the geometry of imbedding space is
obtained. Once these coordinates have been specified G can be contracted with the Killing vector
fields of configuration space isometries defining the coordinates for the truncated configuration space.
By studying the behavior of eigenvalue spectrum under small deformations of X3

l by symplectic
transformations of δCD × S the components of G can be estimated.

8.9 Weak form electric-magnetic duality and its implications

The notion of electric-magnetic duality [8] was proposed first by Olive and Montonen and is central
in N = 4 supersymmetric gauge theories. It states that magnetic monopoles and ordinary particles
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are two different phases of theory and that the description in terms of monopoles can be applied
at the limit when the running gauge coupling constant becomes very large and perturbation theory
fails to converge. The notion of electric-magnetic self-duality is more natural since for CP2 geometry
Kähler form is self-dual and Kähler magnetic monopoles are also Kähler electric monopoles and
Kähler coupling strength is by quantum criticality renormalization group invariant rather than running
coupling constant. The notion of electric-magnetic (self-)duality emerged already two decades ago
in the attempts to formulate the Kähler geometric of world of classical worlds. Quite recently a
considerable step of progress took place in the understanding of this notion [21] . What seems to be
essential is that one adopts a weaker form of the self-duality applying at partonic 2-surfaces. What
this means will be discussed in the sequel.

Every new idea must be of course taken with a grain of salt but the good sign is that this concept
leads to precise predictions. The point is that elementary particles do not generate monopole fields in
macroscopic length scales: at least when one considers visible matter. The first question is whether
elementary particles could have vanishing magnetic charges: this turns out to be impossible. The next
question is how the screening of the magnetic charges could take place and leads to an identification
of the physical particles as string like objects identified as pairs magnetic charged wormhole throats
connected by magnetic flux tubes.

1. The first implication is a new view about electro-weak massivation reducing it to weak confine-
ment in TGD framework. The second end of the string contains particle having electroweak
isospin neutralizing that of elementary fermion and the size scale of the string is electro-weak
scale would be in question. Hence the screening of electro-weak force takes place via weak
confinement realized in terms of magnetic confinement.

2. This picture generalizes to the case of color confinement. Also quarks correspond to pairs of
magnetic monopoles but the charges need not vanish now. Rather, valence quarks would be
connected by flux tubes of length of order hadron size such that magnetic charges sum up to
zero. For instance, for baryonic valence quarks these charges could be (2,−1,−1) and could be
proportional to color hyper charge.

3. The highly non-trivial prediction making more precise the earlier stringy vision is that elementary
particles are string like objects in electro-weak scale: this should become manifest at LHC
energies.

4. The weak form electric-magnetic duality together with Beltrami flow property of Kähler leads to
the reduction of Kähler action to Chern-Simons action so that TGD reduces to almost topological
QFT and that Kähler function is explicitly calculable. This has enormous impact concerning
practical calculability of the theory.

5. One ends up also to a general solution ansatz for field equations from the condition that the
theory reduces to almost topological QFT. The solution ansatz is inspired by the idea that all
isometry currents are proportional to Kähler current which is integrable in the sense that the flow
parameter associated with its flow lines defines a global coordinate. The proposed solution ansatz
would describe a hydrodynamical flow with the property that isometry charges are conserved
along the flow lines (Beltrami flow). A general ansatz satisfying the integrability conditions
is found. The solution ansatz applies also to the extremals of Chern-Simons action and and
to the conserved currents associated with the modified Dirac equation defined as contractions
of the modified gamma matrices between the solutions of the modified Dirac equation. The
strongest form of the solution ansatz states that various classical and quantum currents flow
along flow lines of the Beltrami flow defined by Kähler current (Kähler magnetic field associated
with Chern-Simons action). Intuitively this picture is attractive. A more general ansatz would
allow several Beltrami flows meaning multi-hydrodynamics. The integrability conditions boil
down to two scalar functions: the first one satisfies massless d’Alembert equation in the induced
metric and the the gradients of the scalar functions are orthogonal. The interpretation in terms
of momentum and polarization directions is natural.

6. The general solution ansatz works for induced Kähler Dirac equation and Chern-Simons Dirac
equation and reduces them to ordinary differential equations along flow lines. The induced spinor
fields are simply constant along flow lines of indued spinor field for Dirac equation in suitable
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gauge. Also the generalized eigen modes of the modified Chern-Simons Dirac operator can be
deduced explicitly if the throats and the ends of space-time surface at the boundaries of CD are
extremals of Chern-Simons action. Chern-Simons Dirac equation reduces to ordinary differential
equations along flow lines and one can deduce the general form of the spectrum and the explicit
representation of the Dirac determinant in terms of geometric quantities characterizing the 3-
surface (eigenvalues are inversely proportional to the lengths of strands of the flow lines in the
effective metric defined by the modified gamma matrices).

8.9.1 Could a weak form of electric-magnetic duality hold true?

Holography means that the initial data at the partonic 2-surfaces should fix the configuration space
metric. A weak form of this condition allows only the partonic 2-surfaces defined by the wormhole
throats at which the signature of the induced metric changes. A stronger condition allows all partonic
2-surfaces in the slicing of space-time sheet to partonic 2-surfaces and string world sheets. Number
theoretical vision suggests that hyper-quaternionicity resp. co-hyperquaternionicity constraint could
be enough to fix the initial values of time derivatives of the imbedding space coordinates in the space-
time regions with Minkowskian resp. Euclidian signature of the induced metric. This is a condition
on modified gamma matrices and hyper-quaternionicity states that they span a hyper-quaternionic
sub-space.

Definition of the weak form of electric-magnetic duality

One can also consider alternative conditions possibly equivalent with this condition. The argument
goes as follows.

1. The expression of the matrix elements of the metric and Kähler form of WCW in terms of
the Kähler fluxes weighted by Hamiltonians of δM4

± at the partonic 2-surface X2 looks very
attractive. These expressions however carry no information about the 4-D tangent space of the
partonic 2-surfaces so that the theory would reduce to a genuinely 2-dimensional theory, which
cannot hold true. One would like to code to the WCW metric also information about the electric
part of the induced Kähler form assignable to the complement of the tangent space of X2 ⊂ X4.

2. Electric-magnetic duality of the theory looks a highly attractive symmetry. The trivial manner
to get electric magnetic duality at the level of the full theory would be via the identification of
the flux Hamiltonians as sums of of the magnetic and electric fluxes. The presence of the induced
metric is however troublesome since the presence of the induced metric means that the simple
transformation properties of flux Hamiltonians under symplectic transformations -in particular
color rotations- are lost.

3. A less trivial formulation of electric-magnetic duality would be as an initial condition which
eliminates the induced metric from the electric flux. In the Euclidian version of 4-D YM theory
this duality allows to solve field equations exactly in terms of instantons. This approach involves
also quaternions. These arguments suggest that the duality in some form might work. The full
electric magnetic duality is certainly too strong and implies that space-time surface at the
partonic 2-surface corresponds to piece of CP2 type vacuum extremal and can hold only in the
deep interior of the region with Euclidian signature. In the region surrounding wormhole throat
at both sides the condition must be replaced with a weaker condition.

4. To formulate a weaker form of the condition let us introduce coordinates (x0, x3, x1, x2) such
(x1, x2) define coordinates for the partonic 2-surface and (x0, x3) define coordinates labeling
partonic 2-surfaces in the slicing of the space-time surface by partonic 2-surfaces and string
world sheets making sense in the regions of space-time sheet with Minkowskian signature. The
assumption about the slicing allows to preserve general coordinate invariance. The weakest
condition is that the generalized Kähler electric fluxes are apart from constant proportional to
Kähler magnetic fluxes. This requires the condition

J03√g4 = KJ12 . (8.9.1)
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A more general form of this duality is suggested by the considerations of [41] reducing the hierar-
chy of Planck constants to basic quantum TGD and also reducing Kähler function for preferred
extremals to Chern-Simons terms [2] at the boundaries of CD and at light-like wormhole throats.
This form is following

Jnβ
√
g4 = Kε× εnβγδJγδ

√
g4 . (8.9.2)

Here the index n refers to a normal coordinate for the space-like 3-surface at either boundary of
CD or for light-like wormhole throat. ε is a sign factor which is opposite for the two ends of CD.
It could be also opposite of opposite at the opposite sides of the wormhole throat. Note that the
dependence on induced metric disappears at the right hand side and this condition eliminates
the potentials singularity due to the reduction of the rank of the induced metric at wormhole
throat.

5. Information about the tangent space of the space-time surface can be coded to the configuration
space metric with loosing the nice transformation properties of the magnetic flux Hamiltonians
if Kähler electric fluxes or sum of magnetic flux and electric flux satisfying this condition are
used and K is symplectic invariant. Using the sum

Je + Jm = (1 +K)J12 , (8.9.3)

where J denotes the Kähler magnetic flux, , makes it possible to have a non-trivial configuration
space metric even for K = 0, which could correspond to the ends of a cosmic string like solution
carrying only Kähler magnetic fields. This condition suggests that it can depend only on Kähler
magnetic flux and other symplectic invariants. Whether local symplectic coordinate invariants
are possible at all is far from obvious, If the slicing itself is symplectic invariant then K could be
a non-constant function of X2 depending on string world sheet coordinates. The light-like radial
coordinate of the light-cone boundary indeed defines a symplectically invariant slicing and this
slicing could be shifted along the time axis defined by the tips of CD.

Electric-magnetic duality physically

What could the weak duality condition mean physically? For instance, what constraints are obtained
if one assumes that the quantization of electro-weak charges reduces to this condition at classical
level?

1. The first thing to notice is that the flux of J over the partonic 2-surface is analogous to magnetic
flux

Qm =
e

~

∮
BdS = n .

n is non-vanishing only if the surface is homologically non-trivial and gives the homology charge
of the partonic 2-surface.

2. The expressions of classical electromagnetic and Z0 fields in terms of Kähler form [5] , [5] read
as

γ =
eFem
~

= 3J − sin2(θW )R03 ,

Z0 =
gZFZ
~

= 2R03 . (8.9.4)
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Here R03 is one of the components of the curvature tensor in vielbein representation and Fem
and FZ correspond to the standard field tensors. From this expression one can deduce

J =
e

3~
Fem + sin2(θW )

gZ
6~
FZ . (8.9.5)

3. The weak duality condition when integrated over X2 implies

e2

3~
Qem +

g2
Zp

6
QZ,V = K

∮
J = Kn ,

QZ,V =
I3
V

2
−Qem , p = sin2(θW ) . (8.9.6)

Here the vectorial part of the Z0 charge rather than as full Z0 charge QZ = I3
L + sin2(θW )Qem

appears. The reason is that only the vectorial isospin is same for left and right handed compo-
nents of fermion which are in general mixed for the massive states.

The coefficients are dimensionless and expressible in terms of the gauge coupling strengths and
using ~ = r~0 one can write

αemQem + p
αZ
2
QZ,V =

3

4π
× rnK ,

αem =
e2

4π~0
, αZ =

g2
Z

4π~0
=

αem
p(1− p)

. (8.9.7)

4. There is a great temptation to assume that the values of Qem and QZ correspond to their
quantized values and therefore depend on the quantum state assigned to the partonic 2-surface.
The linear coupling of the modified Dirac operator to conserved charges implies correlation
between the geometry of space-time sheet and quantum numbers assigned to the partonic 2-
surface. The assumption of standard quantized values for Qem and QZ would be also seen as
the identification of the fine structure constants αem and αZ . This however requires weak isospin
invariance.

The value of K from classical quantization of Kähler electric charge

The value of K can be deduced by requiring classical quantization of Kähler electric charge.

1. The condition that the flux of F 03 = (~/gK)J03 defining the counterpart of Kähler electric field
equals to the Kähler charge gK would give the condition K = g2

K/~, where gK is Kähler cou-
pling constant which should invariant under coupling constant evolution by quantum criticality.
Within experimental uncertainties one has αK = g2

K/4π~0 = αem ' 1/137, where αem is finite
structure constant in electron length scale and ~0 is the standard value of Planck constant.

2. The quantization of Planck constants makes the condition highly non-trivial. The most general
quantization of r is as rationals but there are good arguments favoring the quantization as
integers corresponding to the allowance of only singular coverings of CD andn CP2. The point
is that in this case a given value of Planck constant corresponds to a finite number pages of
the ”Big Book”. The quantization of the Planck constant implies a further quantization of K
and would suggest that K scales as 1/r unless the spectrum of values of Qem and QZ allowed
by the quantization condition scales as r. This is quite possible and the interpretation would
be that each of the r sheets of the covering carries (possibly same) elementary charge. Kind
of discrete variant of a full Fermi sphere would be in question. The interpretation in terms of
anyonic phases [66] supports this interpretation.
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3. The identification of J as a counterpart of eB/~ means that Kähler action and thus also Kähler
function is proportional to 1/αK and therefore to ~. This implies that for large values of ~
Kähler coupling strength g2

K/4π becomes very small and large fluctuations are suppressed in
the functional integral. The basic motivation for introducing the hierarchy of Planck constants
was indeed that the scaling α→ α/r allows to achieve the convergence of perturbation theory:
Nature itself would solve the problems of the theoretician. This of course does not mean that
the physical states would remain as such and the replacement of single particles with anyonic
states in order to satisfy the condition for K would realize this concretely.

4. The condition K = g2
K/~ implies that the Kähler magnetic charge is always accompanied by

Kähler electric charge. A more general condition would read as

K = n× g2
K

~
, n ∈ Z . (8.9.8)

This would apply in the case of cosmic strings and would allow vanishing Kähler charge possible
when the partonic 2-surface has opposite fermion and antifermion numbers (for both leptons and
quarks) so that Kähler electric charge should vanish. For instance, for neutrinos the vanishing
of electric charge strongly suggests n = 0 besides the condition that abelian Z0 flux contributing
to em charge vanishes.

It took a year to realize that this value of K is natural at the Minkowskian side of the wormhole
throat. At the Euclidian side much more natural condition is

K =
1

hbar
. (8.9.9)

In fact, the self-duality of CP2 Kähler form favours this boundary condition at the Euclidian side of
the wormhole throat. Also the fact that one cannot distinguish between electric and magnetic charges
in Euclidian region since all charges are magnetic can be used to argue in favor of this form. The
same constraint arises from the condition that the action for CP2 type vacuum extremal has the value
required by the argument leading to a prediction for gravitational constant in terms of the square of
CP2 radius and αK the effective replacement g2

K → 1 would spoil the argument.
The boundary condition JE = JB for the electric and magnetic parts of Kählwer form at the

Euclidian side of the wormhole throat inspires the question whether all Euclidian regions could be
self-dual so that the density of Kähler action would be just the instanton density. Self-duality follows if
the deformation of the metric induced by the deformation of the canonically imbedded CP2 is such that
in CP2 coordinates for the Euclidian region the tensor (gαβgµν −gανgµβ)/

√
g remains invariant. This

is certainly the case for CP2 type vacuum extremals since by the light-likeness of M4 projection the
metric remains invariant. Also conformal scalings of the induced metric would satisfy this condition.
Conformal scaling is not consistent with the degeneracy of the 4-metric at the wormhole

Reduction of the quantization of Kähler electric charge to that of electromagnetic charge

The best manner to learn more is to challenge the form of the weak electric-magnetic duality based
on the induced Kähler form.

1. Physically it would seem more sensible to pose the duality on electromagnetic charge rather
than Kähler charge. This would replace induced Kähler form with electromagnetic field, which
is a linear combination of induced K”ahler field and classical Z0 field

γ = 3J − sin2θWR03 ,

Z0 = 2R03 . (8.9.10)

Here Z0 = 2R03 is the appropriate component of CP2 curvature form [5]. For a vanishing
Weinberg angle the condition reduces to that for Kähler form.
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2. For the Euclidian space-time regions having interpretation as lines of generalized Feynman dia-
grams Weinberg angle should be non-vanishing. In Minkowskian regions Weinberg angle could
however vanish. If so, the condition guaranteing that electromagnetic charge of the partonic
2-surfaces equals to the above condition stating that the em charge assignable to the fermion
content of the partonic 2-surfaces reduces to the classical Kähler electric flux at the Minkowskian
side of the wormhole throat. One can argue that Weinberg angle must increase smoothly from a
vanishing value at both sides of wormhole throat to its value in the deep interior of the Euclidian
region.

3. The vanishing of the Weinberg angle in Minkowskian regions conforms with the physical intu-
ition. Above elementary particle length scales one sees only the classical electric field reducing
to the induced Kähler form and classical Z0 fields and color gauge fields are effectively ab-
sent. Only in phases with a large value of Planck constant classical Z0 field and other classical
weak fields and color gauge field could make themselves visible. Cell membrane could be one
such system [69]. This conforms with the general picture about color confinement and weak
massivation.

The GRT limit of TGD suggests a further reason for why Weinberg angle should vanish in
Minkowskian regions.

1. The value of the Kähler coupling strength mut be very near to the value of the fine structure
constant in electron length scale and these constants can be assumed to be equal.

2. GRT limit of TGD with space-time surfaces replaced with abstract 4-geometries would naturally
correspond to Einstein-Maxwell theory with cosmological constant which is non-vanishing only
in Euclidian regions of space-time so that both Reissner-Nordström metric and CP2 are allowed
as simplest possible solutions of field equations [91]. The extremely small value of the observed
cosmological constant needed in GRT type cosmology could be equal to the large cosmological
constant associated with CP2 metric multiplied with the 3-volume fraction of Euclidian regions.

3. Also at GRT limit quantum theory would reduce to almost topological QFT since Einstein-
Maxwell action reduces to 3-D term by field equations implying the vanishing of the Maxwell
current and of the curvature scalar in Minkowskian regions and curvature scalar + cosmological
constant term in Euclidian regions. The weak form of electric-magnetic duality would guarantee
also now the preferred extremal property and prevent the reduction to a mere topological QFT.

4. GRT limit would make sense only for a vanishing Weinberg angle in Minkowskian regions. A
non-vanishing Weinberg angle would make sense in the deep interior of the Euclidian regions
where the approximation as a small deformation of CP2 makes sense.

The weak form of electric-magnetic duality has surprisingly strong implications for the basic view
about quantum TGD as following considerations show.

8.9.2 Magnetic confinement, the short range of weak forces, and color
confinement

The weak form of electric-magnetic duality has surprisingly strong implications if one combines it with
some very general empirical facts such as the non-existence of magnetic monopole fields in macroscopic
length scales.

How can one avoid macroscopic magnetic monopole fields?

Monopole fields are experimentally absent in length scales above order weak boson length scale and one
should have a mechanism neutralizing the monopole charge. How electroweak interactions become
short ranged in TGD framework is still a poorly understood problem. What suggests itself is the
neutralization of the weak isospin above the intermediate gauge boson Compton length by neutral
Higgs bosons. Could the two neutralization mechanisms be combined to single one?
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1. In the case of fermions and their super partners the opposite magnetic monopole would be a
wormhole throat. If the magnetically charged wormhole contact is electromagnetically neutral
but has vectorial weak isospin neutralizing the weak vectorial isospin of the fermion only the
electromagnetic charge of the fermion is visible on longer length scales. The distance of this
wormhole throat from the fermionic one should be of the order weak boson Compton length.
An interpretation as a bound state of fermion and a wormhole throat state with the quantum
numbers of a neutral Higgs boson would therefore make sense. The neutralizing throat would
have quantum numbers of X−1/2 = νLνR or X1/2 = νLνR. νLνR would not be neutral Higgs
boson (which should correspond to a wormhole contact) but a super-partner of left-handed
neutrino obtained by adding a right handed neutrino. This mechanism would apply separately
to the fermionic and anti-fermionic throats of the gauge bosons and corresponding space-time
sheets and leave only electromagnetic interaction as a long ranged interaction.

2. One can of course wonder what is the situation situation for the bosonic wormhole throats feeding
gauge fluxes between space-time sheets. It would seem that these wormhole throats must always
appear as pairs such that for the second member of the pair monopole charges and I3

V cancel
each other at both space-time sheets involved so that one obtains at both space-time sheets
magnetic dipoles of size of weak boson Compton length. The proposed magnetic character of
fundamental particles should become visible at TeV energies so that LHC might have surprises
in store!

Magnetic confinement and color confinement

Magnetic confinement generalizes also to the case of color interactions. One can consider also the
situation in which the magnetic charges of quarks (more generally, of color excited leptons and quarks)
do not vanish and they form color and magnetic singles in the hadronic length scale. This would mean
that magnetic charges of the state q±1/2−X∓1/2 representing the physical quark would not vanish and
magnetic confinement would accompany also color confinement. This would explain why free quarks
are not observed. To how degree then quark confinement corresponds to magnetic confinement is an
interesting question.

For quark and antiquark of meson the magnetic charges of quark and antiquark would be opposite
and meson would correspond to a Kähler magnetic flux so that a stringy view about meson emerges.
For valence quarks of baryon the vanishing of the net magnetic charge takes place provided that the
magnetic net charges are (±2,∓1,∓1). This brings in mind the spectrum of color hyper charges
coming as (±2,∓1,∓1)/3 and one can indeed ask whether color hyper-charge correlates with the
Kähler magnetic charge. The geometric picture would be three strings connected to single vertex.
Amusingly, the idea that color hypercharge could be proportional to color hyper charge popped up
during the first year of TGD when I had not yet discovered CP2 and believed on M4 × S2.

p-Adic length scale hypothesis and hierarchy of Planck constants defining a hierarchy of dark
variants of particles suggest the existence of scaled up copies of QCD type physics and weak physics.
For p-adically scaled up variants the mass scales would be scaled by a power of

√
2 in the most general

case. The dark variants of the particle would have the same mass as the original one. In particular,
Mersenne primes Mk = 2k − 1 and Gaussian Mersennes MG,k = (1 + i)k − 1 has been proposed to
define zoomed copies of these physics. At the level of magnetic confinement this would mean hierarchy
of length scales for the magnetic confinement.

One particular proposal is that the Mersenne prime M89 should define a scaled up variant of the
ordinary hadron physics with mass scaled up roughly by a factor 2(107−89)/2 = 512. The size scale
of color confinement for this physics would be same as the weal length scale. It would look more
natural that the weak confinement for the quarks of M89 physics takes place in some shorter scale
and M61 is the first Mersenne prime to be considered. The mass scale of M61 weak bosons would
be by a factor 2(89−61)/2 = 214 higher and about 1.6× 104 TeV. M89 quarks would have virtually no
weak interactions but would possess color interactions with weak confinement length scale reflecting
themselves as new kind of jets at collisions above TeV energies.

In the biologically especially important length scale range 10 nm -2500 nm there are as many as
four Gaussian Mersennes corresponding to MG,k, k = 151, 157, 163, 167. This would suggest that the
existence of scaled up scales of magnetic-, weak- and color confinement. An especially interesting
possibly testable prediction is the existence of magnetic monopole pairs with the size scale in this
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range. There are recent claims about experimental evidence for magnetic monopole pairs [12] .

Magnetic confinement and stringy picture in TGD sense

The connection between magnetic confinement and weak confinement is rather natural if one recalls
that electric-magnetic duality in super-symmetric quantum field theories means that the descriptions
in terms of particles and monopoles are in some sense dual descriptions. Fermions would be replaced
by string like objects defined by the magnetic flux tubes and bosons as pairs of wormhole contacts
would correspond to pairs of the flux tubes. Therefore the sharp distinction between gravitons and
physical particles would disappear.

The reason why gravitons are necessarily stringy objects formed by a pair of wormhole contacts
is that one cannot construct spin two objects using only single fermion states at wormhole throats.
Of course, also super partners of these states with higher spin obtained by adding fermions and anti-
fermions at the wormhole throat but these do not give rise to graviton like states [32] . The upper and
lower wormhole throat pairs would be quantum superpositions of fermion anti-fermion pairs with sum
over all fermions. The reason is that otherwise one cannot realize graviton emission in terms of joining
of the ends of light-like 3-surfaces together. Also now magnetic monopole charges are necessary but
now there is no need to assign the entities X± with gravitons.

Graviton string is characterized by some p-adic length scale and one can argue that below this
length scale the charges of the fermions become visible. Mersenne hypothesis suggests that some
Mersenne prime is in question. One proposal is that gravitonic size scale is given by electronic
Mersenne prime M127. It is however difficult to test whether graviton has a structure visible below
this length scale.

What happens to the generalized Feynman diagrams is an interesting question. It is not at all
clear how closely they relate to ordinary Feynman diagrams. All depends on what one is ready to
assume about what happens in the vertices. One could of course hope that zero energy ontology could
allow some very simple description allowing perhaps to get rid of the problematic aspects of Feynman
diagrams.

1. Consider first the recent view about generalized Feynman diagrams which relies zero energy
ontology. A highly attractive assumption is that the particles appearing at wormhole throats
are on mass shell particles. For incoming and outgoing elementary bosons and their super
partners they would be positive it resp. negative energy states with parallel on mass shell
momenta. For virtual bosons they the wormhole throats would have opposite sign of energy
and the sum of on mass shell states would give virtual net momenta. This would make possible
twistor description of virtual particles allowing only massless particles (in 4-D sense usually and
in 8-D sense in TGD framework). The notion of virtual fermion makes sense only if one assumes
in the interaction region a topological condensation creating another wormhole throat having
no fermionic quantum numbers.

2. The addition of the particles X± replaces generalized Feynman diagrams with the analogs of
stringy diagrams with lines replaced by pairs of lines corresponding to fermion and X±1/2. The
members of these pairs would correspond to 3-D light-like surfaces glued together at the vertices
of generalized Feynman diagrams. The analog of 3-vertex would not be splitting of the string to
form shorter strings but the replication of the entire string to form two strings with same length
or fusion of two strings to single string along all their points rather than along ends to form a
longer string. It is not clear whether the duality symmetry of stringy diagrams can hold true
for the TGD variants of stringy diagrams.

3. How should one describe the bound state formed by the fermion and X±? Should one describe
the state as superposition of non-parallel on mass shell states so that the composite state would
be automatically massive? The description as superposition of on mass shell states does not
conform with the idea that bound state formation requires binding energy. In TGD framework
the notion of negentropic entanglement has been suggested to make possible the analogs of
bound states consisting of on mass shell states so that the binding energy is zero [52] . If this
kind of states are in question the description of virtual states in terms of on mass shell states is
not lost. Of course, one cannot exclude the possibility that there is infinite number of this kind
of states serving as analogs for the excitations of string like object.
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4. What happens to the states formed by fermions and X±1/2 in the internal lines of the Feynman
diagram? Twistor philosophy suggests that only the higher on mass shell excitations are possible.
If this picture is correct, the situation would not change in an essential manner from the earlier
one.

The highly non-trivial prediction of the magnetic confinement is that elementary particles should
have stringy character in electro-weak length scales and could behaving to become manifest at LHC
energies. This adds one further item to the list of non-trivial predictions of TGD about physics at
LHC energies [53] .

Should J + J1 appear in Kähler action?

The presence of the S2 Kähler form J1 in weak form of electric-magnetic duality was originally
suggested by an erratic argument about the reduction to almost topological QFT to be described in
the next subsection. In any case this argument raises the question whether one could replace J with
J +J1 in the Kähler action. This would not affect the basic non-vacuum extremals but would modify
the vacuum degeneracy of the Kähler action. Canonically imbedded M4 would become a monopole
configuration with an infinite magnetic energy and Kähler action due to the monopole singularity at
the line connecting tips of the CD. Action and energy can be made small by drilling a small hole
around origin. This is however not consistent with the weak form of electro-weak duality. Amusingly,
the modified Dirac equation reduces to ordinary massless Dirac equation in M4.

This extremal can be transformed to a vacuum extremal by assuming that the solution is also
a CP2 magnetic monopole with opposite contribution to the magnetic charge so that J + J1 = 0
holds true. This is achieved if one can regard space-time surface as a map M4 → CP2 reducing to
a map (Θ,Φ) = (θ,±φ) with the sign chosen by properly projecting the homologically non-trivial
rM = constant spheres of CD to the homologically non-trivial geodesic sphere of CP2. Symplectic
transformations of S2×CP2 produce new vacuum extremals of this kind. Using Darboux coordinates
in which one has J =

∑
k=1,2 PkdQ

k and assuming that (P1, Q1) corresponds to the CP2 image of

S2, one can take Q2 to be arbitrary function of P 2 which in turn is an arbitrary function of of M4

coordinates to obtain even more general vacuum extremals with 3-D CP2 projection. Therefore the
spectrum of vacuum extremals, which is very relevant for the TGD based description of gravitation
in long length scales because it allows to satisfy Einstein’s equations as an additional condition, looks
much richer than for the original option, and it is natural to ask whether this option might make
sense.

An objection is that J1 is a radial monopole field and this breaks Lorentz invariance to SO(3).
Lorentz invariance is broken to SO(3) for a given CD also by the presence of the preferred time
direction defined by the time-like line connecting the tips of the CD becoming carrying the monopole
charge but is compensated since Lorentz boosts of CDs are possible. Could one consider similar com-
pensation also now? Certainly the extremely small breaking of Lorentz invariance and the vanishing
of the monopole charge for the vacuum extremals is all that is needed at the space-time level. No
new gauge fields would be introduced since only the Kähler field part of photon and Z0 boson would
receive an additional contribution.

The ultimate fate of the modification depends on whether it is consistent with the general relativis-
tic description of gravitation. Since a breaking of spherical symmetry is involved, it is not at all clear
whether one can find vacuum extremals which represent small deformations of the Reissner-Nordström
metric and Robertson-Walker metric. The argument below shows that this option does not allow the
imbedding of small deformations of physically plausible space-time metrics as vacuum extremals.

The basic vacuum extremal whose deformations should give vacuum extremals allowing interpre-
tation as solutions of Einstein’s equations is given by a map M4 → CP2 projecting the rM constant
spheres S2 of M2 to the homologically non-trivial geodesic sphere of CP2. The winding number of
this map is −1 in order to achieve vanishing of the induced Kähler form J + J1. For instance, the
following two canonical forms of the map are possible

(Θ,Ψ) = (θM ,−φM ) ,

(Θ,Ψ) = (π − θM , φM ) .

(8.9.11)
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Here (Θ,Ψ) refers to the geodesic sphere of CP2 and (θM , φM ) to the sphere of M4.
The resulting space-time surface is not flat and Einstein tensor is non-vanishing. More complex metrics
can be constructed from this metric by a deformation making the CP2 projection 3-dimensional.

Using the expression of the CP2 line element in Eguchi-Hanson coordinates [19]

ds2

R2
=

dr2

F 2
+
r2

F
(dΨ + cosΘdΦ)2 +

r2

4F
(dΘ2 + fracr24Fsin2ΘdΦ2)

(8.9.12)

and s the relationship r = tan(Θ), one obtains following expression for the CP2 metric

ds2

R2
= dθ2

M + sin2(θM )

[
(dφM + cos(θ)dΦ)2 +

1

4
(dθ2 + sin2(θ)dΦ2

]
.

(8.9.13)

The resulting metric is obtained from the metric of S2 by replacing dφ2 which 3-D line element. The
factor sin2(θM ) implies that the induced metric becomes singular at North and South poles of S2.
In particular, the gravitational potential is proportional to sin2(θM ) so that gravitational force in
the radial direction vanishes at equators. It is very difficult to imagine any manner to produce a
small deformation of Reissner-Nordstrm metric or Robertson-Walker metric. Hence it seems that the
vacuum extremals produce by J + J1 option are not physical.

8.9.3 Could Quantum TGD reduce to almost topological QFT?

There seems to be a profound connection with the earlier unrealistic proposal that TGD reduces to
almost topological quantum theory in the sense that the counterpart of Chern-Simons action assigned
with the wormhole throats somehow dictates the dynamics. This proposal can be formulated also
for the modified Dirac action action. I gave up this proposal but the following argument shows that
Kähler action with weak form of electric-magnetic duality effectively reduces to Chern-Simons action
plus Coulomb term.

1. Kähler action density can be written as a 4-dimensional integral of the Coulomb term jαKAα plus
and integral of the boundary term JnβAβ

√
g4 over the wormhole throats and of the quantity

J0βAβ
√
g4 over the ends of the 3-surface.

2. If the self-duality conditions generalize to Jnβ = 4παKε
nβγδJγδ at throats and to J0β =

4παKε
0βγδJγδ at the ends, the Kähler function reduces to the counterpart of Chern-Simons

action evaluated at the ends and throats. It would have same value for each branch and the
replacement ~0 → r~0 would effectively describe this. Boundary conditions would however give
1/r factor so that ~ would disappear from the Kähler function! The original attempt to real-
ize quantum TGD as an almost topological QFT was in terms of Chern-Simons action but was
given up. It is somewhat surprising that Kähler action gives Chern-Simons action in the vacuum
sector defined as sector for which Kähler current is light-like or vanishes.

Holography encourages to ask whether also the Coulomb interaction terms could vanish. This
kind of dimensional reduction would mean an enormous simplification since TGD would reduce to an
almost topological QFT. The attribute ”almost” would come from the fact that one has non-vanishing
classical Noether charges defined by Kähler action and non-trivial quantum dynamics in M4 degrees
of freedom. One could also assign to space-time surfaces conserved four-momenta which is not possible
in topological QFTs. For this reason the conditions guaranteeing the vanishing of Coulomb interaction
term deserve a detailed analysis.

1. For the known extremals jαK either vanishes or is light-like (”massless extremals” for which
weak self-duality condition does not make sense [12] ) so that the Coulombic term vanishes
identically in the gauge used. The addition of a gradient to A induces terms located at the ends
and wormhole throats of the space-time surface but this term must be cancelled by the other
boundary terms by gauge invariance of Kähler action. This implies that the M4 part of WCW
metric vanishes in this case. Therefore massless extremals as such are not physically realistic:
wormhole throats representing particles are needed.
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2. The original naive conclusion was that since Chern-Simons action depends on CP2 coordinates
only, its variation with respect to Minkowski coordinates must vanish so that the WCW met-
ric would be trivial in M4 degrees of freedom. This conclusion is in conflict with quantum
classical correspondence and was indeed too hasty. The point is that the allowed variations of
Kähler function must respect the weak electro-magnetic duality which relates Kähler electric
field depending on the induced 4-metric at 3-surface to the Kähler magnetic field. Therefore the
dependence on M4 coordinates creeps via a Lagrange multiplier term

∫
Λα(Jnα −KεnαβγJβγ)

√
g4d

3x . (8.9.14)

The (1,1) part of second variation contributing to M4 metric comes from this term.

3. This erratic conclusion about the vanishing of M4 part WCW metric raised the question about
how to achieve a non-trivial metric in M4 degrees of freedom. The proposal was a modification of
the weak form of electric-magnetic duality. Besides CP2 Kähler form there would be the Kähler
form assignable to the light-cone boundary reducing to that for rM = constant sphere - call it
J1. The generalization of the weak form of self-duality would be Jnβ = εnβγδK(Jγδ + εJ1

γδ).

This form implies that the boundary term gives a non-trivial contribution to the M4 part of
the WCW metric even without the constraint from electric-magnetic duality. Kähler charge is
not affected unless the partonic 2-surface contains the tip of CD in its interior. In this case the
value of Kähler charge is shifted by a topological contribution. Whether this term can survive
depends on whether the resulting vacuum extremals are consistent with the basic facts about
classical gravitation.

4. The Coulombic interaction term is not invariant under gauge transformations. The good news
is that this might allow to find a gauge in which the Coulomb term vanishes. The vanishing
condition fixing the gauge transformation φ is

jαK∂αφ = −jαAα . (8.9.15)

This differential equation can be reduced to an ordinary differential equation along the flow
lines jK by using dxα/dt = jαK . Global solution is obtained only if one can combine the flow
parameter t with three other coordinates- say those at the either end of CD to form space-
time coordinates. The condition is that the parameter defining the coordinate differential is
proportional to the covariant form of Kähler current: dt = φjK . This condition in turn implies
d2t = d(φjK) = d(φjK) = dφ ∧ jK + φdjK = 0 implying jK ∧ djK = 0 or more concretely,

εαβγδjKβ ∂γj
K
δ = 0 . (8.9.16)

jK is a four-dimensional counterpart of Beltrami field [47] and could be called generalized Bel-
trami field.

The integrability conditions follow also from the construction of the extremals of Kähler action
[12] . The conjecture was that for the extremals the 4-dimensional Lorentz force vanishes (no
dissipation): this requires jK ∧ J = 0. One manner to guarantee this is the topologization of
the Kähler current meaning that it is proportional to the instanton current: jK = φjI , where
jI = ∗(J ∧ A) is the instanton current, which is not conserved for 4-D CP2 projection. The
conservation of jK implies the condition jαI ∂αφ = ∂αj

αφ and from this φ can be integrated if the
integrability condition jI∧djI = 0 holds true implying the same condition for jK . By introducing
at least 3 or CP2 coordinates as space-time coordinates, one finds that the contravariant form of
jI is purely topological so that the integrability condition fixes the dependence onM4 coordinates
and this selection is coded into the scalar function φ. These functions define families of conserved
currents jαKφ and jαI φ and could be also interpreted as conserved currents associated with the
critical deformations of the space-time surface.



586 Chapter 8. The Geometry of the World of Classical Worlds

5. There are gauge transformations respecting the vanishing of the Coulomb term. The vanishing
condition for the Coulomb term is gauge invariant only under the gauge transformations A →
A+∇φ for which the scalar function the integral

∫
jαK∂αφ reduces to a total divergence a giving

an integral over various 3-surfaces at the ends of CD and at throats vanishes. This is satisfied
if the allowed gauge transformations define conserved currents

Dα(jαφ) = 0 . (8.9.17)

As a consequence Coulomb term reduces to a difference of the conserved chargesQeφ =
∫
j0φ
√
g4d

3x
at the ends of the CD vanishing identically. The change of the imons type term is trivial if the
total weighted Kähler magnetic flux Qmφ =

∑∫
JφdA over wormhole throats is conserved. The

existence of an infinite number of conserved weighted magnetic fluxes is in accordance with the
electric-magnetic duality. How these fluxes relate to the flux Hamiltonians central for WCW
geometry is not quite clear.

6. The gauge transformations respecting the reduction to almost topological QFT should have some
special physical meaning. The measurement interaction term in the modified Dirac interaction
corresponds to a critical deformation of the space-time sheet and is realized as an addition
of a gauge part to the Kähler gauge potential of CP2. It would be natural to identify this
gauge transformation giving rise to a conserved charge so that the conserved charges would
provide a representation for the charges associated with the infinitesimal critical deformations
not affecting Kähler action. The gauge transformed Kähler potential couples to the modified
Dirac equation and its effect could be visible in the value of Kähler function and therefore also
in the properties of the preferred extremal. The effect on WCW metric would however vanish
since K would transform only by an addition of a real part of a holomorphic function. Kähler
function is identified as a Dirac determinant for Chern-Simons Dirac action and the spectrum
of this operator should not be invariant under these gauge transformations if this picture is
correct. This is is achieved if the gauge transformation is carried only in the Dirac action
corresponding to the Chern-Simons term: this assumption is motivated by the breaking of time
reversal invariance induced by quantum measurements. The modification of Kähler action can
be guessed to correspond just to the Chern-Simons contribution from the instanton term.

7. A reasonable looking guess for the explicit realization of the quantum classical correspondence
between quantum numbers and space-time geometry is that the deformation of the preferred
extremal due to the addition of the measurement interaction term is induced by a U(1) gauge
transformation induced by a transformation of δCD×CP2 generating the gauge transformation
represented by φ. This interpretation makes sense if the fluxes defined by Qmφ and corresponding
Hamiltonians affect only zero modes rather than quantum fluctuating degrees of freedom.

To sum up, one could understand the basic properties of WCW metric in this framework. Effec-
tive 2-dimensionality would result from the existence of an infinite number of conserved charges in
two different time directions (genuine conservation laws plus gauge fixing). The infinite-dimensional
symmetric space for given values of zero modes corresponds to the Cartesian product of the WCWs
associated with the partonic 2-surfaces at both ends of CD and the generalized Chern-Simons term
decomposes into a sum of terms from the ends giving single particle Kähler functions and to the terms
from light-like wormhole throats giving interaction term between positive and negative energy parts of
the state. Hence Kähler function could be calculated without any knowledge about the interior of the
space-time sheets and TGD would reduce to almost topological QFT as speculated earlier. Needless
to say this would have immense boost to the program of constructing WCW Kähler geometry.

8.9.4 Kähler action for Euclidian regions as Kähler function and Kähler
action for Minkowskian regions as Morse function?

One of the nasty questions about the interpretation of Kähler action relates to the square root of
the metric determinant. If one proceeds completely straightforwardly, the only reason conclusion is
that the square root is imaginary in Minkowskian space-time regions so that Kähler action would be
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complex. The Euclidian contribution would have a natural interpretation as positive definite Kähler
function but how should one interpret the imaginary Minkowskian contribution? Certainly the path
integral approach to quantum field theories supports its presence. For some mysterious reason I
was able to forget this nasty question and serious consideration of the obvious answer to it. Only
when I worked betweeen possibile connections between TGD and Floer homology [100] I realized
that the Minkowskian contribution is an excellent candidate for Morse function whose critical points
give information about WCW homology. This would fit nicely with the vision about TGD as almost
topological QFT.

Euclidian regions would guarantee the convergence of the functional integral and one would have
a mathematically well-defined theory. Minkowskian contribution would give the quantal interference
effects and stationary phase approximation. The analog of Floer homology would represent quantum
superpositions of critical points identifiable as ground states defined by the extrema of Kähler action
for Minkowskian regions. Perturbative approach to quantum TGD would rely on functional integrals
around the extrema of Kähler function. One would have maxima also for the Kähler function but
only in the zero modes not contributing to the WCW metric.

There is a further question related to almost topological QFT character of TGD. Should one assume
that the reduction to Chern-Simons terms occurs for the preferred extremals in both Minkowskian and
Euclidian regions or only in Minkowskian regions?

1. All arguments for this have been represented for Minkowskian regions [31] involve local light-
like momentum direction which does not make sense in the Euclidian regions. This does not
however kill the argument: one can have non-trivial solutions of Laplacian equation in the
region of CP2 bounded by wormhole throats: for CP2 itself only covariantly constant right-
handed neutrino represents this kind of solution and at the same time supersymmetry. In the
general case solutions of Laplacian represent broken super-symmetries and should be in one-one
correspondences with the solutions of the modified Dirac equation. The interpretation for the
counterparts of momentum and polarization would be in terms of classical representation of
color quantum numbers.

If the reduction occurs in Euclidian regions, it gives in the case of CP2 two 3-D terms corre-
sponding to two 3-D gluing regions for three coordinate patches needed to define coordinates
and spinor connection for CP2 so that one would have two Chern-Simons terms. Without any
other contributions the first term would be identical with that from Minkowskian region apart
from imaginary unit. Second Chern-Simons term would be however independent of this. For
wormhole contacts the two terms could be assigned with opposite wormhole throats and would
be identical with their Minkowskian cousins from imaginary unit. This looks a little bit strange.

2. There is however a very delicate issue involved. Quantum classical correspondence requires that
the quantum numbers of partonic states must be coded to the space-time geometry, and this is
achieved by adding to the action a measurement interaction term which reduces to what is almost
a gauge term present only in Chern-Simons-Dirac equation but not at space-time interior [31].
This term would represent a coupling to Poincare quantum numbers at the Minkowskian side
and to color and electro-weak quantum numbers at CP2 side. Therefore the net Chern-Simons
contributions and would be different.

3. There is also a very beautiful argument stating that Dirac determinant for Chern-Simons-Dirac
action equals to Kähler function, which would be lost if Euclidian regions would not obey
holography. The argument obviously generalizes and applies to both Morse and Kähler function.

The Minkowskian contribution of Kähler action is imaginary due to the negative of the metric
determinant and gives a phase factor to vacuum functional reducing to Chern-Simons terms at worm-
hole throats. Ground state degeneracy due to the possibility of having both signs for Minkowskian
contribution to the exponent of vacuum functional provides a general view about the description of
CP breaking in TGD framework.

1. In TGD framework path integral is replaced by inner product involving integral over WCV. The
vacuum functional and its conjugate are associated with the states in the inner product so that
the phases of vacuum functionals cancel if only one sign for the phase is allowed. Minkowskian
contribution would have no physical significance. This of course cannot be the case. The ground
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state is actually degenerate corresponding to the phase factor and its complex conjugate since√
g can have two signs in Minkowskian regions. Therefore the inner products between states

associated with the two ground states define 2 × 2 matrix and non-diagonal elements contain
interference terms due to the presence of the phase factor. At the limit of full CP2 type vacuum
extremal the two ground states would reduce to each other and the determinant of the matrix
would vanish.

2. A small mixing of the two ground states would give rise to CP breaking and the first principle
description of CP breaking in systems like K − K and of CKM matrix should reduce to this
mixing. K0 mesons would be CP even and odd states in the first approximation and correspond
to the sum and difference of the ground states. Small mixing would be present having exponential
sensitivity to the actions of CP2 type extremals representing wormhole throats. This might allow
to understand qualitatively why the mixing is about 50 times larger than expected for B0 mesons.

3. There is a strong temptation to assign the two ground states with two possible arrows of geo-
metric time. At the level of M-matrix the two arrows would correspond to state preparation at
either upper or lower boundary of CD. Do long- and shortlived neutral K mesons correspond
to almost fifty-fifty orthogonal superpositions for the two arrow of geometric time or almost
completely to a fixed arrow of time induced by environment? Is the dominant part of the arrow
same for both or is it opposite for long and short-lived neutral measons? Different lifetimes
would suggest that the arrow must be the same and apart from small leakage that induced by
environment. CP breaking would be induced by the fact that CP is performed only K0 but not
for the environment in the construction of states. One can probably imagine also alternative
interpretations.

Remark: The proportionality of Minkowskian and Euclidian contributions to the same Chern-
Simons term implies that the critical points with respect to zero modes appear for both the phase
and modulus of vacuum functional. The Kähler function property does not allow extrema for vacuum
functional as a function of complex coordinates of WCW since this would mean Kähler metric with
non-Euclidian signature. If this were not the case. the stationary values of phase factor and extrema
of modulus of the vacuum functional would correspond to different configurations.

8.9.5 A general solution ansatz based on almost topological QFT property

The basic vision behind the ansatz is the reduction of quantum TGD to almost topological field
theory. This requires that the flow parameters associated with the flow lines of isometry currents
and Kähler current extend to global coordinates. This leads to integrability conditions implying
generalized Beltrami flow and Kähler action for the preferred extremals reduces to Chern-Simons
action when weak electro-weak duality is applied as boundary conditions. The strongest form of the
hydrodynamical interpretation requires that all conserved currents are parallel to Kähler current. In
the more general case one would have several hydrodynamic flows. Also the braidings (several of them
for the most general ansatz) assigned with the light-like 3-surfaces are naturally defined by the flow
lines of conserved currents. The independent behavior of particles at different flow lines can be seen
as a realization of the complete integrability of the theory. In free quantum field theories on mass
shell Fourier components are in a similar role but the geometric interpretation in terms of flow is of
course lacking. This picture should generalize also to the solution of the modified Dirac equation.

Basic field equations

Consider first the equations at general level.

1. The breaking of the Poincare symmetry due to the presence of monopole field occurs and leads
to the isometry group T×SO(3)×SU(3) corresponding to time translations, rotations, and color
group. The Cartan algebra is four-dimensional and field equations reduce to the conservation
laws of energy E, angular momentum J , color isospin I3, and color hypercharge Y .

2. Quite generally, one can write the field equations as conservation laws for I, J, I3, and Y .
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Dα

[
Dβ(JαβHA)− jαKHA + TαβjlAhkl∂βh

l
]

= 0 . (8.9.18)

The first term gives a contraction of the symmetric Ricci tensor with antisymmetric Kähler form
and vanishes so that one has

Dα

[
jαKH

A − TαβjkAhkl∂βhl
]

= 0 . (8.9.19)

For energy one has HA = 1 and energy current associated with the flow lines is proportional to
the Kähler current. Its divergence vanishes identically.

3. One can express the divergence of the term involving energy momentum tensor as as sum of
terms involving jαKJαβ and contraction of second fundamental form with energy momentum
tensor so that one obtains

jαKDαH
A = jαKJ

β
α jAβ + TαβHk

αβj
A
k . (8.9.20)

Hydrodynamical solution ansatz

The characteristic feature of the solution ansatz would be the reduction of the dynamics to hydrody-
namics analogous to that for a continuous distribution of particles initially at the end of X3 of the
light-like 3-surface moving along flow lines defined by currents jA satisfying the integrability condi-
tion jA ∧ djA = 0. Field theory would reduce effectively to particle mechanics along flow lines with
conserved charges defined by various isometry currents. The strongest condition is that all isometry
currents jA and also Kähler current jK are proportional to the same current j. The more general
option corresponds to multi-hydrodynamics.

Conserved currents are analogous to hydrodynamical currents in the sense that the flow parameter
along flow lines extends to a global space-time coordinate. The conserved current is proportional to
the gradient ∇Φ of the coordinate varying along the flow lines: J = Ψ∇Φ and by a proper choice of
Ψ one can allow to have conservation. The initial values of Ψ and Φ can be selected freely along the
flow lines beginning from either the end of the space-time surface or from wormhole throats.

If one requires hydrodynamics also for Chern-Simons action (effective 2-dimensionality is required
for preferred extremals), the initial values of scalar functions can be chosen freely only at the partonic
2-surfaces. The freedom to chose the initial values of the charges conserved along flow lines at the
partonic 2-surfaces means the existence of an infinite number of conserved charges so that the theory
would be integrable and even in two different coordinate directions. The basic difference as compared
to ordinary conservation laws is that the conserved currents are parallel and their flow parameter
extends to a global coordinate.

1. The most general assumption is that the conserved isometry currents

JαA = jαKH
A − TαβjkAhkl∂βhl (8.9.21)

and Kähler current are integrable in the sense that JA∧JA = 0 and jK ∧ jK = 0 hold true. One
could imagine the possibility that the currents are not parallel.

2. The integrability condition dJA ∧ JA = 0 is satisfied if one one has

JA = ΨAdΦA . (8.9.22)
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The conservation of JA gives

d ∗ (ΨAdΦA) = 0 . (8.9.23)

This would mean separate hydrodynamics for each of the currents involved. In principle there is
not need to assume any further conditions and one can imagine infinite basis of scalar function
pairs (ΨA,ΦA) since criticality implies infinite number deformations implying conserved Noether
currents.

3. The conservation condition reduces to d’Alembert equation in the induced metric if one assumes
that ∇ΨA is orthogonal with every dΦA.

d ∗ dΦA = 0 , dΨA · dΦA = 0 . (8.9.24)

Taking x = ΦA as a coordinate the orthogonality condition states gxj∂jΨA = 0 and in the gen-
eral case one cannot solve the condition by simply assuming that ΨA depends on the coordinates
transversal to ΦA only. These conditions bring in mind p · p = 0 and p · e condition for massless
modes of Maxwell field having fixed momentum and polarization. dΦA would correspond to p
and dΨA to polarization. The condition that each isometry current corresponds its own pair
(ΨA,ΦA) would mean that each isometry current corresponds to independent light-like momen-
tum and polarization. Ordinary free quantum field theory would support this view whereas
hydrodynamics and QFT limit of TGD would support single flow.

These are the most general hydrodynamical conditions that one can assume. One can consider
also more restricted scenarios.

1. The strongest ansatz is inspired by the hydrodynamical picture in which all conserved isometry
charges flow along same flow lines so that one would have

JA = ΨAdΦ . (8.9.25)

In this case same Φ would satisfy simultaneously the d’Alembert type equations.

d ∗ dΦ = 0 , dΨA · dΦ = 0. (8.9.26)

This would mean that the massless modes associated with isometry currents move in parallel
manner but can have different polarizations. The spinor modes associated with light-light like
3-surfaces carry parallel four-momenta, which suggest that this option is correct. This allows a
very general family of solutions and one can have a complete 3-dimensional basis of functions
ΨA with gradient orthogonal to dΦ.

2. Isometry invariance under T × SO(3)× SU(3) allows to consider the possibility that one has

JA = kAΨAdΦG(A) , d ∗ (dΦG(A)) = 0 , dΨA · dΦG(A)) = 0 . (8.9.27)

where G(A) is T for energy current, SO(3) for angular momentum currents and SU(3) for color
currents. Energy would thus flow along its own flux lines, angular momentum along its own flow
lines, and color quantum numbers along their own flow lines. For instance, color currents would
differ from each other only by a numerical constant. The replacement of ΨA with ΨG(A) would
be too strong a condition since Killing vector fields are not related by a constant factor.
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To sum up, the most general option is that each conserved current JA defines its own integrable
flow lines defined by the scalar function pair (ΨA,ΦA). A complete basis of scalar functions satisfying
the d’Alembert type equation guaranteeing current conservation could be imagined with restrictions
coming from the effective 2-dimensionality reducing the scalar function basis effectively to the partonic
2-surface. The diametrically opposite option corresponds to the basis obtained by assuming that only
single Φ is involved.

The proposed solution ansatz can be compared to the earlier ansatz [41] stating that Kähler
current is topologized in the sense that for D(CP2) = 3 it is proportional to the identically conserved
instanton current (so that 4-D Lorentz force vanishes) and vanishes for D(CP2) = 4 (Maxwell phase).
This hypothesis requires that instanton current is Beltrami field for D(CP2) = 3. In the recent
case the assumption that also instanton current satisfies the Beltrami hypothesis in strong sense
(single function Φ) generalizes the topologization hypothesis for D(CP2) = 3. As a matter fact, the
topologization hypothesis applies to isometry currents also for D(CP2) = 4 although instanton current
is not conserved anymore.

Can one require the extremal property in the case of Chern-Simons action?

Effective 2-dimensionality is achieved if the ends and wormhole throats are extremals of Chern-Simons
action. The strongest condition would be that space-time surfaces allow orthogonal slicings by 3-
surfaces which are extremals of Chern-Simons action.

Also in this case one can require that the flow parameter associated with the flow lines of the
isometry currents extends to a global coordinate. Kähler magnetic field B = ∗J defines a conserved
current so that all conserved currents would flow along the field lines of B and one would have 3-D
Beltrami flow. Note that in magnetohydrodynamics the standard assumption is that currents flow
along the field lines of the magnetic field.

For wormhole throats light-likeness causes some complications since the induced metric is degener-
ate and the contravariant metric must be restricted to the complement of the light-like direction. This
means that d’Alembert equation reduces to 2-dimensional Laplace equation. For space-like 3-surfaces
one obtains the counterpart of Laplace equation with partonic 2-surfaces serving as sources. The
interpretation in terms of analogs of Coulomb potentials created by 2-D charge distributions would
be natural.

8.9.6 Hydrodynamic picture in fermionic sector

Super-symmetry inspires the conjecture that the hydrodynamical picture applies also to the solutions
of the modified Dirac equation.

4-dimensional modified Dirac equation and hydrodynamical picture

Consider first the solutions of of the induced spinor field in the interior of space-time surface.

1. The local inner products of the modes of the induced spinor fields define conserved currents

DαJ
α
mn = 0 ,

Jαmn = umΓ̂αun ,

Γ̂α =
∂LK

∂(∂αhk)
Γk . (8.9.28)

The conjecture is that the flow parameters of also these currents extend to a global coordinate
so that one would have in the completely general case the condition

Jαmn = ΦmndΨmn ,

d ∗ (dΦmn) = 0 , ∇Ψmn · Φmn = 0 . (8.9.29)
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The condition Φmn = Φ would mean that the massless modes propagate in parallel manner and
along the flow lines of Kähler current. The conservation condition along the flow line implies
tht the current component Jmn is constant along it. Everything would reduce to initial values
at the ends of the space-time sheet boundaries of CD and 3-D modified Dirac equation would
reduce everything to initial values at partonic 2-surfaces.

2. One might hope that the conservation of these super currents for all modes is equivalent with
the modified Dirac equation. The modes un appearing in Ψ in quantized theory would be kind
of ”square roots” of the basis Φmn and the challenge would be to deduce the modes from the
conservation laws.

3. The quantization of the induced spinor field in 4-D sense would be fixed by those at 3-D space-
like ends by the fact that the oscillator operators are carried along the flow lines as such so
that the anti-commutator of the induced spinor field at the opposite ends of the flow lines at
the light-like boundaries of CD is in principle fixed by the anti-commutations at the either end.
The anti-commutations at 3-D surfaces cannot be fixed freely since one has 3-D Chern-Simons
flow reducing the anti-commutations to those at partonic 2-surfaces.

The following argument suggests that induced spinor fields are in a suitable gauge simply constant
along the flow lines of the Kähler current just as massless spinor modes are constant along the geodesic
in the direction of momentum.

1. The modified gamma matrices are of form Tαk Γk, Tαk = ∂LK/∂(∂αh
k). The H-vectors Tαk can

be expressed as linear combinations of a subset of Killing vector fields jkA spanning the tangent
space of H. For CP2 the natural choice are the 4 Lie-algebra generators in the complement
of U(2) sub-algebra. For CD one can used generator time translation and three generators of
rotation group SO(3). The completeness of the basis defined by the subset of Killing vector
fields gives completeness relation hkl = jAkjAk. This implies Tαk = TαkjAk j

k
A = TαAjkA. One

can defined gamma matrices ΓA as Γkj
k
A to get Tαk Γk = TαAΓA.

2. This together with the condition that all isometry currents are proportional to the Kähler
current (or if this vanishes to same conserved current- say energy current) satisfying Beltrami
flow property implies that one can reduce the modified Dirac equation to an ordinary differential
equation along flow lines. The quantities T tA are constant along the flow lines and one obtains

T tAjADtΨ = 0 . (8.9.30)

By choosing the gauge suitably the spinors are just constant along flow lines so that the spinor
basis reduces by effective 2-dimensionality to a complete spinor basis at partonic 2-surfaces.

Generalized eigen modes for the modified Chern-Simons Dirac equation and hydrody-
namical picture

Hydrodynamical picture helps to understand also the construction of generalized eigen modes of 3-D
Chern-Simons Dirac equation.

The general form of generalized eigenvalue equation for Chern-Simons Dirac action

Consider first the the general form and interpretation of the generalized eigenvalue equation as-
signed with the modified Dirac equation for Chern-Simons action [20] . This is of course only an
approximation since an additional contribution to the modified gamma matrices from the Lagrangian
multiplier term guaranteing the weak form of electric-magnetic duality must be included.

1. The modified Dirac equation for Ψ is consistent with that for its conjugate if the coefficient of
the instanton term is real and one uses the Dirac action Ψ(D→ −D←)Ψ giving modified Dirac
equation as



8.9. Weak form electric-magnetic duality and its implications 593

DC−SΨ +
1

2
(DαΓ̂αC−S)Ψ = 0 . (8.9.31)

As noticed, the divergence DαΓ̂αC−S does not contain second derivatives in the case of Chern-
Simons action. In the case of Kähler action they occur unless field equations equivalent with the
vanishing of the divergence term are satisfied. The extremals of Chern-Simons action provide a
natural manner to define effective 2-dimensionality.

Also the fermionic current is conserved in this case, which conforms with the idea that fermions
flow along the light-like 3-surfaces. If one uses the action ΨD→Ψ, Ψ does not satisfy the Dirac
equation following from the variational principle and fermion current is not conserved.

2. The generalized eigen modes of DC−S should be such that one obtains the counterpart of Dirac
propagator which is purely algebraic and does not therefore depend on the coordinates of the
throat. This is satisfied if the generalized eigenvalues are expressible in terms of covariantly
constant combinations of gamma matrices and here only M4 gamma matrices are possible.
Therefore the eigenvalue equation would read as

DΨ = λkγkΨ , D = DC−S +
1

2
DαΓ̂αC−S , DC−S = Γ̂αC−SDα .

(8.9.32)

Here the covariant derivatives Dα contain the measurement interaction term as an apparent
gauge term. For extremals one has

D = DC−S . (8.9.33)

Covariant constancy allows to take the square of this equation and one has

(D2 +
[
D,λkγk

]
)Ψ = λkλkΨ . (8.9.34)

The commutator term is analogous to magnetic moment interaction.

3. The generalized eigenvalues correspond to λ =
√
λkλk and Dirac determinant is defined as a

product of the eigenvalues and conjecture to give the exponent of Kähler action reducing to
Chern-Simons term. λ is completely analogous to mass. λk cannot be however interpreted as
ordinary four-momentum: for instance, number theoretic arguments suggest that λk must be
restricted to the preferred plane M2 ⊂ M4 interpreted as a commuting hyper-complex plane
of complexified quaternions. For incoming lines this mass would vanish so that all incoming
particles irrespective their actual quantum numbers would be massless in this sense and the
propagator is indeed that for a massless particle. Note that the eigen-modes define the boundary
values for the solutions of DKΨ = 0 so that the values of λ indeed define the counterpart of the
momentum space.

This transmutation of massive particles to effectively massless ones might make possible the
application of the twistor formalism as such in TGD framework [96] . N = 4 SUSY is one
of the very few gauge theory which might be UV finite but it is definitely unphysical due to
the masslessness of the basic quanta. Could the resolution of the interpretational problems
be that the four-momenta appearing in this theory do not directly correspond to the observed
four-momenta?
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2. Inclusion of the constraint term

As already noticed one must include also the constraint term due to the weak form of electric-
magnetic duality and this changes somewhat the above simple picture.

1. At the 3-dimensional ends of the space-time sheet and at wormhole throats the 3-dimensionality
allows to introduce a coordinate varying along the flow lines of Kähler magnetic field B = ∗J .
In this case the integrability conditions state that the flow is Beltrami flow. Note that the
value of Bα along the flow line defining magnetic flux appearing in anti-commutation relations
is constant. This suggests that the generalized eigenvalue equation for the Chern-Simons ac-
tion reduces to a collection of ordinary apparently independent differential equations associated
with the flow lines beginning from the partonic 2-surface. This indeed happens when the CP2

projection is 2-dimensional. In this case it however seems that the basis un is not of much help.

2. The conclusion is wrong: the variations of Chern-Simons action are subject to the constraint
that electric-magnetic duality holds true expressible in terms of Lagrange multiplier term

∫
Λα(Jnα −KεnαβγJβγ)

√
g4d

3x . (8.9.35)

This gives a constraint force to the field equations and also a dependence on the induced 4-
metric so that one has only almost topological QFT. This term also guarantees the M4 part
of WCW Kähler metric is non-trivial. The condition that the ends of space-time sheet and
wormhole throats are extrema of Chern-Simons action subject to the electric-magnetic duality
constraint is strongly suggested by the effective 2-dimensionality. Without the constraint term
Chern-Simons action would vanish for its extremals so that Kähler function would be identically
zero.

This term implies also an additional contribution to the modified gamma matrices besides the
contribution coming from Chern-Simons action so tht the first guess for the modified Dirac
operator would not be quite correct. This contribution is of exactly of the same general form
as the contribution for any general general coordinate invariant action. The dependence of the
induced metric on M4 degrees of freedom guarantees that also M4 gamma matrices are present.
In the following this term will not be considered.

3. When the contribution of the constraint term to the modifield gamma matrices is neglected,
the explicit expression of the modified Dirac operator DC−S associated with the Chern-Simons
term is given by

D = Γ̂µDµ +
1

2
DµΓ̂µ ,

Γ̂µ =
∂LC−S
∂µhk

Γk = εµαβ
[
2Jkl∂αh

lAβ + JαβAk
]

ΓkDµ ,

DµΓ̂µ = BαK(Jkα + ∂αAk) ,

BαK = εαβγJβγ , Jkα = Jkl∂αs
l , ε̂αβγ = εαβγ

√
g3 . (8.9.36)

For the extremals of Chern-Simons action one has DαΓ̂α = 0. Analogous condition holds true
when the constraing contriabution to the modified gamma matrices is added.

3. Generalized eigenvalue equation for Chern-Simons Dirac action

Consider now the Chern-Simons Dirac equation in more detail assuming that the inclusion of the
constraint contribution to the modified gamma matrices does not induce any complications. Assume
also extremal property for Chern-Simons action with constraint term and Beltrami flow property.
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1. For the extremals the Chern-Simons Dirac operator (constraint term not included) reduces to a
one-dimensional Dirac operator

DC−S = ε̂rαβ [2JkαAβ + JαβAk] ΓkDr . (8.9.37)

Constraint term implies only a modification of the modified gamma matrices but the form of
the operator remains otherwise same when extrema are in question so that one has DαΓ̂α = 0.

2. For the extremals of Chern-Simons action the general solution of the modified Chern-Simons
Dirac equation (λk = 0) is covariantly constant with respect to the coordinate r:

DrΨ = 0 . (8.9.38)

The solution to this condition can be written immediately in terms of a non-integrable phase
factor Pexp(i

∫
Ardr), where integration is along curve with constant transversal coordinates. If

Γ̂v is light-like vector field also Γ̂vΨ0 defines a solution of DC−S . This solution corresponds to a
zero mode for DC−S and does not contribute to the Dirac determinant (suggested to give rise to
the exponent of Kähler function identified as Kähler action). Note that the dependence of these
solutions on transversal coordinates of X3

l is arbitrary which conforms with the hydrodynamic
picture. The solutions of Chern-Simons-Dirac are obtained by similar integration procedure also
when extremals are not in question.

The formal solution associated with a general eigenvalue λ can be constructed by integrating the
eigenvalue equation separately along all coordinate curves. This makes sense if r indeed assigned to
possibly light-like flow lines of Bα or more general Beltrami field possible induced by the constraint
term. There are very strong consistency conditions coming from the conditions that Ψ in the interior
is constant along the flow lines of Kähler current and continuous at the ends and throats (call them
collectively boundaries), where Ψ has a non-trivial variation along the flow lines of Bα.

1. This makes sense only if the flow lines of the Kähler current are transversal to the boundaries
so that the spinor modes at boundaries dictate the modes of the spinor field in the interior.
Effective 2-dimensionality means that the spinor modes in the interior can be calculated either
by starting from the throats or from the ends so that the data at either upper of lower partonic
2-surfaces dictates everything in accordance with zero energy ontology.

2. This gives an infinite number of commuting diagrams stating that the flow-line time evolution
along flow lines along wormhole throats from lower partonic 2-surface to the upper one is equiv-
alent with the flow-line time evolution along the lower end of space-time surface to interior, then
along interior to the upper end of the space-time surface and then back to the upper partonic
2-surface. If the space-time surface allows a slicing by partonic 2-surfaces these conditions can
be assumed for any pair of partonic 2-surfaces connected by Chern-Simons flow evolution.

3. Since the time evolution along interior keeps the spinor field as constant in the proper gauge
and since the flow evolutions at the lower and upper ends are in a reverse direction, there is a
strong atemptation to assume that the spinor field at the ends of the of the flow lines of Kähler
magnetic field are identical apart from a gauge transformation. This leads to a particle-in-box
quantizaton of the values of the pseudo-mass (periodic boundary conditions). These conditions
will be assumed in the sequel.

These assumptions lead to the following picture about the generalized eigen modes.

1. By choosing the gauge so that covariant derivative reduces to ordinary derivative and using the
constancy of Γ̂r, the solution of the generalized eigenvalue equation can be written as



596 Chapter 8. The Geometry of the World of Classical Worlds

Ψ = exp(iL(r)Γ̂rλkΓk)Ψ0 ,

L(r) =

∫ r

0

1√
ĝrr

dr . (8.9.39)

L(r) can be regarded as the along flux line as defined by the effective metric defined by modified
gamma matrices. If λk is linear combination of Γ0 and ΓrM it anti-commutes with Γr which
contains only CP2 gamma matrices so that the pseudo-momentum is a priori arbitrary.

2. When the constraint term taking care of the electric-magnetric duality is included, also M4

gamma matrices are present. If they are in the orthogonal complement of a preferred plane
M2 ⊂ M4, anti-commutativity is achieved. This assumption cannot be fully justified yet but
conforms with the general physical vision. There is an obvious analogy with the condition that
polarizations are in a plane orthogonal to M2. The condition indeed states that only transversal
deformations define quantum fluctuating WCW degrees of freedom contributing to the WCW
Kähler metric. In M8−H duality the preferred plane M2 is interpreted as a hyper-complex plane
belonging to the tangent space of the space-time surface and defines the plane of non-physical
polarizations. Also a generalization of this plane to an integrable distribution of planes M2(x)
has been proposed and one must consider also now the possibility of a varying plane M2(x) for
the pseudo-momenta. The scalar function Φ appearing in the general solution ansatz for the
field equations satisfies massless d’Alembert equation and its gradient defines a local light-like
direction at space-time-level and hence a 2-D plane of the tangent space. Maybe the projection
of this plane to M4 could define the preferred M2. The minimum condition is that these planes
are defined only at the ends of space-time surface and at wormhole throats.

3. If one accepts this hypothesis, one can write

Ψ =
[
cos(L(r)λ) + isin(λ(r))Γ̂rλkΓk)

]
Ψ0 ,

λ =
√
λkλk . (8.9.40)

4. Boundary conditions should fix the spectrum of masses. If the the flow lines of Kähler current
coincide with the flow lines of Kähler magnetic field or more general Beltrami current at worm-
hole throats one ends up with difficulties since the induced spinor fields must be constant along
flow lines and only trivial eigenvalues are possible. Hence it seems that the two Beltrami fields
must be transversal. This requires that at the partonic 2-surfaces the value of the induced spinor
mode in the interior coincides with its value at the throat. Since the induced spinor fields in
interior are constant along flow lines, one must have

exp(iλL(max)) = 1 . (8.9.41)

This implies that one has essentially particle in a box with size defined by the effective metric

λn =
n2π

L(rmax)
. (8.9.42)

5. This condition cannot however hold true simultaneously for all points of the partonic 2-surfaces
since L(rmax) depends on the point of the surface. In the most general case one can consider
only a subset consisting of the points for which the values of L(rmax) are rational multiples of the
value of L(rmax) at one of the points -call it L0. This implies the notion of number theoretical
braid. Induced spinor fields are localized to the points of the braid defined by the flow lines of
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the Kähler magnetic field (or equivalently, any conserved current- this resolves the longstanding
issue about the identification of number theoretical braids). The number of the included points
depends on measurement resolution characterized somehow by the number rationals which are
allowed. Only finite number of harmonics and sub-harmonics of L0 are possible so that for
integer multiples the number of points is finite. If nmaxL0 and L0/nmin are the largest and
smallest lengths involved, one can argue that the rationals nmax/n, n = 1, ..., nmax and n/nmin,
n = 1, ..., nmin are the natural ones.

6. One can consider also algebraic extensions for which L0 is scaled from its reference value by an
algebraic number so that the mass scale m must be scaled up in similar manner. The spectrum
comes also now in integer multiples. p-Adic mass calculations predicts mass scales to the inverses
of square roots of prime and this raises the expectation that

√
n harmonics and sub-harmonics

of L0 might be necessary. Notice however that pseudo-momentum spectrum is in question so
that this argument is on shaky grounds.

There is also the question about the allowed values of (λ0, λ3) for a given value of λ. This issue will
be discussed in the next section devoted to the attempt to calculate the Dirac determinant assignable
to this spectrum: suffice it to say that integer valued spectrum is the first guess implying that the
pseudo-momenta satisfy n2

0 − n2
3 = n2 and therefore correspond to Pythagorean triangles. What is

remarkable that the notion of number theoretic braid pops up automatically from the Beltrami flow
hypothesis.

8.10 How to define Dirac determinant?

The basic challenge is to define Dirac determinant hoped to give rise to the exponent of Kähler action
associated with the preferred extremal. The reduction to almost topological QFT gives this kind
of expression in terms of Chern-Simons action and one might hope of obtaining even more concrete
expression from the Chern-Simons Dirac determinant. The calculation of the previous section allowed
to calculate the most general spectrum of the modified Dirac operator. If the number of the eigenvalues
is infinite as the naive expectation is then Dirac determinant diverges if calculated as the product of the
eigenvalues and one must calculate it by using some kind of regularization procedure. Zeta function
regularization is the natural manner to do this.

The following arguments however lead to a concrete vision how the regularization could be avoided
and a connection with infinite primes. In fact, the manifestly finite option and the option involving zeta
function regularization give Kähler functions differing only by a scaling factor and only the manifestly
finite option satisfies number theoretical constraints coming from p-adicization. An explicit expression
for the Dirac determinant in terms of geometric data of the orbit of the partonic 2-surface emerges.

Arithmetic quantum field theory defined by infinite emerges naturally. The lines of the generalized
Feynman graphs are characterized by infinite primes and the selection rules correlating the geometries
of the lines of the generalized Feynman graphs corresponds to the conservation of the sum of number
theoretic momenta log(pi) assignable to sub-braids corresponding to different primes pi assignable to
the orbit of parton. This conforms with the vision that infinite primes indeed characterize the geometry
of light-like 3-surfaces and therefore also of space-time sheets. The eigenvalues of the modified Dirac
operator are proportional 1/

√
pi where pi are the primes appearing in the definition of the p-adic prime

and the interpretation as analogs of Higgs vacuum expectation values makes sense and is consistent
with p-adic length scale hypothesis and p-adic mass calculations. It must be emphasized that all this is
essentially due to single basic hypothesis, namely the reduction of quantum TGD to almost topological
QFT guaranteed by the Beltrami ansatz for field equations and by the weak form of electric-magnetic
duality.

8.10.1 Dirac determinant when the number of eigenvalues is infinite

At first sight the general spectrum looks the only reasonable possibility but if the eigenvalues cor-
relate with the geometry of the partonic surface as quantum classical correspondence suggests, this
conclusion might be wrong. The original hope was the number of eigenvalues would be finite so that
also determinant would be finite automatically. There were some justifications for this hope in the
definition of Dirac determinant based on the dimensional reduction of DK as DK = DK,3 + D1 and
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the identification of the generalized eigenvalues as those assigned to DK,3 as analogs of energy eigen-
values assignable to the light-like 3-surface. It will be found that number theoretic input could allow
to achieve a manifest finiteness in the case of DC−S and that this option is the only possible one if
number theoretic universality is required.

If there are no constraints on the eigenvalue spectrum of DC−S for a given partonic orbit, the naive
definition of the determinant gives an infinite result and one must define Dirac determinant using ζ
function regularization implying that Kähler function reduces to the derivative of the zeta function
ζD(s) -call it Dirac Zeta- associated with the eigenvalue spectrum.

Consider now the situation when the number of eigenvalues is infinite.

1. In this kind of situation zeta function regularization is the standard manner to define the Dirac
determinant. What one does is to assign zeta function to the spectrum- let us call it Dirac zeta
function and denote by ζD(s)- as

ζD(s) =
∑
k

λ−sk . (8.10.1)

If the eigenvalue λk has degeneracy gk it appears gk times in the sum. In the case of harmonic
oscillator one obtains Riemann zeta for which sum representation converges only for Re(s) ≥ 1.
Riemann zeta can be however analytically continued to the entire complex plane and the idea
is that this can be done also in the more general case.

2. By the basic conjecture Kähler function corresponds to the logarithm of the Dirac determinant
and equals to the sum of the logarithms of the eigenvalues

K = log(
∏

λk) = −dζD
ds |s=0

. (8.10.2)

The expression on the left hand side diverges if taken as such but the expression on the right
had side based on the analytical continuation of the zeta function is completely well-defined and
finite quantity. Note that the replacement of eigenvalues λk by their powers λnk -or equivalently
the increase of the degeneracy by a factor n - brings in only a factor n to K: K → nK.

3. Dirac determinant involves in the minimal situation only the integer multiples of pseudo-mass
scale λ = 2π/Lmin. One can consider also rational and even algebraic multiples qLmin < Lmax,
q ≥ 1, of Lmin so that one would have several integer spectra simultaneously corresponding to
different braids. Here Lmin and Lmax are the extrema of the braid strand length determined
in terms of the effective metric as L =

∫
(ĝrr)−1/2dr. The question what multiples are involved

will be needed later.

4. Each rational or algebraic multiple of Lmin gives to the zeta function a contribution which is of
same form so that one has

ζD =
∑
q

ζ(log(qx)s) , x =
Lmin
R

, 1 ≤ q < Lmax
Lmin

. (8.10.3)

Kähler function can be expressed as

K =
∑
n

log(λn) = −dζD(s)

ds
= −

∑
q

log(qx)
dζ(s)

ds |s=0
, x =

Lmin
R

. (8.10.4)

What is remarkable that the number theoretical details of ζD determine only the overall scaling
factor of Kähler function and thus the value of Kähler coupling strength, which would be purely
number theoretically determined if the hypothesis about the role of infinite primes is correct.
Also the value of R is irrelevant since it does not affect the Kähler metric.
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5. The dependence of Kähler function on WCW degrees of freedom would be coded completely by
the dependence of the length scales qLmin on the complex coordinates of WCW: note that this
dependence is different for each scale. This is reminiscent of the coding of the shape of the drum
(or more generally - manifold) by the spectrum of its eigen frequencies. Now Kähler geometry
would code for the dependence of the spectrum on the shape of the drum defined by the partonic
2-surface and the 4-D tangent space distribution associated with it.

What happens at the limit of vacuum extremals serves as a test for the identification of Kähler
function as Dirac determinant. The weak form of electric magnetic duality implies that all com-
ponents of the induced Kähler field vanish simultaneously if Kähler magnetic field cancels. In the
modified Chern-Simons Dirac equation one obtains L =

∫
(ĝrr)−1/2dr. The modified gamma matrix

Γ̂r approaches a finite limit when Kähler magnetic field vanishes

Γ̂r = εrβγ(2JβkAγ + JβγAk)Γk → 2εrβγJβkΓk . (8.10.5)

The relevant component of the effective metric is ĝrr and is given by

ĝrr = (Γ̂r)2 = 4εrβγεrµνJβkJ
k

µ AγAν . (8.10.6)

The limit is non-vanishing in general and therefore the eigenvalues remain finite also at this limit
as also the parameter Lmin =

∫
(ĝrr)−1/2dr defining the minimum of the length of the braid strand

defined by Kähler magnetic flux line in the effective metric unless ĝrr goes to zero everywhere inside
the partonic surface. Chern-Simons action and Kähler action vanish for vacuum extremals so that in
this case one could require that Dirac determinant approaches to unity in a properly chosen gauge.
Dirac determinant should approach to unit for vacuum extremals indeed approaches to unity since
there are no finite eigenvalues at the limit ĝrr = 0.

8.10.2 Hyper-octonionic primes

Before detailed discussion of the hyper-octonionic option it is good to consider the basic properties of
hyper-octonionic primes.

1. Hyper-octonionic primes are of form

Πp = (n0, n3, n1, n2, ..., n7) , Π2
p = n2

0 −
∑
i

n2
i = p or p2 . (8.10.7)

2. Hyper-octonionic primes have a standard representation as hyper-complex primes. The Minkowski
norm squared factorizes into a product as

n2
0 − n2

3 = (n0 + n3)(n0 − n3) . (8.10.8)

If one has n3 6= 0, the prime property implies n0 − n3 = 1 so that one obtains n0 = n3 + 1 and
2n3 + 1 = p giving

(n0, n3) = ((p+ 1)/2, (p− 1)/2) .

(8.10.9)

Note that one has (p + 1)/2 odd for p mod 4 = 1) and (p + 1)/2 even for p mod 4 = 3). The
difference n0 − n3 = 1 characterizes prime property.

If n3 vanishes the prime prime property implies equivalence with ordinary prime and one has
n2

3 = p2. These hyper-octonionic primes represent particles at rest.
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3. The action of a discrete subgroup G(p) of the octonionic automorphism group G2 generates form
hyper-complex primes with n3 6= 0 further hyper-octonionic primes Π(p, k) corresponding to the
same value of n0 and p and for these the integer valued projection to M2 satisfies n2

0−n2
3 = n > p.

It is also possible to have a state representing the system at rest with (n0, n3) = ((p + 1)/2, 0)
so that the pseudo-mass varies in the range [

√
p, (p + 1)/2]. The subgroup G(n0, n3) ⊂ SU(3)

leaving invariant the projection (n0, n3) generates the hyper-octonionic primes corresponding
to the same value of mass for hyper-octonionic primes with same Minkowskian length p and
pseudo-mass λ = n ≥ √p.

4. One obtains two kinds of primes corresponding to the lengths of pseudo-momenta equal to p or√
p. The first kind of particles are always at rest whereas the second kind of particles can be

brought at rest only if one interprets the pseudo-momentum as M2 projection. This brings in
mind the secondary p-adic length scales assigned to causal diamonds (CDs) and the primary
p-adic lengths scales assigned to particles.

If the M2 projections of hyper-octonionic primes with length
√
p characterize the allowed basic

momenta, ζD is sum of zeta functions associated with various projections which must be in the limits
dictated by the geometry of the orbit of the partonic surface giving upper and lower bounds Lmax and
Lmin on the length L. Lmin is scaled up to

√
n2

0 − n2
3Lmin for a given projection (n0, n3). In general

a given M2 projection (n0, n3) corresponds to several hyper-octonionic primes since SU(3) rotations
give a new hyper-octonionic prime with the same M2 projection. This leads to an inconsistency unless
one has a good explanation for why some basic momentum can appear several times. One might argue
that the spinor mode is degenerate due to the possibility to perform discrete color rotations of the
state. For hyper complex representatives there is no such problem and it seems favored. In any case,
one can look how the degeneracy factors for given projection can be calculated.

1. To calculate the degeneracy factor D(n associated with given pseudo-mass value λ = n one must
find all hyper-octonionic primes Π, which can have projection in M2 with length n and sum up
the degeneracy factors D(n, p) associated with them:

D(n) =
∑
p

D(n, p) ,

D(n, p) =
∑

n2
0−n2

3=p

D(p, n0, n3) ,

n2
0 − n2

3 = n , Π2
p(n0, n3) = n2

0 − n2
3 −

∑
i

n2
i = n−

∑
i

n2
i = p . (8.10.10)

2. The condition n2
0 − n2

3 = n allows only Pythagorean triangles and one must find the discrete
subgroup G(n0, n3) ⊂ SU(3) producing hyper-octonions with integer valued components with
length p and components (n0, n3). The points at the orbit satisfy the condition

∑
n2
i = p− n . (8.10.11)

The degeneracy factor D(p, n0, n3) associated with given mass value n is the number of elements
of in the coset space G(n0, n3, p)/H(n0, n3, p), where H(n0, n3, p) is the isotropy group of given
hyper-octonionic prime obtained in this manner. For n2

0−n2
3 = p2 D(n0, n3, p) obviously equals

to unity.

8.10.3 Three basic options for the pseudo-momentum spectrum

The calculation of the scaling factor of the Kähler function requires the knowledge of the degeneracies
of the mass squared eigen values. There are three options to consider.
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First option: all pseudo-momenta are allowed

If the degeneracy for pseudo-momenta in M2 is same for all mass values- and formally characterizable
by a number N telling how many 2-D pseudo-momenta reside on mass shell n2

0−n2
3 = m2. In this case

zeta function would be proportional to a sum of Riemann Zetas with scaled arguments corresponding
to scalings of the basic mass m to m/q.

ζD(s) = N
∑
q

ζ(log(qx)s) , x =
Lmin
R

. (8.10.12)

This option provides no idea about the possible values of 1 ≤ q ≤ Lmax/Lmin. The number N
is given by the integral of relativistic density of states

∫
dk/2

√
k2 +m2 over the hyperbola and is

logarithmically divergent so that the normalization factor N of the Kähler function would be infinite.

Second option: All integer valued pseudomomenta are allowed

Second option is inspired by number theoretic vision and assumes integer valued components for the
momenta using mmax = 2π/Lmin as mass unit. p-Adicization motivates also the assumption that
momentum components using mmax as mass scale are integers. This would restrict the choice of the
number theoretical braids.

Integer valuedness together with masses coming as integer multiples of mmax implies (λ0, λ3) =
(n0, n3) with on mass shell condition n2

0−n2
3 = n2. Note that the condition is invariant under scaling.

These integers correspond to Pythagorean triangles plus the degenerate situation with n3 = 0. There
exists a finite number of pairs (n0, n3) satisfying this condition as one finds by expressing n0 as
n0 = n3 + k giving 2n3k + k2 = p2 giving n3 < n2/2,n0 < n2/2 + 1. This would be enough to have a
finite degeneracy D(n) ≥ 1 for a given value of mass squared and ζD would be well defined. ζD would
be a modification of Riemann zeta given by

ζD =
∑
q

ζ1(log(qx)s) , x =
Lmin
R

,

ζ1(s) =
∑

gnn
−s , gn ≥ 1 . (8.10.13)

For generalized Feynman diagrams this option allows conservation of pseudo-momentum and for loops
no divergences are possible since the integral over two-dimensional virtual momenta is replaced with
a sum over discrete mass shells containing only a finite number of points. This option looks thus
attractive but requires a regularization. On the other hand, the appearance of a zeta function having
a strong resemblance with Riemann zeta could explain the finding that Riemann zeta is closely related
to the description of critical systems. This point will be discussed later.

Third option: Infinite primes code for the allowed mass scales

According to the proposal of [84] , [16] the hyper-complex parts of hyper-octonionic primes appearing
in their infinite counterparts correspond to the M2 projections of real four-momenta. This hypothesis
suggests a very detailed map between infinite primes and standard model quantum numbers and
predicts a universal mass spectrum [84] . Since pseudo-momenta are automatically restricted to
the plane M2, one cannot avoid the question whether they could actually correspond to the hyper-
octonionic primes defining the infinite prime. These interpretations need not of course exclude each
other. This option allows several variants and at this stage it is not possible to exclude any of these
options.

1. One must choose between two alternatives for which pseudo-momentum corresponds to hyper-
complex prime serving as a canonical representative of a hyper-octonionic prime or a projection
of hyper-octonionic prime to M2.

2. One must decide whether one allows a) only the momenta corresponding to hyper-complex
primes, b) also their powers (p-adic fractality), or c) all their integer multiples (”Riemann
option”).
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One must also decide what hyper-octonionic primes are allowed.

1. The first guess is that all hyper-complex/hyper-octonionic primes defining length scale
√
pLmin ≤

Lmax or pLmin ≤ Lmax are allowed. p-Adic fractality suggests that also the higher p-adic length
scales pn/2Lmin < Lmax and pnLmin < Lmax, n ≥ 1, are possible.

It can however happen that no primes are allowed by this criterion. This would mean vanishing
Kähler function which is of course also possible since Kähler action can vanish (for instance, for
massless extremals). It seems therefore safer to allow also the scale corresponding to the trivial
prime (n0, n3) = (1, 0) (1 is formally prime because it is not divisible by any prime different
from 1) so that at least Lmin is possible. This option also allows only rather small primes unless
the partonic 2-surface contains vacuum regions in which case Lmax is infinite: in this case all
primes would be allowed and the exponent of Kähler function would vanish.

2. The hypothesis that only the hyper-complex or hyper-octonionic primes appearing in the infinite
hyper-octonionic prime are possible looks more reasonable since large values of p would be
possible and could be identified in terms of the p-adic length scale hypothesis. All hyper-
octonionic primes appearing in infinite prime would be possible and the geometry of the orbit of
the partonic 2-surface would define an infinite prime. This would also give a concrete physical
interpretation for the earlier hypothesis that hyper-octonionic primes appearing in the infinite
prime characterize partonic 2-surfaces geometrically. One can also identify the fermionic and
purely bosonic primes appearing in the infinite prime as braid strands carrying fermion number
and purely bosonic quantum numbers. This option will be assumed in the following.

8.10.4 Expression for the Dirac determinant for various options

The expressions for the Dirac determinant for various options can be deduced in a straightforward
manner. Numerically Riemann option and manifestly finite option do not differ much but their number
theoretic properties are totally different.

Riemann option

All integer multiples of these basic pseudo-momenta would be allowed for Riemann option so that ζD
would be sum of Riemann zetas with arguments scaled by the basic pseudo-masses coming as inverses
of the basic length scales for braid strands. For the option involving only hyper-complex primes the
formula for ζD reads as

ζD = ζ(log(xmins)) +
∑
i,n ζ(log(xi,ns)) +

∑
i,n ζ(log(yi,ns)) ,

xi,n = p
n/2
i xmin ≤ xmax , pi ≥ 3 , yi,n = pni xmin ≤ xmax . pi ≥ 2 ,

(8.10.14)

Lmax resp. Lmin is the maximal resp. minimal length L =
∫

(ĝrr)−1/2dr for the braid strand defined
by the flux line of the Kähler magnetic field in the effective metric. The contributions correspond to
the effective hyper-complex prime p1 = (1, 0) and hyper-complex primes with Minkowski lengths

√
p

(p ≥ 3) and p, p ≥ 2. If also higher p-adic length scales Ln = pn/2Lmin < Lmax and Ln = pnLmin <
Lmax, n > 1, are allowed there is no further restriction on the summation. For the restricted option
only Ln, n = 0, 2 is allowed.

The expressions for the Kähler function and its exponent reads as

K = k(log(xmin) +
∑
i

log(xi) +
∑
i

log(yi) ,

exp(K) = (
1

xmin
)k ×

∏
i

(
1

xi
)k ×

∏
i

(
1

yi
)k ,

xi ≤ xmax , yi ≤ xmax , k = −dζ(s)

ds |s=0
=

1

2
log(2π) ' .9184 .

(8.10.15)
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From the point of view of p-adicization program the appearance of strongly transcendental numbers
in the normalization factor of ζD is not a well-come property.

If the scaling of the WCW Kähler metric by 1/k is a legitimate procedure it would allow to get
rid of the transcendental scaling factor k and this scaling would cancel also the transcendental from
the exponent of Kähler function. The scaling is not however consistent with the view that Kähler
coupling strength determines the normalization of the WCW metric.

This formula generalizes in a rather obvious manner to the cases when one allows M2 projections
of hyper-octonionic primes.

Manifestly finite options

The options for which one does not allow summation over all integer multiples of the basic momenta
characterized by the canonical representatives of hyper-complex primes or their projections to M2

are manifestly finite. They differ from the Riemann option only in that the normalization factor
k =' .9184 defined by the derivative Riemann Zeta at origin is replaced with k = 1. This would mean
manifest finiteness of ζD. Kähler function and its exponent are given by

K = k(log(xmin) +
∑
i

log(xi) +
∑
i

log(yi) , xi ≤ xmax , yi ≤ xmax ,

exp(K) =
1

xmin
×
∏
i

1

xi
×
∏
i

1

yi
.

(8.10.16)

Numerically the Kähler functions do not differ much since their ratio is .9184. Number theoretically
these functions are however completely different. The resulting dependence involves only square roots
of primes and is an algebraic function of the lengths pi and rational function of xmin. p-Adicization
program would require rational values of the lengths xmin in the intersection of the real and p-adic
worlds if one allows algebraic extension containing the square roots of the primes involved. Note that
in p-adic context this algebraic extension involves two additional square roots for p > 2 if one does
not want square root of p. Whether one should allow for Rp also extension based on

√
p is not quite

clear. This would give 8-D extension.
For the more general option allowing all projections of hyper-complex primes to M2 the general

form of Kähler function is same. Instead of pseudo-masses coming as primes and their square roots
one has pseudomasses coming as square roots of some integers n ≤ p or n ≤ p2 for each p. In this
case the conservation laws are not so strong.

Note that in the case of vacuum extremals xmin = ∞ holds true so that there are no primes
satisfying the condition and Kähler function vanishes as it indeed should.

More concrete picture about the option based on infinite primes

The identification of pseudo-momenta in terms of infinite primes suggests a rather concrete connection
between number theory and physics.

1. One could assign the finite hyper-octonionic primes Πi making the infinite prime to the sub-
braids identified as Kähler magnetic flux lines with the same length L in the effective metric.
The primes assigned to the finite part of the infinite prime correspond to single fermion and
some number of bosons. The primes assigned to the infinite part correspond to purely bosonic
states assignable to the purely bosonic braid strands. Purely bosonic state would correspond to
the action of a WCW Hamiltonian to the state.

This correspondence can be expanded to include all quantum numbers by using the pair of
infinite primes corresponding to the ”vacuum primes” X±1, where X is the product of all finite
primes [84] . The only difference with respect to the earlier proposal is that physical momenta
would be replaced by pseudo-momenta.

2. Different primes pi appearing in the infinite prime would correspond to their own sub-braids.
For each sub-braid there is a N -fold degeneracy of the generalized eigen modes corresponding
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to the number N of braid strands so that many particle states are possible as required by the
braid picture.

3. The correspondence of infinite primes with the hierarchy of Planck constants could allow to
understand the fermion-many boson states and many boson states assigned with a given finite
prime in terms of many-particle states assigned to na and nb-sheeted singular covering spaces of
CD and CP2 assignable to the two infinite primes. This interpretation requires that only single
p-adic prime pi is realized as quantum state meaning that quantum measurement always selects
a particular p-adic prime pi (and corresponding sub-braid) characterizing the p-adicity of the
quantum state. This selection of number field behind p-adic physics responsible for cognition
looks very plausible.

4. The correspondence between pairs of infinite primes and quantum states [84] allows to interpret
color quantum numbers in terms of the states associated with the representations of a finite
subgroup of SU(3) transforming hyper-octonionic primes to each other and preserving the M2

pseudo-momentum. Same applies to SO(3). The most natural interpretation is in terms of wave
functions in the space of discrete SU(3) and SO(3) transforms of the partonic 2-surface. The
dependence of the pseudo-masses on these quantum numbers is natural so that the projection
hypothesis finds support from this interpretation.

5. The infinite prime characterizing the orbit of the partonic 2-surface would thus code which
multiples of the basic mass 2π/Lmin are possible. Either the M2 projections of hyper-octonionic
primes or their hyper-complex canonical representatives would fix the basic M2 pseudo-momenta
for the corresponding number theoretic braid associated. In the reverse direction the knowledge
of the light-like 3-surface, the CD and CP2 coverings, and the number of the allowed discrete
SU(3) and SU(2) rotations of the partonic 2-surface would dictate the infinite prime assignable
to the orbit of the partonic 2-surface.

One would also like to understand whether there is some kind of conservation laws associated
with the pseudo-momenta at vertices. The arithmetic QFT assignable to infinite primes would indeed
predict this kind of conservation laws.

1. For the manifestly finite option the ordinary conservation of pseudo-momentum conservation
at vertices is not possible since the addition of pseudo-momenta does not respect the condition
n0−n3 = 1. In fact, this difference in the sum of hyper-complex prime momenta tells how many
momenta are present. If one applies the conservation law to the sum of the pseudo-momenta
corresponding to different primes and corresponding braids, one can have reactions in which the
number of primes involved is conserved. This would give the selection rule

∑N
1 pi =

∑N
1 pf .

These reactions have interpretation in terms of the geometry of the 3-surface representing the
line of the generalized Feynman diagram.

2. Infinite primes define an arithmetic quantum field theory in which the total momentum defined
as
∑
nilog(pi) is a conserved quantity. As matter fact, each prime pi would define a separately

conserved momentum so that there would be an infinite number of conservation laws. If the sum∑
i log(pi) is conserved in the vertex , the primes pi associated with the incoming particle are

shared with the outgoing particles so that also the total momentum is conserved. This looks the
most plausible option and would give very powerful number theoretical selection rules at vertices
since the collection of primes associated with incoming line would be union of the collections
associated with the outgoing lines and also total pseudo-momentum would be conserved.

3. For the both Riemann zeta option and manifestly finite options the arithmetic QFT associated
with infinite primes would be realized at the level of pseudo-momenta meaning very strong
selection rules at vertices coding for how the geometries of the partonic lines entering the vertex
correlate. WCW integration would reduce for the lines of Feynman diagram to a sum over light-
like 3-surfaces characterized by (xmin, xmax) with a suitable weighting factor and the exponent
of Kähler function would give an exponential damping as a function of xmin.
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Which option to choose?

One should be able to make two choices. One must select between hyper-complex representations
and the projections of hyper-octonionic primes and between the manifestly finite options and the one
producing Riemann zeta?

Hyper-complex option seems to be slightly favored over the projection option.

1. The appearance of the scales
√
pixmin and possibly also their pn multiples brings in mind p-

adic length scales coming as
√
pn multiples of CP2 length scale. The scales pixmin associated

with hyper-complex primes reducing to ordinary primes in turn bring in mind the size scales
assignable to CDs. The hierarchy of Planck constants implies also ~/~0 =

√
nanb multiples of

these length scales but mass scales would not depend on na and nb [85] . For large values of
p the pseudo-momenta are almost light-like for hyper-complex option whereas the projection
option allows also states at rest.

2. Hyper-complex option predicts that only the p-adic pseudo-mass scales appear in the partition
function and is thus favored by the p-adic length scale hypothesis. Projection option predicts
also the possibility of the mass scales (not all of them) coming as 1/

√
n. These mass scales are

however not predicted by the hierarchy of Planck constants.

3. The same pseudo-mass scale can appear several times for the projection option. This degeneracy
corresponds to the orbit of the hyper-complex prime under the subgroup of SU(3) respecting
integer property. Similar statement holds true in the case of SO(3): these groups are assigned
to the two infinite primes characterizing parton. The natural assignment of this degeneracy is to
the discrete color rotational and rotational degrees associated with the partonic 2-surface itself
rather than spinor modes at fixed partonic 2-surface. That the pseudo-mass would depend on
color and angular momentum quantum numbers would make sense.

Consider next the arguments in favor of the manifestly finite option.

1. The manifestly finite option is admittedly more elegant than the one based on Riemann zeta
and also guarantees that no additional loop summations over pseudo-momenta are present. The
strongest support for the manifestly finite option comes from number theoretical universality.

2. One could however argue that the restriction of the pseudo-momenta to a finite number is not
consistent with the modified Dirac-Chern-Simons equation. Quantum classical correspondence
however implies correlation between the geometry of the partonic orbits and the pseudo-momenta
and the summation over all prime valued pseudo-momenta is present but with a weighting factor
coming from Kähler function implying exponential suppression.

The Riemann zeta option could be also defended.

1. The numerical difference of the normalization factors of the Kähler function is however only
about 8 per cent and quantum field theorists might interpret the replacement the length scales
xi and yi with xdi and ydi , d ' .9184, in terms of an anomalous dimension of these length scales.
Could one say that radiative corrections mean the scaling of the original preferred coordinates
so that one could still have consistency with number theoretic universality?

2. Riemann zeta with a non-vanishing argument could have also other applications in quantum
TGD. Riemann zeta has interpretation as a partition function and the zeros of partition func-
tions have interpretation in terms of phase transitions. The quantum criticality of TGD indeed
corresponds to a phase transition point. There is also experimental evidence that the distribu-
tion of zeros of zeta corresponds to the distribution of energies of quantum critical systems in
the sense that the energies correspond to the imaginary parts of the zeros of zeta [40] .

The first explanation would be in terms of the analogs of the harmonic oscillator coherent
states with integer multiple of the basic momentum taking the role of occupation number of
harmonic oscillator and the zeros s = 1/2 + iy of ζ defining the values of the complex coherence
parameters. TGD inspired strategy for the proof of Riemann hypothesis indeed leads to the
identification of the zeros as coherence parameters rather than energies as in the case of Hilbert-
Polya hypothesis [75] and the vanishing of the zeta at zero has interpretation as orthogonality
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of the state with respect to the state defined by a vanishing coherence parameter interpreted as
a tachyon. One should demonstrate that the energies of quantum states can correspond to the
imaginary parts of the coherence parameters.

Second interpretation could be in terms of quantum critical zero energy states for which the
”complex square root of density matrix” defines time-like entanglement coefficients of M -matrix.
The complex square roots of the probabilities defined by the coefficient of harmonic oscillator
states (perhaps identifiable in terms of the multiples of pseudo-momentum) in the coherent state
defined by the zero of ζ would define the M -matrix in this situation. Energy would correspond
also now to the imaginary part of the coherence parameter. The norm of the state would be
completely well-defined.

Representation of configuration Kähler metric in terms of eigenvalues of DC−S

A surprisingly concrete connection of the configuration space metric in terms of generalized eigenvalue
spectrum of DC−S results. From the general expression of Kähler metric in terms of Kähler function

Gkl = ∂k∂lK =
∂k∂lexp(K)

exp(K)
− ∂kexp(K)

exp(K)

∂lexp(K)

exp(K)
, (8.10.17)

and from the expression of exp(K) =
∏
i λi as the product of of finite number of eigenvalues of DC−S

, the expression

Gkl =
∑
i

∂k∂lλi
λi

− ∂kλi
λi

∂lλi
λi

(8.10.18)

for the configuration space metric follows. Here complex coordinates refer to the complex coordinates
of configuration space. Hence the knowledge of the eigenvalue spectrum of DC−S(X3) as function of
some complex coordinates of configuration space allows to deduce the metric to arbitrary accuracy.
If the above arguments are correct the calculation reduces to the calculation of the derivatives of
log(
√
pLmin/R), where Lmin is the length of the Kähler magnetic flux line between partonic 2-surfaces

with respect to the effective metric defined by the anti-commutators of the modified gamma matrices.
Note that these length scales have different dependence on WCW coordinates so that one cannot
reduce everything to Lmin. Therefore one would have explicit representation of the basic building
brick of WCW Kähler metric in terms of the geometric data associated with the orbit of the partonic
2-surface.

The formula for the Kähler action of CP2 type vacuum extremals is consistent with the
Dirac determinant formula

The first killer test for the formula of Kähler function in terms of the Dirac determinant based on
infinite prime hypothesis is provided by the action of CP2 type vacuum extremals. One of the first
attempts to make quantitative predictions in TGD framework was the prediction for the gravitational
constant. The argument went as follows.

1. For dimensional reasons gravitational constant must be proportional to p-adic length scale
squared, where p characterizes the space-time sheet of the graviton. It must be also proportional
to the square of the vacuum function for the graviton representing a line of generalized Feynman
diagram and thus to the exponent exp(−2K) of Kähler action for topologically condensed CP2

type vacuum extremals with very long projection. If topological condensation does not reduce
much of the volume of CP2 type vacuum extremal, the action is just Kähler action for CP2

itself. This gives

~0G = L2
pexp(2LK(CP2) = pR2exp(2LK(CP2) . (8.10.19)
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2. Using as input the constraint αK ' αem ∼ 1/137 for Kähler coupling strengths coming from the
comparison of the TGD prediction for the rotation velocity of distant galaxies around galactic
nucleus and the p-adic mass calculation for the electron mass, one obtained the result

exp(2LK(CP2) =
1

p×
∏
pi≤23 pi

. (8.10.20)

The product contains the product of all primes smaller than 24 (pi ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23}).
The expression for the Kähler function would be just of the form predicted by the Dirac deter-
minant formula with Lmin replaced with CP2 length scale. As a matter fact, this was the first
indication that particles are characterized by several p-adic primes but that only one of them is
”active”. As explained, the number theoretical state function reduction explains this.

3. The same formula for the gravitational constant would result for any prime p but the value
of Kähler coupling strength would depend on prime p logarithmically for this option. I indeed
proposed that this formula fixes the discrete evolution of the Kähler coupling strength as function
of p-adic prime from the condition that gravitational constant is renormalization group invariant
quantity but gave up this hypothesis later. It is wisest to keep an agnostic attitude to this issue.

4. I also made numerous brave attempts to deduce an explicit formula for Kähler coupling strength.
The general form of the formula is

1

αK
= klog(K2), K2 = p× 2× 3× 5..× 23 . (8.10.21)

The problem is the exact value of k cannot be known precisely and the guesses for is value depend
on what one means with number theoretical universality. Should Kähler action be a rational
number? Or is it Kähler function which is rational number (it is for the Dirac determinant
option in this particular case). Is Kähler coupling strength g2

K/4π or g2
K a rational number?

Some of the guesses were k = π/4 and k = 137/107. The facts that the value of Kähler action
for the line of a generalized diagram is not exactly CP2 action and the value of αK is not known
precisely makes these kind of attempts hopeless in absence of additional ideas.

Also other elementary particles -in particular exchanged bosons- should involve the exponent of
Kähler action for CP2 type vacuum extremal. Since the values of gauge couplings are gigantic as
compared to the expression of the gravitational constant the value of Kähler action must be rather
small form them. CP2 type vacuum extremals must be short in the sense that Lmin in the effective
metric is very short. Note however that the p-adic prime characterizing the particle according to
p-adic mass calculations would be large also now. One can of course ask whether this p-adic prime
characterizes the gravitational space-time sheets associated with the particle and not the particle
itself. The assignment of p-adic mass calculations with thermodynamics at gravitational space-time
sheets of the particle would be indeed natural. The value of αK would depend on p in logarithmic
manner for this option. The topological condensation of could also eat a lot of CP2 volume for them.

Eigenvalues of DC−S as vacuum expectations of Higgs field?

Infinite prime hypothesis implies the analog of p-adic length scale hypothesis but since pseudo-
momenta are in question, this need not correspond to the p-adic length scale hypothesis for the
actual masses justified by p-adic thermodynamics. Note also that Lmin does not correspond to CP2

length scale. This is actually not a problem since the effective metric is not M4 metric and one can
quite well consider the possibility that Lmin corresponds to CP2 length scale in the the induced metric.
The reason is that light-like 3- surface is in question the distance along the Kähler magnetic flux line
reduces essentially to a distance along the partonic 2-surface having size scale of order CP2 length for
the partonic 2-surfaces identified as wormhole throats. Therefore infinite prime can code for genuine
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p-adic length scales associated with the light-like 3-surface and quantum states would correspond by
number theoretical state function reduction hypothesis to single ordinary prime.

Support for this identification comes also from the expression of gravitational constant deduced
from p-adic length scale hypothesis. The result is that gravitational constant is assumed to be pro-
portional to have the expression G = L2

pexp(−2SK(CP2)), where p characterizes graviton or the
space-time sheet mediating gravitational interaction and exponent gives Kähler action for CP2 type
vacuum extremal representing graviton. The argument allows to identify the p-adic prime p = M127

associated with electron (largest Mersenne prime which does not correspond to super-astronomical
length scale) as the p-adic prime characterizing also graviton. The exponent of Kähler action is pro-
portional to 1/p which conforms with the general expression for Kähler function. I have considered
several identifications of the numerical factor and one of them has been as product of primes 2 ≤ p ≤ 23
assuming that somehow the primes {2, ..., 23, p} characterize graviton. This guess is indeed consistent
with the prediction of the infinite-prime hypothesis.

The first guess inspired by the p-adic mass calculations is that the squares λ2
i of the eigenvalues

of DC−S could correspond to the conformal weights of ground states. Another natural physical
interpretation of λ is as an analog of the Higgs vacuum expectation. The instability of the Higgs=0
phase would corresponds to the fact that λ = 0 mode is not localized to any region in which ew
magnetic field or induced Kähler field is non-vanishing. By the previous argument one would have
order of magnitude estimate h0 =

√
2π/Lmin.

1. The vacuum expectation value of Higgs is only proportional to the scale of λ. Indeed, Higgs
and gauge bosons as elementary particles correspond to wormhole contacts carrying fermion
and anti-fermion at the two wormhole throats and must be distinguished from the space-time
correlate of its vacuum expectation as something proportional to λ. For free fermions the vacuum
expectation value of Higgs does not seem to be even possible since free fermions do not correspond
to wormhole contacts between two space-time sheets but possess only single wormhole throat
(p-adic mass calculations are consistent with this). If fermion suffers topological condensation as
indeed assumed to do in interaction region, a wormhole contact is generated and makes possible
the generation of Higgs vacuum expectation value.

2. Physical considerations suggest that the vacuum expectation of Higgs field corresponds to a
particular eigenvalue λi of modified Chern-Simons Dirac operator so that the eigenvalues λi
would define TGD counterparts for the minima of Higgs potential. For the minimal option
one has only a finite number of pseudo-mass eigenvalues inversely proportional

√
p so that the

identification as a Higgs vacuum expectation is consistent with the p-adic length scale hypothesis.
Since the vacuum expectation of Higgs corresponds to a condensate of wormhole contacts giving
rise to a coherent state, the vacuum expectation cannot be present for topologically condensed
CP2 type vacuum extremals representing fermions since only single wormhole throat is involved.
This raises a hen-egg question about whether Higgs contributes to the mass or whether Higgs is
only a correlate for massivation having description using more profound concepts. From TGD
point of view the most elegant option is that Higgs does not give rise to mass but Higgs vacuum
expectation value accompanies bosonic states and is naturally proportional to λi. With this
interpretation λi could give a contribution to both fermionic and bosonic masses.

3. If the coset construction for super-symplectic and super Kac-Moody algebra implying Equiva-
lence Principle is accepted, one encounters what looks like a problem. p-Adic mass calculations
require negative ground state conformal weight compensated by Super Virasoro generators in
order to obtain massless states. The tachyonicity of the ground states would mean a close anal-
ogy with both string models and Higgs mechanism. λ2

i is very natural candidate for the ground
state conformal weights identified but would have wrong sign. Therefore it seems that λ2

i can
define only a deviation of the ground state conformal weight from negative value and is positive.

4. In accordance with this λ2
i would give constant contribution to the ground state conformal

weight. What contributes to the thermal mass squared is the deviation of the ground state
conformal weight from half-odd integer since the negative integer part of the total conformal
weight can be compensated by applying Virasoro generators to the ground state. The first
guess motivated by cyclotron energy analogy is that the lowest conformal weights are of form
hc = −n/2+λ2

i where the negative contribution comes from Super Virasoro representation. The
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negative integer part of the net conformal weight can be canceled using Super Virasoro generators
but ∆hc would give to mass squared a contribution analogous to Higgs contribution. The
mapping of the real ground state conformal weight to a p-adic number by canonical identification
involves some delicacies.

5. p-Adic mass calculations are consistent with the assumption that Higgs type contribution is
vanishing (that is small) for fermions and dominates for gauge bosons. This requires that the
deviation of λ2

i with smallest magnitude from half-odd integer value in the case of fermions is
considerably smaller than in the case of gauge bosons in the scale defined by p-adic mass scale
1/L(k) in question. Somehow this difference could relate to the fact that bosons correspond to
pairs of wormhole throats.

Is there a connection between p-adic thermodynamics, hierarchy of Planck constants,
and infinite primes

The following observations suggest that there might be an intrinsic connection between p-adic ther-
modynamics, hierarchy of Planck constants, and infinite primes.

1. p-Adic thermodynamics [49] is based on string mass formula in which mass squared is pro-
portional to conformal weight having values which are integers apart from the contribution of
the conformal weight of vacuum which can be non-integer valued. The thermal expectation
in p-adic thermodynamics is obtained by replacing the Boltzman weight exp(−E/T ) of ordi-
nary thermodynamics with p-adic conformal weight pn/Tp , where n is the value of conformal
weight and 1/Tp = m is integer values inverse p-adic temperature. Apart from the ground state
contribution and scale factor p-adic mass squared is essentially the expectation value

〈n〉 =

∑
n g(n)np

n
Tp∑

n g(n)p
n
Tp

. (8.10.22)

g(n) denotes the degeneracy of a state with given conformal weight and depends only on the
number of tensor factors in the representations of Virasoro or Super-Virasoro algebra. p-Adic
mass squared is mapped to its real counterpart by canonical identification

∑
xnp

n →
∑
xnp

−n.

The real counterpart of p-adic thermodynamics is obtained by the replacement p
− n
Tp and gives

under certain additional assumptions in an excellent accuracy the same results as the p-adic
thermodynamics.

2. An intriguing observation is that one could interpret p-adic and real thermodynamics for mass
squared also in terms of number theoretic thermodynamics for the number theoretic momentum
log(pn) = nlog(p). The expectation value for this differs from the expression for 〈n〉 only by the
factor log(p).

3. In the proposed characterization of the partonic orbits in terms of infinite primes the primes
appearing in infinite prime are identified as p-adic primes. For minimal option the p-adic prime
characterizes

√
p- or p- multiple of the minimum length Lmin of braid strand in the effective

metric defined by modified Chern-Simons gamma matrice. One can consider also (
√
p)n and

pn (p-adic fractality)- and even integer multiples of Lmin if they are below Lmax. If light-like
3-surface contains vacuum regions arbitrary large p:s are possible since for these one has Lmin →
∞. Number theoretic state function reduction implies that only single p can be realized -one
might say ”is active”- for a given quantum state. The powers pni appearing in the infinite prime
have interpretation as many particle states with total number theoretic momentum nilog(p)i.
For the finite part of infinite prime one has one fermion and ni−1 bosons and for the bosonic part
ni bosons. The arithmetic QFT associated with infinite primes - in particular the conservation
of the number theoretic momentum

∑
nilog(pi) - would naturally describe the correlations

between the geometries of light-like 3-surfaces representing the incoming lines of the vertex of
generalized Feynman diagram. As a matter fact, the momenta associated with different primes
are separately conserved so that one has infinite number of conservation laws.
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4. One must assign two infinite primes to given partonic two surface so that one has for a given
prime p two integers n+ and n−. Also the hierarchy of Planck constants assigns to a given page
of the Big Book two integers and one has ~ = nanb~0. If one has na = n+ and nb = n− then
the reactions in which given initial number theoretic momenta n±,ilog(pi) is shared between
final states would have concrete interpretation in terms of the integers na, nb characterizing the
coverings of incoming and outgoing lines.

Note that one can also consider the possibility that the hierarchy of Planck constants emerges
from the basic quantum TGD. Basically due to the vacuum degeneracy of Kähler action the
canonical momentum densities correspond to several values of the time derivatives of the imbed-
ding space oordinates so that for a given partonic 2-surface there are several space-time sheets
with same conserved quantities defined by isometry currents and Kähler current. This forces the
introduction of N -fold covering of CD × CP2 in order to describe the situation. The splitting
of the partonic 2-surface into N pieces implies a charge fractionization during its travel to the
upper end of CD. One can also develop an argument suggesting that the coverings factorize to
coverings of CD and CP2 so that the number of the sheets of the covering is N = nanb [41] .

These observations make one wonder whether there could be a connection between p-adic thermo-
dynamics, hierarchy of Planck constants, and infinite primes.

1. Suppose that one accepts the identification na = n+ and nb = n−. Could one perform a
further identification of these integers as non-negative conformal weights characterizing physical
states so that conservation of the number theoretic momentum for a given p-adic prime would
correspond to the conservation of conformal weight. In p-adic thermodynamics this conformal
weight is sum of conformal weights of 5 tensor factors of Super-Virasoro algebra. The number
must be indeed five and one could assign them to the factors of the symmetry group. One factor
for color symmetries and two factors of electro-weak SU(2)L × U(1) are certainly present. The
remaining two factors could correspond to transversal degrees of freedom assignable to string
like objects but one can imagine also other identifications [49] .

2. If this interpretation is correct, a given conformal weight n = na = n+ (say) would correspond
to all possible distributions of five conformal weights ni, i = 1, ..., 5 between the na sheets of
covering of CD satisfying

∑5
i=1 ni = na = n+. Single sheet of covering would carry only unit

conformal weight so that one would have the analog of fractionization also now and a possible
interpretation would be in terms of the instability of states with conformal weight n > 1.
Conformal thermodynamics would also mean thermodynamics in the space of states determined
by infinite primes and in the space of coverings.

3. The conformal weight assignable to the CD would naturally correspond to mass squared but
there is also the conformal weight assignable to CP2 and one can wonder what its interpretation
might be. Could it correspond to the expectation of pseudo mass squared characterizing the
generalized eigenstates of the modified Dirac operator? Note that one should allow in the
spectrum also the powers of hyper-complex primes up to some maximum power pnmax/2 ≤
Lmax/Lmin so that Dirac determinant would be non-vanishing and Kähler function finite. From
the point of conformal invariance this is indeed natural.

8.11 How to define generalized Feynman diagrams?

S-matrix codes to a high degree the predictions of quantum theories. The longstanding challenge
of TGD has been to construct or at least demonstrate the mathematical existence of S-matrix- or
actually M-matrix which generalizes this notion in zero energy ontology (ZEO) [73] . This work has
led to the notion of generalized Feynman diagram and the challenge is to give a precise mathematical
meaning for this object. The attempt to understand the counterpart of twistors in TGD framework [96]
has inspired several key ideas in this respect but it turned out that twistors themselves need not be
absolutely necessary in TGD framework.

1. The notion of generalized Feyman diagram defined by replacing lines of ordinary Feynman dia-
gram with light-like 3-surfaces (elementary particle sized wormhole contacts with throats carry-
ing quantum numbers) and vertices identified as their 2-D ends - I call them partonic 2-surfaces
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is central. Speaking somewhat loosely, generalized Feynman diagrams (plus background space-
time sheets) define the ”world of classical worlds” (WCW). These diagrams involve the analogs
of stringy diagrams but the interpretation is different: the analogs of stringy loop diagrams have
interpretation in terms of particle propagating via two different routes simultaneously (as in the
classical double slit experiment) rather than as a decay of particle to two particles. For stringy
diagrams the counterparts of vertices are singular as manifolds whereas the entire diagrams
are smooth. For generalized Feynman diagrams vertices are smooth but entire diagrams rep-
resent singular manifolds just like ordinary Feynman diagrams do. String like objects however
emerge in TGD and even ordinary elementary particles are predicted to be magnetic flux tubes
of length of order weak gauge boson Compton length with monopoles at their ends as shown in
accompanying article. This stringy character should become visible at LHC energies.

2. Zero energy ontology (ZEO) and causal diamonds (intersections of future and past directed
lightcones) is second key ingredient. The crucial observation is that in ZEO it is possible to
identify off mass shell particles as pairs of on mass shell particles at throats of wormhole contact
since both positive and negative signs of energy are possible. The propagator defined by modified
Dirac action does not diverge (except for incoming lines) although the fermions at throats are on
mass shell. In other words, the generalized eigenvalue of the modified Dirac operator containing
a term linear in momentum is non-vanishing and propagator reduces to G = i/λγ, where γ is so
called modified gamma matrix in the direction of stringy coordinate [20] . This means opening
of the black box of the off mass shell particle-something which for some reason has not occurred
to anyone fighting with the divergences of quantum field theories.

3. A powerful constraint is number theoretic universality requiring the existence of Feynman am-
plitudes in all number fields when one allows suitable algebraic extensions: roots of unity are
certainly required in order to realize p-adic counter parts of plane waves. Also imbedding space,
partonic 2-surfaces and WCW must exist in all number fields and their extensions. These con-
straints are enormously powerful and the attempts to realize this vision have dominated quantum
TGD for last two decades.

4. Representation of 8-D gamma matrices in terms of octonionic units and 2-D sigma matrices is
a further important element as far as twistors are considered [96] . Modified gamma matrices
at space-time surfaces are quaternionic/associative and allow a genuine matrix representation.
As a matter fact, TGD and WCW can be formulated as study of associative local sub-algebras
of the local Clifford algebra of 8-D imbedding space parameterized by quaternionic space-time
surfaces. Central conjecture is that quaternionic 4-surfaces correspond to preferred extremals
of Kähler action [20] identified as critical ones (second variation of Kähler action vanishes for
infinite number of deformations defining super-conformal algebra) and allow a slicing to string
worldsheets parametrized by points of partonic 2-surfaces.

5. As far as twistors are considered, the first key element is the reduction of the octonionic twistor
structure to quaternionic one at space-time surfaces and giving effectively 4-D spinor and twistor
structure for quaternionic surfaces.

Quite recently quite a dramatic progress took place in this approach [96] .

1. The progress was stimulated by the simple observation that on mass shell property puts enor-
mously strong kinematic restrictions on the loop integrations. With mild restrictions on the
number of parallel fermion lines appearing in vertices (there can be several since fermionic
oscillator operator algebra defining SUSY algebra generates the parton states)- all loops are
manifestly finite and if particles has always mass -say small p-adic thermal mass also in case of
massless particles and due to IR cutoff due to the presence largest CD- the number of diagrams is
finite. Unitarity reduces to Cutkosky rules [20] automatically satisfied as in the case of ordinary
Feynman diagrams.

2. Ironically, twistors which stimulated all these development do not seem to be absolutely necessary
in this approach although they are of course possible. Situation changes if one does not assume
small p-adically thermal mass due to the presence of massless particles and one must sum infinite
number of diagrams. Here a potential problem is whether the infinite sum respects the algebraic
extension in question.



612 Chapter 8. The Geometry of the World of Classical Worlds

This is about fermionic and momentum space aspects of Feynman diagrams but not yet about the
functional (not path-) integral over small deformations of the partonic 2-surfaces. The basic challenges
are following.

1. One should perform the functional integral over WCW degrees of freedom for fixed values of
on mass shell momenta appearing in the internal lines. After this one must perform integral or
summation over loop momenta. Note that the order is important since the space-time surface
assigned to the line carries information about the quantum numbers associated with the line by
quantum classical correspondence realized in terms of modified Dirac operator.

2. One must define the functional integral also in the p-adic context. p-Adic Fourier analysis relying
on algebraic continuation raises hopes in this respect. p-Adicity suggests strongly that the loop
momenta are discretized and ZEO predicts this kind of discretization naturally.

It indeed seems that the functional integrals over WCW could be carried out at general level both in
real and p-adic context. This is due to the symmetric space property (maximal number of isometries)
of WCW required by the mere mathematical existence of Kähler geometry [41] in infinite-dimensional
context already in the case of much simpler loop spaces [85] .

1. The p-adic generalization of Fourier analysis allows to algebraize integration- the horrible looking
technical challenge of p-adic physics- for symmetric spaces for functions allowing the analog
of discrete Fourier decomposion. Symmetric space property is indeed essential also for the
existence of Kähler geometry for infinite-D spaces as was learned already from the case of loop
spaces. Plane waves and exponential functions expressible as roots of unity and powers of p
multiplied by the direct analogs of corresponding exponent functions are the basic building
bricks and key functions in harmonic analysis in symmetric spaces. The physically unavoidable
finite measurement resolution corresponds to algebraically unavoidable finite algebraic dimension
of algebraic extension of p-adics (at least some roots of unity are needed). The cutoff in roots
of unity is very reminiscent to that occurring for the representations of quantum groups and
is certainly very closely related to these as also to the inclusions of hyper-finite factors of type
II¡sub¿1¡/sub¿ defining the finite measurement resolution.

2. WCW geometrization reduces to that for a single line of the generalized Feynman diagram defin-
ing the basic building brick for WCW. Kähler function decomposes to a sum of ”kinetic” terms
associated with its ends and interaction term associated with the line itself. p-Adicization boils
down to the condition that Kähler function, matrix elements of Kähler form, WCW Hamilto-
nians and their super counterparts, are rational functions of complex WCW coordinates just as
they are for those symmetric spaces that I know of. This allows straightforward continuation to
p-adic context.

3. As far as diagrams are considered, everything is manifestly finite as the general arguments (non-
locality of Kähler function as functional of 3-surface) developed two decades ago indeed allow to
expect. General conditions on the holomorphy properties of the generalized eigenvalues λ of the
modified Dirac operator can be deduced from the conditions that propagator decomposes to a
sum of products of harmonics associated with the ends of the line and that similar decomposition
takes place for exponent of Kähler action identified as Dirac determinant. This guarantees that
the convolutions of propagators and vertices give rise to products of harmonic functions which
can be Glebsch-Gordanized to harmonics and only the singlet contributes to the WCW integral
in given vertex. The still unproven central conjecture is that Dirac determinant equals the
exponent of Kähler function.

In the following this vision about generalized Feynman diagrams is discussed in more detail.

8.11.1 Questions

The goal is a proposal for how to perform the integral over WCW for generalized Feynman digrams
and the best manner to proceed to to this goal is by making questions.
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What does finite measurement resolution mean?

The first question is what finite measurement resolution means.

1. One expects that the algebraic continuation makes sense only for a finite measurement resolution
in which case one obtains only finite sums of what one might hope to be algebraic functions.
The finiteness of the algebraic extension would be in fact equivalent with the finite measurement
resolution.

2. Finite measurement resolution means a discretization in terms of number theoretic braids. p-
Adicization condition suggests that that one must allow only the number theoretic braids. For
these the ends of braid at boundary of CD are algebraic points of the imbedding space. This
would be true at least in the intersection of real and p-adic worlds.

3. The question is whether one can localize the points of the braid. The necessity to use momen-
tum eigenstates to achieve quantum classical correspondence in the modified Dirac action [20]
suggests however a delocalization of braid points, that is wave function in space of braid points.
In real context one could allow all possible choices for braid points but in p-adic context only
algebraic points are possible if one wants to replace integrals with sums. This implies finite
measurement resolution analogous to that in lattice. This is also the only possibility in the
intersection of real and p-adic worlds.

A non-trivial prediction giving a strong correlation between the geometry of the partonic 2-
surface and quantum numbers is that the total number nF +nF of fermions and antifermions is
bounded above by the number nalg of algebraic points for a given partonic 2-surface: nF +nF ≤
nalg. Outside the intersection of real and p-adic worlds the problematic aspect of this definition
is that small deformations of the partonic 2-surface can radically change the number of algebraic
points unless one assumes that the finite measurement resolution means restriction of WCW to
a sub-space of algebraic partonic surfaces.

4. One has also a discretization of loop momenta if one assumes that virtual particle momentum
corresponds to ZEO defining rest frame for it and from the discretization of the relative position
of the second tip of CD at the hyperboloid isometric with mass shell. Only the number of braid
points and their momenta would matter, not their positions. The measurement interaction term
in the modified Dirac action gives coupling to the space-time geometry and Kähler function
through generalized eigenvalues of the modified Dirac operator with measurement interaction
term linear in momentum and in the color quantum numbers assignable to fermions [20] .

How to define integration in WCW degrees of freedom?

The basic question is how to define the integration over WCW degrees of freedom.

1. What comes mind first is Gaussian perturbation theory around the maxima of Kähler function.
Gaussian and metric determinants cancel each other and only algebraic expressions remain.
Finiteness is not a problem since the Kähler function is non-local functional of 3-surface so that
no local interaction vertices are present. One should however assume the vanishing of loops
required also by algebraic universality and this assumption look unrealistic when one considers
more general functional integrals than that of vacuum functional since free field theory is not
in question. The construction of the inverse of the WCW metric defining the propagator is also
a very difficult challenge. Duistermaat-Hecke theorem states that something like this known as
localization might be possible and one can also argue that something analogous to localization
results from a generalization of mean value theorem.

2. Symmetric space property is more promising since it might reduce the integrations to group
theory using the generalization of Fourier analysis for group representations so that there would
be no need for perturbation theory in the proposed sense. In finite measurement resolution the
symmetric spaces involved would be finite-dimensional. Symmetric space structure of WCW
could also allow to define p-adic integration in terms of p-adic Fourier analysis for symmetric
spaces. Essentially algebraic continuation of the integration from the real case would be in
question with additional constraints coming from the fact that only phase factors corresponding
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to finite algebraic extensions of rationals are used. Cutoff would emerge automatically from the
cutoff for the dimension of the algebraic extension.

How to define generalized Feynman diagrams?

Integration in symmetric spaces could serve as a model at the level of WCW and allow both the
understanding of WCW integration and p-adicization as algebraic continuation. In order to get a
more realistic view about the problem one must define more precisely what the calculation of the
generalized Feynman diagrams means.

1. WCW integration must be carried out separately for all values of the momenta associated with
the internal lines. The reason is that the spectrum of eigenvalues λi of the modified Dirac
operator D depends on the momentum of line and momentum conservation in vertices translates
to a correlation of the spectra of D at internal lines.

2. For tree diagrams algebraic continuation to the p-adic context if the expression involves only
the replacement of the generalized eigenvalues of D as functions of momenta with their p-adic
counterparts besides vertices. If these functions are algebraically universal and expressible in
terms of harmonics of symmetric space , there should be no problems.

3. If loops are involved, one must integrate/sum over loop momenta. In p-adic context difficulties
are encountered if the spectrum of the momenta is continuous. The integration over on mass
shell loop momenta is analogous to the integration over sub-CDs, which suggests that internal
line corresponds to a sub − CD in which it is at rest. There are excellent reasons to believe
that the moduli space for the positions of the upper tip is a discrete subset of hyperboloid of
future light-cone. If this is the case, the loop integration indeed reduces to a sum over discrete
positions of the tip. p-Adizication would thus give a further good reason why for zero energy
ontology.

4. Propagator is expressible in terms of the inverse of generalized eigenvalue and there is a sum
over these for each propagator line. At vertices one has products of WCW harmonics assignable
to the incoming lines. The product must have vanishing quantum numbers associated with the
phase angle variables of WCW. Non-trivial quantum numbers of the WCW harmonic correspond
to WCW quantum numbers assignable to excitations of ordinary elementary particles. WCW
harmonics are products of functions depending on the ”radial” coordinates and phase factors
and the integral over the angles leaves the product of the first ones analogous to Legendre
polynomials Pl,m, These functions are expected to be rational functions or at least algebraic
functions involving only square roots.

5. In ordinary QFT incoming and outgoing lines correspond to propagator poles. In the recent case
this would mean that the generalized eigenvalues λ = 0 characterize them. Internal lines coming
as pairs of throats of wormhole contacts would be on mass shell with respect to momentum but
off shell with respect to λ.

8.11.2 Generalized Feynman diagrams at fermionic and momentum space
level

Negative energy ontology has already led to the idea of interpreting the virtual particles as pairs of
positive and negative energy wormhole throats. Hitherto I have taken it as granted that ordinary
Feynman diagrammatics generalizes more or less as such. It is however far from clear what really
happens in the verties of the generalized Feynmann diagrams. The safest approach relies on the
requirement that unitarity realized in terms of Cutkosky rules in ordinary Feynman diagrammatics
allows a generalization. This requires loop diagrams. In particular, photon-photon scattering can
take place only via a fermionic square loop so that it seems that loops must be present at least in the
topological sense.

One must be however ready for the possibility that something unexpectedly simple might emerge.
For instance, the vision about algebraic physics allows naturally only finite sums for diagrams and
does not favor infinite perturbative expansions. Hence the true believer on algebraic physics might
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dream about finite number of diagrams for a given reaction type. For simplicity generalized Feyn-
man diagrams without the complications brought by the magnetic confinement since by the previous
arguments the generalization need not bring in anything essentially new.

The basic idea of duality in early hadronic models was that the lines of the dual diagram repre-
senting particles are only re-arranged in the vertices. This however does not allow to get rid of off
mass shell momenta. Zero energy ontology encourages to consider a stronger form of this principle in
the sense that the virtual momenta of particles could correspond to pairs of on mass shell momenta
of particles. If also interacting fermions are pairs of positive and negative energy throats in the in-
teraction region the idea about reducing the construction of Feynman diagrams to some kind of lego
rules might work.

Virtual particles as pairs of on mass shell particles in ZEO

The first thing is to try to define more precisely what generalized Feynman diagrams are. The direct
generalization of Feynman diagrams implies that both wormhole throats and wormhole contacts join
at vertices.

1. A simple intuitive picture about what happens is provided by diagrams obtained by replacing
the points of Feynman diagrams (wormhole contacts) with short lines and imagining that the
throats correspond to the ends of the line. At vertices where the lines meet the incoming on
mass shell quantum numbers would sum up to zero. This approach leads to a straightforward
generalization of Feynman diagrams with virtual particles replaced with pairs of on mass shell
throat states of type ++, −−, and +−. Incoming lines correspond to ++ type lines and outgoing
ones to −− type lines. The first two line pairs allow only time like net momenta whereas +−
line pairs allow also space-like virtual momenta. The sign assigned to a given throat is dictated
by the the sign of the on mass shell momentum on the line. The condition that Cutkosky
rules generalize as such requires ++ and −− type virtual lines since the cut of the diagram in
Cutkosky rules corresponds to on mass shell outgoing or incoming states and must therefore
correspond to ++ or −− type lines.

2. The basic difference as compared to the ordinary Feynman diagrammatics is that loop integrals
are integrals over mass shell momenta and that all throats carry on mass shell momenta. In
each vertex of the loop mass incoming on mass shell momenta must sum up to on mass shell
momentum. These constraints improve the behavior of loop integrals dramatically and give
excellent hopes about finiteness. It does not however seem that only a finite number of dia-
grams contribute to the scattering amplitude besides tree diagrams. The point is that if a the
reactions N1 → N2 and N2 → N3,, where Ni denote particle numbers, are possible in a common
kinematical region for N2-particle states then also the diagrams N1 → N2 → N2 → N3 are
possible. The virtual states N2 include all all states in the intersection of kinematically allow
regions for N1 → N2 and N2 → N3. Hence the dream about finite number possible diagrams is
not fulfilled if one allows massless particles. If all particles are massive then the particle number
N2 for given N1 is limited from above and the dream is realized.

3. For instance, loops are not possible in the massless case or are highly singular (bringing in mind
twistor diagrams) since the conservation laws at vertices imply that the momenta are parallel.
In the massive case and allowing mass spectrum the situation is not so simple. As a first example
one can consider a loop with three vertices and thus three internal lines. Three on mass shell
conditions are present so that the four-momentum can vary in 1-D subspace only. For a loop
involving four vertices there are four internal lines and four mass shell conditions so that loop
integrals would reduce to discrete sums. Loops involving more than four vertices are expected
to be impossible.

4. The proposed replacement of the elementary fermions with bound states of elementary fermions
and monopoles X± brings in the analog of stringy diagrammatics. The 2-particle wave functions
in the momentum degrees of freedom of fermiona and X± migh allow more flexibility and allow
more loops. Note however that there are excellent hopes about the finiteness of the theory also
in this case.
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Loop integrals are manifestly finite

One can make also more detailed observations about loops.

1. The simplest situation is obtained if only 3-vertices are allowed. In this case conservation of
momentum however allows only collinear momenta although the signs of energy need not be
the same. Particle creation and annihilation is possible and momentum exchange is possible
but is always light-like in the massless case. The scattering matrices of supersymmetric YM
theories would suggest something less trivial and this raises the question whether something is
missing. Magnetic monopoles are an essential element of also these theories as also massivation
and symmetry breaking and this encourages to think that the formation of massive states as
fermion X± pairs is needed. Of course, in TGD framework one has also high mass excitations
of the massless states making the scattering matrix non-trivial.

2. In YM theories on mass shell lines would be singular. In TGD framework this is not the case
since the propagator is defined as the inverse of the 3-D dimensional reduction of the modified
Dirac operator D containing also coupling to four-momentum (this is required by quantum
classical correspondence and guarantees stringy propagators),

D = iΓ̂αpα + Γ̂αDα ,

pα = pk∂αh
k . (8.11.1)

The propagator does not diverge for on mass shell massless momenta and the propagator lines
are well-defined. This is of course of essential importance also in general case. Only for the
incoming lines one can consider the possibility that 3-D Dirac operator annihilates the induced
spinor fields. All lines correspond to generalized eigenstates of the propagator in the sense
that one has D3Ψ = λγΨ, where γ is modified gamma matrix in the direction of the stringy
coordinate emanating from light-like surface and D3 is the 3-dimensional dimensional reduction
of the 4-D modified Dirac operator. The eigenvalue λ is analogous to energy. Note that the
eigenvalue spectrum depends on 4-momentum as a parameter.

3. Massless incoming momenta can decay to massless momenta with both signs of energy. The
integration measure d2k/2E reduces to dx/x where x ≥ 0 is the scaling factor of massless
momentum. Only light-like momentum exchanges are however possible and scattering matrix
is essentially trivial. The loop integrals are finite apart from the possible delicacies related to
poles since the loop integrands for given massless wormhole contact are proportional to dx/x3

for large values of x.

4. Irrrespective of whether the particles are massless or not, the divergences are obtained only if
one allows too high vertices as self energy loops for which the number of momentum degrees
of freedom is 3N − 4 for N -vertex. The construction of SUSY limit of TGD in [32] led to the
conclusion that the parallelly propagating N fermions for given wormhole throat correspond to a
product of N fermion propagators with same four-momentum so that for fermions and ordinary
bosons one has the standard behavior but for N > 2 non-standard so that these excitations are
not seen as ordinary particles. Higher vertices are finite only if the total number NF of fermions
propagating in the loop satisfies NF > 3N−4. For instance, a 4-vertex from which N = 2 states
emanate is finite.

Taking into account magnetic confinement

What has been said above is not quite enough. The weak form of electric-magnetic duality [8] leads
to the picture about elementary particles as pairs of magnetic monopoles inspiring the notions of
weak confinement based on magnetic monopole force. Also color confinement would have magnetic
counterpart. This means that elementary particles would behave like string like objects in weak boson
length scale. Therefore one must also consider the stringy case with wormhole throats replaced with
fermion-X± pairs (X± is electromagnetically neutral and ± refers to the sign of the weak isospin
opposite to that of fermion) and their super partners.
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1. The simplest assumption in the stringy case is that fermion-X± pairs behave as coherent objects,
that is scatter elastically. In more general case only their higher excitations identifiable in terms
of stringy degrees of freedom would be created in vertices. The massivation of these states
makes possible non-collinear vertices. An open question is how the massivation fermion-X±
pairs relates to the existing TGD based description of massivation in terms of Higgs mechanism
and modified Dirac operator.

2. Mass renormalization could come from self energy loops with negative energy lines as also vertex
normalization. By very general arguments supersymmetry implies the cancellation of the self
energy loops but would allow non-trivial vertex renormalization [32] .

3. If only 3-vertices are allowed, the loops containing only positive energy lines are possible if on
mass shell fermion-X± pair (or its superpartner) can decay to a pair of positive energy pair
particles of same kind. Whether this is possible depends on the masses involved. For ordinary
particles these decays are not kinematically possible below intermediate boson mass scale (the
decays F1 → F2 + γ are forbidden kinematically or by the absence of flavor changing neutral
currents whereas intermediate gauge bosons can decay to on mass shell fermion-antifermion
pair).

4. The introduction of IR cutoff for 3-momentum in the rest system associated with the largest
CD (causal diamond) looks natural as scale parameter of coupling constant evolution and p-adic
length scale hypothesis favors the inverse of the size scale of CD coming in powers of two. This
parameter would define the momentum resolution as a discrete parameter of the p-adic coupling
constant evolution. This scale does not have any counterpart in standard physics. For electron,
d quark, and u quark the proper time distance between the tips of CD corresponds to frequency
of 10 Hz, 1280 Hz, and 160 Hz: all these frequencies define fundamental bio-rhythms [27] .

These considerations have left completely untouched one important aspect of generalized Feynman
diagrams: the necessity to perform a functional integral over the deformations of the partonic 2-
surfaces at the ends of the lines- that is integration over WCW. Number theoretical universality
requires that WCW and these integrals make sense also p-adically and in the following these aspects
of generalized Feynman diagrams are discussed.

8.11.3 How to define integration and p-adic Fourier analysis, integral cal-
culus, and p-adic counterparts of geometric objects?

p-Adic differential calculus exists and obeys essentially the same rules as ordinary differental calcu-
lus. The only difference from real context is the existence of p-adic pseudoconstants: any function
which depends on finite number of pinary digits has vanishing p-adic derivative. This implies non-
determinism of p-adic differerential equations. One can defined p-adic integral functions using the fact
that indefinite integral is the inverse of differentiation. The basis problem with the definite integrals
is that p-adic numbers are not well-ordered so that the crucial ordering of the points of real axis in
definite integral is not unique. Also p-adic Fourier analysis is problematic since direct counterparts of
ep(ix) and trigonometric functions are not periodic. Also exp(-x) fails to converse exponentially since
it has p-adic norm equal to 1. Note also that these functions exists only when the p-adic norm of x
is smaller than 1.

The following considerations support the view that the p-adic variant of a geometric objects,
integration and p-adic Fourier analysis exists but only when one considers highly symmetric geometric
objects such as symmetric spaces. This is wellcome news from the point of view of physics. At the
level of space-time surfaces this is problematic. The field equations associated with Kähler action
and modified Dirac equation make sense. Kähler action defined as integral over p-adic space-time
surface fails to exist. If however the Kähler function identified as Kähler for a preferred extremal of
Kähler action is rational or algebraic function of preferred complex coordinates of WCW with ratonal
coefficients, its p-adic continuation is expected to exist.

Circle with rotational symmetries and its hyperbolic counterparts

Consider first circle with emphasis on symmetries and Fourier analysis.
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1. In this case angle coordinate φ is the natural coordinate. It however does not make sense as such
p-adically and one must consider either trigonometric functions or the phase exp(iφ) instead.
If one wants to do Fourier analysis on circle one must introduce roots Un,N = exp(in2π/N) of
unity. This means discretization of the circle. Introducing all roots Un,p = exp(i2πn/p), such
that p divides N , one can represent all Uk,n up to n = N . Integration is naturally replaced with
sum by using discrete Fourier analysis on circle. Note that the roots of unity can be expressed
as products of powers of roots of unity exp(in2π/pk), where pk divides N .

2. There is a number theoretical delicacy involved. By Fermat’s theorem ap−1 mod p = 1 for
a = 1, ...p−1 for a given p-adic prime so that for any integer M divisible by a factor of p−1 the
M :th roots of unity exist as ordinary p-adic numbers. The problem disappears if these values
of M are excluded from the discretization for a given value of the p-adic prime. The manner to
achieve this is to assume that N contains no divisors of p−1 and is consistent with the notion of
finite measurement resolution. For instance, N = pn is an especially natural choice guaranteing
this.

3. The p-adic integral defined as a Fourier sum does not reduce to a mere discretization of the
real integral. In the real case the Fourier coefficients must approach to zero as the wave vector
k = n2π/N increases. In the p-adic case the condition consistent with the notion of finite
measurement resolution for angles is that the p-adic valued Fourier coefficients approach to zero
as n increases. This guarantees the p-adic convergence of the discrete approximation of the
integral for large values of N as n increases. The map of p-adic Fourier coefficients to real ones
by canonical identification could be used to relate p-adic and real variants of the function to
each other.

This finding would suggests that p-adic geometries -in particular the p-adic counterpart of CP2,
are discrete. Variables which have the character of a radial coordinate are in natural manner p-
adically continuous whereas phase angles are naturally discrete and described in terms of algebraic
extensions. The conclusion is disappoing since one can quite well argue that the discrete structures
can be regarded as real. Is there any manner to escape this conclusion?

1. Exponential function exp(ix) exists p-adically for |x|p ≤ 1/p but is not periodic. It provides rep-
resentation of p-adic variant of circle as group U(1). One obtains actually a hierarchy of groups
U(1)p,n corresponding to |x|p ≤ 1/pn. One could consider a generalization of phases as products
Expp(N,n2π/N + x) = exp(in2πn/N)exp(ix) of roots of unity and exponent functions with
an imaginary exponent. This would assign to each root of unity p-adic continuum interpreted
as the analog of the interval between two subsequent roots of unity at circle. The hierarchies
of measurement resolutions coming as 2π/pn would be naturally accompanied by increasingly
smaller p-adic groups U(1)p,n.

2. p-Adic integration would involve summation plus possibly also an integration over each p-adic
variant of discretization interval. The summation over the roots of unity implies that the integral
of
∫
exp(inx)dx would appear for n = 0. Whatever the value of this integral is, it is compensated

by a normalization factor guaranteing orthonormality.

3. If one interprets the p-adic coordinate as p-adic integer without the identification of points
differing by a multiple of n as different points the question whether one should require p-adic
continuity arises. Continuity is obtained if Un(x + mpm) = Un(x) for large values of m. This
is obtained if one has n = pk. In the spherical geometry this condition is not needed and
would mean quantization of angular momentum as L = pk, which does not look natural. If
representations of translation group are considered the condition is natural and conforms with
the spirit of the p-adic length scale hypothesis.

The hyperbolic counterpart of circle corresponds to the orbit of point under Lorentz group in
two 2-D Minkowski space. Plane waves are replaced with exponentially decaying functions of the
coordinate η replacing phase angle. Ordinary exponent function exp(x) has unit p-adic norm when it
exists so that it is not a suitable choice. The powers pn existing for p-adic integers however approach
to zero for large values of x = n. This forces discretization of η or rather the hyperbolic phase as
powers of px, x = n. Also now one could introduce products of Expp(nlog(p) + z) = pnexp(x) to
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achieve a p-adic continuum. Also now the integral over the discretization interval is compensated
by orthonormalization and can be forgotten. The integral of exponential function would reduce to
a sum

∫
Exppdx =

∑
k p

k = 1/(1 − p). One can also introduce finite-dimensional but non-algebraic
extensions of p-adic numbers allowing e and its roots e1/n since ep exists p-adically.

Plane with translational and rotational symmetries

Consider first the situation by taking translational symmetries as a starting point. In this case
Cartesian coordinates are natural and Fourier analysis based on plane waves is what one wants to
define. As in the previous case, this can be done using roots of unity and one can also introduce
p-adic continuum by using the p-adic variant of the exponent function. This would effectively reduce
the plane to a box. As already noticed, in this case the quantization of wave vectors as multiples of
1/pk is required by continuity.

One can take also rotational symmetries as a starting point. In this case cylindrical coordinates
(ρ, φ) are natural.

1. Radial coordinate can have arbitrary values. If one wants to keep the connection ρ =
√
x2 + y2

with the Cartesian picture square root allowing extension is natural. Also the values of radial
coordinate proportional to odd power of p are problematic since one should introduce

√
p: is

this extension internally consistent? Does this mean that the points ρ ∝ p2n+1 are excluded so
that the plane decomposes to annuli?

2. As already found, angular momentum eigen states can be described in terms of roots of unity
and one could obtain continuum by allowing also phases defined by p-adic exponent functions.

3. In radial direction one should define the p-adic variants for the integrals of Bessel functions and
they indeed might make sense by algebraic continuation if one consistently defines all functions
as Fourier expansions. Delta-function renormalization causes technical problems for a continuum
of radial wave vectors. One could avoid the problem by using expontentially decaying variants
of Bessel function in the regions far from origin, and here the already proposed description of
the hyperbolic counterparts of plane waves is suggestive.

4. One could try to understand the situation also using Cartesian coordinates. In the case of sphere
this is achieved by introducing two coordinate patches with Cartesian coordinates. Pythagorean
phases are rational phases (orthogonal triangles for which all sides are integer valued) and form
a dense set on circle. Complex rationals (orthogonal triangles with integer valued short sides)
define a more general dense subset of circle. In both cases it is difficult to imagine a discretized
version of integration over angles since discretization with constant angle increrement is not
possible.

The case of sphere and more general symmetric space

In the case of sphere spherical coordinates are favored by symmetry considerations. For spherical
coordinates sin(θ) is analogous to the radial coordinate of plane. Legedre polynomials expressible
as polynomials of sin(θ) and cos(θ) are expressible in terms of phases and the integration measure
sin2(θ)dθdφ reduces the integral of S2 to summation. As before one can introduce also p-adic contin-
uum. Algebraic cutoffs in both angular momentum l and m appear naturally. Similar cutoffs appear
in the representations of quantum groups and there are good reasons to expect that these phenomena
are correlated.

Exponent of Kähler function appears in the integration over configuration space. From the ex-
pression of Kähler gauge potential given by Aα = J θ

α ∂θK one obtains using Aα = cos(θ)δα,φ and
Jθφ = sin(θ) the expression exp(K) = sin(θ). Hence the exponent of Kähler function is expressible
in terms of spherical harmonics.

The completion of the discretized sphere to a p-adic continuum- and in fact any symmetric space-
could be performed purely group theoretically.

1. Exponential map maps the elements of the Lie-algebra to elements of Lie-group. This recipe
generalizes to arbitrary symmetric space G/H by using the Cartan decomposition g = t + h,
[h, h] ⊂ h,[h, t] ⊂ t,[t, t] ⊂ h. The exponentiation of t maps t to G/H in this case. The
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exponential map has a p-adic generalization obtained by considering Lie algebra with coefficients
with p-adic norm smaller than one so that the p-adic exponent function exists. As a matter fact,
one obtains a hierarchy of Lie-algebras corresponding to the upper bounds of the p-adic norm
coming as p−k and this hierarchy naturally corresponds to the hierarchy of angle resolutions
coming as 2π/pk. By introducing finite-dimensional transcendental extensions containing roots
of e one obtains also a hierarchy of p-adic Lie-algebras associated with transcendental extensions.

2. In particular, one can exponentiate the complement of the SO(2) sub-algebra of SO(3) Lie-
algebra in p-adic sense to obtain a p-adic completion of the discrete sphere. Each point of the
discretized sphere would correspond to a p-adic continuous variant of sphere as a symmetric
space. Similar construction applies in the case of CP2. Quite generally, a kind of fractal or
holographic symmetric space is obtained from a discrete variant of the symmetric space by
replacing its points with the p-adic symmetric space.

3. In the N-fold discretization of the coordinates of M-dimensional space t one (N−1)M discretiza-
tion volumes which is the number of points with non-vanishing t-coordinates. It would be nice
if one could map the p-adic discretization volumes with non-vanishing t-coordinates to their
positive valued real counterparts by applying canonical identification. By group invariance it is
enough to show that this works for a discretization volume assignable to the origin. Since the
p-adic numbers with norm smaller than one are mapped to the real unit interval, the p-adic Lie
algebra is mapped to the unit cell of the discretization lattice of the real variant of t. Hence by
a proper normalization this mapping is possible.

The above considerations suggest that the hierarchies of measurement resolutions coming as ∆φ =
2π/pn are in a preferred role. One must be however cautious in order to avoid too strong assumptions.
The following arguments however support this identification.

1. The vision about p-adicization characterizes finite measurement resolution for angle measure-
ment in the most general case as ∆φ = 2πM/N , where M and N are positive integers having
no common factors. The powers of the phases exp(i2πM/N) define identical Fourier basis irre-
spective of the value of M unless one allows only the powers exp(i2πkM/N) for which kM < N
holds true: in the latter case the measurement resolutions with different values of M corre-
spond to different numbers of Fourier components. Otherwise themeasurement ersolution is just
∆φ = 2π/pn. If one regards N as an ordinary integer, one must have N = pn by the p-adic
continuity requirement.

2. One can also interpret N as a p-adic integer and assume that state function reduction selects one
particular prime (no superposition of quantum states with different p-adic topologies). For N =
pnM , where M is not divisible by p, one can express 1/M as a p-adic integer 1/M =

∑
k≥0Mkp

k,

which is infinite as a real integer but effectively reduces to a finite integer K(p) =
∑N−1
k=0 Mkp

k.
As a root of unity the entire phase exp(i2πM/N) is equivalent with exp(i2πR/pn), R = K(p)M
mod pn. The phase would non-trivial only for p-adic primes appearing as factors in N . The
corresponding measurement resolution would be ∆φ = R2π/N . One could assign to a given
measurement resolution all the p-adic primes appearing as factors in N so that the notion of
multi-p p-adicity would make sense. One can also consider the identification of the measurement
resolution as ∆φ = |N/M |p = 2π/pk. This interpretation is supported by the approach based
on infinite primes [84] .

What about integrals over partonic 2-surfaces and space-time surface?

One can of course ask whether also the integrals over partonic 2-surfaces and space-time surface could
be p-adicized by using the proposed method of discretization. Consider first the p-adic counterparts
of the integrals over the partonic 2-surface X2.

1. WCW Hamiltonians and Kähler form are expressible using flux Hamiltonians defined in terms
of X2 integrals of JHA, where HA is δCD × CP2 Hamiltonian, which is a rational function of
the preferred coordinates defined by the exponentials of the coordinates of the sub-space t in
the appropriate Cartan algebra decomposition. The flux factor J = εαβJαβ

√
g2 is scalar and

does not actually depend on the induced metric.
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2. The notion of finite measurement resolution would suggest that the discretization of X2 is
somehow induced by the discretization of δCD × CP2. The coordinates of X2 could be taken
to be the coordinates of the projection of X2 to the sphere S2 associated with δM4

± or to the
homologically non-trivial geodesic sphere of CP2 so that the discretization of the integral would
reduce to that for S2 and to a sum over points of S2.

3. To obtain an algebraic number as an outcome of the summation, one must pose additional
conditions guaranteing that both HA and J are algebraic numbers at the points of discretization
(recall that roots of unity are involved). Assume for definiteness that S2 is rM = constant sphere.
If the remaining preferred coordinates are functions of the preferred S2 coordinates mapping
phases to phases at discretization points, one obtains the desired outcome. These conditions are
rather strong and mean that the various angles defining CP2 coordinates -at least the two cyclic
angle coordinates- are integer multiples of those assignable to S2 at the points of discretization.
This would be achieved if the preferred complex coordinates of CP2 are powers of the preferred
complex coordinate of S2 at these points. One could say that X2 is algebraically continued from
a rational surface in the discretized variant of δCD × CP2. Furthermore, if the measurement
resolutions come as 2π/pn as p-adic continuity actually requires and if they correspond to the
p-adic group Gp,n for which group parameters satisfy |t|p ≤ p−n, one can precisely characterize
how a p-adic prime characterizes the real partonic 2-surface. This would be a fulfilment of one
of the oldest dreams related to the p-adic vision.

A even more ambitious dream would be that even the integral of the Kähler action for preferred
extremals could be defined using a similar procedure. The conjectured slicing of Minkowskian space-
time sheets by string world sheets and partonic 2-surfaces encourages these hopes.

1. One could introduce local coordinates of H at both ends of CD by introducing a continuous
slicing of M4×CP2 by the translates of δM4

±×CP2 in the direction of the time-like vector con-
necting the tips of CD. As space-time coordinates one could select four of the eight coordinates
defining this slicing. For instance, for the regions of the space-time sheet representable as maps
M4 → CP2 one could use the preferred M4 time coordinate, the radial coordinate of δM4

+, and
the angle coordinates of rM = constant sphere.

2. Kähler action density should have algebraic values and this would require the strengthening
of the proposed conditions for X2 to apply to the entire slicing meaning that the discretized
space-time surface is a rational surface in the discretized CD×CP2. If this condition applies to
the entire space-time surface it would effectively mean the discretization of the classical physics
to the level of finite geometries. This seems quite strong implication but is consistent with
the preferred extremal property implying the generalized Bohr rules. The reduction of Kähler
action to 3-dimensional boundary terms is implied by rather general arguments. In this case
only the effective algebraization of the 3-surfaces at the ends of CD and of wormhole throats is
needed [41] . By effective 2-dimensionality these surfaces cannot be chosen freely.

3. If Kähler function and WCW Hamiltonians are rational functions, this kind of additional condi-
tions are not necessary. It could be that the integrals of defining Kähler action flux Hamiltonians
make sense only in the intersection of real and p-adic worlds assumed to be relevant for the
physics of living systems.

Tentative conclusions

These findings suggest following conclusions.

1. Exponent functions play a key role in the proposed p-adicization. This is not an accident since
exponent functions play a fundamental role in group theory and p-adic variants of real geometries
exist only under symmetries- possibly maximal possible symmetries- since otherwise the notion
of Fourier analysis making possible integration does not exist. The inner product defined in
terms of integration reduce for functions representable in Fourier basis to sums and can be
carried out by using orthogonality conditions. Convolution involving integration reduces to a
product for Fourier components. In the case of imbedding space and WCW these conditions are
satisfied but for space-time surfaces this is not possible.
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2. There are several manners to choose the Cartan algebra already in the case of sphere. In the
case of plane one can consider either translations or rotations and this leads to different p-adic
variants of plane. Also the realization of the hierarchy of Planck constants leads to the conclusion
that the extended imbedding space and therefore also WCW contains sectors corresponding to
different choices of quantization axes meaning that quantum measurement has a direct geometric
correlate.

3. The above described 2-D examples represent symplectic geometries for which one has natural
decomposition of coordinates to canonical pairs of cyclic coordinate (phase angle) and cor-
responding canonical conjugate coordinate. p-Adicization depends on whether the conjugate
corresponds to an angle or noncompact coordinate. In both cases it is however possible to define
integration. For instance, in the case of CP2 one would have two canonically conjugate pairs
and one can define the p-adic counterparts of CP2 partial waves by generalizing the procedure
applied to spherical harmonics. Products of functions expressible using partial waves can be
decomposed by tensor product decomposition to spherical harmonics and can be integrated.
In particular inner products can be defined as integrals. The Hamiltonians generating isome-
tries are rational functions of phases: this inspires the hope that also WCW Hamiltonians also
rational functions of preferred WCW coordinates and thus allow p-adic variants.

4. Discretization by introducing algebraic extensions is unavoidable in the p-adicization of geomet-
rical objects but one can have p-adic continuum as the analog of the discretization interval and
in the function basis expressible in terms of phase factors and p-adic counterparts of exponent
functions. This would give a precise meaning for the p-adic counterparts of the imbedding space
and WCW if the latter is a symmetric space allowing coordinatization in terms of phase angles
and conjugate coordinates.

5. The intersection of p-adic and real worlds would be unique and correspond to the points defining
the discretization.

8.11.4 Harmonic analysis in WCW as a manner to calculate WCW func-
tional integrals

Previous examples suggest that symmetric space property, Kähler and symplectic structure and the
use of symplectic coordinates consisting of canonically conjugate pairs of phase angles and correspond-
ing ”radial” coordinates are essential for WCW integration and p-adicization. Kähler function, the
components of the metric, and therefore also metric determinant and Kähler function depend on the
”radial” coordinates only and the possible generalization involves the identification the counterparts
of the ”radial” coordinates in the case of WCW.

Conditions guaranteing the reduction to harmonic analysis

The basic idea is that harmonic analysis in symmetric space allows to calculate the functional integral
over WCW.

1. Each propagator line corresponds to a symmetric space defined as a coset space G/H of the
symplectic group and Kac-Moody group and one might hope that the proposed p-adicization
works for it- at least when one considers the hierarchy of measurement resolutions forced by
the finiteness of algebraic extensions. This coset space is as a manifold Cartesian product
(G/H) × (G/H) of symmetric spaces G/H associated with ends of the line. Kähler metric
contains also an interaction term between the factors of the Cartesian product so that Kähler
function can be said to reduce to a sum of ”kinetic” terms and interaction term.

2. Effective 2-dimensionality and ZEO allow to treat the ends of the propagator line independently.
This means an enormous simplification. Each line contributes besides propagator a piece to
the exponent of Kähler action identifiable as interaction term in action and depending on the
propagator momentum. This contribution should be expressible in terms of generalized spherical
harmonics. Essentially a sum over the products of pairs of harmonics associated with the ends of
the line multiplied by coefficients analogous to 1/(p2−m2) in the case of the ordinary propagator
would be in question. The optimal situation is that the pairs are harmonics and their conjugates
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appear so that one has invariance under G analogous to momentum conservation for the lines
of ordinary Feynman diagrams.

3. Momentum conservation correlates the eigenvalue spectra of the modified Dirac operator D at
propagator lines [20] . G-invariance at vertex dictates the vertex as the singlet part of the
product of WCW harmonics associated with the vertex and one sums over the harmonics for
each internal line. p-Adicization means only the algebraic continuation to real formulas to p-adic
context.

4. The exponent of Kähler function depends on both ends of the line and this means that the ge-
ometries at the ends are correlated in the sense that that Kähler form contains interaction terms
between the line ends. It is however not quite clear whether it contains separate ”kinetic” or self
interaction terms assignable to the line ends. For Kähler function the kinetic and interaction
terms should have the following general expressions as functions of complex WCW coordinates:

Kkin,i =
∑
n

fi,n(Zi)fi,n(Zi) + c.c ,

Kint =
∑
n

g1,n(Z1)g2,n(Z2) + c.c , i = 1, 2 . (8.11.2)

Here Kkin,i define ”kinetic” terms and Kint defines interaction term. One would have what
might be called holomorphic factorization suggesting a connection with conformal field theories.

Symmetric space property -that is isometry invariance- suggests that one has

fi,n = f2,n ≡ fn , g1,n = g2,n ≡ gn (8.11.3)

such that the products are invariant under the group H appearing in G/H and therefore have
opposite H quantum numbers. The exponent of Kähler function does not factorize although the
terms in its Taylor expansion factorize to products whose factors are products of holomorphic
and antihilomorphic functions.

5. If one assumes that the exponent of Kähler function reduces to a product of eigenvalues of the
modified Dirac operator eigenvalues must have the decomposition

λk =
∏
i=1,2

exp

[∑
n

ck,ngn(Zi)gn(Zi) + c.c

]
× exp

[∑
n

dk,ngn(Z1)gn(Z2) + c.c

]
.(8.11.4)

Hence also the eigenvalues coming from the Dirac propagators have also expansion in terms
of G/H harmonics so that in principle WCW integration would reduce to Fourier analysis in
symmetric space.

Generalization of WCW Hamiltonians

This picture requires a generalization of the view about configuration space Hamiltonians since also
the interaction term between the ends of the line is present not taken into account in the previous
approach.

1. The proposed representation of WCW Hamiltonians as flux Hamiltonians [21, 20]

Q(HA) =

∫
HA(1 +K)Jd2x ,

J = εαβJαβ , J03√g4 = KJ12 . (8.11.5)
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works for the kinetic terms only since J cannot be the same at the ends of the line. The formula
defining K assumes weak form of self-duality (03 refers to the coordinates in the complement
of X2 tangent plane in the 4-D tangent plane). K is assumed to be symplectic invariant and
constant for given X2. The condition that the flux of F 03 = (~/gK)J03 defining the counterpart
of Kähler electric field equals to the Kähler charge gK gives the condition K = g2

K/~, where gK

is Kähler coupling constant. Within experimental uncertainties one has αK = g
/
K4π~0 = αem '

1/137, where αem is finite structure constant in electron length scale and ~0 is the standard
value of Planck constant.

The assumption that Poisson bracket of WCW Hamiltonians reduces to the level of imbed-
ding space - in other words {Q(HA), Q(HB} = Q({HA, HB}) - can be justified. One starts
from the representation in terms of say flux Hamiltonians Q(HA) and defines JA,B as JA,B ≡
Q({HA, HB}). One has ∂HA/∂tB = {HB , HA}, where tB is the parameter associated with the
exponentiation of HB . The inverse JAB of JA,B = ∂HB/∂tA is expressible as JA,B = ∂tA/∂HB .
From these formulas one can deduce by using chain rule that the bracket {Q(HA), Q(HB} =
∂tCQ(HA)JCD∂tDQ(HB) of flux Hamiltonians equals to the flux Hamiltonian Q({HA, HB}).

2. One should be able to assign to WCW Hamiltonians also a part corresponding to the interac-
tion term. The symplectic conjugation associated with the interaction term permutes the WCW
coordinates assignable to the ends of the line. One should reduce this apparently non-local sym-
plectic conjugation (if one thinks the ends of line as separate objects) to a non-local symplectic
conjugation for δCD × CP2 by identifying the points of lower and upper end of CD related
by time reflection and assuming that conjugation corresponds to time reflection. Formally this
gives a well defined generalization of the local Poisson brackets between time reflected points at
the boundaries of CD. The connection of Hermitian conjugation and time reflection in quantum
field theories is is in accordance with this picture.

3. The only manner to proceed is to assign to the flux Hamiltonian also a part obtained by the
replacement of the flux integral over X2 with an integral over the projection of X2 to a sphere
S2 assignable to the light-cone boundary or to a geodesic sphere of CP2, which come as two
varieties corresponding to homologically trivial and non-trivial spheres. The projection is defined
as by the geodesic line orthogonal to S2 and going through the point of X2. The hierarchy of
Planck constants assigns to CD a preferred geodesic sphere of CP2 as well as a unique sphere
S2 as a sphere for which the radial coordinate rM or the light-cone boundary defined uniquely
is constant: this radial coordinate corresponds to spherical coordinate in the rest system defined
by the time-like vector connecting the tips of CD. Either spheres or possibly both of them could
be relevant.

Recall that also the construction of number theoretic braids and symplectic QFT [23] led to
the proposal that braid diagrams and symplectic triangulations could be defined in terms of
projections of braid strands to one of these spheres. One could also consider a weakening for
the condition that the points of the number theoretic braid are algebraic by requiring only that
the S2 coordinates of the projection are algebraic and that these coordinates correspond to the
discretization of S2 in terms of the phase angles associated with θ and φ.

This gives for the corresponding contribution of the WCW Hamiltonian the expression

Q(HA)int =

∫
S2
±

HAXδ
2(s+, s−)d2s± =

∫
P (X2

+)∩P (X2
−)

∂(s1, s2)

∂(x1
±, x

2
±)
d2x± . (8.11.6)

Here the Poisson brackets between ends of the line using the rules involve delta function
δ2(s+, s−) at S2 and the resulting Hamiltonians can be expressed as a similar integral of H[A,B]

over the upper or lower end since the integral is over the intersection of S2 projections.

The expression must vanish when the induced Kähler form vanishes for either end. This is
achieved by identifying the scalar X in the following manner:
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X = Jkl+ J
−
kl ,

Jkl± = (1 +K±)∂αs
k∂βs

lJαβ± . (8.11.7)

The tensors are lifts of the induced Kähler form of X2
± to S2 (not CP2).

4. One could of course ask why these Hamiltonians could not contribute also to the kinetic terms
and why the brackets with flux Hamiltonians should vanish. This relate to how one defines
the Kähler form. It was shown above that in case of flux Hamiltonians the definition of Kähler
form as brackets gives the basic formula {Q(HA), Q(HB)} = Q({HA, HB} and same should hold
true now. In the recent case JA,B would contain an interaction term defined in terms of flux
Hamiltonians and the previous argument should go through also now by identifying Hamiltonians
as sums of two contributions and by introducing the doubling of the coordinates tA.

5. The quantization of the modified Dirac operator must be reconsidered. It would seem that one
must add to the super-Hamiltonian completely analogous term obtained by replacing (1 +K)J
with X∂(s1, s2)/∂(x1

±, x
2
±). Besides the anticommutation relations defining correct anticom-

mutators to flux Hamiltonians, one should pose anticommutation relations consistent with the
anticommutation relations of super Hamiltonians. In these anticommutation relations (1 +
K)Jδ2(x, y) would be replaced with Xδ2(s+, s−). This would guarantee that the oscillator op-
erators at the ends of the line are not independent and that the resulting Hamiltonian reduces
to integral over either end for H[A,B].

6. In the case of CP2 the Hamiltonians generating isometries are rational functions. This should
hold true also now so that p-adic variants of Hamiltonians as functions in WCW would make
sense. This in turn would imply that the components of the WCW Kähler form are rational
functions. Also the exponentiation of Hamiltonians make sense p-adically if one allows the
exponents of group parameters to be functions Expp(t).

Does the expansion in terms of partial harmonics converge?

The individual terms in the partial wave expansion seem to be finite but it is not at all clear whether
the expansion in powers of K actually converges.

1. In the proposed scenario one performs the expansion of the vacuum functional exp(K) in powers
of K and therefore in negative powers of αK . In principle an infinite number of terms can be
present. This is analogous to the perturbative expansion based on using magnetic monopoles
as basic objects whereas the expansion using the contravariant Kähler metric as a propagator
would be in positive powers of αK and analogous to the expansion in terms of magnetically
bound states of wormhole throats with vanishing net value of magnetic charge. At this moment
one can only suggest various approaches to how one could understand the situation.

2. Weak form of self-duality and magnetic confinement could change the sitution. Performing
the perturbation around magnetic flux tubes together with the assumed slicing of the space-
time sheet by stringy world sheets and partonic 2-surfaces could mean that the perturbation
corresponds to the action assignable to the electric part of Kähler form proportional to αK by
the weak self-duality. Hence by K = 4παK relating Kähler electric field to Kähler magnetic
field the expansion would come in powers of a term containing sum of terms proportional to α0

K

and αK . This would leave to the scattering amplitudes the exponents of Kähler function at the
maximum of Kähler function so that the non-analytic dependence on αK would not disappear.

A further reason to be worried about is that the expansion containing infinite number of terms
proportional to α0

K could fail to converge.

1. This could be also seen as a reason for why magnetic singlets are unavoidable except perhaps
for ~ < ~0. By the holomorphic factorization the powers of the interaction part of Kähler
action in powers of 1/αK would naturally correspond to increasing and opposite net values of
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the quantum numbers assignable to the WCW phase coordinates at the ends of the propagator
line. The magnetic bound states could have similar expansion in powers of αK as pairs of
states with arbitrarily high but opposite values of quantum numbers. In the functional integral
these quantum numbers would compensate each other. The functional integral would leave only
an expansion containing powers of αK starting from some finite possibly negative (unless one
assumes the weak form of self-duality) power. Various gauge coupling strengths are expected to
be proportional to αK and these expansions should reduce to those in powers of αK .

2. Since the number of terms in the fermionic propagator expansion is finite, one might hope on
basis of super-symmetry that the same is true in the case of the functional integral expansion.
By the holomorpic factorization the expansion in powers of K means the appearance of terms
with increasingly higher quantum numbers. Quantum number conservation at vertices would
leave only a finite number of terms to tree diagrams. In the case of loop diagrams pairs of
particles with opposite and arbitrarily high values of quantum numbers could be generated at
the vertex and magnetic confinement might be necessary to guarantee the convergence. Also
super-symmetry could imply cancellations in loops.

Could one do without flux Hamiltonians?

The fact that the Kähler functions associated with the propagator lines can be regarded as interaction
terms inspires the question whether the Kähler function could contain only the interaction terms so
that Kähler form and Kähler metric would have components only between the ends of the lines.

1. The basic objection is that flux Hamiltonians too beautiful objects to be left without any role
in the theory. One could also argue that the WCW metric would not be positive definite if only
the non-diagonal interaction term is present. The simplest example is Hermitian 2 × 2-matrix
with vanishing diagonal for which eigenvalues are real but of opposite sign.

2. One could of course argue that the expansions of exp(K) and λk give in the general powers
(fnfn)m analogous to diverging tadpole diagrams of quantum field theories due to local in-
teraction vertices. These terms do not produce divergences now but the possibility that the
exponential series of this kind of terms could diverge cannot be excluded. The absence of the
kinetic terms would allow to get rid of these terms and might be argued to be the symmetric
space counterpart for the vanishing of loops in WCW integral.

3. In zero energy ontology this idea does not look completely non-sensical since physical states are
pairs of positive and negative energy states. Note also that in quantum theory only creation
operators are used to create positive energy states. The manifest non-locality of the interaction
terms and absence of the counterparts of kinetic terms would provide a trivial manner to get rid
of infinities due to the presence of local interactions. The safest option is however to keep both
terms.

Summary

The discussion suggests that one must treat the entire Feynman graph as single geometric object
with Kähler geometry in which the symmetric space is defined as product of what could be regarded
as analogs of symmetric spaces with interaction terms of the metric coming from the propagator
lines. The exponent of Kähler function would be the product of exponents associated with all lines
and contributions to lines depend on quantum numbers (momentum and color quantum numbers)
propagating in line via the coupling to the modified Dirac operator. The conformal factorization
would allow the reduction of integrations to Fourier analysis in symmetric space. What is of decisive
importance is that the entire Feynman diagrammatics at WCW level would reduce to the construction
of WCW geometry for a single propagator line as a function of quantum numbers propagating on the
line.
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Chapter 9

Classical TGD

9.1 Introduction

A brief summary of what might be called basic principles is in order to facilitate the reader to assimilate
the basic tools and rules of intuitive thinking involved.

9.1.1 Quantum-classical correspondence

The fundamental meta level guiding principle is quantum-classical correspondence (classical physics
is an exact part of quantum TGD). The principle states that all quantum aspects of the theory, which
means also various aspects of consciousness such as volition, cognition, and intentionality, should
have space-time correlates [87] . Real space-time sheets provide kind of symbolic representations
whereas p-adic space-time sheets provide correlates for cognition and intentions. All that we can
symbolically communicate about conscious experience relies on quantal space-time engineering to
build these representations.

The progress in the understanding of quantum TGD has demonstrated that quantum classical
correspondence is more or less equivalent with holography, quantum criticality, and criticality as the
principle selecting the preferred extremals of Kähler action. It also guarantees 1-1 correspondence
between quantum states and classical states essential for quantum measurement theory.

9.1.2 Classical physics as exact part of quantum theory

Classical physics corresponds to the dynamics of space-time surfaces determined by the criticality in
the sense that extremals allow an infinite number of deformations giving rise to a vanishing second
variation of the Kähler action [86] . This dynamics have several unconventional features basically
due to the possibility to interpret the Kähler action as a Maxwell action expressible in terms of the
induced metric defining classical gravitational field and induced Kähler form defining a non-linear
Maxwell field not as such identifiable as electromagnetic field however.

Classical long ranged weak and color fields as signature for a fractal hierarchy of copies
standard model physics

The geometrization of classical fields means that various classical fields are expressible in terms of
imbedding space-coordinates and are thus not primary dynamical variables. This predicts the presence
of long range weak and color (gluon) fields not possible in standard physics context. It took 26 years
to end up with a convincing interpretation for this puzzling prediction.

What seems to be the correct interpretation is in terms of an infinite fractal hierarchy of copies
of standard models physics with appropriately scaled down mass spectra for quarks, leptons, and
gauge bosons. Both p-adic length scales and the values of Planck constant predicted by TGD [97]
label various physics in this hierarchy. Also other quantum numbers are predicted as labels. This
means that universe would be analogous to an inverted Mandelbrot fractal with each bird’s eye of view
revealing new long length scale structures serving also as correlates for higher levels of self hierarchy.
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Exotic dark weak forces and their dark variants are consistent with the experimental widths for
ordinary weak gauge bosons since the particles belonging to different levels of the hierarchy do not
have direct couplings at Feynman diagram level although they have indirect classical interactions and
also the de-coherence reducing the value of ~ is possible. Classical long ranged weak fields play a key
role in quantum control and communications in living matter [33, 27] . Long ranged classical color
force in turn is the backbone in the model of color vision [37] : colors correspond to the increments of
color quantum numbers in this model. The increments of weak isospin in turn could define the basic
color like quale associated with hearing (black-white ↔ to silence-sound [37, 68, 70] ).

Topological field quantization and the notion of many-sheeted space-time

The compactness of CP2 implies the notions of many-sheeted space-time and topological field quanti-
zation. Topological field quantization means that various classical field configurations decompose into
topological field quanta. One can see space-time as a gigantic Feynman diagram with lines thickened
to 4-surfaces. Criticality of the preferred extremals implies that only selected field configurations
analogous to Bohr’s orbits are realized physically so that quantum-classical correspondence becomes
very predictive. An interpretation as a 4-D quantum hologram is a further very useful picture [44]
but will not be discussed in this chapter in any detail.

Topological field quantization implies that the field patterns associated with material objects form
extremely complex topological structures which can be said to belong to the material objects. The
notion of field body , in particular magnetic body, typically much larger than the material system,
differentiates between TGD and Maxwell’s electrodynamics, and has turned out to be of fundamental
importance in the TGD inspired theory of consciousness. One can say that field body provides an
abstract representation of the material body.

One implication of many-sheetedness is the possibility of macroscopic quantum coherence. By
quantum classical correspondence large space-time sheets as quantum coherence regions are macro-
scopic quantum systems and therefore ideal sites of the quantum control in living matter.

1. The original argument was that each space-time sheet carrying matter has a temperature de-
termined by its size and the mass of the particles residing at it via de Broglie wave length
λdB =

√
2mE assumed to define the p-adic length scale by the condition L(k) < λdB < L(k>).

This would give very low temperatures when the size of the space-time sheet becomes large
enough. The original belief indeed was that the large space-time sheets can be very cold because
they are not in thermal equilibrium with the smaller space-time sheets at higher temperature.

2. The assumption about thermal isolation is not needed if one accepts the possibility that Planck
constant is dynamical and quantized and that dark matter corresponds to a hierarchy of phases
characterized by increasing values of Planck constant [97, 26] . From E = hf relationship it is
clear that arbitrarily low frequency dark photons (say EEG photons) can have energies above
thermal energy which would explain the correlation of EEG with consciousness. This vision
allows to formulate more precisely the basic notions of TGD inspired theory of consciousness
and leads to a model of living matter giving precise quantitative predictions. Also the ability of
this vision to generate new insights to quantum biology provides strong support for it [27] .

Many-sheeted space-time predicts also fundamental mechanisms of metabolism based on the drop-
ping of particles between space-time sheets with an ensuing liberation of the quantized zero point
kinetic energy. Also the notion of many-sheeted laser follows naturally and population inverted
many-sheeted lasers serve as storages of metabolic energy [45] .

Space-time sheets topologically condense to larger space-time sheets by wormhole contacts which
have Euclidian signature of metric. This implies causal horizon (or elementary particle horizon) at
which the signature of the induced metric changes from Minkowskian to Euclidian. This forces to
modify the notion of sub-system. What is new is that two systems represented by space-time sheets can
be unentangled although their sub-systems bound state entangle with the mediation of the join along
boundaries bonds connecting the boundaries of sub-system space-time sheets. This is not allowed by
the notion of sub-system in ordinary quantum mechanics. This notion in turn implies the central
concept of fusion and sharing of mental images by entanglement [87] .
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Zero energy ontology

The notion of zero energy ontology emerged implicitly in cosmological context from the observation
that the imbeddings of Robertson-Walker metrics are always vacuum extremals. In fact, practically all
solutions of Einstein’s equations have this property very naturally. The explicit formulation emerged
with the progress in the formulation of quantum TGD. In zero energy ontology physical states are
creatable from vacuum and have vanishing net quantum numbers, in particular energy. Zero energy
states can be decomposed to positive and negative energy parts with definite geometro-temporal
separation, call it T , and having interpretation in terms of initial and final states of particle reactions.
Zero energy ontology is consistent with ordinary positive energy ontology at the limit when the time
scale of the perception of observer is much shorter than T . One of the implications is a new view
about fermions and bosons allowing to understand Higgs mechanism among other things.

Zero energy ontology leads to the view about S-matrix as a characterizer of time-like entanglement
associated with the zero energy state and a generalization of S-matrix to what might be called M-
matrix emerges. M-matrix is complex square root of density matrix expressible as a product of real
valued ”modulus” and unitary matrix representing phase and can be seen as a matrix valued gener-
alization of Schrödinger amplitude. Also thermodynamics becomes an inherent element of quantum
theory in this approach.

TGD Universe is quantum spin glass

Since Kähler action is Maxwell action with Maxwell field and induced metric expressed in terms of
M4

+×CP2 coordinates, the gauge invariance of Maxwell action as a symmetry of the vacuum extremals
(this implies is a gigantic vacuum degeneracy) but not of non-vacuum extremals. Gauge symmetry
related space-time surfaces are not physically equivalent and gauge degeneracy transforms to a huge
spin glass degeneracy. Spin glass degeneracy provides a universal mechanism of macro-temporal
quantum coherence and predicts degrees of freedom called zero modes not possible in quantum field
theories describing particles as point-like objects. Zero modes not contributing to the configuration
space line element are identifiable as effectively classical variables characterizing the size and shape of
the 3-surface as well as the induced Kähler field. Spin glass degeneracy as mechanism of macroscopic
quantum coherence should be equivalent with dark matter hierarchy as a source of the coherence [44]
.

Classical and p-adic non-determinism

The vacuum degeneracy of Kähler action implies classical non-determinism, which means that space-
like 3-surface is not enough to fix the space-time surface associated with it uniquely as an absolute
minimum of action, and one must generalize the notion of 3-surface by allowing sequences of 3-surfaces
with time like separations to achieve determinism in a generalized sense. These ”association sequences”
can be seen as symbolic representations for the sequences of quantum jumps defining selves and thus for
contents of consciousness. Not only speech and written language define symbolic representations but
all real space-time sheets of the space-time surfaces can be seen in a very general sense as symbolic
representations of not only quantum states but also of quantum jump sequences. An important
implication of the classical non-determinism is the possibility to have conscious experiences with
contents localized with respect to geometric time. Without this non-determinism conscious experience
would have no correlates localized at space-time surface, and there would be no psychological time.

p-Adic non-determinism follows from the inherent non-determinism of p-adic differential equations
for any action principle and is due to the fact that integration constants, which by definition are
functions with vanishing derivatives, are not constants but functions of the pinary cutoffs xN defined
as x =

∑
k xkp

k → xN =
∑
k<N xkp

k of the arguments of the function. In p-adic topology one
can therefore fix the behavior of the space-time surface at discrete set of space-time points above
some length scale defined by p-adic concept of nearness by fixing the integration constants. In the
real context this corresponds to the fixing the behavior below some time/length scales since points
p-adically near to each other are in real sense faraway. This is a natural correlate for the possibility
to plan the behavior and p-adic non-determinism is assumed to be a classical correlate for the non-
determinism of intentionality, and perhaps also imagination and cognition.

These two non-determinisms allow to understand the self-referentiality of consciousness at a very
general level. In a given quantum jump a space-time surface can be created with the property that
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it represents symbolically or cognitively something about the contents of consciousness before the
quantum jump. Thus it becomes possible to become conscious about being conscious of something.
This is very much like mathematician expressing her thoughts as symbol sequences which provides
feedback to go the next abstraction level.

Classical and p-adic non-determinisms force also the generalization of the notion of quantum
entanglement. Time-like entanglement, crucial for understanding long term memory and precognition
becomes possible. The notion of many-sheeted space-time forces also to modify the notion of sub-
system, which implies that unentangled systems can have entangled sub-systems. One can partially
understand this in terms of length scale dependent notion of entanglement (the entanglement of sub-
systems is not seen in the length scale resolution defined by the size of unentangled systems) but only
partially. The formation of join along boundaries bonds between sub-system space-time sheets and
the fact that topologically condensed space-time sheets are separated by elementary particle horizons
from larger space-time sheets, provide the deeper topological motivation for the generalization of
sub-system concept.

Dark matter hierarchy and hierarchy of Planck constants

Dark matter revolution with levels of the hierarchy labeled by values of Planck constant forces a further
generalization of the notion of imbedding space and thus of space-time. One can say, that imbedding
space is a book like structure obtained by gluing together infinite number of copies of the imbedding
space like pages of a book: two copies characterized by singular discrete bundle structure are glued
together along 4-dimensional set of common points. These points have physical interpretation in terms
of quantum criticality. Particle states belonging to different sectors (pages of the book) can interact
via field bodies representing space-time sheets which have parts belonging to two pages of this book.

This picture has profound consequences. For instance, gauge boson masses are in excellent approx-
imation due to coupling to Higgs boson and fermion masses originate from p-adic thermodynamics.
Also a detailed understanding of hadronic anatomy in terms of super-symplectic quanta and a micro-
scopic theory of black-holes emerge.

All this is a work in progress and there are many uncertainties involved. Despite this it seems that
it is good to sum up the recent view in order to make easier to refer to the new developments in the
existing chapters.

p-Adic fractality of life and consciousness

p-Adic fractality of biology and consciousness has become an increasingly important guide line in the
construction of the theory. This notion allows to relate phenomena occurring in the molecular level
to phenomena like remote viewing and psychokinesis and it leads also to the view that topological
field quanta of various fields of astrophysical size are crucial for the functioning of bio-systems. If one
accepts p-adic fractality, the theory can be tested in unexpected manners, in particular in molecular
and cellular length scales where the systems are much simpler. Sensory perception, long term memory,
remote mental interactions, metabolism: all these phenomena rely on the same basic mechanisms. p-
Adic length scale hypothesis allows to quantify the hypothesis with testable quantitative predictions.

Double slit experiment and classical non-determinism

Bohr’s complementarity principle is the basic element of Copenhagen interpretation and at the same
time one of the most poorly defined aspects of this interpretation. If the possibility of macroscopic
quantum entanglement between measurement instrument and quantum system is accepted, comple-
mentary principle becomes un-necessary. This is however not all that is needed. If classical non-
determinism makes it possible to represent quantum jump sequences at space-time level, a revision
of space-time description of quantum measurement is necessary. This sounds very logical but to be
honest, I write these lines only after having learned about the remarkable experiment done by Shahriar
Afshar [15] .

The variant of double slit experiment by Shahriar Afshar seems to contradict the Copenhagen
interpretation which states that the particle and field aspects are complementarity and thus mutually
exclusive. In the case of double slit experiment complementarity predicts that the measurement of
whether the photon came to the detector through slit 1 or 2 should destroy the interference pattern
of electromagnetic fields in the region behind the screen.
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The experimental arrangement of Afshar differs from the standard double slit experiment in that
a lens was added behind the screen. The lens transmitted the photons coming from slits 1 and 2
via mirrors to detectors A and B so that in particle picture a photon detected by A (B) could be
regarded as coming from slit 1 (2). In the first step both slits were open and the detectors represented
interference patterns representing diffraction through single slit. The other slit was then closed and
metal wires at the positions of dark interference rings were added. These wires degraded somewhat the
image in the second detector. After this the second slit was opened again. Surprisingly, the resulting
interference pattern was the original one.

The measurement certainly measures the particle aspect of photons. On the other hand, the
preservation of the detected patterns means that no photons did enter in the regions containing the
wires so that also interference pattern is there. Hence wave and particle aspects seem to be mutually
consistent.

This finding is difficult to understand in Copenhagen interpretation and also in the many-worlds
interpretation of quantum mechanics. Afshar himself suggest that the very notion of photon must be
questioned. It is however difficult to accept this view since the photon absorption quite concretely cor-
responds to a click in the detector and also because the mathematical formalism of second quantization
works so fantastically.

The conclusion can be criticized. What is primarily measured is not basically through which slit
the photons came but whether the direction of the momentum of the photon emerging from the lens
was in the angle range characterizing the detector or not. One can however argue that in deterministic
physics for fields the two measurements are equivalent so that the problem remains.

In TGD framework the classical physics is not completely deterministic and this has led to a gen-
eralization of the notion of quantum classical correspondence. Space-time surface provides a classical
(unfaithful) representation not only for quantum states but for quantum jump sequences or equiva-
lently, for sequences of quantum states. The most obvious identification for the quantum states is as
the maximal non-deterministic regions of a given space-time sheet.

In the recent context this would mean that the fields in the region between the screen and lens
represent the state before the state function reduction and thus the interference pattern, whereas
the fields in the region between lens and detectors represent the situation after the state function
reduction. The interaction with lens involves classical non-determinism.

This picture conforms also with the notion of topological field quantization. The space-time de-
composes into space-time sheets interpreted, topological field quanta (topological light rays containing
photons, flux quanta of magnetic field, etc..). Topological field quanta correspond to the coherence
regions for classical fields with spinor fields included. De-coherence corresponds to the splitting of
space-time sheet to smaller, possibly parallel space-time sheets. Topological field quantum carries
classical fields inside it but behaves as a whole like particle. Hence particle and wave aspects are
consistent in the sense that below the size scale L of the topological field quantum (say the thickness
of a magnetic flux tube or topological light ray) the description as a wave applies and above L particle
description makes sense. In the recent case the coherence is lost at the lens space-time sheet where
the space-time sheet representing interference pattern decomposes to two sheets representing photon
beams going to the two detectors.

9.1.3 Some basic ideas of TGD inspired theory of consciousness and quan-
tum biology

The following ideas of TGD inspired theory of consciousness and of quantum biology are the most
relevant ones for what will follow.

1. ”Everything is conscious and consciousness can be only lost” is the briefest manner to summa-
rize TGD inspired theory of consciousness. Quantum jump as moment of consciousness and the
notion of self are key concepts of the theory. Self is a system able to avoid bound state entan-
glement with environment and can be formally seen as an ensemble of quantum jumps. The
contents of consciousness of self are defined by the averaged increments of quantum numbers
and zero modes (sensory and geometric qualia). Moment of consciousness can be said to be the
counterpart of elementary particle and self the counterpart of many-particle state, either bound
and free. The selves formed by macro-temporal quantum coherence are in turn the counter-
parts of atoms, molecules and larger structures. Macro-temporal quantum coherence effectively
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binds a sequence of quantum jumps to a single quantum jump as far as conscious experience is
considered. The idea that conscious experience is about changes amplified to macroscopic quan-
tum phase transitions, is the key philosophical guideline in the construction of various models,
such as the model of qualia, the capacitor model of sensory receptor, the model of cognitive
representations, and declarative memories.

2. Macro-temporal quantum coherence is a second consequence of the spin glass degeneracy [44]
. It is essentially due to the formation of bound states and has as a topological correlate the
formation of join along boundaries bonds connecting the boundaries of the component systems.
During macro-temporal coherence quantum jumps integrate effectively to single long-lasting
quantum jump and one can say that system is in a state of oneness, eternal now, outside time.
Macro-temporal quantum coherence makes possible stable non-entropic mental images. Negative
energy MEs are one particular mechanism making possible macro-temporal quantum coherence
via the formation of bound states, and remote metabolism and sharing of mental images are other
facets of this mechanism. The real understanding of the origin of macroscopic quantum coherence
requires the generalization of quantum theory allowing dynamical and quantized Planck constant
[26, 27] .

3. p-Adic physics as physics of intentionality and of cognition is a further key idea of TGD inspired
theory of consciousness. p-Adic space-time sheets as correlates for intentions and p-adic-to-real
transformations of them as correlates for the transformation of intentions to actions allow deeper
understanding of also psychological time as a front of p-adic-to-real transition propagating to
the direction of the geometric future. Negative energy MEs are absolutely essential for the
understanding of how precisely targeted intentionality is realized.

9.2 Many-sheeted space-time, magnetic flux quanta, electrets
and MEs

TGD inspired theory of consciousness and of living matter relies on space-time sheets carrying ordinary
matter, topological light rays (massless extremals, MEs), and magnetic and electric flux quanta. There
are some new results which motivate a separate discussion of them.

9.2.1 Dynamical quantized Planck constant and dark matter hierarchy

By quantum classical correspondence space-time sheets can be identified as quantum coherence regions.
Hence the fact that they have all possible size scales more or less unavoidably implies that Planck
constant must be quantized and have arbitrarily large values. If one accepts this then also the idea
about dark matter as a macroscopic quantum phase characterized by an arbitrarily large value of
Planck constant emerges naturally as does also the interpretation for the long ranged classical electro-
weak and color fields predicted by TGD. Rather seldom the evolution of ideas follows simple linear
logic, and this was the case also now. In any case, this vision represents the fifth, relatively new thread
in the evolution of TGD and the ideas involved are still evolving.

Dark matter as large ~ phase

D. Da Rocha and Laurent Nottale have proposed that Schrödinger equation with Planck constant ~
replaced with what might be called gravitational Planck constant ~gr = GmM

v0
(~ = c = 1). v0 is a

velocity parameter having the value v0 = 144.7 ± .7 km/s giving v0/c = 4.6 × 10−4. This is rather
near to the peak orbital velocity of stars in galactic halos. Also sub-harmonics and harmonics of v0

seem to appear. The support for the hypothesis coming from empirical data is impressive.
Nottale and Da Rocha believe that their Schrödinger equation results from a fractal hydrodynamics.

Many-sheeted space-time however suggests astrophysical systems are not only quantum systems at
larger space-time sheets but correspond to a gigantic value of gravitational Planck constant. The
gravitational (ordinary) Schrödinger equation would provide a solution of the black hole collapse (IR
catastrophe) problem encountered at the classical level. The resolution of the problem inspired by
TGD inspired theory of living matter is that it is the dark matter at larger space-time sheets which
is quantum coherent in the required time scale [77] .
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Dark matter as a source of long ranged weak and color fields

Long ranged classical electro-weak and color gauge fields are unavoidable in TGD framework. The
smallness of the parity breaking effects in hadronic, nuclear, and atomic length scales does not however
seem to allow long ranged electro-weak gauge fields. The problem disappears if long ranged classical
electro-weak gauge fields are identified as space-time correlates for massless gauge fields created by
dark matter. Also scaled up variants of ordinary electro-weak particle spectra are possible. The
identification explains chiral selection in living matter and unbroken U(2)ew invariance and free color
in bio length scales become characteristics of living matter and of bio-chemistry and bio-nuclear
physics. An attractive solution of the matter antimatter asymmetry is based on the identification of
also antimatter as dark matter.

Dark matter hierarchy and consciousness

The emergence of the vision about dark matter hierarchy has meant a revolution in TGD inspired
theory of consciousness. Dark matter hierarchy means also a hierarchy of long term memories with
the span of the memory identifiable as a typical geometric duration of moment of consciousness at
the highest level of dark matter hierarchy associated with given self so that even human life cycle
represents at this highest level single moment of consciousness.

Dark matter hierarchy leads to detailed quantitative view about quantum biology with several
testable predictions [27] . The applications to living matter suggests that the basic hierarchy cor-
responds to a hierarchy of Planck constants coming as ~(k) = λk(p)~0, λ ' 211 for p = 2127−1,
k = 0, 1, 2, ... [27] . Also integer valued sub-harmonics and integer valued sub-harmonics of λ might
be possible. Each p-adic length scale corresponds to this kind of hierarchy and number theoretical
arguments suggest a general formula for the allowed values of Planck constant λ depending logarith-
mically on p-adic prime [97] . Also the value of ~0 has spectrum characterized by Beraha numbers
Bn = 4cos2(π/n), n ≥ 3, varying by a factor in the range n > 3 [97] .

The general prediction is that Universe is a kind of inverted Mandelbrot fractal for which each
bird’s eye of view reveals new structures in long length and time scales representing scaled down copies
of standard physics and their dark variants. These structures would correspond to higher levels in self
hierarchy. This prediction is consistent with the belief that 75 per cent of matter in the universe is
dark.

1. Living matter and dark matter

Living matter as ordinary matter quantum controlled by the dark matter hierarchy has turned out
to be a particularly successful idea. The hypothesis has led to models for EEG predicting correctly
the band structure and even individual resonance bands and also generalizing the notion of EEG [27]
. Also a generalization of the notion of genetic code emerges resolving the paradoxes related to the
standard dogma [48, 27] . A particularly fascinating implication is the possibility to identify great
leaps in evolution as phase transitions in which new higher level of dark matter emerges [27] .

It seems safe to conclude that the dark matter hierarchy with levels labelled by the values of
Planck constants explains the macroscopic and macro-temporal quantum coherence naturally. That
this explanation is consistent with the explanation based on spin glass degeneracy is suggested by
following observations. First, the argument supporting spin glass degeneracy as an explanation of
the macro-temporal quantum coherence does not involve the value of ~ at all. Secondly, the failure
of the perturbation theory assumed to lead to the increase of Planck constant and formation of
macroscopic quantum phases could be precisely due to the emergence of a large number of new degrees
of freedom due to spin glass degeneracy. Thirdly, the phase transition increasing Planck constant has
concrete topological interpretation in terms of many-sheeted space-time consistent with the spin glass
degeneracy.

2. Dark matter hierarchy and the notion of self

The vision about dark matter hierarchy leads to a more refined view about self hierarchy and
hierarchy of moments of consciousness [26, 27] . The larger the value of Planck constant, the longer
the subjectively experienced duration and the average geometric duration T (k) ∝ λk of the quantum
jump.

Dark matter hierarchy suggests also a slight modification of the notion of self. Each self involves
a hierarchy of dark matter levels, and one is led to ask whether the highest level in this hierarchy
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corresponds to a single quantum jump rather than a sequence of quantum jumps. The averaging
of conscious experience over quantum jumps would occur only for sub-selves at lower levels of dark
matter hierarchy and these mental images would be ordered, and single moment of consciousness
would be experienced as a history of events. One can ask whether even entire life cycle could be
regarded as a single quantum jump at the highest level so that consciousness would not be completely
lost even during deep sleep. This would allow to understand why we seem to know directly that this
biological body of mine existed yesterday.

The fact that we can remember phone numbers with 5 to 9 digits supports the view that self corre-
sponds at the highest dark matter level to single moment of consciousness. Self would experience the
average over the sequence of moments of consciousness associated with each sub-self but there would
be no averaging over the separate mental images of this kind, be their parallel or serial. These mental
images correspond to sub-selves having shorter wake-up periods than self and would be experienced as
being time ordered. Hence the digits in the phone number are experienced as separate mental images
and ordered with respect to experienced time.

9.2.2 p-Adic length scale hypothesis and the connection between thermal
de Broglie wave length and size of the space-time sheet

Also real space-time sheets are assumed to be characterized by p-adic prime p and assumed to have
a size determined by primary p-adic length scale Lp or possibly n-ary p-adic length scale Lp(n).
Since multi-p-fractality is allowed [85] , one cannot exclude even the possibility that each space-time
dimension might correspond to its own p-adic length scale and even several p-adic primes could be
associated with single dimension.

The possibility to assign a p-adic prime to the real space-time sheets is required by the success of the
elementary particle mass calculations and various applications of the p-adic length scale hypothesis.
Rational numbers are common to reals and all p-adic number fields. The p-adic-to-real transition
transforming intentions to actions is made possible by a large number of common rational points
between p-adic and real space-time surfaces, which supports the view that real space-time sheets
obeys effective p-adic topology as an approximate topology in some resolution and below some length
scale. p-Adic prime thus characterizes the classical non-determinism of the Kähler action.

Parallel space-time sheets with distance about 104 Planck lengths form a hierarchy. Each material
object (...,atom, molecule, ..., cell,...) would correspond to this kind of space-time sheet. The p-adic
primes p ' 2k, k prime or power of prime, characterize the size scales of the space-time sheets in the
hierarchy. The p-adic length scale L(k) can be expressed in terms of cell membrane thickness as

L(k) = 2(k−151)/2 × L(151) , (9.2.1)

L(151) ' 10 nm. These are so called primary p-adic length scales but there are also n-ary p-adic
length scales related by a scaling of power of

√
p to the primary p-adic length scale. Quite recent

model for photosynthesis [45] gives additional support for the importance of also n-ary p-adic length
scales so that the relevant p-adic length scales would come as half-octaves in a good approximation
but prime and power of prime values of k would be especially important.

9.2.3 Topological light rays (massless extremals, MEs)

I have described MEs, or ”topological light rays”, in detail in [2] and in [62] newphys, and describe here
only very briefly the basic characteristics of MEs and concentrate on new idea about their possible
role for consciousness and life.

What MEs are?

MEs (massless extremals, topological light rays) can be regarded as topological field quanta of classical
radiation fields [62, 7] . They are typically tubular space-time sheets inside which radiation fields
propagate with light velocity in single direction without dispersion. The simplest case corresponds
to a straight cylindrical ME but also curved MEs, kind of curved light rays, are possible. The initial
values for a given moment of time are arbitrary by light likeness. Therefore MEs are ideal for precisely
targeted communications. What distinguishes MEs from Maxwellian radiation fields in empty space
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is that light like vacuum 4-current is possible: ordinary Maxwell’s equations would state that this
current vanishes. Quite generally, purely geometric vacuum charge densities and 3-currents are purely
TGD based prediction and could be seen as a classical correlate of the vacuum polarization predicted
by quantum field theories.

MEs are fractal structures containing MEs within MEs. The so called scaling law of homeopathy
predicts that the high frequency MEs inside low frequency MEs are in a ratio having discrete values [40]
. One can indeed justify this relationship. As ions drop from smaller space-time sheets to magnetic flux
tubes, zero point kinetic energy is liberated as high frequency MEs, and the ions dropped to magnetic
flux tubes generate cyclotron radiation, and the ratio of the fundamental frequencies is constant
not depending on particle mass and being determined solely by p-adic length scale hypothesis. The
model for the radio waves induced by the irradiation of DNA by laser light [7] gives support for this
picture [44] .

Two basic types of MEs

MEs have 2-dimensional CP2 projection which means that electro-weak holonomy group is Abelian
(color holonomy is always Abelian which suggests that physical states in TGD Universe correspond
to states of color multiplets with vanishing color hypercharge and isospin rather than color singlets).
If CP2 projection belongs to a homologically non-trivial geodesic sphere, only em and Z0 fields and
Abelian color gauge fields are present. In the homologically trivial case only classical W fields are
non-vanishing.

1. Neutral MEs can be assigned to various kinds of communications from biological body to the
magnetic body and fractal hierarchy of EEGs and ZEGs represent the basic example in this
respect [27] .

2. Dark W MEs serving as correlate for dark W exchanges induce an exotic ionization of atomic
nuclei [82, 28, 27] . This induces charge entanglement between magnetic body and biological
body generating dark plasma oscillation patterns inducing nerve pulse patterns and ion waves at
the space-time sheets occupied by the ordinary matter. The mechanism is based on many-sheeted
Faraday law inducing electromagnetic fields at ordinary space-time sheet in turn giving rise to
ohmic currents. State function reduction selects one of the exotically ionized configurations.
This mechanism is the most plausible candidate for how magnetic body as an intentional agent
controls biological body.

Negative energy MEs

MEs can have either positive or negative energy depending on the time orientation. The understand-
ing of negative energy MEs has increased considerably. Phase conjugate laser beams [27] are the most
plausible standard physics counterparts of negative energy MEs since they can be interpreted as time
reversed laser beams and do not possess direct Maxwellian analog. By quantum-classical correspon-
dence one can interpret the frequencies associated with negative energy MEs as energies. One can
also assume that the Bose-Einstein condensed photons associated with negative energy MEs and with
the coherent light generated by the light like vacuum current have negative energies.

For frequencies for which energy is above the thermal energy there is no system which could interact
with negative energy MEs or absorb negative energy photons. Therefore negative energy MEs and
corresponding photons should propagate through matter practically without any interaction. Feinberg
has demonstrated that phase conjugate laser beams behave similarly: for instance, one can see through
chickens using these laser beams [3] . This means that negative energy MEs do not respect Faraday
cages and thus represent an attractive candidate for the hypothetical Psi field.

Negative energy MEs have many applications.

1. Negative energy MEs ideal for generating time like entanglement. Since negative energies are
involved, this entanglement can be seen as a correlate for the bound state entanglement leading
to a macro-temporal quantum coherence. Negative energy MEs make thus possible telepathic
sharing of mental images. Negative energy MEs are involved with both sensory perception, long
term memory, and motor action. In the model for living matter [27] The charge entanglement
generated by W MEs inducing exotic weak charge and electromagnetic charge is assumed to be
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responsible for bio-control whereas neutral MEs in general carrying both em and Z0 fields are
responsible for communications.

2. Negative energy MEs are ideal for a precisely targeted realization of intentions. p-Adic ME
having a large number of common rational points with negative energy ME is generated and
transformed to a real ME in quantum jump. The system receives positive energy and momentum
as a recoil effect and the transition is not masked by ordinary spontaneously occurring quantum
transitions since the energy of the system increases. One can say that negative energy ME
represents the desires communicated to the geometric past and inducing as a reaction the desired
action realized as say neuronal activity and generation of positive energy MEs.

3. The generation of negative energy MEs is also in a key role in remote metabolism and MEs
serve as quantum credit cards implying an extreme flexibility of the metabolism. If the system
receiving negative energy MEs is a population inverted laser or its many-sheeted counterpart,
then quite a small field intensity associated with negative energy MEs (intensity of negative
energy photons) can lead to the amplification of the time reflected positive energy signal. The
reason is that the rate for the induced emission is proportional to the number of particles dropped
to the ground state from the excited state. Therefore even negative energy bio-photons might
serve as quantum controllers of metabolism and induce much more intense beams of positive
energy photons, say when interacting with mitochondria.

9.2.4 Magnetic flux quanta and electrets

Magnetic flux tubes and electrets are extremals of Kähler action dual to each other. Also layer like
magnetic flux quanta and their electric counterparts are possible. The magnetic/electric field is in a
good approximation of constant magnitude but has varying direction.

Magnetic fields and life

The magnetic field associated with any material system is topologically quantized, and one can assign
to any system a magnetic body. An attractive idea is that the relationship of the magnetic body to
the material system is to some degree that of the manual to an electronic instrument. Quantitative
arguments related to the dark matter hierarchy assuming that magnetic bodies are dark suggest
that cognitions and emotions are regarded as somatosensory qualia of the magnetic body [37, 27] .
Magnetic body would in this case serve as a kind of computer screen at which the data items processes
in say brain are communicated either classically (positive energy MEs) or by sharing of mental images
(negative energy MEs).

Magnetic body is also an active intentional agent: motor actions are controlled from magnetic
body and proceed as cascade like processes from long to short length and time scales as quantum
communications of desires at various levels of hierarchy of magnetic bodies. Communication occurs
backwards in geometric time by negative energy MEs. Motor action as a response to these desires
occurs by classical communications by positive energy MEs and as neural activities. This explains
the coherence and synchrony of motor actions difficult to understand in neuroscience framework. The
sizes of flux quanta are astrophysical: for instance, EEG frequency of 7.8 Hz corresponds to a wave
length defined by Earth’s circumference. The non-locality in the length scale of magnetosphere, and
even in length scales up to light life, is forced by Uncertainty Principle alone, if taken seriously in
macroscopic length scales.

The leakage of supra currents of ions and their Cooper pairs from magnetic flux tubes of the
Earth’s magnetic field to smaller space-time sheets and their dropping back involving liberation of the
zero point kinetic energy defines one particular metabolic ”Karma’s cycle”. The dropping of protons
from k = 137 atomic space-time sheet involved with the utilization of ATP molecules is only a special
instance of the general mechanism involving an entire hierarchy of zero point kinetic energies defining
universal metabolic currencies. This leads to the idea that the topologically quantized magnetic field
of Earth defines the analog of central nervous system and blood circulation present already during the
pre-biotic evolution and making possible primitive metabolism. This has far reaching implications for
the understanding of how pre-biotic evolution led to living matter as we understand it [33] .

For instance, it has recently become clear that the dropping of atoms and molecules from space-time
sheets labelled by p-adic prime p ' 2k, k = 131, liberates photons at visible and near infrared wave
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lengths. The hot k = 131 space-time sheets (with temperatures above 1000 K) could have served as a
source of metabolic energy for life-forms at cool k = 137 sheets. Photosynthesis could have developed
in the circumstances where solar radiation was replaced with these photons. The correct prediction
is that chlorophylls should be especially sensitive to these wave lengths. In particular, it is predicted
that also IR wave lengths 700-1000 nm should have been utilized. There indeed are bacteria using
only this portion of solar radiation. This leads to a scenario making sense only in TGD universe.
Pre-biotic life could have developed at the cool space-time sheets in the hot interior of Earth below
crust, where k = 131 space-time sheets are possible and this life could still be there [33] . Also the life
as we know it, could involve hot spots generated by the cavitation of water inside cell. The classical
repulsive Z0 force causes a strong acceleration during final stages of bubble collapse creating high
temperatures, and could explain also sono-luminescence [10] , [10] as suggested in [28] .

Magnetic Mother Gaia could also form sensory and other representations receiving input from
several brains via negative energy EEG MEs entangling magnetosphere with brains. The multi-
brained magnetospheric selves could be responsible for the third person aspect of consciousness and
for the evolution of social structures. For instance, the successful healing by prayer and meditation
groups [2] , and the experiments of Mark Germine [8] provide support for the notion of multi-brained
magnetospheric selves are involved. Magnetic flux tubes could function as wave guides for MEs and
this aspect is crucial in the model of long term memory.

Electrets and bio-systems

Bio-systems are known to be full of electrets and liquid crystals [?] . Perhaps the most fundamental
electret structure is cell membrane. In particular, the water inside cells tends to be in gel phase which
is liquid crystal phase. There are many good reasons for why water should be in ordered phase. One
very fundamental reason is that bio-polymers are stable in liquid crystal/ordered water phase since
there are no free water molecules available for the depolymerization by hydration. In fact, only a
couple of years ago it was experimentally discovered that bio-polymers can be stabilized around ice.

The capacitor model for sensory receptor is one very important application of the electret concept
[37] , [3] . Sensory qualia result in the flow of particles with given quantum numbers from the plate
to another one in quantum discharge. This kind of amplification of quantum number resp. zero mode
increments would give rise to both geometric resp. non-geometric qualia [37] .

Also micro-tubuli are electrets. Sol-gel transition, as any phase transition, is an good candidate
for the representation of a conscious bit and controlled local sol-gel transitions between ordinary and
liquid crystal water could be a basic control tool making possible cellular locomotion, changes of
protein conformations, etc... The tubulin dimers of micro-tubuli could induce sol-gel transformations
by generating negative energy MEs, and micro-tubular surface could provide bit maps of their envi-
ronment somewhat like sensory areas of brain provide maps of body. If gel→sol transition around
tubulin inducing conformational change induces sol→gel transformation in some point of environment
as would be the case for the seesaw mechanism to be discussed below, a one-one correspondence would
result. By this one-one correspondence micro-tubules would automatically generate kind of conscious
log files about the control activities which could have evolved to micro-tubular declarative memory
representations about what happens inside cell [45] .

9.3 General considerations

The solution families of field equations studied in this chapter were found already during eighties.
The physical interpretation turned out to be the the really tough problem. What is the principle
selecting preferred extremals of Kähler action as analogs of Bohr orbits assigning to 3-surface X3 a
unique space-time surface X4(X3)? Does Equivalence Principle hold true and if so, in what sense?
These have been the key questions. The realization that light-like 3-surfaces X3

l associated with the
light-like wormhole throats at which the signature of the induced metric changes from Minkowskian
to Euclidian led to the formulation of quantum TGD in terms of second quantized induced spinor
fields at these surfaces. Together with the notion of number theoretical compactification this approach
allowed to identify the conditions characterizing the preferred extremals. What is remarkable that
these conditions are consistent with what is known about extremals. Also a connection with string
models and understanding of the space-time realization of Equivalence Principle emerged. In this
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section the theoretical background behind field equations is briefly summarized. I will not repeat
the discussion of previous two chapters [35, 36] summarizing the general vision about many-sheeted
space-time, and consideration will be restricted to those aspects of vision leading to direct predictions
about the properties of preferred extremals of Kähler action.

9.3.1 Number theoretical compactification and M8 −H duality

The notion of hyper-quaternionic and octonionic manifold makes sense but it not plausible that
H = M4 × CP2 could be endowed with a hyper-octonionic manifold structure. Situation changes
if H is replaced with hyper-octonionic M8. Suppose that X4 ⊂ M8 consists of hyper-quaternionic
and co-hyper-quaternionic regions. The basic observation is that the hyper-quaternionic sub-spaces
of M8 with a fixed hyper-complex structure (containing in their tangent space a fixed hyper-complex
subspace M2 or at least one of the light-like lines of M2) are labeled by points of CP2. Hence each
hyper-quaternionic and co-hyper-quaternionic four-surface of M8 defines a 4-surface of M4 × CP2.
One can loosely say that the number-theoretic analog of spontaneous compactification occurs: this of
course has nothing to do with dynamics.

This picture was still too naive and it became clear that not all known extremals of Kähler action
contain fixed M2 ⊂M4 or light-like line of M2 in their tangent space.

1. The first option represents the minimal form of number theoretical compactification. M8 is
interpreted as the tangent space of H. Only the 4-D tangent spaces of light-like 3-surfaces X3

l

(wormhole throats or boundaries) are assumed to be hyper-quaternionic or co-hyper-quaternionic
and contain fixed M2 or its light-like line in their tangent space. Hyper-quaternionic regions
would naturally correspond to space-time regions with Minkowskian signature of the induced
metric and their co-counterparts to the regions for which the signature is Euclidian. What is
of special importance is that this assumption solves the problem of identifying the boundary
conditions fixing the preferred extremals of Kähler action since in the generic case the intersection
of M2 with the 3-D tangent space of X3

l is 1-dimensional. The surfaces X4(X3
l ) ⊂ M8 would

be hyper-quaternionic or co-hyper-quaternionic but would not allow a local mapping between
the 4-surfaces of M8 and H.

2. One can also consider a more local map of X4(X3
l ) ⊂ H to X4(X3

l ) ⊂ M8. The idea is to
allow M2 ⊂M4 ⊂M8 to vary from point to point so that S2 = SO(3)/SO(2) characterizes the
local choice of M2 in the interior of X4. This leads to a quite nice view about strong geometric
form of M8 −H duality in which M8 is interpreted as tangent space of H and X4(X3

l ) ⊂ M8

has interpretation as tangent for a curve defined by light-like 3-surfaces at X3
l and represented

by X4(X3
l ) ⊂ H. Space-time surfaces X4(X3

l ) ⊂ M8 consisting of hyper-quaternionic and co-
hyper-quaternionic regions would naturally represent a preferred extremal of E4 Kähler action.
The value of the action would be same as CP2 Kähler action. M8 − H duality would apply
also at the induced spinor field and at the level of configuration space. The possibility to assign
M2(x) ⊂ M4 to each point of M4 projection PM4(X4(X3

l )) is consistent with what is known
about extremals of Kähler action with only one exception: CP2 type vacuum extremals. In this
case M2 can be assigned to the normal space.

3. Strong form of M8−H duality satisfies all the needed constraints if it represents Kähler isometry
between X4(X3

l ) ⊂ M8 and X4(X3
l ) ⊂ H. This implies that light-like 3-surface is mapped to

light-like 3-surface and induced metrics and Kähler forms are identical so that also Kähler action
and field equations are identical. The only differences appear at the level of induced spinor fields
at the light-like boundaries since due to the fact that gauge potentials are not identical.

4. The map of X3
l ⊂ H → X3

l ⊂M8 would be crucial for the realization of the number theoretical
universality. M8 = M4 × E4 allows linear coordinates as those preferred coordinates in which
the points of imbedding space are rational/algebraic. Thus the point of X4 ⊂ H is algebraic
if it is mapped to algebraic point of M8 in number theoretic compactification. This of course
restricts the symmetry groups to their rational/algebraic variants but this does not have practical
meaning. Number theoretical compactication could thus be motivated by the number theoretical
universality.
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5. The possibility to use either M8 or H picture might be extremely useful for calculational pur-
poses. In particular, M8 picture based on SO(4) gluons rather than SU(3) gluons could per-
turbative description of low energy hadron physics. The strong SO(4) symmetry of low energy
hadron physics can be indeed seen direct experimental support for the M8 −H duality.

Number theoretical compactification has quite deep implications for quantum TGD and is actually
responsible for most of the progress in the understanding of the mathematical structure of quantum
TGD. A very powerful prediction is that preferred extremals should allow slicings to either stringy
world sheets or dual partonic 2-surfaces as well as slicing by light-like 3-surfaces. Both predictions are
consistent with what is known about extremals.

1. If the distribution of planes M2(x) is integrable, it is possible to slice X4(X3) to a union of 2-
dimensional surfaces having interpretation as string world sheets and dual 2-dimensional copies
of partonic surfaces X2. This decomposition defining 2+2 Kaluza-Klein type structure realizes
quantum gravitational holography and allows to understand Equivalence Principle at space-time
level in the sense that dimensional reduction defined by the integral of Kähler action over the
2-dimensional space labeling stringy world sheets gives rise to the analog of stringy action and
one obtains string model like description of quantum TGD as dual for a description based on
light-like partonic 3-surfaces. String tension is not however equal to the inverse of gravitational
constant as one might naively expect but the connection is more delicate.

2. Second implication is the slicing of X4(X3
l ) to light-like 3-surfaces Y 3

l ”parallel” to X3
l . Also this

slicing realizes quantum gravitational holography if one requires General Coordinate Invariance
in the sense that the Dirac determinant defined by the generalized eigenvalues of the transverse
part DK(X2) of DK is differs for two 3-surfaces Y 3

l in the slicing only by an exponent of a real
part of a holomorphic function of configuration space complex coordinates giving no contribution
to the Kähler metric. The requirement that the zero modes of the 4-D modified Dirac operators
DK reduce to the analogs of 3-D shock waves for all 3-surfaces Y 3

l in the slicing requires that
Noether currents are parallel to Y 3

l . Clearly, 3+1 type Kaluza-Klein structure is in question.
This slicing allows to realize RG flow at space-time level using the light-like coordinate associated
with the slicing as RG parameter [36] . The prediction is RG invariance of couplings for a causal
diamond (CD) in given p-adic length scale meaning a justification of the hypothesis that coupling
constant evolution reduces to a discrete p-adic coupling constant evolution with p-adic length
scales coming as half octaves. This prediction follows if the known properties of extremals of
Kähler action hold true quite generally.

3. The assumption that Kähler current and other gauge currents flow along the slices Y 3
l of the

slicing of X4(X3
l ) is enough for the renormalization group invariance of gauge couplings inside

CD guaranteing p-adic coupling constant evolution [36] . The current could thus have also a
component parallel to the transverse cross section in which case the current would be space-
like. Space-likeness brings in mind the Euclidian signature of the effective metric defined by the
modified gamma matrices Γ̂α = (∂LK/∂h

k
α)γk necessary for the Higgs mechanism. Dissipation

would be absent but Lorentz force would be non-vanishing. The general solution ansatz for the
field equations allows besides light-like Kähler currents also space-like gauge currents, which can
be regarded as topological currents. The gluing of CP2 type vacuum extremals to the known
extremals with light-like gauge currents could generate the transversal part of the currents and
increase the dimension DCP2

of the CP2 projection to at least DCP2
= 3.

9.3.2 The exponent of Kähler function as Dirac determinant for the mod-
ified Dirac action

Although quantum criticality in principle predicts the possible values of Kähler coupling strength, one
might hope that there exists even more fundamental approach involving no coupling constants and
predicting even quantum criticality and realizing quantum gravitational holography.

The identification of the light-like partonic 3-surfaces as carriers of elementary particle quantum
numbers inspired by the TGD based quantum measurement theory suggests the identification of
the modified Dirac action as that associated with the Chern-Simons action for the induced Kähler
gauge potential. It however turned out that it is 4-D modified Dirac action associated with Kähler
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action, which is the correct choice. The point is that only the solutions of DK which are effectively 3-
dimensional by generalized super-conformal gauge invariance are physical. The effective metric defined
by the modified gamma matrices is non-singular even for light-like 3-surfaces Y 3

l , and this allows to
develop a well-defined theory involving also metric degrees of freedom. In this framework C−S action
emerges as a phase factor of quantum states for phases with non-standard value of Planck constant
and is related to anyons and charge fractionization.

Absolutely essential role is played by number theoretical compactification predicted that space-
time sheets have dual slicings to string world sheets and partonic 2-surfaces. This prediction is
supported by the properties of known extremals of Kähler action. This allows the decompositions
DK = DK(Y 2) +DK(X2) generalized eigenvalues can be associated associated with DK(X2) for zero
modes of DK .

1. The Dirac determinant defined by the product of Dirac determinants associated with the light-
like partonic 3-surfaces X3

l associated with a given space-time sheet X4 is the simplest candidate
for vacuum functional identifiable as the exponent of the Kähler function. One can of course
worry about the finiteness of the Dirac determinant. p-Adicization requires that the eigenvalues
belong to a given algebraic extension of rationals. This restriction would imply a hierarchy of
physics corresponding to different extensions and could automatically imply the finiteness and
algebraic number property of the Dirac determinants if only finite number of eigenvalues would
contribute. The regularization would be performed by physics itself if this were the case.

2.

3. The basic problem has been how to feed in the information about the preferred extremal of
Kähler action to the eigenvalue spectrum DK(X2) at light-like 3-surface X3

l . The identification
of the preferred extremal came possible via boundary conditions at X3

l dictated by number
theoretical compactification. The basic observation is that the Dirac equation associated with
the 4-D Dirac operator DK defined by Kähler action can be seen as a conservation law for a
super current. By restricting the super current to flow along X3

l by requiring that its normal
component vanishes, one obtains a singular solution of 4-D modified Dirac equation restricted
to X3

l . The ”energy” spectrum to the spectrum of eigenvalues for DK(X2) and the product of
the eigenvalues defines the Dirac determinant in standard manner. Since the eigenmodes are
restricted to those localized to regions of non-vanishing induced Kähler form, the number of
eigen modes is finite and therefore also Dirac determinant is finite. The eigenvalues can be also
algebraic numbers.

4. It remains to be proven that the product of eigenvalues gives rise to the exponent of Kähler
action for the preferred extremal of Kähler action. At this moment the only justification for the
conjecture is that this the only thing that one can imagine.

5. An additional bonus is precise definition of quantum criticality. The Noether currents associated
with the modified Dirac action are conserved if its variation with respect to H-coordinates
vanishes. This means that the second variation of Kähler action varies. One can consider
also a weaker form of quantum criticality in which case only the variations with respect to
deformations defining the conserved currents are vanishing. This would give to a hierarchy of
criticalities defined by the second variations of Kähler action. The vacuum degeneracy of Kähler
action would be essential for the realization of quantum criticality and could correspond to a
hierarchy of dynamical gauge symmetries characterizing finite measurement resolution suggested
by the hierarchy of Jones inclusions [30] .

6. A long-standing conjecture has been that the zeros of Riemann Zeta are somehow relevant for
quantum TGD. Rieman zeta is however naturally replaced Dirac zeta defined by the eigenvalues
of DK(X2) and closely related to Riemann Zeta since the spectrum consists essentially for the
cyclotron energy spectra for localized solutions region of non-vanishing induced Kähler magnetic
field and hence is in good approximation integer valued up to some cutoff integer. In zero
energy ontology the Dirac zeta function associated with these eigenvalues defines ”square root”
of thermodynamics assuming that the energy levels of the system in question are expressible
as logarithms of the eigenvalues of the modified Dirac operator defining kind of fundamental
constants. Critical points correspond to approximate zeros of Dirac zeta and if Kähler function
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vanishes at criticality as it ineed should, the thermal energies at critical points are in first order
approximation proportional to zeros themselves so that a connection between quantum criticality
and approximate zeros of Dirac zeta emerges.

7. The discretization induced by the number theoretic braids reduces the world of classical worlds
to effectively finite-dimensional space and configuration space Clifford algebra reduces to a finite-
dimensional algebra. The interpretation is in terms of finite measurement resolution represented
in terms of Jones inclusion M ⊂ N of HFFs with M taking the role of complex numbers.
The finite-D quantum Clifford algebra spanned by fermionic oscillator operators is identified
as a representation for the coset space N/M describing physical states modulo measurement
resolution. In the sectors of generalized imbedding space corresponding to non-standard values
of Planck constant quantum version of Clifford algebra is in question.

Concerning the understanding of preferred extremals, the basic prediction (assuming that Kähler
gauge potential has no gauge part in M4) is that the CP2 projection of the light-like 3-surfaces is
3-dimensional for non-vacuum partons. One implication is that a very general family of cosmic string
type solutions with 2-D CP2 projection cannot correspond to preferred extremals. If ideal cosmic
strings were preferred extremals, the most general realization for the hierarchy of Planck constants
in terms of a book like structure of the imbedding space would not be possible [30] . Also massless
extremals have 2-D CP2 projection and are excluded as preferred extremals. The interpretation is that
the preferred extremals must be deformations of these extremals containing topologically condensed
CP2 type vacuum extremals representing elementary particles and that these extremals provide only
smoothed out representation of the actual physics. The general principle would be that matter is
present only if light-like 3-surfaces at which the signature of the induced metric changes (light-like
boundary components cannot be excluded but in this case gauge charges would vanish). That the
interaction with a larger Minkowskian space-time sheet creates matter could be seen as a variant of
Mach Principle.

9.3.3 Preferred extremal property as classical correlate for quantum crit-
icality, holography, and quantum classical correspondence

The Noether currents assignable to the modified Dirac equation are conserved only if the first variation
of the modified Dirac operator DK defined by Kähler action vanishes. This is equivalent with the
vanishing of the second variation of Kähler action -at least for the variations corresponding to dynam-
ical symmetries having interpretation as dynamical degrees of freedom which are below measurement
resolution and therefore effectively gauge symmetries.

The vanishing of the second variation in interior of X4(X3
l ) is what corresponds exactly to quantum

criticality so that the basic vision about quantum dynamics of quantum TGD would lead directly to a
precise identification of the preferred extremals. Something which I should have noticed for more than
decade ago! The question whether these extremals correspond to absolute minima remains however
open.

The vanishing of second variations of preferred extremals -at least for deformations representing
dynamical symmetries, suggests a generalization of catastrophe theory of Thom, where the rank of
the matrix defined by the second derivatives of potential function defines a hierarchy of criticalities
with the tip of bifurcation set of the catastrophe representing the complete vanishing of this matrix.
In the recent case this theory would be generalized to infinite-dimensional context. There are three
kind of variables now but quantum classical correspondence (holography) allows to reduce the types
of variables to two.

1. The variations of X4(X3
l ) vanishing at the intersections of X4(X3

l ) wth the light-like boundaries
of causal diamonds CD would represent behavior variables. At least the vacuum extremals of
Kähler action would represent extremals for which the second variation vanishes identically (the
”tip” of the multi-furcation set).

2. The zero modes of Kähler function would define the control variables interpreted as classical
degrees of freedom necessary in quantum measurement theory. By effective 2-dimensionality (or
holography or quantum classical correspondence) meaning that the configuration space metric
is determined by the data coming from partonic 2-surfaces X2 at intersections of X3

l with
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boundaries of CD, the interiors of 3-surfaces X3 at the boundaries of CDs in rough sense
correspond to zero modes so that there is indeed huge number of them. Also the variables
characterizing 2-surface, which cannot be complexified and thus cannot contribute to the Kähler
metric of configuration space represent zero modes. Fixing the interior of the 3-surface would
mean fixing of control variables. Extremum property would fix the 4-surface and behavior
variables if boundary conditions are fixed to sufficient degree.

3. The complex variables characterizing X2 would represent third kind of variables identified as
quantum fluctuating degrees of freedom contributing to the configuration space metric. Quantum
classical correspondence requires 1-1 correspondence between zero modes and these variables.
This would be essentially holography stating that the 2-D ”causal boundary” X2 of X3(X2)
codes for the interior. Preferred extremal property identified as criticality condition would
realize the holography by fixing the values of zero modes once X2 is known and give rise to
the holographic correspondence X2 → X3(X2). The values of behavior variables determined by
extremization would fix then the space-time surface X4(X3

l ) as a preferred extremal.

4. Clearly, the presence of zero modes would be absolutely essential element of the picture. Quan-
tum criticality, quantum classical correspondence, holography, and preferred extremal property
would all represent more or less the same thing. One must of course be very cautious since the
boundary conditions at X3

l involve normal derivative and might bring in delicacies forcing to
modify the simplest heuristic picture.

The basic question is whether number theoretic view about preferred extremals imply absolute
minimum property or criticality of the extremals.

1. The number theoretic conditions defining preferred extremals are purely algebraic and make
sense also p-adically and this is enough since p-adic variants of field equations make sense al-
though the notion of Kähler action does not make sense as integral. Despite this the identification
of the vacuum functional as exponent of Kähler function as Dirac determinant allows to define
the exponent of Kähler function as a p-adic number [20] .

2. The general objection against all extremization principles is that they do not make sense p-
adically since p-adic numbers are not well-ordered.

3. These observations do not encourage the idea about equivalence of the two approaches. On the
other hand, real and p-adic sectors are related by algebraic continuation and it could be quite
enough if the equivalence were true in real context alone.

The finite-dimensional analogy allows to compare absolute minimization and criticality with each
other.

1. Absolute minimization would select the branch of Thom’s catastrophe surface with the smallest
value of potential function for given values of control variables. In general this value would not
correspond to criticality since absolute minimization says nothing about the values of control
variables (zero modes).

2. Criticality forces the space-time surface to belong to the bifurcation set and thus fixes the values
of control variables, that is the interior of 3-surface assignable to the partonic 2-surface, and
realized holography. If the catastrophe has more than N = 3 sheets, several preferred extremals
are possible for given values of control variables fixing X3(X2) unless one assumes that absolute
minimization or some other criterion is applied in the bifurcation set. In this sense absolute
minimization might make sense in the real context and if the selection is between finite number
of alternatives is in question, it should be possible carry out the selection in number theoretically
universal manner.

9.4 General view about field equations

In this section field equations are deduced and discussed in general level. The fact that the divergence
of the energy momentum tensor, Lorentz 4-force, does not vanish in general, in principle makes possible
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the mimicry of even dissipation and of the second law. For asymptotic self organization patterns for
which dissipation is absent the Lorentz 4-force must vanish. This condition is guaranteed if Kähler
current is proportional to the instanton current in the case that CP2 projection of the space-time
sheet is smaller than four and vanishes otherwise. An attractive identification for the vanishing of
Lorentz 4-force is as a condition equivalent with the selection of preferred extremal of Kähler action.
If preferred extremals correspond to absolute minima this principle would be essentially equivalent
with the second law of thermodynamics.

9.4.1 Field equations

The requirement that Kähler action is stationary leads to the following field equations in the interior
of the four-surface

Dβ(Tαβhkα) − jαJkl∂αh
l = 0 ,

Tαβ = JναJ β
ν −

1

4
gαβJµνJµν . (9.4.1)

Here Tαβ denotes the traceless canonical energy momentum tensor associated with the Kähler action.
An equivalent form for the first equation is

TαβHk
αβ − jα(J β

α hkβ + Jkl∂αh
l) = 0 .

Hk
αβ = Dβ∂αh

k . (9.4.2)

Hk
αβ denotes the components of the second fundamental form and jα = DβJ

αβ is the gauge current
associated with the Kähler field.

On the boundaries of X4 and at wormhole throats the field equations are given by the expression

∂LK
∂nhk

= Tnβ∂βh
k − Jnα(J β

α ∂βh
k + Jkl)∂αh

k) = 0 . (9.4.3)

At wormhole throats problems are caused by the vanishing of metric determinant implying that
contravariant metric is singular.

For M4 coordinates boundary conditions are satisfied if one assumes

Tnβ = 0 (9.4.4)

stating that there is no flow of four-momentum through the boundary component or wormhole throat.
This means that there is no energy exchange between Euclidian and Minkowskian regions so that
Euclidian regions provide representations for particles as autonomous units. This is in accordance
with the general picture [36] . Note that momentum transfer with external world necessarily involves
generalized Feynman diagrams also at classical level.

For CP2 coordinates the boundary conditions are more delicate. The construction of configuration
space spinor structure [20] led to the conditions

gni = 0 , Jni = 0 . (9.4.5)

Jni = 0 does not and should not follow from this condition since contravariant metric is singular. It
seems that limiting procedure is necessary in order to see what comes out.

The condition that Kähler electric charge defined as a gauge flux is non-vanishing would require
that the quantity Jnr

√
g is finite (here r refers to the light-like coordinate of X3

l ). Also gnr
√
g4 which

is analogous to gravitational flux if n is interpreted as time coordinate could be non-vanishing. These
conditions are consistent with the above condition if one has
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Jni = 0 , gni = 0 , Jir = 0 , gir = 0 ,

Jnk = 0 k 6= r , gnk = 0 k 6= r , Jnr
√
g4 6= 0 , gnr

√
g4 6= 0 .

(9.4.6)

The interpretation of this conditions is rather transparent.

1. The first two conditions state that covariant form of the induced Kähler electric field is in direc-
tion normal to X3

l and metric separate into direct sum of normal and tangential contributions.
Fifth and sixth condition state the same in contravariant form for k 6= n.

2. Third and fourth condition state that the induced Kähler field at X3
l is purely magnetic and

that the metric of x3
l reduces to a block diagonal form. The reduction to purely magnetic field is

of obvious importance as far as the understanding of the generalized eigen modes of the modified
Dirac operator is considered [20] .

3. The last two conditions must be understood as a limit and 6= means only the possibility of
non-vanishing Kähler gauge flux or analog of gravitational flux through X3

l .

4. The vision inspired by number theoretical compactification allows to identify r and n in terms
of the light-like coordinates assignable to an integrable distribution of planes M2(x) assumed
to be assignable to M4 projection of X4(X3

l ). Later it will be found that Hamilton-Jacobi
structure assignable to the extremals indeed means the existence of this kind of distribution
meaning slicing of X4(X3

l ) both by string world sheets and dual partonic 2-surfaces as well as
by light-like 3-surfaces Y 3

l .

5. The physical analogy for the situation is the surface of an ideal conductor. It would not be
surprising that these conditions are satisfied by all induced gauge fields.

9.4.2 Topologization and light-likeness of the Kähler current as alternative
manners to guarantee vanishing of Lorentz 4-force

The general solution of 4-dimensional Einstein-Yang Mills equations in Euclidian 4-metric relies on
self-duality of the gauge field, which topologizes gauge charge. This topologization can be achieved by
a weaker condition, which can be regarded as a dynamical generalization of the Beltrami condition. An
alternative manner to achieve vanishing of the Lorentz 4-force is light-likeness of the Kähler 4-current.
This does not require topologization.

Topologization of the Kähler current for DCP2
= 3: covariant formulation

The condition states that Kähler 4-current is proportional to the instanton current whose divergence is
instanton density and vanishes when the dimension of CP2 projection is smaller than four: DCP2

< 4.
For DCP2 = 2 the instanton 4-current vanishes identically and topologization is equivalent with the
vanishing of the Kähler current.

If the simplest vision about light-like 3-surfaces as basic dynamical objects is accepted DCP2
= 2,

corresponds to a non-physical situation and only the deformations of these surfaces - most naturally
resulting by gluing of CP2 type vacuum extremals on them - can represent preferred extremals of
Kähler action. One can however speak about DCP2

= 2 phase if 4-surfaces are obtained are obtained
in this manner.

jα ≡ DβJ
αβ = ψ × jαI = ψ × εαβγδJβγAδ . (9.4.7)

Here the function ψ is an arbitrary function ψ(sk) of CP2 coordinates sk regarded as functions of
space-time coordinates. It is essential that ψ depends on the space-time coordinates through the
CP2 coordinates only. Hence the representation as an imbedded gauge field is crucial element of the
solution ansatz.

The field equations state the vanishing of the divergence of the 4-current. This is trivially true for
instanton current for DCP2

< 4. Also the contraction of ∇ψ (depending on space-time coordinates
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through CP2 coordinates only) with the instanton current is proportional to the winding number
density and therefore vanishes for DCP2 < 4.

The topologization of the Kähler current guarantees the vanishing of the Lorentz 4-force. Indeed,
using the self-duality condition for the current, the expression for the Lorentz 4-force reduces to a
term proportional to the instanton density:

jαJαβ = ψ × jαI Jαβ
= ψ × εαµνδJµνAδJαβ . (9.4.8)

Since all vector quantities appearing in the contraction with the four-dimensional permutation tensor
are proportional to the gradients of CP2 coordinates, the expression is proportional to the instanton
density, and thus winding number density, and vanishes for DCP2 < 4.

Remarkably, the topologization of the Kähler current guarantees also the vanishing of the term
jαJkl∂αs

k in the field equations for CP2 coordinates. This means that field equations reduce in both
M4

+ and CP2 degrees of freedom to

TαβHk
αβ = 0 . (9.4.9)

These equations differ from the equations of minimal surface only by the replacement of the metric
tensor with energy momentum tensor. The earlier proposal that quaternion conformal invariance in a
suitable sense might provide a general solution of the field equations could be seen as a generalization
of the ordinary conformal invariance of string models. If the topologization of the Kähler current
implying effective dimensional reduction in CP2 degrees of freedom is consistent with quaternion
conformal invariance, the quaternion conformal structures must differ for the different dimensions of
CP2 projection.

Topologization of the Kähler current for DCP2
= 3: non-covariant formulation

In order to gain a concrete understanding about what is involved it is useful to repeat these arguments
using the 3-dimensional notation. The components of the instanton 4-current read in three-dimensional
notation as

jI = E ×A+ φB , ρI = B ·A . (9.4.10)

The self duality conditions for the current can be written explicitly using 3-dimensional notation and
read

∇×B − ∂tE = j = ψjI = ψ
(
φB + E ×A

)
,

∇ · E = ρ = ψρI . (9.4.11)

For a vanishing electric field the self-duality condition for Kähler current reduces to the Beltrami
condition

∇×B = αB , α = ψφ . (9.4.12)

The vanishing of the divergence of the magnetic field implies that α is constant along the field lines
of the flow. When φ is constant and A is time independent, the condition reduces to the Beltrami
condition with α = φ = constant, which allows an explicit solution [?] .

One can check also the vanishing of the Lorentz 4-force by using 3-dimensional notation. Lorentz
3-force can be written as

ρIE + j ×B = ψB ·AE + ψ
(
E ×A+ φB

)
×B = 0 . (9.4.13)
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The fourth component of the Lorentz force reads as

j · E = ψB · E + ψ
(
E ×A+ φB

)
· E = 0 . (9.4.14)

The remaining conditions come from the induction law of Faraday and could be guaranteed by ex-
pressing E and B in terms of scalar and vector potentials.

The density of the Kähler electric charge of the vacuum is proportional to the the helicity density
of the so called helicity charge ρ = ψρI = ψB ·A. This charge is topological charge in the sense that
it does not depend on the induced metric at all. Note the presence of arbitrary function ψ of CP2

coordinates.
Further conditions on the functions appearing in the solution ansatz come from the 3 independent

field equations for CP2 coordinates. What is remarkable that the generalized self-duality condition for
the Kähler current allows to understand the general features of the solution ansatz to very high degree
without any detailed knowledge about the detailed solution. The question whether field equations
allow solutions consistent with the self duality conditions of the current will be dealt later. The
optimistic guess is that the field equations and topologization of the Kähler current relate to each
other very intimately.

Vanishing or light likeness of the Kähler current guarantees vanishing of the Lorentz
4-force for DCP2 = 2

For DCP2
= 2 one can always take two CP2 coordinates as space-time coordinates and from this

it is clear that instanton current vanishes so that topologization gives a vanishing Kähler current.
In particular, the Beltrami condition ∇ × B = αB is not consistent with the topologization of the
instanton current for DCP2

= 2.
DCP2

= 2 case can be treated in a coordinate invariant manner by using the two coordinates of
CP2 projection as space-time coordinates so that only a magnetic or electric field is present depending
on whether the gauge current is time-like or space-like. Light-likeness of the gauge current provides
a second manner to achieve the vanishing of the Lorentz force and is realized in case of massless
extremals having DCP2 = 2: this current is in the direction of propagation whereas magnetic and
electric fields are orthogonal to it so that Beltrami conditions is certainly not satisfied.

Under what conditions topologization of Kähler current yields Beltrami conditions?

Topologization of the Kähler 4-current gives rise to magnetic Beltrami fields if either of the following
conditions is satisfied.

1. The E×A term contributing besides φB term to the topological current vanishes. This requires
that E and A are parallel to each other

E = ∇Φ− ∂tA = βA (9.4.15)

This condition is analogous to the Beltrami condition. Now only the 3-space has as its coordi-
nates time coordinate and two spatial coordinates and and B is replaced with A. Since E and
B are orthogonal, this condition implies B ·A = 0 so that Kähler charge density is vanishing.

2. The vector E ×A is parallel to B.

E ×A = βB (9.4.16)

The condition is consistent with the orthogonality of E and B but implies the orthogonality of
A and B so that electric charge density vanishes
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In both cases vector potential fails to define a contact structure since B ·A vanishes (contact structures
are discussed briefly below), and there exists a global coordinate along the field lines of A and the full
contact structure is lost again. Note however that the Beltrami condition for magnetic field means
that magnetic field defines a contact structure irrespective of whether B · A vanishes or not. The
transition from the general case to Beltrami field would thus involve the replacement

(A,B)→∇× (B, j)

induced by the rotor.
One must of course take these considerations somewhat cautiously since the inner product depends

on the induced 4-metric and it might be that induced metric could allow small vacuum charge density
and make possible genuine contact structure.

Hydrodynamic analogy

The field equations of TGD are basically hydrodynamic equations stating the local conservation of the
currents associated with the isometries of the imbedding space. Therefore it is intriguing that Beltrami
fields appear also as solutions of ideal magnetohydrodynamics equations and as steady solutions of
non-viscous incompressible flow described by Euler equations [16] .

In hydrodynamics the role of the magnetic field is taken by the velocity field. TGD based models
for nuclei [35] and condensed matter [28] involve in an essential manner valence quarks having large
~ and exotic quarks giving nucleons anomalous color and weak charges creating long ranged color
and weak forces. Weak forces have a range of order atomic radius and could be responsible for the
repulsive core in van der Waals potential.

This raises the idea that the incompressible flow could occur along the field lines of the Z0 magnetic
field so that the velocity field would be proportional to the Z0 magnetic field and the Beltrami condition
for the velocity field would reduce to that for Z0 magnetic field. Thus the flow lines of hydrodynamic
flow would directly correspond to those of Z0 magnetic field. The generalized Beltrami flow based
on the topologization of the Z0 current would allow to model also the non-stationary incompressible
non-viscous hydrodynamical flows.

It would seem that one cannot describe viscous flows using flows satisfying generalized Beltrami
conditions since the vanishing of the Lorentz 4-force says that there is no local dissipation of the
classical field energy. One might claim that this is not a problem since in TGD framework viscous flow
could be seen as a practical description of a quantum jump sequence by replacing the corresponding
sequence of space-time surfaces with a single space-time surface.

One the other hand, quantum classical correspondence requires that also dissipative effects have
space-time correlates. Kähler fields, which are dissipative, and thus correspond to a non-vanishing
Lorentz 4-force, represent one candidate for correlates of this kind. If this is the case, then the fields
satisfying the generalized Beltrami condition provide space-time correlates only for the asymptotic
self organization patterns for which the viscous effects are negligible, and also the solutions of field
equations describing effects of viscosity should be possible.

One must however take this argument with a grain of salt. Dissipation, that is the transfer
of conserved quantities to degrees of freedom corresponding to shorter scales, could correspond to
a transfer of these quantities between different space-time sheets of the many-sheeted space-time.
Here the opponent could however argue that larger space-time sheets mimic the dissipative dynamics
in shorter scales and that classical currents represent ”symbolically” averaged currents in shorter
length scales, and that the local non-conservation of energy momentum tensor consistent with local
conservation of isometry currents provides a unique manner to mimic the dissipative dynamics. This
view will be developed in more detail below.

The stability of generalized Beltrami fields

The stability of generalized Beltrami fields is of high interest since unstable points of space-time sheets
are those around which macroscopic changes induced by quantum jumps are expected to be localized.

1. Contact forms and contact structures

The stability of Beltrami flows has been studied using the theory of contact forms in three-
dimensional Riemann manifolds [27] . Contact form is a one-form A (that is covariant vector field
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Aα) with the property A ∧ dA 6= 0. In the recent case the induced Kähler gauge potential Aα and
corresponding induced Kähler form Jαβ for any 3-sub-manifold of space-time surface define a contact
form so that the vector field Aα = gαβAβ is not orthogonal with the magnetic field Bα = εαβδJβγ .
This requires that magnetic field has a helical structure. Induced metric in turn defines the Riemann
structure.

If the vector potential defines a contact form, the charge density associated with the topologized
Kähler current must be non-vanishing. This can be seen as follows.

1. The requirement that the flow lines of a one-form Xµ defined by the vector field Xµ as its
dual allows to define a global coordinate x varying along the flow lines implies that there is an
integrating factor φ such that φX = dx and therefore d(φX) = 0. This implies dlog(φ) ∧X =
−dX. From this the necessary condition for the existence of the coordinate x is X ∧ dX = 0.
In the three-dimensional case this gives X · (∇×X) = 0.

2. This condition is by definition not satisfied by the vector potential defining a contact form so
that one cannot identify a global coordinate varying along the flow lines of the vector potential.
The condition B · A 6= 0 states that the charge density for the topologized Kähler current is
non-vanishing. The condition that the field lines of the magnetic field allow a global coordinate
requires B · ∇ ×B = 0. The condition is not satisfied by Beltrami fields with α 6= 0. Note that
in this case magnetic field defines a contact structure.

Contact structure requires the existence of a vector ξ satisfying the condition A(ξ) = 0. The vector
field ξ defines a plane field, which is orthogonal to the vector field Aα. Reeb field in turn is a vector
field for which A(X) = 1 and dA(X; ) = 0 hold true. The latter condition states the vanishing of the
cross product X × B so that X is parallel to the Kähler magnetic field Bα and has unit projection
in the direction of the vector field Aα. Any Beltrami field defines a Reeb field irrespective of the
Riemannian structure.

2. Stability of the Beltrami flow and contact structures

Contact structures are used in the study of the topology and stability of the hydrodynamical
flows [27] , and one might expect that the notion of contact structure and its proper generalization to
the four-dimensional context could be useful in TGD framework also. An example giving some idea
about the complexity of the flows defined by Beltrami fields is the Beltrami field in R3 possessing
closed orbits with all possible knot and link types simultaneously [27] !

Beltrami flows associated with Euler equations are known to be unstable [27] . Since the flow is
volume preserving, the stationary points of the Beltrami flow are saddle points at which also vorticity
vanishes and linear instabilities of Navier-Stokes equations can develop. From the point of view of
biology it is interesting that the flow is stabilized by vorticity which implies also helical structures.
The stationary points of the Beltrami flow correspond in TGD framework to points at which the
induced Kähler magnetic field vanishes. They can be unstable by the vacuum degeneracy of Kähler
action implying classical non-determinism. For generalized Beltrami fields velocity and vorticity (both
divergence free) are replaced by Kähler current and instanton current.

More generally, the points at which the Kähler 4-current vanishes are expected to represent poten-
tial instabilities. The instanton current is linear in Kähler field and can vanish in a gauge invariant
manner only if the induced Kähler field vanishes so that the instability would be due to the vacuum
degeneracy also now. Note that the vanishing of the Kähler current allows also the generation of
region with DCP2

= 4. The instability of the points at which induce Kähler field vanish is manifested
in quantum jumps replacing the generalized Beltrami field with a new one such that something new
is generated around unstable points. Thus the regions in which induced Kähler field becomes weak
are the most interesting ones. For example, unwinding of DNA could be initiated by an instability of
this kind.

9.4.3 How to satisfy field equations?

The topologization of the Kähler current guarantees also the vanishing of the term jαJkl∂αs
k in the

field equations for CP2 coordinates. This means that field equations reduce in both M4
+ and CP2

degrees of freedom to
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TαβHk
αβ = 0 . (9.4.17)

These equations differ from the equations of minimal surface only by the replacement of the metric
tensor with energy momentum tensor. The following approach utilizes the properties of Hamilton
Jacobi structures of M4

+ introduced in the study of massless extremals and contact structures of CP2

emerging naturally in the case of generalized Beltrami fields.

String model as a starting point

String model serves as a starting point.

1. In the case of Minkowskian minimal surfaces representing string orbit the field equations reduce
to purely algebraic conditions in light cone coordinates (u, v) since the induced metric has only
the component guv, whereas the second fundamental form has only diagonal components Hk

uu

and Hk
vv.

2. For Euclidian minimal surfaces (u, v) is replaced by complex coordinates (w,w) and field equa-
tions are satisfied because the metric has only the component gww and second fundamental form

has only components of type Hk
ww and Hk

ww. The mechanism should generalize to the recent
case.

The general form of energy momentum tensor as a guideline for the choice of coordinates

Any 3-dimensional Riemann manifold allows always a orthogonal coordinate system for which the
metric is diagonal. Any 4-dimensional Riemann manifold in turn allows a coordinate system for
which 3-metric is diagonal and the only non-diagonal components of the metric are of form gti. This
kind of coordinates might be natural also now. When E and B are orthogonal, energy momentum
tensor has the form

T =


E2+B2

2 0 0 EB

0 E2+B2

2 0 0

0 0 −E2+B2

2 0

EB 0 0 E2−B2

2

 (9.4.18)

in the tangent space basis defined by time direction and longitudinal direction E×B, and transversal
directions E and B. Note that T is traceless.

The optimistic guess would be that the directions defined by these vectors integrate to three
orthogonal coordinates of X4 and together with time coordinate define a coordinate system containing
only gti as non-diagonal components of the metric. This however requires that the fields in question
allow an integrating factor and, as already found, this requires ∇×X ·X = 0 and this is not the case
in general.

Physical intuition suggests however that X4 coordinates allow a decomposition into longitudinal
and transversal degrees freedom. This would mean the existence of a time coordinate t and longitudinal
coordinate z the plane defined by time coordinate and vector E×B such that the coordinates u = t−z
and v = t + z are light like coordinates so that the induced metric would have only the component
guv whereas gvv and guu would vanish in these coordinates. In the transversal space-time directions
complex space-time coordinate coordinate w could be introduced. Metric could have also non-diagonal
components besides the components gww and guv.

Hamilton Jacobi structures in M4
+

Hamilton Jacobi structure in M4
+ can understood as a generalized complex structure combing transver-

sal complex structure and longitudinal hyper-complex structure so that notion of holomorphy and
Kähler structure generalize.
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1. Denote by mi the linear Minkowski coordinates of M4. Let (S+, S−, E1, E2) denote local co-
ordinates of M4

+ defining a local decomposition of the tangent space M4 of M4
+ into a di-

rect, not necessarily orthogonal, sum M4 = M2 ⊕ E2 of spaces M2 and E2. This decom-
position has an interpretation in terms of the longitudinal and transversal degrees of free-
dom defined by local light-like four-velocities v± = ∇S± and polarization vectors εi = ∇Ei
assignable to light ray. Assume that E2 allows complex coordinates w = E1 + iE2 and
w = E1 − iE2. The simplest decomposition of this kind corresponds to the decomposition
(S+ ≡ u = t+ z, S− ≡ v = t− z, w = x+ iy, w = x− iy).

2. In accordance with this physical picture, S+ and S− define light-like curves which are normals
to light-like surfaces and thus satisfy the equation:

(∇S±)2 = 0 .

The gradients of S± are obviously analogous to local light like velocity vectors v = (1, v) and
ṽ = (1,−v). These equations are also obtained in geometric optics from Hamilton Jacobi
equation by replacing photon’s four-velocity with the gradient ∇S: this is consistent with the
interpretation of massless extremals as Bohr orbits of em field. S± = constant surfaces can be
interpreted as expanding light fronts. The interpretation of S± as Hamilton Jacobi functions
justifies the term Hamilton Jacobi structure.

The simplest surfaces of this kind correspond to t = z and t = −z light fronts which are planes.
They are dual to each other by hyper complex conjugation u = t− z → v = t+ z. One should
somehow generalize this conjugation operation. The simplest candidate for the conjugation
S+ → S− is as a conjugation induced by the conjugation for the arguments: S+(t − z, t +
z, x, y)→ S−(t− z, t+ z, x, y) = S+(t+ z, t− z, x,−y) so that a dual pair is mapped to a dual
pair. In transversal degrees of freedom complex conjugation would be involved.

3. The coordinates (S±, w, w) define local light cone coordinates with the line element having the
form

ds2 = g+−dS
+dS− + gwwdwdw

+ g+wdS
+dw + g+wdS

+dw

+ g−wdS
−dw + g−wdS

−dw . (9.4.19)

Conformal transformations of M4
+ leave the general form of this decomposition invariant. Also

the transformations which reduces to analytic transformations w → f(w) in transversal de-
grees of freedom and hyper-analytic transformations S+ → f(S+), S− → f(S−) in longitudinal
degrees of freedom preserve this structure.

4. The basic idea is that of generalized Kähler structure meaning that the notion of Kähler function
generalizes so that the non-vanishing components of metric are expressible as

gww = ∂w∂wK , g+− = ∂S+∂S−K ,

gw± = ∂w∂S±K , gw± = ∂w∂S±K .
(9.4.20)

for the components of the metric. The expression in terms of Kähler function is coordinate
invariant for the same reason as in case of ordinary Kähler metric. In the standard lightcone
coordinates the Kähler function is given by

K = w0w0 + uv , w0 = x+ iy , u = t− z , v = t+ z . (9.4.21)
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The Christoffel symbols satisfy the conditions

{ kw w} = 0 , { k+−} = 0 . (9.4.22)

If energy momentum tensor has only the components Tww and T+−, field equations are satisfied
in M4

+ degrees of freedom.

5. The Hamilton Jacobi structures related by these transformations can be regarded as being equiv-
alent. Since light-like 3- surface is, as the dynamical evolution defined by the light front, fixed
by the 2-surface serving as the light source, these structures should be in one-one correspon-
dence with 2-dimensional surfaces with two surfaces regarded as equivalent if they correspond
to different time=constant snapshots of the same light front, or are related by a conformal
transformation of M4

+. Obviously there should be quite large number of them. Note that the
generating two-dimensional surfaces relate also naturally to quaternion conformal invariance and
corresponding Kac Moody invariance for which deformations defined by the M4 coordinates as
functions of the light-cone coordinates of the light front evolution define Kac Moody algebra,
which thus seems to appear naturally also at the level of solutions of field equations.

The task is to find all possible local light cone coordinates defining one-parameter families 2-surfaces
defined by the condition Si = constant, i = + or = −, dual to each other and expanding with
light velocity. The basic open questions are whether the generalized Kähler function indeed makes
sense and whether the physical intuition about 2-surfaces as light sources parameterizing the set of
all possible Hamilton Jacobi structures makes sense.

Hamilton Jacobi structure means the existence of foliations of the M4 projection of X4 by 2-D
surfaces analogous to string word sheets labeled by w and the dual of this foliation defined by partonic
2-surfaces labeled by the values of Si. Also the foliation by light-like 3-surfaces Y 3

l labeled by S± with
S∓ serving as light-like coordinate for Y 3

l is implied. This is what number theoretic compactification
and M8 − H duality predict when space-time surface corresponds to hyper-quaternionic surface of
M8 [36, 86] .

Contact structure and generalized Kähler structure of CP2 projection

In the case of 3-dimensional CP2 projection it is assumed that one can introduce complex coordi-
nates (ξ, ξ) and the third coordinate s. These coordinates would correspond to a contact structure in
3-dimensional CP2 projection defining transversal symplectic and Kähler structures. In these coordi-
nates the transversal parts of the induced CP2 Kähler form and metric would contain only components
of type gww and Jww. The transversal Kähler field Jww would induce the Kähler magnetic field and
the components Jsw and Jsw the Kähler electric field.

It must be emphasized that the non-integrability of the contact structure implies that J cannot be
parallel to the tangent planes of s = constant surfaces, s cannot be parallel to neither A nor the dual
of J , and ξ cannot vary in the tangent plane defined by J . A further important conclusion is that
for the solutions with 3-dimensional CP2 projection topologized Kähler charge density is necessarily
non-vanishing by A ∧ J 6= 0 whereas for the solutions with DCP2 = 2 topologized Kähler current
vanishes.

Also the CP2 projection is assumed to possess a generalized Kähler structure in the sense that all
components of the metric except sss are derivable from a Kähler function by formulas similar to M4

+

case.

sww = ∂w∂wK , sws = ∂w∂sK , sws = ∂w∂sK . (9.4.23)

Generalized Kähler property guarantees that the vanishing of the Christoffel symbols of CP2 (rather
than those of 3-dimensional projection), which are of type { k

ξ ξ
}.

{ k
ξ ξ
} = 0 . (9.4.24)
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Here the coordinates of CP2 have been chosen in such a manner that three of them correspond to the
coordinates of the projection and fourth coordinate is constant at the projection. The upper index
k refers also to the CP2 coordinate, which is constant for the CP2 projection. If energy momentum
tensor has only components of type T+− and Tww, field equations are satisfied even when if non-
diagonal Christoffel symbols of CP2 are present. The challenge is to discover solution ansatz, which
guarantees this property of the energy momentum tensor.

A stronger variant of Kähler property would be that also sss vanishes so that the coordinate
lines defined by s would define light like curves in CP2. The topologization of the Kähler current
however implies that CP2 projection is a projection of a 3-surface with strong Kähler property. Using
(s, ξ, ξ, S−) as coordinates for the space-time surface defined by the ansatz (w = w(ξ, s), S+ = S+(s))
one finds that gss must be vanishing so that stronger variant of the Kähler property holds true for
S− = constant 3-surfaces.

The topologization condition for the Kähler current can be solved completely generally in terms
of the induced metric using (ξ, ξ, s) and some coordinate of M4

+, call it x4, as space-time coordinates.
Topologization boils down to the conditions

∂β(Jαβ
√
g) = 0 for α ∈ {ξ, ξ, s} ,

g4i 6= 0 . (9.4.25)

Thus 3-dimensional empty space Maxwell equations and the non-orthogonality of X4 coordinate lines
and the 3-surfaces defined by the lift of the CP2 projection.

A solution ansatz yielding light-like current in DCP2 = 3 case

The basic idea is that of generalized Kähler structure and solutions of field equations as maps or
deformations of canonically imbedded M4

+ respecting this structure and guaranteing that the only non-

vanishing components of the energy momentum tensor are T ξξ and T s− in the coordinates (ξ, ξ, s, S−).

1. The coordinates (w, S+) are assumed to holomorphic functions of the CP2 coordinates (s, ξ)

S+ = S+(s) , w = w(ξ, s) . (9.4.26)

Obviously S+ could be replaced with S−. The ansatz is completely symmetric with respect to
the exchange of the roles of (s, w) and (S+, ξ) since it maps longitudinal degrees of freedom to
longitudinal ones and transverse degrees of freedom to transverse ones.

2. Field equations are satisfied if the only non-vanishing components of the energy momentum

tensor are of type T ξξ and T s−. The reason is that the CP2 Christoffel symbols for projection
and projections of M4

+ Christoffel symbols are vanishing for these lower index pairs.

3. By a straightforward calculation one can verify that the only manner to achieve the required
structure of energy momentum tensor is to assume that the induced metric in the coordinates
(ξ, ξ, s, S−) has as non-vanishing components only gξξ and gs−

gss = 0 , gξs = 0 , gξs = 0 . (9.4.27)

Obviously the space-time surface must factorize into an orthogonal product of longitudinal and
transversal spaces.

4. The condition guaranteing the product structure of the metric is

sss = m+w∂sw(ξ, s)∂sS
+(s) +m+w∂sw(ξ, s)∂sS

+(s) ,
ssξ = m+w∂ξw(ξ)∂sS

+(s) ,

ssξ = m+w∂ξw(ξ)∂sS
+(s) .

(9.4.28)
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Thus the function of dynamics is to diagonalize the metric and provide it with strong Kähler
property. Obviously the CP2 projection corresponds to a light-like surface for all values of S− so
that space-time surface is foliated by light-like surfaces and the notion of generalized conformal
invariance makes sense for the entire space-time surface rather than only for its boundary or
elementary particle horizons.

5. The requirement that the Kähler current is proportional to the instanton current means that
only the j− component of the current is non-vanishing. This gives the following conditions

jξ
√
g = ∂β(Jξβ

√
g) = 0 , jξ

√
g = ∂β(Jξβ

√
g) = 0 ,

j+√g = ∂β(J+β√g) = 0 .

(9.4.29)

Since J+β vanishes, the condition

√
gj+ = ∂β(J+β√g) = 0 (9.4.30)

is identically satisfied. Therefore the number of field equations reduces to three.

The physical interpretation of the solution ansatz deserves some comments.

1. The light-like character of the Kähler current brings in mind CP2 extremals for which CP2

projection is light like. This suggests that the topological condensation of CP2 type extremal
occurs on DCP2

= 3 helical space-time sheet representing zitterbewegung. In the case of many-
body system light-likeness of the current does not require that particles are massless if particles

of opposite charges can be present. Field tensor has the form (Jξξ, Jξ−, Jξ−). Both helical
magnetic field and electric field present as is clear when one replaces the coordinates (S+, S−)
with time-like and space-like coordinate. Magnetic field dominates but the presence of electric
field means that genuine Beltrami field is not in question.

2. Since the induced metric is product metric, 3-surface is metrically product of 2-dimensional
surface X2 and line or circle and obeys product topology. If absolute minima correspond to
asymptotic self-organization patterns, the appearance of the product topology and even metric
is not so surprising. Thus the solutions can be classified by the genus of X2. An interesting
question is how closely the explanation of family replication phenomenon in terms of the topology
of the boundary component of elementary particle like 3-surface relates to this. The heaviness
and instability of particles which correspond to genera g > 2 (sphere with more than two handles)
might have simple explanation as absence of (stable) DCP2

= 3 solutions of field equations with
genus g > 2.

3. The solution ansatz need not be the most general. Kähler current is light-like and already this
is enough to reduce the field equations to the form involving only energy momentum tensor.
One might hope of finding also solution ansätze for which Kähler current is time-like or space-
like. Space-likeness of the Kähler current might be achieved if the complex coordinates (ξ, ξ)
and hyper-complex coordinates (S+, S−) change the role. For this solution ansatz electric field
would dominate. Note that the possibility that Kähler current is always light-like cannot be
excluded.

4. Suppose that CP2 projection quite generally defines a foliation of the space-time surface by
light-like 3-surfaces, as is suggested by the conformal invariance. If the induced metric has
Minkowskian signature, the fourth coordinate x4 and thus also Kähler current must be time-like
or light-like so that magnetic field dominates. Already the requirement that the metric is non-
degenerate implies gs4 6= 0 so that the metric for the ξ = constant 2-surfaces has a Minkowskian
signature. Thus space-like Kähler current does not allow the lift of the CP2 projection to be
light-like.
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Are solutions with time-like or space-like Kähler current possible in DCP2 = 3 case?

As noticed in the section about number theoretical compactification, the flow of gauge currents along
slices Y 3

l of X4(X3
l ) ”parallel” to X3

l requires only that gauge currents are parallel to Y 3
l and can thus

space-like. The following ansatz gives good hopes for obtaining solutions with space-like and perhaps
also time-like Kähler currents.

1. Assign to light-like coordinates coordinates (T,Z) by the formula T = S++S− and Z = S+−S−.
Space-time coordinates are taken to be (ξ, ξ, s) and coordinate Z. The solution ansatz with time-
like Kähler current results when the roles of T and Z are changed. It will however found that
same solution ansatz can give rise to both space-like and time-like Kähler current.

2. The solution ansatz giving rise to a space-like Kähler current is defined by the equations

T = T (Z, s) , w = w(ξ, s) . (9.4.31)

If T depends strongly on Z, the gZZ component of the induced metric becomes positive and
Kähler current time-like.

3. The components of the induced metric are

gZZ = mZZ +mTT∂ZT∂sT , gZs = mTT∂ZT∂sT ,

gss = sss +mTT∂sT∂sT , gww = sww +mww∂ξw∂ξw ,

gsξ = ssξ , gsξ = ssξ .

(9.4.32)

Topologized Kähler current has only Z-component and 3-dimensional empty space Maxwell’s
equations guarantee the topologization.

In CP2 degrees of freedom the contractions of the energy momentum tensor with Christoffel sym-
bols vanish if T ss, T ξs and T ξξ vanish as required by internal consistency. This is guaranteed if the
condition

Jξs = 0 (9.4.33)

holds true. Note however that JξZ is non-vanishing. Therefore only the components T ξξ and TZξ,

TZξ of energy momentum tensor are non-vanishing, and field equations reduce to the conditions

∂ξ(J
ξξ√g) + ∂Z(JξZ

√
g) = 0 ,

∂ξ(J
ξξ√g) + ∂Z(JξZ

√
g) = 0 . (9.4.34)

In the special case that the induced metric does not depend on z-coordinate equations reduce to
holomorphicity conditions. This is achieve if T depends linearly on Z: T = aZ.

The contractions with M4
+ Christoffel symbols come from the non-vanishing of TZξ and vanish if

the Hamilton Jacobi structure satisfies the conditions

{ kT w} = 0 , { kT w} = 0 ,

{ kZ w} = 0 , { kZ w} = 0
(9.4.35)

hold true. The conditions are equivalent with the conditions
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{ k± w} = 0 , { k± w} = 0 . (9.4.36)

These conditions possess solutions (standard light cone coordinates are the simplest example). Also
the second derivatives of T (s, Z) contribute to the second fundamental form but they do not give rise
to non-vanishing contractions with the energy momentum tensor. The cautious conclusion is that also
solutions with time-like or space-like Kähler current are possible.

DCP2
= 4 case

The preceding discussion was for DCP2 = 3 and one should generalize the discussion to DCP2 = 4
case.

1. Hamilton Jacobi structure for M4
+ is expected to be crucial also now.

2. One might hope that for DCP2 = 4 the Kähler structure of CP2 defines a foliation of CP2 by
3-dimensional contact structures. This requires that there is a coordinate varying along the
field lines of the normal vector field X defined as the dual of the three-form A ∧ dA = A ∧ J .
By the previous considerations the condition for this reads as dX = d(logφ) ∧ X and implies
X ∧ dX = 0. Using the self duality of the Kähler form one can express X as Xk = JklAl. By
a brief calculation one finds that X ∧ dX ∝ X holds true so that (somewhat disappointingly) a
foliation of CP2 by contact structures does not exist.

For DCP2
= 4 case Kähler current vanishes and this case corresponds to what I have called earlier

Maxwellian phase since empty space Maxwell’s equations are indeed satisfied.

1. Solution ansatz with a 3-dimensional M4
+ projection

The basic idea is that the complex structure of CP2 is preserved so that one can use complex
coordinates (ξ1, ξ2) for CP2 in which CP2 Christoffel symbols and energy momentum tensor have
automatically the desired properties. This is achieved the second light like coordinate, say v, is non-
dynamical so that the induced metric does not receive any contribution from the longitudinal degrees
of freedom. In this case one has

S+ = S+(ξ1, ξ2) , w = w(ξ1, ξ2) , S− = constant . (9.4.37)

The induced metric does possesses only components of type gij if the conditions

g+w = 0 , g+w = 0 . (9.4.38)

This guarantees that energy momentum tensor has only components of type T ij in coordinates
(ξ1, ξ2) and their contractions with the Christoffel symbols of CP2 vanish identically. In M4

+ degrees
of freedom one must pose the conditions

{ kw+} = 0 , { kw+} = 0 , { k++} = 0 . (9.4.39)

on Christoffel symbols. These conditions are satisfied if the the M4
+ metric does not depend on S+:

∂+mkl = 0 . (9.4.40)

This means that m−w and m−w can be non-vanishing but like m+− they cannot depend on S+.
The second derivatives of S+ appearing in the second fundamental form are also a source of trouble

unless they vanish. Hence S+ must be a linear function of the coordinates ξk:

S+ = akξ
k + akξ

k
. (9.4.41)
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Field equations are the counterparts of empty space Maxwell equations jα = 0 but with M4
+

coordinates (u,w) appearing as dynamical variables and entering only through the induced metric.
By holomorphy the field equations can be written as

∂j(J
ji√g) = 0 , ∂j(J

ji√g) = 0 , (9.4.42)

and can be interpreted as conditions stating the holomorphy of the contravariant Kähler form.
What is remarkable is that the M4

+ projection of the solution is 3-dimensional light like surface
and that the induced metric has Euclidian signature. Light front would become a concrete geometric
object with one compactified dimension rather than being a mere conceptualization. One could see
this as topological quantization for the notion of light front or of electromagnetic shock wave, or
perhaps even as the realization of the particle aspect of gauge fields at classical level.

If the latter interpretation is correct, quantum classical correspondence would be realized very
concretely. Wave and particle aspects would both be present. One could understand the interactions
of charged particles with electromagnetic fields both in terms of absorption and emission of topological
field quanta and in terms of the interaction with a classical field as particle topologically condenses
at the photonic light front.

For CP2 type extremals for which M4
+ projection is a light like curve correspond to a special case

of this solution ansatz: transversal M4
+ coordinates are constant and S+ is now arbitrary function of

CP2 coordinates. This is possible since M4
+ projection is 1-dimensional.

2. Are solutions with a 4-dimensional M4
+ projection possible?

The most natural solution ansatz is the one for which CP2 complex structure is preserved so that
energy momentum tensor has desired properties. For four-dimensional M4

+ projection this ansatz does
not seem to make promising since the contribution of the longitudinal degrees of freedom implies that
the induced metric is not anymore of desired form since the components gij = m+−(∂ξiS

+∂ξjS
− +

m+−∂ξiS
−∂ξjS

+) are non-vanishing.

1. The natural dynamical variables are still Minkowski coordinates (w,w, S+, S−) for some Hamil-
ton Jacobi structure. Since the complex structure of CP2 must be given up, CP2 coordinates
can be written as (ξ, s, r) to stress the fact that only ”one half” of the Kähler structure of CP2

is respected by the solution ansatz.

2. The solution ansatz has the same general form as in DCP2 = 3 case and must be symmetric
with respect to the exchange of M4

+ and CP2 coordinates. Transverse coordinates are mapped
to transverse ones and longitudinal coordinates to longitudinal ones:

(S+, S−) = (S+(s, r), S−(s, r)) , w = w(ξ) . (9.4.43)

This ansatz would describe ordinary Maxwell field in M4
+ since the roles of M4

+ coordinates and
CP2 coordinates are interchangeable.

It is however far from obvious whether there are any solutions with a 4-dimensional M4
+ projection.

That empty space Maxwell’s equations would allow only the topologically quantized light fronts as its
solutions would realize quantum classical correspondence very concretely.

DCP2 = 2 case

Hamilton Jacobi structure for M4
+ is assumed also for DCP2

= 2, whereas the contact structure for
CP2 is in DCP2 = 2 case replaced by the induced Kähler structure. Topologization yields vanishing
Kähler current. Light-likeness provides a second manner to achieve vanishing Lorentz force but one
cannot exclude the possibility of time- and space-like Kähler current.

1. Solutions with vanishing Kähler current
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1. String like objects, which are products X2×Y 2 ⊂M4
+×CP2 of minimal surfaces Y 2 of M4

+ with
geodesic spheres S2 of CP2 and carry vanishing gauge current. String like objects allow consid-
erable generalization from simple Cartesian products of X2×Y 2 ⊂M4×S2. Let (w,w, S+, S−)
define the Hamilton Jacobi structure for M4

+. w = constant surfaces define minimal surfaces
X2 of M4

+. Let ξ denote complex coordinate for a sub-manifold of CP2 such that the imbed-
ding to CP2 is holomorphic: (ξ1, ξ2) = (f1(ξ), f2(ξ)). The resulting surface Y 2 ⊂ CP2 is a
minimal surface and field equations reduce to the requirement that the Kähler current vanishes:

∂ξ(J
ξξ√g2) = 0. One-dimensional strings are deformed to 3-dimensional cylinders representing

magnetic flux tubes. The oscillations of string correspond to waves moving along string with
light velocity, and for more general solutions they become TGD counterparts of Alfwen waves
associated with magnetic flux tubes regarded as oscillations of magnetic flux lines behaving ef-
fectively like strings. It must be emphasized that Alfwen waves are a phenomenological notion
not really justified by the properties of Maxwell’s equations.

2. Also electret type solutions with the role of the magnetic field taken by the electric field are
possible. (ξ, ξ, u, v) would provide the natural coordinates and the solution ansatz would be of
the form

(s, r) = (s(u, v), r(u, v)) , ξ = constant , (9.4.44)

and corresponds to a vanishing Kähler current.

3. Both magnetic and electric fields are necessarily present only for the solutions carrying non-
vanishing electric charge density (proportional to B · A). Thus one can ask whether more
general solutions carrying both magnetic and electric field are possible. As a matter fact, one
must first answer the question what one really means with the magnetic field. By choosing the
coordinates of 2-dimensional CP2 projection as space-time coordinates one can define what one
means with magnetic and electric field in a coordinate invariant manner. Since the CP2 Kähler
form for the CP2 projection with DCP2

= 2 can be regarded as a pure Kähler magnetic field,
the induced Kähler field is either magnetic field or electric field.

The form of the ansatz would be

(s, r) = (s, r) (u, v, w,w) , ξ = constant . (9.4.45)

As a matter fact, CP2 coordinates depend on two properly chosen M4 coordinates only.

1. Solutions with light-like Kähler current

There are large classes of solutions of field equations with a light-like Kähler current and 2-
dimensional CP2 projection.

1. Massless extremals for which CP2 coordinates are arbitrary functions of one transversal coor-
dinate e = f(w,w) defining local polarization direction and light like coordinate u of M4

+ and
carrying in the general case a light like current. In this case the holomorphy does not play any
role.

2. The string like solutions thickened to magnetic flux tubes carrying TGD counterparts of Alfwen
waves generalize to solutions allowing also light-like Kähler current. Also now Kähler metric is
allowed to develop a component between longitudinal and transversal degrees of freedom so that
Kähler current develops a light-like component. The ansatz is of the form

ξi = f i(ξ) , w = w(ξ) , S− = s− , S+ = s+ + f(ξ, ξ) .

Only the components g+ξ and g+ξ of the induced metric receive contributions from the modi-

fication of the solution ansatz. The contravariant metric receives contributions to g−ξ and g−ξ
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whereas g+ξ and g+ξ remain zero. Since the partial derivatives ∂ξ∂+h
k and ∂ξ∂+h

k and corre-
sponding projections of Christoffel symbols vanish, field equations are satisfied. Kähler current
develops a non-vanishing component j−. Apart from the presence of the electric field, these
solutions are highly analogous to Beltrami fields.

Could DCP2
= 2→ 3 transition occur in rotating magnetic systems?

I have studied the imbeddings of simple cylindrical and helical magnetic fields in various applications
of TGD to condensed matter systems, in particular in attempts to understand the strange findings
about rotating magnetic systems [88] .

Let S2 be the homologically non-trivial geodesic sphere of CP2 with standard spherical coordinates
(U ≡ cos(θ),Φ) and let (t, ρ, φ, z) denote cylindrical coordinates for a cylindrical space-time sheet. The
simplest possible space-time surfaces X4 ⊂M4

+×S2 carrying helical Kähler magnetic field depending
on the radial cylindrical coordinate ρ, are given by:

U = U(ρ) , Φ = nφ+ kz ,
Jρφ = n∂ρU , Jρz = k∂ρU .

(9.4.46)

This helical field is not Beltrami field as one can easily find. A more general ansatz corresponding
defined by

Φ = ωt+ kz + nφ

would in cylindrical coordinates give rise to both helical magnetic field and radial electric field de-
pending on ρ only. This field can be obtained by simply replacing the vector potential with its rotated
version and provides the natural first approximation for the fields associated with rotating magnetic
systems.

A non-vanishing vacuum charge density is however generated when a constant magnetic field is put
into rotation and is implied by the condition E = v × B stating vanishing of the Lorentz force. This
condition does not follow from the induction law of Faraday although Faraday observed this effect
first. This is also clear from the fact that the sign of the charge density depends on the direction of
rotation.

The non-vanishing charge density is not consistent with the vanishing of the Kähler 4-current
and requires a 3-dimensional CP2 projection and topologization of the Kähler current. Beltrami
condition cannot hold true exactly for the rotating system. The conclusion is that rotation induces
a phase transition DCP2

= 2 → 3. This could help to understand various strange effects related to
the rotating magnetic systems [88] . For instance, the increase of the dimension of CP2 projection
could generate join along boundaries contacts and wormhole contacts leading to the transfer of charge
between different space-time sheets. The possibly resulting flow of gravitational flux to larger space-
time sheets might help to explain the claimed antigravity effects.

9.4.4 DCP2 = 3 phase allows infinite number of topological charges charac-
terizing the linking of magnetic field lines

When space-time sheet possesses a D = 3-dimensional CP2 projection, one can assign to it a non-
vanishing and conserved topological charge characterizing the linking of the magnetic field lines defined
by Chern-Simons action density A ∧ dA/4π for induced Kähler form. This charge can be seen as
classical topological invariant of the linked structure formed by magnetic field lines.

The topological charge can also vanish for DCP2 = 3 space-time sheets. In Darboux coordinates
for which Kähler gauge potential reads as A = PkdQ

k, the surfaces of this kind result if one has
Q2 = f(Q1) implying A = fdQ1 , f = P1 + P2∂Q1

Q2 , which implies the condition A ∧ dA = 0.
For these space-time sheets one can introduce Q1 as a global coordinate along field lines of A and
define the phase factor exp(i

∫
Aµdx

µ) as a wave function defined for the entire space-time sheet. This
function could be interpreted as a phase of an order order parameter of super-conductor like state and
there is a high temptation to assume that quantum coherence in this sense is lost for more general
DCP2

= 3 solutions.
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Chern-Simons action is known as helicity in electrodynamics [55] . Helicity indeed describes the
linking of magnetic flux lines as is easy to see by interpreting magnetic field as incompressible fluid flow
having A as vector potential: B = ∇×A. One can write A using the inverse of ∇× as A = (1/∇×)B.
The inverse is non-local operator expressible as

1

∇×
B(r) =

∫
dV ′

(r − r′)
|r − r′|3

×B(r′) ,

as a little calculation shows. This allows to write
∫
A ·B as∫

dV A ·B =

∫
dV dV ′B(r) ·

(
(r − r′)
|r − r′|3

×B(r′)

)
,

which is completely analogous to the Gauss formula for linking number when linked curves are replaced
by a distribution of linked curves and an average is taken.

For DCP2
= 3 field equations imply that Kähler current is proportional to the helicity current by a

factor which depends on CP2 coordinates, which implies that the current is automatically divergence
free and defines a conserved charge for D = 3-dimensional CP2 projection for which the instanton
density vanishes identically. Kähler charge is not equal to the helicity defined by the inner product of
magnetic field and vector potential but to a more general topological charge.

The number of conserved topological charges is infinite since the product of any function of CP2

coordinates with the helicity current has vanishing divergence and defines a topological charge. A very
natural function basis is provided by the scalar spherical harmonics of SU(3) defining Hamiltonians of
CP2 canonical transformations and possessing well defined color quantum numbers. These functions
define and infinite number of conserved charges which are also classical knot invariants in the sense
that they are not affected at all when the 3-surface interpreted as a map from CP2 projection to M4

+

is deformed in M4
+ degrees of freedom. Also canonical transformations induced by Hamiltonians in

irreducible representations of color group affect these invariants via Poisson bracket action when the
U(1) gauge transformation induced by the canonical transformation corresponds to a single valued
scalar function. These link invariants are additive in union whereas the quantum invariants defined
by topological quantum field theories are multiplicative.

Also non-Abelian topological charges are well-defined. One can generalize the topological current
associated with the Kähler form to a corresponding current associated with the induced electro-weak
gauge fields whereas for classical color gauge fields the Chern-Simons form vanishes identically. Also in
this case one can multiply the current by CP2 color harmonics to obtain an infinite number of invariants
in DCP2

= 3 case. The only difference is that A ∧ dA is replaced by Tr(A ∧ (dA+ 2A ∧A/3)).
There is a strong temptation to assume that these conserved charges characterize colored quantum

states of the conformally invariant quantum theory as a functional of the light-like 3-surface defining
boundary of space-time sheet or elementary particle horizon surrounding wormhole contacts. They
would be TGD analogs of the states of the topological quantum field theory defined by Chern-Simons
action as highest weight states associated with corresponding Wess-Zumino-Witten theory. These
charges could be interpreted as topological counterparts of the isometry charges of configuration
space of 3-surfaces defined by the algebra of canonical transformations of CP2.

The interpretation of these charges as contributions of light-like boundaries to configuration space
Hamiltonians would be natural. The dynamics of the induced second quantized spinor fields relates
to that of Kähler action by a super-symmetry, so that it should define super-symmetric counterparts
of these knot invariants. The anti-commutators of these super charges cannot however contribute to
configuration space Kähler metric so that topological zero modes are in question. These Hamiltonians
and their super-charge counterparts would be responsible for the topological sector of quantum TGD.

9.4.5 Preferred extremal property and the topologization/light-likeness of
Kähler current?

The basic question is under what conditions the Kähler current is either topologized or light-like so
that the Lorentz force vanishes. Does this hold for all preferred extremals of Kähler action? Or
only asymptotically as suggested by the fact that generalized Beltrami fields can be interpreted as
asymptotic self-organization patterns, when dissipation has become insignificant. Or does topologiza-
tion take place in regions of space-time surface having Minkowskian signature of the induced metric?
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And what asymptotia actually means? Do absolute minima of Kähler action correspond to preferred
extremals?

One can challenge the interpretation in terms of asymptotic self organization patterns assigned to
the Minkowskian regions of space-time surface.

1. Zero energy ontology challenges the notion of approach to asymptotia in Minkowskian sense
since the dynamics of light-like 3-surfaces is restricted inside finite volume CD ⊂ M4 since the
partonic 2-surfaces representing their ends are at the light-like boundaries of causal diamond in
a given p-adic time scale.

2. One can argue that generic non-asymptotic field configurations have DCP2
= 4, and would thus

carry a vanishing Kähler four-current if Beltrami conditions were satisfied universally rather than
only asymptotically. jα = 0 would obviously hold true also for the asymptotic configurations,
in particular those with DCP2 < 4 so that empty space Maxwell’s field equations would be
universally satisfied for asymptotic field configurations with DCP2

< 4. The weak point of this
argument is that it is 3-D light-like 3-surfaces rather than space-time surfaces which are the
basic dynamical objects so that the generic and only possible case corresponds to DCP2

= 3 for
X3
l . It is quite possible that preferred extremal property implies that DCP2 = 3 holds true in

the Minkowskian regions since these regions indeed represent empty space. Geometrically this
would mean that the CP2 projection does not change as the light-like coordinate labeling Y 3

l

varies. This conforms nicely with the notion of quantum gravitational holography.

3. The failure of the generalized Beltrami conditions would mean that Kähler field is completely
analogous to a dissipative Maxwell field for which also Lorentz force vanishes since j · E is
non-vanishing (note that isometry currents are conserved although energy momentum tensor
is not). Quantum classical correspondence states that classical space-time dynamics is by its
classical non-determinism able to mimic the non-deterministic sequence of quantum jumps at
space-time level, in particular dissipation in various length scales defined by the hierarchy of
space-time sheets. Classical fields would represent ”symbolically” the average dynamics, in
particular dissipation, in shorter length scales. For instance, vacuum 4-current would be a
symbolic representation for the average of the currents consisting of elementary particles. This
would seem to support the view that DCP2

= 4 Minkowskian regions are present. The weak point
of this argument is that there is fractal hierarchy of length scales represented by the hierarchy of
causal diamonds (CDs) and that the resulting hierarchy of generalized Feynman graphs might
be enough to represent dissipation classically.

4. One objection to the idea is that second law realized as an asymptotic vanishing of Lorentz-
Kähler force implies that all space-like 3-surfaces approaching same asymptotic state have the
same value of Kähler function assuming that the Kähler function assignable to space-like 3-
surface is same for all space-like sections of X4(X3

l ) (assuming that one can realize general
coordinate invariance also in this sense). This need not be the case. In any case, this need not be
a problem since it would mean an additional symmetry extending general coordinate invariance.
The exponent of Kähler function would be highly analogous to a partition function defined as
an exponent of Hamiltonian with Kähler coupling strength playing the role of temperature.

It seems that asymptotic self-organization pattern need not be correct interpretation for non-
dissipating regions, and the identification of light-like 3-surfaces as generalized Feynman diagrams
encourages an alternative interpretation.

1. M8 −H duality states that also the H counterparts of co-hyper-hyperquaternionic surfaces of
M8 are preferred extremals of Kähler action. CP2 type vacuum extremals represent the basic
example of these and a plausible conjecture is that the regions of space-time with Euclidian
signature of the induced metric represent this kind of regions. If this conjecture is correct,
dissipation could be assigned with regions having Euclidian signature of the induced metric.
This makes sense since dissipation has quantum description in terms of Feynman graphs and
regions of Euclidian signature indeed correspond to generalized Feynman graphs. This argument
would suggest that generalized Beltrami conditions or light-likeness hold true inside Minkowskian
regions rather than only asymptotically.
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2. One could of course play language games and argue that asymptotia is with respect to the
Euclidian time coordinate inside generalized Feynman graps and is achieved exactly when the
signature of the induced metric becomes Minkowskian. This is somewhat artificial attempt
to save the notion of asymptotic self-organization pattern since the regions outside Feynman
diagrams represent empty space providing a holographic representations for the matter at X3

l

so that the vanishing of jαFαβ is very natural.

3. What is then the correct identification of asymptotic self-organization pattern. Could correspond
to the negative energy part of the zero energy state at the upper light-like boundary δM4

− of
CD? Or in the case of phase conjugate state to the positive energy part of the state at δM4

+?
An identification consistent with the fractal structure of zero energy ontology and TGD inspired
theory of consciousness is that the entire zero energy state reached by a sequence of quantum
jumps represents asymptotic self-organization pattern represented by the asymptotic generalized
Feynman diagram or their superposition. Biological systems represent basic examples about self-
organization, and one cannot avoid the questions relating to the relationship between experience
and geometric time. A detailed discussion of these points can be found in [7] .

Absolute minimization of Kähler action was the first guess for the criterion selecting preferred
extremals. Absolute minimization in a strict sense of the word does not make sense in the p-adic
context since p-adic numbers are not well-ordered, and one cannot even define the action integral
as a p-adic number. The generalized Beltrami conditions and the boundary conditions defining the
preferred extremals are however local and purely algebraic and make sense also p-adically. If absolute
minimization reduces to these algebraic conditions, it would make sense.

9.4.6 Generalized Beltrami fields and biological systems

The following arguments support the view that generalized Beltrami fields play a key role in living
systems, and that DCP2

= 2 corresponds to ordered phase, DCP2
= 3 to spin glass phase and DCP2

= 4
to chaos, with DCP2

= 3 defining life as a phenomenon at the boundary between order and chaos. If
the criteria suggested by the number theoretic compactification are accepted, it is not clear whether
DCP2 extremals can define preferred extremals of Kähler action. For instance, cosmic strings are not
preferred extremals and the Y 3

l associated with MEs allow only covariantly constant right handed
neutrino eigenmode of DK(X2). The topological condensation of CP2 type vacuum extremals around
DCP2

= 2 type extremals is however expected to give preferred extremals and if the density of the
condensate is low enough one can still speak about DCP2 = 2 phase. A natural guess is also that
the deformation of DCP2 = 2 extremals transforms light-like gauge currents to space-like topological
currents allowed by DCP2

= 3 phase.

Why generalized Beltrami fields are important for living systems?

Chirality, complexity, and high level of organization make DCP2
= 3 generalized Beltrami fields

excellent candidates for the magnetic bodies of living systems.

1. Chirality selection is one of the basic signatures of living systems. Beltrami field is character-
ized by a chirality defined by the relative sign of the current and magnetic field, which means
parity breaking. Chirality reduces to the sign of the function ψ appearing in the topologization
condition and makes sense also for the generalized Beltrami fields.

2. Although Beltrami fields can be extremely complex, they are also extremely organized. The
reason is that the function α is constant along flux lines so that flux lines must in the case
of compact Riemann 3-manifold belong to 2-dimensional α = constant closed surfaces, in fact
two-dimensional invariant tori [16] .

For generalized Beltrami fields the function ψ is constant along the flow lines of the Kähler current.
Space-time sheets with 3-dimensional CP2 projection serve as an illustrative example. One can use
the coordinates for the CP2 projection as space-time coordinates so that one space-time coordinate
disappears totally from consideration. Hence the situation reduces to a flow in a 3-dimensional sub-
manifold of CP2. One can distinguish between three types of flow lines corresponding to space-like,
light-like and time-like topological current. The 2-dimensional ψ = constant invariant manifolds are
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sub-manifolds of CP2. Ordinary Beltrami fields are a special case of space-like flow with flow lines
belonging to the 2-dimensional invariant tori of CP2. Time-like and light-like situations are more
complex since the flow lines need not be closed so that the 2-dimensional ψ = constant surfaces can
have boundaries.

For periodic self-organization patterns flow lines are closed and ψ = constant surfaces of CP2

must be invariant tori. The dynamics of the periodic flow is obtained from that of a steady flow
by replacing one spatial coordinate with effectively periodic time coordinate. Therefore topological
notions like helix structure, linking, and knotting have a dynamical meaning at the level of CP2

projection. The periodic generalized Beltrami fields are highly organized also in the temporal domain
despite the potentiality for extreme topological complexity.

For these reasons topologically quantized generalized Beltrami fields provide an excellent candidate
for a generic model for the dynamics of biological self-organization patterns. A natural guess is that
many-sheeted magnetic and Z0 magnetic fields and their generalizations serve as templates for the
helical molecules populating living matter, and explain both chiral selection, the complex linking and
knotting of DNA and protein molecules, and even the extremely complex and self-organized dynamics
of biological systems at the molecular level.

The intricate topological structures of DNA, RNA, and protein molecules are known to have a deep
significance besides their chemical structure, and they could even define something analogous to the
genetic code. Usually the topology and geometry of bio-molecules is believed to reduce to chemistry.
TGD suggests that space-like generalized Beltrami fields serve as templates for the formation of bio-
molecules and bio-structures in general. The dynamics of bio-systems would in turn utilize the time-
like Beltrami fields as templates. There could even exist a mapping from the topology of magnetic flux
tube structures serving as templates for bio-molecules to the templates of self-organized dynamics. The
helical structures, knotting, and linking of bio-molecules would thus define a symbolic representation,
and even coding for the dynamics of the bio-system analogous to written language.

DCP2
= 3 systems as boundary between DCP2

= 2 order and DCP2
= 4 chaos

The dimension of CP2 projection is basic classifier for the asymptotic self-organization patterns.

1. DCP2
= 4 phase, dead matter, and chaos

DCP2
= 4 corresponds to the ordinary Maxwellian phase in which Kähler current and charge

density vanish and there is no topologization of Kähler current. By its maximal dimension this phase
would naturally correspond to disordered phase, ordinary ”dead matter”. If one assumes that Kähler
charge corresponds to either em charge or Z0 charge then the signature of this state of matter would
be em neutrality or Z0 neutrality.

2. DCP2 = 2 phase as ordered phase

By the low dimension of CP2 projection DCP2
= 2 phase is the least stable phase possible only

at cold space-time sheets. Kähler current is either vanishing or light-like, and Beltrami fields are not
possible. This phase is highly ordered and much like a topological quantized version of ferro-magnet.
In particular, it is possible to have a global coordinate varying along the field lines of the vector
potential also now. The magnetic and Z0 magnetic body of any system is a candidate for this kind of
system. Z0 field is indeed always present for vacuum extremals having DCP2 = 2 and the vanishing
of em field requires that that sin2(θW ) (θW is Weinberg angle) vanishes.

3. DCP2
= 3 corresponds to living matter

DCP2 = 3 corresponds to highly organized phase characterized in the case of space-like Kähler
current by complex helical structures necessarily accompanied by topologized Kähler charge density
∝ A ·B 6= 0 and Kähler current E ×A+ φB. For time like Kähler currents the helical structures are
replaced by periodic oscillation patterns for the state of the system. By the non-maximal dimension
of CP2 projection this phase must be unstable against too strong external perturbations and cannot
survive at too high temperatures. Living matter is thus excellent candidate for this phase and it might
be that the interaction of the magnetic body with living matter makes possible the transition from
DCP2 = 2 phase to the self-organizing DCP2 = 3 phase.

Living matter which is indeed populated by helical structures providing examples of space-like
Kähler current. Strongly charged lipid layers of cell membrane might provide example of time-like
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Kähler current. Cell membrane, micro-tubuli, DNA, and proteins are known to be electrically charged
and Z0 charge plays key role in TGD based model of catalysis discussed in [33] . For instance, denatur-
ing of DNA destroying its helical structure could be interpreted as a transition leading from DCP2

= 3
phase to DCP2

= 4 phase. The prediction is that the denatured phase should be electromagnetically
(or Z0) neutral.

Beltrami fields result when Kähler charge density vanishes. For these configurations magnetic
field and current density take the role of the vector potential and magnetic field as far as the contact
structure is considered. For Beltrami fields there exist a global coordinate along the field lines of the
vector potential but not along those of the magnetic field. As a consequence, the covariant consistency
condition (∂s − qeAs)Ψ = 0 frequently appearing in the physics of super conducting systems would
make sense along the flow lines of the vector potential for the order parameter of Bose-Einstein
condensate. If Beltrami phase is super-conducting, then the state of the system must change in the
transition to a more general phase. It is impossible to assign slicing of 4-surface by 3-D surfaces labeled
by a coordinate t varying along the flow lines. This means that one cannot speak about a continuous
evolution of Schrödinger amplitude with t playing the role of time coordinate. One could perhaps
say that the entire space-time sheet represents single quantum event which cannot be decomposed
to evolution. This would conform with the assignment of macroscopic and macro-temporal quantum
coherence with living matter.

The existence of these three phases brings in mind systems allowing chaotic de-magnetized phase
above critical temperature Tc, spin glass phase at the critical point, and ferromagnetic phase below
Tc. Similar analogy is provided by liquid phase, liquid crystal phase possible in the vicinity of the
critical point for liquid to solid transition, and solid phase. Perhaps one could regard DCP2

= 3 phase
and life as a boundary region between DCP2 = 2 order and DCP2 = 4 chaos. This would naturally
explain why life as it is known is possible in relatively narrow temperature interval.

Can one assign a continuous Schrödinger time evolution to light-like 3-surfaces?

Alain Connes wrote [68] about factors of various types using as an example Schrödinger equation for
various kinds of foliations of space-time to time=constant slices. If this kind of foliation does not exist,
one cannot speak about time evolution of Schrödinger equation at all. Depending on the character of
the foliation one can have factor of type I, II, or III. For instance, torus with slicing dx = ady in flat
coordinates, gives a factor of type I for rational values of a and factor of type II for irrational values
of a.

1. 3-D foliations and type III factors

Connes mentioned 3-D foliations V which give rise to type III factors. Foliation property requires
a slicing of V by a one-form v to which slices are orthogonal (this requires metric).

1. The foliation property requires that v multiplied by suitable scalar is gradient. This gives the
integrability conditions dv = w∧ v, w = −dψ/ψ = −dlog(ψ). Something proportional to log(ψ)
can be taken as a third coordinate varying along flow lines of v: the flow defines a continuous
sequence of maps of 2-dimensional slice to itself.

2. If the so called Godbillon-Vey invariant defined as the integral of dw∧w over V is non-vanishing,
factor of type III is obtained using Schrödinger amplitudes for which the flow lines of foliation
define the time evolution. The operators of the algebra in question are transversal operators
acting on Schrödinger amplitudes at each slice. Essentially Schrödinger equation in 3-D space-
time would be in question with factor of type III resulting from the exotic choice of the time
coordinate defining the slicing.

2. What happens in case of light-like 3-surfaces?

In TGD light-like 3-surfaces are natural candidates for V and it is interesting to look what happens
in this case. Light-likeness is of course a disturbing complication since orthogonality condition and
thus contravariant metric is involved with the definition of the slicing. Light-likeness is not however
involved with the basic conditions.
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1. The one-form v defined by the induced Kähler gauge potential A defining also a braiding is a
unique identification for v. If foliation exists, the braiding flow defines a continuous sequence of
maps of partonic 2-surface to itself.

2. Physically this means the possibility of a super-conducting phase with order parameter satisfying
covariant constancy equation Dψ = (d/dt − ieA)ψ = 0. This would describe a supra current
flowing along flow lines of A.

3. If the integrability fails to be true, one cannot assign Schrödinger time evolution with the flow
lines of v. One might perhaps say that 3-surface behaves like single quantum event not allowing
slicing into a continuous Schrödinger time evolution.

4. In TGD Schrödinger amplitudes are replaced by second quantized induced spinor fields. Hence
one does not face the problem whether it makes sense to speak about Schrödinger time evolution
of complex order parameter along the flow lines of a foliation or not. Also the fact that the ”time
evolution” for the modified Dirac operator corresponds to single position dependent generalized
eigenvalue identified as Higgs expectation same for all transversal modes (essentially zn labeled
by conformal weight) is crucial since it saves from the problems caused by the possible non-
existence of Schrödinger evolution.

4. Extremals of Kähler action

Some comments relating to the interpretation of the classification of the extremals of Kähler action
by the dimension of their CP2 projection are in order. It has been already found that the extremals
can be classified according to the dimension D of the CP2 projection of space-time sheet in the case
that Aa = 0 holds true.

1. For DCP2
= 2 integrability conditions for the vector potential can be satisfied for Aa = 0 so that

one has generalized Beltrami flow and one can speak about Schrödinger time evolution associated
with the flow lines of vector potential defined by covariant constancy condition Dψ = 0 makes
sense. Kähler current is vanishing or light-like. This phase is analogous to a super-conductor or
a ferromagnetic phase. For non-vanishing Aa the Beltrami flow property is lost but the analogy
with ferromagnetism makes sense still.

2. For DCP2
= 3 foliations are lost. The phase is dominated by helical structures. This phase

is analogous to spin glass phase around phase transition point from ferromagnetic to non-
magnetized phase and expected to be important in living matter systems.

3. DCP2 = 4 is analogous to a chaotic phase with vanishing Kähler current and to a phase without
magnetization. The interpretation in terms of non-quantum coherent ”dead” matter is sugges-
tive.

An interesting question is whether the ordinary 8-D imbedding space which defines one sector of
the generalized imbedding space could correspond to Aa = 0 phase. If so, then all states for this
sector would be vacua with respect to M4 quantum numbers. M4-trivial zero energy states in this
sector could be transformed to non-trivial zero energy states by a leakage to other sectors.

9.5 Basic extremals of Kähler action

The solutions of field equations can be divided to vacuum extremals and non-vacuum extremal. Vac-
uum extremals come as two basic types: CP2 type vacuum extremals for which the induced Kähler
field and Kähler action are non-vanishing and the extremals for which the induced Kähler field van-
ishes. The deformations of both extremals are expected to be of fundamental importance in TGD
universe.
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9.5.1 CP2 type vacuum extremals

These extremals correspond to various isometric imbeddings of CP2 to M4
+×CP2. One can also drill

holes to CP2. Using the coordinates of CP2 as coordinates for X4 the imbedding is given by the
formula

mk = mk(u) ,

mklṁ
kṁl = 0 , (9.5.1)

where u(sk) is an arbitrary function of CP2 coordinates. The latter condition tells that the curve
representing the projection of X4 to M4 is light like curve. One can choose the functions mi, i = 1, 2, 3
freely and solve m0 from the condition expressing light likeness so that the number of this kind of
extremals is very large.

The induced metric and Kähler field are just those of CP2 and energy momentum tensor Tαβ

vanishes identically by the self duality of the Kähler form of CP2. Also the canonical current jα =
DβJ

αβ associated with the Kähler form vanishes identically. Therefore the field equations in the
interior of X4 are satisfied. The field equations are also satisfied on the boundary components of CP2

type extremal because the non-vanishing boundary term is, besides the normal component of Kähler
electric field, also proportional to the projection operator to the normal space and vanishes identically
since the induced metric and Kähler form are identical with the metric and Kähler form of CP2.

As a special case one obtains solutions for which M4 projection is light like geodesic. The projection
of m0 = constant surfaces to CP2 is u = constant 3-sub-manifold of CP2. Geometrically these
solutions correspond to a propagation of a massless particle. In a more general case the interpretation
as an orbit of a massless particle is not the only possibility. For example, one can imagine a situation,
where the center of mass of the particle is at rest and motion occurs along a circle at say (m1,m2) plane.
The interpretation as a massive particle is natural. Amusingly, there is nice analogy with the classical
theory of Dirac electron: massive Dirac fermion moves also with the velocity of light (zitterbewegung).
The quantization of this random motion with light velocity leads to Virasoro conditions and this led
to a breakthrough in the understanding of the symmetries of TGD. Super Virasoro invariance is a
general symmetry of the configuration space geometry and quantum TGD.

The action for all extremals is same and given by the Kähler action for the imbedding of CP2.
The value of the action is given by

S = − π

8αK
. (9.5.2)

To derive this expression we have used the result that the value of Lagrangian is constant: L =
4/R4, the volume of CP2 is V (CP2) = π2R4/2 and the definition of the Kähler coupling strength
k1 = 1/16παK (by definition, πR is the length of CP2 geodesics). Four-momentum vanishes for these
extremals so that they can be regarded as vacuum extremals. The value of the action is negative
so that these vacuum extremals are indeed favored by the minimization of the Kähler action. The
the principle selecting preferred extremals of Kähler action suggests that ordinary vacuums with
vanishing Kähler action density are unstable against the generation of CP2 type extremals. There are
even reasons to expect that CP2 type extremals are for TGD what black holes are for GRT. Indeed,
the nice generalization of the area law for the entropy of black hole [60] supports this view.

In accordance with the basic ideas of TGD topologically condensed vacuum extremals should
somehow correspond to massive particles. The properties of the CP2 type vacuum extremals are in
accordance with this interpretation. Although these objects move with a velocity of light, the motion
can be transformed to a mere so that the center of mass motion is trivial. Even the generation of
the rest mass could might be understood classically as a consequence of the minimization of action.
Long range Kähler fields generate negative action for the topologically condensed vacuum extremal
(momentum zero massless particle) and Kähler field energy in turn is identifiable as the rest mass of
the topologically condensed particle.

An interesting feature of these objects is that they can be regarded as gravitational instantons [86]
. A further interesting feature of CP2 type extremals is that they carry nontrivial classical color
charges. The possible relationship of this feature to color confinement raises interesting questions.
Could one model classically the formation of the color singlets to take place through the emission of
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”colorons”: states with zero momentum but non-vanishing color? Could these peculiar states reflect
the infrared properties of the color interactions?

9.5.2 Vacuum extremals with vanishing Kähler field

Vacuum extremals correspond to 4-surfaces with vanishing Kähler field and therefore to gauge field
zero configurations of gauge field theory. These surfaces have CP2 projection, which is Lagrange
manifold. The condition expressing Lagrange manifold property is obtained in the following manner.
Kähler potential of CP2 can be expressed in terms of the canonical coordinates (Pi, Qi) for CP2 as

A =
∑
k

PkdQ
k . (9.5.3)

The conditions

Pk = ∂Qkf(Qi) , (9.5.4)

where f(Qi) is arbitrary function of its arguments, guarantee that Kähler potential is pure gauge.
It is clear that canonical transformations, which act as local U(1) gauge transformations, transform
different vacuum configurations to each other so that vacuum degeneracy is enormous. Also M4

+

diffeomorphisms act as the dynamical symmetries of the vacuum extremals. Some sub-group of these
symmetries extends to the isometry group of the configuration space in the proposed construction of
the configuration space metric. The vacuum degeneracy is still enhanced by the fact that the topology
of the four-surface is practically free.

Vacuum extremals are certainly not absolute minima of the action. For the induced metric having
Minkowski signature the generation of Kähler electric fields lowers the action. For Euclidian signature
both electric and magnetic fields tend to reduce the action. Therefore the generation of Euclidian
regions of space-time is expected to occur. CP2 type extremals, identifiable as real (as contrast to
virtual) elementary particles, can be indeed regarded as these Euclidian regions.

Particle like vacuum extremals can be classified roughly by the number of the compactified di-
mensions D having size given by CP2 length. Thus one has D = 3 for CP2 type extremals, D = 2
for string like objects, D = 1 for membranes and D = 0 for pieces of M4. As already mentioned,
the rule hvac = −D relating the vacuum weight of the Super Virasoro representation to the number
of compactified dimensions of the vacuum extremal is very suggestive. D < 3 vacuum extremals
would correspond in this picture to virtual particles, whose contribution to the generalized Feynmann
diagram is not suppressed by the exponential of Kähler action unlike that associated with the virtual
CP2 type lines.

M4 type vacuum extremals (representable as maps M4
+ → CP2 by definition) are also expected to

be natural idealizations of the space-time at long length scales obtained by smoothing out small scale
topological inhomogenities (particles) and therefore they should correspond to space-time of GRT in
a reasonable approximation.

The reason would be ”Yin-Yang principle” discussed in [12] .

1. Consider first the option for which Kähler function corresponds to an absolute minimum of
Kähler action. Vacuum functional as an exponent of Kähler function is expected to concen-
trate on those 3-surfaces for which the Kähler action is non-negative. On the other hand, the
requirement that Kähler action is absolute minimum for the space-time associated with a given
3-surface, tends to make the action negative. Therefore the vacuum functional is expected to
differ considerably from zero only for 3-surfaces with a vanishing Kähler action per volume. It
could also occur that the degeneracy of 3-surfaces with same large negative action compensates
the exponent of Kähler function.

2. If preferred extrema correspond to Kähler calibrations or their duals [86] , Yin-Yang principle
is modified to a more local principle. For Kähler calibrations (their duals) the absolute value of
action in given region is minimized (maximized). A given region with a positive (negative sign) of
action density favors Kähler electric (magnetic) fields. In long length scales the average density
of Kähler action per four-volume tends to vanish so that Kähler function of the entire universe
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is expected to be very nearly zero. This regularizes the theory automatically and implies that
average Kähler action per volume vanishes. Positive and finite values of Kähler function are of
course favored.

In both cases the vanishing of Kähler action per volume in long length scales makes vacuum extremals
excellent idealizations for the smoothed out space-time surface. Robertson-Walker cosmologies provide
a good example in this respect. As a matter fact the smoothed out space-time is not a mere fictive
concept since larger space-time sheets realize it as a essential part of the Universe.

Several absolute minima could be possible and the non-determinism of the vacuum extremals is not
expected to be reduced completely. The remaining degeneracy could be even infinite. A good example
is provided by the vacuum extremals representable as maps M4

+ → D1, where D1 is one-dimensional
curve of CP2. This degeneracy could be interpreted as a space-time correlate for the non-determinism
of quantum jumps with maximal deterministic regions representing quantum states in a sequence of
quantum jumps.

9.5.3 Cosmic strings

Cosmic strings are extremals of type X2 × S2, where X2 is minimal surface in M4
+ (analogous to the

orbit of a bosonic string) and S2 is the homologically non-trivial geodesic sphere of CP2. The action of
these extremals is positive and thus absolute minima are certainly not in question. One can however
consider the possibility that these extremals are building blocks of the absolute minimum space-time
surfaces since the principle selecting preferred extremals of the Kähler action is global rather than a
local. Cosmic strings can contain also Kähler charged matter in the form of small holes containing
elementary particle quantum numbers on their boundaries and the negative Kähler electric action for
a topologically condensed cosmic string could cancel the Kähler magnetic action.

The string tension of the cosmic strings is given by

T =
1

8αKR2
' .2210−6 1

G
, (9.5.5)

where αK ' αem has been used to get the numerical estimate. The string tension is of the same
order of magnitude as the string tension of the cosmic strings of GUTs and this leads to the model
of the galaxy formation providing a solution to the dark matter puzzle as well as to a model for large
voids as caused by the presence of a strongly Kähler charged cosmic string. Cosmic strings play also
fundamental role in the TGD inspired very early cosmology.

9.5.4 Massless extremals

Massless extremals are characterized by massless wave vector p and polarization vector ε orthogonal
to this wave vector. Using the coordinates of M4 as coordinates for X4 the solution is given as

sk = fk(u, v) ,
u = p ·m , v = ε ·m ,
p · ε = 0 , p2 = 0 .

CP2 coordinates are arbitrary functions of p ·m and ε ·m. Clearly these solutions correspond to plane
wave solutions of gauge field theories. It is important to notice however that linear super position
doesn’t hold as it holds in Maxwell phase. Gauge current is proportional to wave vector and its
divergence vanishes as a consequence. Also cylindrically symmetric solutions for which the transverse
coordinate is replaced with the radial coordinate ρ =

√
m2

1 +m2
2 are possible. In fact, v can be any

function of the coordinates m1,m2 transversal to the light like vector p.
Boundary conditions on the boundaries of the massless extremal are satisfied provided the normal

component of the energy momentum tensor vanishes. Since energy momentum tensor is of the form
Tαβ ∝ pαpβ the conditions Tnβ = 0 are satisfied if the M4 projection of the boundary is given by the
equations of form

H(p ·m, ε ·m, ε1 ·m) = 0 ,
ε · p = 0 , ε1 · p = 0 , ε · ε1 = 0 .

(9.5.6)
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where H is arbitrary function of its arguments. Recall that for M4 type extremals the boundary
conditions are also satisfied if Kähler field vanishes identically on the boundary.

The following argument suggests that there are not very many manners to satisfy boundary con-
ditions in case of M4 type extremals. The boundary conditions, when applied to M4 coordinates
imply the vanishing of the normal component of energy momentum tensor. Using coordinates, where
energy momentum tensor is diagonal, the requirement boils down to the condition that at least one
of the eigen values of Tαβ vanishes so that the determinant det(Tαβ) must vanish on the boundary:
this condition defines 3-dimensional surface in X4. In addition, the normal of this surface must have
same direction as the eigen vector associated with the vanishing eigen value: this means that three
additional conditions must be satisfied and this is in general true in single point only. The boundary
conditions in CP2 coordinates are satisfied provided that the conditions

JnβJkl∂βs
l = 0

are satisfied. The identical vanishing of the normal components of Kähler electric and magnetic fields
on the boundary of massless extremal property provides a manner to satisfy all boundary conditions
but it is not clear whether there are any other manners to satisfy them.

The characteristic feature of the massless extremals is that in general the Kähler gauge current
is non-vanishing. In ordinary Maxwell electrodynamics this is not possible. This means that these
extremals are accompanied by vacuum current, which contains in general case both weak and electro-
magnetic terms as well as color part.

A possible interpretation of the solution is as the exterior space-time to a topologically condensed
particle with vanishing mass described by massless CP2 type extremal, say photon or neutrino. In
general the surfaces in question have boundaries since the coordinates sk are are bounded: this is in
accordance with the general ideas about topological condensation. The fact that massless plane wave
is associated with CP2 type extremal combines neatly the wave and particle aspects at geometrical
level.

The fractal hierarchy of space-time sheets implies that massless extremals should interesting also in
long length scales. The presence of a light like electromagnetic vacuum current implies the generation
of coherent photons and also coherent gravitons are generated since the Einstein tensor is also non-
vanishing and light like (proportional to kαkβ). Massless extremals play an important role in the TGD
based model of bio-system as a macroscopic quantum system. The possibility of vacuum currents is
what makes possible the generation of the highly desired coherent photon states.

9.5.5 Generalization of the solution ansatz defining massless extremals
(MEs)

The solution ansatz for MEs has developed gradually to an increasingly general form and the following
formulation is the most general one achieved hitherto. Rather remarkably, it rather closely resembles
the solution ansatz for the CP2 type extremals and has direct interpretation in terms of geometric
optics. Equally remarkable is that the latest generalization based on the introduction of the local light
cone coordinates was inspired by quantum holography principle.

The solution ansatz for MEs has developed gradually to an increasingly general form and the
following formulation is the most general one achieved hitherto. Rather remarkably, it rather closely
resembles the solution ansatz for the CP2 type extremals and has direct interpretation in terms of
geometric optics. Equally remarkable is that the latest generalization based on the introduction of
the local light cone coordinates was inspired by quantum holography principle.

Local light cone coordinates

The solution involves a decomposition of M4
+ tangent space localizing the decomposition of Minkowski

space to an orthogonal direct sum M2 ⊕E2 defined by light-like wave vector and polarization vector
orthogonal to it. This decomposition defines what might be called local light cone coordinates.

1. Denote by mi the linear Minkowski coordinates of M4. Let (S+, S−, E1, E2) denote local co-
ordinates of M4

+ defining a local decomposition of the tangent space M4 of M4
+ into a direct
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orthogonal sum M4 = M2 ⊕ E2 of spaces M2 and E2. This decomposition has interpreta-
tion in terms of the longitudinal and transversal degrees of freedom defined by local light-like
four-velocities v± = ∇S± and polarization vectors εi = ∇Ei assignable to light ray.

2. With these assumptions the coordinates (S±, E
i) define local light cone coordinates with the

metric element having the form

ds2 = 2g+−dS
+dS− + g11(dE1)2 + g22(dE2)2 . (9.5.7)

If complex coordinates are used in transversal degrees of freedom one has g11 = g22.

3. This family of light cone coordinates is not the most general family since longitudinal and
transversal spaces are orthogonal. One can also consider light-cone coordinates for which one
non-diagonal component, say m1+, is non-vanishing if the solution ansatz is such that longitu-
dinal and transversal spaces are orthogonal for the induced metric.

A conformally invariant family of local light cone coordinates

The simplest solutions to the equations defining local light cone coordinates are of form S± = k ·m
giving as a special case S± = m0 ±m3. For more general solutions of from

S± = m0 ± f(m1,m2,m3) , (∇3f)2 = 1 ,

where f is an otherwise arbitrary function, this relationship reads as

S+ + S− = 2m0 .

This condition defines a natural rest frame. One can integrate f from its initial data at some two-
dimensional f = constant surface and solution describes curvilinear light rays emanating from this
surface and orthogonal to it. The flow velocity field v = ∇f is irrotational so that closed flow lines
are not possible in a connected region of space and the condition v2 = 1 excludes also closed flow line
configuration with singularity at origin such as v = 1/ρ rotational flow around axis.

One can identify E2 as a local tangent space spanned by polarization vectors and orthogonal to
the flow lines of the velocity field v = ∇f(m1,m2,m3). Since the metric tensor of any 3-dimensional
space allows always diagonalization in suitable coordinates, one can always find coordinates (E1, E2)
such that (f,E1, E2) form orthogonal coordinates for m0 = constant hyperplane. Obviously one can
select the coordinates E1 and E2 in infinitely many manners.

Closer inspection of the conditions defining local light cone coordinates

Whether the conformal transforms of the local light cone coordinates {S± = m0± f(m1,m2,m3), Ei}
define the only possible compositions M2⊕E2 with the required properties, remains an open question.
The best that one might hope is that any function S+ defining a family of light-like curves defines a
local decomposition M4 = M2 ⊕ E2 with required properties.

1. Suppose that S+ and S− define light-like vector fields which are not orthogonal (proportional to
each other). Suppose that the polarization vector fields εi = ∇Ei tangential to local E2 satisfy
the conditions εi · ∇S+ = 0. One can formally integrate the functions Ei from these condition
since the initial values of Ei are given at m0 = constant slice.

2. The solution to the condition ∇S+ · εi = 0 is determined only modulo the replacement

εi → ε̂i = εi + k∇S+ ,

where k is any function. With the choice

k = −∇E
i · ∇S−

∇S+ · ∇S−

one can satisfy also the condition ε̂i · ∇S− = 0.
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3. The requirement that also ε̂i is gradient is satisfied if the integrability condition

k = k(S+)

is satisfied: in this case ε̂i is obtained by a gauge transformation from εi. The integrability
condition can be regarded as an additional, and obviously very strong, condition for S− once
S+ and Ei are known.

4. The problem boils down to that of finding local momentum and polarization directions defined
by the functions S+, S− and E1 and E2 satisfying the orthogonality and integrability conditions

(∇S+)2 = (∇S−)2 = 0 , ∇S+ · ∇S− 6= 0 ,

∇S+ · ∇Ei = 0 , ∇Ei·∇S−
∇S+·∇S− = ki(S

+) .

The number of integrability conditions is 3+3 (all derivatives of ki except the one with respect
to S+ vanish): thus it seems that there are not much hopes of finding a solution unless some
discrete symmetry relating S+ and S− eliminates the integrability conditions altogether.

A generalization of the spatial reflection f → −f working for the separable Hamilton Jacobi function
S± = m0 ± f ansatz could relate S+ and S− to each other and trivialize the integrability conditions.
The symmetry transformation of M4

+ must perform the permutation S+ ↔ S−, preserve the light-
likeness property, map E2 to E2, and multiply the inner products between M2 and E2 vectors by a
mere conformal factor. This encourages the conjecture that all solutions are obtained by conformal
transformations from the solutions S± = m0 ± f .

General solution ansatz for MEs for given choice of local light cone coordinates

Consider now the general solution ansatz assuming that a local wave-vector-polarization decomposition
of M4

+ tangent space has been found.

1. Let E(S+, E1, E2) be an arbitrary function of its arguments: the gradient ∇E defines at each
point of E2 an S+-dependent (and thus time dependent) polarization direction orthogonal to
the direction of local wave vector defined by ∇S+. Polarization vector depends on E2 position
only.

2. Quite a general family of MEs corresponds to the solution family of the field equations having
the general form

sk = fk(S+, E) ,

where sk denotes CP2 coordinates and fk is an arbitrary function of S+ and E. The solution
represents a wave propagating with light velocity and having definite S+ dependent polarization
in the direction of ∇E. By replacing S+ with S− one obtains a dual solution. Field equations
are satisfied because energy momentum tensor and Kähler current are light-like so that all tensor
contractions involved with the field equations vanish: the orthogonality of M2 and E2 is essential
for the light-likeness of energy momentum tensor and Kähler current.

3. The simplest solutions of the form S± = m0 ±m3, (E1, E2) = (m1,m2) and correspond to a
cylindrical MEs representing waves propagating in the direction of the cylinder axis with light
velocity and having polarization which depends on point (E1, E2) and S+ (and thus time). For
these solutions four-momentum is light-like: for more general solutions this cannot be the case.
Polarization is in general case time dependent so that both linearly and circularly polarized
waves are possible. If m3 varies in a finite range of length L, then ’free’ solution represents
geometrically a cylinder of length L moving with a light velocity. Of course, ends could be also
anchored to the emitting or absorbing space-time surfaces.
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4. For the general solution the cylinder is replaced by a three-dimensional family of light like
curves and in this case the rectilinear motion of the ends of the cylinder is replaced with a
curvilinear motion with light velocity unless the ends are anchored to emitting/absorbing space-
time surfaces. The non-rotational character of the velocity flow suggests that the freely moving
particle like 3-surface defined by ME cannot remain in a infinite spatial volume. The most
general ansatz for MEs should be useful in the intermediate and nearby regions of a radiating
object whereas in the far away region radiation solution is excepted to decompose to cylindrical
ray like MEs for which the function f(m1,m2,m2) is a linear function of mi.

5. One can try to generalize the solution ansatz further by allowing the metric of M4
+ to have

components of type gi+ or gi− in the light cone coordinates used. The vanishing of T 11, T+1,
and T−− is achieved if gi± = 0 holds true for the induced metric. For sk = sk(S+, E1) ansatz
neither g2± nor g1− is affected by the imbedding so that these components of the metric must
vanish for the Hamilton Jacobi structure:

ds2 = 2g+−dS
+dS− + 2g1+dE

1dS+ + g11(dE1)2 + g22(dE2)2 . (9.5.8)

g1+ = 0 can be achieved by an additional condition

m1+ = skl∂1s
k∂+s

k . (9.5.9)

The diagonalization of the metric seems to be a general aspect of absolute minima. The absence
of metric correlations between space-time degrees of freedom for asymptotic self-organization
patterns is somewhat analogous to the minimization of non-bound entanglement in the final
state of the quantum jump.

Are the boundaries of space-time sheets quite generally light like surfaces with Hamilton
Jacobi structure?

Quantum holography principle naturally generalizes to an approximate principle expected to hold true
also in non-cosmological length and time scales.

1. The most general ansatz for topological light rays or massless extremals (MEs) inspired by
the quantum holographic thinking relies on the introduction of the notion of local light cone
coordinates S+, S−, E1, E2. The gradients ∇S+ and ∇S− define two light like directions just
like Hamilton Jacobi functions define the direction of propagation of wave in geometric optics.
The two polarization vector fields ∇E1 and ∇E2 are orthogonal to the direction of propagation
defined by either S+ or S−. Since also E1 and E2 can be chosen to be orthogonal, the metric
of M4

+ can be written locally as ds2 = g+−dS+dS− + g11dE
2
1 + g22dE

2
2 . In the earlier ansatz

S+ and S− where restricted to the variables k · m and k̃ · m, where k and k̃ correspond to
light like momentum and its mirror image and m denotes linear M4 coordinates: these MEs
describe cylindrical structures with constant direction of wave propagation expected to be most
important in regions faraway from the source of radiation.

2. Boundary conditions are satisfied if the 3-dimensional boundaries of MEs have one light like
direction (S+ or S− is constant). This means that the boundary of ME has metric dimension
d = 2 and is characterized by an infinite-dimensional super-symplectic and super-conformal
symmetries just like the boundary of the imbedding space M4

+ × CP2: The boundaries are like
moments for mini big bangs (in TGD based fractal cosmology big bang is replaced with a silent
whisper amplified to not necessarily so big bang).

3. These observations inspire the conjecture that boundary conditions for M4 like space-time sheets
fixed by the variational principle selecting preferred extremals of Kähler action quite generally
require that space-time boundaries correspond to light like 3-surfaces with metric dimension
equal to d = 2. This does not yet imply that light like surfaces of imbedding space would take
the role of the light cone boundary: these light like surface could be seen only as a special case
of causal determinants analogous to event horizons.
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[113] M. Redei and M. Stöltzner (eds). John von Neumann and the Foundations of Quantum Physics.
Vol. 8, Dordrecht. Kluwer, 2001.

[114] R. J. Rivers. Path Integral Methods in Quantum Field Theory. Cambridge University Press,
Cambridge, 1987.

[115] A. Robinson. Nonstandard Analysis. North-Holland, Amsterdam, 1974.

[116] D. Ruberman. Comment in discussion about unitary cobordisms. http://math.ucr.edu/home/
baez/quantum/ruberman.html.

[117] J. E. Roberts S. Doplicher, R. Haag. Local Observables and Particle Statistics I. Ann. Math.,
23(1974):75–119, 1971.

[118] S. Salamon. Quaternionic Kähler manifolds. Invent. Math., 67:143, 1982.

[119] H. Saleur. Zeroes of chromatic polynomials: a new approach to the Beraha conjecture using
quantum groups. Comm. Math. Phys., 132, 1990.

[120] S. Sawin. Links, Quantum Groups, and TQFT’s. http://arxiv.org/abs/q-alg/9506002,
1995.

[121] J. Schray and C. A. Manogue. Octonionic representations of Clifford algebras and triality.
http://arxiv.org/abs/hep-th/9407179, 1994.

[122] L. Schwartz. Generalisation de la Notion de Fonction, de Derivation, de Transformation de
Fourier et Applications Mathematiques et Physiques. Publications de l’Institut de Mathematique
de l’Universite de Strasbourg, Vols 9-10, Paris: Hermann, 1945.

[123] T. Smith. D4-D5-E6 Physics. http://galaxy.cau.edu/tsmith/d4d5e6hist.html, 1997.

[124] Sorkin G. Solla S. and White S. Configuration space analysis for optimization problems. Springer
Verlag, Berlin, 1986.

[125] M. Spivak. Differential Geometry I,II,III,IV. Publish or Perish, Boston, 1970.

[126] A. Stern. Matrix Logic. North-Holland, 1988.

[127] H. Sugawara. A field theory of currents. Phys. Rev., 176, 1968.

[128] J. Hanson T. Eguchi, B. Gilkey. Phys. Rep., 66:1980, 1980.

[129] M. Takesaki. Tomita’s Theory of Modular Hilbert Algebras and Its Applications, volume 128.
Springer, Berlin, 1970.

[130] N. H. V. Temperley and E. H. Lieb. Relations between the percolation and colouring problem
and other graph-theoretical problems associated with regular planar lattices:some exact results
for the percolation problem. Proc. Roy. Soc. London, 322(1971), 1971.

http://arxiv.org/pdf/physics/9710038
http://arxiv.org/pdf/physics/9710038
http://arxiv.org/abs/gr-qc/9911076
http://math.ucr.edu/home/baez/quantum/ruberman.html
http://math.ucr.edu/home/baez/quantum/ruberman.html
http://arxiv.org/abs/q-alg/9506002
http://arxiv.org/abs/hep-th/9407179
http://galaxy.cau.edu/tsmith/d4d5e6hist.html


706 MATHEMATICS

[131] R. Thom. Commentarii Math. Helvet., 28, 1954.

[132] J. von Neumann. Quantum Mechanics of Infinite Systems, 1937.

[133] Wallace. Differential Topology. W. A. Benjamin, New York, 1968.

[134] A. Wassermann. Operator algebras and conformal field theory. III. Fusion of positive energy
representations of LSU(N) using bounded operators. Invent. Math., 133(3), 1998.

[135] H. Wenzl. Hecke algebra of type An and subfactors. Invent. Math., 92, 1988.

[136] E. Witten. Quantum field theory and the Jones polynomial. Comm. Math. Phys., 121:351–399,
1989.

[137] J. Yngvason. The role of Type III Factors in Quantum Field Theory. http://arxiv.org/abs/
math-ph/0411058, 2004.

[138] E. C. Zeeman. Catastrophe Theory. Addison-Wessley Publishing Company, 1977.

http://arxiv.org/abs/math-ph/0411058
http://arxiv.org/abs/math-ph/0411058


Theoretical Physics

[1] Airy functions. http://en.wikipedia.org/wiki/Airy_function.

[2] Chern-Simons theory. http://en.wikipedia.org/wiki/ChernSimons_theory.

[3] CPT symmetry. http://en.wikipedia.org/wiki/CPT_symmetry.

[4] Global Scaling. http://www.dr-nawrocki.de/globalscalingengl2.html.

[5] Hyperdeterminant. http://en.wikipedia.org/wiki/Hyperdeterminant.

[6] K-theory (physics). http://en.wikipedia.org/wiki/K-theory_(physics).

[7] Monster group. http://en.wikipedia.org/wiki/Monster_group.

[8] Montonen Olive Duality. http://en.wikipedia.org/wiki/Montonen-Olive_duality.

[9] Not Even Wrong. http://www.math.columbia.edu/~woit/blog/.

[10] Self organization. http://en.wikipedia.org/wiki/Self_organization.

[11] Self-Organized Criticality. http://en.wikipedia.org/wiki/Self-organized_criticality.

[12] Super symmetry. http://en.wikipedia.org/wiki/SUSY.

[13] L. Alvarez-Gaume and Z. Freedman, D. Geometrical Structure and Ultraviolet Finiteness in the
Super-symmetric σ-Model. Comm. Math. Phys., 80, 1981.

[14] J. Björken and S. Drell. Relativistic Quantum Fields. Mc Graw-Hill, New York, 1965.

[15] R. Boels. On BCFW shifts of integrands and integrals. http://arxiv.org/abs/1008.3101,
2010.

[16] O. I Bogoyavlenskij. Exact unsteady solutions to the Navier-Stokes equations and viscous MHD
equations. Phys. Lett. A, pages 281–286, 2003.

[17] H. J. Borchers. On Revolutionizing QFT with Tomita’s Modular Theory. J. Math. Phys., 41:3604–
3673, 2000.

[18] M. M. Bowick and S. G. Rajeev. The holomorphic geometry of closed bosonic string theory and
Diff(S1)/S1. Nucl. Phys. B, 293, 1987.

[19] D. Chowdbury. Spin Glasses and other Frustrated Systems. World Scientific, 1986.

[20] R. E. Cutkosky. J. Math. Phys., (1):429–433, 1960.

[21] E. Witten D.-E. Diaconescu, G. Moore. E8 Gauge Theory, and a Derivation of K-Theory from
M-Theory). http://arXiv.org/abs/hep-th/0005090v3, 2005.

[22] E. Witten D. S. Freed. Anomalies in string theory with D-branes. http://arXiv.org/abs/

hep-th/9907189v2, 1999.

[23] S. de Haro Olle. Quantum Gravity and the Holographic Principle. http://arxiv.org/abs/

hep-th/0107032, 2001.

707

http://en.wikipedia.org/wiki/Airy_function
http://en.wikipedia.org/wiki/Chern–Simons_theory
http://en.wikipedia.org/wiki/CPT_symmetry
http://www.dr-nawrocki.de/globalscalingengl2.html
http://en.wikipedia.org/wiki/Hyperdeterminant
http://en.wikipedia.org/wiki/K-theory_(physics)
http://en.wikipedia.org/wiki/Monster_group
http://en.wikipedia.org/wiki/Montonen-Olive_duality
http://www.math.columbia.edu/~woit/blog/
http://en.wikipedia.org/wiki/Self_organization
http://en.wikipedia.org/wiki/Self-organized_criticality
http://en.wikipedia.org/wiki/SUSY
http://arxiv.org/abs/1008.3101
http://arXiv.org/abs/hep-th/0005090v3
http://arXiv.org/abs/hep-th/9907189v2
http://arXiv.org/abs/hep-th/9907189v2
http://arxiv.org/abs/hep-th/0107032
http://arxiv.org/abs/hep-th/0107032


708 THEORETICAL PHYSICS

[24] P. Dorey. Exact S-matrices. http://arxiv.org/abs/hep-th/9810026, 1998.

[25] Nima Arkani-Hamed et al. The All-Loop Integrand For Scattering Amplitudes in Planar N=4
SYM. http://arxiv.org/find/hep-th/1/au:+Bourjaily_J/0/1/0/all/0/1, 2010.

[26] S. Ansoldi et al. p-Branes ElectricMagnetic Duality and Stueckelberg/Higgs Mechanism: a
PathIntegral Approach. http://arxiv.org/abs/hep-th/0004044v2, 2000.

[27] J. Etnyre and G. Ghrist. Generic hydrodynamic instability of curl eigen fields. http://arxiv.

org/abs/math/0306310, 2003.

[28] H. Evslin. What doesn’t K-theory classify? http://arxiv.org/abs/hep-th/0610328, 2006.

[29] P. Svrcek F. Cachazo and E. Witten. MHV Vertices and Tree Amplitudes In Gauge Theory.
http://arxiv.org/abs/hep-th/0403047, 2004.

[30] M. H. Freedman. P/NP, and the quantum field computer. Proc. Natl. Acad. Sci. USA, 95(1),
1998.

[31] M. H. Freedman. Quantum Computation and the localization of Modular Functors. Found.
Comput. Math., 1(2), 2001.

[32] B. Schwartz J. H. Green, M. and E. Witten. Superstring Theory. Cambridge University Press,
Cambridge, 1987.

[33] M. B. Green and J. H. Schwarz. Nucl. Phys. B, 117(1985):54, 1984.

[34] R. Haag and D. Kastler. An Algebraic Approach to Quantum Field Theory. Journal of Mathe-
matical Physics, 5:, 1964.

[35] H. Haken. Information and Self-Organization. Springer Verlag, Berlin, 1988.

[36] L.P. Horwitz. Hypercomplex quantum mechanics. http://arxiv.org/abs/quant-ph/9602001,
1996.

[37] K. Huang. Quarks,Leptons & Gauge Fields. World Scientific, 1982.

[38] Y. Ito and I. Nakamura. Hilbert schemes and simple singularities. http://www.math.sci.

hokudai.ac.jp/~nakamura/ADEHilb.pdf, 1996.

[39] J. Plefka J. Drummond, J. Henn. Yangian symmetry of scattering amplitudes in N = 4 su-
per Yang-Mills theory. http://cdsweb.cern.ch/record/1162372/files/jhep052009046.pdf,
2009.

[40] N. Seiberg J. Maldacena, G. Moore. D-Brane Instantons and K-Theory Charges). http://arxiv.
org/abs/hep-th/010810, 2001.

[41] Lindström U. Rocek M. Karlhede, A. Hyper Kähler Metrics and Super Symmmetry. Comm.
Math. Phys., 108(4), 1987.

[42] A. Kitaev. Fault tolerant quantum computation by anyons. http://arxiv.org/abs/quant-ph/
9707021, 1997.

[43] A. Kitaev. Quantum computations: algorithms and error correction. Russian Math. Survey,
pages 52–61, 1997.

[44] I. R. Klebanov. TASI Lectures: Introduction to the AdS/CFT Correspondence. http://arxiv.
org/abs/hep-th/0009139, 2000.

[45] P. Ginsparg L. Dixon and J. Harvey. Beauty and the Beast; Superconformal Symmetry in a
Monster Module. http://ccdb4fs.kek.jp/cgi-bin/img_index?8806247, 1988.

[46] E. Witten L. Dolan, C. R. Nappi. Yangian Symmetry in D = 4 superconformal Yang-Mills
theory. http://arxiv.org/abs/hep-th/0401243, 2004.

http://arxiv.org/abs/hep-th/9810026
http://arxiv.org/find/hep-th/1/au:+Bourjaily_J/0/1/0/all/0/1
http://arxiv.org/abs/hep-th/0004044v2
http://arxiv.org/abs/math/0306310
http://arxiv.org/abs/math/0306310
http://arxiv.org/abs/hep-th/0610328
http://arxiv.org/abs/hep-th/0403047
http://arxiv.org/abs/quant-ph/9602001
http://www.math.sci.hokudai.ac.jp/~nakamura/ADEHilb.pdf
http://www.math.sci.hokudai.ac.jp/~nakamura/ADEHilb.pdf
http://cdsweb.cern.ch/record/1162372/files/jhep052009046.pdf
http://arxiv.org/abs/hep-th/010810
http://arxiv.org/abs/hep-th/010810
http://arxiv.org/abs/quant-ph/9707021
http://arxiv.org/abs/quant-ph/9707021
http://arxiv.org/abs/hep-th/0009139
http://arxiv.org/abs/hep-th/0009139
http://ccdb4fs.kek.jp/cgi-bin/img_index?8806247
http://arxiv.org/abs/hep-th/0401243


THEORETICAL PHYSICS 709

[47] A. Lakthakia. Beltrami Fields in Chiral Media, volume 2. World Scientific, Singapore, 1994.

[48] G. Lechner. Towards the construction of quantum field theories from a factorizing S-matrix.
http://arxiv.org/abs/hep-th/0502184, 2005.

[49] J. H. Schartz M. B. Green and E. Witten. Cambridge University Press, Cambridge, 1987.

[50] H. Larsen M. Freedman and Z. Wang. A modular functor which is universal for quantum com-
putation. Comm. Math. Phys., 1(2):605–622, 2002.

[51] H. Larsen M. Freedman and Z. Wang. A modular functor which is universal for quantum com-
putation. Comm. Math. Phys., 1(2):605–622, 2002.

[52] M. Larson Z. Wang M. Freedman, A. Kitaev. http://www.arxiv.org/quant-ph/0101025, 2001.

[53] R. Minasian M. J. Duff, J. T. Liu. Eleven-Dimensional Origin of String/String Duality: A
One-Loop Test. Nucl. Phys. B, 452:261, 1995.

[54] J. M. Maldacena. The Large N Limit of Superconformal Field Theories and Supergravity. http:
//arxiv.org/abs/hep-th/9711200, 1997.

[55] G. E. Marsh. Helicity and Electromagnetic Field Topology. World Scientific, 1995.

[56] L. Mason and D. Skinner. Dual Superconformal Invariance, Momentum Twistors and Grassman-
nians. http://arxiv.org/pdf/0909.0250v2.

[57] C. Montonen and D. Olive. Phys. Lett. B, 117, 1977.

[58] L. Motl. Monstrous symmetry of black holes. http://motls.blogspot.com/2007/05/

monstrous-symmetry-of-black-holes.html, 2007.

[59] C. Cheung J. Kaplan N. Arkani-Hamed, F. Cachazo. A duality for the S-matrix. http://arxiv.
org/abs/0907.5418, 2009.

[60] X. Wang X. Zhang N. Li, Yi-Fu Cai. CPT Violating Electrodynamics and Chern-Simons Modified
Gravity. http://arxiv.org/abs/0907.5159, 2009.

[61] N. Ohta. Introduction to branes and M-theory for relativists and cosmologists. http://arxiv.

org/abs/gr-qc/0205036, 2002.

[62] B. R. Greene P. S. Aspinwall and D. R. Morrison. Calabi-Yau Moduli Space, Mirror Manifolds,
and Space-time Topology Change in String Theory. http://arxiv.org/abs/hep-th/9309097,
1993.

[63] G. Parisi. Field Theory, Disorder and Simulations. World Scientific, 1992.

[64] S. Parke and T. Taylor. An Amplitude for N gluon Scattering. Phys. Rev., 56, 1986.

[65] R. Penrose. The Central Programme of Twistor Theory. Chaos, Solitons and Fractals, 10, 1999.

[66] R. Penrose. Fantasy, Fashion, and Faith in Theoretical Physics. http://www.princeton.edu/

WebMedia/lectures/, 2004.

[67] R. Penrose. Strings with a twist. New Scientist, 183(2458), 2004.

[68] J. Polchinski. Dirichlet-Branes and Ramond-Ramond Charges. http://arxiv.org/abs/hep-th/
9510017, 1995.

[69] B. Feng R. Britto, F. Cachazo and E. Witten. Direct Proof of Tree-level Recursion Relation in
Yang-Mills Theory. http://arxiv.org/PS_cache/hep-th/pdf/0501/0501052v2.pdf, 2005.

[70] P. Ramond. Nucl. Phys. B, 3(1971):31, 1971.

[71] J. Scherk and J. H. Schwarz. Nucl. Phys. B, 81, 1974.

http://arxiv.org/abs/hep-th/0502184
http://www.arxiv.org/quant-ph/0101025
http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/pdf/0909.0250v2
http://motls.blogspot.com/2007/05/monstrous-symmetry-of-black-holes.html
http://motls.blogspot.com/2007/05/monstrous-symmetry-of-black-holes.html
http://arxiv.org/abs/0907.5418
http://arxiv.org/abs/0907.5418
http://arxiv.org/abs/0907.5159
http://arxiv.org/abs/gr-qc/0205036
http://arxiv.org/abs/gr-qc/0205036
http://arxiv.org/abs/hep-th/9309097
http://www.princeton.edu/WebMedia/lectures/
http://www.princeton.edu/WebMedia/lectures/
http://arxiv.org/abs/hep-th/9510017
http://arxiv.org/abs/hep-th/9510017
http://arxiv.org/PS_cache/hep-th/pdf/0501/0501052v2.pdf


710 THEORETICAL PHYSICS

[72] B. Schroer. Lectures on Algebraic Quantum Field Theory and Operator Algebras. http://

arxiv.org/abs/math-ph/0102018, 2001.

[73] J. H. Schwartz. Super strings. The first 15 years of Superstring Theory. World Scientific, 1985.

[74] A. Sen. Tachyon Condensation on the Brane Antibrane system). http://arxiv.org/abs/

hep-th/9805170, 1998.

[75] L. Smolin. Scientific alternatives to the anthropic principle. http://arxiv.org/abs/hep-th/

0407213, 2004.

[76] A. Strominger and C. Vafa. Nucl. Phys. B, 99, 1996.

[77] L. Susskind. The Anthropic Landscape of String Theory. http://arxiv.org/abs/hep-th/

0302219, 2003.

[78] S. H. Shenker L. Susskind T. Banks, F. Fischler. M-Theory as a Matrix Model: A Conjecture.
Phys. Rev. D, 55:5112–5128, 1997.

[79] P. Townsend. p-Brane democracy). http://xxx.lanl.gov/abs/hep-th/9507048, 1995.

[80] E. Verlinde. Global Aspects of Electric-Magnetic Duality). http://arxiv.org/abs/hep-th/

9506011v3, 1995.

[81] E. Witten. Coadjoint orbits of the Virasoro Group. PUPT-1061 preprint, 1987.

[82] E. Witten. Perturbative Gauge Theory As a String Theory In Twistor Space. http://arxiv.

org/abs/hep-th/0312171, 2003.

[83] P. Woit. String Theory: Evaluation. http://arxiv.org/abs/hep-th/0102051, 2001.

[84] A. Zee. The Unity of Forces in the Universe. World Science Press, Singapore, 1982.

http://arxiv.org/abs/math-ph/0102018
http://arxiv.org/abs/math-ph/0102018
http://arxiv.org/abs/hep-th/9805170
http://arxiv.org/abs/hep-th/9805170
http://arxiv.org/abs/hep-th/0407213
http://arxiv.org/abs/hep-th/0407213
http://arxiv.org/abs/hep-th/0302219
http://arxiv.org/abs/hep-th/0302219
http://xxx.lanl.gov/abs/hep-th/9507048
http://arxiv.org/abs/hep-th/9506011v3
http://arxiv.org/abs/hep-th/9506011v3
http://arxiv.org/abs/hep-th/0312171
http://arxiv.org/abs/hep-th/0312171
http://arxiv.org/abs/hep-th/0102051


Particle and Nuclear Physics

[1] Are Centauros Exotic Signals of Quark-Gluon Plasma. http://www1.jinr.ru/Archive/Pepan/
v-34-3/v-34-3-3.pdf.

[2] CMS observes a potentially new and interesting effect. http://user.web.cern.ch/user/news/
2010/100921.html.

[3] Invariant Mass Distribution of Jet Pairs Produced in Association with a W boson in ppbar
Collisions at

√
s = 1.96 TeV. http://arxiv.org/abs/1104.0699.

[4] Lamb shift. http://en.wikipedia.org/wiki/Lamb_shift.

[5] Minos for Scientists. http://www-numi.fnal.gov/PublicInfo/forscientists.html.

[6] Neutrino oscillation, howpublished=http://en.wikipedia.org/wiki/neutrino_oscillation.

[7] Quark. http://en.wikipedia.org/wiki/Current_quark_mass.

[8] D0: 2.5-sigma evidence for a 325 GeV top prime quark. http://motls.blogspot.com/2011/

04/d0-3-sigma-evidence-for-325-gev-top.html, 2011.

[9] If That Were A Higgs At 200 GeV... http://www.science20.com/quantum_diaries_survivor/
if_were_higgs_200_gev, 2011.

[10] A. S. Antognini. The Lamb shift Experiment in Muonic Hydrogen. http://edoc.ub.

uni-muenchen.de/5044/1/Antognini_Aldo.pdf, 2005.

[11] S. Barshay. Mod. Phys. Lett. A, 7(20):1843, 1992.

[12] J. D. Bjorken. Acta Phys. Polonica B, 28:2773, 1997.

[13] J. M. Bonnet-Bidaud and G. Chardin. Cygnus X-3. a critical review. Phys. Rep., (6), 1988.

[14] R. S. Gidley R. S Conti C. I. Westbrook, D. W Kidley and A. Rich. Phys. Rev., 58:1328, 1987.

[15] M. Chown. Quantum Rebel. New Scientist, 2004.

[16] Alice Collaboration. Charged-particle multiplicity density at mid-rapidity in central Pb-Pb col-
lisions at

√
sNN= 2.76 TeV. http://arxiv.org/abs/1011.3916, 2010.

[17] CDF Collaboration. Study of multi-muon events produced in p-pbar collisions at sqrt(s)=1.96
TeV. http://arxiv.org/PS_cache/arxiv/pdf/0810/0810.0714v1.pdf, 2008.

[18] CDF collaboration. Evidence for a Mass Dependent Forward-Backward Asymmetry in Top Quark
Pair Production. http://arxiv.org/abs/1101.0034, 2011.

[19] CMS Collaboration. Observation of Long-Range, Near-Side Angular Correlations in Proton-
Proton Collisions at the LHC. http://cms.web.cern.ch/cms/News/2010/QCD-10-002/

QCD-10-002.pdf, 2010.

[20] D0 collaboration. Observation of the doubly strange b baryon Ω−b . http://arxiv.org/abs/

0808.4142, 2008.

711

http://www1.jinr.ru/Archive/Pepan/v-34-3/v-34-3-3.pdf
http://www1.jinr.ru/Archive/Pepan/v-34-3/v-34-3-3.pdf
http://user.web.cern.ch/user/news/2010/100921.html
http://user.web.cern.ch/user/news/2010/100921.html
http://arxiv.org/abs/1104.0699
http://en.wikipedia.org/wiki/Lamb_shift
http://www-numi.fnal.gov/PublicInfo/forscientists.html
http://en.wikipedia.org/wiki/neutrino_oscillation
http://en.wikipedia.org/wiki/Current_quark_mass
http://motls.blogspot.com/2011/04/d0-3-sigma-evidence-for-325-gev-top.html
http://motls.blogspot.com/2011/04/d0-3-sigma-evidence-for-325-gev-top.html
http://www.science20.com/quantum_diaries_survivor/if_were_higgs_200_gev
http://www.science20.com/quantum_diaries_survivor/if_were_higgs_200_gev
http://edoc.ub.uni-muenchen.de/5044/1/Antognini_Aldo.pdf
http://edoc.ub.uni-muenchen.de/5044/1/Antognini_Aldo.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0810/0810.0714v1.pdf
http://arxiv.org/abs/1101.0034
http://cms.web.cern.ch/cms/News/2010/QCD-10-002/QCD-10-002.pdf
http://cms.web.cern.ch/cms/News/2010/QCD-10-002/QCD-10-002.pdf
http://arxiv.org/abs/0808.4142
http://arxiv.org/abs/0808.4142


712 PARTICLE AND NUCLEAR PHYSICS

[21] D0 collaboration. Study of the dijet invariant mass distribution in pp→W (→ lν)+jj final states
at
√
s = 1.96 TeV. http://www-d0.fnal.gov/Run2Physics/WWW/results/final/HIGGS/H11B,

2011.

[22] LSND Collaboration. Evidence for νµ − νe oscillations from LSND. http://arxiv.org/

absnucl-ex/9709006, 1997.

[23] Pamir Collaboration. In Proc. 16:th Intern. Cosmic Ray Conf., volume 7, page 279, 1979.

[24] A. E. Nelson D. B. Kaplan and N. Weiner. Neutrino Oscillations as a Probe of Dark Energy.
http://arxiv.org/abs/hep-ph/0401099, 2004.

[25] R. Van de Water. Updated Anti-neutrino Oscillation Results from MiniBooNE.
http://indico.cern.ch/getFile.py/access?contribId=208&sessionId=3&resId=

0&materialId=slides&confId=73981, 2010.

[26] A. D. Dolgov and I. Z. Rothstein. Phys. Rev. Lett., 71(4), 1993.

[27] T. Dorigo. Rumsfeld hadrons. http://dorigo.wordpress.com/2007/06/20/

rumsfeld-hadrons/, 2007.

[28] T. Dorigo. The top quark mass measured from its production rate. http://dorigo.wordpress.
com/2007/06/26/a-particle-mass-from-its-production-rate/#more-910, 2007.

[29] T. Dorigo. Top quark mass measured with neutrino phi weighting. http://dorigo.wordpress.
com/2008/12/08/top-quark-mass-measured-with-neutrino-phi-weighting/, 2008.

[30] T. Dorigo. Nitpicking Ωb discovery:part I. http://www.scientificblogging.com/quantum_

diaries_survivor/nitpicking_omega_b_discovery, 2009.

[31] U. Egede. A theoretical limit on Higgs mass. http://www.hep.lu.se/atlas//thesis/egede/

thesis-node20.html, 1998.

[32] A.T. Goshaw et al. Phys. Rev., 43, 1979.

[33] B. B. Back et al. Phys. Rev. Lett., 89(22), November 2002.

[34] B. R. Barber et al. Phys. Rev., 72(9):1380, 1994.

[35] C. Athanassopoulos et al. Evidence for Neutrino Oscillations from Muon Decay at Rest. http:

//arxiv.org/abs/nucl-ex/9605001, 1996.

[36] D. T. H. Davies et al. Precise Charm to Strange Mass Ratio and Light Quark Masses from Full
Lattice QCD. Phys. Rev., 104, 2010.

[37] Decamp et al. The number of neutrino species. Aleph Collaboration,CERN-EP/89-141, 1989.

[38] J. A. Chinellato et al. In Proton-Antiproton Collider Physics, 1981, New York, 1981. Madison,
Wis.

[39] L. Borodovsky et al. Phys. Rev. Lett., 68:274, 1992.

[40] M. Derrick et al. Phys. Lett B, 315:481, 1993.

[41] P.V. Chliapnikov et al. Phys. Lett. B, 141, 1984.

[42] R. Pohl et al. The size of proton. Nature, 466, 2010.

[43] S. Ambrosanio et al. Supersymmetric analysis and predictions based on the CDF eeγγ + /ET
event. http://arxiv.org/abs/hep-ph/9602239, 1996.

[44] SNO: Q. R Ahmad et al. Phys. Rev. Lett., 89:11301, 2002.

[45] T. Akesson et al. Phys. Lett. B, 463:36, 1987.

[46] T. K. Gaiser et al. Cosmic ray composition around 1018 eV . Phys. Rev. D, (5), 1993.

http://www-d0.fnal.gov/Run2Physics/WWW/results/final/HIGGS/H11B
http://arxiv.org/absnucl-ex/9709006
http://arxiv.org/absnucl-ex/9709006
http://arxiv.org/abs/hep-ph/0401099
http://indico.cern.ch/getFile.py/access?contribId=208&sessionId=3&resId=0&materialId=slides&confId=73981
http://indico.cern.ch/getFile.py/access?contribId=208&sessionId=3&resId=0&materialId=slides&confId=73981
http://dorigo.wordpress.com/2007/06/20/rumsfeld-hadrons/
http://dorigo.wordpress.com/2007/06/20/rumsfeld-hadrons/
http://dorigo.wordpress.com/2007/06/26/a-particle-mass-from-its-production-rate/#more-910
http://dorigo.wordpress.com/2007/06/26/a-particle-mass-from-its-production-rate/#more-910
http://dorigo.wordpress.com/2008/12/08/top-quark-mass-measured-with-neutrino-phi-weighting/
http://dorigo.wordpress.com/2008/12/08/top-quark-mass-measured-with-neutrino-phi-weighting/
http://www.scientificblogging.com/quantum_diaries_survivor/nitpicking_omega_b_discovery
http://www.scientificblogging.com/quantum_diaries_survivor/nitpicking_omega_b_discovery
http://www.hep.lu.se/atlas//thesis/egede/thesis-node20.html
http://www.hep.lu.se/atlas//thesis/egede/thesis-node20.html
http://arxiv.org/abs/nucl-ex/9605001
http://arxiv.org/abs/nucl-ex/9605001
http://arxiv.org/abs/hep-ph/9602239


PARTICLE AND NUCLEAR PHYSICS 713

[47] Y. Fukuda et al. Phys. Lett. B, 335:237, 1994.

[48] Y.Takeuchi et al. Measurement of the Forward Backward Asymmetry in Top Pair Production
in the Dilepton Decay Channel using 5.1 fb−1. http://www-cdf.fnal.gov/physics/new/top/

2011/DilAfb/, 2011.

[49] K. Eguchi et al (KamLAND). Phys. Rev. Lett., 90:21802, 2003.

[50] J. Flowers. Quantum electrodynamics: A chink in the armour? Nature, 466, 2010.

[51] C. M. G. Lattes. Y. Fujimoto and S. Hasegava. Phys. Rep., 65(3), 1980.

[52] K. Greisen. Phys. Rev., 16, 1966.

[53] R. J. Wilkes (K2K). http://arxiv.org/abs/hep-ex/0212035, 2002.

[54] G. Karagiorgi. Towards Solution of MiniBoone-LSND anomalies. http://indico.cern.ch/

contributionDisplay.py?contribId=209&sessionId=3&confId=73981, 2010.

[55] B. Armbruster et al KARMEN Collaboration. Phys. Lett. B, 348, 1995.

[56] C. L. Kervran. Biological transmutations, and their applications in chemistry, physics, biology,
ecology, medicine, nutrition, agriculture, geology. Swan House Publishing Co., 1972.

[57] J. Linsley and A. A. Watson. Phys. Rev., 436, 1981.

[58] W. C. Louis. In Proceedings of the XVI Conference on Neutrino Physics and Astrophysics. Eilat,
Israel, 1994.

[59] T. Ludham and L. McLerran. What Have We Learned From the Relativistic Heavy Ion Collider?
Physics Today, October 2003.

[60] J. H. MacGibbon and R. H. Brandenberger. Gamma-ray signatures for ordinary cosmic strings.
Phys. Rev. D, (6):2883, 1993.

[61] K. McAlpine. Incredible shrinking proton raises eyebrows. http://www.newscientist.com/

article/dn19141-incredible-shrinking-proton-raises-eyebrows.html, 2010.

[62] L. Motl. CMS SUSY group working hard. http://motls.blogspot.com/2010/10/

cms-susy-group-working-hard.html, 2010.

[63] L. Motl. LHC probably sees new shocking physics. http://motls.blogspot.com/2010/09/

lhc-probably-sees-new-shocking-physics.html, 2010.

[64] W. A. Rodriguez Jr. P. Ammiraju, E. Recami. Chirons, Geminions, Centauros, Decays into
Pions:a Phenomenological and Theoretical Analysis. Il Nuovo Cimento, 78(2):173, 1983.

[65] P. Sommers P. Sokolsky and B. R. Dawson. Extremely High Energy Cosmic Rays. Phys. Rep.,
217(5), 1992.

[66] Seongwan Park. Search for New Phenomena in CDF-I: Z, W, and leptoquarks. http://lss.

fnal.gov/archive/1995/conf/Conf-95-155-E.pdf, 1995.

[67] Q. Z. Qian and G. M. Fuller. Phys. Rev. D, 51:1479, 1995.

[68] E. S. Reich. Black hole like phenomenon created by collider. New Scientist, 19(2491), 2005.

[69] E. Samuel. Ghost in the Atom. New Scientist, (2366):30, October 2002.

[70] T. Smith. Truth Quark, Higgs, and Vacua. http://www.innerx.net/personal/tsmith/

TQvacua.html, 2003.

[71] M. B. Smy (Super-Kamiokande). Nucl. Phys. Proc. Suppl., 118:25, 2003.

[72] P. Tompkins and C. Bird. The secret life of plants. Harper & Row, New York, 1973.

http://www-cdf.fnal.gov/physics/new/top/2011/DilAfb/
http://www-cdf.fnal.gov/physics/new/top/2011/DilAfb/
http://arxiv.org/abs/hep-ex/0212035
http://indico.cern.ch/contributionDisplay.py?contribId=209&sessionId=3&confId=73981
http://indico.cern.ch/contributionDisplay.py?contribId=209&sessionId=3&confId=73981
http://www.newscientist.com/article/dn19141-incredible-shrinking-proton-raises-eyebrows.html
http://www.newscientist.com/article/dn19141-incredible-shrinking-proton-raises-eyebrows.html
http://motls.blogspot.com/2010/10/cms-susy-group-working-hard.html
http://motls.blogspot.com/2010/10/cms-susy-group-working-hard.html
http://motls.blogspot.com/2010/09/lhc-probably-sees-new-shocking-physics.html
http://motls.blogspot.com/2010/09/lhc-probably-sees-new-shocking-physics.html
http://lss.fnal.gov/archive/1995/conf/Conf-95-155-E.pdf
http://lss.fnal.gov/archive/1995/conf/Conf-95-155-E.pdf
http://www.innerx.net/personal/tsmith/TQvacua.html
http://www.innerx.net/personal/tsmith/TQvacua.html


714 PARTICLE AND NUCLEAR PHYSICS

[73] S. Sarkar V. Barger, R. J. N. Phillips. Phys. Lett. B, 352:365–371, 1995.

[74] H. Waschmuth. Results from e+e− collisions at 130, 136 and 140 GeV center of mass energies in
the ALEPH Experiment. http://alephwww.cern.ch/ALPUB/pub/pub_96.html, 1996.

[75] J. Wdowczyk. In Proc. 9th Int. Conf. Cosmic Rays, volume 2, page 691, 1965.

[76] Peter Woit. A new long-lived particle by CDF experiment. http://www.math.columbia.edu/

~woit/wordpress/?p=1045, 2008.

[77] J. Wdowczyk A. W. Wolfendale X. Chi, C. Dahanayake. Cosmic rays and cosmic strings. Gamma,
1:129–131, 1993.

[78] G. Valencia X.-G. He, J. Tandean. Has HyperCP Observed a Light Higgs Boson? Phys. Rev. D,
74, 2007.

http://alephwww.cern.ch/ALPUB/pub/pub_96.html
http://www.math.columbia.edu/~woit/wordpress/?p=1045
http://www.math.columbia.edu/~woit/wordpress/?p=1045


Condensed Matter Physics

[1] Burning salt water. http://www.youtube.com/watch?v=aGg0ATfoBgo.

[2] Fractional quantum Hall Effect. http://en.wikipedia.org/wiki/Fractional_quantum_Hall_
effect.

[3] Phase conjugation. http://www.usc.edu/dept/ee/People/Faculty/feinberg.html.

[4] Viscosity. http://en.wikipedia.org/wiki/Viscosity.

[5] J. K. Borchardt. The chemical formula H2O - a misnomer. The Alchemist, August 2003.

[6] M. Chaplin. Water Structure and Behavior. http://www.lsbu.ac.uk/water/index.html, 2005.

[7] M. Chaplin. Water as a Network of Icosahedral Water Clusters. http://www.lsbu.ac.uk/

water/clusters.html, 2006.

[8] M. Chown. Quantum Rebel. New Scientist, (2457), 2004.

[9] R. A. Cowley. Neutron-scattering experiments and quantum entanglement. Physica B, 350:243–
245, 2004.

[10] B. R. Barber et al. Phys. Rev., 72(9):1380, 1994.

[11] C. Cao et al. Universal Quantum Viscosity in a Unitary Fermi Gas. http://www.sciencemag.

org/content/early/2010/12/08/science.1195219, 2010.

[12] D. J. P. Morris et al. Dirac Strings and Magnetic Monopoles in Spin Ice Dy2Ti2O7. Physics
World, 326(5951):411–414, 2009.

[13] J. B. Miller et al. Fractional Quantum Hall effect in a quantum point contact at filling fraction
5/2. http://arxiv.org/abs/cond-mat/0703161v2, 2007.

[14] P. K. Kotvun et al. Viscosity in Strongly Interacting Quantum Field Theories from Black Hole
Physics. http://arxiv.org/abs/hep-th/0405231, 2010.

[15] R. Mills et al. Spectroscopic and NMR identification of novel hybrid ions in fractional quantum
energy states formed by an exothermic reaction of atomic hydrogen with certain catalysts. http:
//www.blacklightpower.com/techpapers.html, 2003.

[16] S. M. Girvin. Quantum Hall Effect, Novel Excitations and Broken Symmetries. http://arxiv.
org/abs/cond-mat/9907002, 1999.

[17] S. L. Glashow. Can Science Save the World? http://www.hypothesis.it/nobel/nobel99/

eng/pro/pro_2.htm, 1999.

[18] J.K. Jain. Phys. Rev., 63, 1989.

[19] Novoselov et al K. S. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438,
November 2005.

[20] P. Kanarev and T. Mizuno. Cold fusion by plasma electrolysis of water. http://www.guns.

connect.fi/innoplaza/energy/story/Kanarev/codlfusion/, 2002.

715

http://www.youtube.com/watch?v=aGg0ATfoBgo
http://en.wikipedia.org/wiki/Fractional_quantum_Hall_effect
http://en.wikipedia.org/wiki/Fractional_quantum_Hall_effect
http://www.usc.edu/dept/ee/People/Faculty/feinberg.html
http://en.wikipedia.org/wiki/Viscosity
http://www.lsbu.ac.uk/water/index.html
http://www.lsbu.ac.uk/water/clusters.html
http://www.lsbu.ac.uk/water/clusters.html
http://www.sciencemag.org/content/early/2010/12/08/science.1195219
http://www.sciencemag.org/content/early/2010/12/08/science.1195219
http://arxiv.org/abs/cond-mat/0703161v2
http://arxiv.org/abs/hep-th/0405231
http://www.blacklightpower.com/techpapers.html
http://www.blacklightpower.com/techpapers.html
http://arxiv.org/abs/cond-mat/9907002
http://arxiv.org/abs/cond-mat/9907002
http://www.hypothesis.it/nobel/nobel99/eng/pro/pro_2.htm
http://www.hypothesis.it/nobel/nobel99/eng/pro/pro_2.htm
http://www.guns.connect.fi/innoplaza/energy/story/Kanarev/codlfusion/
http://www.guns.connect.fi/innoplaza/energy/story/Kanarev/codlfusion/


716 CONDENSED MATTER PHYSICS

[21] R. B. Laughlin. Phys. Rev., 50, 1990.

[22] V. Umansky Ady Stern M. Dolev, M. Heiblum and D. Mahalu. Observation of a quarter of an
electron charge at the = 5/2 quantum Hall state. Nature, page 829, 2008.

[23] R. Mackenzie and F. Wilczek. Rev. Mod. Phys. A, 3:2827, 1988.

[24] D. Monroe. Know Your Anyons. New Scientist, (2676), 2008.

[25] G. Moore and N. Read. Non-Abelians in the fractional quantum Hall effect. Nucl. Phys. B, pages
362–396, 1991.

[26] C. Nayak and F. Wilczek. 2n-quasihole states realize 2n−1-dimensional spinor braiding statistics
in paired quantum Hall states. Nucl. Phys. B, 479, 1996.

[27] D. M. Pepper. Nonlinear Optical Phase Conjugation. Optical Engineering, 21(2), March 1982.

[28] Y. Danon R. Moreh, R. C. Block and M. Neumann. Search for anomalous scattering of keV
neutrons from H2O-D2O mixtures. Phys. Rev., 94, 2005.

[29] S. A. Kivelson V. J. Emery and J. M. Tranquada. Stripe phases in high-temperature supercon-
ductors. Perspective, 96(16), August 1999.

[30] J. Zaanen. Superconductivity: Quantum Stripe Search. Nature, April 2006.



Biology

[1] Brief introduction into WaveGenetics. Its scope and opporturnities. http://www.wavegenetics.
jino-net.ru.

[2] Dinosaurs. http://en.wikipedia.org/wiki/Dinosaur.

[3] High energy phosphate. http://en.wikipedia.org/wiki/High-energy_phosphate.

[4] S. Comorosan. On a possible biological spectroscopy. Bull. of Math. Biol., page 419, 1975.

[5] F. A. Popp et al. Emission of Visible and Ultraviolet Radiation by Active Biological Systems.
Collective Phenomena, 3, 1981.

[6] P. Gariaev et al. The DNA-wave biocomputer, volume 10. CHAOS, 2001.

[7] P. P. Gariaev et al. The spectroscopy of bio-photons in non-local genetic regulation. Journal of
Non-Locality and Remote Mental Interactions, (3), 2002.

[8] S. J. Gould. Wonderful Life. Penguin Books, 1991.

[9] S. Ferris J.-L. Montagnier L. Montagnier, J. Aissa and C. Lavall’e. Electromagnetic Signals Are
Produced by Aqueous Nanostructures Derived from Bacterial DNA Sequences. Interdiscip. Sci.
Comput. Life Sci., 2009.

[10] E. Lozneanu and M. Sanduloviciu. Minimal-cell system created in laboratory by self-organization.
Chaos, Solitons & Fractals, 18(2):335, September 2003.

[11] J. O′Donoghue. How trees changed the world? New Scientist, 2631, November 2007.

[12] A.V. Tovmash P. P. Gariaev, G. G. Tertishni. Experimental investigation in vitro of holographic
mapping and holographic transposition of DNA in conjuction with the information pool encircling
DNA. New Medical Tehcnologies, 9:42–53, 2007.

[13] P. Murogoki S. Comorosan, M. Hristea. On a new symmetry in biological systems. Bull. of Math.
Biol., page 107, 1980.

[14] O. E. Tetlie S. J. Braddy, M. Poschmann. Giant claw reveals the largest ever arthropod. Biology
Letters, November 2007.

[15] R. Sheldrake. A New Science of Life: The Hypothesis of Formative Causation. Inner Traditions
Intl Ltd., 1995.

717

http://www.wavegenetics.jino-net.ru
http://www.wavegenetics.jino-net.ru
http://en.wikipedia.org/wiki/Dinosaur
http://en.wikipedia.org/wiki/High-energy_phosphate




Neuroscience and Consciousness

[1] G. Adenier and A. Khrennikov. Is the Fair Sampling Assumption Supported by EPR Experi-
ments? http://arxiv.org/abs/quantum-ph/0606122, 2006.

[2] D. J. Benor. Spiritual Healing: scientific validation of a healing revolution Vol. I. Vision publi-
cations, Southfield MI, 2001.

[3] C. F. Blackman. Effect of Electrical and Magnetic Fields on the Nervous System, pages 331–355.
Plenum, New York, 1994.

[4] S. J. Blackmore. Near death experiences: in or out of the body? Skeptical Inquirer, 1991:34–45,
1991.

[5] M. Chown. Quantum Rebel. New Scientist, 2004.

[6] B. Libet et al. Subjective referral of the timing for a conscious sensory experience. Brain, 102,
1979.

[7] C. Simon H. Weinfurter A. Zeilinger G. Weihs, T. Jennewein. Phys. Rev., 81:5039, 1998.

[8] M. Germine. Scientific Validation of Planetary Consciousness. Journal of Non-Locality and
Remote Mental Interactions, 1(3), 2002.

[9] M. Pitkänen et al H. Abdelmeik. Changes in electrical properties of frog sciatic nerves at
low temperature: superconductor-like behaviour. http://tgd.wippiespace.com/public_html/
articles/hafpaper.pdf, 2003.

[10] A. Khrennikov. Bell’s inequality for conditional probabilities as a test for quantum like behaviour
of mind. http://arxiv.org/abs/quant-ph/0402169, 2004.

[11] S. Klein. Libet’s Research on Timing of Conscious Intention to Act: A Commentary. Conscious-
ness and Cognition, 11, 2002.

[12] S. Klein. Libet’s Research on Timing of Conscious Intention to Act: A Commentary. Conscious-
ness and Cognition, 11, 2002.

719

http://arxiv.org/abs/quantum-ph/0606122
http://tgd.wippiespace.com/public_html/articles/hafpaper.pdf
http://tgd.wippiespace.com/public_html/articles/hafpaper.pdf
http://arxiv.org/abs/quant-ph/0402169




Chapter 10

Physics as a Generalized Number
Theory

10.1 Physics as a generalized number theory

Physics as a generalized number theory program involves three threads: various p-adic physics and
their fusion together with real number based physics to a larger structure [85] , the attempt to
understand basic physics in terms of classical number fields [86] , and infinite primes [84] whose
construction is formally analogous to a repeated second quantization of an arithmetic quantum field
theory. A common denominator of these approaches is a precise mathematical formulation for the
notion of finite measurement resolution, which could be taken as one of the basic guiding principles
of quantum TGD and is at quantum level realized in terms of inclusions of hyper-finite factors about
which configuration space spinor fields provide an example [97] . In the following these threads are
described briefly. More detailed summaries will be given in separate articles.

10.1.1 p-Adic physics and unification of real and p-adic physics

p-Adic numbers [88, 55, 59] became a part of TGD through the successes of p-adic thermodynamics
in the description of elementary particle massivation [55] . The p-adicization program attempts to
construct physics in various number fields as an algebraic continuation of physics in the field of rationals
(or appropriate extension of rationals). The program involves in an essential manner the generalization
of number concept obtained by fusing reals and p-adic number fields to a larger structure by gluing
them together along common rationals.

Real and p-adic regions of the space-time as geometric correlates of matter and mind

One could end up with p-adic space-time sheets via field equations. The solutions of the equations
determining space-time surfaces are restricted by the requirement that the coordinates are real. When
this is not the case, one might apply instead of a real completion with some p-adic completion. It
however seems that p-adicity is present at deeper level and automatically present via the generalization
of the number concept obtained by fusing reals and p-adics along rationals and common algebraics.

p-Adic non-determinism due to the presence of non-constant functions with a vanishing derivative
implies extreme flexibility and therefore suggests the identification of the p-adic regions as seats of
cognitive representations. Unlike the completion of reals to complex numbers, the completions of p-
adic numbers preserve the information about the algebraic extension of rationals and algebraic coding
of quantum numbers must be associated with ’mind like’ regions of space-time. p-Adics and reals are
in the same relationship as map and territory.

The implications are far-reaching and consistent with TGD inspired theory of consciousness: p-
adic regions are present even at elementary particle level and provide some kind of model of ’self’
and external world. In fact, p-adic physics must model the p-adic cognitive regions representing real
elementary particle regions rather than elementary particles themselves!
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The generalization of the notion of number

The unification of real physics of material work and p-adic physics of cognition and intentionality
leads to the generalization of the notion of number field. Reals and various p-adic number fields
are glued along their common rationals (and common algebraic numbers too) to form a fractal book
like structure. Allowing all possible finite-dimensional extensions of p-adic numbers brings additional
pages to this ”Big Book”.

At space-time level the book like structure corresponds to the decomposition of space-time surface
to real and p-adic space-time sheets. This has deep implications for the view about cognition. For
instance, two points infinitesimally near p-adically are infinitely distant in real sense so that cognition
becomes a cosmic phenomenon.

Zero energy ontology, cognition, and intentionality

One could argue that conservation laws forbid p-adic-real phase transitions in practice so that cog-
nitions (intentions) realized as real-to-padic (p-adic-to-real) transitions would not be possible. The
situation changes if one accepts zero energy ontology [24, 23] .

1. Zero energy ontology classically

In TGD inspired cosmology [78] the imbeddings of Robertson-Walker cosmologies are vacuum
extremals. Same applies to the imbeddings of Reissner-Nordström solution [91] and in practice to
all solutions of Einstein’s equations imbeddable as extremals of Kähler action. Since four-momentum
currents define a collection of vector fields rather than a tensor in TGD, both positive and negative
signs for energy corresponding to two possible assignments of the arrow of the geometric time to a
given space-time surface are possible. This leads to the view that all physical states have vanishing
net energy classically and that physically acceptable universes are creatable from vacuum.

The result is highly desirable since one can avoid unpleasant questions such as ”What are the net
values of conserved quantities like rest mass, baryon number, lepton number, and electric charge for
the entire universe?”, ”What were the initial conditions in the big bang?”, ”If only single solution of
field equations is selected, isn’t the notion of physical theory meaningless since in principle it is not
possible to compare solutions of the theory?”. This picture fits also nicely with the view that entire
universe understood as quantum counterpart 4-D space-time is recreated in each quantum jump and
allows to understand evolution as a process of continual re-creation.

2. Zero energy ontology at quantum level

Also the construction of S-matrix [23] leads to the conclusion that all physical states possess van-
ishing conserved quantum numbers. Furthermore, the entanglement coefficients between positive and
negative energy components of the state have interpretation as M -matrix identifiable as a ”complex
square root” of density matrix expressible as a product of positive diagonal square root of the density
matrix and of a unitary S-matrix. S-matrix thus becomes a property of the zero energy state and
physical states code by their structure what is usually identified as quantum dynamics.

The collection of M -matrices defines an orthonormal state basis for zero energy states and together
they define unitary U -matrix charactering transition amplitudes between zero energy states. This
matrix would not be however the counterpart of the usual S-matrix. Rather the unitary matrix
phase of a given M -matrix would define the S-matrix measured in laboratory. U -matrix would also
characterize the transitions between different number fields possible in the intersection of rel and
p-adic worlds and having interpretation in terms of intention and cognition.

At space-time level this would mean that positive energy component and negative energy compo-
nent are at a temporal distance characterized by the time scale of the causal diamond (CD) and the
rational (perhaps integer) characterizing the value of Planck constant for the state in question. The
scale in question would also characterize the geometric duration of quantum jump and the size scale
of space-time region contributing to the contents of conscious experience. The interpretation in terms
of a mini bang followed by a mini crunch suggests itself also. CDs are indeed important also in TGD
inspired cosmology [78] .

3. Hyper-finite factors of type II1 and new view about S-matrix

The representation of S-matrix as unitary entanglement coefficients would not make sense in ordi-
nary quantum theory but in TGD the von Neumann algebra in question is not a type I factor as for



10.1. Physics as a generalized number theory 723

quantum mechanics or a type III factor as for quantum field theories, but what is called hyper-finite
factor of type II1 [97] . This algebra is an infinite-dimensional algebra with the almost defining, and at
the first look very strange, property that the infinite-dimensional unit matrix has unit trace. The in-
finite dimensional Clifford algebra spanned by the configuration space gamma matrices (configuration
space understood as the space of 3-surfaces, the ”world of classical worlds”) is indeed very naturally
algebra of this kind since infinite-dimensional Clifford algebras provide a canonical representations for
hyper-finite factors of type II1.

4. The new view about quantum measurement theory

This mathematical framework leads to a new kind of quantum measurement theory. The basic
assumption is that only a finite number of degrees of freedom can be quantum measured in a given
measurement and the rest remain untouched. What is known as Jones inclusions N ⊂ M of von
Neumann algebras allow to realize mathematically this idea [97] . N characterizes measurement
resolution and quantum measurement reduces the entanglement in the non-commutative quantum
space M/N . The outcome of the quantum measurement is still represented by a unitary S-matrix
but in the space characterized by N . It is not possible to end up with a pure state with a finite
sequence of quantum measurements.

The obvious objection is that the replacement of a universal S-matrix coding entire physics with a
state dependent unitary entanglement matrix is too heavy a price to be paid for the resolution of the
above mentioned paradoxes. Situation could be saved if the S-matrices have fractal structure. The
quantum criticality of TGD Universe indeed implies fractality. The possibility of an infinite sequence
of Jones inclusions for hyperfinite type II1 factors isomorphic as von Neumann algebras expresses
this fractal character algebraically. Thus one can hope that the S-matrix appearing as entanglement
coefficients is more or less universal in the same manner as Mandelbrot fractal looks more or less the
same in all length scales and for all resolutions. Whether this kind of universality must be posed as
an additional condition on entanglement coefficients or is an automatic consequence of unitarity in
type II1 sense is an open question.

5. The S-matrix for p-adic-real transitions makes sense

In zero energy ontology conservation laws do not forbid p-adic-real transitions and one can develop
a relatively concrete vision about what happens in these kind of transitions. The starting point is the
generalization of the number concept obtained by gluing p-adic number fields and real numbers along
common rationals (expressing it very roughly). At the level of the imbedding space this means that
p-adic and real space-time sheets intersect only along common rational points of the imbedding space
and transcendental p-adic space-time points are infinite as real numbers so that they can be said to
be infinite distant points so that intentionality and cognition become cosmic phenomena.

In this framework the long range correlations characterizing p-adic fractality can be interpreted
as being due to a large number of common rational points of imbedding space for real space-time
sheet and p-adic space-time sheet from which it resulted in the realization of intention in quantum
jump. Thus real physics would carry direct signatures about the presence of intentionality. Intentional
behavior is indeed characterized by short range randomness and long range correlations.

One can even develop a general vision about how to construct the S-matrix elements characterizing
the process [23] . The basic guideline is the vision that real and various p-adic physics as well as their
hybrids are continuable from the rational physics. This means that these S-matrix elements must
be characterizable using data at rational points of the imbedding space shared by p-adic and real
space-time sheets so that more or less same formulas describe all these S-matrix elements. Note that
also p1 → p2 p-adic transitions are possible.

What number theoretical universality might mean?

Number theoretic universality has been one of the basic guide lines in the construction of quantum
TGD. There are two forms of the principle.

1. The strong form of number theoretical universality states that physics for any system should
effectively reduce to a physics in algebraic extension of rational numbers at the level of M -matrix
so that an interpretation in both real and p-adic sense (allowing a suitable algebraic extension
of p-adics) is possible. One can however worry whether this principle only means that physics is
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algebraic so that there would be no need to talk about real and p-adic physics at the level of M -
matrix elements. It is not possible to get rid of real and p-adic numbers at the level of classical
physics since calculus is a prerequisite for the basic variational principles used to formulate the
theory. For this option the possibility of completion is what poses conditions on M -matrix.

2. The weak form of principle requires only that both real and p-adic variants of physics make
sense and that the intersection of these physics consist of physics associated with various alge-
braic extensions of rational numbers. In this rational physics would be like rational numbers
allowing infinite number of algebraic extensions and real numbers and p-adic number fields as
its completions. Real and p-adic physics would be completions of rational physics. In this
framework criticality with respect to phase transitions changing number field becomes a viable
concept. This form of principle allows also purely p-adic phenomena such as p-adic pseudo non-
determinism assigned to imagination and cognition. Genuinely p-adic physics does not however
allow definition of notions like conserved quantities since the notion of definite integral is lacking
and only the purely local form of real physics allows p-adic counterpart.

Experience has taught that it is better to avoid too strong statements and perhaps the weak
form of the principle is enough. It is however clear that number theoretical criticality could provide
important insights to quantum TGD. p-Adic thermodynamics [55] is an excellent example of this.
In consciousness theory the transitions transforming intentions to actions and actions to cognitions
would be key applications. Needless to say, zero energy ontology is absolutely essential: otherwise
this kind of transitions would not make sense.

p-Adicization by algebraic continuation

The basic challenges of the p-adicization program are following.

1. The first problem -the conceptual one- is the identification of preferred coordinates in which
functions are algebraic and for which algebraic values of coordinates are in preferred position.
This problem is encountered both at the level of space-time, imbedding space, and configuration
space. Here the group theoretical considerations play decisive role and the selection of preferred
coordinates relates closely to the selection of quantization axes. This selection has direct physical
correlates at the level of imbedding space and the hierarchy of Planck constants has interpretation
as a correlate for the selection of quantization axes [30] .

Algebraization does not necessarily mean discretization at space-time level: for instance, the
coordinates characterizing partonic 2-surface can be algebraic so that algebraic point of the
configuration space results and surface is not discretized. If this kind of function spaces are
finite-dimensional, it is possible to fix X2 completely data for a finite number of points only.

2. Local physics generalizes as such to p-adic context (field equations, etc...). The basic stumbling
block of this program is integration already at space-time (Kähler action, flux Hamiltonians,
etc..). The problem becomes really horrible looking at configuration space level (functional
integral). Algebraic continuation could allow to circumvent this difficulty. Needless to say, the
requirement that the continuation exists must pose immensely tight constraints on the physics.
Also the existence of the Kähler geometry does this and the solution to the constraint is that
WCW is a union of symmetric spaces.

In the case of symmetric spaces Fourier analysis generalizes to harmonics analysis and one can
reduce integration to summation for functions allowing Fourier decomposition. In p-adic context
the existence of plane waves requires an algebraic extension allowing roots of unity characterizing
the measurement accuracy for angle like variables. This leads in the case of symmetric spaces
to a general p-adicization recipe. One starts from a discrete variant of the symmetric space
for which points correspond to roots of unity and replaces each discrete point with is p-adic
completion representing the p-adic variant of the symmetric space so that kind of fractal variant
of the symmetric space is obtained. There is an infinite hierarchy of p-adicizations corresponding
to measurement resolutions and to the choice of preferred coordinates and the interpretation is
in terms of cognitive representations. This requires a refined view about General Coordinate
Invariance taking into account the fact that cognition is also part of the quantum state.
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One general idea which results as an outcome of the generalized notion of number is the idea of a
universal function continuable from a function mapping rationals to rationals or to a finite extension of
rationals to a function in any number field. This algebraic continuation is analogous to the analytical
continuation of a real analytic function to the complex plane.

1. Rational functions with rational coefficients are obviously functions satisfying this constraint. Al-
gebraic functions with rational coefficients satisfy this requirement if appropriate finite-dimensional
algebraic extensions of p-adic numbers are allowed. Exponent function is such a function.

2. For instance, residue calculus essential in the construction of N-point functions of conformal
field theory might be generalized so that the value of an integral along the real axis could be
calculated by continuing it instead of the complex plane to any number field via its values in
the subset of rational numbers forming the rim of the book like structure having number fields
as its pages. If the poles of the continued function in the finitely extended number field allow
interpretation as real numbers it might be possible to generalize the residue formula. One can
also imagine of extending residue calculus to any algebraic extension. An interesting situation
arises when the poles correspond to extended p-adic rationals common to different pages of the
”great book”. Could this mean that the integral could be calculated at any page having the pole
common. In particular, could a p-adic residue integral be calculated in the ordinary complex
plane by utilizing the fact that in this case numerical approach makes sense.

3. Algebraic continuation is the basic tool of p-adicization program. Entire physics of the TGD
Universe should be algebraically continuable to various number fields. Real number based physics
would define the physics of matter and p-adic physics would describe correlates of cognition and
intentionality.

4. For instance, the idea that number theoretically critical partonic 2-surfaces are expressible in
terms of rational functions with rational or algebraic coefficients so that also p-adic variants of
these surfaces make sense, is very attractive.

5. Finite sums and products respect algebraic number property and the condition of finiteness is
coded naturally by the notion of finite measurement resolution in terms of the notion of (number
theoretic) braid. This simplifies dramatically the algebraic continuation since configuration space
reduces to a finite-dimensional space and the space of configuration space spinor fields reduces
to finite-dimensional function space.

The real configuration space can well contain sectors for which p-adicization does not make sense.
For instance, if the exponent of Kähler function and Kähler are not expressible in terms of alge-
braic functions with rational or at most algebraic functions or more general functions making sense
p-adically, the continuation is not possible. p-Adic non-determinism in p-adic sectors makes also im-
possible the continuation to real sector. All this is consistent with vision about rational and algebraic
physics as as analog of rational and algebraic numbers allowing completion to various continuous
number fields.

Due to the fact that real and p-adic topologies are fundamentally different, ultraviolet and infrared
cutoffs in the set of rationals are unavoidable notions and correspond to a hierarchy of different physical
phases on one hand and different levels of cognition on the other hand. For instance, most points p-
adic space-time sheets reside at infinity in real sense and p-adically infinitesimal is infinite in real sense.
Two types of cutoffs are predictedp-adic length scale cutoff and a cutoff due to phase resolution related
to the hierarchy of Planck constants. Zero energy ontology provides natural realization for the p-adic
length scale cutoff. The latter cutoff seems to correspond naturally to the hierarchy of algebraic
extensions of p-adic numbers and quantum phases exp(i2π/n), n ≥ 3, coming as roots of unity
and defining extensions of rationals and p-adics allowing to define p-adically sensible trigonometric
functions These phases relate closely to the hierarchy of quantum groups, braid groups, and II1 factors
of von Neumann algebra.

10.1.2 TGD and classical number fields

This chapter is second one in a multi-chapter devoted to the vision about TGD as a generalized number
theory. The basic theme is the role of classical number fields in quantum TGD. A central notion isM8−
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H duality which might be also called number theoretic compactification. This duality allows to identify
imbedding space equivalently either asM8 orM4×CP2 and explains the symmetries of standard model
number theoretically. These number theoretical symmetries induce also the symmetries dictaging the
geometry of the ”world of classical worlds” (WCW) as a union of symmetric spaces. This infinite-
dimensional Kähler geometry is expected to be highly unique from the mere requirement of its existence
requiring infinite-dimensional symmetries provided by the generalized conformal symmetries of the
light-cone boundary δM4

+ × S and of light-like 3-surfaces and the answer to the question what makes
8-D imbedding space and S = CP2 so unique would be the reduction of these symmetries to number
theory.

Zero energy ontology has become the corner stone of both quantum TGD and number theoret-
ical vision. In zero energy ontology either light-like or space-like 3-surfaces can be identified as the
fundamental dynamical objects, and the extension of general coordinate invariance leads to effective
2-dimensionality (strong form of holography) in the sense that the data associated with partonic
2-surfaces and the distribution of 4-D tangent spaces at them located at the light-like boundaries
of causal diamonds (CDs) defined as intersections of future and past directed light-cones code for
quantum physics and the geometry of WCW.

The basic number theoretical structures are complex numbers, quaternions and octonions, and
their complexifications obtained by introducing additional commuting imaginary unit

√
−1. Hyper-

octonionic (-quaternionic,-complex) sub-spaces for which octonionic imaginary units are multiplied by
commuting

√
−1 have naturally Minkowskian signature of metric. The question is whether and how

the hyper-structures could allow to understand quantum TGD in terms of classical number fields.
The answer which looks the most convincing one relies on the existence of octonionic representation
of 8-D gamma matrix algebra.

1. The first guess is that associativity condition for the sub-algebras of the local Clifford algebra
defined in this manner could select 4-D surfaces as associative (hyper-quaternionic) sub-spaces
of this algebra and define WCW purely number theoretically. The associative sub-spaces in
question would be spanned by the modified gamma matrices defined by the modified Dirac
action fixed by the variational principle (Kähler action) selecting space-time surfaces as preferred
extremals [31] .

2. This condition is quite not enough: one must strengthen it with the condition that a preferred
commutative and thus hyper-complex sub-space is contained in the tangent space of the space-
time surface. This condition actually generalizes somewhat since one can introduce a family of so
called Hamilton-Jacobi coordinates for M4 allowing an integrable distribution of decompositions
of tangent space to the space of non-physical and physical polarizations [12] . The physical
interpretation is as a number theoretic realization of gauge invariance selecting a preferred local
commutative plane of non-physical polarizations.

3. Even this is not yet the whole story: one can define also the notions of co-associatitivy and
co-commutativity applying in the regions of space-time surface with Euclidian signature of the
induced metric. The basic unproven conjecture is that the decomposition of space-time surfaces
to associative and co-associative regions containing preferred commutative resp. co-commutative
2-plane in the 4-D tangent plane is equivalent with the preferred extremal property of Kähler
action and the hypothesis that space-time surface allows a slicing by string world sheets and by
partonic 2-surfaces [31] .

Hyper-octonions and hyper-quaternions

The discussions for years ago with Tony Smith [123] stimulated very general ideas about space-
time surface as an associative, quaternionic sub-manifold of octonionic 8-space (for octonions see
[23] . Also the observation that quaternionic and octonionic primes have norm squared equal to
prime in complete accordance with p-adic length scale hypothesis, led to suspect that the notion of
primeness for quaternions, and perhaps even for octonions, might be fundamental for the formulation
of quantum TGD. The original idea was that space-time surfaces could be regarded as four-surfaces in
8-D imbedding space with the property that the tangent spaces of these spaces can be locally regarded
as 4- resp. 8-dimensional quaternions and octonions.



10.1. Physics as a generalized number theory 727

It took some years to realize that the difficulties related to the realization of Lorentz invari-
ance might be overcome by replacing quaternions and octonions with hyper-quaternions and hyper-
octonions. Hyper-quaternions resp. -octonions is obtained from the algebra of ordinary quaternions
and octonions by multiplying the imaginary part with

√
−1 and can be regarded as a sub-space of

complexified quaternions resp. octonions. The transition is the number theoretical counterpart of the
transition from Riemannian to pseudo-Riemannin geometry performed already in Special Relativity.
The loss of number field and even sub-algebra property is not fatal and has a clear physical meaning.
The notion of primeness is inherited from that for complexified quaternions resp. octonions.

Note that hyper-variants of number fields make also sense p-adically unlike the notions of number
fields themselves unless restricted to be algebraic extensions of rational variants of number fields.
What deserves separate emphasis is that the basic structure of the standard model would reduce to
number theory.

Number theoretical compactification and M8 −H duality

The notion of hyper-quaternionic and octonionic manifold makes sense but it not plausible that
H = M4 × CP2 could be endowed with a hyper-octonionic manifold structure. Situation changes
if H is replaced with hyper-octonionic M8. Suppose that X4 ⊂ M8 consists of hyper-quaternionic
and co-hyper-quaternionic regions. The basic observation is that the hyper-quaternionic sub-spaces
of M8 with a fixed hyper-complex structure (containing in their tangent space a fixed hyper-complex
subspace M2 or at least one of the light-like lines of M2) are labeled by points of CP2. Hence each
hyper-quaternionic and co-hyper-quaternionic four-surface of M8 defines a 4-surface of M4 × CP2.
One can loosely say that the number-theoretic analog of spontaneous compactification occurs: this of
course has nothing to do with dynamics.

This picture was still too naive and it became clear that not all known extremals of Kähler action
contain fixed M2 ⊂M4 or light-like line of M2 in their tangent space.

1. The first option represents the minimal form of number theoretical compactification. M8 is
interpreted as the tangent space of H. Only the 4-D tangent spaces of light-like 3-surfaces X3

l

(wormhole throats or boundaries) are assumed to be hyper-quaternionic or co-hyper-quaternionic
and contain fixed M2 or its light-like line in their tangent space. Hyper-quaternionic regions
would naturally correspond to space-time regions with Minkowskian signature of the induced
metric and their co-counterparts to the regions for which the signature is Euclidian. What is
of special importance is that this assumption solves the problem of identifying the boundary
conditions fixing the preferred extremals of Kähler action since in the generic case the intersection
of M2 with the 3-D tangent space of X3

l is 1-dimensional. The surfaces X4(X3
l ) ⊂ M8 would

be hyper-quaternionic or co-hyper-quaternionic but would not allow a local mapping between
the 4-surfaces of M8 and H.

2. One can also consider a more local map of X4(X3
l ) ⊂ H to X4(X3

l ) ⊂ M8. The idea is to
allow M2 ⊂M4 ⊂M8 to vary from point to point so that S2 = SO(3)/SO(2) characterizes the
local choice of M2 in the interior of X4. This leads to a quite nice view about strong geometric
form of M8 −H duality in which M8 is interpreted as tangent space of H and X4(X3

l ) ⊂ M8

has interpretation as tangent for a curve defined by light-like 3-surfaces at X3
l and represented

by X4(X3
l ) ⊂ H. Space-time surfaces X4(X3

l ) ⊂ M8 consisting of hyper-quaternionic and co-
hyper-quaternionic regions would naturally represent a preferred extremal of E4 Kähler action.
The value of the action would be same as CP2 Kähler action. M8−H duality would apply also
at the induced spinor field and at the level of configuration space.

3. Strong form of M8−H duality satisfies all the needed constraints if it represents Kähler isometry
between X4(X3

l ) ⊂ M8 and X4(X3
l ) ⊂ H. This implies that light-like 3-surface is mapped to

light-like 3-surface and induced metrics and Kähler forms are identical so that also Kähler action
and field equations are identical. The only differences appear at the level of induced spinor fields
at the light-like boundaries since due to the fact that gauge potentials are not identical.

4. The map of X3
l ⊂ H → X3

l ⊂M8 would be crucial for the realization of the number theoretical
universality. M8 = M4 × E4 allows linear coordinates as those preferred coordinates in which
the points of imbedding space are rational/algebraic. Thus the point of X4 ⊂ H is algebraic
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if it is mapped to algebraic point of M8 in number theoretic compactification. This of course
restricts the symmetry groups to their rational/algebraic variants but this does not have practical
meaning. Number theoretical compactication could thus be motivated by the number theoretical
universality.

5. The possibility to use either M8 or H picture might be extremely useful for calculational pur-
poses. In particular, M8 picture based on SO(4) gluons rather than SU(3) gluons could per-
turbative description of low energy hadron physics. The strong SO(4) symmetry of low energy
hadron physics can be indeed seen direct experimental support for the M8 −H duality.

10.1.3 Infinite primes

The notion of prime seems to capture something very essential about what it is to be elementary
building block of matter and has become a fundamental conceptual element of TGD. The notion of
prime gains it generality from its reducibility to the notion of prime ideal of an algebra. Thus the
notion of prime is well-defined, not only in case of quaternions and octonions, but also in the case
of hyper-quaternions and -octonions, which are especially natural physically and for which numbers
having zero norm correspond physically to light-like 8-vectors. Many interpretations for infinite primes
have been competing for survival but it seems that the recent state of TGD allows to exclude some
of them from consideration.

The notion of infinite prime

Simple arguments show that the p-adic prime characterizing the 3-surface representing the entire
universe increases in a statistical sense in the sequence of quantum jumps: the reason is simply that
the size of primes is bounded below. This leads to a peculiar paradox: if the number of quantum
jumps already occurred is infinite, this prime is most naturally infinite. On the other hand, if one
assumes that only finite number of quantum jumps have occurred, one encounters the problem of
understanding why the initial quantum history was what it was. Furthermore, since the size of the
3-surface representing the entire Universe is infinite, p-adic length scale hypothesis suggest also that
the p-adic prime associated with the entire universe is infinite.

These arguments motivate the attempt to construct a theory of infinite primes and to extend
quantum TGD so that also infinite primes are possible. Rather surprisingly, one can construct infinite
primes by repeating a procedure analogous to a quantization of a super symmetric arithmetic quantum
field theory. At given level of hierarchy one can identify the decomposition of space-time surface to
p-adic regions with the corresponding decomposition of the infinite prime to primes at lower level of
infinity: at the basic level are finite primes for which one cannot find any formula.

This and other observations suggest that the Universe of quantum TGD might basically provide a
physical representation of number theory allowing also infinite primes. The proposal suggests also a
possible generalization of real numbers to a number system akin to hyper-reals introduced by Robinson
in his non-standard calculus [115] providing rigorous mathematical basis for calculus. In fact, some
rather natural requirements lead to a unique generalization for the concepts of integer, rational and
real. Somewhat surprisingly, infinite integers and reals can be regarded as infinite-dimensional vector
spaces with integer and real valued coefficients respectively and this raises the question whether the
tangent space for the configuration space of 3-surfaces could be regarded as the space of generalized
8-D hyper-octonionic numbers.

Infinite primes and physics in TGD Universe

Several different views about how infinite primes, integers, and rationals might be relevant in TGD
Universe have emerged.

1. Infinite primes, cognition, and intentionality

The correlation of infinite primes with cognition is the first fascinating possibility and this possi-
bility has stimulated several ideas.

1. The hierarchy of infinite primes associated with algebraic extensions of rationals leading gradu-
ally towards algebraic closure of rationals would in turn define cognitive hierarchy corresponding
to algebraic extensions of p-adic numbers.
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2. Infinite primes form an infinite hierarchy so that the points of space-time and imbedding space
can be seen as infinitely structured and able to represent all imaginable algebraic structures.
Certainly counter-intuitively, single space-time point -or more generally wave functions in the
space of the units associated with the point- might be even capable of representing the quantum
state of the entire physical Universe in its structure. For instance, in the real sense surfaces in
the space of units correspond to the same real number 1, and single point, which is structure-less
in the real sense could represent arbitrarily high-dimensional spaces as unions of real units. For
real physics this structure is completely invisible and is relevant only for the physics of cognition.
One can say that Universe is an algebraic hologram, and there is an obvious connection both
with Brahman=Atman identity of Eastern philosophies and Leibniz’s notion of monad.

3. One can assign to infinite primes at nth level of hierarchy rational functions of n rational argu-
ments which form a natural hierarchical structure in that highest level corresponds to a polyno-
mial with coefficients which are rational functions of the arguments at the lower level. One can
solve one of the arguments in terms of lower ones to get a hierarchy of algebraic extensions. At
the lowest level algebraic extensions of rationals emerge, at the next level algebraic extensions
of space of rational functions of single variable, etc... This would suggest that infinite primes
code for the correlation between quantum states and the algebraic extensions appearing in their
their physical description and characterizing their cognitive correlates. The hierarchy of infinite
primes would also correlate with a hierarchy of logics of various orders (hierarchy of statements
about statements about...).

2. Infinite primes and super-symmetric quantum field theory

Consider next the physical interpretation.

1. The discovery of infinite primes suggested strongly the possibility to reduce physics to number
theory. The construction of infinite primes can be regarded as a repeated second quantization
of a super-symmetric arithmetic quantum field theory. This suggests that configuration space
spinor fields or at least the ground states of associated super-conformal representations could
be mapped to infinite primes in both bosonic and fermionic degrees of freedom. The process
might generalize so that it applies in the case of quaternionic and octonionic primes and their
hyper counterparts. This hierarchy of second quantizations means enormous generalization of
physics to what might be regarded a physical counterpart for a hierarchy of abstractions about
abstractions about.... The ordinary second quantized quantum physics corresponds only to the
lowest level infinite primes.

2. The ordinary primes appearing as building blocks of infinite primes at the first level of the
hierarchy could be identified as coding for p-adic primes assignable to fermionic and bosonic
partons identified as 2-surfaces of a given space-time sheet. The hierarchy of infinite primes
would correspond to hierarchy of space-time sheets defined by the topological condensate. This
leads also to a precise identification of p-adic and real variants of bosonic partonic 2-surfaces as
correlates of intention and action and pairs of p-adic and real fermionic partons as correlates for
cognitive representations.

3. The idea that infinite primes characterize quantum states of the entire Universe, perhaps ground
states of super-conformal representations, if not all states, could be taken further. It turns out
that this idea makes sense when one considers discrete wave functions in the space of infinite
primes and that one can indeed represent standard model quantum numbers in this manner.

4. The number theoretical supersymmetry suggests also space-time supersymmetry TGD frame-
work. Space-time super-symmetry in its standard form is not possible in TGD Universe and
this cheated me to believe that this supersymmetry is completely absent in TGD Universe.
The progress in the understanding of the properties of the modified Dirac action however led
to a generalization of the space-time super-symmetry as a dynamical and broken symmetry of
quantum TGD [32] .

Here however emerges the idea about the number theoretic analog of color confinement. Rational
(infinite) primes allow not only a decomposition to (infinite) primes of algebraic extensions of rationals
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but also to algebraic extensions of quaternionic and octonionic (infinite) primes. The physical analog
is the decomposition of a particle to its more elementary constituents. This fits nicely with the idea
about number theoretic resolution represented as a hierarchy of Galois groups defined by the extensions
of rationals and realized at the level of physics in terms of Jones inclusions [97] defined by these groups
having a natural action on space-time surfaces, induced spinor fields, and on configuration space spinor
fields representing physical states [24] .

3. Infinite primes and physics as number theory

The hierarchy of algebraic extensions of rationals implying corresponding extensions of p-adic
numbers suggests that Galois groups, which are the basic symmetry groups of number theory, should
have concrete physical representations using induced spinor fields and configuration space spinor fields
and also infinite primes and real units formed as infinite rationals. These groups permute zeros of
polynomials and thus have a concrete physical interpretation both at the level of partonic 2-surfaces
dictated by algebraic equations and at the level of braid hierarchy. The vision about the role of
hyperfinite factors of II1 and of Jones inclusions as descriptions of quantum measurements with finite
measurement resolution leads to concrete ideas about how these groups are realized.

G2 acts as automorphisms of hyper-octonions and SU(3) as its subgroup respecting the choice of a
preferred imaginary unit. The discrete subgroups of SU(3) permuting to each other hyper-octonionic
primes are analogous to Galois group and turned out to play a crucial role in the understanding of the
correspondence between infinite hyper-octonionic primes and quantum states predicted by quantum
TGD.

4. The notion of finite measurement resolution as the key concept

TGD predicts several hierarchies: the hierarchy of space-time sheets, the hierarchy of infinite
primes, the hierarchy of Jones inclusions identifiable in terms of finite measurement resolution [97] ,
the dark matter hierarchy characterized by increasing values of ~ [30] , the hierarchy of extensions of a
given p-adic number field. TGD inspired theory of consciousness predictes the hierarchy of selves and
quantum jumps with increasing duration with respect to geometric time. These hierarchies should be
closely related.

The notion of finite measurement resolution turns out to be the key concept: the p-adic norm of
the rational defined by the infinite prime characterizes the angle measurement resolution for given
p-adic prime p. It is essential that one has what might be called a state function reduction selecting
a fixed p-adic prime which could be also infinite. This gives direct connections with cognition and
with the p-adicization program relying also on angle measurement resolution. Also the value the
integers characterizing the singular coverings of CD and CP2 defining as their product Planck constant
characterize the measurement resolution for a given p-adic prime in CD and CP2 degrees of freedom.
This conforms with the fact that elementary particles are characterized by two infinite primes. Hence
finite measurement resolution ties tightly together the three threads of the number theoretic vision.
Finite measurement resolution relates also closely to the inclusions of hyper-finite factors central for
TGD inspired quantum measurement theory so that the characterization of the finite measurement
resolution, which has been the ugly ducling of theoretical physics, transforms to a beatiful swan.

5. Space-time correlates of infinite primes

Infinite primes code naturally for Fock states in a hierarchy of super-symmetric arithmetic quantum
field theories. Quantum classical correspondence leads to ask whether infinite primes could also code
for the space-time surfaces serving as symbolic representations of quantum states. This would a
generalization of algebraic geometry would emerge and could reduce the dynamics of Kähler action
to algebraic geometry and organize 4-surfaces to a physical hierarchy according to their algebraic
complexity. Note that this conjecture should be consistent with two other conjectures about the
dynamics of space-time surfaces (space-time surfaces as preferred extrema of Kähler action and space-
time surfaces as quaternionic or co-quaternionic (as associative or co-associative) 4-surfaces of hyper-
octonion space M8).

The representation of space-time surfaces as algebraic surfaces in M8 is however too naive idea and
the attempt to map hyper-octonionic infinite primes to algebraic surfaces has not led to any concrete
progress.

The solution came from quantum classical correspondence, which requires the map of the quantum
numbers of configuration space spinor fields to space-time geometry. The modified Dirac equation
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with measurement interaction term realizes this requirement. Therefore, if one wants to map infinite
rationals to space-time geometry it is enough to map infinite primes to quantum numbers. This map
can be indeed achieved thanks to the detailed picture about the interpretation of the symmetries of
infinite primes in terms of standard model symmetries.

Generalization of ordinary number fields: infinite primes and cognition

Both fermions and p-adic space-time sheets are identified as correlates of cognition in TGD Universe.
The attempt to relate these two identifications leads to a rather concrete model for how bosonic
generators of super-algebras correspond to either real or p-adic space-time sheets (actions and inten-
tions) and fermionic generators to pairs of real space-time sheets and their p-adic variants obtained
by algebraic continuation (note the analogy with fermion hole pairs).

The introduction of infinite primes, integers, and rationals leads also to a generalization of classical
number fields since an infinite algebra of real (complex, etc...) units defined by finite ratios of infinite
rationals multiplied by ordinary rationals which are their inverses becomes possible. These units are
not units in the p-adic sense and have a finite p-adic norm which can be differ from one. This construc-
tion generalizes also to the case of hyper- quaternions and -octonions although non-commutativity and
in case of octonions also non-associativity pose technical problems. Obviously this approach differs
from the standard introduction of infinitesimals in the sense that sum is replaced by multiplication
meaning that the set of real and also more general units becomes infinitely degenerate.

Infinite primes form an infinite hierarchy so that the points of space-time and imbedding space can
be seen as infinitely structured and able to represent all imaginable algebraic structures. Certainly
counter-intuitively, single space-time point is even capable of representing the quantum state of the
entire physical Universe in its structure. For instance, in the real sense surfaces in the space of units
correspond to the same real number 1, and single point, which is structure-less in the real sense could
represent arbitrarily high-dimensional spaces as unions of real units.

One might argue that for the real physics this structure is invisible and is relevant only for the
physics of cognition. On the other hand, one can consider the possibility of mapping the configuration
space and configuration space spinor fields to the number theoretical anatomies of a single point of
imbedding space so that the structure of this point would code for the world of classical worlds and
for the quantum states of the Universe. Quantum jumps would induce changes of configuration space
spinor fields interpreted as wave functions in the set of number theoretical anatomies of single point of
imbedding space in the ordinary sense of the word, and evolution would reduce to the evolution of the
structure of a typical space-time point in the system. Physics would reduce to space-time level but
in a generalized sense. Universe would be an algebraic hologram, and there is an obvious connection
both with Brahman=Atman identity of Eastern philosophies and Leibniz’s notion of monad.

Infinite rationals are in one-one correspondence with quantum states and in zero energy ontology
hyper-octonionic units identified as ratios of the infinite integers associated with the positive and
negative energy parts of the zero energy state define a representation of WCW spinor fields. The action
of subgroups of SU(3) and rotation group SU(2) preserving hyper-octonionic and hyper-quaternionic
primeness and identification of momentum and electro-weak charges in terms of components of hyper-
octonionic primes makes this representation unique. Hence Brahman-Atman identity has a completely
concrete realization and fixes completely the quantum number spectrum including particle masses and
correlations between various quantum numbers.

10.2 p-Adic physics and the fusion of real and p-adic physics
to a single coherent whole

In this section basic facts about p-adic numbers [88, 55, 59] and the question about their relation to
real numbers are discussed. Also the basic technicalities related to the notion of p-adic physics are
discussed. Also included is a section about the physics in the intersection of real and p-adic worlds
relevant to living systems in TGD Universe.
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10.2.1 Background

It is good to start with a summary of the basic mathematical problems related to the p-adicization
of physics and a rough formulation for how one might resolve these problems.

Problems

It is far from obvious what the p-adic counterpart of real physics could mean and how one could fuse
together real and p-adic physics. Therefore it is good to list the basic problems and proposals for
their solution.

The first problem concerns the correspondence between real and p-adic numbers.

1. The success of p-adic mass calculations involves the notions of p-adic probability, thermodynam-
ics, and the mapping of p-adic propababilities to the real ones by a continuous correspondence
x =

∑
xnp

n → Id(x) =
∑
xnp

−n that I have christened canonical identification. The problem
is that I n does not respect symmetries defined by isometries and also general coordinate invari-
ance is possible only if one can identify preferred imbedding space coordinates. The reason is
that I does not commute with the basic arithmetic operations. I allows several variants and it
is possible to have correspondence which respects symmetries in arbitrary accuracy in preferred
coordinates. Thus I can play a role at space-time level only if one defines symmetries modulo
measurement resolution. I would make sense only in the interval defining the measurement
resolution for a given coordinate variable and the p-adic effective topology would make sense
just because the finite measurement resolution does not allow to well-order the points.

2. The identification of real and p-adic numbers via rationals common to all number fields - or
more generally along algebraic extension of rationals- respects symmetries and algebra but is
not continuous. At the imbedding space level preferred coordinates are required also now. The
maximal symmetries of the imbedding space allow identification of this kind of coordinates. They
are not unique. For instance, M4 linear coordinates look very natural but for CP2 trigonometric
functions of angle like coordinates look more suitablel and Fourier analysis suggests strongly the
introduction of algebraic extensions involving roots of unity. Partly the non-uniqueness has an
interpretation as an imbedding space correlate for the selection of the quantization axes. The
symmetric space [37] property of WCW gives hopes that general coordinate invariance in quantal
sense can be realized. The existence of p-adic harmonic analysis suggests a discretization of the
p-adic variant of imbedding space and WCW based on roots of unity.

3. One can consider a compromise between the two correspondences. Discretization via common
algebraic points can be completed to a p-adic continuum by assigning to each real discretizaton
interval (say angle increment 2π/N) p-adic numbers with norm smaller than one.

Second problem relates to integration and Fourier analysis. Both these procedures are fundamental
for physics -be it classical or quantum. The p-adic variant of definite integral does not exist in the sense
required by the action principles of physics although classical partial differental equations assigned to
a particular variational principle make perfect sense. Fourier analysis is also possible only if one allows
algebraic extension of p-adic numbers allowing a sufficient number of roots of unity correlating with
the measurement resolution of angle. The finite number of them has interpretation in terms of finite
angle resolution. Fourier analysis provides also an algebraic realization of definite integral when one
integrates over the entire manifold as one indeed does in the case of WCW. If the space in question
allows maximal symmetries as WCW and imbedding space do, there are excellent hopes of having
p-adic variants of both integration and harmonic analysis and the above described procedure allows
a precise completion of the discretized variant of real manifold to its continuous p-adic variant.

The third problem relates to the definitions of the p-adic variants of Riemannian, symplectic
[72, 39, 38], and Kähler [17] geometries. It is possible to generalize formally the notion of Riemann
metric although non-local quanties like areas and total curvatures do not make sense if defined in terms
of integrals. If all relevant quantities assignable to the geometry (family of Hamiltonians defining
isometries, Killing vector fields, components of metric and Kähler form, Kähler function, etc...) are
expressible in terms of rational functions involving only rational numbers as coefficients of polynomials,
they allow an algebraic continuation to the p-adic context and the p-adic variant of the geometry makes
sense.
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The fourth problem relates to the question what one means with p-adic quantum mechanics. In
TGD framework p-adic quantum theory utilizes p-adic Hilbert space. The motivation is that the
notions of p-adic probability and unitarity are well defined. From the beginnning it was clear that the
straightforward generalization of Schrödinger equation is not very interesting physically and gradually
the conviction has developed that the most realistic approach must rely on the attempt to find the
p-adic variant of the TGD inspired quantum physics in all its complexity. The recent approach starts
from a rather concrete view about generalized Feynman diagrams defining the points of WCW and
leads to a rather detailed view about what the p-adic variants of QM could be and how they could
be fused with real QM to a larger structure. Even more, just the requirement that this p-adicization
exists, gives very powerful constraints on the real variant of the quantum TGD.

The fifth problem relates to the notion of information in p-adic context. p-Adic thermodynamics
leads naturally to the question what p-adic entropy might mean and this in turn leads to the realization
that for rational or even algebraic probabilities p-adic variant of Shannon entropy can be negative
and has minimum for a unique prime. One can say that the entanglement in the intersection of
real and p-adic worlds is negentropic. This leads to rather fascinating vision about how negentropic
entanglement makes it possible for living systems to overcome the second law of thermodynamics.
The formulation of quantum theory in the intersection of real and living worlds becomes the basic
challenge.

The proposed solutions to the technical problems could be rephrased in terms of the notion of
algebraic universality. Various p-adic physics are obtained as algebraic continuation of real physics
through the common algebraic points of real and p-adic worlds and by performing completion in
the sense that the interval corresponding to finite measurement resolution are replaced with their
p-adic counterpart via canonical identification. This allows to have exact symmetries as their discrete
variants and also a continuous correspondence if desired. Particular p-adicization is characterized by
a choice fo preferred imbedding space coordinates, which has interpretation in terms of a particular
cognitive representation. Hence one is forced to refine the view about general coordinate invariance.
Different coordinate choices correspond to different cognitive representations having delicate effects
on physics if it is assumed to include also the effects of cognition.

Program

These ideas lead to a reasonably well defined p-adicization program. Try to define precisely the con-
cepts of the p-adic space-time and configuration space (WCW), formulate the finite-p p-adic versions
of quantum TGD. Try to fuse together real and various p-adic quantum TGDs are to form a full
theory of physics and cognition.

The construction of the p-adic TGD necessitates the generalization of the basic tools of standard
physics such as differential and integral calculus, the concept of Hilbert space, Riemannian geometry,
group theory, action principles, and the notions of probability and unitarity to the p-adic context.
Also new physical thinking and philosophy is needed. The notions of zero energy ontology, hierarchy
of Planck constants and the generalization of the notion of imbedding space required by it are essential
but not discussed in detail in this article.

In the following I try to describe the most central problems and ideas of the p-adicization program.
Page number of a readable article must be finite and this has forced to leave away a lot of topics. p-
Adic mass calculations, which form the corner stone of the entire approach would require entire article
series. The vision about how to define generalized Feynman diagrams and their p-adic variants by
utilizing the assumption that WCW is symmetric space allowing algebraization of integration crucial
for the entire approach is discussed in the May issue of this Journal [14] . Negentropy Maximization
Principle [52] relevant for understanding the profound implications of the negentropic entanglement
is not discussed. The applications of p-adic length scale hypothesis to the physics of living matter [27]
and the model of cognition and intentionality based on p-adic numbers [59] have been also left out.

10.2.2 Summary of the basic physical ideas

In the following various manners to end up with p-adic physics and with the idea about p-adic topology
as an effective topology of space-time surface are described.



734 Chapter 10. Physics as a Generalized Number Theory

p-Adic mass calculations briefly

p-Adic mass calculations based on p-adic thermodynamics with energy replaced with the generator
L0 = zd/dz of infinitesimal scaling are described in the first part of [55] .

1. p-Adic thermodynamics is justified by the randomness of the motion of partonic 2-surfaces
restricted only by the light-likeness of the orbit.

2. It is essential that the conformal symmetries associated with the light-like coordinates of par-
ton and light-cone boundary are not gauge symmetries but dynamical symmetries. The point is
that there are two kinds of super-conformal symmetries [32, 36] : the super-symplectic conformal
symmetries assignable to the light-like boundaries of CD×CP2 and super Kac-Moody symme-
tries [16] assignable to light-like 3-surfaces defining fundamental dynamical objects. In so called
coset construction [110] the differences of super-conformal generators of these algebras annihilate
the physical states. This leads to a generalization of Equivalence Principle since one can assign
four-momentum to the generators of both algebras identifiable as inertial resp. gravitational
four-momentum. A second important consequence is that the generators of either algebra do
not act like gauge transformations so that it makes sense to construct p-adic thermodynamics
for them.

3. In p-adic thermodynamics scaling generator L0 having conformal weights as its eigen values
replaces energy and Boltzmann weight exp(H/T ) is replaced by pL0/Tp . The quantization Tp =
1/n of conformal temperature and thus quantization of mass squared scale is implied by number
theoretical existence of Boltzmann weights. p-Adic length scale hypothesis states that primes
p ' 2k, k integer. A stronger hypothesis is that k is prime (in particular Mersenne prime or
Gaussian Mersenne) makes the model very predictive and fine tuning is not possible.

Mersenne primes are very special number theoretically because bit as the unit of information
unit corresponds to log(2) and can be said to exists for Mn-adic topology. The reason is that
log(1 + p) existing always p-adically corresponds for Mn = 2n − 1 to log(2n) ≡ nlog(2) so that
one has log(2 ≡ log(1 +Mn)/n. Since the powers of 2 modulo p give all integers n ∈ {1, p− 1}
by Fermat’s theorem, one can say that the logarithms of all integers modulo Mn exist in this
sense and therefore the logarithsm of all p-adic integers not divisible by p exist. For other primes
one must introduce a transcendental extension containing log(a) where are is so called primitive
root. One could criticize the identification since log(1 +Mn) corresponding in the real sense to
n bits corresponds in p-adic sense to to a very small information content since the p-adic norm
of the p-adic bit is 1/Mn.

The basic mystery number of elementary particle physics defined by the ratio of Planck mass and
proton mass follows thus from number theory once CP2 radius is fixed to about 104 Planck lengths.
Mass scale becomes additional discrete variable of particle physics so that there is not more need
to force top quark and neutrinos with mass scales differing by 12 orders of magnitude to the same
multiplet of gauge group. Electron, muon, and τ correspond to Mersenne prime k = 127 (the largest
non-super-astrophysical Mersenne), and Mersenne primes k = 113, 107. Intermediate gauge bosons
and photon correspond to Mersenne M89, and graviton to M127.

The value of k for quark can depend on hadronic environment [58] and this would produce precise
mass formulas for low energy hadrons. This kind of dependence conforms also with the indications
that neutrino mass scale depends on environment [24]. Amazingly, the biologically most relevant
length scale range between 10 nm and 4 µm contains four Gaussian Mersennes (1 + i)n − 1, n =
151, 157, 163, 167 and scaled copies of standard model physics in cell length scale could be an essential
aspect of macroscopic quantum coherence prevailing in cell length scale.

p-Adic mass thermodynamics is not quite enough: also Higgs boson is needed and wormhole
contact carrying fermion and anti-fermion quantum numbers at the light-like wormhole throats is
excellent candidate for Higgs [49] . The coupling of Higgs to fermions can be small and induce only
a small shift of fermion mass: this could explain why Higgs has not been observed. Also the Higgs
contribution to mass squared can be understood thermodynamically if identified as absolute value for
the thermal expectation value of the eigenvalues of the modified Dirac operator having interpretation
as complex square root of conformal weight.

The original belief was that only Higgs corresponds to wormhole contact. The assumption that
fermion fields are free in the conformal field theory applying at parton level forces to identify all gauge
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bosons as wormhole contacts connecting positive and negative energy space-time sheets [49] . Fermions
correspond to topologically condensed CP2 type extremals with single light-like wormhole throat.
Gravitons are identified as string like structures involving pair of fermions or gauge bosons connected
by a flux tube. Partonic 2-surfaces are characterized by genus which explains family replication
phenomenon and an explanation for why their number is three emerges [22] . Gauge bosons are
labeled by pairs (g1, g2) of handle numbers and can be arranged to octet and singlet representations of
the resulting dynamical SU(3) symmetry. Ordinary gauge bosons are SU(3) singlets and the heaviness
of octet bosons explains why higher boson families are effectively absent. The different character of
bosons could also explain why the p-adic temperature for bosons is Tp = 1/n < 1 so that Higgs
contribution to the mass dominates.

p-Adic length scale hypothesis, zero energy ontology, and hierarchy of Planck constants

Zero energy ontology and the hierarchy of Planck constants realized in terms of the generalization of
the imbedding space lead to a deeper understanding of the origin of the p-adic length scale hypothesis.

1. Zero energy ontology

In zero energy ontology one replaces positive energy states with zero energy states with positive
and negative energy parts of the state at the light-like boundaries of CD. All conserved quantum
numbers of the positive and negative energy states are of opposite sign so that these states can be
created from vacuum. ”Any physical state is creatable from vacuum” becomes thus a basic principle of
quantum TGD and together with the notion of quantum jump resolves several philosophical problems
(What was the initial state of universe?, What are the values of conserved quantities for Universe?, Is
theory building completely useless if only single solution of field equations is realized?). At the level
of elementary particle physics positive and negative energy parts of zero energy state are interpreted
as initial and final states of a particle reaction so that quantum states become physical events.

2. Does the finiteness of measurement resolution dictate the laws of physics?

The hypothesis that the mere finiteness of measurement resolution could determine the laws of
quantum physics [23] completely belongs to the category of not at all obvious first principles. The
basic observation is that the Clifford algebra [7] spanned by the gamma matrices of the ”world of
classical worlds” represents a von Neumann algebra [76] known as hyperfinite factor of type II1 (HFF)
[23, 97, 30] . HFF [69, 96] is an algebraic fractal having infinite hierarchy of included subalgebras
isomorphic to the algebra itself [5] . The structure of HFF is closely related to several notions of modern
theoretical physics such as integrable statistical physical systems [130] , anyons [23] , quantum groups
and conformal field theories [99] , and knots and topological quantum field theories [120, 136] .

Zero energy ontology is second key element. In zero energy ontology these inclusions allow an
interpretation in terms of a finite measurement resolution: in the standard positive energy ontology this
interpretation is not possible. Inclusion hierarchy defines in a natural manner the notion of coupling
constant evolution and p-adic length scale hypothesis follows as a prediction. In this framework
the extremely heavy machinery of renormalized quantum field theory involving the elimination of
infinities is replaced by a precisely defined mathematical framework. More concretely, the included
algebra creates states which are equivalent in the measurement resolution used. Zero energy state can
be modified in a time scale shorter than the time scale of the zero energy state itself.

One can imagine two kinds of measurement resolutions. The element of the included algebra can
leave the quantum numbers of the positive and negative energy parts of the state invariant, which
means that the action of subalgebra leaves M-matrix invariant. The action of the included algebra
can also modify the quantum numbers of the positive and negative energy parts of the state such that
the zero energy property is respected. In this case the Hermitian operators subalgebra must commute
with M -matrix.

The temporal distance between the tips of CD corresponds to the secondary p-adic time scale
Tp,2 =

√
pTp by a simple argument based on the observation that light-like randomness of light-like

3-surface is analogous to Brownian motion. This gives the relationship Tp = L2
p/Rc, where R is

CP2 size. The action of the included algebra corresponds to an addition of zero energy parts to either
positive or negative energy part of the state and is like addition of quantum fluctuation below the time
scale of the measurement resolution. The natural hierarchy of time scales is obtained as Tn = 2−nT
since these insertions must belong to either upper or lower half of the causal diamond. This implies
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that preferred p-adic primes are near powers of 2. For electron the time scale in question is .1 seconds
defining the fundamental biorhythm of 10 Hz.

M-matrix representing a generalization of S-matrix and expressible as a product of a positive square
root of the density matrix and unitary S-matrix would define the dynamics of quantum theory [23] .
The notion of thermodynamical state would cease to be a theoretical fiction and in a well-defined sense
quantum theory could be regarded as a square root of thermodynamics. Connes tensor product [69]
provides a mathematical description of the finite measurement resolution but does not fix the M -
matrix as was the original hope. The remaining challenge is the calculation of M-matrix and the
progress induced by zero energy ontology during last years has led to rather concrete proposal for the
construction of M -matrix.

It turns out however that the mathematical representation for the notion of finite resolution for
angle measurement serves as a common demonitor for all basic approaches to quantum TGD: the
Kähler geometry [17] of WCW identified as a union of infinite-dimensional symmetric spaces, inclusions
of hyper finite factors as representation of finite measurement resolution, p-adicization program, the
role of classical number fields [23, 11, 31] , and infinite primes so that it is fair to say that all approaches
to TGD which originally seemed almost independent, converge to a coherent mathematical structure.

3. How do p-adic coupling constant evolution and p-adic length scale hypothesis emerge?

Zero energy ontology in which zero energy states have as imbedding space correlates CDs for
which the distance between the tips of future and past directed light-cones are power of 2 multiples
of fundamental time scale (Tn = 2nT0) implies in a natural manner coupling constant evolution. A
weaker condition would be Tp = pT0, p prime, and would assign all p-adic time scales to the size scale
hierarchy of CDs.

Could the coupling constant evolution in powers of 2 implying time scale hierarchy Tn = 2nT0 (or
Tp = pT0) induce p-adic coupling constant evolution and explain why p-adic length scales correspond
to Lp ∝

√
pR, p ' 2k, R CP2 length scale? This looks attractive but there is a problem. p-Adic

length scales come as powers of
√

2 rather than 2 and the strongly favored values of k are primes and
thus odd so that n = k/2 would be half odd integer. This problem can be solved.

1. The observation that the distance traveled by a Brownian particle during time t satisfies r2 = Dt
suggests a solution to the problem. p-Adic thermodynamics applies because the partonic 3-
surfaces X2 are as 2-D dynamical systems random apart from light-likeness of their orbit. For
CP2 type vacuum extremals the situation reduces to that for a one-dimensional random light-like
curve in M4. The orbits of Brownian particle would now correspond to light-like geodesics γ3 at
X3. The projection of γ3 to a time=constant section X2 ⊂ X3 would define the 2-D path γ2 of
the Brownian particle. The M4 distance r between the end points of γ2 would be given r2 = Dt.
The favored values of t would correspond to Tn = 2nT0 (the full light-like geodesic). p-Adic
length scales would result as L2(k) = DT (k) = D2kT0 for D = R2/T0. Since only CP2 scale is
available as a fundamental scale, one would have T0 = R and D = R and L2(k) = T (k)R.

2. p-Adic primes near powers of 2 would be in preferred position. p-Adic time scale would not relate
to the p-adic length scale via Tp = Lp/c as assumed implicitly earlier but via Tp = L2

p/R0 =√
pLp, which corresponds to secondary p-adic length scale. For instance, in the case of electron

with p = M127 one would have T127 = .1 second which defines a fundamental biological rhythm.
Neutrinos with mass around .1 eV would correspond to L(169) ' 5 µm (size of a small cell) and
T (169) ' 1. × 104 years. A deep connection between elementary particle physics and biology
becomes highly suggestive.

3. In the proposed picture the p-adic prime p ' 2k would characterize the thermodynamics of
the random motion of light-like geodesics of X3 so that p-adic prime p would indeed be an
inherent property of X3. For Tp = pT0 the above argument is not enough for p-adic length
scale hypothesis and p-adic length scale hypothesis might be seen as an outcome of a process
analogous to natural selection. Resonance like effect favoring octaves of a fundamental frequency
might be in question. In this case, p would a property of CD and all light-like 3-surfaces inside
it and also that corresponding sector of configuration space.

4. Mersenne primes and Gaussian Mersennes
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The generalization of the imbedding space required by the postulated hierarchy of Planck constants
[30] means a book like structure for which the pages are products of singular coverings or factor
spaces of CD (causal diamond defined as intersection of future and past directed light-cones) and
of CP2 [30] . This predicts that Planck constants are rationals and that a given value of Planck
constant corresponds to an infinite number of different pages of the Big Book, which might be seen as
a drawback. If only singular covering spaces are allowed the values of Planck constant are products
of integers and given value of Planck constant corresponds to a finite number of pages given by the
number of decompositions of the integer to two different integers. The definition of the book like
structure assigns to a given CD preferred quantization axes and so that quantum measurement has
direct correlate at the level of moduli space of CDs.

TGD inspired quantum biology and number theoretical considerations suggest preferred values for
r = ~/~0. For the most general option the values of ~ are products and ratios of two integers na and
nb. Ruler and compass integers defined by the products of distinct Fermat primes and power of two are
number theoretically favored values for these integers because the phases exp(i2π/ni), i ∈ {a, b}, in
this case are number theoretically very simple and should have emerged first in the number theoretical
evolution via algebraic extensions of p-adics and of rationals. p-Adic length scale hypothesis favors
powers of two as values of r.

One can however ask whether a more precise characterization of preferred Mersennes could exist
and whether there could exists a stronger correlation betweeen hierarchies of p-adic length scales
and Planck constants. Mersenne primes Mk = 2k − 1, k ∈ {89, 107, 127}, and Gaussian Mersennes
MG,k = (1 + i)k − 1, k ∈ {113, 151, 157, 163, 167, 239, 241..} are expected to be physically highly
interesting and up to k = 127 indeed correspond to elementary particles. The number theoretical
miracle is that all the four p-adic length scales with k ∈ {151, 157, 163, 167} are in the biologically
highly interesting range 10 nm-2.5 µm). The question has been whether these define scaled up copies
of electro-weak and QCD type physics with ordinary value of ~. The proposal that this is the case and
that these physics are in a well-defined sense induced by the dark scaled up variants of corresponding
lower level physics leads to a prediction for the preferred values of r = 2kd , kd = ki − kj .

What induction means is that dark variant of exotic nuclear physics induces exotic physics with
ordinary value of Planck constant in the new scale in a resonant manner: dark gauge bosons transform
to their ordinary variants with the same Compton length. This transformation is natural since in
length scales below the Compton length the gauge bosons behave as massless and free particles. As a
consequence, lighter variants of weak bosons emerge and QCD confinement scale becomes longer.

This proposal will be referred to as Mersenne hypothesis. It leads to strong predictions about
EEG [27] since it predicts a spectrum of preferred Josephson frequencies for a given value of membrane
potential and also assigns to a given value of ~ a fixed size scale having interpretation as the size scale
of the body part or magnetic body. Also a vision about evolution of life emerges. Mersenne hypothesis
is especially interesting as far as new physics in condensed matter length scales is considered: this
includes exotic scaled up variants of the ordinary nuclear physics and their dark variants. Even
dark nucleons are possible and this gives justification for the model of dark nucleons predicting the
counterparts of DNA,RNA, tRNa, and aminoacids as well as realization of vertebrate genetic code [92]
.

These exotic nuclear physics with ordinary value of Planck constant could correspond to ground
states that are almost vacuum extremals corresponding to homologically trivial geodesic sphere of
CP2 near criticality to a phase transition changing Planck constant. Ordinary nuclear physics would
correspond to homologically non-trivial geodesic sphere and far from vacuum extremal property. For
vacuum extremals of this kind classical Z0 field proportional to electromagnetic field is present and
this modifies dramatically the view about cell membrane as Josephson junction. The model for cell
membrane as almost vacuum extremal indeed led to a quantitative breakthrough in TGD inspired
model of EEG and is therefore something to be taken seriously. The safest option concerning empirical
facts is that the copies of electro-weak and color physics with ordinary value of Planck constant are
possible only for almost vacuum extremals - that is at criticality against phase transition changing
Planck constant.

p-Adic physics and the notion of finite measurement resolution

Canonical identification mapping p-adic numbers to reals in a continuous manner plays a key role in
some applications of TGD and together with the discretization necessary to define the p-adic variants
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of integration and harmonic analysis suggests that p-adic topology identified as an effective topology
could provide an elegant manner to characterize finite measurement resolution.

1. Finite measurement resolution can be characterized as an interval of minimum length. Below
this length scale one cannot distinguish points from each other. A natural definition for this
inability could be as an inability to well-order the points. The real topology is too strong in the
modelling in kind of situation since it brings in large amount of processing of pseudo information
whereas p-adic topology which lacks the notion of well-ordering could be more appropriate as
effective topology and together with a pinary cutoff could allow to get rid of the irrelevant
information.

2. This suggest that canonical identication applies only inside the intervals defining finite mea-
surement resolution in a given discretization of the space considered by say small cubes. The
canonical identification is unique only modulo diffeomorphism applied on both real and p-adic
side but this is not a problem since this would only reflect the absence of the well-ordering lost
by finite measurement resolution. Also the fact that the map makes sense only at positive real
axis would be natural if one accepts this identification.

This interpretation would suggest that there is an infinite hierarchy of measurement resolutions
characterized by the value of the p-adic prime. This would mean quite interesting refinement of the
notion of finite measurement resolution. At the level of quantum theory it could be interpreted as a
maximization of p-adic entanglement negentropy as a function of the p-adic prime. Perhaps one might
say that there is a unique p-adic effective topology allowing to maximize the information content of
the theory relying on finite measurement resolution.

p-Adic numbers and the analogy of TGD with spin-glass

The vacuum degeneracy of the Kähler action leads to a precise spin glass analogy at the level of the
configuration space geometry and the generalization of the energy landscape concept to TGD context
leads to the hypothesis about how p-adicity could be realized at the level of the configuration space.
Also the concept of p-adic space-time surface emerges rather naturally.

1. Spin glass briefly

The basic characteristic of the spin glass phase [19] is that the direction of the magnetization varies
spatially, being constant inside a given spatial region, but does not depend on time. In the real context
this usually leads to large surface energies on the surfaces at which the magnetization direction changes.
Regions with different direction of magnetization clearly correspond non-vacuum regions separated by
almost vacuum regions. Amusingly, if 3-space is effectively p-adic and if magnetization direction is
p-adic pseudo constant, no surface energies are generated so that p-adics might be useful even in the
context of the ordinary spin glasses.

Spin glass phase allows a great number of different ground states minimizing the free energy. For
the ordinary spin glass, the partition function is the average over a probability distribution of the
coupling constants for the partition function with Hamiltonian depending on the coupling constants.
Free energy as a function of the coupling constants defines ’energy landscape’ and the set of free energy
minima can be endowed with an ultra-metric distance function using a standard construction [124] .

2. Vacuum degeneracy of Kähler action

The Kähler action defining configuration space geometry allows enormous vacuum degeneracy: any
four-surface for which the induced Kähler form vanishes, is an extremal of the Kähler action. Induced
Kähler form vanishes if the CP2 projection of the space-time surface is Lagrangian manifold [19] of
CP2: these manifolds are at most two-dimensional and any canonical transformation of CP2 creates
a new Lagrangian sub-manifold [19] . An explicit representation for Lagrangian sub-manifolds is
obtained using some canonical coordinates Pi, Qi for CP2: by assuming

Pi = ∂if(Q1, Q2) , i = 1, 2 ,

where f arbitrary function of its arguments. One obtains a 2-dimensional sub-manifold of CP2 for
which the induced Kähler form proportional to dPi ∧ dQi vanishes. The roles of Pi and Qi can
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obviously be interchanged. A familiar example of Lagrange manifolds are pi = constant surfaces of
the ordinary (pi, qi) phase space.

Since vacuum degeneracy is removed only by the classical gravitational interaction there are good
reasons to expect large ground state degeneracy, when the system corresponds to a small deformation
of a vacuum extremal. This degeneracy is very much analogous to the ground state degeneracy of
spin glass but is 4-dimensional.

3. Vacuum degeneracy of the Kähler action and physical spin glass analogy

Quite generally, the dynamical reason for the physical spin glass degeneracy is the fact that Kähler
action has a huge vacuum degeneracy. Any 4-surface with CP2 projection, which is a Lagrangian sub-
manifold (generically two-dimensional), is vacuum extremal. This implies that space-time decomposes
into non-vacuum regions characterized by non-vanishing Kähler magnetic and electric fields such that
the (presumably thin) regions between the the non-vacuum regions are vacuum extremals. Therefore
no surface energies are generated. Also the fact that various charges and momentum and energy can
flow to larger space-time sheets via wormholes is an important factor making possible strong field
gradients without introducing large surfaces energies. From a given preferred extremal of Kähler
action one obtains a new one by adding arbitrary space-time surfaces which is vacuum extremal and
deforming them.

The symplectic invariance of the Kähler action for vacuum extremals allows a further understanding
of the vacuum degeneracy. The presence of the classical gravitational interaction spoils the canonical
group Can(CP2) as gauge symmetries of the action and transforms it to the isometry group of CH.
As a consequence, the U(1) gauge degeneracy is transformed to a spin glass type degeneracy and
several, perhaps even infinite number of maxima of Kähler function become possible. Given sheet
has naturally as its boundary the 3-surfaces for which two maxima of the Kähler function coalesce
or are created from single maximum by a cusp catastrophe [138] . In catastrophe regions there are
several sheets and the value of the maximum Kähler function determines which give a measure for
the importance of various sheets. The quantum jumps selecting one of these sheets can be regarded
as phase transitions.

In TGD framework classical non-determinism forces to generalize the notion of the 3-surface by
replacing it with a sequence of space like 3-surfaces having time like separations such that the se-
quence characterizes uniquely one branch of multifurcation. This characterization works when non-
determinism has discrete nature. For CP2 type extremals which are bosonic vacua, basic objects are
essentially four-dimensional since M4

+ projection of CP2 type extremal is random light like curve.
This effective four-dimensionality of the basic objects makes it possible to topologize Feynman di-
agrammatics of quantum field theories by replacing the lines of Feynman diagrams with CP2 type
extremals.

In TGD framework spin glass analogy holds true also in the time direction, which reflects the
fact that the vacuum extremals are non-deterministic. For instance, by gluing vacuum extremals
with a finite space-time extension (also in time direction!) to a non-vacuum extremal and deforming
slightly, one obtains good candidates for the degenerate preferred extremals. This non-determinism is
expected to make the preferred extremals of the Kähler action highly degenerate. The construction of
S-matrix at the high energy limit suggests that since a localization selecting one degenerate maximum
occurs, one must accept as a fact that each choice of the parameters corresponds to a particular S-
matrix and one must average over these choices to get scattering rates. This averaging for scattering
rates corresponds to the averaging over the thermodynamical partition functions for spin glass. A
more general is that one allows final state wave functions to depend on the zero modes which affect
S-matrix elements: in the limit that wave functions are completely localized, one ends up with the
simpler scenario.

4. p-Adic non-determinism and spin glass analogy

One must carefully distinguish between cognitive and physical spin-glass analogy. Cognitive spin-
glass analogy is due to the p-adic non-determinism. p-Adic pseudo constants induce a non-determinism
which essentially means that p-adic extrema depend on the p-adic pseudo constants which depend
on a finite number of positive pinary digits of their arguments only. Thus p-adic extremals are glued
from pieces for which the values of the integration constants are genuine constants. Obviously, an
optimal cognitive representation is achieved if pseudo constants reduce to ordinary constants.

More precisely, any function
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f(x) = f(xN ) ,

xN =
∑
k≤N

xkp
k , (10.2.1)

which does not depend on the pinary digits xn, n > N has a vanishing p-adic derivative and is thus a
pseudo constant. These functions are piecewise constant below some length scale, which in principle
can be arbitrary small but finite. The result means that the constants appearing in the solutions the
p-adic field equations are constants functions only below some length scale. For instance, for linear
differential equations integration constants are arbitrary pseudo constants. In particular, the p-adic
counterparts of the preferred extremals are highly degenerate because of the presence of the pseudo
constants. This in turn means a characteristic randomness of the spin glass also in the time direction
since the surfaces at which the pseudo constants change their values do not give rise to infinite surface
energy densities as they would do in the real context.

The basic character of cognition would be spin glass like nature making possible ’engineering’ at
the level of thoughts (planning) whereas classical non-determinism of the Kähler action would make
possible ’engineering’ at the level of the real world.

Life as islands of rational/algebraic numbers in the seas of real and p-adic continua?

The possibility to define entropy differently for rational/algebraic entanglement and the fact that
number theoretic entanglement entropy can be negative raises the question about which kind of
systems can possess this kind of entanglement. I have considered several identifications but the most
elegant interpretation is based on the idea that living matter resides in the intersection of real and
p-adic worlds, somewhat like rational numbers live in the intersection of real and p-adic number fields.

The observation that Shannon entropy allows an infinite number of number theoretic variants for
which the entropy can be negative in the case that probabilities are algebraic numbers leads to the
idea that living matter in a well-defined sense corresponds to the intersection of real and p-adic worlds.
This would mean that the mathematical expressions for the space-time surfaces (or at least 3-surfaces
or partonic 2-surfaces and their 4-D tangent planes) make sense in both real and p-adic sense for some
primes p. Same would apply to the expressions defining quantum states. In particular, entanglement
probabilities would be rationals or algebraic numbers so that entanglement can be negentropic and
the formation of bound states in the intersection of real and p-adic worlds generates information and
is thus favored by NMP.

This picture has also a direct connection with consciousness.

1. Algebraic entanglement is a prerequisite for the realization of intentions as transformations
of p-adic space-time sheets to real space-time sheets representing actions. Essentially a leakage
between p-adic and real worlds is in question and makes sense only in zero energy ontology. since
various quantum numbers in real and p-adic sectors are not in general comparable in positive
energy ontology so that conservation laws would be broken. Algebraic entanglement could
be also called cognitive. The transformation can occur if the partonic 2-surfaces and their 4-D
tangent space-distributions are representable using rational functions with rational coefficients in
preferred coordinates for the imbedding space dictated by symmetry considerations. Intentional
systems must live in the intersection of real and p-adic worlds. For the minimal option life would
be also effectively 2-dimensional phenomenon and essentially a boundary phenomenon as also
number theoretical criticality suggests.

2. The generation of non-rational (non-algebraic) bound state entanglement between the system
and external world means that the system loses consciousness during the state function reduction
process following the U -process generating the entanglement. What happens that the Universe
corresponding to given CD decomposes to two un-entangled subsystems, which in turn decom-
pose, and the process continues until all subsystems have only entropic bound state entanglement
or negentropic algebraic entanglement with the external world.

3. If the sub-system generates entropic bound state entanglement in the the process, it loses con-
sciousness. Note that the entanglement entropy of the sub-system is a sum over entanglement
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entropies over all subsystems involved. This hierarchy of subsystems corresponds to the hierar-
chy if sub-CDs so that the survival without a loss of consciousness depends on what happens
at all levels below the highest level for a given self. In more concrete terms, ability to stay
conscious depends on what happens at cellular level too. The stable evolution of systems having
algebraic entanglement is expected to be a process proceeding from short to long length scales
as the evolution of life indeed is.

4. U -process generates a superposition of states in which any sub-system can have both real and
algebraic entanglement with the external world. This would suggest that the choice of the type
of entanglement is a volitional selection. A possible interpretation is as a choice between good
and evil. The hedonistic complete freedom resulting as the entanglement entropy is reduced to
zero on one hand, and the algebraic bound state entanglement implying correlations with the
external world and meaning giving up the maximal freedom on the other hand. The hedonistic
option is risky since it can lead to non-algebraic bound state entanglement implying a loss of
consciousness. The second option means expansion of consciousness - a fusion to the ocean of
consciousness as described by spiritual practices.

5. This formulation means a sharpening of the earlier statement ”Everything is conscious and
consciousness can be only lost” with the additional statement ”This happens when non-algebraic
bound state entanglement is generated and the system does not remain in the intersection of
real and p-adic worlds anymore”. Clearly, the quantum criticality of TGD Universe seems has
very many aspects and life as a critical phenomenon in the number theoretical sense is only
one of them besides the criticality of the space-time dynamics and the criticality with respect
to phase transitions changing the value of Planck constant and other more familiar criticalities.
How closely these criticalities relate remains an open question.

A good guess is that algebraic entanglement is essential for quantum computation, which therefore
might correspond to a conscious process. Hence cognition could be seen as a quantum computation
like process, a more approriate term being quantum problem solving. Living-dead dichotomy could
correspond to rational-irrational or to algebraic-transcendental dichotomy: this at least when life is
interpreted as intelligent life. Life would in a well defined sense correspond to islands of rational-
ity/algebraicity in the seas of real and p-adic continua.

The view about the crucial role of rational and algebraic numbers as far as intelligent life is
considered, could have been guessed on very general grounds from the analogy with the orbits of a
dynamical system. Rational numbers allow a predictable periodic decimal/pinary expansion and are
analogous to one-dimensional periodic orbits. Algebraic numbers are related to rationals by a finite
number of algebraic operations and are intermediate between periodic and chaotic orbits allowing an
interpretation as an element in an algebraic extension of any p-adic number field. The projections of
the orbit to various coordinate directions of the algebraic extension represent now periodic orbits. The
decimal/pinary expansions of transcendentals are un-predictable being analogous to chaotic orbits.
The special role of rational and algebraic numbers was realized already by Pythagoras, and the fact
that the ratios for the frequencies of the musical scale are rationals supports the special nature of
rational and algebraic numbers. The special nature of the Golden Mean, which involves

√
5, conforms

the view that algebraic numbers rather than only rationals are essential for life.

p-Adic physics as physics of cognition and intention

The vision about p-adic physics as physics of cognition has gradually established itself as one of the
key idea of TGD inspired theory of consciousness. There are several motivations for this idea.

The strongest motivation is the vision about living matter as something residing in the intersection
of real and p-adic worlds. One of the earliest motivations was p-adic non-determinism identified
tentatively as a space-time correlqte for the non-determinism of imagination. p-Adic non-determinism
follows from the fact that functions with vanishing derivatives are piecewise constant functions in the
p-adic context. More precisely, p-adic pseudo constants depend on the pinary cutoff of their arguments
and replace integration constants in p-adic differential equations. In the case of field equations this
means roughly that the initial data are replaced with initial data given for a discrete set of time values
chosen in such a manner that unique solution of field equations results. Solution can be fixed also in
a discrete subset of rational points of the imbedding space. Presumably the uniqueness requirement
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implies some unique pinary cutoff. Thus the space-time surfaces representing solutions of p-adic
field equations are analogous to space-time surfaces consisting of pieces of solutions of the real field
equations. p-Adic reality is much like the dream reality consisting of rational fragments glued together
in illogical manner or pieces of child’s drawing of body containing body parts in more or less chaotic
order.

The obvious looking interpretation for the solutions of the p-adic field equations is as a geometric
correlate of imagination. Plans, intentions, expectations, dreams, and cognition in general are expected
to have p-adic space-time sheets as their geometric correlates. This in the sense that p-adic spacetime
sheets somehow initiate the real neural processes providing symbolic counterparts for the cognitive
representations provided by p-adic spacetime sheets and p-adic fermions. A deep principle seems to
be involved: incompleteness is characteristic feature of p-adic physics but the flexibility made possible
by this incompleteness is absolutely essential for imagination and cognitive consciousness in general.

p-Adic space-time regions can suffer topological phase transitions to real topology and vice versa
in quantum jumps replacing space-time surface with a new one. This process has interpretation as
a topological correlate for the mind-matter interaction in the sense of transformation of intention to
action and symbolic representation to cognitive representation. p-Adic cognitive representations could
provide the physical correlates for the notions of memes [4] and morphic fields [15] . p-Adic real entan-
glement makes possible makes possible cognitive measurements and cognitive quantum computation
like processes, and provides correlates for the experiences of understanding and confusion.

At the level of brain the fundamental sensory-motor loop could be seen as a loop in which real-
to-p-adic phase transition occurs at the sensory step and its reverse at the motor step. Nerve pulse
patterns would correspond to temporal sequences of quark like sub-CDs of duration 1 millisecond
inside electronic sub-CD of duration .1 s with the states of sub-CDs allowing interpretation as a bit
(this would give rise to memetic code). The real space-time sheets assignable to these sub-CDs are
transformed to p-adic ones as sensory input transforms to thought. Intention in transforms to action
in the reverse process in motor action. One can speak about creation of matter from vacuum in these
time scales.

Although p-adic space-time sheets as such are not conscious, p-adic physics would provide beautiful
mathematical realization for the intuitions of Descartes. The formidable challenge is to develop
experimental tests for p-adic physics. The basic problem is that we can perceive p-adic reality only as
’thoughts’ unlike the ’real’ reality which represents itself to us as sensory experiences. Thus it would
seem that we should be able generalize the physics of sensory experiences to physics of cognitive
experiences.

10.2.3 p-Adic numbers

Basic properties of p-adic numbers

p-Adic numbers (p is prime: 2,3,5,... ) can be regarded as a completion of the rational numbers
using a norm, which is different from the ordinary norm of real numbers [56] . p-Adic numbers are
representable as power expansion of the prime number p of form:

x =
∑
k≥k0

x(k)pk, x(k) = 0, ...., p− 1 . (10.2.2)

The norm of a p-adic number is given by

|x| = p−k0(x) . (10.2.3)

Here k0(x) is the lowest power in the expansion of the p-adic number. The norm differs drastically
from the norm of the ordinary real numbers since it depends on the lowest pinary digit of the p-adic
number only. Arbitrarily high powers in the expansion are possible since the norm of the p-adic
number is finite also for numbers, which are infinite with respect to the ordinary norm. A convenient
representation for p-adic numbers is in the form
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x = pk0ε(x) , (10.2.4)

where ε(x) = k + .... with 0 < k < p, is p-adic number with unit norm and analogous to the phase
factor exp(iφ) of a complex number.

The distance function d(x, y) = |x − y|p defined by the p-adic norm possesses a very general
property called ultra-metricity:

d(x, z) ≤ max{d(x, y), d(y, z)} . (10.2.5)

The properties of the distance function make it possible to decompose Rp into a union of disjoint sets
using the criterion that x and y belong to same class if the distance between x and y satisfies the
condition

d(x, y) ≤ D . (10.2.6)

This division of the metric space into classes has following properties:

1. Distances between the members of two different classes X and Y do not depend on the choice of
points x and y inside classes. One can therefore speak about distance function between classes.

2. Distances of points x and y inside single class are smaller than distances between different classes.

3. Classes form a hierarchical tree.

Notice that the concept of the ultra-metricity emerged in physics from the models for spin glasses
and is believed to have also applications in biology [63] . The emergence of p-adic topology as the
topology of the effective space-time would make ultra-metricity property basic feature of physics.

Extensions of p-adic numbers

Algebraic democracy suggests that all possible real algebraic extensions of the p-adic numbers are
possible. This conclusion is also suggested by various physical requirements, say the fact that the
eigenvalues of a Hamiltonian representable as a rational or p-adic N ×N -matrix, being roots of N:th
order polynomial equation, in general belong to an algebraic extension of rationals or p-adics. The
dimension of the algebraic extension cannot be interpreted as physical dimension. Algebraic extensions
are characteristic for cognitive physics and provide a new manner to code information. A possible
interpretation for the algebraic dimension is as a dimension for a cognitive representation of space
and might explain how it is possible to mathematically imagine spaces with all possible dimensions
although physical space-time dimension is four. The idea of algebraic hologram and other ideas related
to the physical interpretation of the algebraic extensions of p-adic numbers are discussed in [85] .

It seems however that algebraic democracy must be extended to include also transcendentals in
the sense that finite-dimensional extensions involving also transcendental numbers are possible: for
instance, Neper number e defines a p-dimensional extension. It has become clear that these extensions
fundamental for understanding how p-adic physics as physics of cognition is able to mimick real physics.
The evolution of mathematical cognition can be seen as a process in which p-adic space-time sheets
involving increasing value of p-adic prime p and increasing dimension of algebraic extension appear
in quantum jumps.

1. Recipe for constructing algebraic extensions

Real numbers allow only complex numbers as an algebraic extension. For p-adic numbers algebraic
extensions of arbitrary dimension are possible
[56] . The simplest manner to construct (n+1)-dimensional extensions is to consider irreducible
polynomials Pn(t) in Rp assumed to have rational coefficients: irreducibility means that the polynomial
does not possess roots in Rp so that one cannot decompose it into a product of lower order Rp valued
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polynomials. This condition is equivalent with the condition with irreducibility in the finite field
G(p, 1), that is modulo p in Rp.

Denoting one of the roots of Pn(t) by θ and defining θ0 = 1 the general form of the extension is
given by

Z =
∑

k=0,..,n−1

xkθ
k . (10.2.7)

Since θ is root of the polynomial in Rp it follows that θn is expressible as a sum of lower powers of θ
so that these numbers indeed form an n-dimensional linear space with respect to the p-adic topology.

Especially simple odd-dimensional extensions are cyclic extensions obtained by considering the
roots of the polynomial

Pn(t) = tn + εd ,

ε = ±1 . (10.2.8)

For n = 2m + 1 and (n = 2m, ε = +1) the irreducibility of Pn(t) is guaranteed if d does not possess
n:th root in Rp. For (n = 2m, ε = −1) one must assume that d1/2 does not exist p-adically. In this
case θ is one of the roots of the equation

tn = ±d , (10.2.9)

where d is a p-adic integer with a finite number of pinary digits. It is possible although not necessary
to identify the roots as complex numbers. There exists n complex roots of d and θ can be chosen to
be one of the real or complex roots satisfying the condition θn = ±d. The roots can be written in the
general form

θ = d1/nexp(iφ(m)), m = 0, 1, ...., n− 1 ,

φ(m) =
m2π

n
or

mπ

n
. (10.2.10)

Here d1/n denotes the real root of the equation θn = d. Each of the phase factors φ(m) gives rise to
an algebraically equivalent extension: only the representation is different. Physically these extensions
need not be equivalent since the identification of the algebraically extended p-adic numbers with the
complex numbers plays a fundamental role in the applications. The cases θn = ±d are physically and
mathematically quite different.

2. p-Adic valued norm for numbers in algebraic extension

The p-adic valued norm of an algebraically extended p-adic number x can be defined as some
power of the ordinary p-adic norm of the determinant of the linear map x :e Rnp →e Rnp defined by
the multiplication with x: y → xy

N(x) = det(x)α , α > 0 .

(10.2.11)

Real valued norm can be defined as the p-adic norm of N(x). The requirement that the norm is
homogenous function of degree one in the components of the algebraically extended 2-adic number
(like also the standard norm of Rn ) implies the condition α = 1/n, where n is the dimension of the
algebraic extension.

The canonical correspondence between the points of R+ and Rp generalizes in obvious manner:
the point

∑
k xkθ

k of algebraic extension is identified as the point (x0
R, x

1
R, ..., x

k
R, .., ) of Rn using the

pinary expansions of the components of p-adic number. The p-adic linear structure of the algebraic
extension induces a linear structure in Rn+ and p-adic multiplication induces a multiplication for the
vectors of Rn+.
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3. Algebraic extension allowing square root of ordinary p-adic numbers

The existence of a square root of an ordinary p-adic number is a common theme in various ap-
plications of the p-adic numbers and for long time I erratically believed that only this extension is
involved with p-adic physics. Despite this square root allowing extension is of central importance and
deserves a more detailed discussion.

1. The p-adic generalization of the representation theory of the ordinary groups and Super Kac
Moody and Super Virasoro algebras exists provided an extension of the p-adic numbers allowing
square roots of the ’real’ p-adic numbers is used. The reason is that the matrix elements of the
raising and lowering operators in Lie-algebras as well as of oscillator operators typically involve
square roots. The existence of square root might play a key role in various p-adic considerations.

2. The existence of a square root of a real p-adic number is also a necessary ingredient in the
definition of the p-adic unitarity and probability concepts since the solution of the requirement
that pmn = SmnS̄mn is ordinary p-adic number leads to expressions involving square roots.

3. p-Adic length scales hypothesis states that the p-adic length scale is proportional to the square
root of p-adic prime.

4. Simple metric geometry of polygons involves square roots basically via the theorem of Pythago-
ras. p-Adic Riemannian geometry necessitates the existence of square root since the definition of
the infinitesimal length ds involves square root. Note however that p-adic Riemannian geometry
can be formulated as a mere differential geometry without any reference to global concepts like
lengths, areas, or volumes.

The original belief that square root allowing extensions of p-adic numbers are exceptional seems
to be wrong in light of TGD as a generalized number theory vision. All algebraic extensions of p-
adic numbers a possible and the interpretation of algebraic dimension of the extension as a physical
dimension is not the correct thing to do. Rather, the possibility of arbitrarily high algebraic dimension
reflects the ability of mathematical cognition to imagine higher-dimensional spaces. Square root
allowing extension of the p-adic numbers is the simplest one imaginable, and it is fascinating that it
indeed is the dimension of space-time surface for p > 2 and dimension of imbedding space for p = 2.
Thus the square root allowing extensions deserve to be discussed.

The results can be summarized as follows.

1. In p > 2 case the general form of extension is

Z = (x+ θy) +
√
p(u+ θv) , (10.2.12)

where the condition θ2 = x for some p-adic number x not allowing square root as a p-adic
number. For p mod 4 = 3 θ can be taken to be imaginary unit. This extension is natural for
p-adication of space-time surface so that space-time can be regarded as a number field locally.
Imbedding space can be regarded as a cartesian product of two 4-dimensional extensions locally.

2. In p = 2 case 8-dimensional extension is needed to define square roots. The extension is defined
by adding θ1 =

√
−1 ≡ i, θ2 =

√
2, θ3 =

√
3 and the products of these so that the extension can

be written in the form

Z = x0 +
∑
k

xkθk +
∑
k<l

xklθkl + x123θ1θ2θ3 . (10.2.13)

Clearly, p = 2 case is exceptional as far as the construction of the conformal field theory limit is
considered since the structure of the representations of Virasoro algebra and groups in general
changes drastically in p = 2 case. The result suggest that in p = 2 limit space-time surface and
H are in same relation as real numbers and complex numbers: space-time surfaces defined as
the absolute minima of 2-adiced Kähler action are perhaps identifiable as surfaces for which the
imaginary part of 2-adically analytic function in H vanishes.
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The physically interesting feature of p-adic group representations is that if one doesn’t use
√
p in the

extension the number of allowed spins for representations of SU(2) is finite: only spins j < p are
allowed. In p = 3 case just the spins j ≤ 2 are possible. If 4-dimensional extension is used for p = 2
rather than 8-dimensional then one gets the same restriction for allowed spins.

4. Is e an exceptional transcendental?

One can consider also the possibility of transcental extensions of p-adic numbers and an open
problem is whether the infinite-dimensional extensions involving powers of π and logarithms of primes
make sense and whether they should be allowed. For instance, it is not clear whether the allowance of
powers of π is consistent with the extensions based on roots of unity. This question is not academic
since Feynman amplitudes in real context involve powers of π and algebraic universality forces the
consider that also they p-adic variants might involve powers of π.

Neper number obviously defines the simplest trancendental extension isince only the powers ek,
k = 1, ..., p − 1 of e are needed to define p-adic counterpart of ex for x = n so that the extension
is finite-dimensional. In the case of trigonometric functions deriving from eix, also ei and its p − 1
powers must belong to the extension.

An interesting question is whether e is a number theoretically exceptional transcendental or
whether it could be easy to find also other transcendentals defining finite-dimensional extensions
of p-adic numbers.

1. Consider functions f(x), which are analytic functions with rational Taylor coefficients, when
expanded around origin for x > 0. The values of f(n), n = 1, ..., p − 1 should belong to an
extension, which should be finite-dimensional.

2. The expansion of these functions to Taylor series generalizes to the p-adic context if also the
higher derivatives of f at x = n belong to the extension. This is achieved if the higher derivatives
are expressible in terms of the lower derivatives using rational coefficients and rational functions
or functions, which are defined at integer points (such as exponential and logarithm) by con-
struction. A differential equation of some finite order involving only rational functions with
rational coefficients must therefore be satisfied (ex satisfying the differential equation df/dx = f
is the optimal case in this sense). The higher derivatives could also reduce to rational functions
at some step (log(x) satisfying the differential equation df/dx = 1/x).

3. The differential equation allows to develop f(x) in power series, say in origin

f(x) =
∑

fn
xn

n!

such that fn+m is expressible as a rational function of the m lower derivatives and is therefore
a rational number.

The series converges when the p-adic norm of x satisfies |x|p ≤ pk for some k. For definiteness
one can assume k = 1. For x = 1, ..., p− 1 the series does not converge in this case, and one can
introduce and extension containing the values f(k) and hope that a finite-dimensional extension
results.

Finite-dimensionality requires that the values are related to each other algebraically although they
need not be algebraic numbers. This means symmetry. In the case of exponent function this re-
lationship is exceptionally simple. The algebraic relationship reflects the fact that exponential map
represents translation and exponent function is an eigen function of a translation operator. The neces-
sary presence of symmetry might mean that the situation reduces always to either exponential action.
Also the phase factors exp(iqπ) could be interpreted in terms of exponential symmetry. Hence the
reason for the exceptional role of exponent function reduces to group theory.

Also other extensions than those defined by roots of e are possible. Any polynomial has n roots
and for transcendental coefficients the roots define a finite-dimensional extension of rationals. It
would seem that one could allow the coefficients of the polynomial to be functions in an extension of
rationals by powers of a root of e and algebraic numbers so that one would obtain infinite hierarchy
of transcendental extensions.
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p-Adic Numbers and finite fields

Finite fields (Galois fields) consists of finite number of elements and allow sum, multiplication and
division. A convenient representation for the elements of a finite field is as the roots of the polynomial
equation tp

m − t = 0 mod p , where p is prime, m an arbitrary integer and t is element of a field
of characteristic p (pt = 0 for each t). The number of elements in a finite field is pm, that is power
of prime number and the multiplicative group of a finite field is group of order pm − 1. G(p, 1) is
just cyclic group Zp with respect to addition and G(p,m) is in rough sense m:th Cartesian power of
G(p, 1) .

The elements of the finite field G(p, 1) can be identified as the p-adic numbers 0, ..., p − 1 with
p-adic arithmetics replaced with modulo p arithmetics. The finite fields G(p,m) can be obtained from
m-dimensional algebraic extensions of the p-adic numbers by replacing the p-adic arithmetics with the
modulo p arithmetics. In TGD context only the finite fields G(p > 2, 2) , p mod 4 = 3 and G(p = 2, 4)
appear naturally. For p > 2, p mod 4 = 3 one has: x+ iy +

√
p(u+ iv)→ x0 + iy0 ∈ G(p, 2).

An interesting observation is that the unitary representations of the p-adic scalings x→ pkx k ∈ Z
lead naturally to finite field structures. These representations reduce to representations of a finite
cyclic group Zm if x→ pmx acts trivially on representation functions for some value of m, m = 1, 2, ...
Representation functions, or equivalently the scaling momenta k = 0, 1, ...,m− 1 labelling them, have
a structure of cyclic group. If m 6= p is prime the scaling momenta form finite field G(m, 1) = Zm
with respect to the summation and multiplication modulo m. Also the p-adic counterparts of the
ordinary plane waves carrying p-adic momenta k = 0, 1..., p − 1 can be given the structure of Finite
Field G(p, 1): one can also define complexified plane waves as square roots of the real p-adic plane
waves to obtain Finite Field G(p, 2).

10.2.4 What is the correspondence between p-adic and real numbers?

There must be some kind of correspondence between reals and p-adic numbers. This correspondence
can depend on context. In p-adic mass calculations one must map p-adic mass squared values to
real numbers in a continuous manner and canonical identification x =

∑
xnp

n → Id(x) =
∑
xnp

−n

is a natural first guess. Also p-adic probabilities could be mapped to their real counterparts by a
suitable normalization. One can wonder whether p-adic valued S-matrices have any physical meaning
and whether they could be obtained as algebraic continuation from a number theoretically universal
S-matrix whose matrix elements are algebraic numbers allowing an interpretation as real or p-adic
numbers in suitable algebraic extension: this would pose extremely strong constraints on S-matrix.
If one wants to introduce p-adic physics at space-time level one must be able to relate p-adic and
real space-time regions to each other and the identification along common rational points of real and
various p-adic variants of the imbedding space suggests itself here.

Generalization of the number concept

The recent view about the unification of real and p-adic physics is based on the generalization of
number concept obtained by fusing together real and p-adic number fields along common rationals.

1. Rational numbers as numbers common to all number fields

The unification of real physics of material work and p-adic physics of cognition and intentionality
leads to the generalization of the notion of number field. Reals and various p-adic number fields are
glued along their common rationals (and common algebraic numbers appearing in the extension of
p-adic numbers too) to form a fractal book like structure. Allowing all possible finite-dimensional
algebraic and perhaps even transcendental extensions of p-adic numbers adds additional pages to this
”Big Book”.

This leads to a generalization of the notion of manifold as a collection of a real manifold and its
p-adic variants glued together along common points. The outcome of experimentation is that this
generalization makes sense under very high symmetries and that it is safest to lean strongly on the
physical picture provided by quantum TGD.

1. The most natural guess is that the coordinates of common points are rational or in some algebraic
extension of rational numbers. General coordinate invariance and preservation of symmetries
require preferred coordinates existing when the manifold has maximal number of isometries.
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This approach is especially natural in the case of linear spaces- in particular Minkowski space
M4. The natural coordinates are in this case linear Minkowski coordinates. The choice of
coordinates is not completely unique and has interpretation as a geometric correlate for the
choice of quantization axes for a given CD.

2. As will be found, the need to have a well-defined integration based on Fourier analysis (or its
generalization to harmonic analysis [14] in symmetric spaces) poses very strong constraints and
allows p-adicization only if the space has maximal symmetries. Fourier analysis requires the
introduction of an algebraic extension of p-adic numbers containing sufficiently many roots of
unity.

(a) This approach is especially natural in the case of compact symmetric spaces such as CP2 [8]
.

(b) Also symmetric spaces such the 3-D proper time a = constant hyperboloid of M4-call it
H(a) -allowing Lorentz group as isometries allows a p-adic variant utilizing the hyperbolic
counterparts for the roots of unity. M4 × H(a = 2na0) appears as a part of the moduli
space of CDs.

(c) For light-cone boundaries associated with CDs SO(3) invariant radial coordinate rM defin-
ing the radius of sphere S2 defines the hyperbolic coordinate and angle coordinates of S2

would correspond to phase angles and M4
± projections for the common points of real and

p-adic variants of partonic 2-surfaces would be this kind of points. Same applies to CP2 pro-
jections. In the ”intersection of real and p-adic worlds” real and p-adic partonic 2-surfaces
would obey same algebraic equations and would be obtained by an algebraic continuation
from the corresponding equations making sense in the discrete variant of M4

± ×CP2. This
connection with discrete sub-manifolds geometries means very powerful constraints on the
partonic 2-surfaces in the intersection.

3. The common algebraic points of real and p-adic variant of the manifold form a discrete space but
one could identify the p-adic counterpart of the real discretization intervals (0, 2π/N) for angle
like variables as p-adic numbers of norm smaller than 1 using canonical identification or some
variant of it. Same applies to the the hyperbolic counterpart of this interval. The non-uniqueness
of this map could be interpreted in terms of a finite measurement resolution. In particular, the
condition that WCW allows Kähler geometry requires a decomposition to a union of symmetric
spaces so that there are good hopes that p-adic counterpart is analogous to that assigned to
CP2.

2. How large p-adic space-time sheets can be?

Space-time region having finite size in the real sense can have arbitrarily large size in p-adic sense
and vice versa. This raises a rather thought provoking questions. Could the p-adic space-time sheets
have cosmological or even infinite size with respect to the real metric but have be p-adically finite?
How large space-time surface is responsible for the p-adic representation of my body? Could the
large or even infinite size of the cognitive space-time sheets explain why creatures of a finite physical
size can invent the notion of infinity and construct cosmological theories? Could it be that pinary
cutoff O(pn) defining the resolution of a p-adic cognitive representation would define the size of the
space-time region needed to realize the cognitive representation?

In fact, the mere requirement that the neighborhood of a point of the p-adic space-time sheet
contains points, which are p-adically infinitesimally near to it can mean that points infinitely distant
from this point in the real sense are involved. A good example is provided by an integer valued point
x = n < p and the point y = x+pm, m > 0: the p-adic distance of these points is p−m whereas at the
limit m → ∞ the real distance goes as pm and becomes infinite for infinitesimally near points. The
points n+ y, y =

∑
k>0 xkp

k, 0 < n < p, form a p-adically continuous set around x = n. In the real
topology this point set is discrete set with a minimum distance ∆x = p between neighboring points
whereas in the p-adic topology every point has arbitrary nearby points. There are also rationals, which
are arbitrarily near to each other both p-adically and in the real sense. Consider points x = m/n,
m and n not divisible by p, and y = (m/n) × (1 + pkr)/(1 + pks), s = r + 1 such that neither r
or s is divisible by p and k >> 1 and r >> p. The p-adic and real distances are |x − y|p = p−k



10.2. p-Adic physics and the fusion of real and p-adic physics to a single coherent whole749

and |x− y| ' (m/n)/(r + 1) respectively. By choosing k and r large enough the points can be made
arbitrarily close to each other both in the real and p-adic senses.

The idea about astrophysical size of the p-adic cognitive space-time sheets providing representation
of body and brain is consistent with TGD inspired theory of consciousness, which forces to take very
seriously the idea that even human consciousness involves astrophysical length scales.

3. Generalizing complex analysis by replacing complex numbers by generalized numbers

One general idea which results as an outcome of the generalized notion of number is the idea of a
universal function continuable from a function mapping rationals to rationals or to a finite extension of
rationals to a function in any number field. This algebraic continuation is analogous to the analytical
continuation of a real analytic function to the complex plane. Rational functions for which polynomials
have rational coefficients are obviously functions satisfying this constraint. Algebraic functions for
which polynomials have rational coefficients satisfy this requirement if appropriate finite-dimensional
algebraic extensions of p-adic numbers are allowed.

For instance, one can ask whether residue calculus might be generalized so that the value of an
integral along the real axis could be calculated by continuing it instead of the complex plane to any
number field via its values in the subset of rational numbers forming the back of the book like structure
(in very metaphoral sense) having number fields as its pages. If the poles of the continued function
in the finitely extended number field allow interpretation as real numbers it might be possible to
generalize the residue formula. One can also imagine of extending residue calculus to any algebraic
extension. An interesting situation arises when the poles correspond to extended p-adic rationals
common to different pages of the ”Big Book”. Could this mean that the integral could be calculated
at any page having the pole common. In particular, could a p-adic residue integral be calculated in
the ordinary complex plane by utilizing the fact that in this case numerical approach makes sense.
Contrary to the first expectations the algebraically continued residue calculus does not seem to have
obvious applications in quantum TGD.

Canonical identification

Canonical There exists a natural continuous map Id : Rp → R+ from p-adic numbers to non-negative
real numbers given by the ”pinary” expansion of the real number for x ∈ R and y ∈ Rp this corre-
spondence reads

y =
∑
k>N

ykp
k → x =

∑
k<N

ykp
−k ,

yk ∈ {0, 1, .., p− 1} . (10.2.14)

This map is continuous as one easily finds out. There is however a little difficulty associated with
the definition of the inverse map since the pinary expansion like also desimal expansion is not unique
(1 = 0.999...) for the real numbers x, which allow pinary expansion with finite number of pinary digits

x =

N∑
k=N0

xkp
−k ,

x =

N−1∑
k=N0

xkp
−k + (xN − 1)p−N + (p− 1)p−N−1

∑
k=0,..

p−k .

(10.2.15)

The p-adic images associated with these expansions are different
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Figure 10.1: The real norm induced by canonical identification from 2-adic norm.

y1 =

N∑
k=N0

xkp
k ,

y2 =

N−1∑
k=N0

xkp
k + (xN − 1)pN + (p− 1)pN+1

∑
k=0,..

pk

= y1 + (xN − 1)pN − pN+1 , (10.2.16)

so that the inverse map is either two-valued for p-adic numbers having expansion with finite number
of pinary digits or single valued and discontinuous and non-surjective if one makes pinary expansion
unique by choosing the one with finite number of pinary digits. The finite number of pinary digits
expansion is a natural choice since in the numerical work one always must use a pinary cutoff on the
real axis.

1. Canonical identification is a continuous map of non-negative reals to p-adics

The topology induced by the inverse of the canonical identification map in the set of positive real
numbers differs from the ordinary topology. The difference is easily understood by interpreting the
p-adic norm as a norm in the set of the real numbers. The norm is constant in each interval [pk, pk+1)
(see Fig. A-4.2) and is equal to the usual real norm at the points x = pk: the usual linear norm is
replaced with a piecewise constant norm. This means that p-adic topology is coarser than the usual
real topology and the higher the value of p is, the coarser the resulting topology is above a given
length scale. This hierarchical ordering of the p-adic topologies will be a central feature as far as the
proposed applications of the p-adic numbers are considered.

Ordinary continuity implies p-adic continuity since the norm induced from the p-adic topology is
rougher than the ordinary norm. This allows two alternative interpretations. Either p-adic image of a
physical systems provides a good representation of the system above some pinary cutoff or the physical
system can be genuinely p-adic below certain length scale Lp and become in good approximation
real, when a length scale resolution Lp is used in its description. The first interpretation is correct if
canonical identification is interpreted as a cognitive map. p-Adic continuity implies ordinary continuity
from right as is clear already from the properties of the p-adic norm (the graph of the norm is indeed
continuous from right). This feature is one clear signature of the p-adic topology.

If one considers seriously the application of canonical identification to basic quantum TGD one
cannot avoid the question about the p-adic counterparts of the negative real numbers. There is no
satisfactory manner to circumvent the fact that canonical images of p-adic numbers are naturally
non-negative. This is not a problem if canonical identification applies only to the coordinate interval
(0, 2π/N) or its hyperbolic variant defining the finite measurement resolution. That p-adicization
program works only for highly symmetric spaces is not a problem from the point of view of TGD.



10.2. p-Adic physics and the fusion of real and p-adic physics to a single coherent whole751

2. Canonical identification maps the predictions of the p-adic probability calculus and statistical
physics to real numbers

p-Adic mass calculations based on p-adic thermodynamics were the first and rather successful
application of the p-adic physics (see the four chapters in [55] . The essential element of the approach
was the replacement of the Boltzmann weight e−E/T with its p-adic generalization pL0/Tp , where L0

is the Virasoro generator corresponding to scaling and representing essentially mass squared operator
instead of energy. Tp is inverse integer valued p-adic temperature. The predicted mass squared
averages were mapped to real numbers by canonical identification.

One could also construct a real variant of this approach by considering instead of the ordinary
Boltzman weights the weights p−L0/Tp . The quantization of temperature to Tp = log(p)/n would be
a completely ad hoc assumption. In the case of real thermodynamics all particles are predicted to be
light whereas in case of p-adic thermodynamics particle is light only if the ratio for the degeneracy of
the lowest massive state to the degeneracy of the ground state is integer. Immense number of particles
disappear from the spectrum of light particles by this criterion. For light particles the predictions are
same as of p-adic thermodynamics in the lowest non-trivial order but in the next order deviations are
possible.

Also p-adic probabilities and the p-adic entropy can be mapped to real numbers by canonical
identification. The general idea is that a faithful enough cognitive representation of the real physics can
by the number theoretical constraints involved make predictions, which would be extremely difficult
to deduce from real physics.

3. The variant of canonical identification commuting with division of integers

The basic problems of canonical identification is that it does not respect unitarity. For this reason it
is not well suited for relating p-adic and real scattering amplitudes. The problem of the correspondence
via direct rationals or roots of unity is that it does not respect continuity. The restriction of S-matrix
to a discrete intersection of real and p-adic worlds is one manner to solve this difficulty.

One can also consider alternative approach to achieve a compromise between algebra and topology
achieved by using a modification of canonical identification IRp→R defined as I1(r/s) = I(r)/I(s). If
the conditions r � p and s � p hold true, the map respects algebraic operations and also unitarity
and various symmetries. It seems that this option must be used to relate p-adic transition amplitudes
to real ones and vice versa [53] . In particular, real and p-adic coupling constants are related by this
map. Also some problems related to p-adic mass calculations find a nice resolution when I1 is used.

This variant of canonical identification is not equivalent with the original one using the infinite
expansion of q in powers of p since canonical identification does not commute with product and
division. The variant is however unique in the recent context when r and s in q = r/s have no
common factors. For integers n < p it reduces to direct correspondence.

Generalized numbers would be regarded in this picture as a generalized manifold obtained by gluing
different number fields together along rationals. Instead of a direct identification of real and p-adic
rationals, the p-adic rationals in Rp are mapped to real rationals (or vice versa) using a variant of the
canonical identification IR→Rp in which the expansion of rational number q = r/s =

∑
rnp

n/
∑
snp

n

is replaced with the rational number q1 = r1/s1 =
∑
rnp
−n/

∑
snp
−n interpreted as a p-adic number:

q =
r

s
=

∑
n rnp

n∑
m snp

n
→ q1 =

∑
n rnp

−n∑
m snp

−n . (10.2.17)

Rp1 and Rp2
are glued together along common rationals by an the composite map IR→Rp2

IRp1→R.
This variant of canonical identification seems to be an excellent candidate for mapping the pre-

dictions of p-adic mass calculations to real numbers and also for relating p-adic and real scattering
amplitudes to each other [53] . The deviations of predictions from those for standard form of canonical
identification are however small.

The cautious conclusion of this section is that symmetric space approach involving both the iden-
tification along common rationals of roots of unity in large and canonical identification below the
measurement resolution provide the safest approach to the p-adicization of quantum TGD. The impos-
sibility to well-order the points below measurement resolution explains why effective p-adic topology
works in real context. The discussion of integration and Fourier analysis will provide further support
for the conclusion.
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10.2.5 p-Adic variants of the basic mathematical structures relevant to
physics

The basic existential questions worrying a person planning to become a p-adic quantum physicist
are rather obvious. How to define p-adic probabilities, p-adic thermodynamics, and p-adic unitarity
and perhaps even p-adic Hilbert space? Is it possible to define the p-adic variant of the manifold
concept? As already noticed for symmetric spaces p-adic variants might exist but what about space-
time surfaces: could it be enough to consider only the p-adic variants of the partonic 2-surfaces in the
manner already discussed? Can one somehow circumvent the difficulties related to the definition of
the p-adic variant of definite integral? Perhaps by using Fourier analysis? How can one circumvent the
fact that the basic variational principle involves integral over space-time surface which is p-adically
notoriously difficult to define? Is all this just a waste of time or could it be that the enormous
constraints from p-adicization could provide information about real physics not achievable otherwise
(as in the case of p-adic mass calculations)?

p-Adic probabilities

p-Adic super conformal representations necessitate p-adic QM based on the p-adic unitarity and p-
adic probability concepts. The concept of a p-adic probability indeed makes sense as shown by [102]
. p-Adic probabilities can be defined as relative frequencies Ni/N in a long series consisting of total
number N of observations and Ni outcomes of type i. Probability conservation corresponds to

∑
i

Ni = N , (10.2.18)

and the only difference as compared to the usual probability is that the frequencies are interpreted as
p-adic numbers.

The interpretation as p-adic numbers means that the relative frequencies converge to probabilities
in a p-adic rather than real sense in the limit of a large number N of observations. If one requires that
probabilities are limiting values of the frequency ratios in p-adic sense one must pose restrictions on
the possible numbers of the observations N if N is larger than p. For N smaller than p, the situation
is similar to the real case. This means that for p = M127 ' 1038, appropriate for the particle physics
experiments, p-adic probability differs in no observable manner from the ordinary probability.

If the number of observations is larger than p, the situation changes. If N1 and N2 are two numbers
of observations they are near to each other in the p-adic sense if they differ by a large power of p.
A possible interpretation of this restriction is that the observer at the p:th level of the condensate
cannot choose the number of the observations freely. The restrictions to this freedom come from the
requirement that the sensible statistical questions in a p-adically conformally invariant world must
respect p-adic conformal invariance [32] .

The most important application of the p-adic probability is the description of the particle massiva-
tion based on p-adic thermodynamics. Instead of energy, Virasoro generator l is thermalized and in the
low temperature phase temperature is quantized in the sense that the counterpart of the Boltzmann
weight exp(H/T ) is pL0/T , where T = 1/n from the requirement that Boltzmann weight exists (L0

has integer spectrum). The surprising success of the mass calculations shows that p-adic probability
theory is much more than a formal possibility.

In particle physics context coupling constant evolution is replaced with a discrete p-adic coupling
constant evolution and the renormalization is related to the the change of the reduction of the p-adic
length scale Lp in the length scale hierarchy rather than p-adic fractality for a fixed value of p. In
zero energy ontology the evolution corresponds to the hierarchy of CDs with scales coming as powers
of 2 in accordance with p-adic length scale hypothesis.

1. p-Adic probabilities and p-adic fractals

p-Adic probalities are natural in the statistical description of the fractal structures, which can
contain same structural detail with all possible sizes.

1. The concept of a structural detail in a fractal seems to be reasonably well defined concept. The
structural detail is clearly fixed by its topology and p-adic conformal invariants associated with
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it. Clearly, a finite resolution defined by some power of p of the p-adic cutoff scale must be
present in the definition. For example, p-adic angles are conformal invariants in the p-adic case,
too. The overall size of the detail doesn’t matter. Let us therefore assume that it is possible to
make a list, possibly infinite, of the structural details appearing in the p-adic fractal.

2. What kind of questions related to the structural details of the p-adic fractal one can ask? The
first thing one can ask is how many times i:th structural detail appears in a finite region of
the fractal structure: although this number is infinite as a real number it might possess (and
probably does so!) finite norm as a p-adic number and provides a useful p-adic invariant of the
fractal. If a complete list about the structural details of the fractal is at use one can calculate
also the total number of structural details defined as N =

∑
iNi. This means that one can

also define p-adic probability for the appearance of i:th structural detail as a relative frequency
pi = Ni/N .

3. One can consider conditional probabilities, too. It is natural to ask what is the probability
for the occurrence of the structural detail subject to the condition that part of the structural
detail is fixed (apart from the p-adic conformal transformations). In order to evaluate these
probalities as relative frequencies one needs to look only for those structural details containing
the substructure in question.

4. The evaluation of the p-adic probalities of occurrence can be done by evaluating the required
numbers Ni and N in a given resolution. A better estimate is obtained by increasing the
resolution and counting the numbers of the hitherto unobserved structural details. The increase
in the resolution greatly increases the number of the observations in case of p-adic fractal and
the fluctuations in the values of Ni and N increase with the resolution so that Ni/N has no
well defined limit as a real number although one can define the probabilities of occurrence as a
resolution dependent concept. In the p-adic sense the increase in the values ofNi and fluctuations
are small and the procedure should converge rapidly so that reliable estimates should result with
quite a reasonable resolution. Notice that the increase of the fluctuations in the real sense, when
resolution is increased is in accordance with the criticality of the system.

5. p-Adic frequencies and probabilities define via the canonical correspondence real valued invari-
ants of the fractal structure.

p-Adic fractality in this sense could have practical applications only for small values of p. They
could be important in the macroscopic length scales if the hierarchy of Planck constants meaning
scaling up Lp →

√
rLp, r = ~/~0, of the p-adic length scales. In elementary particle physics Lp is

of the order of the Compton length associated with the particle for r = 1 and already in the first
downward step CP2 length scale R is achieved whereas upward step gives astrophysical length scale
in the case of electron (p = M127 = 2127− 1) for instance. For large enough values of Planck constant
and for small p-adic primes p the situation changes.

2. Relationship between p-adic and real probabilities

There are uniqueness problems related to the mapping of p-adic probabilities to real ones. These
problems find a nice resolution from the requirement that the map respects probability conservation.
The implied modification of the original mapping does not change measurably the predictions for the
masses of light particles.

a) How unique the map of p-adic probabilities and mass squared values are mapped to real numbers
is?

The mapping of p-adic thermodynamical probabilities and mass squared values to real numbers is
not completely unique.

1. The canonical identification Id :
∑
xnp

n →
∑
xnp

−n takes care of this mapping but does
not respect the sum of probabilities so that the real images I(pn) of the probabilities must be
normalized. This is a somewhat alarming feature.

2. The modification of the canonical identification mapping rationals by the formula I(r/s) =
I(r)/I(s) has appeared naturally in various applications, in particular because it respects uni-
tarity of unitary matrices with rational elements with r < p, s < p. In the case of p-adic
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thermodynamic the formula I(g(n)pn/Z)→ I(g(n)pn)/I(Z) would be very natural although Z
need not be rational anymore. For g(n) < p the real counterparts of the p-adic probabilities
would sum up to one automatically for this option. One cannot deny that this option is more
convincing than the original one. The generalization of this formula to map p-adic mass squared
to a real one is obvious.

3. Options 1) and 2) differ dramatically when the n = 0 massless ground state has ground state
degeneracy D > 1. For option 1) the real mass is predicted to be of order CP2 mass whereas
for option 2) it would be by a factor 1/D smaller than the minimum mass predicted by the
option 1). Thus option 2) would predict a large number of additional exotic states. For those
states which are light for option 1), the two options make identical predictions as far as the
significant two lowest order terms are considered. Hence this interpretation would not change
the predictions of the p-adic mass calculations in this respect. Option 2) is definitely more in
accord with the real physics based intuitions and the main role of p-adic thermodynamics would
be to guarantee the quantization of the temperature and fix practically uniquely the spectrum
of the ”Hamiltonian”.

b) Under what conditions the mapping of p-adic ensemble probabilities to real probabilities respects
probability conservation?

One can consider also a more general situation. Assume that one has an ensemble consisting of
independent elementary events such that the number of events of type i is Ni. The probabilities are
given by pi = Ni/N and N =

∑
Ni is the total number of elementary events. Even in the case that

N is infinite as a real number it is natural to map the p-adic probabilities to their real counterparts
using the rational canonical identification I(pi) = I(Ni)/I(N). Of course, Ni and N exist as well
defined p-adic numbers under very stringent conditions only.

The question is under what conditions this map respects probability conservation. The answer
becomes obvious by looking at the pinary expansions of Ni and N . If the integers Ni (possibly infinite
as real integers) have pinary expansions having no common pinary digits, the sum of probabilities is
conserved in the map. Note that this condition can assign also to a finite ensemble with finite number
of a unique value of p.

This means that the selection of a basis for independent events corresponds to a decomposition of
the set of integers labelling pinary digits to disjoint sets and brings in mind the selection of orthonor-
malized basis of quantum states in quantum theory. What is physically highly non-trivial that this
”orthogonalization” alone puts strong constraints on probabilities of the allowed elementary events.
One can say that the probabilities define distributions of pinary digits analogous to non-negative prob-
ability amplitudes in the space of integers labelling pinary digits, and the probabilities of independent
events must be orthogonal with respect to the inner product defined by point-wise multiplication in
the space of pinary digits.

p-Adic thermodynamics for which Boltzman weights g(E)exp(−E/T ) are replaced by g(E)pE/T

such that one has g(E) < p and E/T is integer valued, satisfies this constraint. The quantization
of E/T to integer values implies quantization of both T and ”energy” spectrum and forces so called
super conformal invariance [32, 36] in TGD applications, which is indeed a basic symmetry of the
theory.

There are infinitely many ways to choose the elementary events and each choice corresponds to
a decomposition of the infinite set of integers n labelling the powers of p to disjoint subsets. These
subsets can be also infinite. One can assign to this kind of decomposition a resolution which is the
poorer the larger the subsets involved are. p-Adic thermodynamics would represent the situation in
which the resolution is maximal since each set contains only single pinary digit. Note the analogy
with the basis of completely localized wave functions in a lattice.

c) How to map p-adic transition probabilities to real ones?
p-Adic variants of TGD, if they exist, give rise to S-matrices and transition probabilities Pij , which

are p-adic numbers.

1. The p-adic probabilities defined by rows of S-matrix mapped to real numbers using canoni-
cal identification respecting the q = r/s decomposition of rational number or its appropriate
generalization should define real probabilities.



10.2. p-Adic physics and the fusion of real and p-adic physics to a single coherent whole755

2. The simplest example would simple renormalization for the real counterparts of the p-adic
probabilities (Pij)R obtained by canonical identification (or more probably its appropriate mod-
ification).

Pij =
∑
k≥0

P kijp
k ,

Pij →
∑
k≥0

P kijp
−k ≡ (Pij)R ,

(Pij)R → (Pij)R∑
j(Pij)R

≡ PRij .

(10.2.19)

The procedure converges rapidly in powers of p and resembles renormalization procedure of
quantum field theories. The procedure automatically divides away one four-momentum delta
function from the square of S-matrix element containing the square of delta function with no
well defined mathematical meaning. Usually one gets rid of the delta function interpreting it
as the inverse of the four-dimensional measurement volume so that transition rate instead of
transition probability is obtained. Of course, also now same procedure should work either as a
discrete or a continuous version.

3. Probability interpretation would suggest that the real counterparts of p-adic probabilities sum
up to unity. This condition is rather strong since it would hold separately for each row and
column of the S-matrix.

4. A further condition would be that the real counterparts of the p-adic probabilities for a given
prime p are identical with the transition probabilities defined by the real S-matrix for real
space-time sheets with effective p-adic topology characterized by p. This condition might allow
to deduce all relevant phase information about real and corresponding p-adic S-matrices using
as an input only the observable transition probabilities.

d) What it means that p-adically independent events are not independent in real sense?

A further condition would be that p-adic quantum transitions represent also in the real sense
independent elementary events so that the real counterpart for a sum of the p-adic probabilities for
a finite number of transitions equals to the sum of corresponding real probabilities. This condition is
definitely too strong in the generl case since only a single transition could correspond to a given p-adic
norm of transition probability Pij with i fixed. In p-adic thermodynamics it can be satisfied if the
degeneracy for an energy eigenstate for a given eigen value L0 = n is not larger than p. This condition
fails for large values of n for super Virasoro representations since the degeneracy grows exponentially.
This has not practical implications for the large values of p considered.

The crucial question concerns the physical difference between the real counterpart for the sum
of the p-adic transition probabilities and for the sum of the real counterparts of these probabilities,
which are in general different:

(
∑
j

Pij)R 6=
∑
j

(Pij)R . (10.2.20)

The suggestion is that p-adic sum of the transition probabilities corresponds to the experimental
situation, when one does not monitor individual transitions but using some common experimental
signature only looks whether the transition leads to this set of the final states or not. When one
looks each transition separately or effectively performs different experiment by considering only one
transition channel in each experiment one must use the sum of the real probabilities. More precisely,
the choice of the experimental signatures divides the set U of the final states to a disjoint union
U = ∪iUi and one must define the real counterparts for the transition probabilities PiUk as
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PiUk =
∑
j∈Uk

Pij ,

PiUk → (PiUk)R ,

(PiUk)R → (PiUk)R∑
l(PiUl)R

≡ PRiUk .

(10.2.21)

The assumption means deep a departure from the ordinary probability theory. If p-adic physics
is the physics of cognitive systems, there need not be anything mysterious in the dependence of the
behavior of system on how it is monitored. At least half-jokingly one might argue that the behavior
of an intelligent system indeed depends strongly on whether the boss is nearby or not. The precise
definition for the monitoring could be based on the decomposition of the density matrix representing
the entangled subsystem into a direct sum over the subspaces associated with the degenerate eigen-
values of the density matrix. This decomposition provides a natural definition for the notions of the
monitoring and resolution.

The renormalization procedure is in fact familiar from standard physics. Assume that the labels
j correspond to momenta. The division of momentum space to cells of a given size so that the
individual momenta inside cells are not monitored separately means that momentum resolution is
finite. Therefore one must perform p-adic summation over the cells and define the real probabilities in
the proposed manner. p-Adic effects resulting from the difference between p-adic and real summations
could be the counterpart of the renormalization effects in QFT. It should be added that similar
resolution can be defined also for the initial states by decomposing them into a union of disjoint
subsets.

2. p-Adic thermodynamics

The p-adic field theory limit as such is not expected to give a realistic theory at elementary
particle physics level. The point is that particles are expected to be either massless or possess mass
of order 10−4 Planck mass. The p-adic description of particle massivation described in [55] shows
that p-adic thermodynamics provides the proper formulation of the problem. What is thermalized is
Virasoro generator L0 (mass squared contribution is not included to L0 so that states do not have a
fixed conformal weight). Temperature is quantized purely number theoretically in low temperature
limit (exp(H/kT ) → pL0/T , T = 1/n): in fact, the partition function does not even exist in high
temperature phase. The extremely small mixing of massless states with Planck mass states implies
massivation and predictions of the p-adic thermodynamics for the fermionic masses are in excellent
agreement with experimental masses. Thermodynamic approach also explains the emergence of the
length scale Lp for a given p-adic condensation level and one can develop arguments explaining why
primes near prime powers of two are favored.

It should be noticed that rational p-adic temperatures 1/T = k/n are possible, if one poses the
restriction that thermal probabilities are non-vanishing only for some subalgebra of the Super Virasoro
algebra isomorphic to the Super Virasoro algebra itself. The generators Lkn,Gkn, where k is a positive
integer, indeed span this kind of a subalgebra by the fractality of the Super Virasoro algebra and pL0/T

is integer valued with this restriction.
One might apply thermodynamics approach should also in the calculation of S-matrix. What is

is needed is thermodynamical expectation value for the transition amplitudes squared over incoming
and outgoing states. In this expectation value 3-momenta are fixed and only mass squared varies.

3. Generalization of the notion of information

TGD inspired theory of consciousness, in particular the formulation of Negentropy Maximization
Principle (NMP) in p-adic context, has forced to rethink the notion of the information concept. In
TGD state preparation process is realized as a sequence of self measurements. Each self measurement
means a decomposition of the sub-system involved to two unentangled parts. The decomposition is
fixed highly uniquely from the requirement that the reduction of the entanglement entropy is maximal.

The additional assumption is that bound state entanglement is stable against self measurement.
This assumption is somewhat ad hoc and it would be nice to get rid of it. The only manner to achieve
this seems to be a generalized definition of entanglement entropy allowing to assign a negative value
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of entanglement entropy to the bound state entanglement, so that bound state entanglement would
actually carry information, in fact conscious information (experience of understanding). This would
be very natural since macro-temporal quantum coherence corresponds to a generation of bound state
entanglement, and is indeed crucial for ability to have long lasting non-entropic mental images.

The generalization of the notion of number concept leads immediately to the basic problem. How to
generalize the notion of entanglement entropy that it makes sense for a genuinely p-adic entanglement?
What about the number-theoretically universal entanglement with entanglement probabilities, which
correspond to finite extension of rational numbers? One can also ask whether the generalized notion
of information could make sense at the level of the space-time as suggested by quantum-classical
correspondence.

In the real context Shannon entropy is defined for an ensemble with probabilities pn as

S = −
∑
n

pnlog(pn) . (10.2.22)

As far as theory of consciousness is considered, the basic problem is that Shannon entropy is always
non-negative so that as such it does not define a genuine information measure. One could define
information as a change of Shannon entropy and this definition is indeed attractive in the sense that
quantum jump is the basic element of conscious experience and involves a change. One can however
argue that the mere ability to transfer entropy to environment (say by aggressive behavior) is not all
that is involved with conscious information, and even less so with the experience of understanding
or moment of heureka. One should somehow generalize the Shannon entropy without losing the
fundamental additivity property.

a) p-Adic entropies

The key observation is that in the p-adic context the logarithm function log(x) appearing in
the Shannon entropy is not defined if the argument of logarithm has p-adic norm different from 1.
Situation changes if one uses an extension of p-adic numbers containing log(p): the conjecture is that
this extension is finite-dimensional. One might however argue that Shannon entropy should be well
defined even without the extension.

p-Adic thermodynamics inspires a manner to achieve this. One can replace log(x) with the log-
arithm logp(|x|p) of the p-adic norm of x, where logp denotes p-based logarithm. This logarithm is
integer valued (logp(p

n) = n), and is interpreted as a p-adic integer. The resulting p-adic entropy

Sp =
∑
n

pnk(pn) ,

k(pn) = −logp(|pn|) . (10.2.23)

is additive: that is the entropy for two non-interacting systems is the sum of the entropies of com-
posites. Note that this definition differs from Shannon’s entropy by the factor log(p). This entropy
vanishes identically in the case that the p-adic norms of the probabilities are equal to one. This means
that it is possible to have non-entropic entanglement for this entropy.

One can consider a modification of Sp using p-adic logarithm if the extension of the p-adic numbers
contains log(p). In this case the entropy is formally identical with the Shannon entropy:

Sp = −
∑
n

pnlog(pn) = −
∑
n

pn
[
−k(pn)log(p) + pkn log(pn/p

kn
]
. (10.2.24)

It seems that this entropy cannot vanish.
One must map the p-adic value entropy to a real number and here canonical identification can be

used:

Sp,R = (Sp)R × log(p)) ,

(
∑
n

xnp
n)R =

∑
n

xnp
−n . (10.2.25)
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The real counterpart of the p-adic entropy is non-negative.

b) Number theoretic entropies and metabolic energy

In the case that the probabilities are rational or belong to a finite-dimensional extension of rationals,
it is possible to regard them as real numbers or p-adic numbers in some extension of p-adic numbers
for any p. The visions that rationals and their finite extensions correspond to islands of order in the
seas of chaos of real and p-adic transcendentals suggests that states having entanglement coefficients
in finite-dimensional extensions of rational numbers are somehow very special. This is indeed the
case. The p-adic entropy entropy Sp = −

∑
n pnlogp(|pn|)log(p) can be interpreted in this case as an

ordinary rational number in an extension containing log(p).
What makes this entropy so interesting is that it can have also negative values in which case the

interpretation as an information measure is natural. In the real context one can fix the value of the
value of the prime p by requiring that Sp is maximally negative, so that the information content of
the ensemble could be defined as

I ≡ Max{−Sp, p prime} . (10.2.26)

This information measure is positive when the entanglement probabilities belong to a finite-dimensional
extension of rational numbers. Thus kind of entanglement is stable against NMP [52] , and has a nat-
ural interpretation as a negentropic entanglement.

There is no need to interpret negentropic entanglement as bound state entanglement as was the
original proposal. This together with the vision about life as something in the intersection of the real
and p-adic worlds inspires the idea about a connection between information and metabolism in living
matter. Metabolic energy could be carried by negentropic entanglement and the feed of metabolic
energy would be also feed of negentropy. In particular, the poorly understood high energy phosphate
bond could be identified as a bond involving negentropic entanglement [29] . The prediction would
be that the negentropic states of real systems form a number theoretical hierarchy according to the
prime p and and dimension of algebraic extension characterizing the entanglement.

Number theoretically state function reduction and state preparation could be seen as information
generating processes in the intersection of real and p-adic worlds. p-Adic ↔ real transitions make
sense in the intersection with interpretation asa realization of intentional action and build-up of
cognitive representations. Later an argument that these processes have a purely number theoretical
interpretation will be developed based on the generalized notion of unitarity allowing the U -matrix to
have matrix elements between the sectors of the state space corresponding to different number fields.

How to define integration and p-adic Fourier analysis, integral calculus, and p-adic coun-
terparts of geometric objects?

p-Adic differential calculus exists and obeys essentially the same rules as ordinary differental calcu-
lus. The only difference from real context is the existence of p-adic pseudoconstants: any function
which depends on finite number of pinary digits has vanishing p-adic derivative. This implies non-
determinism of p-adic differerential equations. One can defined p-adic integral functions using the fact
that indefinite integral is the inverse of differentiation. The basis problem with the definite integrals
is that p-adic numbers are not well-ordered so that the crucial ordering of the points of real axis in
definite integral is not unique. Also p-adic Fourier analysis is problematic since direct counterparts of
ep(ix) and trigonometric functions are not periodic. Also exp(-x) fails to converse exponentially since
it has p-adic norm equal to 1. Note also that these functions exists only when the p-adic norm of x
is smaller than 1.

The following considerations support the view that the p-adic variant of a geometric objects,
integration and p-adic Fourier analysis exists but only when one considers highly symmetric geometric
objects such as symmetric spaces. This is wellcome news from the point of view of physics. At the
level of space-time surfaces this is problematic. The field equations associated with Kähler action
and modified Dirac equation make sense. Kähler action defined as integral over p-adic space-time
surface fails to exist. If however the Kähler function identified as Kähler for a preferred extremal of
Kähler action is rational or algebraic function of preferred complex coordinates of WCW with ratonal
coefficients, its p-adic continuation is expected to exist.
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1. Circle with rotational symmetries and its hyperbolic counterparts

Consider first circle with emphasis on symmetries and Fourier analysis.

1. In this case angle coordinate φ is the natural coordinate. It however does not make sense as such
p-adically and one must consider either trigonometric functions or the phase exp(iφ) instead.
If one wants to do Fourier analysis on circle one must introduce roots Un,N = exp(in2π/N) of
unity. This means discretization of the circle. Introducing all roots Un,p = exp(i2πn/p), such
that p divides N , one can represent all Uk,n up to n = N . Integration is naturally replaced with
sum by using discrete Fourier analysis on circle. Note that the roots of unity can be expressed
as products of powers of roots of unity exp(in2π/pk), where pk divides N .

2. There is a number theoretical delicacy involved. By Fermat’s theorem ap−1 mod p = 1 for
a = 1, ...p−1 for a given p-adic prime so that for any integer M divisible by a factor of p−1 the
M :th roots of unity exist as ordinary p-adic numbers. The problem disappears if these values
of M are excluded from the discretization for a given value of the p-adic prime. The manner to
achieve this is to assume that N contains no divisors of p−1 and is consistent with the notion of
finite measurement resolution. For instance, N = pn is an especially natural choice guaranteing
this.

3. The p-adic integral defined as a Fourier sum does not reduce to a mere discretization of the
real integral. In the real case the Fourier coefficients must approach to zero as the wave vector
k = n2π/N increases. In the p-adic case the condition consistent with the notion of finite
measurement resolution for angles is that the p-adic valued Fourier coefficients approach to zero
as n increases. This guarantees the p-adic convergence of the discrete approximation of the
integral for large values of N as n increases. The map of p-adic Fourier coefficients to real ones
by canonical identification could be used to relate p-adic and real variants of the function to
each other.

This finding would suggests that p-adic geometries -in particular the p-adic counterpart of CP2,
are discrete. Variables which have the character of a radial coordinate are in natural manner p-
adically continuous whereas phase angles are naturally discrete and described in terms of algebraic
extensions. The conclusion is disappoing since one can quite well argue that the discrete structures
can be regarded as real. Is there any manner to escape this conclusion?

1. Exponential function exp(ix) exists p-adically for |x|p ≤ 1/p but is not periodic. It provides rep-
resentation of p-adic variant of circle as group U(1). One obtains actually a hierarchy of groups
U(1)p,n corresponding to |x|p ≤ 1/pn. One could consider a generalization of phases as products
Expp(N,n2π/N + x) = exp(in2πn/N)exp(ix) of roots of unity and exponent functions with
an imaginary exponent. This would assign to each root of unity p-adic continuum interpreted
as the analog of the interval between two subsequent roots of unity at circle. The hierarchies
of measurement resolutions coming as 2π/pn would be naturally accompanied by increasingly
smaller p-adic groups U(1)p,n.

2. p-Adic integration would involve summation plus possibly also an integration over each p-adic
variant of discretization interval. The summation over the roots of unity implies that the integral
of
∫
exp(inx)dx would appear for n = 0. Whatever the value of this integral is, it is compensated

by a normalization factor guaranteing orthonormality.

3. If one interprets the p-adic coordinate as p-adic integer without the identification of points
differing by a multiple of n as different points the question whether one should require p-adic
continuity arises. Continuity is obtained if Un(x + mpm) = Un(x) for large values of m. This
is obtained if one has n = pk. In the spherical geometry this condition is not needed and
would mean quantization of angular momentum as L = pk, which does not look natural. If
representations of translation group are considered the condition is natural and conforms with
the spirit of the p-adic length scale hypothesis.

The hyperbolic counterpart of circle corresponds to the orbit of point under Lorentz group in
two 2-D Minkowski space. Plane waves are replaced with exponentially decaying functions of the
coordinate η replacing phase angle. Ordinary exponent function exp(x) has unit p-adic norm when it
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exists so that it is not a suitable choice. The powers pn existing for p-adic integers however approach
to zero for large values of x = n. This forces discretization of η or rather the hyperbolic phase as
powers of px, x = n. Also now one could introduce products of Expp(nlog(p) + z) = pnexp(x) to
achieve a p-adic continuum. Also now the integral over the discretization interval is compensated
by orthonormalization and can be forgotten. The integral of exponential function would reduce to
a sum

∫
Exppdx =

∑
k p

k = 1/(1 − p). One can also introduce finite-dimensional but non-algebraic
extensions of p-adic numbers allowing e and its roots e1/n since ep exists p-adically.

2. Plane with translational and rotational symmetries

Consider first the situation by taking translational symmetries as a starting point. In this case
Cartesian coordinates are natural and Fourier analysis based on plane waves is what one wants to
define. As in the previous case, this can be done using roots of unity and one can also introduce
p-adic continuum by using the p-adic variant of the exponent function. This would effectively reduce
the plane to a box. As already noticed, in this case the quantization of wave vectors as multiples of
1/pk is required by continuity.

One can take also rotational symmetries as a starting point. In this case cylindrical coordinates
(ρ, φ) are natural.

1. Radial coordinate can have arbitrary values. If one wants to keep the connection ρ =
√
x2 + y2

with the Cartesian picture square root allowing extension is natural. Also the values of radial
coordinate proportional to odd power of p are problematic since one should introduce

√
p: is

this extension internally consistent? Does this mean that the points ρ ∝ p2n+1 are excluded so
that the plane decomposes to annuli?

2. As already found, angular momentum eigen states can be described in terms of roots of unity
and one could obtain continuum by allowing also phases defined by p-adic exponent functions.

3. In radial direction one should define the p-adic variants for the integrals of Bessel functions and
they indeed might make sense by algebraic continuation if one consistently defines all functions
as Fourier expansions. Delta-function renormalization causes technical problems for a continuum
of radial wave vectors. One could avoid the problem by using expontentially decaying variants
of Bessel function in the regions far from origin, and here the already proposed description of
the hyperbolic counterparts of plane waves is suggestive.

4. One could try to understand the situation also using Cartesian coordinates. In the case of sphere
this is achieved by introducing two coordinate patches with Cartesian coordinates. Pythagorean
phases are rational phases (orthogonal triangles for which all sides are integer valued) and form
a dense set on circle. Complex rationals (orthogonal triangles with integer valued short sides)
define a more general dense subset of circle. In both cases it is difficult to imagine a discretized
version of integration over angles since discretization with constant angle increrement is not
possible.

3. The case of sphere and more general symmetric space

In the case of sphere spherical coordinates are favored by symmetry considerations. For spherical
coordinates sin(θ) is analogous to the radial coordinate of plane. Legedre polynomials expressible
as polynomials of sin(θ) and cos(θ) are expressible in terms of phases and the integration measure
sin2(θ)dθdφ reduces the integral of S2 to summation. As before one can introduce also p-adic contin-
uum. Algebraic cutoffs in both angular momentum l and m appear naturally. Similar cutoffs appear
in the representations of quantum groups and there are good reasons to expect that these phenomena
are correlated.

Exponent of Kähler function appears in the integration over configuration space. From the ex-
pression of Kähler gauge potential given by Aα = J θ

α ∂θK one obtains using Aα = cos(θ)δα,φ and
Jθφ = sin(θ) the expression exp(K) = sin(θ). Hence the exponent of Kähler function is expressible
in terms of spherical harmonics.

The completion of the discretized sphere to a p-adic continuum- and in fact any symmetric space-
could be performed purely group theoretically.
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1. Exponential map maps the elements of the Lie-algebra to elements of Lie-group. This recipe
generalizes to arbitrary symmetric space G/H by using the Cartan decomposition g = t + h,
[h, h] ⊂ h,[h, t] ⊂ t,[t, t] ⊂ h. The exponentiation of t maps t to G/H in this case. The
exponential map has a p-adic generalization obtained by considering Lie algebra with coefficients
with p-adic norm smaller than one so that the p-adic exponent function exists. As a matter fact,
one obtains a hierarchy of Lie-algebras corresponding to the upper bounds of the p-adic norm
coming as p−k and this hierarchy naturally corresponds to the hierarchy of angle resolutions
coming as 2π/pk. By introducing finite-dimensional transcendental extensions containing roots
of e one obtains also a hierarchy of p-adic Lie-algebras associated with transcendental extensions.

2. In particular, one can exponentiate the complement of the SO(2) sub-algebra of SO(3) Lie-
algebra in p-adic sense to obtain a p-adic completion of the discrete sphere. Each point of the
discretized sphere would correspond to a p-adic continuous variant of sphere as a symmetric
space. Similar construction applies in the case of CP2. Quite generally, a kind of fractal or
holographic symmetric space is obtained from a discrete variant of the symmetric space by
replacing its points with the p-adic symmetric space.

3. In the N-fold discretization of the coordinates of M-dimensional space t one (N−1)M discretiza-
tion volumes which is the number of points with non-vanishing t-coordinates. It would be nice
if one could map the p-adic discretization volumes with non-vanishing t-coordinates to their
positive valued real counterparts by applying canonical identification. By group invariance it is
enough to show that this works for a discretization volume assignable to the origin. Since the
p-adic numbers with norm smaller than one are mapped to the real unit interval, the p-adic Lie
algebra is mapped to the unit cell of the discretization lattice of the real variant of t. Hence by
a proper normalization this mapping is possible.

The above considerations suggests that the hierarchies of measurement resolutions coming as
∆φ = 2π/pn are in a preferred role. One must be however cautious in order to avoid too strong
assumptions. The above considerations suggest that the hierarchies of measurement resolutions coming
as ∆φ = 2π/pn are in a preferred role. One must be however cautious in order to avoid too strong
assumptions. The following arguments however support this identification.

1. The vision about p-adicization characterizes finite measurement resolution for angle measure-
ment in the most general case as ∆φ = 2πM/N , where M and N are positive integers having
no common factors. The powers of the phases exp(i2πM/N) define identical Fourier basis irre-
spective of the value of M unless one allows only the powers exp(i2πkM/N) for which kM < N
holds true: in the latter case the measurement resolutions with different values of M corre-
spond to different numbers of Fourier components. Otherwise themeasurement ersolution is just
∆φ = 2π/pn. If one regards N as an ordinary integer, one must have N = pn by the p-adic
continuity requirement.

2. One can also interpret N as a p-adic integer and assume that state function reduction selects one
particular prime (no superposition of quantum states with different p-adic topologies). For N =
pnM , where M is not divisible by p, one can express 1/M as a p-adic integer 1/M =

∑
k≥0Mkp

k,

which is infinite as a real integer but effectively reduces to a finite integer K(p) =
∑N−1
k=0 Mkp

k.
As a root of unity the entire phase exp(i2πM/N) is equivalent with exp(i2πR/pn), R = K(p)M
mod pn. The phase would non-trivial only for p-adic primes appearing as factors in N . The
corresponding measurement resolution would be ∆φ = R2π/N . One could assign to a given
measurement resolution all the p-adic primes appearing as factors in N so that the notion of
multi-p p-adicity would make sense. One can also consider the identification of the measurement
resolution as ∆φ = |N/M |p = 2π/pk. This interpretation is supported by the approach based
on infinite primes [84] .

4. What about integrals over partonic 2-surfaces and space-time surface?

One can of course ask whether also the integrals over partonic 2-surfaces and space-time sur-
face could be p-adicized by using the proposed method of discretization. Consider first the p-adic
counterparts of the integrals over the partonic 2-surface X2.
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1. WCW Hamiltonians and Kähler form are expressible using flux Hamiltonians defined in terms
of X2 integrals of JHA, where HA is δCD × CP2 Hamiltonian, which is a rational function of
the preferred coordinates defined by the exponentials of the coordinates of the sub-space t in
the appropriate Cartan algebra decomposition. The flux factor J = εαβJαβ

√
g2 is scalar and

does not actually depend on the induced metric.

2. The notion of finite measurement resolution would suggest that the discretization of X2 is
somehow induced by the discretization of δCD × CP2. The coordinates of X2 could be taken
to be the coordinates of the projection of X2 to the sphere S2 associated with δM4

± or to the
homologically non-trivial geodesic sphere of CP2 so that the discretization of the integral would
reduce to that for S2 and to a sum over points of S2.

3. To obtain an algebraic number as an outcome of the summation, one must pose additional
conditions guaranteing that both HA and J are algebraic numbers at the points of discretization
(recall that roots of unity are involved). Assume for definiteness that S2 is rM = constant sphere.
If the remaining preferred coordinates are functions of the preferred S2 coordinates mapping
phases to phases at discretization points, one obtains the desired outcome. These conditions are
rather strong and mean that the various angles defining CP2 coordinates -at least the two cyclic
angle coordinates- are integer multiples of those assignable to S2 at the points of discretization.
This would be achieved if the preferred complex coordinates of CP2 are powers of the preferred
complex coordinate of S2 at these points. One could say that X2 is algebraically continued from
a rational surface in the discretized variant of δCD × CP2. Furthermore, if the measurement
resolutions come as 2π/pn as p-adic continuity actually requires and if they correspond to the
p-adic group Gp,n for which group parameters satisfy |t|p ≤ p−n, one can precisely characterize
how a p-adic prime characterizes the real partonic 2-surface. This would be a fulfilment of one
of the oldest dreams related to the p-adic vision.

A even more ambitious dream would be that even the integral of the Kähler action for preferred
extremals could be defined using a similar procedure. The conjectured slicing of Minkowskian space-
time sheets by string world sheets and partonic 2-surfaces encourages these hopes.

1. One could introduce local coordinates of H at both ends of CD by introducing a continuous
slicing of M4×CP2 by the translates of δM4

±×CP2 in the direction of the time-like vector con-
necting the tips of CD. As space-time coordinates one could select four of the eight coordinates
defining this slicing. For instance, for the regions of the space-time sheet representable as maps
M4 → CP2 one could use the preferred M4 time coordinate, the radial coordinate of δM4

+, and
the angle coordinates of rM = constant sphere.

2. Kähler action density should have algebraic values and this would require the strengthening
of the proposed conditions for X2 to apply to the entire slicing meaning that the discretized
space-time surface is a rational surface in the discretized CD×CP2. If this condition applies to
the entire space-time surface it would effectively mean the discretization of the classical physics
to the level of finite geometries. This seems quite strong implication but is consistent with the
preferred extremal property implying the generalized Bohr rules.

5. Tentative conclusions

These findings suggest following conclusions.

1. Exponent functions play a key role in the proposed p-adicization. This is not an accident since
exponent functions play a fundamental role in group theory and p-adic variants of real geometries
exist only under symmetries- possibly maximal possible symmetries- since otherwise the notion
of Fourier analysis making possible integration does not exist. The inner product defined in
terms of integration reduce for functions representable in Fourier basis to sums and can be
carried out by using orthogonality conditions. Convolution involving integration reduces to a
product for Fourier components. In the case of imbedding space and WCW these conditions are
satisfied but for space-time surfaces this is not possible.
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2. There are several manners to choose the Cartan algebra already in the case of sphere. In the
case of plane one can consider either translations or rotations and this leads to different p-adic
variants of plane. Also the realization of the hierarchy of Planck constants leads to the conclusion
that the extended imbedding space and therefore also WCW contains sectors corresponding to
different choices of quantization axes meaning that quantum measurement has a direct geometric
correlate. One an imagine also other discretizations and choices of preferred coordinates and the
interpretation is that they correspond to different cognitive representations and to to different
p-adic physics. This means a refinement of General Coordinate Invariance taking into account
cognition.

3. The above described 2-D examples represent symplectic geometries for which one has natural
decomposition of coordinates to canonical pairs of cyclic coordinate (phase angle) and cor-
responding canonical conjugate coordinate. p-Adicization depends on whether the conjugate
corresponds to an angle or noncompact coordinate. In both cases it is however possible to define
integration. For instance, in the case of CP2 one would have two canonically conjugate pairs
and one can define the p-adic counterparts of CP2 partial waves by generalizing the procedure
applied to spherical harmonics. Products of functions expressible using partial waves can be
decomposed by tensor product decomposition to spherical harmonics and can be integrated.
In particular inner products can be defined as integrals. The Hamiltonians generating isome-
tries are rational functions of phases: this inspires the hope that also WCW Hamiltonians also
rational functions of preferred WCW coordinates and thus allow p-adic variants.

4. Discretization by introducing algebraic extensions seems unavoidable in the p-adicization of
geometrical objects but one can have p-adic continuum as the analog of the discretization interval
and in the function basis expressible in terms of phase factors and p-adic counterparts of exponent
functions. As already described, the exponential map for Lie group provide an elegant manner to
realize this. This would give a precise meaning for the p-adic counterparts of the imbedding space
and WCW if the latter is a symmetric space allowing coordinatization in terms of phase angles
and conjugate coordinates. The intersection of p-adic and real worlds in a given measurement
resolution would be unique and correspond to the points defining the discretization.

p-Adic imbedding space

The construction of both quantum TGD and p-adic QFT limit requires p-adicization of the imbedding
space geometry. Also the fact that p-adic Poincare invariance throws considerable light to the p-adic
length scale hypothesis suggests that p-adic geometry is really needed. The construction of the p-adic
version of the imbedding space geometry and spinor structure relies on the symmetry arguments and
to the generalization of the analytic formulas of the real case almost. The essential element is the
notion of finite measurement resolution leading to discretization in large and to p-adicization below the
resolution scale. This approach leads to a highly nontrivial generalization of the symmetry concept
and p-adic Poincare invariance throws light to the p-adic length scale hypothesis. An important
delicacy is related to the identification of the fundamental p-adic length scale, which corresponds to
the unit element of the p-adic number field and is mapped to the unit element of the real number field
in the canonical identification mapping p-adic mass squared to its real counterpart.

1. p-Adic Riemannian geometry depends on cognitive representation

p-Adic Riemann geometry is a direct formal generalization of the ordinary Riemann geometry. In
the minimal purely algebraic generalization one does not try to define concepts like arch length and
volume involving definite integrals but simply defines the p-adic geometry via the metric identified as
a quadratic form in the tangent space of the p-adic manifold. Canonical identification would make
it possible to define p-adic variant of Riemann integral formally allowing to calculate arc lengths and
similar quantities but looks like a trick. The realization that the p-adic variant of harmonic analysis
makes it possible to define definite integrals in the case of symmetric space became possible only after
a detailed vision about what quantum TGD is [31] had emerged.

Symmetry considerations dictate the p-adic counterpart of the Riemann geometry for M4
+×CP2 to

a high degree but not uniquely. This non-uniqueness might relate to the distinction between different
cognitive representations. For instance, in the case of Euclidian plane one can introduce linear or
cylindrical coordinates and the manifest symmetries dictating the preferred coordinates correspond to
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translational and rotational symmetries in these two cases and give rise to different p-adic variants of
the plane. Both linear and cylindrical coordinates are fixed only modulo the action of group consisting
of translations and rotations and the degeneracy of choices can be interpreted in terms of a choice of
quantization axies of angular momentum and momenta.

The most natural looking manner to define the p-adic counterpart of M4 is by using a p-adic com-
pletion for a subset of rational points in coordinates which are preferred on physical basis. In case of
M4 linear Minkowski coordinates are an obvious choice but also the counterparts of Robertson-Walker
coordinates for M4

+ defined as [t, (z, x, y)] = a× [cosh(η), sinh(η)(cos(θ), sin(θ)cos(φ), sin(θ)sin(φ))]
expressible in terms of phases and their hyperbolic counterparts and transforming nicely under the
Cartan algebra of Lorentz group are possible. p-Adic variant is obtained by introducing finite mea-
surement resolution for angle and replacing angle range by finite number of roots of unity. Same
applies to hyperbolic angles.

Rational CP2 could be defined as a coset space SU(3, Q)/U(2, Q) associated with complex rational
unitary 3× 3-matrices. CP2 could be defined as coset space of complex rational matrices by choosing
one point in each coset SU(3, Q)/U(2, Q) as a complex rational 3×3-matrix representable in terms of
Pythagorean phases [29] and performing a completion for the elements of this matrix by multiplying
the elements with the p-adic exponentials exp(iu), |u|p < 1 such that one obtains p-adically unitary
matrix.

This option is not very natural as far as integration is considered. CP2 however allows the analog
of spherical coordinates for S2 expressible in terms of angle variables alone and this suggests the
introduction of the variant of CP2 for which the coordinate values correspond to roots of unity.
Completion would be performed in the same manner as for rational CP2. This non-uniqueness need
not be a drawback but could reflect the fact that the p-adic cognitive representation of real geometry
are geometrically non-equivalent. This means a refinement of the principle of General Coordinate
Invariance taking into account the fact that the cognitive representation of the real world affects the
world with cognition included in a delicate manner.

2. The identification of the fundamental p-adic length scale

The fundamental p-adic length scale correponds to the p-adic unit e = 1 and is mapped to the
unit of the real numbers in the canonical identification. The correct physical identification of the
fundamental p-adic length scale is of crucial importance since the predictions of the theory for p-adic
masses depend on the choice of this scale.

In TGD the ’radius’ R of CP2 is the fundamental length scale (2πR is by definition the length of
the CP2 geodesics). In accordance with the idea that p-adic QFT limit makes sense only above length
scales larger than the radius of CP2 R is of same order of magnitude as the p-adic length scale defined
as l = π/m0, where m0 is the fundamental mass scale and related to the ’cosmological constant’ Λ
(Rij = Λsij) of CP2 by

m2
0 = 2Λ . (10.2.27)

The relationship between R and l is uniquely fixed:

R2 =
3

m3
0

=
3

2Λ
=

3l2

π2
. (10.2.28)

Consider now the identification of the fundamental length scale.

1. One must use R2 or its integer multiple, rather than l2, as the fundamental p-adic length scale
squared in order to avoid the appearance of the p-adically ill defined π:s in various formulas of
CP2 geometry.

2. The identification for the fundamental length scale as 1/m0 leads to difficulties.

(a) The p-adic length for the CP2 geodesic is proportional to
√

3/m0. For the physically most
interesting p-adic primes satisfying p mod 4 = 3 so that

√
−1 does not exist as an ordinary

p-adic number,
√

3 = i
√
−3 belongs to the complex extension of the p-adic numbers. Hence

one has troubles in getting real length for the CP2 geodesic.
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(b) If m2
0 is the fundamental mass squared scale then general quark states have mass squared,

which is integer multiple of 1/3 rather than integer valued as in string models.

3. These arguments suggest that the correct choice for the fundamental length scale is as 1/R so
that M2 = 3/R2 appearing in the mass squared formulas is p-adically real and all values of
the mass squared are integer multiples of 1/R2. This does not affect the real counterparts of
the thermal expectation values of the mass squared in the lowest p-adic order but the effects,
which are due to the modulo arithmetics, are seen in the higher order contributions to the mass
squared. As a consequence, one must identify the p-adic length scale l as

l ≡ πR ,

rather than l = π/m0. This is indeed a very natural identification. What is especially nice is
that this identification also leads to a solution of some longstanding problems related to the p-
adic mass calculations. It would be highly desirable to have the same p-adic temperature Tp = 1
for both the bosons and fermions rather than Tp = 1/2 for bosons and Tp = 1 for fermions. For
instance, black hole elementary particle analogy as well as the need to get rid of light boson
exotics suggests this strongly. It indeed turns out possible to achieve this with the proposed
identification of the fundamental mass squared scale.

3. p-Adic counterpart of M4
+

The construction of the p-adic counterpart of M4
+ seems a relatively straightforward task and

should reduce to the construction of the p-adic counter part of the real axis with the standard met-
ric. As already noticed, linear Minkowksi coordinates are physically and mathematically preferred
coordinates and it is natural to construct the metric in these coordinates.

There are some quite interesting delicacies related to the p-adic version of the Poincare invariance.
Consider first translations. In order to have imaginary unit needed in the construction of the ordinary
representations of the Poincare group one must have p mod 4 = 3 to guarantee that

√
−1 does not

exist as an ordinary p-adic number. It however seems that the construction of the representations
is at least formally possible by replacing imaginary unit with the square root of some other p-adic
number not existing as a p-adic number.

It seems that only the discrete group of translations allows representations consisting of orthogonal
planewaves. p-Adic planewaves can be defined in the lattice consisting of the multiples of x0 = m/n
consisting of points with p-adic norm not larger that |x0|p and the points pnx0 define fractally scaled-
down versions of this set. In canonical identification these sets corresponds to volumes scaled by
factors p−n.

A physically interesting question is whether the Lorentz group should contain only the elements
obtained by exponentiating the Lie-algebra generators of the Lorentz group or whether also large
Lorentz transformations, containing as a subgroup the group of the rational Lorentz transformations,
should be allowed. If the group contains only small Lorentz transformations, the quantization volume
of M4

+ (say the points with coordinates mk having p-adic norm not larger than one) is also invariant
under Lorentz transformations. This means that the quantization of the theory in the p-adic cube
|mk| < pn is a Poincare invariant procedure unlike in the real case.

The appearance of the square root of p, rather than the naively expected p, in the expression of
the p-adic length scale can be undertood if the p-adic version of M4 metric contains p as a scaling
factor:

ds2 = pR2mkldm
kdml ,

R ↔ 1 , (10.2.29)

where mkl is the standard M4 metric (1,−1,−1,−1). The p-adic distance function is obtained by
integrating the line element using p-adic integral calculus and this gives for the distance along the
k:th coordinate axis the expression

s = R
√
pmk . (10.2.30)
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The map from p-adic M4 to real M4 is canonical identification plus a scaling determined from the
requirement that the real counterpart of an infinitesimal p-adic geodesic segment is same as the length
of the corresponding real geodesic segment:

mk → π(mk)R . (10.2.31)

The p-adic distance along the k:th coordinate axis from the origin to the point mk = (p − 1)(1 +
p + p2 + ...) = −1 on the boundary of the set of the p-adic numbers with norm not larger than one,
corresponds to the fundamental p-adic length scale Lp =

√
pl =

√
pπR:

√
p((p− 1)(1 + p+ ...))R → πR

(p− 1)(1 + p−1 + p−2 + ...)
√
p

= Lp .

(10.2.32)

What is remarkable is that the shortest distance in the range mk = 1, ..m− 1 is actually L/
√
p rather

than l so that p-adic numbers in range span the entire R+ at the limit p→∞. Hence p-adic topology
approaches real topology in the limit p → ∞ in the sense that the length of the discretization step
approaches to zero.

4. The two variants of CP2

As noticed, CP2 allows two variants based on rational discretization and on the discretiation based
on roots of unity. The root of unity option corresponds to the phases associated with 1/(1 + r2) =
tan2(u/2) = (1−cos(u))/(1+cos(u)) and implies that integrals of spherical harmonics can be reduced
to summations when angular resolution ∆u = 2π/N is introduced. In the p-adic context, one can
replace distances with trigonometric functions of distances along zig zag curves connecting the points
of the discretization. Physically this notion of distance is quite reasonable since distances are often
measured using interferometer.

In the case of rtional variant of CP2 one can proceed by defining the p-adic counterparts of SU(3)
and U(2) and using the identification CP2 = SU(3)/U(2). The p-adic counterpart of SU(3) consists of
all 3×3 unitary matrices satisfying p-adic unitarity conditions (rows/colums are mutually orthogonal
unit vectors) or its suitable subgroup: the minimal subgroup corresponds to the exponentials of the
Lie-algebra generators. If one allows algebraic extensions of the p-adic numbers, one obtains several
extensions of the group. The extension allowing the square root of a p-adically real number is the most
interesting one in this respect since the general solution of the unitarity conditions involves square
roots.

The subgroup of SU(3) obtained by exponentiating the Lie-algebra generators of SU(3) normalized
so that their nonvanishing elements have unit p-adic norm, is of the form

SU(3)0 = {x = exp(
∑
k

itkXk) ; |tk|p < 1} = {x = 1 + iy ; |y|p < 1} . (10.2.33)

The diagonal elements of the matrices in this group are of the form 1 + O(p). In order O(p) these
matrices reduce to unit matrices.

Rational SU(3) matrices do not in general allow a representation as an exponential. In the real
case all SU(3) matrices can be obtained from diagonalized matrices of the form

h = diag{exp(iφ1), exp(iφ2), exp(exp(−i(φ1 + φ2)} . (10.2.34)

The exponentials are well defined provided that one has |φi|p < 1 and in this case the diagonal
elements are of form 1+O(p). For p mod 4 = 3 one can however consider much more general diagonal
matrices

h = diag{z1, z2, z3} ,

for which the diagonal elements are rational complex numbers
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zi =
(mi + ini)√
m2
i + n2

i

,

satisfying z1z2z3 = 1 such that the components of zi are integers in the range (0, p−1) and the square
roots appearing in the denominators exist as ordinary p-adic numbers. These matrices indeed form
a group as is easy to see. By acting with SU(3)0 to each element of this group and by applying
all possible automorphisms h → ghg−1 using rational SU(3) matrices one obtains entire SU(3) as a
union of an infinite number of disjoint components.

The simplest (unfortunately not physical) possibility is that the ’physical’ SU(3) corresponds to
the connected component of SU(3) represented by the matrices, which are unit matrices in order
O(p). In this case the construction of CP2 is relatively straightforward and the real formalism should
generalize as such. In particular, for p mod 4 = 3 it is possible to introduce complex coordinates ξ1, ξ2
using the complexification for the Lie-algebra complement of su(2) × u(1). The real counterparts
of these coordinates vary in the range [0, 1) and the end points correspond to the values of ti equal
to ti = 0 and ti = −p. The p-adic sphere S2 appearing in the definition of the p-adic light cone is
obtained as a geodesic submanifold of CP2 (ξ1 = ξ2 is one possibility). From the requirement that real
CP2 can be mapped to its p-adic counterpart it is clear that one must allow all connected components
of CP2 obtained by applying discrete unitary matrices having no exponential representation to the
basic connected component. In practice this corresponds to the allowance of all possible values of the
p-adic norm for the components of the complex coordinates ξi of CP2.

The simplest approach to the definition of the CP2 metric is to replace the expression of the Kähler
function in the real context with its p-adic counterpart. In standard complex coordinates for which
the action of U(2) subgroup is linear, the expression of the Kähler function reads as

K = log(1 + r2) ,

r2 =
∑
i

ξ̄iξi . (10.2.35)

p-Adic logarithm exists provided r2 is of order O(p). This is the case when ξi is of order O(p). The
definition of the Kähler function in a more general case, when all possible values of the p-adic norm
are allowed for r, is based on the introduction of a p-adic pseudo constant C to the argument of the
Kähler function

K = log(
1 + r2

C
) .

C guarantees that the argument is of the form 1+r2

C = 1+O(p) allowing a well-defined p-adic logarithm.
This modification of the Kähler function leaves the definition of Kähler metric, Kähler form and spinor
connection invariant.

A more elegant manner to avoid the difficulty is to use the exponent Ω = exp(K) = 1 + r2 of the
Kähler function instead of Kähler function, which indeed well defined for all coordinate values. In
terms of Ω one can express the Kähler metric as

gkl̄ =
∂k∂l̄Ω

Ω
− ∂kΩ∂l̄Ω

Ω2
. (10.2.36)

The p-adic metric can be defined as

sij̄ = R2∂i∂j̄K = R2 (δij̄r
2 − ξ̄iξj)

(1 + r2)2
.

(10.2.37)

The expression for the Kähler form is the same as in the real case and the components of the Kähler
form in the complex coordinates are numerically equal to those of the metric apart from the factor of i.
The components in arbitrary coordinates can be deduced from these by the standard transformation
formulas.
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10.2.6 Quantum physics in the intersection of p-adic and real worlds

The p-adicization of quantum TGD means several challenges. One should define the notions of
Riemann geometry and its variants such as Kähler geometry in the p-adic context. The notion of
the p-adic space-time surface and its relationship to its real counterpart should be understood. Also
the construction of Kähler geometry of ”world of classical worlds” (WCW) in p-adic context should
be carried out and the notion of WCW spinor fields should be defined in the p-adic context. The
crucial technical problems relate to the notion of integral and Fourier analysis, which are the central
elements of any physical theory. The basic challenge is to overcome the fact that although the field
equations assignable to a given variational principle make sense p-adically, the action defined as an
integral over arbitrary space-time surface has no natural p-adic counterpart as such in the generic
case. What raises hopes that these challenges could be overcome is the symmetric space property of
WCW and the idea of algebraic continuation. If WCW geometry is expressible in terms of rational
functions with rational coefficients it allows a generalization to the p-adic context. Also integration
can be reduced to Fourier analysis in the case of symmetric spaces. I have discussed the p-adicization
and fusion of real and p-adic physics in earlier article [14] and will not go to it here anymore. Suffice
it to say that the notion of symmetric space allowing to algebraize the integration is central element
of the approach.

The intersection of real and p-adic worlds is especially interesting as far as the physics of living
system is considered in TGD framework and is discussed in this section.

What it means to be in the intersection of real and p-adic worlds?

The first question is what one really means when one speaks about a partonic 2-surface in the inter-
section of real and p-adic worlds or in the intersection of two p-adic worlds.

1. Many algebraic numbers can be regarded also as ordinary p-adic numbers: square roots of
roughly one half of integers provide a simple example about this. Should one assume that all
algebraic numbers representable as ordinary p-adic numbers belong to the intersection of the real
and p-adic variants of partonic 2-surface (or to the intersection of two different p-adic number
fields)? Is there any hope that the listing of the points in the intersection is possible without
a complete knowledge of the number theoretic anatomy of p-adic number fields in this kind of
situation? And is the set of common algebraic points for real and p-adic variants of the partonic
2-surface X2 quite too large- say a dense sub-set of X2?

This hopeless looking complexity is simplified considerably if one reduces the considerations to
algebraic extensions of rationals since these induce the algebraic extensions of p-adic numbers.
For instance, if the p-adic number field contains some n:th roots of integers in the range (1, p−1)
as ordinary p-adic numbers they are identified with their real counterparts. In principle one
should be able to characterize the -probably infinite-dimensional- algebraic extension of rationals
which is representable by a given p-adic number field as p-adic numbers of unit norm. This does
not look very practical.

2. At the level WCW one must direct the attention to the function spaces used to define partonic
2-surfaces. That is the spaces of rational functions or even algebraic functions with coefficients
of polynomials in algebraic extensions of rational numbers making sense with arguments in all
number fields so that algebraic extensions of rationals provide a neat hierarchy defining also the
points of partonic 2-surfaces to be considered. If one considers only the algebraic points of X2

belonging to the extension appearing in the definition the function space as common to various
number fields one has good hopes that the number of common points is finite.

3. Already the ratios of polynomials with rational coefficients lead to algebraic extensions of ratio-
nals via their roots. One can replace the coefficients of polynomials with numbers in algebraic
extensions of rationals. Also algebraic functions involving roots of rational functions can be
considered and force to introduce the algebraic extensions of p-adic numbers. For instance, an
n:th root of a polynomial with rational coefficients is well defined if n:th roots of p-adic integers
in the range (1, p− 1) are well well-defined. One clearly obtains an infinite hierarchy of function
spaces. This would give rise to a natural hierarchy in which one introduces n:th roots for a
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minimum number of p-adic integers in the range (1, p − 1) in the range 1 ≤ n ≤ N . Note that
also the roots of unity would be introduced in a natural manner.

The situation is made more complex because the partonic 2-surface is in general defined by
the vanishing of six rational functions so that algebraic extensions are needed. An exception
occurs when six preferred imbedding space coordinates are expressible as rational functions of
the remaining two preferred coordinates. In this case the number of common rational points
consists of all rational points associated with the remaining two coordinates. This situation is
clearly non-generic. Usually the number of common points is much smaller (the set of rational
points satisfying xn + yn = zn for n > 2 is a good example). This however suggests that
these surfaces are of special importance since the naive expectation is that the amplitude for
transformation of intention to action or its reversal is especially large in this case. This might
also explain why these surfaces are easy to understand mathematically.

4. These considerations suggest that the numbers common to reals and p-adics must be defined
as rationals and algebraic numbers appearing explicitly in the algebraic extension or rationals
associated with the function spaces used to define partonic 2-surfaces. This would make the
deduction of the common points of partonic 2-surface a task possible at least in principle. Alge-
braic extensions of rationals rather than those of p-adic numbers would be in the fundamental
role and induce the extensions of p-adic numbers.

Braids and number theoretic braids

Braids -not necessary number theoretical- provide a realization discretization as a space-time correlate
for the finite measurement resolution. The notion of braid was inspired by the idea about quantum
TGD as almost topological quantum field theory. Although the original form of this idea has been
buried, the notion of braid has survived: in the decomposition of space-time sheets to string world
sheets, the ends of strings define representatives for braid strands at light-like 3-surfaces.

The notion of number theoretic universality inspired the much more restrictive notion of number
theoretic braid requiring that the points in the intersection of the braid with the partonic 2-surface
correspond to rational or at most algebraic points of H in preferred coordinates fixed by symmetry
considerations. The challenge has been to find a unique identification of the number theoretic braid or
at least of the end points of the braid. The following consideration suggest that the number theoretic
braids are not a useful notion in the generic case but make sense and are needed in the intersection
of real and p-adic worlds which is in crucial role in TGD based vision about living matter [52] .

It is only the braiding that matters in topological quantum field theories used to classify braids.
Hence braid should require only the fixing of the end points of the braids at the intersection of the braid
at the light-like boundaries of CDs and the braiding equivalence class of the braid itself. Therefore it
is enough is to specify the topology of the braid and the end points of the braid in accordance with
the attribute ”number theoretic”. Of course, the condition that all points of the strand of the number
theoretic braid are algebraic is impossible to satisfy.

The situation in which the equations defining X2 make sense both in real sense and p-adic sense
using appropriate algebraic extension of p-adic number field is central in the TGD based vision about
living matter [52] . The reason is that in this case the notion of number entanglement theoretic entropy
having negative values makes sense and entanglement becomes information carrying. This motivates
the identification of life as something in the intersection of real and p-adic worlds. In this situation the
identification of the ends of the number theoretic braid as points belonging to the intersection of real
and p-adic worlds is natural. These points -call them briefly algebraic points- belong to the algebraic
extension of rationals needed to define the algebraic extension of p-adic numbers. This definition
however makes sense also when the equations defining the partonic 2-surfaces fail to make sense in
both real and p-adic sense. In the generic case the set of points satisfying the conditions is discrete.
For instance, according to Fermat’s theorem the set of rational points satisfying Xn+Y n = Zn reduces
to the point (0, 0, 0) for n = 3, 4, .... Hence the constraint might be quite enough in the intersection
of real and p-adic worlds where the choice of the algebraic extension is unique.

One can however criticize this proposal.

1. One must fix the the number of points of the braid and outside the intersection and the non-
uniquencess of the algebraic extension makes the situation problematic. Physical intuition sug-
gests that the points of braid define carriers of quantum numbers assignable to second quantized
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induced spinor fields so that the total number of fermions antifermions would define the number
of braids. In the intersection the highly non-trivial implication is that this number cannot exceed
the number of algebraic points.

2. In the generic case one expects that even the smallest deformation of the partonic 2-surface
can change the number of algebraic points and also the character of the algebraic extension
of rational numbers needed. The restriction to rational points is not expected to help in the
generic case. If the notion of number theoretical braid is meant to be practical, must be able to
decompose WCW to open sets inside which the numbers of algebraic points of braid at its ends
are constant. For real topology this is expected to be impossible and it does not make sense
to use p-adic topology for WCW whose points do not allow interpretation as p-adic partonic
surfaces.

3. In the intersection of real and p-adic worlds which corresponds to a discrete subset of WCW,
the situation is different. Since the coefficients of polynomials involved with the definition of
the partonic 2-surface must be rational or at most algebraic, continuous deformations are not
possible so that one avoids the problem.

4. This forces to ask the reason why for the number theoretic braids. In the generic case they
seem to produce only troubles. In the intersection of real and p-adic worlds they could however
allow the construction of the elements of M -matrix describing quantum transitions changing
p-adic to real surfaces and vice versa as realizations of intentions and generation of cognitions.
In this the case it is natural that only the data from the intersection of the two worlds are used.
In [52] I have sketched the idea about number theoretic quantum field theory as a description
of intentional action and cognition.

There is also the the problem of fixing the interior points of the braid modulo deformations not
affecting the topology of the braid.

1. Infinite number of non-equivalent braidings are possible. Should one allow all possible braidings
for a fixed light-like 3-surface and say that their existence is what makes the dynamics essentially
three-dimensional even in the topological sense? In this case there would be no problems with
the condition that the points at both ends of braid are algebraic.

2. Or should one try to characterize the braiding uniquely for a given partonic 2-surfaces and
corresponding 4-D tangent space distributions? The slicing of the space-time sheet by partonic
2-surfaces and string word sheets suggests that the ends of string world sheets could define the
braid strands in the generic context when there is no algebraicity condition involved. This could
be taken as a very natural manner to fix the topology of braid but leave the freedom to choose
the representative for the braid. In the intersection of real and p-adic worlds there is no good
reason for the end points of strands in this case to be algebraic at both ends of the string world
sheet. One can however start from the braid defined by the end points of string world sheets,
restrict the end points to be algebraic at the end with a smaller number of algebraic points and
and then perform a topologically non-trivial deformation of the braid so that also the points
at the other end are algebraic? Non-trivial deformations need not be possible for all possible
choices of algebraic braid points at the other end of braid and different choices of the set of
algebraic points would give rise to different braidings. A further constraint is that only the
algebraic points at which one has assign fermion or antifermion are used so that the number of
braid points is not always maximal.

3. One can also ask whether one should perform the gauge fixing for the strands of the number
theoretic braid using algebraic functions making sense both in real and p-adic context. This
question does not seem terribly relevant since since it is only the topology of the braid that
matters.

Number theoretical Quantum Mechanics

The vision about life as something in the intersection of the p-adic and real worlds requires a gener-
alization of quantum theory to describe the U -process properly. One must answer several questions.
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What it means mathematically to be in this intersection? What the leakage between different sectors
does mean? Is it really possible to formally extend quantum theory so that direct sums of Hilbert
spaces in different number fields make sense? Or should one consider the possibility of using only
complex, algebraic, or rational Hilbert spaces also in p-adic sectors so that p-adicization would take
place only at the level of geometry?

1. What it means to be in the intersection of real and p-adic worlds?

The first question is what one really means when one speaks about a partonic 2-surface in the
intersection of real and p-adic worlds or in the intersection of two p-adic worlds.

1. Many algebraic numbers can be regarded also as ordinary p-adic numbers: square roots of
roughly one half of integers provide a simple example about this. Should one assume that all
algebraic numbers representable as ordinary p-adic numbers belong to the intersection of the real
and p-adic variants of partonic 2-surface (or to the intersection of two different p-adic number
fields)? Is there any hope that the listing of the points in the intersection is possible without
a complete knowledge of the number theoretic anatomy of p-adic number fields in this kind of
situation? And is the set of common algebraic points for real and p-adic variants of the partonic
2-surface X2 quite too large- say a dense sub-set of X2?

This hopeless looking complexity is simplified considerably if one reduces the considerations to
algebraic extensions of rationals since these induce the algebraic extensions of p-adic numbers.
For instance, if the p-adic number field contains some n:th roots of integers in the range (1, p−1)
as ordinary p-adic numbers they are identified with their real counterparts. In principle one
should be able to characterize the -probably infinite-dimensional- algebraic extension of rationals
which is representable by a given p-adic number field as p-adic numbers of unit norm. This does
not look very practical.

2. At the level WCW one must direct the attention to the function spaces used to define partonic
2-surfaces. That is the spaces of rational functions or even algebraic functions with coefficients
of polynomials in algebraic extensions of rational numbers making sense with arguments in all
number fields so that algebraic extensions of rationals provide a neat hierarchy defining also the
points of partonic 2-surfaces to be considered. If one considers only the algebraic points of X2

belonging to the extension appearing in the definition the function space as common to various
number fields one has good hopes that the number of common points is finite.

3. Already the ratios of polynomials with rational coefficients lead to algebraic extensions of ratio-
nals via their roots. One can replace the coefficients of polynomials with numbers in algebraic
extensions of rationals. Also algebraic functions involving roots of rational functions can be
considered and force to introduce the algebraic extensions of p-adic numbers. For instance, an
n:th root of a polynomial with rational coefficients is well defined if n:th roots of p-adic integers
in the range (1, p− 1) are well well-defined. One clearly obtains an infinite hierarchy of function
spaces. This would give rise to a natural hierarchy in which one introduces n:th roots for a
minimum number of p-adic integers in the range (1, p − 1) in the range 1 ≤ n ≤ N . Note that
also the roots of unity would be introduced in a natural manner.

The situation is made more complex because the partonic 2-surface is in general defined by
the vanishing of six rational functions so that algebraic extensions are needed. An exception
occurs when six preferred imbedding space coordinates are expressible as rational functions of
the remaining two preferred coordinates. In this case the number of common rational points
consists of all rational points associated with the remaining two coordinates. This situation is
clearly non-generic. Usually the number of common points is much smaller (the set of rational
points satisfying xn + yn = zn for n > 2 is a good example). This however suggests that
these surfaces are of special importance since the naive expectation is that the amplitude for
transformation of intention to action or its reversal is especially large in this case. This might
also explain why these surfaces are easy to understand mathematically.

4. These considerations suggest that the numbers common to reals and p-adics must be defined
as rationals and algebraic numbers appearing explicitly in the algebraic extension or rationals
associated with the function spaces used to define partonic 2-surfaces. This would make the
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deduction of the common points of partonic 2-surface a task possible at least in principle. Alge-
braic extensions of rationals rather than those of p-adic numbers would be in the fundamental
role and induce the extensions of p-adic numbers.

Let us next try to summarize the geometrical picture at the level of WCW and WCW spinor
fields.

1. WCW decomposes into WCWs associated with CDs and there unions. For the unions one has
Cartesian product of WCWs associated with CDs. At the level of WCW spinor fields one has
tensor product.

2. The WCW for a given CD decomposes into a union of sectors corresponding to various number
fields and their algebraic extensions. The sub-WCW corresponding to the intersection consists
of partonic 2-surfaces X2 (plus distribution of 4-D tangent spaces T (X4) at X2 - a complication
which will not be considered in the sequel), whose mathematical representation makes sense in
real number field and in some algebraic extensions of p-adic number fields. The extension of
p-adic number fields needed for algebraic extension of rationals depends on p and is in general
sub-extension of the extension of rationals. This sub-WCW is a sub-manifold of WCW itself. It
has also a filtering by sub-manifolds of QCW. For instance, partonic 2-surfaces representabable
using ratios of polynomials with degree below fixed number N defines an inclusion hierarchy
with levels labelled by N .

3. The spaces of WCW spinors associated with these sectors are dictated by the second quanti-
zation of induced spinor fields with dynamics dictated by the modified Dirac action in more or
less one-one correspondence. The dimension for the modes of induced spinor field (solutions of
the modified Dirac equation at the space-time surface holographically assigned with X2 plus
the 4-D tangent space-space distribution) in general depends on the partonic 2-surface and the
classical criticality of space-time surface suggests an inclusion hierarchy of super-conformal al-
gebras corresponding to a hierarchy of criticalities. For instance, the partonic 2-surfaces X2

having polynomial representations in referred coordinates could correspond to simplest possible
surfaces nearest to the vacuum extremals and having in a well define sense smallest (but possibly
infinite) dimension for the space of spinor modes.

4. For each CD one can decompose the Hilbert space to a formal direct sum of orthogonal state
spaces associated with various number fields

H = ⊕FHF . (10.2.38)

Here F serves as a label for number fields. For the sake of simplicity and to get idea about what
is involved, all complications due to algebraic extensions are neglected in the sequel so that only
rational surfaces are regarded as being common to various sectors of WCW.

5. The states in the direct sum make sense only formally since the formal inner product of these
states would be a sum of numbers in different number fields unless one assigns complex Hilbert
space with each sector or restricts the coefficients to be rational which is of course also possible.
This problem is avoided if the state function reduction process induces inside each CD a choice
of the number field. One could say that state function is a number theoretical necessity at least
in this sense.

(a) Should the state function reduction in this sense involve a reduction of entanglement be-
tween distinct CDs is not clear. One could indeed consider the possibility of a purely
number theoretical reduction not induced by NMP and taking place in the absence of
entanglement with reduction probabilities determined by the probabilities assignable to
various number fields which should be rational or at most algebraic. Hard experience
however suggests that one should not make exceptions from principles.
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(b) The alternative is to allow the Hilbert spaces in question to have rational or at most
algebraic coefficients in the intersection of real and various p-adic worlds. This means that
the entanglement is algebraic and NMP need not lead to a pure state: the superposition of
pairs of entangled states is however mathematically well defined since inner products give
algebraic numbers. Cognitive entanglement stable under NMP would become possible. The
experience of understanding could be a correlate for it. The pairs in the sum defining the
entangled state defined the instances of a concept as a mapping of real world state to its
symbol structurally analogous to a Boolean rule. The entangled states between different
p-adic number fields would define maps between symbolic representations.

6. Assume that each HF allows a decomposition to a direct sum of two orthogonal parts correspond-
ing to WCW spinor fields localized to the intersection of number fields and to the complements
of the intersection:

H = Hnm ⊕Hm ,

Hnm = ⊕FHnm,F , Hm = ⊕FHm,F . (10.2.39)

Here nm stands for ’no mixing’ (no mixing between different number fields and localization to the
complement of the intersection) and m for ’mixing’ (mixing between different number fields in the
intersection). F labels the number fields. Orthogonal direct sum might be mathematically rather
singular and un-necessarily strong assumption but the notion of number theoretical criticality
favors it.

2. The general structure of U -matrix neglecting the complexities due to algebraic extensions

M -matrix is diagonal with respect to the number field for obvious reasons. U -matrix can however
induce a leakage between different number fields as well as entanglement between different number
fields when unions of CDs are considered. The simplest assumption is that this entanglement is
induced by the leakage between different number fields for single CD but not directly. For instance,
the members of entangled pair of real states associated with two CDs leak to various p-adic sectors
and induce in this manner entanglement beween different number fields. One must however notice
that the part of U-matrix acting in the tensor product of Hilbert spaces assignable to separate CDs
must be considered separately: it seems that the entanglement inducing part of U is diagonal with
respect to number field except in the intersection.

To simplify the rather complex situation consider first the U matrix for a given CD by neglecting
the possibility of algebraic extensions of the p-adic number fields. Restrict also the consideration to
single CD.

1. The unitarity conditions do not make sense in a completely general sense since one cannot add
numbers belonging to different number fields. The problem can be circumvented if the U -matrix
decomposes into a product of U -matrices, which both are such that unitarity conditions make
sense for them. Here an essential assumption is that unit matrix and projection operators are
number theoretically universal. In this spirit assume that for a given CD U decomposes to a
product of two U -matrices Unm inducing no mixing between different number fields and Um
inducing the mixing in the intersection:

U = UnmUm . (10.2.40)

Here the subscript ’nm’ (no mixing) having nothing to do with the induces of U as a matrix
means that the action is restricted to a dispersion in a sector ofWCW characterized by particular
number field. The subscript ’m’ (mixing) in turn means that the action corresponds to a leakage
between different number fields possible in the intersection of worlds corresponding to different
number fields and that Um acts non-trivially in this intersection.
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2. Assume that Unm decomposes into a formal direct sum of U -matrices associated with various
number fields F :

Unm = ⊕FUnm,F . (10.2.41)

Unm,F acts inside HF in both WCW and spin degrees of freedom, does not mix states belonging
to different number fields, and creates a state which is always mathematically completely well
defined in particular number field although the direct sum over number fields is only formally
defined. Unitarity condition gives a direct sum of projection operators to Hilbert spaces as-
sociated with various number fields. One can assume that this object is number theoretically
universal.

3. Um acts in the intersection of the real and p-adic worlds identified in the simplied picture
in terms of surfaces representable using ratios of polynomials with rational coefficients. The
resulting superposition of configuration space spinor fields in different number fields is as such
not mathematical sensible although the expression of Um is mathematically well-defined. If the
leakage takes place with same probability amplitude irrespective of the quantum state, Um is
a unitary operator, not affecting at all the spinor indices of WCW spinor fields characterizing
quantum numbers of the state and whose action is analogous to unitary mixing of the identical
copies of the state in various number fields.

The probability with which the intention is realized as action would not therefore depend at all
on the quantum number fields, but only on the data at points common to the variants of the
partonic 2-surface in various number fields. Intention would reduce completely to the algebraic
geometry of partonic 2-surfaces. This assumption allows to write U in the form

U = UnmUm , (10.2.42)

where Um acts as an identity operator in Hnm.

3. The general structure of U -matrix when algebraic extensions of rationals are allowed

Consider now the generalization of the previous argument allowing also algebraic extensions.

1. For each algebraic extension of rationals one can express WCW as a union of two parts. The
first one corresponds to to 2-surfaces, which belong to the intersection of real and p-adic worlds.
The second one corresponds to 2-surfaces in the algebraic extension of genuine p-adic numbers
and having necessarily infinite size in real sense. Thefore the decomposition of U to a product
U = UnmUm makes sense also now.

2. It is natural to assume that Um decomposes to a product of two operators: Um = UHUQ. The
strictly horizontal operator UH connects only same algebraic extensions of rationals assigned
to different number fields. Here one must think that p-adic number fields represent a large
number of algebraic extensions of rationals without need for an algebraic extension in the p-
adic sense. The second unitary operator UQ describes the leakage between different algebraic
extensions of rationals. Number theoretical universality encourages the assumption that this
unitary operator reduces to an operator UQ acting on algebraic extensions of rationals regarded
effectively as quantum states so that it would be same for all number fields. One can even
consider the possibility that UQ depends on the extensions of rationals only and not at all on
partonic 2-surfaces. One cannot assume that UQ corresponds just to an inclusion to a larger state
space since this would give an infinite number of identical copies of same state and imply a non-
normalizable state. Physically UQ would define dispersion in the space of algebraic extension
of rationals defining the rational function space giving rise to the sub-WCW. The simplest
possibility is that UQ between different algebraic extensions is just the projection operator to
their intersection multiplied by a numerical constant determined number theoretical in terms of
ratios of dimensions of the algebraic extensions so that the diffusion between extensions products
unit norm states.
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One must take into account the consistency conditions from the web of inclusions for the algebraic
extensions of rationals inducing extensions of p-adic numbers.

1. There is an infinite inverted pyramide-like web of natural inclusions of WCW s associated with
algebraic extensions of ratonal numbers and one can assign a copy of this web to all number fields
if a given p-adic number field is characterized by a web defined by algebraic extensions of rationals
numbers, which it is able to represent without explicit introduction of the algebraic extension,
so that the pyramide is same for all number fields. For instance, the WCW corresponding to
p-adic numbers proper is included to the WCW s associated with any of its genuine algebraic
extensions and defines the lower tip of the inverted pyramide. From this tip an arrow emerges
connecting it to every algebraic extension defining a node of this web. Besides these arrows
there are arrows from a given extension to all extensions containing it.

2. These geometric inclusions induce inclusions of the corresponding Hilbert spaces defined by
rational functions and possibly by algebraic functions in which case sub-web must be considered
(all n:th roots of integers in the range (1, p − 1) must be introduced simultaneously). Leakage
can occur between different extensions only through WCW spinor fields located in the common
intersection of these spaces containing always the rational surfaces. The intersections of WCW s
associated with various extensions of p-adic number fields correspond to WCW s assignable to
rational functions with coeffficients in various algebraic extensions of rationals using preferred
coordinates of CD and CP2.

Together with unitarity conditions this web poses strong constraints on the unitary matrices Um
and UQ expressible conveniently in terms of commuting diagrams. There are two kinds of webs. The
vertical webs are defined by the algebraic extensions of rationals. These form a larger web in which
lines connect the nodes of identical webs associated with various p-adic number fields and represent
algebraic extensions of rationals.

1. One has the general product decomposition U = UnmUQUm, where Unm does not induce mixing
between number fields, and Um does it purely horizontally but without affecting quantum states
in WCW spin degreees of freedom, and P (Hnm) projects to the complement of the intersection
of number fields holds true also now.

2. Each algebraic extension of rationals gives unitary conditions for the corresponding Unm,F for
each p-adic number field with extensions included. These conditions are relatively simple and
no commuting diagrams are needed.

3. In the horizontal web Um mixes the states in the intersections of two number fields but connects
only same algebraic extensions so that the lines are strictly horizontal. UQ acts strictly verti-
cally in the web formed by algebraic extension of rationals and its action is unitary. One has
infinite number of commuting diagrams involving Um and UQ since the actions along all routes
connecting given points between p1 and p2 must be identical.

4. If algebraic universality holds in the sense that Um is expressible using only the data about
the common points of 2-surfaces in the intersection defined by particular extensions using some
universal functions, and UQ is purely number theoretical unitary matrix having no dependence
on partonic 2-surfaces, one can hope that the constraints due to commuting diagrams in the web
of horizontal inclusions can be satisfied automatically and only the unitarity constraints remain.
This web of inclusions brings strongly in mind the web of inclusions of hyper-finite factors.

10.3 TGD and classical number fields

This section is devoted to the vision about TGD as a generalized number theory. The basic theme
is the role of classical number fields [23, 11, 31] in quantum TGD. A central notion is M8 − H
duality which might be also called number theoretic compactification. This duality allows to identify
imbedding space equivalently either asM8 orM4×CP2 and explains the symmetries of standard model
number theoretically. These number theoretical symmetries induce also the symmetries dictaging the
geometry of the ”world of classical worlds” (WCW) as a union of symmetric spaces [37] . This



776 Chapter 10. Physics as a Generalized Number Theory

infinite-dimensional Kähler geometry is expected to be highly unique from the mere requirement of its
existence requiring infinite-dimensional symmetries provided by the generalized conformal symmetries
of the light-cone boundary δM4

+ × S and of light-like 3-surfaces and the answer to the question what
makes 8-D imbedding space and S = CP2 so unique would be the reduction of these symmetries to
number theory.

Zero energy ontology has become the corner stone of also number theoretical vision. In zero
energy ontology either light-like or space-like 3-surfaces can be identified as the fundamental dynamical
objects, and the extension of general coordinate invariance leads to effective 2-dimensionality (strong
form of holography) in the sense that the data associated with partonic 2-surfaces and the distribution
of 4-D tangent spaces at them located at the light-like boundaries of causal diamonds (CDs) defined
as intersections of future and past directed light-cones code for quantum physics and the geometry of
WCW. Also the hierarchy of Planck constants [30] plays a role but not so important one.

The basic number theoretical structures are complex numbers, quaternions [31] and octonions [23]
, and their complexifications obtained by introducing additional commuting imaginary unit

√
−1.

Hyper-octonionic (-quaternionic,-complex) sub-spaces for which octonionic imaginary units are mul-
tiplied by commuting

√
−1 have naturally Minkowskian signature of metric. The question is whether

and how the hyper-structures could allow to understand quantum TGD in terms of classical num-
ber fields. The answer which looks the most convincing one relies on the existence of octonionic
representation of 8-D gamma matrix algebra.

1. The first guess is that associativity condition for the sub-algebras of the local Clifford algebra
defined in this manner could select 4-D surfaces as associative (hyper-quaternionic) sub-spaces
of this algebra and define WCW purely number theoretically. The associative sub-spaces in
question would be spanned by the modified gamma matrices defined by the modified Dirac
action fixed by the variational principle (Kähler action) selecting space-time surfaces as preferred
extremals [31] .

2. This condition is quite not enough: one must strengthen it with the condition that a preferred
commutative and thus hyper-complex sub-algebra is contained in the tangent space of the space-
time surface. This condition actually generalizes somewhat since one can introduce a family of so
called Hamilton-Jacobi coordinates for M4 allowing an integrable distribution of decompositions
of tangent space to the space of non-physical and physical polarizations [12] . The physical
interpretation is as a number theoretic realization of gauge invariance selecting a preferred local
commutative plane of non-physical polarizations.

3. Even this is not yet the whole story: one can define also the notions of co-associatitivy and
co-commutativity applying in the regions of space-time surface with Euclidian signature of the
induced metric. The basic unproven conjecture is that the decomposition of space-time surfaces
to associative and co-associative regions containing preferred commutative resp. co-commutative
2-plane in the 4-D tangent plane is equivalent with the preferred extremal property of Kähler
action and the hypothesis that space-time surface allows a slicing by string world sheets and by
partonic 2-surfaces [31] .

Hyper-octonions and hyper-quaternions

The discussions for years ago with Tony Smith [123] stimulated very general ideas about space-time
surface as an associative, quaternionic sub-manifold of octonionic 8-space: in what sense remained
however an open question. Also the observation that quaternionic and octonionic primes have norm
squared equal to prime in complete accordance with p-adic length scale hypothesis, led to suspect that
the notion of primeness for quaternions, and perhaps even for octonions, might be fundamental for
the formulation of quantum TGD. The original idea was that space-time surfaces could be regarded
as four-surfaces in 8-D imbedding space with the property that the tangent spaces of these spaces can
be locally regarded as 4- resp. 8-dimensional quaternions and octonions.

It took some years to realize that the difficulties related to the realization of Lorentz invari-
ance might be overcome by replacing quaternions and octonions with hyper-quaternions and hyper-
octonions. Hyper-quaternions resp. -octonions is obtained from the algebra of ordinary quaternions
and octonions by multiplying the imaginary part with

√
−1 and can be regarded as a sub-space of

complexified quaternions resp. octonions. The transition is the number theoretical counterpart of the
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transition from Riemannian to pseudo-Riemannin geometry performed already in Special Relativity.
The loss of number field and even sub-algebra property is not fatal and has a clear physical meaning.
The notion of primeness is inherited from that for complexified quaternions resp. octonions.

Complexified number fields make also sense p-adically unlike the notions of number fields them-
selves unless restricted to be algebraic extensions of rational variants of number fields. What deserves
separate emphasis is that the basic structure of the standard model would reduce to number theory.

Number theoretical compactification and M8 −H duality

The notion of hyper-quaternionic and octonionic manifold makes sense but it not plausible that
H = M4 × CP2 could be endowed with a hyper-octonionic manifold structure. Situation changes
if H is replaced with hyper-octonionic M8. Suppose that X4 ⊂ M8 consists of hyper-quaternionic
and co-hyper-quaternionic regions. The basic observation is that the hyper-quaternionic sub-spaces
of M8 with a fixed hyper-complex structure (containing in their tangent space a fixed hyper-complex
subspace M2 or at least one of the light-like lines of M2) are labeled by points of CP2. Hence each
hyper-quaternionic and co-hyper-quaternionic four-surface of M8 defines a 4-surface of M4 × CP2.
One can loosely say that the number-theoretic analog of spontaneous compactification occurs: this of
course has nothing to do with dynamics as in super string model.

This picture was still too naive and it became clear that not all known extremals of Kähler action
contain fixed M2 ⊂M4 or light-like line of M2 in their tangent space.

1. The first option represents the minimal form of number theoretical compactification. M8 is
interpreted as the tangent space of H. Only the 4-D tangent spaces of light-like 3-surfaces X3

l

(wormhole throats or boundaries) are assumed to be hyper-quaternionic or co-hyper-quaternionic
and contain fixed M2 or its light-like line in their tangent space. Hyper-quaternionic regions
would naturally correspond to space-time regions with Minkowskian signature of the induced
metric and their co-counterparts to the regions for which the signature is Euclidian. What is
of special importance is that this assumption solves the problem of identifying the boundary
conditions fixing the preferred extremals of Kähler action since in the generic case the intersection
of M2 with the 3-D tangent space of X3

l is 1-dimensional. The surfaces X4(X3
l ) ⊂ M8 would

be hyper-quaternionic or co-hyper-quaternionic but would not allow a local mapping between
the 4-surfaces of M8 and H.

2. One can also consider a more local map of X4(X3
l ) ⊂ H to X4(X3

l ) ⊂ M8. The idea is to
allow M2 ⊂M4 ⊂M8 to vary from point to point so that S2 = SO(3)/SO(2) characterizes the
local choice of M2 in the interior of X4. This leads to a quite nice view about strong geometric
form of M8 −H duality in which M8 is interpreted as tangent space of H and X4(X3

l ) ⊂ M8

has interpretation as tangent for a curve defined by light-like 3-surfaces at X3
l and represented

by X4(X3
l ) ⊂ H. Space-time surfaces X4(X3

l ) ⊂ M8 consisting of hyper-quaternionic and co-
hyper-quaternionic regions would naturally represent a preferred extremal of E4 Kähler action.
The value of the action would be same as CP2 Kähler action. M8−H duality would apply also
at the induced spinor field and at the level of configuration space.

3. Strong form of M8−H duality satisfies all the needed constraints if it represents Kähler isometry
between X4(X3

l ) ⊂ M8 and X4(X3
l ) ⊂ H. This implies that light-like 3-surface is mapped to

light-like 3-surface and induced metrics and Kähler forms are identical so that also Kähler action
and field equations are identical. The only differences appear at the level of induced spinor fields
at the light-like boundaries since due to the fact that gauge potentials are not identical.

4. The map of X3
l ⊂ H → X3

l ⊂M8 would be crucial for the realization of the number theoretical
universality. M8 = M4 × E4 allows linear coordinates as those preferred coordinates in which
the points of imbedding space are rational/algebraic. Thus the point of X4 ⊂ H is algebraic
if it is mapped to algebraic point of M8 in number theoretic compactification. This of course
restricts the symmetry groups to their rational/algebraic variants but this does not have practical
meaning. Number theoretical compactication could thus be motivated by the number theoretical
universality.

5. The possibility to use either M8 or H picture might be extremely useful for calculational pur-
poses. In particular, M8 picture based on SO(4) gluons rather than SU(3) gluons could per-
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turbative description of low energy hadron physics. The strong SO(4) symmetry of low energy
hadron physics can be indeed seen direct experimental support for the M8 −H duality.

Notations

Some notational conventions are in order before continuing. The fields of quaternions resp. octonions
having dimension 4 resp. 8 and will be denoted by Q and O. Their complexified variants will
be denoted by QC and OC . The sub-spaces of hyper-quaternions HQ and hyper-octonions HO
are obtained by multiplying the quaternionic and octonionic imaginary units by

√
−1. These sub-

spaces are very intimately related with the corresponding algebras, and can be seen as Euclidian
and Minkowkian variants of the same basic structure. Also the Abelianized versions of the hyper-
quaternionic and -octonionic sub-spaces can be considered: these algebras have a representation in
the space of spinors of imbedding space H = M4 × CP2.

10.3.1 Quaternion and octonion structures and their hyper counterparts

In this introductory section the notions of quaternion and octonion structures and their hyper counter-
parts are introduced with strong emphasis on the physical interpretation. Literature contains several
variants of these structures (Hyper-Kähler structure [15] and quaternion Kähler structure possed also
by CP2 [53] ). The notion introduced here is inspired by the physical motivations coming from TGD.
As usual the first proposal based on the notions of (hyper-)quaternion and (hyper-)octonion analyticity
was not the correct one. Much later a local variant of the notion based on tangent space emerged.

Octonions and quaternions

In the following only the basic definitions relating to octonions and quaterions are given. There is an
excellent article by John Baez [23] describing octonions and their relations to the rest of mathematics
and physics.

Octonions can be expressed as real linear combinations
∑
k x

kIk of the octonionic real unit I0 = 1
(counterpart of the unit matrix) and imaginary units Ia, a = 1, ..., 7 satisfying

I2
0 = I0 ≡ 1 ,

I2
a = −I0 = −1 ,

I0Ia = Ia . (10.3.1)

Octonions are closed with respect to the ordinary sum of the 8-dimensional vector space and with
respect to the octonionic multiplication, which is neither commutative (ab 6= ba in general) nor
associative (a(bc) 6= (ab)c in general).

A concise manner to summarize octonionic multiplication is by using octonionic triangle. Each
line (6 altogether) containing 3 octonionic imaginary units forms an associative triple which together
with I0 = 1 generate a division algebra of quaternions. Also the circle spanned by the 3 imaginary
units at the middle of the sides of the triangle is associative triple. The multiplication rules for each
associative triple are simple:

IaIb = εabcIc , (10.3.2)

where εabc is 3-dimensional permutation symbol. εabc = 1 for the clockwise sequence of vertices (the
direction of the arrow along the circumference of the triangle and circle). As a special case this rule
gives the multiplication table of quaternions. A crucial observation for what follows is that any pair
of imaginary units belongs to one associative triple.

The non-vanishing structure constants d c
ab of the octonionic algebra can be read directly from

the octonionic triangle. For a given pair Ia, Ib one has
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Figure 10.2: Octonionic triangle: the six lines and one circle containing three vertices define the seven
associative triplets for which the multiplication rules of the ordinary quaternion imaginary units hold
true. The arrow defines the orientation for each associative triplet. Note that the product for the
units of each associative triplets equals to real unit apart from sign factor.

IaIb = d c
ab Ic ,

dab c = ε c
ab ,

I2
a = d 0

aa I0 = −I0 ,

I2
0 = d 0

00 I0 ,

I0Ia = d a
0a Ia = Ia . (10.3.3)

For εabc c belongs to the same associative triple as ab.

Non-associativity means that is not possible to represent octonions as matrices since matrix prod-
uct is associative. Quaternions can be represented and the structure constants provide the defining
representation as Ia → dabc, where b and c are regarded as matrix indices of 4 × 4 matrix. The
algebra automorphisms of octonions form 14-dimensional group G2, one of the so called exceptional
Lie-groups. The isotropy group of imaginary octonion unit is the group SU(3). The Euclidian inner
product of the two octonions is defined as the real part of the product xy

(x, y) = Re(xy) =
∑

k=0,..7

xkyk ,

x = x0I0 −
∑

i=1,..,7

xkIk , (10.3.4)

and is just the Euclidian norm of the 8-dimensional space.

Hyper-octonions and hyper-quaternions

The Euclidicity of the quaternion norm suggests that octonions are not a sensible concept in TGD
context. One can imagine two manners to circumvent this conclusion.
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1. Minkowskian metric for octonions and quaternions is obtained by identifying Minkowski inner
product xy as the real counterpart of the product

x · y ≡ Re(xy) = x0y0 −
∑
k

xkyk . (10.3.5)

SO(1, 7) (SO(1, 3) in quaternionic case) Lorentz invariance appears completely naturally as the
symmetry of the real part of the octonion (quaternion) product and hence of octonions/quaternions
and there is no need to perform the complexification of the octonion algebra. Furthermore, only
the signature (1, 7) ((1, 3) in the quaternionic case) is possible and this would raise M4

+ × CP2

in a preferred position.

This norm does not give rise to a number theoretic norm defining a homomorphism to real
numbers. Indeed, the number theoretic norm defined by the determinant of the linear mapping
defined by the multiplication with quaternion or octonion, is inherently Euclidian. This is in
conflict with the idea that quaternionic and octonionic primes and their infinite variants should
have key role in TGD [84] .

2. Hyper-octonions and hyper-quaternions provide a possible solution to these problems. These are
obtained by multiplying imaginary units by commutative and associative

√
−1. These numbers

form a sub-space of complexified octonions/quaternions and the cross product of imaginary parts
leads out from this sub-space. In this case number theoretic norm induced from QC/OC gives
the fourth/eighth power of Minkowski length and Lorentz group acts as its symmetries. Light-
like hyper-quaternions and -octonions causing the failure of the number field property have also
a clear physical interpretation.

A criticism against the notion of hyper-quaternionic and octonionic primeness is that the tangent
space as an algebra property is lost and the notion of primeness is inherited from QC/OC . Also
non-commutativity and non-associativity could cause difficulties.

Zero energy ontology leads to a possible physical interpretation of complexified octonions. The
moduli space for causal diamonds corresponds to a Cartesian product of M4×CP2 whose points label
the position of either tip of CD × CP2 and space I whose points label the relative positive of the
second tip with respect to the first one. p-Adic length scale hypothesis results if one assumes that the
proper time distance between the tips comes in powers of two so that one has union of hyperboloids
Hn × CP2, Hn = {m ∈ M4

+|a = 2na0)}. A further quantization of hyperboloids Hn is obtained
by replacing it with a lattice like structure is highly suggestive and would correspond to an orbit
of a point of Hn under a subgroup of SL(2, QC) or SL(2, ZC) acting as Lorentz transformations in
standard manner. Also algebraic extensions of QC and ZC can be considered. Also in the case of CP2

discretization is highly suggestive so that one would have an orbit of a point of CP2 under a discrete
subgroup of SU(3, Q).

The outcome could be interpreted by saying that the moduli space in question is H × I such that
H corresponds to hyper-octonions and I to a discretized version of

√
−1H and thus a subspace of

complexified octonions. An open question whether the quantization has some deeper mathematical
meaning.

Basic constraints

Before going to details it is useful to make clear the constraints on the concept of the hyper-octonionic
structure implied by TGD view about physics.

M4 ×CP2 cannot certainly be regarded as having any global octonionic structure (for instance in
the sense that it could be regarded as a coset space associated with some exceptional group). There
are however clear indications for the importance of the hyper-quaternionic and -octonionic structures.

1. SU(3) is the only simple 8-dimensional Lie-group and acts as the group of isometries of CP2:
if SU(3) had some kind of octonionic structure, CP2 would become unique candidate for the
space S. The decomposition SU(3) = h+ t to U(2) subalgebra and its complement corresponds
rather closely to the decomposition of (hyper-)octonions to (hyper-)quaternionic sub-space and
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its complement. The electro-weak U(2) algebra has a natural 1+3 decomposition and generators
allow natural hyper-quaternionic structure. The components of the Weyl tensor of CP2 behave
with respect to multiplication like quaternionic imaginary units but only one of them is covari-
antly constant so that hyper Kähler structure [15] with three covariantly constant quaternionic
imaginary units represented by Kähler forms is not possible. These tensors and metric tensor
however define quaternionic structure [53] .

2. M4
+ has a natural 1+3 decomposition and a unique cosmic time coordinate defined as the light

cone proper time. Hyper-quaternionic structure is consistent with the Minkowskian signature
of the inner product and hyper quaternion units have a natural representation in terms of
covariantly constant self-dual symplectic forms [72, 39, 38] and their contractions with sigma
matrices. It is not however clear whether this representation is physically intereting.

How to define hyper-quaternionic and hyper-octonionic structures?

I have considered several proposals for how to define quaternionic and octonionic structures and their
hyper-counterparts.

1. (Hyper-)octonionic manifolds would obtained by gluing together coordinate patches using (hyper-
)octonion analytic functions with real Laurent coefficients (this guarantees associativity and
commutativity). This definition does not yet involve metric or any other structures (such as
Kähler structure). This approach does not seem to be physically realistic.

2. Second option is based on the idea of representing quaternionic and octonionic imaginary units as
antisymmetric tensors. This option makes sense for quaternionic manifolds [30] and CP2 indeed
represents an example represents of this kind of manifold. The problem with the octonionic
structure is that antisymmetric tensors cannot define non-associative product.

3. If the manifold is endowed with metric, octonionic structure should be defined as a local tangent
space structure analogous to eight-bein structure and local gauge algebra structures. This can
be achieved by contracting octo-bein vectors with the standard octonionic basis to get octonion
form Ik. Each vector field ak defines naturally octonion field A = akIk. The product of two
vector fields can be defined by the octonionic multiplication and this leads to the introduction
of a tensor field dklm of these structure constants obtained as the contraction of the octobein
vectors with the octonionic structure constants dabc. Hyper-octonion structure can defined in a
completely analogous manner.

It is possible to induce octonionic structure to any 4-dimensional space-time surface by forming
the projection of Ik to the space-time surface and redefining the products of Ik:s by dropping
away that part of the product, which is orthogonal to the space-time surface. This means that
the structure constants of the new 4-dimensional algebra are the projections of dklm to the space-
time surface. One can also define similar induced algebra in the 4-dimensional normal space of
the space-time surface. The hypothesis would be that the induced tangential is associative or
hyper-quaternionic algebra. Also co-associativity defined as associativity of the normal space
algebra is possible. This property would give for the 4-dimensionality of the space-time surface
quite special algebraic meaning. The problem is now that there is no direct connection with
quantum TGD proper- in particular the connection with the classical dynamics defined by Kähler
action is lacking.

4. 8-dimensional gamma matrices allow a representation in terms of tensor products of octonions
and 2 × 2 matrices. Genuine matrices are of course not in question since the product of the
gamma matrices fails to be associative. An associative representation is obtained by restrict-
ing the matrices to a quaternionic plane of complex octonions. If the space-time surface is
hyper-quaternionic in the sense that induced gamma matrices define a quaternionic plane of
complexified octonions at each point of space-time surface the resulting local Clifford algebra
is associative and structure constants define a matrix representation for the induced gamma
matrices.

A more general definition allows gamma matrices to be modified gamma matrices defined by
Kähler action appearing in the modified Dirac action and forced both by internal consistency
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and super-conformal symmetry [20, 31] . The modified gamma matrices associated with Kähler
action do not in general define tangent space of the space-time surface as the induced gamma
matrices do. Also co-associativity can be considered if one can identify a preferred imaginary unit
such that the multiplication of the modified gamma matrices with this unit gives a quaternionic
basis. This condition makes sense only if the preferred extremals of the action are hyper-
quaternionic surfaces in the sense defined by the action. That this is true for Kähler action at
least is an is an unproven conjecture.

In the sequel only the fourh option will be considered.

How to end up to quantum TGD from number theory?

An interesting possibility is that quantum TGD could emerge from a condition that a local version
of hyper-finite factor of type II1 represented as a local version of infinite-dimensional Clifford algebra
exists. The conditions are that ”center or mass” degrees of freedom characterizing the position of CD
separate uniquely from the ”vibrational” degrees of freedom being represented in terms of octonions
and that for physical states associativity holds true. The resulting local Clifford algebra would be
identifiable as the local Clifford algebra of WCW (being an analog of local gauge groups and conformal
fields [32] ).

The uniqueness of M8 and M4×CP2 as well as the role of hyper-quaternionic space-time surfaces
as fundamental dynamical objects indeed follow from rather weak conditions if one restricts the
consideration to gamma matrices and spinors instead of assuming that M8 coordinates are hyper-
octonionic as was done in the first attempts.

1. The unique feature ofM8 and any 8-dimensional space with Minkowski signature of metric is that
it is possible to have an octonionic representation of the complexified gamma matrices [20, 24]
and of spinors. This does not require octonionic coordinates for M8. The restriction to a
quaternionic plane for both gamma matrices and spinors guarantees the associativity.

2. One can also consider a local variant of the octonionic Clifford algebra in M8. This algebra con-
tains associative subalgebras for which one can assign to each point of M8 a hyper-quaternionic
plane. It is natural to assume that this plane is either a tangent plane of 4-D manifold defined
naturally by the induced gamma matrices defining a basis of tangent space or more generally,
by modified gamma matrices defined by a variational principle (these gamma matrices do not
define tangent space in general). Kähler action defines a unique candidate for the variational
principle in question. Associativity condition would automatically select sub-algebras associated
with 4-D hyper-quaternionic space-time surfaces.

3. This vision bears a very concrete connection to quantum TGD. In [24] the octonionic formulation
of the modified Dirac equation is studied and shown to lead to a highly unique general solution
ansatz for the equation working also for the matrix representation of the Clifford algebra. An
open question is whether the resulting solution as such defined also solutions of the modified
Dirac equation for the matrix representation of gammas. Also a possible identification for 8-
dimensional counterparts of twistors as octo-twistors follows: associativity implies that these
twistors are very closely related to the ordinary twistors. In TGD framework octo-twistors
provide an attractive manner to get rid of the difficulties posed by massive particles for the
ordinary twistor formalism.

4. Associativity implies hyperquaternionic space-time surfaces (in a more general sense as usual)
and this leads naturally to the notion of WCW and local Clifford algebra in this space. Number
theoretic arguments imply M8 −H duality. The resulting infinite-dimensional Clifford algebra
would differ from von Neumann algebras in that the Clifford algebra and spinors assignable to
the center of mass degrees of freedom of causal diamond CD would be expressed in terms of
octonionic units although they are associative at space-time surfaces. One can therefore say that
quantum TGD follows by assuming that the tangent space of the imbedding space corresponds
to a classical number field with maximal dimension.

5. The slicing of the Minkowskian space-time surface inside CD by stringy world sheets and by par-
tonic 2-surfaces inspires the question whether the modified gamma matrices associated with the
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stringy world sheets resp. partonic 2-surfaces could be could commutative resp. co-commutative.
Commutativity would also be seen as the justification for why the fundamental objects are ef-
fectively 2-dimensional.

This formulation is undeniably the most convincing one found hitherto since the notion of hyper-
quaternionic structure is local and has elegant formulation in terms of modified gamma matrices.

10.3.2 Number theoretical compactification and M8 −H duality

This section summarizes the basic vision about number theoretic compactification reducing the clas-
sical dynamics to number theory. In strong form M8 −H duality boils down to the assumption that
space-time surfaces can be regarded either as surfaces of H or as surfaces of M8 composed of asso-
ciative and co-associative regions identifiable as regions of space-time possessing Minkowskian resp.
Euclidian signature of the induced metric.

Basic idea behind M8 −M4 × CP2 duality

The observation that M4 × CP2 does not allow octonionic structure in the sense that transition
functions would be octonion analytic functions with real coeffeicients forced to ask whether four-
surfaces X4 ⊂ M8 could under some conditions define 4-surfaces in M4 × CP2 indirectly so that
the spontaneous compactification of super string models would correspond in TGD to two different
manners to interpret the space-time surface. The following arguments suggest that this is indeed the
case. One could end up to the duality also from the attempt to understand M4×CP2 decomposition
number theoretically.

The hard mathematical fact behind number theoretical compactification is that the quaternionic
sub-algebras of octonions with fixed complex structure (that is complex sub-space) are parameterized
by CP2 just as the complex planes of quaternion space are parameterized by CP1 = S2. Same applies
to hyper-quaternionic sub-spaces of hyper-octonions. SU(3) would thus have an interpretation as the
isometry group of CP2, as the automorphism sub-group of octonions, and as color group.

1. The space of complex structures of the octonion space is parameterized by S6. The subgroup
SU(3) of the full automorphism group G2 respects the a priori selected complex structure and
thus leaves invariant one octonionic imaginary unit, call it e1. Hyper-quaternions can be identi-
fied as U(2) Lie-algebra but it is obvious that hyper-octonions do not allow an identification as
SU(3) Lie algebra. Rather, octonions decompose as 1⊕1⊕3⊕3 to the irreducible representations
of SU(3).

2. Geometrically the choice of a preferred complex (quaternionic) structure means fixing of complex
(quaternionic) sub-space of octonions. The fixing of a hyper-quaternionic structure of hyper-
octonionic M8 means a selection of a fixed hyper-quaternionic sub-space M4 ⊂ M8 implying
the decomposition M8 = M4 ×E4. If M8 is identified as the tangent space of H = M4 × CP2,
this decomposition results naturally. It is also possible to select a fixed hyper-complex structure,
which means a further decomposition M4 = M2 × E2.

3. The basic result behind number theoretic compactification and M8 −H duality is that hyper-
quaternionic sub-spaces M4 ⊂M8 containing a fixed hyper-complex sub-space M2 ⊂M4 or its
light-like line M± are parameterized by CP2. The choices of a fixed hyper-quaternionic basis
1, e1, e2, e3 with a fixed complex sub-space (choice of e1) are labeled by U(2) ⊂ SU(3). The choice
of e2 and e3 amounts to fixing e2 ±

√
−1e3, which selects the U(2) = SU(2) × U(1) subgroup

of SU(3). U(1) leaves 1 invariant and induced a phase multiplication of e1 and e2 ± e3. SU(2)
induces rotations of the spinor having e2 and e3 components. Hence all possible completions of
1, e1 by adding e2, e3 doublet are labeled by SU(3)/U(2) = CP2.

4. Space-time surface X4 ⊂ M8 is by the standard definition hyper-quaternionic if the tangent
spaces ofX4 are hyper-quaternionic planes. Co-hyper-quaternionicity means the same for normal
spaces. The presence of fixed hyper-complex structure means at space-time level that the tangent
space of X4 contains fixed M2 at each point. Under this assumption one can map the points
(m, e) ∈M8 to points (m, s) ∈ H by assigning to the point (m, e) of X4 the point (m, s), where
s ∈ CP2 characterize T (X4) as hyper-quaternionic plane. This definition is not the only one and
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even the appropriate one in TGD context the replacement of the tangent plane with the 4-D
plane spanned by modified gamma matrices defined by Kähler action is a more natural choice.
This plane is not parallel to tangent plane in general. In the sequel T (X4) denotes the preferred
4-plane which co-incides with tangent plane of X4 only if the action defining modified gamma
matrices is 4-volume.

5. The choice of M2 can be made also local in the sense that one has T (X4) ⊃ M2(x) ⊂ M4 ⊂
H. It turns out that strong form of number theoretic compactification requires this kind of
generalization. In this case one must be able to fix the convention how the point of CP2 is
assigned to a hyper-quaternionic plane so that it applies to all possible choices of M2 ⊂ M4.
Since SO(3) hyper-quaternionic rotation relates the hyper-quaternionic planes to each other,
the natural assumption is hyper-quaternionic planes related by SO(3) rotation correspond to
the same point of CP2. Under this assumption it is possible to map hyper-quaternionic surfaces
of M8 for which M2 ⊂M4 depends on point of X4 to H.

Hyper-octonionic Pauli ”matrices” and modified definition of hyper-quaternionicity

Hyper-octonionic Pauli matrices suggest an interesting possibility to define precisely what hyper-
quaternionicity means at space-time level (for background see [96] ).

1. According to the standard definition space-time surface X4 is hyper-quaternionic if the tangent
space at each point of X4 in X4 ⊂ M8 picture is hyper-quaternionic. What raises worries is
that this definition involves in no manner the action principle so that it is far from obvious that
this identification is consistent with the vacuum degeneracy of Kähler action. It also unclear
how one should formulate hyper-quaternionicity condition in X4 ⊂M4 × CP2 picture.

2. The idea is to map the modified gamma matrices Γα = ∂LK
∂hkα

Γk, Γk = eAk γA, to hyper-octonionic

Pauli matrices σα by replacing γA with hyper-octonion unit. Hyper-quaternionicity would state
that the hyper-octonionic Pauli matrices σα obtained in this manner span complexified quater-
nion sub-algebra at each point of space-time. These conditions would provide a number theoretic
manner to select preferred extremals of Kähler action. Remarkably, this definition applies both
in case of M8 and M4 × CP2.

3. Modified Pauli matrices span the tangent space of X4 if the action is four-volume because one has
∂LK
∂hkα

=
√
ggαβ∂hlβhkl. Modified gamma matrices reduce to ordinary induced gamma matrices

in this case: 4-volume indeed defines a super-conformally symmetric action for ordinary gamma
matrices since the mass term of the Dirac action given by the trace of the second fundamental
form vanishes for minimal surfaces.

4. For Kähler action the hyper-quaternionic sub-space does not coincide with the tangent space
since ∂LK

∂hkα
contains besides the gravitational contribution coming from the induced metric also

the ”Maxwell contribution” from the induced Kähler form not parallel to space-time surface.
Modified gamma matrices are required by super conformal symmetry for the extremals of Kähler
action and they also guarantee that vacuum extremals defined by surfaces in M4 × Y 2, Y 2 a
Lagrange sub-manifold of CP2, are trivially hyper-quaternionic surfaces. The modified definition
of hyper-quaternionicity does not affect in any manner M8 ↔M4×CP2 duality allowing purely
number theoretic interpretation of standard model symmetries.

A side comment not strictly related to hyper-quaternionicity is in order. The anticommutators
of the modified gamma matrices define an effective Riemann metric and one can assign to it the
counterparts of Riemann connection, curvature tensor, geodesic line, volume, etc... One would have
two different metrics associated with the space-time surface. Only if the action defining space-time
surface is identified as the volume in the ordinary metric, these metrics are equivalent. The index
raising for the effective metric could be defined also by the induced metric and it is not clear whether
one can define Riemann connection also in this case. Could this effective metric have concrete physical
significance and play a deeper role in quantum TGD? For instance, AdS-CFT duality leads to ask
whether interactions be coded in terms of the gravitation associated with the effective metric.
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Minimal form of M8 −H duality

The basic problem in the construction of quantum TGD has been the identification of the preferred
extremals of Kähler action playing a key role in the definition of the theory. The most elegant manner
to do this is by fixing the 4-D tangent space T (X4(X3

l )) of X4(X3
l ) at each point of X3

l so that the
boundary value problem is well defined. What I called number theoretical compactification allows to
achieve just this although I did not fully realize this in the original vision. The minimal picture is
following.

1. The basic observations are following. Let M8 be endowed with hyper-octonionic structure. For
hyper-quaternionic space-time surfaces inM8 tangent spaces are by definition hyper-quaternionic.
If they contain a preferred plane M2 ⊂M4 ⊂M8 in their tangent space, they can be mapped to
4-surfaces in M4 × CP2. The reason is that the hyper-quaternionic planes containing preferred
the hyper-complex plane M2 of M± ⊂ M2 are parameterized by points of CP2. The map is
simply (m, e) → (m, s(m, e)), where m is point of M4, e is point of E4, and s(m, 2) is point of
CP2 representing the hyperquaternionic plane. The inverse map assigns to each point (m, s) in
M4×CP2 point m of M4, undetermined point e of E4 and 4-D plane. The requirement that the
distribution of planes containing the preferred M2 or M± corresponds to a distribution of planes
for 4-D surface is expected to fix the points e. The physical interpretation of M2 is in terms
of plane of non-physical polarizations so that gauge conditions have purely number theoretical
interpretation.

2. In principle, the condition that T (X4) contains M2 can be replaced with a weaker condition
that either of the two light-like vectors of M2 is contained in it since already this condition
assigns to T (X4) M2 and the map H → M8 becomes possible. Only this weaker form applies
in the case of massless extremals [12] as will be found.

3. The original idea was that hyper-quaternionic 4-surfaces in M8 containing M2 ⊂ M4 in their
tangent space could correspond to preferred extremals of Kähler action. This condition does
not seem to be consistent with what is known about the extremals of Kähler action. The
weaker form of the hypothesis is that hyper-quaternionicity holds only for 4-D tangent spaces
of X3

l ⊂ H = M4 × CP2 identified as wormhole throats or boundary components lifted to 3-
surfaces in 8-D tangent space M8 of H. The minimal hypothesis would be that only T (X4(X3

l ))
at X3

l is associative that is hyper-quaternionic for fixed M2. X3
l ⊂ M8 and T (X4(X3

l )) at X3
l

can be mapped to X3
l ⊂ H if tangent space contains also M± ⊂ M2 or M2 ⊂ M4 ⊂ M8 itself

having interpretation as preferred hyper-complex plane. This condition is not satisfied by all
surfaces X3

l as is clear from the fact that the inverse map involves local E4 translation. The
requirements that the distribution of hyper-quaternionic planes containing M2 corresponds to
a distribution of 4-D tangent planes should fix the E4 translation to a high degree.

4. A natural requirement is that the image of X3
l ⊂ H in M8 is light-like. The condition that the

determinant of induced metric vanishes gives an additional condition reducing the number of
free parameters by one. This condition cannot be formulated as a condition on CP2 coordinate
characterizing the hyper-quaternionic plane. Since M4 projections are same for the two repre-
sentations, this condition is satisfied if the contributions from CP2 and E4 and projections to
the induced metric are identical: skl∂αs

k∂βs
l = ekl∂αe

k∂βe
l. This condition means that only

a subset of light-like surfaces of M8 are realized physically. One might argue that this is as it
must be since the volume of E4 is infinite and that of CP2 finite: only an infinitesimal portion
of all possible light-like 3-surfaces in M8 can can have H counterparts. The conclusion would
be that number theoretical compactification is 4-D isometry between X4 ⊂ H and X4 ⊂M8 at
X3
l . This unproven conjecture is unavoidable.

5. M2 ⊂ T (X4(X3
l )) condition fixes T (X4(X3

l )) in the generic case by extending the tangent space
of X3

l , and the construction of configuration space spinor structure fixes boundary conditions
completely by additional conditions necessary when X3

l corresponds to a light-like 3 surfaces
defining wormhole throat at which the signature of induced metric changes. What is especially
beautiful that only the data in T (X4(X3

l )) at X3
l is needed to calculate the vacuum functional of

the theory as Dirac determinant: the only remaining conjecture (strictly speaking un-necessary
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but realistic looking) is that this determinant gives exponent of Kähler action for the preferred
extremal and there are excellent hopes for this by the structure of the basic construction.

The basic criticism relates to the condition that light-like 3-surfaces are mapped to light-like 3-
surfaces guaranteed by the condition that M8 −H duality is isometry at X3

l .

Strong form of M8 −H duality

The proposed picture is the minimal one. One can of course ask whether the original much stronger
conjecture that the preferred extrema of Kähler action correspond to hyper-quaternionic surfaces could
make sense in some form. One can also wonder whether one could allow the choice of the plane M2

of non-physical polarization to be local so that one would have M2(x) ⊂M4 ⊂M4 × E4, where M4

is fixed hyper-quaternionic sub-space of M8 and identifiable as M4 factor of H.

1. If M2 is same for all points of X3
l , the inverse map X3

l ⊂ H → X3
l ⊂ M8 is fixed apart from

possible non-uniquencess related to the local translation in E4 from the condition that hyper-
quaternionic planes represent light-like tangent 4-planes of light-like 3-surfaces. The question is
whether not only X3

l but entire four-surface X4(X3
l ) could be mapped to the tangent space of

M8. By selecting suitably the local E4 translation one might hope of achieving the achieving
this. The conjecture would be that the preferred extrema of Kähler action are those for which
the distribution integrates to a distribution of tangent planes.

2. There is however a problem. What is known about extremals of Kähler action is not consistent
with the assumption that fixed M2 of M± ⊂ M2is contained in the tangent space of X4. This
suggests that one should relax the condition that M2 ⊂M4 ⊂M8 is a fixed hyper-complex plane
associated with the tangent space or normal space X4 and allow M2 to vary from point to point
so that one would have M2 = M2(x). In M8 → H direction the justification comes from the
observation (to be discussed below) that it is possible to uniquely fix the convention assigning
CP2 point to a hyper-quaternionic plane containing varying hyper-complex plane M2(x) ⊂M4.

Number theoretic compactification fixes naturally M4 ⊂M8 so that it applies to any M2(x) ⊂
M4. Under this condition the selection is parameterized by an element of SO(3)/SO(2) = S2.
Note that M4 projection of X4 would be at least 2-dimensional in hyper-quaternionic case. In
co-hyper-quaternionic case E4 projection would be at least 2-D. SO(2) would act as a number
theoretic gauge symmetry and the SO(3) valued chiral field would approach to constant at X3

l

invariant under global SO(2) in the case that one keeps the assumption that M2 is fixed ad X3
l .

3. This picture requires a generalization of the map assigning to hyper-quaternionic plane a point
of CP2 so that this map is defined for all possible choices of M2 ⊂M4. Since the SO(3) rotation
of the hyper-quaternionic unit defining M2 rotates different choices parameterized by S2 to each
other, a natural assumption is that the hyper-quaternionic planes related by SO(3) rotation
correspond to the same point of CP2. Denoting by M2 the standard representative of M2, this
means that for the map M8 → H one must perform SO(3) rotation of hyper-quaternionic plane
taking M2(x) to M2 and map the rotated plane to CP2 point. In M8 → H case one must first
map the point of CP2 to hyper-quaternionic plane and rotate this plane by a rotation taking
M2(x) to M2.

4. In this framework local M2 can vary also at the surfaces X3
l , which considerably relaxes the

boundary conditions at wormhole throats and light-like boundaries and allows much more general
variety of light-like 3-surfaces since the basic requirement is that M4 projection is at least 1-
dimensional. The physical interpretation would be that a local choice of the plane of non-physical
polarizations is possible everywhere in X4(X3

l ). This does not seem to be in any obvious conflict
with physical intuition.

These observation provide support for the conjecture that (classical) S2 = SO(3)/SO(2) conformal
field theory might be relevant for (classical) TGD.

1. General coordinate invariance suggests that the theory should allow a formulation using any
light-like 3-surface X3 inside X4(X3

l ) besides X3
l identified as union of wormhole throats and

boundary components. For these surfaces the element g(x) ∈ SO(3) would vary also at partonic
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2-surfaces X2 defined as intersections of δCD×CP2 and X3 (here CD denotes causal diamond
defined as intersection of future and past directed light-cones). Hence one could have S2 =
SO(3)/SO(2) conformal field theory at X2 (regarded as quantum fluctuating so that also g(x)
varies) generalizing to WZW model for light-like surfaces X3.

2. The presence of E4 factor would extend this theory to a classical E4×S2 WZW model bringing
in mind string model with 6-D Euclidian target space extended to a model of light-like 3-surfaces.
A further extension to X4 would be needed to integrate the WZW models associated with 3-
surfaces to a full 4-D description. General Coordinate Invariance however suggests that X3

l

description is enough for practical purposes.

3. The choices of M2(x) in the interior of X3
l is dictated by dynamics and the first optimistic

conjecture is that a classical solution of SO(3)/SO(2) Wess-Zumino-Witten model obtained by
coupling SO(3) valued field to a covariantly constant SO(2) gauge potential characterizes the
choice of M2(x) in the interior of M8 ⊃ X4(X3

l ) ⊂ H and thus also partially the structure of
the preferred extremal. Second optimistic conjecture is that the Kähler action involving also E4

degrees of freedom allows to assign light-like 3-surface to light-like 3-surface.

4. The best that one can hope is that M8−H duality could allow to transform the extremely non-
linear classical dynamics of TGD to a generalization of WZW-type model. The basic problem
is to understand how to characterize the dynamics of CP2 projection at each point.

In H picture there are two basic types of vacuum extremals: CP2 type extremals representing
elementary particles and vacuum extremals having CP2 projection which is at most 2-dimensional
Lagrange manifold and representing say hadron. Vacuum extremals can appear only as limiting cases
of preferred extremals which are non-vacuum extremals. Since vacuum extremals have so decisive role
in TGD, it is natural to requires that this notion makes sense also in M8 picture. In particular, the
notion of vacuum extremal makes sense in M8.

This requires that Kähler form exist in M8. E4 indeed allows full S2 of covariantly constant Kähler
forms representing quaternionic imaginary units so that one can identify Kähler form and construct
Kähler action. The obvious conjecture is that hyper-quaternionic space-time surface is extremal of
this Kähler action and that the values of Kähler actions in M8 and H are identical. The elegant
manner to achieve this, as well as the mapping of vacuum extremals to vacuum extremals and the
mapping of light-like 3-surfaces to light-like 3-surfaces is to assume that M8 − H duality is Kähler
isometry so that induced Kähler forms are identical.

This picture contains many speculative elements and some words of warning are in order.

1. Light-likeness conjecture would boil down to the hypothesis that M8 − H correspondence is
Kähler isometry so that the metric and Kähler form of X4 induced from M8 and H would be
identical. This would guarantee also that Kähler actions for the preferred extremal are identical.
This conjecture is beautiful but strong.

2. The slicing of X4(X3
l ) by light-like 3-surfaces is very strong condition on the classical dynamics

of Kähler action and does not make sense for pieces of CP2 type vacuum extremals.

it 1. Minkowskian-Euclidian ↔ associative–co-associative

The 8-dimensionality of M8 allows to consider both associativity (hyper-quaternionicity) of the
tangent space and associativity of the normal space- let us call this co-assosiativity of tangent space-
as alternative options. Both options are needed as has been already found. Since space-time surface
decomposes into regions whose induced metric possesses either Minkowskian or Euclidian signature,
there is a strong temptation to propose that Minkowskian regions correspond to associative and
Euclidian regions to co-associative regions so that space-time itself would provide both the description
and its dual.

The proposed interpretation of conjectured associative-co-associative duality relates in an inter-
esting manner to p-adic length scale hypothesis selecting the primes p ' 2k, k positive integer as
preferred p-adic length scales. Lp ∝

√
p corresponds to the p-adic length scale defining the size of

the space-time sheet at which elementary particle represented as CP2 type extremal is topologically
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condensed and is of order Compton length. Lk ∝
√
k represents the p-adic length scale of the worm-

hole contacts associated with the CP2 type extremal and CP2 size is the natural length unit now.
Obviously the quantitative formulation for associative-co-associative duality would be in terms p→ k
duality.

2. Are the known extremals of Kähler action consistent with the strong form of M8 −H duality

It is interesting to check whether the known extremals of Kähler action [12] are consistent with
strong form of M8−H duality assuming that M2 or its light-like ray is contained in T (X4) or normal
space.

1. CP2 type vacuum extremals correspond cannot be hyper-quaternionic surfaces but co-hyper-
quaternionicity is natural for them. In the same manner canonically imbedded M4 can be only
hyper-quaternionic.

2. String like objects are associative since tangent space obviously contains M2(x). Objects of form
M1 ×X3 ⊂M4 × CP2 do not have M2 either in their tangent space or normal space in H. So
that the map from H →M8 is not well defined. There are no known extremals of Kähler action
of this type. The replacement of M1 random light-like curve however gives vacuum extremal
with vanishing volume, which need not mean physical triviality since fundamental objects of the
theory are light-like 3-surfaces.

3. For canonically imbedded CP2 the assignment of M2(x) to normal space is possible but the
choice of M2(x) ⊂ N(CP2) is completely arbitrary. For a generic CP2 type vacuum extremals
M4 projection is a random light-like curve in M4 = M1 × E3 and M2(x) can be defined
uniquely by the normal vector n ∈ E3 for the local plane defined by the tangent vector dxµ/dt
and acceleration vector d2xµ/dt2 assignable to the orbit.

4. Consider next massless extremals. Let us fix the coordinates ofX4 as (t, z, x, y) = (m0,m2,m1,m2).
For simplest massless extremals CP2 coordinates are arbitrary functions of variables u = k ·m =
t−z and v = ε ·m = x, where k = (1, 1, 0, 0) is light-like vector of M4 and ε = (0, 0, 1, 0) a polar-
ization vector orthogonal to it. Obviously, the extremals defines a decomposition M4 = M2×E2.
Tangent space is spanned by the four H-vectors ∇αhk with M4 part given by ∇αmk = δkα and
CP2 part by ∇αsk = ∂us

kkα + ∂vs
kεα.

The normal space cannot contain M4 vectors since the M4 projection of the extremal is M4.
To realize hyper-quaternionic representation one should be able to from these vector two vectors
of M2, which means linear combinations of tangent vectors for which CP2 part vanishes. The
vector ∂th

k−∂zhk has vanishing CP2 part and corresponds to M4 vector (1,−1, 0, 0) fix assigns
to each point the plane M2. To obtain M2 one would need (1, 1, 0, 0) too but this is not
possible. The vector ∂yh

k is M4 vector orthogonal to ε but M2 would require also (1, 0, 0, 0).
The proposed generalization of massless extremals allows the light-like line M± to depend on
point of M4 [12] , and leads to the introduction of Hamilton-Jacobi coordinates involving a
local decomposition of M4 to M2(x) and its orthogonal complement with light-like coordinate
lines having interpretation as curved light rays. M2(x) ⊂ T (X4) assumption fails fails also for
vacuum extremals of form X1 × X3 ⊂ M4 × CP2, where X1 is light-like random curve. In
the latter case, vacuum property follows from the vanishing of the determinant of the induced
metric.

5. The deformations of string like objects to magnetic flux quanta are basic conjectural extremals of
Kähler action and the proposed picture supports this conjecture. In hyper-quaternionic case the
assumption that local 4-D plane of X3 defined by modified gamma matrices contains M2(x) but
that T (X3) does not contain it, is very strong. It states that T (X4) at each point can be regarded
as a product M2(x)×T 2, T 2 ⊂ T (CP2), so that hyper-quaternionic X4 would be a collection of
Cartesian products of infinitesimal 2-D planes M2(x) ⊂ M4 and T 2(x) ⊂ CP2. The extremals
in question could be seen as local variants of string like objects X2×Y 2 ⊂M4×CP2, where X2

is minimal surface and Y 2 holomorphic surface of CP2. One can say that X2 is replaced by a
collection of infinitesimal pieces of M2(x) and Y 2 with similar pieces of homologically non-trivial
geodesic sphere S2(x) of CP2, and the Cartesian products of these pieces are glued together to
form a continuous surface defining an extremal of Kähler action. Field equations would pose
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conditions on how M2(x) and S2(x) can depend on x. This description applies to magnetic flux
quanta, which are the most important must-be extremals of Kähler action.

3. Geometric interpretation of strong M8 −H duality

In the proposed framework M8 − H duality would have a purely geometric meaning and there
would nothing magical in it.

1. X4(X3
l ) ⊂ H could be seen a curve representing the orbit of a light-like 3-surface defining a

4-D surface. The question is how to determine the notion of tangent vector for the orbit of X3
l .

Intuitively tangent vector is a one-dimensional arrow tangential to the curve at point X3
l . The

identification of the hyper-quaternionic surface X4(X3
l ) ⊂M8 as tangent vector conforms with

this intuition.

2. One could argue that M8 representation of space-time surface is kind of chart of the real space-
time surface obtained by replacing real curve by its tangent line. If so, one cannot avoid the
question under which conditions this kind of chart is faithful. An alternative interpretation is
that a representation making possible to realize number theoretical universality is in question.

3. An interesting question is whether X4(X3
l ) as orbit of light-like 3-surface is analogous to a

geodesic line -possibly light-like- so that its tangent vector would be parallel translated in the
sense that X4(X3) for any light-like surface at the orbit is same as X4(X3

l ). This would give
justification for the possibility to interpret space-time surfaces as a geodesic of configuration
space: this is one of the first -and practically forgotten- speculations inspired by the construction
of configuration space geometry. The light-likeness of the geodesic could correspond at the level
of X4 the possibility to decompose the tangent space to a direct sum of two light-like spaces and
2-D transversal space producing the foliation of X4 to light-like 3-surfaces X3

l along light-like
curves.

4. M8−H duality would assign to X3
l classical orbit and its tangent vector at X3

l as a generalization
of Bohr orbit. This picture differs from the wave particle duality of wave mechanics stating that
once the position of particle is known its momentum is completely unknown. The outcome is
however the same: for X3

l corresponding to wormhole throats and light-like boundaries of X4,
canonical momentum densities in the normal direction vanish identically by conservation laws
and one can say that the the analog of (q, p) phase space as the space carrying wave functions
is replaced with the analog of subspace consisting of points (q, 0). The dual description in M8

would not be analogous to wave functions in momentum space space but to those in the space
of unique tangents of curves at their initial points.

4. The Kähler and spinor structures of M8

If one introduces M8 as dual of H, one cannot avoid the idea that hyper-quaternionic surfaces
obtained as images of the preferred extremals of Kähler action in H are also extremals of M8 Kähler
action with same value of Kähler action. As found, this leads to the conclusion that theM8 − H
duality is Kähler isometry. Coupling of spinors to Kähler potential is the next step and this in turn
leads to the introduction of spinor structure so that quantum TGD in H should have full M8 dual.

There are strong physical constraints on M8 dual and they could kill the hypothesis. The basic
constraint to the spinor structure of M8 is that it reproduces basic facts about electro-weak inter-
actions. This includes neutral electro-weak couplings to quarks and leptons identified as different
H-chiralities and parity breaking.

1. By the flatness of the metric of E4 its spinor connection is trivial. E4 however allows full S2 of
covariantly constant Kähler forms so that one can accommodate free independent Abelian gauge
fields assuming that the independent gauge fields are orthogonal to each other when interpreted
as realizations of quaternionic imaginary units.

2. One should be able to distinguish between quarks and leptons also inM8, which suggests that one
introduce spinor structure and Kähler structure in E4. The Kähler structure of E4 is unique
apart form SO(3) rotation since all three quaternionic imaginary units and the unit vectors
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formed from them allow a representation as an antisymmetric tensor. Hence one must select one
preferred Kähler structure, that is fix a point of S2 representing the selected imaginary unit.
It is natural to assume different couplings of the Kähler gauge potential to spinor chiralities
representing quarks and leptons: these couplings can be assumed to be same as in case of H.

3. Electro-weak gauge potential has vectorial and axial parts. Em part is vectorial involving cou-
pling to Kähler form and Z0 contains both axial and vector parts. The free Kähler forms could
thus allow to produce M8 counterparts of these gauge potentials possessing same couplings as
their H counterparts. This picture would produce parity breaking in M8 picture correctly.

4. Only the charged parts of classical electro-weak gauge fields would be absent. This would
conform with the standard thinking that charged classical fields are not important. The predicted
classical W fields is one of the basic distinctions between TGD and standard model and in this
framework. A further prediction is that this distinction becomes visible only in situations,
where H picture is necessary. This is the case at high energies, where the description of quarks
in terms of SU(3) color is convenient whereas SO(4) QCD would require large number of E4

partial waves. At low energies large number of SU(3) color partial waves are needed and the
convenient description would be in terms of SO(4) QCD. Proton spin crisis might relate to this.

5. Also super-symmetries of quantum TGD crucial for the construction of configuration space
geometry force this picture. In the absence of coupling to Kähler gauge potential all constant
spinor fields and their conjugates would generate super-symmetries so that M8 would allow N =
8 super-symmetry. The introduction of the coupling to Kähler gauge potential in turn means
that all covariantly constant spinor fields are lost. Only the representation of all three neutral
parts of electro-weak gauge potentials in terms of three independent Kähler gauge potentials
allows right-handed neutrino as the only super-symmetry generator as in the case of H.

6. The SO(3) element characterizing M2(x) is fixed apart from a local SO(2) transformation, which
suggests an additional U(1) gauge field associated with SO(2) gauge invariance and representable
as Kähler form corresponding to a quaternionic unit of E4. A possible identification of this gauge
field would be as a part of electro-weak gauge field.

5. M8 dual of configuration space geometry and spinor structure?

If one introduces M8 spinor structure and preferred extremals of M8 Kähler action, one cannot
avoid the question whether it is possible or useful to formulate the notion of configuration space
geometry and spinor structure for light-like 3-surfaces in M8 using the exponent of Kähler action as
vacuum functional.

1. The isometries of the configuration space in M8 and H formulations would correspond to sym-
plectic transformation of δM4

± × E4 and δM4
± × CP2 and the Hamiltonians involved would

belong to the representations of SO(4) and SU(3) with 2-dimensional Cartan sub-algebras.
In H picture color group would be the familiar SU(3) but in M8 picture it would be SO(4).
Color confinement in both SU(3) and SO(4) sense could allow these two pictures without any
inconsistency.

2. For M4×CP2 the two spin states of covariantly constant right handed neutrino and antineutrino
spinors generate super-symmetries. This super-symmetry plays an important role in the pro-
posed construction of configuration space geometry. As found, this symmetry would be present
also in M8 formulation so that the construction of M8 geometry should reduce more or less
to the replacement of CP2 Hamiltonians in representations of SU(3) with E4 Hamiltonians in
representations of SO(4). These Hamiltonians can be taken to be proportional to functions of
E4 radius which is SO(4) invariant and these functions bring in additional degree of freedom.

3. The construction of Dirac determinant identified as a vacuum functional can be done also in
M8 picture and the conjecture is that the result is same as in the case of H. In this framework
the construction is much simpler due to the flatness of E4. In particular, the generalized eigen
modes of the Dirac operator DK(Y 3

l ) restricted to the X3
l correspond to a situation in which

one has fermion in induced Maxwell field mimicking the neutral part of electro-weak gauge field
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in H as far as couplings are considered. Induced Kähler field would be same as in H. Eigen
modes are localized to regions inside which the Kähler magnetic field is non-vanishing and apart
from the fact that the metric is the effective metric defined in terms of canonical momentum
densities via the formula Γ̂α = ∂LK/∂h

k
αΓk for effective gamma matrices. This in fact, forces

the localization of modes implying that their number is finite so that Dirac determinant is a
product over finite number eigenvalues. It is clear that M8 picture could dramatically simplify
the construction of configuration space geometry.

4. The eigenvalue spectra of the transversal parts of DK operators in M8 and H should identical.
This motivates the question whether it is possible to achieve a complete correspondence between
H and M8 pictures also at the level of spinor fields at X3 by performing a gauge transformation
eliminating the classical W gauge boson field altogether at X3

l and whether this allows to trans-
form the modified Dirac equation in H to that in M8 when restricted to X3

l . That something like
this might be achieved is supported by the fact that in Coulombic gauge the component of gauge
potential in the light-like direction vanishes so that the situation is effectively 2-dimensional and
holonomy group is Abelian.

6. Why M8 −H duality is useful?

Skeptic could of course argue that M8 −H duality produces only an inflation of unproven conjec-
tures. There are however strong reasons for M8 −H duality: both theoretical and physical.

1. The map of X3
l ⊂ H → X3

l ⊂ M8 and corresponding map of space-time surfaces would al-
low to realize number theoretical universality. M8 = M4 × E4 allows linear coordinates as
natural coordinates in which one can say what it means that the point of imbedding space is
rational/algebraic. The point of X4 ⊂ H is algebraic if it is mapped to an algebraic point
of M8 in number theoretic compactification. This of course restricts the symmetry groups to
their rational/algebraic variants but this does not have practical meaning. Number theoretical
compactication could in fact be motivated by the number theoretical universality.

2. M8−H duality could provide much simpler description of preferred extremals of Kähler action
since the Kähler form in E4 has constant components. If the spinor connection in E4 is com-
bination of the three Kähler forms mimicking neutral part of electro-weak gauge potential, the
eigenvalue spectrum for the modified Dirac operator would correspond to that for a fermion in
U(1) magnetic field defined by an Abelian magnetic field whereas in M4 × CP2 picture U(2)ew
magnetic fields would be present.

3. M8 − H duality provides insights to low energy hadron physics. M8 description might work
when H-description fails. For instance, perturbative QCD which corresponds to H-description
fails at low energies whereas M8 description might become perturbative description at this limit.
Strong SO(4) = SU(2)L × SU(2)R invariance is the basic symmetry of the phenomenological
low energy hadron models based on conserved vector current hypothesis (CVC) and partially
conserved axial current hypothesis (PCAC). Strong SO(4) = SU(2)L × SU(2)R relates closely
also to electro-weak gauge group SU(2)L × U(1) and this connection is not well understood in
QCD description. M8−H duality could provide this connection. Strong SO(4) symmetry would
emerge as a low energy dual of the color symmetry. Orbital SO(4) would correspond to strong
SU(2)L×SU(2)R and by flatness of E4 spin like SO(4) would correspond to electro-weak group
SU(2)L × U(1)R ⊂ SO(4). Note that the inclusion of coupling to Kähler gauge potential is
necessary to achieve respectable spinor structure in CP2. One could say that the orbital angular
momentum in SO(4) corresponds to strong isospin and spin part of angular momentum to the
weak isospin.

M8 −H duality and low energy hadron physics

The description of M8 −H at the configuration space level can be applied to gain a view about color
confinement and its dual for electro-weak interactions at short distance limit. The basic idea is that
SO(4) and SU(3) provide provide dual descriptions of quark color using E4 and CP2 partial waves and
low energy hadron physics corresponds to a situation in which M8 picture provides the perturbative



792 Chapter 10. Physics as a Generalized Number Theory

approach whereas H picture works at high energies. The basic prediction is that SO(4) should appear
as dynamical symmetry group of low energy hadron physics and this is indeed the case.

Consider color confinement at the long length scale limit in terms of M8 −H duality.

1. At high energy limit only lowest color triplet color partial waves for quarks dominate so that
QCD description becomes appropriate whereas very higher color partial waves for quarks and
gluons are expected to appear at the confinement limit. Since configuration space degrees of
freedom begin to dominate, color confinement limit transcends the descriptive power of QCD.

2. The success of SO(4) sigma model in the description of low lying hadrons would directly relate to
the fact that this group labels also the E4 Hamiltonians in M8 picture. Strong SO(4) quantum
numbers can be identified as orbital counterparts of right and left handed electro-weak isospin
coinciding with strong isospin for lowest quarks. In sigma model pion and sigma boson form
the components of E4 valued vector field or equivalently collection of four E4 Hamiltonians
corresponding to spherical E4 coordinates. Pion corresponds to S3 valued unit vector field with
charge states of pion identifiable as three Hamiltonians defined by the coordinate components.
Sigma is mapped to the Hamiltonian defined by the E4 radial coordinate. Excited mesons
corresponding to more complex Hamiltonians are predicted.

3. The generalization of sigma model would assign to quarks E4 partial waves belonging to the
representations of SO(4). The model would involve also 6 SO(4) gluons and their SO(4) partial
waves. At the low energy limit only lowest representations would be be important whereas at
higher energies higher partial waves would be excited and the description based on CP2 partial
waves would become more appropriate.

4. The low energy quark model would rely on quarks moving SO(4) color partial waves. Left resp.
right handed quarks could correspond to SU(2)L resp. SU(2)R triplets so that spin statistics
problem would be solved in the same manner as in the standard quark model.

5. Family replication phenomenon is described in TGD framework the same manner in both cases
so that quantum numbers like strangeness and charm are not fundamental. Indeed, p-adic mass
calculations allowing fractally scaled up versions of various quarks allow to replace Gell-Mann
mass formula with highly successful predictions for hadron masses [58] .

To my opinion these observations are intriguing enough to motivate a concrete attempt to construct
low energy hadron physics in terms of SO(4) gauge theory.

10.3.3 Quaternions, octonions, and modified Dirac equation

Classical number fields define one vision about quantum TGD. This vision about quantum TGD has
evolved gradually and involves several speculative ideas.

1. The hard core of the vision is that space-time surfaces as preferred extremals of Kähler action
can be identified as what I have called hyper-quaternionic surfaces of M8 or M4 × CP2. This
requires only the mapping of the modified gamma matrices to octonions or to a basis of subspace
of complexified octonions. This means also the mapping of spinors to octonionic spinors. There
is no need to assume that imbedding space-coordinates are octonionic.

2. I have considered also the idea that quantum TGD might emerge from the mere associativity.

(a) Consider Clifford algebra of WCW. Treat ”vibrational” degrees of freedom in terms second
quantized spinor fields and add center of mass degrees of freedom by replacing 8-D gamma
matrices with their octonionic counterparts - which can be constructed as tensor products of
octonions providing alternative representation for the basis of 7-D Euclidian gamma matrix
algebra - and of 2-D sigma matrices. Spinor components correspond to tensor products of
octonions with 2-spinors: different spin states for these spinors correspond to leptons and
baryons.
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(b) Construct a local Clifford algebra by considering Clifford algebra elements depending on
point of M8 or H. The octonionic 8-D Clifford algebra and its local variant are non-
accociative. Associative sub-algebra of 8-D Clifford algebra is obtained by restricting the
elements so any quaternionic 4-plane. Doing the same for the local algebra means restriction
of the Clifford algebra valued functions to any 4-D hyper-quaternionic sub-manifold of M8

or H which means that the gamma matrices span complexified quaternionic algebra at each
point of space-time surface. Also spinors must be quaternionic.

(c) The assignment of the 4-D gamma matrix sub-algebra at each point of space-time surface
can be done in many manners. If the gamma matrices correspond to the tangent space of
space-time surface, one obtains just induced gamma matrices and the standard definition of
quaternionic sub-manifold. In this case induced 4-volume is taken as the action principle.
If Kähler action defines the space-time dynamics, the modified gamma matrices do not
span the tangent space in general.

(d) An important additional element is involved. If the M4 projection of the space-time surface
contains a preferred subspace M2 at each point, the quaternionic planes are labeled by
points of CP2 and one can equivalently regard the surfaces of M8 as surfaces of M4×CP2

(number-theoretical ”compactification”). This generalizes: M2 can be replaced with a
distribution of planes of M4 which integrates to a 2-D surface of M4 (for instance, for
string like objects this is necessarily true). The presence of the preferred local plane M2

corresponds to the fact that octonionic spin matrices ΣAB span 14-D Lie-algebra of G2 ⊂
SO(7) rather than that 28-D Lie-algebra of SO(7, 1) whereas octonionic imaginary units
provide 7-D fundamental representation of G2. Also spinors must be quaternionic and
this is achieved if they are created by the Clifford algebra defined by induced gamma
matrices from two preferred spinors defined by real and preferred imaginary octonionic
unit. Therefore the preferred plane M3 ⊂ M4 and its local variant has direct counterpart
at the level of induced gamma matrices and spinors.

(e) This framework implies the basic structures of TGD and therefore leads to the notion of
world of classical worlds (WCW) and from this one ends up with the notion WCW spinor
field and WCW Clifford algebra and also hyper-finite factors of type II1 and III1. Note
that M8 is exceptional: in other dimensions there is no reason for the restriction of the
local Clifford algebra to lower-dimensional sub-manifold to obtain associative algebra.

The above line of ideas leads naturally to (hyper-)quaternionic sub-manifolds and to basic quantum
TGD (note that the ”hyper” is un-necessary if one accepts just the notion of quaternionic sub-manifold
formulated in terms of modified gamma matrices). One can pose some further questions.

1. Quantum TGD reduces basically to the second quantization of the induced spinor fields. Could
it be that the theory is integrable only for 4-D hyper-quaternionic space-time surfaces in M8

(equivalently in M4×CP2) in the sense than one can solve the modified Dirac equation exactly
only in these cases?

2. The construction of quantum TGD -including the construction of vacuum functional as exponent
of Kähler function reducing to Kähler action for a preferred extremal - should reduce to the
modified Dirac equation defined by Kähler action. Could it be that the modified Dirac equation
can be solved exactly only for Kähler action.

3. Is it possible to solve the modified Dirac equation for the octonionic gamma matrices and
octonionic spinors and map the solution as such to the real context by replacing gamma matrices
and sigma matrices with their standard counterparts? Could the associativity conditions for
octospinors and modified Dirac equation allow to pin down the form of solutions to such a high
degree that the solution can be constructed explicitly?

4. Octonionic gamma matrices provide also a non-associative representation for 8-D version of Pauli
sigma matrices and encourage the identification of 8-D twistors as pairs of octonionic spinors
conjectured to be highly relevant also for quantum TGD. Does the quaternionicity condition
imply that octo-twistors reduce to something closely related to ordinary twistors as the fact
that 2-D sigma matrices provide a matrix representation of quaternions suggests?
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In the following I will try to answer these questions by developing a detailed view about the
octonionic counterpart of the modified Dirac equation and proposing explicit solution ansätze for the
modes of the modified Dirac equation.

The replacement of SO(7, 1) with G2

The basic implication of octonionization is the replacement of SO(7, 1) as the structure group of spinor
connection with G2. This has some rather unexpected consequences.

1. Octonionic representation of 8-D gamma matrices

Consider first the representation of 8-D gamma matrices in terms of tensor products of 7-D gamma
matrices and 2-D Pauli sigma matrices.

1. The gamma matrices are given by

γ0 = 1× σ1 , γi = γi ⊗ σ2 , i = 1, .., 7 . (10.3.6)

7-D gamma matrices in turn can be expressed in terms of 6-D gamma matrices by expressing
γ7 as

γ
7)
i+1 = γ

6)
i , i = 1, ..., 6 , γ

7)
1 = γ

6)
7 =

6∏
i=1

γ
6)
i . (10.3.7)

2. The octonionic representation is obtained as

γ0 = 1× σ1 , γi = ei ⊗ σ2 . (10.3.8)

where ei are the octonionic units. e2
i = −1 guarantees that the M4 signature of the metric comes

out correctly. Note that γ7 =
∏
γi is the counterpart for choosing the preferred octonionic unit

and plane M2.

3. The octonionic sigma matrices are obtained as commutators of gamma matrices:

Σ0i = ei × σ3 , Σij = f k
ij ek ⊗ 1 . (10.3.9)

These matrices span G2 algebra having dimension 14 and rank 2 and having imaginary octonion
units and their conjugates as the fundamental representation and its conjugate. The Cartan
algebra for the sigma matrices can be chosen to be Σ01 and Σ23 and belong to a quaternionic
sub-algebra.

4. The lower dimension of the G2 algebra means that some combinations of sigma matrices vanish.
All left or right handed generators of the algebra are mapped to zero: this explains why the
dimension is halved from 28 to 14. From the octonionic triangle expressing the multiplication
rules for octonion units [23] one finds e4e5 = e1 and e6e7 = −e1 and analogous expressions for
the cyclic permutations of e4, e5, e6, e7. From the expression of the left handed sigma matrix
I3
L = σ23 + σ30 representing left handed weak isospin (see the Appendix about the geometry

of CP2 [5] , [5] ) one can conclude that this particular sigma matrix and left handed sigma
matrices in general are mapped to zero. The quaternionic sub-algebra SU(2)L × SU(2)R is
mapped to that for the rotation group SO(3) since in the case of Lorentz group one cannot
speak of a decomposition to left and right handed subgroups. The elements of the complement
of the quaternionic sub-algebra are expressible in terms of Σij in the quaternionic sub-algebra.
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2. Some physical implications of SO(7, 1)→ G2 reduction

This has interesting physical implications if one believes that the octonionic description is equiva-
lent with the standard one.

1. If SU(2)L is mapped to zero only the right-handed parts of electro-weak gauge field survive
octonization. The right handed part is neutral containing only photon and Z0 so that the
gauge field becomes Abelian. Z0 and photon fields become proportional to each other (Z0 →
sin2(θW )γ) so that classical Z0 field disappears from the dynamics, and one would obtain just
electrodynamics. This might provide a deeper reason for why electrodynamics is an excellent
description of low energy physics and of classical physics. This is consistent with the fact that
CP2 coordinates define 4 field degrees of freedom so that single Abelian gauge field should
be enough to describe classical physics. This would remove also the interpretational problems
caused by the transitions changing the charge state of fermion induced by the classical W boson
fields.

Also the realization of M8 −H duality led to the conclusion M8 spinor connection should have
only neutral components. The isospin matrix associated with the electromagnetic charge is e1×1
and represents the preferred imaginary octonionic unit so that that the image of the electro-weak
gauge algebra respects associativity condition. An open question is whether octonionization
is part of M8-H duality or defines a completely independent duality. The objection is that
information is lost in the mapping so that it becomes questionable whether the same solutions
to the modified Dirac equation can work as a solution for ordinary Clifford algebra.

2. If SU(2)R were mapped to zero only left handed parts of the gauge fields would remain. All
classical gauge fields would remain in the spectrum so that information would not be lost. The
identification of the electro-weak gauge fields as three covariantly constant quaternionic units
would be possible in the case of M8 allowing Hyper-Kähler structure [15] , which has been
speculated to be a hidden symmetry of quantum TGD at the level of WCW. This option would
lead to difficulties with associativity since the action of the charged gauge potentials would lead
out from the local quaternionic subspace defined by the octonionic spinor.

3. The gauge potentials and gauge fields defined by CP2 spinor connection are mapped to fields
in SO(2) ⊂ SU(2)×U(1) in quaternionic sub-algebra which in a well-defined sense corresponds
to M4 degrees of freedom! Since the resulting interactions are of gravitational character, one
might say that electro-weak interactions are mapped to manifestly gravitational interactions.
Since SU(2) corresponds to rotational group one cannot say that spinor connection would give
rise only to left or right handed couplings, which would be obviously a disaster.

3. Octo-spinors and their relation to ordinary imbedding space spinors

Octo-spinors are identified as octonion valued 2-spinors with basis

ΨL,i = ei

(
1
0

)
,

Ψq,i = ei

(
0
1

)
. (10.3.10)

One obtains quark and lepton spinors and conjugation for the spinors transforms quarks to leptons.
Note that octospinors can be seen as 2-dimensional spinors with components which have values in the
space of complexified octonions.

The leptonic spinor corresponding to real unit and preferred imaginary unit e1 corresponds nat-
urally to the two spin states of the right handed neutrino. In quark sector this would mean that
right handed U quark corresponds to the real unit. The octonions decompose as 1 + 1 + 3 + 3 as
representations of SU(3) ⊂ G2. The concrete representations are given by

{1± ie1} , eR and νR with spin 1/2 ,
{e2 ± ie3} , eR and νL with spin -1/2 ,
{e4 ± ie5} eL and νL with spin 1/2 ,
{e6 ± ie7} eL and νL with spin 1/2 .

(10.3.11)
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Instead of spin one could consider helicity. All these spinors are eigenstates of e1 (and thus of the
corresponding sigma matrix) with opposite values for the sign factor ε = ±. The interpretation is in
terms of vectorial isospin. States with ε = 1 can be interpreted as charged leptons and D type quarks
and those with ε = −1 as neutrinos and U type quarks. The interpretation would be that the states
with vanishing color isospin correspond to right handed fermions and the states with non-vanishing
SU(3) isospin (to be not confused with QCD color isospin) and those with non-vanishing SU(3) isospin
to left handed fermions. The only difference between quarks and leptons is that the induced Kähler
gauge potentials couple to them differently.

The importance of this identification is that it allows a unique map of the candidates for the
solutions of the octonionic modified Dirac equation to those of ordinary one. There are some delicacies
involved due to the possibility to chose the preferred unit e1 so that the preferred subspace M2 can
corresponds to a sub-manifold M2 ⊂M4.

Octonionic counterpart of the modified Dirac equation

The solution ansatz for the octonionic counterpart of the modified Dirac equation discussed below
makes sense also for ordinary modified Dirac equation which raises the hope that the same ansatz,
and even same solution could provide a solution in both cases.

1. The general structure of the modified Dirac equation

In accordance with quantum holography and the notion of generalized Feynman diagram, the
modified Dirac equation involves two equations which must be consistent with each other.

1. There is 3-dimensional generalized eigenvalue equation for which the modified gamma matrices
are defined by Chern-Simons action defined by the sum Jtot = J +J1 of Kähler forms of S2 and
CP2 [20, 31] .

D3Ψ = [DC−S +QC−S ] Ψ = λkγkΨ ,

QC−S = QαΓ̂αC−S , Qα = QAg
ABjBα .

(10.3.12)

The gamma matrices γk are M4 gamma matrices in standard Minkowski coordinates and thus
constant. Given eigenvalue λk defines pseudo momentum which is some function of the gen-
uine momenta pk and other quantum numbers via the boundary conditions associated with the
generalized eigenvalue equation.

The charges QA correspond to real four-momentum and charges in color Cartan algebra. The
term Q can be rather general since it provides a representation for the measurement interaction
by mapping observables to Cartan algebra of isometry group and to the infinite hierarchy of
conserved currents implied by quantum criticality. The operator O characterizes the quantum
critical conserved current. The surface Y 3

l can be chosen to be any light-like 3-surface ”parallel”
to the wormhole throat in the slicing of X4: this means an additional symmetry. Formally the
measurement interaction term can be regarded as an addition of a gauge term to the Kähler
gauge potential associated with the Kähler form Jtot of S2 × CP2.

The square of the equation gives the spinor analog of d’Alembert equation and generalized
eigenvalue as the analog of mass squared. The propagator associated with the wormhole throats
is formally massless Dirac propagator so that standard twistor formalism applies also without
the octonionic representation of the gamma matrices although the physical particles propagating
along the opposite wormhole throats are massive on mass shell particles with both signs of
energy [31] .

2. Second equation is the 4-D modified Dirac equation defined by Kähler action.

DKΨ = 0 . (10.3.13)
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The dimensional reduction of this operator to a sum corresponding to DK,3 acting on light-like 3-
surfaces and 1-D operator DK,1 acting on the coordinate labeling the 3-D light-like 3-surfaces in
the slicing would allow to assign eigenvalues to DK,3 as analogs of energy eigenvalues for ordinary
Schrödinger equation. One proposal has been that Dirac determinant could be identified as the
product of these eigen values. Another and more plausible identification is as the product of
pseudo masses assignable to D3 defined by Chern-Simons action [2] . It must be however made
clear that the identification of the exponent of the Kähler function to Chern-Simons term makes
the identification as Dirac determinant un-necessary.

3. There are two options depending on whether one requires that the eigenvalue equation applies
only on the wormhole throats and at the ends of the space-time surface or for all 3-surfaces
in the slicing of the space-time surface by light-like 3-surfaces. In the latter case the condition
that the pseudo four-momentum is same for all the light-like 3-surfaces in the slicing gives a
consistency condition stating that the commutator of the two Dirac operators vanishes for the
solutions in the case of preferred extremals, which depend on the momentum and color quantum
numbers also:

[DK , D3] Ψ = 0 . (10.3.14)

This condition is quite strong and there is no deep reason for it since λk does not correspond to
the physical conserved momentum so that its spectrum could depend on the light-like 3-surface
in the slicing. On the other hand, if the eigenvalues of D3 belong to the preferred hyper-complex
plane M2, D3 effectively reduces to a 2-dimensional algebraic Dirac operator λkγk commuting
with DK : the values of λk cannot depend on slice since this would mean that DK does not
commute with D3.

About the hyper-octonionic variant of the modified Dirac equation

What gives excellent hopes that the octonionic variant of modified Dirac equation could lead to a
provide precise information about the solution spectrum of modified Dirac equation is the condition
that everything in the equation should be associative. Hence the terms which are by there nature
non-associative should vanish automatically.

1. The first implication is that the besides octonionic gamma matrices also octonionic spinors should
belong to the local quaternionic plane at each point of the space-time surface. Spinors are also
generated by quaternionic Clifford algebra from two preferred spinors defining a preferred plane
in the space of spinors. Hence spinorial dynamics seems to mimic very closely the space-time
dynamics and one might even hope that the solutions of the modified Dirac action could be seen
as maps of the space-time surface to surfaces of the spinor space. The reduction to quaternionic
sub-algebra suggest that some variant of ordinary twistors emerges in this manner in matrix
representation.

2. The octonionic sigma matrices span G2 where as ordinary sigma matrices define SO(7, 1). On
the other hand, the holonomies are identical in the two cases if right-handed charge matrices
are mapped to zero so that there are indeed hopes that the solutions of the octonionic Dirac
equation cannot be mapped to those of ordinary Dirac equation. If left-handed charge matrices
are mapped to zero, the resulting theory is essentially the analog of electrodynamics coupled to
gravitation at classical level but it is not clear whether this physically acceptable. It is not clear
whether associativity condition leaves only this option under consideration.

3. The solution ansatz to the modified Dirac equation is expected to be of the form Ψ = DK(Ψ0u0+
Ψ1u1), where u0 and u1 are constant spinors representing real unit and the preferred unit e1.
Hence constant spinors associated with right handed electron and neutrino and right-handed d
and u quark would appear in Ψ and Ψi could correspond to scalar coefficients of spinors with
different charge. This ansatz would reduce the modified Dirac equation to D2

KΨi = 0 since
there are no charged couplings present. The reduction of a d’Alembert type equation for single
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scalar function coupling to U(1) gauge potential and U(1) ”gravitation” would obviously mean
a dramatic simplification raising hopes about integrable theory.

4. The condition D2
KΨ = 0 involves products of three octonions and involves derivatives of the

modified gamma matrices which might belong to the complement of the quaternionic sub-space.
The restriction of Ψ to the preferred hyper-complex plane M2 simplifies the situation dramati-
cally but (D2

K)DKΨ = DK(D2
K)Ψ = 0 could still fail. The problem is that the action of DK is

not algebraic so that one cannot treat reduce the associativity condition to (AA)A = A(AA).

Could the notion of octo-twistor make sense?

Twistors have led to dramatic successes in the understanding of Feynman diagrammatics of gauge
theories, N = 4 SUSYs, and N = 8 supergravity [65, 82, 59] . This motivated the question whether
they might be applied in TGD framework too [96] - at least in the description of the QFT limit. The
basic problem of the twistor program is how to overcome the difficulties caused by particle massivation
and TGD framework suggests possible clues in this respect.

1. In TGD it is natural to regard particles as massless particles in 8-D sense and to introduce 8-D
counterpart of twistors by relying on the geometric picture in which twistors correspond to a
pair of spinors characterizing light-like momentum ray and a point of M8 through which the
ray traverses. Twistors would consist of a pair of spinors and quark and lepton spinors define
the natural candidate for the spinors in question. This approach would allow to handle massive
on-mass-shell states but cannot cope with virtual momenta massive in 8-D sense.

2. The emergence of pseudo momentum λk from the generalized eigenvalue equation for DC−S
suggest a dramatically simpler solution to the problem. Since propagators are effectively massless
propagators for pseudo momenta, which are functions of physical on shell momenta (with both
signs of energy in zero energy ontology) and of other quantum numbers, twistor formalism can
be applied in its standard form. An attractive assumption is that also λk are conserved in the
vertices but a good argument justifying this is lacking. One can ask whether also N = 4 SUSY,
N = 8 super-gravity, and even QCD could have similar interpretation.

This picture should apply also in the case of octotwistors with minor modifications and one might
hope that octotwistors could provide new insights about what happens in the real case.

1. In the case of ordinary Clifford algebra unit matrix and six-dimensional gamma matrices γi,
i = 1, ..., 6 and γ7 =

∏
i γi would define the variant of Pauli sigma matrices as σ0 = 1, σk = γk,

k = 1, .., 7 The problem is that masslessness condition does not correspond to the vanishing of
the determinant for the matrix pkσ

k.

2. In the case of octo-twistors Pauli sigma matrices σk would correspond to hyper-octonion units
{σ0, σk} = {1, iek} and one could assign to pkσ

k a matrix by the linear map defined by the
multiplication with P = pkσ

k. The matrix is of form Pmn = pkfkmn, where fkmn are the
structure constants characterizing multiplication by hyper-octonion. The norm squared for
octonion is the fourth root for the determinant of this matrix. Since pkσ

k maps its octonionic
conjugate to zero so that the determinant must vanish (as is easy to see directly by reducing the
situation to that for hyper-complex numbers by considering the hyper-complex plane defined by
P ).

3. Associativity condition for the octotwistors requires that the gamma matrix basis appearing in
the generalized eigenvalue equation for Chern-Simons Dirac operator must differs by a local G2

rotation from the standard hyper-quaternionic gamma matrix for M4 so that it is always in the
local hyper-quaternionic plane. This suggests that octo-twistor can be mapped to an ordinary
twistor by mapping the basis of hyper-quaternions to Pauli sigma matrices. A stronger condition
guaranteing the commutativity of D3 with λkγk is that λk belongs to a preferred hyper-complex
plane M2 assignable to a given CD. Also the two spinors should belong to this plane for the
proposed solution ansatz for the modified Dirac equation. Quaternionization would also allow
to assign momentum to the spinors in standard manner.
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The spectrum of pseudo-momenta would be 2-dimensional (continuum at worst) and this should
certainly improve dramatically the convergence properties for the sum over the non-conserved
pseudo-momenta in propagators which in the worst possible of worlds might destroy the man-
ifest finiteness of the theory based on the generalized Feynman diagrams with the throats of
wormholes carrying always on mass shell momenta. This effective 2-dimensionality should apply
also in the real case and would have no catastrophic consequences since pseudo momenta are in
question.

As a matter fact, the assumption the decomposition of quark momenta to longitudinal and
transversal parts in perturbative QCD might have interpretation in terms of pseudo-momenta
if they are conserved.

4. M8 − H duality suggests a possible interpretation of the pseudo-momenta as M8 momenta
which by purely number theoretical reasons must be commutative and thus belong to M2 hyper-
complex plane. One ends up with the similar outcome as one constructs a representation for
the quantum states defined by WCW spinor fields as superpositions of real units constructed as
ratios of infinite hyper-octonionic integers with precisely defined number theoretic anatomy and
transformation properties under standard model symmetries having number theoretic interpre-
tation [84] .

10.3.4 Could octonion analyticity solve the field equations?

The interesting question is what happens in the space-time regions with Euclidian signature of induced
metric. In this case it is not possible to introduce light-like plane at each point of the space-time
sheet. Nothing however prevents from applying the above described procedure to construct conserved
currents whose flow lines define global coordinates. In both cases analytic continuation allows to
extend the coordinates to complex coordinates. Therefore one would have two complex functions
satisfying Laplace equation and having orthogonal gradients.

1. When CP2 projection is 4-dimensional, there is strong temptation to assume that these functions
could be reduced to complex CP2 coordinates analogous to the Hamilton-Jacobi coordinates for
M4. Complex Eguchi-Hanson coordinates transforming linearly under U(2) ⊂ SU(3) define the
simplest candidates in this respect. Laplace-equations are satisfied utomatically since holomor-
phic functions are in question. The gradients are also orthogonal automatically since the metric
is Kähler metric. Note however that one could argue that in innner product the conjugate of
the function appears. Any holomorphic map defines new coordinates of this kind. Note that the
maps need not be globally holomorphic since CP2 projection of space-time sheet need not cover
the entire CP2.

2. For string like objects X4 = X2 × Y 2 ⊂ M4 × CP2 with Minkowskian signature of the metric
the coordinate pair would be hyper-complex coordinate in M4 and complex coordinate in CP2.
If X2 has Euclidian signature of induced metric the coordinate in question would be complex
coordinate. The proposal in the case of CP2 allows all holomorphic functions of the complex
coordinates.

There is an objection against this construction. There should be a symmetry between M4 and
CP2 but this is not the case. Therefore this picture cannot be quite correct.

Could the construction of new preferred coordinates by holomorphic maps generalize as electic-
magnetic duality suggests? One can imagine several options, which bring in mind old ideas that what
I have christened as ”romantic stuff” [86].

1. Should one generalize the holomorphic map to a quaternion analytic map with real Taylor
coefficients so that non-commutativity would not produce problems. One would map first M4

coordinates to quaternions, map these coordinates to new ones by quaternion analytic map
defined by a Taylor or even Laurnte expansion with real coefficients, and then map the resulting
quaternion valued coordinate back to hyper-quaternion defining four coordinates as fuctions in
M4. This procedure would be very much analogous to Wick rotation used in quantum field
theories. Similar quaternion analytic map be applied also in CP2 degrees of freedom followed



800 Chapter 10. Physics as a Generalized Number Theory

by the map of the quaternion to two complex numbers. This would give additional constraints
on the map. This option could be seen as a quaternionic generalization of conformal invariance.

The problem is that one decouples M4 and CP2 degrees of freedom completely. These degrees
are however coupled in the proposed construction since the E2(x) corresponds to subspace of
E2
x × T (CP2). Something goes still wrong.

2. This motivates to imagine even more ambitious and even more romantic option realizing the
original idea about octonionic generalization of conformal invariance. Assume linear M4 ×CP2

coordinates (Eguchi-Hanson coordinates transforming linearly under U(2) in the case of CP2).
Map these to octonionic coordinate h. Map the octonionic coordinate to itself by an octo-
nionic analytic map defined by Taylor or even Laurent series with real coefficients so that non-
commutativity and non-associativity do not cause troubles. Map the resulting octonion valued
coordinates back to ordinary H-coordinates and expressible as functions of original coordinates.

It must be emphasized that this would be nothing but a generalization of Wick rotation and its
inverse used routinely in quantum field theories in order to define loop integrals.

Could octonion real-analyticity make sense?

Suppose that one -for a fleeting moment- takes octonionic analyticity seriously. For space-time surfaces
themselves one should have in some sense quaternionic variant of conformal invariance. What does
this mean?

1. Could one regard space-time surfaces analogous to the curves at which the imaginary part of
analytic function of complex argument vanishes so that complex analyticity reduces to real
analyticity. One can indeed divide octonion to quaternion and its imaginary part to give o =
q1 + Iq2: q1 and q2 are quaternionis and I is octonionic imaginary unit in the complement of
the quaternionic sub-space. This decomposition actually appears in the standard construction
of octonions. Therefore 4-dimensional surfaces at which the imaginary part of octonion valued
function vanishes make sense and defined in well-defined sense quaternionic 4-surfaces.

This kind of definition would be in nice accord with the vision about physics as algebraic geome-
try. Now the algebraic geometry would be extended from complex realm to the octonionic realm
since quaternionic surfaces/string world sheets could be regarded as associative/commutative
sub-algebras of the algebra of the octionic real-analytic functions.

2. Could these surfaces correspond to quaternionic 4-surfaces defined in terms of the modified
gamma matrices or induced gamma matrices? Contrary to the original expectations it will be
found that only induced gamma matrices is a plausible option. This would be an enormous
simplification and would mean that the theory is exactly solvable in the same sense as string
models are: complex analyticity would be replaced with octonion analyticity. I have considered
this option in several variants using the notion of real octonion analyticity [86] but have not
managed to build any satisfactory scenario.

3. Hyper-complex and complex conformal symmetries would result by a restriction to hyper-
complex resp. complex sub-manifods of the imbedding space defined by string world sheets resp.
partonic 2-surfaces. The principle forcing this restriction would be commutativity. Yangian of
an affine algebra would unify these views to single coherent view [99].

4-D n-point functions of the theory should result from the restriction on partonic 2-surfaces or
string world sheets with arguments of n-point functions identified as the ends of braid strands
so that a kind of analytic continuation from 2-D to the 4-D case would be in question. The
octonionic conformal invariance would be induced by the ordinary conformal invariance in ac-
cordance with strong form of General Coordinate Invariance.

4. This algebraic continuation of the ordinary conformal invariance could help to construct also
the representations of Yangians of affine Kac-Moody type algebras. For the Yangian symmetry
of 1+1 D integrable QFTs the charges are multilocal involving multiple integrals over ordered
multiple points of 1-D space. I

In the recent case multiple 1-D space is replaced with a space-like 3-surface at the light-like end
of CD. The point of the 1-D space appearing in the multiple integral are replaced by a partonic
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2-surface represented by a collection of punctures. There is a strong temptation to assume
that the intermediate points on the line correspond to genuine physical particles and therefore
to partonic 2-surfaces at which the signature of the induced metric changes. If so, the 1-D
space would correspond to a closed curve connecting punctures of different partonic 2-surfaces
representing physical particles and ordered along a loop. The integral over multiple points would
correspond to an integral over WCW rather than over fixed back-ground space-time.

1-D space would be replaced with a closed curve going through punctures of a subset of partonic
2-surfaces associated with a space-like 3-surface. If a given partonic surface or a given puncture
can contribute only once to the multiple integral the multi-locality is bounded from above and
only a finite number of Yangian generators are obtained in this manner unless one allows the
number of partonic 2-surfaces and of punctures for them to vary. This variation is physically
natural and would correspond to generation of particle pairs by vacuum polarization. Although
only punctures would contribute, the Yangian charges would be defined in WCW rather than
in fixed space-time. Integral over positions of punctures and possible numbers of them would
be actually an integral over WCW. 2-D modular invariance of Yangian charges for the partonic
2-surfaces is a natural constraint.

The question is whether some conformal fields at the punctures of the partonic 2-surfaces ap-
pearing in the multiple integral define the basic building bricks of the conserved quantum charges
representing the multilocal generators of the Yangian algebra? Note that Wick rotation would
be involved.

What the non-triviality of the moduli space of the octonionic structures means?

The moduli space G2 of the octonionic structures is essentially the Galois group defined as maps of
octonions to itself respecting octonionic sum and multiplication. This raises the question whether
octonion analyticity should be generalized in such a manner that the global choice of the octonionic
imaginary units - in particular that of preferred commuting complex sub-space- would become local.
Physically this would correspond to the choice of momentum plane M2

x for a position dependent
light-iike momentum defining the plane of non-physical polarizations.

This question is inspired by the general solution ansatz based on the slicing of space-time sheets
which involves the dependence of the choice of the momentum plane M2

x on the point of string world
sheet. This dependence is parameterized by a point of G2/SU(3) and assumed to be constant along
partonic 2-surfaces. These slicings would be naturally associated with the two complex parts ci of the
quaternionic coordinate q1 = c1 + Ic2 of the space-time sheet.

This dependence is well-defined only for the quaternionic 4-surface defining the space-time surface
and can be seen as a local choice of a preferred complex imaginary unit along string world sheets.
CP2 would parametrize the remaining geometric degrees of freedom. Should/could one extend this
dependence to entire 8-D imbedding space? This is possible if the 8-D imbedding space allows a slicing
by the string world sheets. If the string world sheets correspond to the string world sheets appearing
in the slicing of M4 defined by Hamiton-Jacobi coordinates [12], this slicing indeed exists.

Zero energy ontology and octonion analyticity

How does this picture relate to zero energy ontology and how partonic 2-surfaces and string world
sheets could be identified in this framework?

1. The intersection of the quaternionic four-surfaces with the 7-D light-like boundaries of CDs is 3-
D space-like surface. String world sheets are obtained as 2-D complex surfaces by putting c2 = 0,
where c2 is the imaginary part of the quaternion coordinate q = c1 + Ic2. Their intersections
with CD boundaries are generally 1-dimensional and represent space-like strings.

2. Partonic 2-surfaces could correspond to the intersections of Re(c1) = constant 3-surfaces with
the boundaries of CD. The variation of Re(c1) would give a family of (possibly light-like)
3-surfaces whose intersection with the boundaries of CD would be 2-dimensional. The interpre-
tation Re(c1) = constant surfaces as (possibly light-like) orbits of partonic 2-surfaces would be
natural. Wormhole throats at which the signature of the induced metric changes (by definition)
would correspond to some special value of Re(c1), naturally Re(c1) = 0.
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What comes first in mind is that partonic 2-surfaces assignable to wormhole throats correspond
to co-complex 2-surfaces obtained by putting c1 = 0 (or c1 = constant) in the decomposition
q = c1 + ic2. This option is consistent with the above assumption if Im(c1) = 0 holds true at
the boundaries of CD. Note that also co-quaternionic surfaces make sense and would have Eu-
clidian signature of the induced metric: the interpretation as counterparts of lines of generalized
Feynman graphs might make sense.

3. One can of course wonder whether also the poles of c1 might be relevant. The most natural idea
is that the value of Re(c1) varies between 0 and ∞ between the ends of the orbit of partonic
2-surface. This would mean that c1 has a pole at the other end of CD (or light-like orbit
of partonic 2-surface). In light of this the earlier proposal [84] that zero energy states might
correspond to rational functions assignable to infinite primes and that the zeros/poles of these
functions correspond to the positive/negative energy part of the state is interesting.

The intersections of string world sheets and partonic 2-surfaces identifiable as the common ends
of space-like and time like brand strands would correspond to the points q = c1 + Ic2 = 0
and q = ∞ + Ic2, where ∞ means real infinity. In other words, to the zeros and real poles
of quaternion analytic function with real coefficients. In the number theoretic vision especially
interesting situations correspond to polynomials with rational number valued coefficients and
rational functions formed from these. In this kind of situations the number of zeros and therefore
of braid strands is always finite.

Do induced or modified gamma matrices define quaternionicity?

The are two options to be considered: either induced or modified gamma matrices define quaternion-
icity.

1. There are several arguments supporting this view that induced gamma matrices define quater-
nionicity and that quaternionic planes are therefore tangent planes for space-time sheet.

(a) H −M8 correspondence is based on the observation that quaternionic sub-spaces of octo-
nions containing preferred complex sub-space are labelled by points of CP2. The integra-
bility of the distribution of quaternionic spaces could follow from the parametrization by
points of CP2 (CP2 = CPmod condition). Quaternionic planes would be necessarily tangent
planes of space-time surface. Induced gamma matrices correspond naturally to the tangent
space vectors of the space-time surface.

Here one should however understand the role of the M4 coordinates. What is the func-
tional form of M4 coordinates as functions of space-time coordinates or does this matter
at all (general coordinate invariance): could one choose the space-time coordinates as M4

coordinates for surfaces representable as graphs for maps M4 → CP2? What about other
cases such as cosmic strings [25]?

(b) Could one do entirely without gamma matrices and speak only about induced octonion
structure in 8-D tangent space (raising also dimension D = 8 to preferred role) with reduces
to quaternionic structure for quaternionic 4-surfaces. The interpretation of quaternionic
plane as tangent space would be unavoidable also now. In this approach there would be no
question about whether one should identify octonionic gamma matrices as induced gamma
matrices or as modified octonionic gamma matrices.

(c) If quaternion analyticity is defined in terms of modified gamma matrices defined by the
volume action why it would solve the field equations for Kähler action rather than for
minimal surfaces? Is the reason that quaternionic and octonionic analyticities defined as
generalized differentiability are not possible. The real and imaginary parts of quaternionic
real-analytic function with quaternion interpreted as bi-complex number are not analytic
functions of two complex variables of either complex variable. In 4-D situation minimal
surface property would be too strong a condition whereas Kähler action poses much weaker
conditions. Octonionic real-analyticity however poses strong symmetries and suggests ef-
fective 2-dimensionality.

2. The following argument suggest that modified gamma matrices cannot define the notion of
quaternionic plane.
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(a) Modified gamma matrices can define sub-spaces of lower dimensionality so that they do
not defined a 4-plane. In this case they cannot define CP2 point so that CP2 = CPmod2

identity fails. Massless extremals represents the basic example about this. Hydrodynamic
solutions defined in terms of Beltrami flows could represent a more general phase of this
kind.

(b) Modified gamma matrices are not in general parallel to the space-time surface. The CP2

part of field equations coming from the variation of Kähler form gives the non-tangential
contribution. If the distribution of the quaternionic planes is integrable it defines another
space-time surface and this looks rather strange.

(c) Integrable quaternionicity can mean only tangent space quaternionicity. For modified
gamma matrices this cannot be the case. One cannot assign to the octonion analytic
map modified gamma matrices in any natural manner.

The conclusion seems to be that induced gamma matrices or induced octonion structure must
define quaternionicity and quaternionic planes are tangent planes of space-time surface and therefore
define an integrable distribution. An open question is whether CP2 = CPmod2 condition implies the
integrability automatically.

Volume action or Kähler action?

What seems clear is that quaternionicity must be defined by the induced gamma matrices obtained as
contractions of canonical momentum densities associated with volume action with imbedding space
gamma matrices. Probably equivalent definition is in terms of induced octonion structure. For the
believer in strings this would suggest that the volume action is the correct choice. There are however
strong objections against this choice.

1. In 2-dimensional case the minimal surfaces allow conformal invariance and one can speak of
complex structure in their tangent space. In particular, string world sheets can be regarded as
complex 2-surfaces of quaternionic space-time surfaces. In 4-dimensional case the situation is
different since quaternionic differentiability fails by non-commutativity. It is quite possible that
only very few minimal surfaces (volume action) are quaternionic.

2. The possibility of Beltrami flows is a rather plausible property of quite many preferred extremals
of Kähler action. Beltrami flows are also possible for a 4-D minimal surface action. In particular,
M4 translations would define Beltrami flows for which the 1-forms would be gradients of linear
M4 coordinates. If M4 coordinate can be used on obtains flows in directions of all coordinate
axes. Hydrodynamical picture in the strong form therefore fails whereas for Kähler action various
isometry currents could be parallel (as they are for massless extremals).

3. For volume action topological QFT property fails as also fails the decomposition of solutions to
massless quanta in Minkowskian regions. The same applies to criticality. The crucial vacuum
degeneracy responsible for most nice features of Kähler action is absent and also the effective
2-dimensionality and almost topological QFT property are lost since the action does not reduce
to 3-D term.

One can however keep Kähler action and define quaternionicity in terms of induced gamma matrices
or induced octonion structure. Preferred extremals could be identified as extremals of Kähler action
which are also quaternionic 4-surfaces.

1. Preferred extremal property for Kähler action could be much weaker condition than minimal
surface property so that much larger set of quaternionic space-time surfaces would be extremals
of the Kähler action than of volume action. The reason would be that the rank of energy
momentum tensor for Maxwell action tends to be smaller than maximal. This expectation is
supported by the vacuum degeneracy, the properties of massless extremals and of CP2 type
vacuum extremals, and by the general hydrodynamical picture.

2. There is also a long list of beautiful properties supporting Kähler action which should be also
familiar: effective 2-dimensionality and slicing of space-time surface by string world sheets and
partonic 2-surfaces, reduction to almost topological QFT and to abelian Chern-Simons term,
weak form of electric-magnetic duality, quantum criticality, spin glass degeneracy, etc...
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Are quaternionicities defined in terms of induced gamma matrices resp. octonion real-
analytic maps equivalent?

Quaternionicity could be defined by induced gamma matrices or in terms of octonion real-analytic
maps. Are these two definitions equivalent and how could one test the equivalence?

1. The calculation technical problem is that space-time surfaces are not defined in terms of imbed-
ding map involving some coordinate choice but in terms of four vanishing conditions for the
imaginary part of the octonion real-analytic function expressible as biquaternion valued func-
tions.

2. Integrability to 4-D surface is achieved if there exists a 4-D closed Lie algebra defined by vector
fields identifiable as tangent vector fields. This Lie algebra can be generalized to a local 4-D
Lie algebra. One cannot however represent octonionic units in terms of 8-D vector fields since
the commutators of the latter do not form an associative algebra. Also the representation of 7
octonionic imaginary units as 8-D vector fields is impossible since the algebra in question is non-
assciative Malcev algebra [21] which can be seen as a Lie algebra over non-associative number
field (one speaks of 7-dimensional cross product [33]). One must use instead of vector fields either
octonionic units as such or octonionic gamma ”matrices” to represent tangent vectors. The use
of octonionic units as such would mean the introduction of the notion of octonionic tangent
space structure. That the subalgebra generated by any two octonionic units is associative brings
strongly in mind effective 2-dimensionality.

3. The tangent vector fields of space-time surface in the representation using octonionic units can
be identified in the following manner. Map can be defined using 8-D octonionic coordinates
defined by standard M4 coordinates or possibly Hamilton-Jacobi coordinates and CP2 complex
coordinates for which U(2) is represented linearly. Gamma ”matrices” for H using octonionic
representation are known in these coordinates. One can introduce the 8 components of the image
of a given point under the octonion real-analytic map as new imbedding space coordinates. One
can calculate the covariant gamma matrices of H in these coordinates.

What should check whether the octonionic gamma matrices associated with the four non-
vanishing coordinates define quaternionic (and thus associative) algebra in the octonionic basis
for the gamma matrices. Also the interpretation as a associative subspace of local Malcev alge-
bra elements is possible and one should check whether if the algebra reduces to a quaternionic
Lie-algebra. Local SO(2)× U(1) algebra should emerge in this manner.

4. Can one identify quaternionic imaginary units with vector fields generating SO(3) Lie algebra
or its local variant? The Lie algebra of rotation generators defines algebra equivalent with that
based on commutars of quaternionic units. Could the slicing of space-time sheet by time axis
define local SO(3) algebra? Light-like momentum direction and momentum direction and its
dual define as their sum space-like vector field and together with vector fields defining transversal
momentum directions they might generate a local SO(3) algebra.

Questions related to quaternion real-analyticity

There are many poorly understood issues and and the following questions represent only some of very
many such questions picked up rather randomly.

1. The above considerations are restricted to Minkowskian regions of space-time sheets. What
happens in the Euclidian regions? Does the existence of light-like Beltrami field and its dual
generalize to the existence of complex vector field and its dual?

2. It would be nice to find a justification for the notion of CD from basic principles. The condition
qq = 0 implies q = 0 for quaternions. For hyper-quaternionic subspace of complexified quater-
nions obtained by Wick rotation it implies qq = 0 corresponds the entire light-cone boundary. If
n-point functions can be identified identified as products of quaternion valued n-point functions
and their quaternionic conjugates, the outcome could be proportional to 1/qq having poles at
light-cone boundaries or CD boundaries rather than at single point as in Euclidian realm.

http://en.wikipedia.org/wiki/Malcev_algebra
http://en.wikipedia.org/wiki/Seven-dimensional_cross_product
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3. This correspondence of points and light-cone boundaries would effectively identify the points
at future and past light-like boundaries of CD along light rays. Could one think that only
the 2-sphere at which the upper and lower light-like boundaries of CD meet remains after this
identification. The structure would be homologically very much like CP2 which is obtained by
compactifying E4 by adding a 2-sphere at infinity. Could this CD − CP2 correspondence have
some deep physical meaning? Do the boundaries of CD somehow correspond to zeros and/or
poles of quaternionic analytic functions in the Minkowskian realm? Could the light-like orbits of
partonic 2-surfaces at which the signature of the induced metric changes correspond to similar
counterparts of zeros or poles when the quaternion analytic variables is obtained as quaternion
real analytic function of H coordinates regarded as bi-quaternions?

4. Could braids correspond to zeros and poles of an octonion real-analytic function? Consider
the partonic 2-surfaces at which the signature of the induced metric changes. The intersections
of these surfaces with string world sheets at the ends of CDs. contain only complex and thus
commutative points meaning that the imaginary part of bi-complex number representing quater-
nionic value of octonion real-analytic function vanishes. Braid ends would thus correspond to
the origins of local complex coordinate patches. Finite measurement resolution would be forced
by commutativity condition and correlate directly with the complexity of the partonic 2-surface
measured by the minimal number of coordinate patches. Its realization would be as an upper
bound on the number of braid strands. A natural expectation would be that only the values of
n-point functions at these points contribute to scattering amplitudes. Number theoretic braids
would be realized but in a manner different from the original guess.

How complex analysis could generalize?

One can make several questions related to the possible generalization of complex analysis to the
quaternionic and octonionic situation.

1. Does the notion of analyticity in the sense that derivatives df/dq and df/do make sense hold true?
The answer is ”No”: non-commutativity destroys all hopes about this kind of generalization.
Octonion and quaternion real-analyticity has however a well-defined meaning.

2. Could the generalization of residue calculus by keeping interaction contours as 1-D curves make
sense? Since residue formulas is the outcome of the fact that any analytic function g can be
written as g = df/dz locally, the answer is ”No”.

3. Could one generalize of the residue calculus by replacing 1-dimensional curves with 4-D surfaces
-possibly quaternionic 4-surfaces? Could one reduce the 4-D integral of quaternion analytic
function to a double residue integral? This would be the case if the quaternion real-analytic
function of q = c1 + Ic2 could be regarded as an analytic function of complex arguments c1
and c2. This is not the case. The product of two octonions decomposed to two quaternions as
oi = qi1 + Iqi2 , i = a, b reads as

oaob = qa1qb1 − qa2qb2 + I(qa1qb2 − qa2qb1) . (10.3.15)

The conjugations result from the anticommutativity of imaginary parts and I. This formula
gives similar formula for quaternions by restriction. As a special cas oa = ob = q1 + Iq2 one has

o2 = q2
1 − q2q2 + I(q1q2 − q2q1)

From this it is clear that the real part of an octonion real-analytic function cannot be regarded as
quaternion-analytic function unless one assumes that the imaginary part q2 vanishes. By similar
argument real part of quaternion real-analytic function q = c1 + Ic2 fails to be analytic unless
one restricts the consideration to a surface at which one has c2 = 0. These negative results are
obviously consistent with the effective 2-dimensionality.
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4. One must however notice that physicists use often what might be called analytization trick [4]
working if the non-analytic function f(x, y) = f(z, z) is differentiable. The trick is to inter-
pret z and z as independent variables. In the recent case this is rather natural. Wick rotation
could be used to transform the integral over the space-time sheet to integral in quaternionic
domain. For 4-dimensional integrals of quaternion real-analytic function with integration mea-
sure proportional to dc1dc1dc2dc2 one could formally define the integral using multiple residue
integration with four complex variables. The constraint is that the poles associated with ci and
ci are conjugates of each other. Quaternion real-analyticity should guarantee this. This would
of course be a definition of four-dimensional integral and might work for the 4-D generalization
of conformal field theory.

Mandelbrot and Julia sets are fascinating fractals and already now more or less a standard piece
of complex analysis. The fact that the iteration of octonion real-analytic map produces a sequence
of space-time surfaces and partonic 2-surfaces encourages to ask whether these notions -and more
generally, the dynamics based on iteration of analytic functions - might have a higher-dimensional
generalization in the proposed framework.

1. The canonical Mandelbrot set corresponds to the set of the complex parameters c in f(z) = z2+c
for which iterates of z = 0 remain finite. In octonionic and quaternionic real-analytic case c
would be real so that one would obtain only the intersection of the Mandelbrot set with real
axes and the outcome would be rather uninteresting. This is true quite generally.

2. Julia set corresponds to the boundary of the Fatou set in which the dynamics defined by the
iteration of f(z) by definition behaves in a regular manner. In Julia set the behavior is chaotic.
Julia set can be defined as a set of complex plane resulting by taking inverse images of a generic
point belonging to the Julia set. For polynomials Julia set is the boundary of the region in which
iterates remain finite. In Julia set the dynamics defined by the iteration is chaotic.

Julia set could be interesting also in the recent case since it could make sense for real analytic
functions of both quaternions and octonions, and one might hope that the dynamics determined
by the iterations of octonion real-analytic function could have a physical meaning as a space-
time correlate for quantal self-organization by quantum jump in TGD framework. Single step in
iteration would be indeed a very natural space-time correlate for quantum jump. The restriction
of octonion analytic functions to string world sheets should produce the counterparts of the
ordinary Julia sets since these surfaces are mapped to themselves under iteration and octonion
real-analytic functions reduces to ordinary complex real-analytic functions at them. Therefore
one might obtain the counterparts of Julia sets in 4-D sense as extensions of ordinary Julia sets.
These extensions would be 3-D sets obtained as piles of ordinary Julia sets labelled by partonic
2-surfaces.

10.4 Infinite primes

The notion of prime seems to capture something very essential about what it is to be elementary
building block of matter and has become a fundamental conceptual element of TGD. The notion
of prime gains it generality from its reducibility to the notion of prime ideal of an algebra. Thus
the notion of prime is well-defined, not only in case of quaternions and octonions, but also for their
complexifications and one can speak about infinite primes in the case of hyper-quaternions and -
octonions, which are especially natural physically and for which numbers having zero norm correspond
physically to light-like 8-vectors.

10.4.1 Basic ideas

The notion of infinite prime

The original motivation for the notion of infinite prime came from the first attempts to construct
TGD inspired theory of consciousness (around 1995) [87] . Suppose very naively that the 4-surfaces
in a given sector of the ”world of classical worlds” (WCW) are labelled by a fixed p-adic prime. The
natural expectation is that evolution by quantum jumps means dispersion in the space of these sectors

http://en.wikipedia.org/wiki/Analytization_trick
http://en.wikipedia.org/wiki/Mandelbrot_set
http://en.wikipedia.org/wiki/Julia_set
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and leads to the increase of the p-adic prime characterizing the Universe. As one moves backwards
in subjective time (sequence of quantum jumps) one ends up to the situation in which the prime
characterizing the universe was p = 2. Should one assume that there was the first quantum jump
when everything began? If not, then it would seem that the p-adic prime characterizing the Universe
must be infinite. Second problem is that the p-adic length scales are finite and if the size scale of
Universe is given by p-adic length scale the Universe has finite sized: this does not make sense in TGD
framework. The only way out of the problems is the assumption that the p-adic prime characterizing
the entire Universe is literally infinite and that p-adic primes characterizing space-time sheets are
finite.

These argument, which are by no means central for the recent view about p-adic primes, motivated
the attempt to construct a theory of infinite primes and to extend quantum TGD accordingly. This
turns out to be possible. The recipe for constructing infinite primes is structurally equivalent with a
repeated second quantization of an arithmetic super-symmetric quantum field theory. At the lowest
level one has fermionic and bosonic states labeled by finite primes and infinite primes correspond to
many particle states of this theory. Also infinite primes analogous to bound states are predicted.
This hierarchy of quantizations can be continued indefinitely by taking the many particle states of the
previous level as elementary particles at the next level. It must be also emphasized that the notion
of infinity is relativistic. With respect to the p-adic norm infinite primes have unit norm for all finite
and infinite primes so that there is nothing to become scared of!

Construction could make sense also for hyper-quaternionic and hyper-octonionic primes although
non-commutativity and non-associativity pose technical challenges. One can also construct infinite
number of real units as ratios of infinite integers with a precise number theoretic anatomy. The
fascinating finding is that the quantum states labeled by standard model quantum numbers allow
a representation as wave fuctions in the discrete space of these units. Space-time point becomes
infinitely richly structured in the sense that one can associate to it a wave function in the space of real
(or octonionic) units allowing to represent the WCW spinor fields. One can speak about algebraic
holography or number theoretic Brahman=Atman identity and one can also say that the points of
imbedding space and space-time surface are subject to a number theoretic evolution. In philosophical
mood one can of course also ask whether there exists a hierarchy of imbedding spaces in which the
imbedding space at the lower level represents something with infinitesimal size in the sense of real
topology and whether this hierarchy is accompanied also by a hierarchy of conscious entities.

This picture suggest that the Universe of quantum TGD might basically provide a physical rep-
resentation of number theory allowing also infinite primes. The proposal suggests also a possible
generalization of real numbers to a number system akin to hyper-reals introduced by Robinson in
his non-standard calculus [115] providing a rigorous mathematical basis for calculus. In fact, some
rather natural requirements lead to a unique generalization for the concepts of integer, rational and
real. Infinite integers and reals can be regarded as infinite-dimensional vector spaces with integer and
real valued coefficients respectively. Same generalization could make sense for all classical number
fields [23, 11, 31] .

Infinite primes and physics in TGD Universe

Several different views about how infinite primes, integers, and rationals might be relevant in TGD
Universe have emerged.

1. Infinite primes and super-symmetric quantum field theory

Consider next the physical interpretation.

1. The discovery of infinite primes suggested strongly the possibility to reduce physics to number
theory. The construction of infinite primes can be regarded as a repeated second quantization
of a super-symmetric arithmetic quantum field theory. This suggests that configuration space
spinor fields or at least the ground states of associated super-conformal representations [36]
(for super-conformal invariance see [36] could be mapped to infinite primes in both bosonic
and fermionic degrees of freedom. The process might generalize so that it applies in the case
of quaternionic and octonionic primes and their hyper counterparts. This hierarchy of second
quantizations means enormous generalization of physics to what might be regarded a physical
counterpart for a hierarchy of abstractions about abstractions about.... The ordinary second
quantized quantum physics corresponds only to the lowest level infinite primes.



808 Chapter 10. Physics as a Generalized Number Theory

2. The ordinary primes appearing as building blocks of infinite primes at the first level of the
hierarchy could be identified as coding for p-adic primes assignable to fermionic and bosonic
partons identified as 2-surfaces of a given space-time sheet. The hierarchy of infinite primes
would correspond to hierarchy of space-time sheets defined by the topological condensate. This
leads also to a precise identification of p-adic and real variants of bosonic partonic 2-surfaces as
correlates of intention and action and pairs of p-adic and real fermionic partons as correlates for
cognitive representations.

3. The idea that infinite primes characterize quantum states of the entire Universe, perhaps ground
states of super-conformal representations, if not all states, could be taken further. It turns out
that this idea makes sense when one considers discrete wave functions in the space of infinite
primes and that one can indeed represent standard model quantum numbers in this manner.

4. The number theoretical supersymmetry suggests also space-time supersymmetry TGD frame-
work. Space-time super-symmetry in its standard form is not possible in TGD Universe and
this cheated me to believe that this supersymmetry is completely absent in TGD Universe.
The progress in the understanding of the properties of the modified Dirac action however led
to a generalization of the space-time super-symmetry as a dynamical and broken symmetry of
quantum TGD [32] .

Here however emerges the idea about the number theoretic analog of color confinement. Rational
(infinite) primes allow not only a decomposition to (infinite) primes of algebraic extensions of rationals
but also to algebraic extensions of quaternionic and octonionic (infinite) primes. The physical analog
is the decomposition of a particle to its more elementary constituents. This fits nicely with the idea
about number theoretic resolution represented as a hierarchy of Galois groups defined by the extensions
of rationals and realized at the level of physics in terms of Jones inclusions [97] defined by these groups
having a natural action on space-time surfaces, induced spinor fields, and on configuration space spinor
fields representing physical states [24] .

2. Infinite primes and physics as number theory

The hierarchy of algebraic extensions of rationals implying corresponding extensions of p-adic
numbers [88, 55, 59, 101] suggests that Galois groups, which are the basic symmetry groups of number
theory, should have concrete physical representations using induced spinor fields and configuration
space spinor fields and also infinite primes and real units formed as infinite rationals. These groups
permute zeros of polynomials and thus have a concrete physical interpretation both at the level of
partonic 2-surfaces dictated by algebraic equations and at the level of braid hierarchy. The vision about
the role of hyperfinite factors of II1 and of Jones inclusions as descriptions of quantum measurements
with finite measurement resolution leads to concrete ideas about how these groups are realized.

G2 acts as automorphisms of hyper-octonions and SU(3) as its subgroup respecting the choice of a
preferred imaginary unit. The discrete subgroups of SU(3) permuting to each other hyper-octonionic
primes are analogous to Galois group and turned out to play a crucial role in the understanding of the
correspondence between infinite hyper-octonionic primes and quantum states predicted by quantum
TGD.

3. The notion of finite measurement resolution as the key concept

TGD predicts several hierarchies: the hierarchy of space-time sheets, the hierarchy of infinite
primes, the hierarchy of Jones inclusions identifiable in terms of finite measurement resolution [97] ,
the dark matter hierarchy characterized by increasing values of ~ [30] , the hierarchy of extensions of a
given p-adic number field. TGD inspired theory of consciousness predictes the hierarchy of selves and
quantum jumps with increasing duration with respect to geometric time. These hierarchies should be
closely related.

The notion of finite measurement resolution turns out to be the key concept: the p-adic norm of
the rational defined by the infinite prime characterizes the angle measurement resolution for given
p-adic prime p. It is essential that one has what might be called a state function reduction selecting
a fixed p-adic prime which could be also infinite. This gives direct connections with cognition and
with the p-adicization program relying also on angle measurement resolution. Also the value the
integers characterizing the singular coverings of CD and CP2 defining as their product Planck constant
characterize the measurement resolution for a given p-adic prime in CD and CP2 degrees of freedom.
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This conforms with the fact that elementary particles are characterized by two infinite primes. Hence
finite measurement resolution ties tightly together the three threads of the number theoretic vision.
Finite measurement resolution relates also closely to the inclusions of hyper-finite factors central for
TGD inspired quantum measurement theory with finite measurement resolution.

4. Space-time correlates of infinite primes

Infinite primes code naturally for Fock states in a hierarchy of super-symmetric arithmetic quantum
field theories. Quantum classical correspondence leads to ask whether infinite primes could also code
for the space-time surfaces serving as symbolic representations of quantum states. This would a
generalization of algebraic geometry would emerge and could reduce the dynamics of Kähler action
to algebraic geometry and organize 4-surfaces to a physical hierarchy according to their algebraic
complexity. This conjecture should be consistent with two other conjectures about the dynamics of
space-time surfaces (space-time surfaces as preferred extrema of Kähler action and space-time surfaces
as quaternionic or co-quaternionic (as associative or co-associative) 4-surfaces of hyper-octonion space
M8).

Quantum classical correspondence requires the map of the quantum numbers of configuration space
spinor fields to space-time geometry. The modified Dirac equation with measurement interaction term
realizes this requirement. Therefore, if one wants to map infinite rationals to space-time geometry it
is enough to map infinite primes to quantum numbers. This map can be indeed achieved thanks to
the detailed picture about the interpretation of the symmetries of infinite primes in terms of standard
model symmetries. The notion of finite measurement resolution allows to deduce much more detailed
about this correspondence. In particular, the rational defined by the infinite prime classifies the finite
sub-manifold geometry defined by the discretization of the partonic 2-surface implied by the finite
measurement resolution. Also a direct correlation between integers defining Planck constant and the
”fermionic” part of the infinite prime emerges.

Infinite primes, cognition, and intentionality

The correlation of infinite primes with cognition is the first fascinating possibility and this possibility
has stimulated several ideas.

1. One can define the notion of prime also for the algebraic extensions of rationals. The hierarchy
of infinite primes associated with algebraic extensions of rationals leading gradually towards
algebraic closure of rationals would in turn define cognitive hierarchy corresponding to algebraic
extensions of p-adic numbers.

2. The introduction of infinite primes, integers, and rationals leads also to a generalization of clas-
sical number fields since an infinite algebra of real (complex, etc...) units defined by finite ratios
of infinite rationals multiplied by ordinary rationals which are their inverses becomes possible.
These units are not units in the p-adic sense and have a finite p-adic norm which can be differ
from one. This construction generalizes also to the case of hyper- quaternions and -octonions
although non-commutativity and in case of octonions also non-associativity pose technical prob-
lems. Obviously this approach differs from the standard introduction of infinitesimals in the
sense that sum of infinitesimals (real zeros) is replaced by multiplication of real units meaning
that the set of real and also more general units becomes infinitely degenerate.

3. Infinite primes form an infinite hierarchy so that the points of space-time and imbedding space
can be seen as infinitely structured and able to represent all imaginable algebraic structures.
Certainly counter-intuitively, single space-time point -or more generally wave functions in the
space of the units associated with the point- might be even capable of representing the quantum
state of the entire physical Universe in its structure. For instance, in the real sense surfaces in
the space of units correspond to the same real number 1, and single point, which is structure-less
in the real sense could represent arbitrarily high-dimensional spaces as unions of real units. For
real physics this structure is completely invisible and is relevant only for the physics of cognition.
One can say that Universe is an algebraic hologram, and there is an obvious connection both
with Brahman=Atman identity of Eastern philosophies and Leibniz’s notion of monad.

4. In zero energy ontology hyper-octonionic units identified as ratios of the infinite integers associ-
ated with the positive and negative energy parts of the zero energy state define a representation



810 Chapter 10. Physics as a Generalized Number Theory

of WCW spinor fields. The action of subgroups of SU(3) and rotation group SU(2) preserv-
ing hyper-octonionic and hyper-quaternionic primeness and identification of momentum and
electro-weak charges in terms of components of hyper-octonionic primes makes this represen-
tation unique. Hence Brahman-Atman identity has a completely concrete realization and fixes
completely the quantum number spectrum including particle masses and correlations between
various quantum numbers.

5. One can assign to infinite primes at nth level of hierarchy rational functions of n rational argu-
ments which form a natural hierarchical structure in that highest level corresponds to a polyno-
mial with coefficients which are rational functions of the arguments at the lower level. One can
solve one of the arguments in terms of lower ones to get a hierarchy of algebraic extensions. At
the lowest level algebraic extensions of rationals emerge, at the next level algebraic extensions
of space of rational functions of single variable, etc... This would suggest that infinite primes
code for the correlation between quantum states and the algebraic extensions appearing in their
their physical description and characterizing their cognitive correlates. The hierarchy of infinite
primes would also correlate with a hierarchy of logics of various orders (hierarchy of statements
about statements about...).

10.4.2 Infinite primes, integers, and rationals

The definition of the infinite integers and rationals is a straightforward procedure and structurally
similar to a repeated second quantization of a super-symmetric quantum field theory but including
also the number theoretic counterparts of bound states.

The first level of hierarchy

In the following the concept of infinite prime is developed gradually by stepwise procedure rather than
giving directly the basic definitions. The hope is that the development of the concept in the same
manner as it actually occurred would make it easier to understand it.

Step 1

One could try to define infinite primes P by starting from the basic idea in the proof of Euclid for
the existence of infinite number of primes. Take the product of all finite primes and add 1 to get a
new prime:

P = 1 +X ,
X =

∏
p p .

(10.4.1)

If P were divisible by finite prime then P −X = 1 would be divisible by finite prime and one would
encounter contradiction. One could of course worry about the possible existence of infinite primes
smaller than P and possibly dividing P . The numbers N = P − k, k > 1, are certainly not primes
since k can be taken as a factor. The number P ′ = P − 2 = −1 + X could however be prime. P is
certainly not divisible by P − 2. It seems that one cannot express P and P − 2 as product of infinite
integer and finite integer. Neither it seems possible to express these numbers as products of more
general numbers of form

∏
p∈U p+ q, where U is infinite subset of finite primes and q is finite integer.

Step 2

P and P − 2 are not the only possible candidates for infinite primes. Numbers of form

P (±, n) = ±1 + nX ,
k(p) = 0, 1, ..... ,
n =

∏
p p

k(p) ,

X =
∏
p p ,

(10.4.2)

where k(p) 6= 0 holds true only in finite set of primes, are characterized by a integer n, and are also
good prime candidates. The ratio of these primes to the prime candidate P is given by integer n. In
general, the ratio of two prime candidates P (m) and P (n) is rational number m/n telling which of
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the prime candidates is larger. This number provides ordering of the prime candidates P (n). The
reason why these numbers are good canditates for infinite primes is the same as above. No finite prime
p with k(p) 6= 0 appearing in the product can divide these numbers since, by the same arguments
as appearing in Euclid’s theorem, it would divide also 1. On the other hand it seems difficult to
invent any decomposition of these numbers containing infinite numbers. Already at this stage one
can notice the structural analogy with the construction of multiboson states in quantum field theory:
the numbers k(p) correspond to the occupation numbers of bosonic states of quantum field theory in
one-dimensional box, which suggests that the basic structure of QFT might have number theoretic
interpretation in some very general sense. It turns out that this analogy generalizes.

Step 3

All P (n) satisfy P (n) ≥ P (1). One can however also the possibility that P (1) is not the smallest
infinite prime and consider even more general candidates for infinite primes, which are smaller than
P (1). The trick is to drop from the infinite product of primes X =

∏
p p some primes away by dividing

it by integer s =
∏
pi
pi, multiply this number by an integer n not divisible by any prime dividing s

and to add to/subtract from the resulting number nX/s natural number ms such that m expressible
as a product of powers of only those primes which appear in s to get

P (±,m, n, s) = nXs ±ms ,
m =

∏
p|s p

k(p) ,

n =
∏
p|Xs

pk(p), k(p) ≥ 0 .
(10.4.3)

Here x|y means ’x divides y’. To see that no prime p can divide this prime candidate it is enough to
calculate P (±,m, n, s) modulo p: depending on whether p divides s or not, the prime divides only the
second term in the sum and the result is nonzero and finite (although its precise value is not known).
The ratio of these prime candidates to P (+, 1, 1, 1) is given by the rational number n/s: the ratio
does not depend on the value of the integer m. One can however order the prime candidates with
given values of n and s using the difference of two prime candidates as ordering criterion. Therefore
these primes can be ordered.

One could ask whether also more general numbers of the form nXs ±m are primes. In this case
one cannot prove the indivisibility of the prime candidate by p not appearing in m. Furthermore, for
s mod 2 = 0 and m mod 2 6= 0, the resulting prime candidate would be even integer so that it looks
improbable that one could obtain primes in more general case either.

Step 4

An even more general series of candidates for infinite primes is obtained by using the following
ansatz which in principle is contained in the original ansatz allowing infinite values of n

P (±,m, n, s|r) = nY r ±ms ,
Y = X

s ,
m =

∏
p|s p

k(p) ,

n =
∏
p|Xs

pk(p), k(p) ≥ 0 .

(10.4.4)

The proof that this number is not divisible by any finite prime is identical to that used in the previous
case. It is not however clear whether the ansatz for given r is not divisible by infinite primes belonging
to the lower level. A good example in r = 2 case is provided by the following unsuccessful ansatz

N = (n1Y +m1s)(n2Y +m2s) = n1n2X
2

s2 −m1m2s
2 ,

Y = X
s ,

n1m2 − n2m1 = 0 .

Note that the condition states that n1/m1 and −n2/m2 correspond to the same rational number or
equivalently that (n1,m1) and (n2,m2) are linearly dependent as vectors. This encourages the guess
that all other r = 2 prime candidates with finite values of n and m at least, are primes. For higher
values of r one can deduce analogous conditions guaranteing that the ansatz does not reduce to a
product of infinite primes having smaller value of r. In fact, the conditions for primality state that
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the polynomial P (n,m, r)(Y ) = nY r+m with integer valued coefficients (n > 0) defined by the prime
candidate is irreducible in the field of integers, which means that it does not reduce to a product of
lower order polynomials of same type.

Step 5

A further generalization of this ansatz is obtained by allowing infinite values for m, which leads to
the following ansatz:

P (±,m, n, s|r1, r2) = nY r1 ±ms ,
m = Pr2(Y )Y +m0 ,
Y = X

s ,
m0 =

∏
p|s p

k(p) ,

n =
∏
p|Y p

k(p), k(p) ≥ 0 .

(10.4.5)

Here the polynomial Pr2(Y ) has order r2 is divisible by the primes belonging to the complement of
s so that only the finite part m0 of m is relevant for the divisibility by finite primes. Note that the
part proportional to s can be infinite as compared to the part proportional to Y r1 : in this case one
must however be careful with the signs to get the sign of the infinite prime correctly. By using same
arguments as earlier one finds that these prime candidates are not divisible by finite primes. One must
also require that the ansatz is not divisible by lower order infinite primes of the same type. These
conditions are equivalent to the conditions guaranteing the polynomial primeness for polynomials of
form P (Y ) = nY r1 ± (Pr2(Y )Y + m0)s having integer-valued coefficients. The construction of these
polynomials can be performed recursively by starting from the first order polynomials representing
first level infinite primes: Y can be regarded as formal variable and one can forget that it is actually
infinite number.

By finite-dimensional analogy, the infinite value of m means infinite occupation numbers for the
modes represented by integer s in some sense. For finite values of m one can always write m as a
product of powers of pi|s. Introducing explicitly infinite powers of pi is not in accordance with the
idea that all exponents appearing in the formulas are finite and that the only infinite variables are X
and possibly S (formulas are symmetric with respect to S and X/S). The proposed representation
of m circumvents this difficulty in an elegant manner and allows to say that m is expressible as a
product of infinite powers of pi despite the fact that it is not possible to derive the infinite values of
the exponents of pi.

Summarizing, an infinite series of candidates for infinite primes has been found. The prime candi-
dates P (±,m, n, s) labeled by rational numbers n/s and integers m plus the primes P (±,m, n, s|r1, r2)
constructed as r1:th or r2:th order polynomials of Y = X/s: the latter ansatz reduces to the less gen-
eral ansatz of infinite values of n are allowed.

One can ask whether the p mod 4 = 3 condition guaranteing that the square root of −1 does not
exist as a p-adic number, is satisfied for P (±,m, n, s). P (±, 1, 1, 1) mod 4 is either 3 or 1. The value
of P (±,m, n, s) mod 4 for odd s on n only and is same for all states containing even/odd number of
p mod = 3 excitations. For even s the value of P (±,m, n, s) mod 4 depends on m only and is same for
all states containing even/odd number of p mod = 3 excitations. This condition resembles G-parity
condition of Super Virasoro algebras. Note that either P (+,m, n, s) or P (−,m, n, s) but not both
are physically interesting infinite primes (2m mod 4 = 2 for odd m) in the sense of allowing complex
Hilbert space. Also the additional conditions satisfied by the states involving higher powers of X/s
resemble to Virasoro conditions. An open problem is whether the analogy with the construction of
the many-particle states in super-symmetric theory might be a hint about more deeper relationship
with the representation of Super Virasoro algebras and related algebras.

It is not clear whether even more general prime candidates exist. An attractive hypothesis is that
one could write explicit formulas for all infinite primes so that generalized theory of primes would
reduce to the theory of finite primes.

Infinite primes form a hierarchy

By generalizing using general construction recipe, one can introduce the second level prime candidates
as primes not divisible by any finite prime p or infinite prime candidate of type P (±,m, n, s) (or more
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general prime at the first level: in the following we assume for simplicity that these are the only
infinite primes at the first level). The general form of these prime candidates is exactly the same as
at the first level. Particle-analogy makes it easy to express the construction receipe. In present case
’vacuum primes’ at the lowest level are of the form

X1

S ± S ,
X1 = X

∏
P (±,m,n,s) P (±,m, n, s) ,

S = s
∏
Pi
Pi ,

s =
∏
pi
pi .

(10.4.6)

S is product or ordinary primes p and infinite primes Pi(±,m, n, s). Primes correspond to physical
states created by multiplying X1/S (S) by integers not divisible by primes appearing S (X1/S). The
integer valued functions k(p) and K(p) of prime argument give the occupation numbers associated with
X/s and s type ’bosons’ respectively. The non-negative integer-valued function K(P ) = K(±,m, n, s)
gives the occupation numbers associated with the infinite primes associated with X1/S and S type
’bosons’. More general primes can be constructed by mimicking the previous procedure.

One can classify these primes by the value of the integer Ktot =
∑
P |X/S K(P ): for a given value

of Ktot the ratio of these prime candidates is clearly finite and given by a rational number. At given
level the ratio P1/P2 of two primes is given by the expression

P1(±,m1,n1,s1K1,S1

P2(±,m2,n2,s2,K,S2) = n1s2
n2s1

∏
±,m,n,s(

n
s )K

+
1 (±,n,m,s)−K+

2 (±,n,m,s) . (10.4.7)

Here K+
i denotes the restriction of Ki(P ) to the set of primes dividing X/S. This ratio must be

smaller than 1 if it is to appear as the first order term P1P2 → P1/P2 in the canonical identification
and again it seems that it is not possible to get all rationals for a fixed value of P2 unless one allows
infinite values of N expressed neatly using the more general ansatz involving higher power of S.

Construction of infinite primes as a repeated quantization of a super-symmetric arith-
metic quantum field theory

The procedure for constructing infinite primes is very much reminiscent of the second quantization of
an super-symetric arithmetic quantum field theory in which single particle fermion and boson states are
labeled by primes. In particular, there is nothing especially frightening in the particle representation
of infinite primes: theoretical physicists actually use these kind of representations quite routinely.

1. The binary-valued function telling whether a given prime divides s can be interpreted as a
fermion number associated with the fermion mode labeled by p. Therefore infinite prime is
characterized by bosonic and fermionic occupation numbers as functions of the prime labeling
various modes and situation is super-symmetric. X can be interpreted as the counterpart of
Dirac sea in which every negative energy state state is occupied and X/s± s corresponds to the
state containing fermions understood as holes of Dirac sea associated with the modes labeled by
primes dividing s.

2. The multiplication of the ’vacuum’ X/s with n =
∏
p|X/s p

k(p) creates k(p) ’p-bosons’ in mode

of type X/s and multiplication of the ’vacuum’ s with m =
∏
p|s p

k(p) creates k(p) ’p-bosons’.

in mode of type s (mode occupied by fermion). The vacuum states in which bosonic creation
operators act, are tensor products of two vacuums with tensor product represented as sum

|vac(±)〉 = |vac(X
s

)〉 ⊗ |vac(±s)〉 ↔ X

s
± s (10.4.8)

obtained by shifting the prime powers dividing s from the vacuum |vac(X)〉 = X to the vacuum
±1. One can also interpret various vacuums as many fermion states. Prime property follows
directly from the fact that any prime of the previous level divides either the first or second factor
in the decomposition NX/S ±MS.
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3. This picture applies at each level of infinity. At a given level of hierarchy primes P correspond to
all the Fock state basis of all possible many-particle states of second quantized super-symmetric
theory. At the next level these many-particle states are regarded as single particle states and
further second quantization is performed so that the primes become analogous to the momentum
labels characterizing various single-particle states at the new level of hierarchy.

4. There are two nonequivalent quantizations for each value of S due to the presence of ± sign
factor. Two primes differing only by sign factor are like G-parity +1 and −1 states in the sense
that these primes satisfy P mod 4 = 3 and P mod 4 = 1 respectively. The requirement that
−1 does not have p-adic square root so that Hilbert space is complex, fixes G-parity to say +1.
This observation suggests that there exists a close analogy with the theory of Super Virasoro
algebras so that quantum TGD might have interpretation as number theory in infinite context.
An alternative interpretation for the ± degeneracy is as counterpart for the possibility to choose
the fermionic vacuum to be a state in which either all positive or all negative energy fermion
states are occupied.

5. One can also generalize the construction to include polynomials of Y = X/S to get infinite
hierarchy of primes labeled by the two integers r1 and r2 associated with the polynomials in
question. An entire hierarchy of vacuums labeled by r1 is obtained. A possible interpretation
of these primes is as counterparts for the bound states of quantum field theory. The coefficient
for the power (X/s)r1 appearing in the highest term of the general ansatz, codes the occupa-
tion numbers associated with vacuum (X/s)r1 . All the remaining terms are proportional to s
and combine to form, in general infinite, integer m characterizing various infinite occupation
numbers for the subsystem characterized by s. The additional conditions guaranteing prime
number property are equivalent with the primality conditions for polynomials with integer val-
ued coefficients and resemble Super Virasoro conditions. For r2 > 0 bosonic occupation numbers
associated with the modes with fermion number one are infinite and one cannot write explicit
formula for the boson number.

6. One could argue that the analogy with super-symmetry is not complete. The modes of Super
Virasoro algebra are labeled by natural number whereas now modes are labeled by prime. This
need not be a problem since one can label primes using natural number n. Also 8-valued spin
index associated with fermionic and bosonic single particle states in TGD world is lacking (space-
time is surface in 8-dimensional space). This index labels the spin states of 8-dimensional spinor
with fixed chirality. One could perhaps get also spin index by considering infinite octonionic
primes, which correspond to vectors of 8-dimensional integer lattice such that the length squared
of the lattice vector is ordinary prime:

∑
k=1,...,8

n2
k = prime .

Thus one cannot exclude the possibility that TGD based physics might provide representation
for octonions extended to include infinitely large octonions. The notion of prime octonion is well
defined in the set of integer octonions and it is easy to show that the Euclidian norm squared for
a prime octonion is prime. If this result generalizes then the construction of generalized prime
octonions would generalize the construction of finite prime octonions. It would be interesting to
know whether the results of finite-dimensional case might generalize to the infinite-dimensional
context. One cannot exclude the possibility that prime octonions are in one-one correspondence
with physical states in quantum TGD.

These observations suggest a close relationship between quantum TGD and the theory of infinite
primes in some sense: even more, entire number theory and mathematics might be reducible to
quantum physics understood properly or equivalently, physics might provide the representation of basic
mathematics. Of course, already the uniqueness of the basic mathematical structure of quantum TGD
points to this direction. Against this background the fact that 8-dimensionality of the imbedding space
allows introduction of octonion structure (also p-adic algebraic extensions) acquires new meaning.
Same is also suggested by the fact that the algebraic extensions of p-adic numbers allowing square
root of real p-adic number are 4- and 8-dimensional.
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What is especially interesting is that the core of number theory would be concentrated in finite
primes since infinite primes are obtained by straightforward procedure providing explicit formulas for
them. Repeated quantization provides also a model of abstraction process understood as construc-
tion of hierarchy of natural number valued functions about functions about ...... At the first level
infinite primes are characterized by the integer valued function k(p) giving occupation numbers plus
subsystem-complement division (division to thinker and external world!). At the next level prime is
characterized in a similar manner. One should also notice that infinite prime at given level is char-
acterized by a pair (R = MN,S) of integers at previous level. Equivalently, infinite prime at given
level is characterized by fermionic and bosonic occupation numbers as functions in the set of primes
at previous level.

Construction in the case of an arbitrary commutative number field

The basic construction recipe for infinite primes is simple and generalizes even to the case of algebraic
extensions of rationals. Let K = Q(θ) be an algebraic number field (see the Appendix of [85] for
the basic definitions). In the general case the notion of prime must be replaced by the concept of
irreducible defined as an algebraic integer with the property that all its decompositions to a product
of two integers are such that second integer is always a unit (integer having unit algebraic norm, see
Appendix of [85] ).

Assume that the irreducibles of K = Q(θ) are known. Define two irreducibles to be equivalent if
they are related by a multiplication with a unit of K. Take one representative from each equivalence
class of units. Define the irreducible to be positive if its first non-vanishing component in an ordered
basis for the algebraic extension provided by the real unit and powers of θ, is positive. Form the
counterpart of Fock vacuum as the product X of these representative irreducibles of K.

The unique factorization domain (UFD) property (see Appendix of [85] ) of infinite primes does
not require the ring OK of algebraic integers of K to be UFD although this property might be forced
somehow. What is needed is to find the primes of K; to construct X as the product of all irreducibles of
K but not counting units which are integers of K with unit norm; and to apply second quantization to
get primes which are first order monomials. X is in general a product of powers of primes. Generating
infinite primes at the first level correspond to generalized rationals for K having similar representation
in terms of powers of primes as ordinary rational numbers using ordinary primes.

Mapping of infinite primes to polynomials and geometric objects

The mapping of the generating infinite primes to first order monomials labeled by their rational zeros
is extremely simple at the first level of the hierarchy:

P±(m,n, s) =
mX

s
± ns→ x± ±

m

sn
. (10.4.9)

Note that a monomial having zero as its root is not obtained. This mapping induces the mapping of
all infinite primes to polynomials.

The simplest infinite primes are constructed using ordinary primes and second quantization of an
arithmetic number theory corresponds in one-one manner to rationals. Indeed, the integer s =

∏
i p
ki
i

defining the numbers ki of bosons in modes ki, where fermion number is one, and the integer r defining
the numbers of bosons in modes where fermion number is zero, are co-prime. Moreover, the generating
infinite primes can be written as (n/s)X ±ms corresponding to the two vacua V = X ± 1 and the
roots of corresponding monomials are positive resp. negative rationals.

More complex infinite primes correspond sums of powers of infinite primes with rational coefficients
such that the corresponding polynomial has rational coefficients and roots which are not rational but
belong to some algebraic extension of rationals. These infinite primes correspond simply to products
of infinite primes associated with some algebraic extension of rationals. Obviously the construction
of higher infinite primes gives rise to a hierarchy of higher algebraic extensions.

It is possible to continue the process indefinitely by constructing the Dirac vacuum at the n:th
level as a product of primes of previous levels and applying the same procedure. At the second level
Dirac vacuum V = X ± 1 involves X which is the product of all primes at previous levels and in
the polynomial correspondence X thus correspond to a new independent variable. At the n:th level
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one would have polynomials P (q1|q2|...) of q1 with coefficients which are rational functions of q2 with
coefficients which are.... The hierarchy of infinite primes would be thus mapped to the functional
hierarchy in which polynomial coefficients depend on parameters depending on ....

At the second level one representation of infinite primes would be as algebraic curve resulting as
a locus of P (q1|q2) = 0: this certainly makes sense if q1 and q2 commute. At higher levels the locus
is a higher-dimensional surface.

How to order infinite primes?

One can order the infinite primes, integers and rationals. The ordering principle is simple: one can
decompose infinite integers to two parts: the ’large’ and the ’small’ part such that the ratio of the
small part with the large part vanishes. If the ratio of the large parts of two infinite integers is different
from one or their sign is different, ordering is obvious. If the ratio of the large parts equals to one,
one can perform same comparison for the small parts. This procedure can be continued indefinitely.

In case of infinite primes ordering procedure goes like follows. At given level the ratios are rational
numbers. There exists infinite number of primes with ratio 1 at given level, namely the primes with
same values of N and same S with MS infinitesimal as compared to NX/S. One can order these
primes using either the relative sign or the ratio of (M1S1)/(M2S2) of the small parts to decide which
of the two is larger. If also this ratio equals to one, one can repeat the process for the small parts of
MiSi. In principle one can repeat this process so many times that one can decide which of the two
primes is larger. Same of course applies to infinite integers and also to infinite rationals build from
primes with infinitesimal MS. If NS is not infinitesimal it is not obvious whether this procedure
works. If NiXi/MiSi = xi is finite for both numbers (this need not be the case in general) then the

ratio M1S1

M2S2

(1+x2)
(1+x1) provides the needed criterion. In case that this ratio equals one, one can consider use

the ratio of the small parts multiplied by (1+x2)
(1+x1) of MiSi as ordering criterion. Again the procedure

can be repeated if needed.

What is the cardinality of infinite primes at given level?

The basic problem is to decide whether Nature allows also integers S , R = MN represented as infinite
product of primes or not. Infinite products correspond to subsystems of infinite size (S) and infinite
total occupation number (R) in QFT analogy.

1. One could argue that S should be a finite product of integers since it corresponds to the require-
ment of finite size for a physically acceptable subsystem. One could apply similar argument
to R. In this case the set of primes at given level has the cardinality of integers (alef0) and
the cardinality of all infinite primes is that of integers. If also infinite integers R are assumed
to involve only finite products of infinite primes the set of infinite integers is same as that for
natural numbers.

2. NMP is well defined in p-adic context also for infinite subsystems and this suggests that one
should allow also infinite number of factors for both S and R = MN . Super symmetric analogy
suggests the same: one can quite well consider the possibility that the total fermion number of
the universe is infinite. It seems however natural to assume that the occupation numbers K(P )
associated with various primes P in the representations R =

∏
P P

K(P ) are finite but nonzero
for infinite number of primes P . This requirement applied to the modes associated with S would
require the integer m to be explicitly expressible in powers of Pi|S (Pr2 = 0) whereas all values
of r1 are possible. If infinite number of prime factors is allowed in the definition of S, then the
application of diagonal argument of Cantor shows that the number of infinite primes is larger
than alef0 already at the first level. The cardinality of the first level is 2alef02alef0 == 2alef0 .
The first factor is the cardinality of reals and comes from the fact that the sets S form the
set of all possible subsets of primes, or equivalently the cardinality of all possible binary valued
functions in the set of primes. The second factor comes from the fact that integers R = NM
(possibly infinite) correspond to all natural number-valued functions in the set of primes: if only
finite powers k(p) are allowed then one can map the space of these functions to the space of
binary valued functions bijectively and the cardinality must be 2alef0 . The general formula for
the cardinality at given level is obvious: for instance, at the second level the cardinality is the
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cardinality of all possible subsets of reals. More generally, the cardinality for a given level is the
cardinality for the subset of possible subsets of primes at the previous level.

How to generalize the concepts of infinite integer, rational and real?

The allowance of infinite primes forces to generalize also the concepts concepts of integer, rational and
real number. It is not obvious how this could be achieved. The following arguments lead to a possible
generalization which seems practical (yes!) and elegant.

1. Infinite integers form infinite-dimensional vector space with integer coefficients

The first guess is that infinite integers N could be defined as products of the powers of finite and
infinite primes.

N =
∏
k

pnkk = nM , nk ≥ 0 , (10.4.10)

where n is finite integer and M is infinite integer containing only powers of infinite primes in its
product expansion.

It is not however not clear whether the sums of infinite integers really allow similar decomposition.
Even in the case that this decomposition exists, there seems to be no way of deriving it. This would
suggest that one should regard sums ∑

i

niMi

of infinite integers as infinite-dimensional linear space spanned by Mi so that the set of infinite integers
would be analogous to an infinite-dimensional algebraic extension of say p-adic numbers such that
each coordinate axes in the extension corresponds to single infinite integer of form N = mM . Thus
the most general infinite integer N would have the form

N = m0 +
∑

miMi . (10.4.11)

This representation of infinite integers indeed looks promising from the point of view of practical
calculations. The representation looks also attractive physically. One can interpret the set of integers
N as a linear space with integer coefficients m0 and mi:

N = m0|1〉+
∑

mi|Mi〉 . (10.4.12)

|Mi〉 can be interpreted as a state basis representing many-particle states formed from bosons labeled
by infinite primes pk and |1〉 represents Fock vacuum. Therefore this representation is analogous to a
quantum superposition of bosonic Fock states with integer, rather than complex valued, superposition
coefficients. If one interprets Mi as orthogonal state basis and interprets mi as p-adic integers, one
can define inner product as

〈Na, Nb〉 = m0(a)m0(b) +
∑
i

mi(a)mi(b) . (10.4.13)

This expression is well defined p-adic number if the sum contains only enumerable number of terms
and is always bounded by p-adic ultrametricity. It converges if the p-adic norm of of mi approaches
to zero when Mi increases.

2. Generalized rationals

Generalized rationals could be defined as ratios R = M/N of the generalized integers. This
works nicely when M and N are expressible as products of powers of finite or infinite primes but for
more general integers the definition does not look attractive. This suggests that one should restrict



818 Chapter 10. Physics as a Generalized Number Theory

the generalized rationals to be numbers having the expansion as a product of positive and negative
primes, finite or infinite:

N =
∏
k

pnkk =
n1M1

nM
. (10.4.14)

3. Generalized reals form infinite-dimensional real vector space

One could consider the possibility of defining generalized reals as limiting values of the generalized
rationals. A more practical definition of the generalized reals is based on the generalization of the
pinary expansion of ordinary real number given by

x =
∑
n≥n0

xnp
−n ,

xn ∈ {0, .., p− 1} . (10.4.15)

It is natural to try to generalize this expansion somehow. The natural requirement is that sums
and products of the generalized reals and canonical identification map from the generalized reals to
generalized p-adcs are readily calculable. Only in this manner the representation can have practical
value.

These requirements suggest the following generalization

X = x0 +
∑
N

xNp
−N ,

N =
∑
i

miMi , (10.4.16)

where x0 and xN are ordinary reals. Note that N runs over infinite integers which has vanishing finite
part. Note that generalized reals can be regarded as infinite-dimensional linear space such that each
infinite integer N corresponds to one coordinate axis of this space. One could interpret generalized
real as a superposition of bosonic Fock states formed from single single boson state labeled by prime
p such that occupation number is either 0 or infinite integer N with a vanishing finite part:

X = x0|0〉+
∑
N

xN |N > . (10.4.17)

The natural inner product is

〈X,Y 〉 = x0y0 +
∑
N

xNyN . (10.4.18)

The inner product is well defined if the number of N :s in the sum is enumerable and xN approaches
zero sufficiently rapidly when N increases. Perhaps the most natural interpretation of the inner
product is as Rp valued inner product.

The sum of two generalized reals can be readily calculated by using only sum for reals:

X + Y = x0 + y0 +
∑
N

(xN + yN )p−N ,

(10.4.19)

The product XY is expressible in the form

XY = x0y0 + x0Y +Xy0 +
∑
N1,N2

xN1
yN2

p−N1−N2 ,

(10.4.20)
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If one assumes that infinite integers form infinite-dimensional vector space in the manner proposed,
there are no problems and one can calculate the sums N1 +N2 by summing component wise manner
the coefficients appearing in the sums defining N1 and N2 in terms of infinite integers Mi allowing
expression as a product of infinite integers.

Canonical identification map from ordinary reals to p-adics

x =
∑
k

xkp
−k → xp =

∑
k

xkp
k ,

generalizes to the form

x = x0 +
∑
N

xNp
−N → (x0)p +

∑
N

(xN )pp
N , (10.4.21)

so that all the basic requirements making the concept of generalized real calculationally useful are
satisfied.

There are several interesting questions related to generalized reals.

1. Are the extensions of reals defined by various values of p-adic primes mathematically equivalent
or not? One can map generalized reals associated with various choices of the base p to each
other in one-one manner using the mapping

X = x0 +
∑
N

xNp
−N
1 → x0 +

∑
N

xNp
−N
2 .

(10.4.22)

The ordinary real norms of finite (this is important!) generalized reals are identical since the
representations associated with different values of base p differ from each other only infinitesi-
mally. This would suggest that the extensions are physically equivalent. It these extensions are
not mathematically equivalent then p-adic primes could have a deep role in the definition of the
generalized reals.

2. One can generalize previous formulas for the generalized reals by replacing the coefficients x0

and xi by complex numbers, quaternions or octonions so as to get generalized complex num-
bers, quaternions and octonions. Also inner product generalizes in an obvious manner. The
8-dimensionality of the imbedding space provokes the question whether it might be possible to
regard the infinite-dimensional configuration space of 3-surfaces, or rather, its tangent space, as
a Hilbert space realization of the generalized octonions. This kind of identification could perhaps
reduce TGD based physics to generalized number theory.

Comparison with the approach of Cantor

The main difference between the approach of Cantor and the proposed approach is that Cantor
uses only the basic arithmetic concepts such as sum and multiplication and the concept of successor
defining ordering of both finite and infinite ordinals. Cantor’s approach is also purely set theoretic.
The problems of purely set theoretic approach are related to the question what the statement ’Set is
Many allowing to regard itself as One’ really means and to the fact that there is no obvious connection
with physics.

The proposed approach is based on the introduction of the concept of prime as a basic concept
whereas partial ordering is based on the use of ratios: using these one can recursively define partial
ordering and get precise quantitative information based on finite reals. The ordering is only partial
and there is infinite number of ratios of infinite integers giving rise to same real unit which in turn
leads to the idea about number theoretic anatomy of real point.

The ’Set is Many allowing to regard itself as One’ is defined as quantum physicist would define it:
many particle states become single particle states in the second quantization describing the counterpart
for the construction of the set of subsets of a given set. One could also say that integer as such
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corresponds to set as ’One’ and its decomposition to a product of primes corresponds to the set as
’Many’. The concept of prime, the ultimate ’One’, has as its physical counterpart the concept of
elementary particle understood in very general sense. The new element is the physical interpretation:
the sum of two numbers whose ratio is zero correspond to completely physical finite-subsystem-infinite
complement division and the iterated construction of the set of subsets of a set at given level is
basically p-adic evolution understood in the most general possible sense and realized as a repeated
second quantization. What is attractive is that this repeated second quantization can be regarded
also as a model of abstraction process and actually the process of abstraction itself.

The possibility to interpret the construction of infinite primes either as a repeated bosonic quanti-
zation involving subsystem-complement division or as a repeated super-symmetric quantization could
have some deep meaning. A possible interpretation consistent with these two pictures is based on the
hypothesis that fermions provide a reflective level of consciousness in the sense that the 2N element
Fock basis of many-fermion states formed from N single-fermion states can be regarded as a set of
all possible statements about N basic statements. Statements about whether a given element of set
X belongs to some subset S of X are certainly the fundamental statements from the point of view of
mathematics. Hence one could argue that many-fermion states provide cognitive representation for
the subsets of some set. Single fermion states represent the points of the set and many-fermion states
represent possible subsets.

10.4.3 Can one generalize the notion of infinite prime to the non-commutative
and non-associative context?

The notion of prime and more generally, that of irreducible, makes sense also in more general number
fields and even algebras. The considerations of [86] suggests that the notion of infinite prime should
be generalized to the case of complex numbers, quaternions, and octonions as well as to their hyper
counterparts which seem to be physically the most interesting ones [86] . Also the hierarchy of
infinite primes should generalize as also the representation of infinite primes as polynomials although
associativity is expected to pose technical problems.

Quaternionic and octonionic primes and their hyper counterparts

The loss of commutativity and associativity implies that the definitions of quaternionic and octonionic
primes are not completely straightforward.

1. Basic facts about quaternions and octonions

Both quaternions and octonions allow both Euclidian norm and the Minkowskian norm defined as
a trace of the linear operator defined by the multiplication with octonion. Minkowskian norm has the
metric signature of H = M4 ×CP2 or M4

+ ×CP2 so that H can be regarded locally as an octonionic
space. Both norms are a multiplicative and the notions of both quaternionic and octonionic prime are
well defined despite non-associativity. Quaternionic and octonionic primes have length squared equal
to rational prime.

In the case of quaternions different basis of imaginary units I, J,K are related by 3-dimensional
rotation group and different quaternionic basis span a 3-dimensional sphere. There is 2-sphere of
complex structures since imaginary unit can be any unit vector of imaginary 3-space.

A basis for octonionic imaginary units J,K,L,M,N,O, P can be chosen in many manners and
fourteen-dimensional subgroup G2 of the group SO(7) of rotations of imaginary units is the group
labeling the octonionic structures related by octonionic automorphisms to each other. It deserves to
be mentioned that G2 is unique among the simple Lie-groups in that the ratio of the square roots of
lengths for long and short roots of G2 Lie-algebra are in ratio 3 : 1 [2] . For other Lie-groups this ratio
is either 2:1 or all roots have same length. The set of equivalence classes of the octonion structures is
SO(7)/G2 = S7. In the case of quaternions there is only one equivalence class.

The group of automorphisms for octonions with a fixed imaginary part is SU(3). The coset space
S6 = G2/SU(3) labels possible complex structures of the octonion space specified by a selection
of a preferred imaginary unit. SU(3)/U(2) = CP2 could be thought of as the space of octonionic
structures giving rise to a given quaternionic structure with complex structure fixed. This can be seen
as follows. The units 1, I are SU(3) singlets whereas J, J1, J2 and K,K1,K2 form SU(3) triplet and
antitriplet. Under U(2) J and K transform like objects having vanishing SU(3) isospin and suffer
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only a U(1) phase transformation determined by multiplication with complex unit I and are mixed
with each other in orthogonal mixture. Thus 1, I, J,K is transformed to itself under U(2).

2. Quaternionic and octonionic primes

Quaternionic primes with p mod 4 = 1 can correspond to (n1, n2) with n1 even and n2 odd or
vice versa. For p mod 4 = 3 (n1, n2, n3) with ni odd is the minimal option. In this case there is
however large number of primes having only two components: in particular, Gaussian primes with
p mod 4 = 1 define also quaternionic primes. Purely real Gaussian primes with p mod 4 = 3 with
norm zz equal to p2 are not quaternionic primes, and are replaced with 3-component quaternionic
primes allowing norm equal to p. Similar conclusions hold true for octonionic primes.

The reality condition for polynomials associated with Gaussian infinite primes requires that the
products of generating prime and its conjugate are present so that the outcome is a real polynomial
of second order.

3. Hyper primes

The notion of prime generalizes to hyper-quaternionic and octonionic case. The factorization
n2

0 − n2
3 = (n0 + n3)(n0 − n3) implies that any hyper-quaternionic and -octonionic prime has one

particualr representative as (n0, n3, 0, ...) = (n3 + 1, n3, 0, ...), n3 = (p − 1)/2 for p > 2. p = 2 is
exceptional: a representation with minimal number of components is given by (2, 1, 1, 0, ...).

Notice that the interpretation of hyper-quaternionic primes (or integers) as four-momenta implies
that it is not possible to find rest system for them if one assumes the entire quaternionic prime as
four-momentum: only a system where energy is minimum is possible. The introduction of a preferred
hyper-complex plane necessary for several reasons- in particular for the possibility to identify standard
model quantum numbers in terms of infinite primes- allows to identify the momentum of particle in
the preferred plane as the first two components of the hyper prime in fixed coordinate frame. Note
that this leads to a universal spectrum for mass squared.

For time like hyper-primes the momentum is always time like for hyper-primes. In this case it is
possible to find a rest frame by applying a hyper-primeness preserving G2 transformation so that the
resulting momentum has no component in the preferred frame. As a matter fact, SU(3) rotation is
enough for a suitable choice of SU(3). These transformations form a discrete subgroup of SU(3) since
hyper-integer property must be preserved. Massless states correspond to a null norm for the corre-
sponding hyper integer unless one allows also tachyonic hyper primes with minimal representatives
(n3, n3 − 1, 0, ...), n3 = (p − 1)/2. Note that Gaussian primes with p mod4 = 1 are representable
as space-like primes of form (0, n1, n2, 0): n2

1 + n2
2 = p and would correspond to genuine tachyons.

Space-like primes with p mod 4 = 3 have at least 3 non-vanishing components which are odd integers.

The notion of ”irreducible” (see Appendix of [85] ) is defined as the equivalence class of primes
related by a multiplication with a unit and is more fundamental than that of prime. All Lorentz
boosts of a hyper prime combine to form an irreducible. Note that the units cannot correspond to
real particles in corresponding arithmetic quantum field theory.

If the situation for p > 2 is effectively 2-dimensional in the sense that it is always possible to
transform the hyper prime to a 2-component form by multiplying it by a suitable unit representing
Lorentz boost, the theory for time-like hyper primes effectively reduces to the 2-dimensional hyper-
complex case when irreducibles are chosen to belong to H2. The physical counterpart for the choice
of H2 would be the choice of the plane of longitudinal polarizations, or equivalently, of quantization
axis for spin. This hypothesis is physically highly attractive since it would imply number theoretic
universality and conform with the effective 2-dimensionality. Of course, the hyper-octonionic primes
related by SO(7, 1) boosts need not represent physically equivalent states.

Also the rigorous notion of hyper primeness seems to require effective 2-dimensionality. If effective
2-dimensionality holds true, hyper integers have a decomposition to a product of hyper primes mul-
tiplied by a suitable unit. The representation is obtained by Lorentz boosting the hyper integer first
to a 2-component form and then decomposing it to a product of hyper-complex primes.

Hyper-octonionic infinite primes

The infinite-primes associated with hyper-octonions are the most natural ones physically because of
the underlying Lorentz invariance. It is however not possible to interpret them as as 8-momenta with
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mass squared equal to prime. The proper identification of standard model quantum numbers will be
discussed later.

1. Should infinite primes be commutative and associative?

The basic objections against (hyper-)quaternionic and (hyper-)octonionic infinite primes relate to
the non-commutativity and non-associativity.

In the case of quaternionic infinite primes non-commutativity, and in the case of octonionic infinite
primes also non-associativity, might be expected to cause difficulties in the definition of X. Fortu-
nately, the fact that all conjugates of a given finite prime appear in the product defining X, implies
that the contribution from each irreducible with a given norm p is real and X is real. Therefore the
multiplication and division of X with quaternionic or octonionic primes is a well-defined procedure,
and generating infinite primes are well-defined apart from the degeneracy due to non-commutativity
and non-associativity of the finite number of lower level primes. Also the products of infinite primes
are well defined, since by the reality of X it is possible to tell how the products AB and BA differ. Of
course, also infinite primes representing physical states containing infinite numbers of fermions and
bosons are possible and infinite primes of this kind must be analogous to generators of a free algebra
for which AB and BA are not related in any manner.

The original idea was that infinite hyper-octonionic primes could be mapped to polynomials and
one could assign to these space-time surfaces in analogy with the identification of surfaces as zero locii
of polynomals. Although this idea has been given up, it is good to make clear its problematic aspects.

1. The sums of products of monomials of generating infinite primes define higher level infinite
primes and also here non-commutativity and associativity cause potential technical difficulties.
The assignment of a monomial to a quaternionic or octonionic infinite prime is not unique since
the rational obtained by dividing the finite part mr with the integer n associated with infinite
part can be defined either as (1/n)×mr or mr×(1/n) and the resulting non-commuting rationals
are different.

2. If the polynomial associated with infinite prime has real-rational coefficients, these difficulties do
not appear. The problem is that the polynomials as such would not contain information about
the number field in question.

3. Commutativity requirement for infinite primes allows real-rationals or possibly algebraic exten-
sions of them as the coefficients of the polynomials formed from hyper-octonionic infinite primes.
If only infinite primes with complex rational coefficients are allowed and only the vacuum state
V± = X±1 involving product over all primes of the number field, would reveal the number field.
One could thus construct the generating infinite primes using the notion of hyper-octonionic
prime for any algebraic extension of rationals.

The idea about mapping of infinite primes to polynomials in turn defining space-time surfaces is
non-realistic. The recent view is more abstract and based on the mapping of wave functions in the space
of hyper-octonion units assignable to single imbedding space point by its number-theoretic anatomy
and a further mapping of quantum numbers to the geometry of space-time surface by the coupling
of the modified Dirac action to the quantum numbers via measurement interaction. In this approach
one cannot assume commutatitivity of hyper-octonionic primes at any level. The problems due to
non-commutativity and non-associativity are however circumvented by assuming that permutations
and associations of are represented as phase factors and therefore do not change the quantum state.
This means the introduction of association statistics besides permutation statistics. Besides Fermi and
Bose statistics one can consider braid statistics. Note that Fermi statistics makes sense only when the
fermionic finite primes appearing in the state do not commute.

2. The construction recipe for hyper-octonionic infinite primes

The following argument represents the construction recipe for the first level hyper-octonionic
primes without the restriction to rational infinite primes. If the reduction is possible always by a
suitable G2 rotation then the construction of the infinite primes analogous to bound states is obtained
in trivial manner from that for rational variants of these primes. The recipe generalizes to the higher
levels in trivial manner.

Each hyper-octonionic prime has a number of conjugates obtained by applying transformations of
G2 respecting the property of being hyper-octonionic integer.
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1. The number of conjugates of given finite prime depends on the number of non-vanishing com-
ponents of the the prime with norm p in the minimal representation having minimal energy.
Several primes with a given norm p not related by a multiplication with unit or by automor-
phism are in principle possible. The degeneracy is determined by the number of elements of a
subgroup of Galois group acting non-trivially on the prime.

Galois group contains the permutations of 7 imaginary units and 7 conjugations of units consis-
tent with the octonionic product. X is proportional to pN(p) where N(p) in principle depends
on p.

There could exist also G2 transformations which change the number of components of the infinite
prime. They satisfy tight number theoretical constraints since the quantity

∑7
i=1 n

2
i must be

preserved. For instance, for the transformation from standard form with two components to
that with more than two components one has n2

1(i) =
∑
k n

2
k(f). For the transformation from 2-

component prime to 3-component prime one has a condition characterizing Pythagorean triangle.
One can however consider also a situation when no such G2 transformation exist so that one
has several G2 orbits corresponding to the same rational prime.

The construction itself would be relatively straightforward. Consider first the construction of the
”vacuum” primes.

1. In the case of ordinary infinite primes there are two different vacuum primes X ± 1. This is the
case also now. I turns out that this degeneracy corresponds to the spin and orbital degrees of
freedom for the spinor fields of WCW.

2. The product X of all hyper-octonionic irreducibles can be regarded as the counterpart of Dirac
vacuum in a rather concrete sense. Moreover, in the hyper-quaternionic and octonionic case the
norm of X is analogous to the Dirac determinant of a fermionic field theory with prime valued
mass spectrum and integer valued momentum components. The inclusion of only irreducible
eliminates from the infinite product defining Dirac determinant product over various Lorentz
boosts of pkγk −m.

3. Infinite prime property requires that X must be defined by taking one representative from each
G2 equivalence class representing irreducible and forming the product of all its G2 conjugates.
The standard representative for the hyper-octonionic primes can be taken to be time-like positive
energy prime unless one allows also tachyonic primes in which case a natural representative has
a vanishing real component. The conjugates of each irreducible appear in X so for a given norm
p the net result is real for each rational prime p.

The construction of non-vacuum primes is equally straighforward.

1. If the conjectured effective 2-dimensionality holds true, it is enough to construct hyper-complex
primes first. To the finite hyper-complex primes appearing in these infinite primes one can
apply transformations of G2 mapping hyper-octonionic integers to hyper-octonionic integers.
The infinite prime would have degeneracy defined by the product of G2 orbits of finite primes
involved. Every finite prime would be like particle possessing finite number of quantum states.
If there are several G2 orbits corresponding to the same finite prime exist they must be also
included and the conjectured effective 2-dimensionality fails.

2. An interesting question is what happens when the finite part of an infinite prime is multiplied by
light like integer k. The first guess is that k describes the presence of a massless particle. If the
resulting infinite integer is multiplied with conjugates kc,i of k an integer of form

∏
i kc,imX/n

having formally zero norm results. It would thus seem that there is a kind of gauge invariance
in the sense that infinite primes for which both finite and infinite part are multiplied with the
same light-like primes, are divisors of zero and correspond to gauge degrees of freedom. This
conclusion is supported by the interpretation of the projection of infinite prime to the preferred
hyper-complex plane as momentum of particle in a preferred M2 plane assigned by the hierarchy
of Planck constants to each CD and also required by the p-adicization.
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3. More complex infinite hyper-octonionic primes can be constructed from rational hyper-complex
and complex infinite primes using a representation in terms of polynomials and then acting on
the finite primes appering in their expression by elements of G2 preserving integer property.
This construction works at all levels of the hierarchy and one might hope that it is all that is
needed. If there are several G2 orbits for given finite prime p one encounters a problem since
hyper-octonionic primes with more than 2 components do not allow associative and commutative
polynomial representations. The interpretation as bound states is suggestive.

10.4.4 How to interpret the infinite hierarchy of infinite primes?

From the foregoing it should be clear that infinite primes might play key role in quantum physics. One
can even consider the possibility that physics reduces to a generalized number theory, and that infinite
primes are crucial for understanding mathematically consciousness and cognition. Of course, one must
leave open the question whether infinite primes really provide really the mathematics of consciousness
or whether they are only a beautiful but esoteric mathematical construct. In this spirit the following
subsections give only different points of view to the problem with no attempt to a coherent overall
view.

Infinite primes and hierarchy of super-symmetric arithmetic quantum field theories

Infinite primes are a generalization of the notion of prime. They turn out to provide number theoretic
correlates of both free, interacting and bound states of a super-symmetric arithmetic quantum field
theory. It turns also possible to assign to infinite prime space-time surface as a geometric correlate
although the original proposal for how to achieve this failed. Hence infinite primes serve as a bridge
between classical and quantum and realize quantum classical correspondence stating that quantum
states have classical counterparts, and has served as a basic heuristic guideline of TGD. More pre-
cisely, the natural hypothesis is that infinite primes code for the ground states of super-symplectic
representations (for instance, ordinary particles correspond to states of this kind).

1. Generating infinite primes as counterparts of Fock states of a super-symmetric arithmetic
quantum field theory

The basic construction recipe for infinite primes is simple and generalizes to the quaternionic case.

1. Form the product of all primes and call it X:

X =
∏
p

p .

2. Form the vacuum states

V± = X ± 1 .

3. From these vacua construct all generating infinite primes by the following process. Kick out from
the Dirac sea some negative energy fermions: they correspond to a product s of first powers of
primes: V → X/s ± s (s is thus square-free integer). This state represents a state with some
fermions represented as holes in Dirac sea but no bosons. Add bosons by multiplying by integer
r, which decomposes into parts as r = mn: m corresponding to bosons in X/s is product of
powers of primes dividing X/s and n corresponds to bosons in s and is product of powers of
primes dividing s. This step can be described as X/s± s→ mX/s± ns.

Generating infinite primes are thus in one-one correspondence with the Fock states of a super-
symmetric arithmetic quantum field theory and can be written as

P±(m,n, s) =
mX

s
± ns ,

where X is product of all primes at previous level. s is square free integer. m and n have no common
factors, and neither m and s nor n and X/s have common factors.
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The physical analog of the process is the creation of Fock states of a super-symmetric arithmetic
quantum field theory. The factorization of s to a product of first powers of primes corresponds to
many-fermion state and the decomposition of m and n to products of powers of prime correspond to
bosonic Fock states since pk corresponds to k-particle state in arithmetic quantum field theory.

2. More complex infinite primes as counterparts of bound states

Generating infinite primes are not all that are possible. One can construct also polynomials of
the generating primes and under certain conditions these polynomials are non-divisible by both finite
primes and infinite primes already constructed. As found, the conjectured effective 2-dimensionality for
hyper-octonionic primes allows the reduction of polynomial representation of hyper-octonionic primes
to that for hyper-complex primes. This would be in accordance with the effective 2-dimensionality of
the basic objects of quantum TGD.

The physical counterpart of n:th order irreducible polynomial is as a bound state of n particles
whereas infinite integers constructed as products of infinite primes correspond to non-bound but
interacting states. This process can be repeated at the higher levels by defining the vacuum state
to be the product of all primes at previous levels and repeating the process. A repeated second
quantization of a super-symmetric arithmetic quantum field theory is in question.

The infinite primes represented by irreducible polynomials correspond to quantum states obtained
by mapping the superposition of the products of the generating infinite primes to a superposition of the
corresponding Fock states. If complex rationals are the coefficient field for infinite integers, this gives
rise to states in a complex Hilbert space and irreducibility corresponds to a superposition of states
with varying particle number and the presence of entanglement. For instance, the superpositions of
several products of type

∏
i=1,..,n Pi of n generating infinite primes are possible and in general give

rise to irreducible infinite primes decomposing into a product of infinite primes in algebraic extension
of rationals.

3. How infinite rationals correspond to quantum states and space-time surfaces?

The most promising answer to the question how infinite rationals correspond to space-time surfaces
is discussed in detail in the next section. Here it is enough to give only the basic idea.

1. In zero energy ontology hyper-octonionic units (in real sense) defined by ratios of infinite integers
have an nterpretation as representations for pairs of positive and negative energy states. Suppose
that the quantum number combinations characterizing positive and negative energy quantum
states are representable as superpositions of real units defined by ratios of infinite integers at each
point of the space-time surface. If this is true, the quantum classical correspondence coded by
the measurement interaction term of the modified Dirac action maps the quantum numbers also
to space-time geometry and implies a correspondence between infinite rationals and space-time
surfaces.

2. The space-time surface associated with the infinite rational is in general not a union of the space-
time surfaces associated with the primes composing the integers defining the rational. There the
classical description of interactions emerges automatically. The description of classical states in
terms of infinite integers would be analogous to the description of many particle states as finite
integers in arithmetic quantum field theory. This mapping could in principle make sense both
in real and p-adic sectors of WCW.

The finite primes which correspond to particles of an arithmetic quantum field theory present in
Fock state, correspond to the space-time sheets of finite size serving as the building blocks of the
space-time sheet characterized by infinite prime.

4. What is the interpretation of the higher level infinite primes?

Infinite hierarchy of infinite primes codes for a hierarchy of Fock states such that many-particle
Fock states of a given level serve as elementary particles at next level. The unavoidable conclusion is
that higher levels represent totally new physics not described by the standard quantization procedures.
In particular, the assignment of fermion/boson property to arbitrarily large system would be in some
sense exact. Topologically these higher level particles could correspond to space-time sheets containing
many-particle states and behaving as higher level elementary particles.
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This view suggests that the generating quantum numbers are present already at the lowest level
and somehow coded by the hyper-octonionic primes taking the role of momentum quantum number
they have in arithmetic quantum field theories. The task is to understand whether and how hyper-
octonionic primes can code for quantum numbers predicted by quantum TGD.

The quantum numbers coding higher level states are collections of quantum numbers of lower level
states. At geometric level the replacement of the coefficients of polynomials with rational functions
is the equivalent of replacing single particle states with new single particle states consisting of many-
particle states.

Infinite primes, the structure of many-sheeted space-time, and the notion of finite mea-
surement resolution

The mapping of infinite primes to space-time surfaces codes the structure of infinite prime to the struc-
ture of space-time surface in a rather non-implicit manner, and the question arises about the concrete
correspondence between the structure of infinite prime and topological structure of the space-time sur-
face. It turns out that the notion of finite measurement resolution is the key concept: infinite prime
characterizes angle measurement resolution. This gives a direct connection with the p-adicization
program relying also on angle measurement resolution as well as a connection with the hierarchy of
Planck constants. Finite measurement resolution relates also closely to the inclusions of hyper-finite
factors central for TGD inspired quantum measurement theory.

1. The first intuitions

The concrete prediction of the general vision is that the hierarchy of infinite primes should somehow
correspond to the hierarchy of space-time sheets or partonic 2-surfacse if one accepts the effective 2-
dimensionality. The challenge is to find space-time counterparts for infinite primes at the lowest level
of the hierarchy.

One could hope that the Fock space structure of infinite prime would have a more concrete corre-
spondence with the structure of the many-sheeted space-time. One might that the space-time sheets
labeled by primes p would directly correspond to the primes appearing in the definition of infinite
prime. This expectation seems to be too simplistic.

1. What seems to be a safe guess is that the simplest infinite primes at the lowest level of the
hierarchy should correspond to elementary particles. If inverses of infinite primes correspond
to negative energy space-time sheets, this would explain why negative energy particles are not
encountered in elementary particle physics.

2. More complex infinite primes at the lowest level of the hierarchy could be interpreted in terms of
structures formed by connecting these structures by join along boundaries bonds to get space-
time correlates of bound states. Even simplest infinite primes must correspond to bound state
structures if the condition that the corresponding polynomial has real-rational coefficients is
taken seriously.

Infinite primes at the lowest level of hierarchy correspond to several finite primes rather than single
finite prime. The number of finite primes is however finite.

1. A possible interpretation for multi-p property is in terms of multi-p p-adic fractality prevailing
in the interior of space-time surface. The effective p-adic topology of these space-time sheets
would depend on length scale. In the longest scale the topology would correspond to pn, in some
shorter length scale there would be smaller structures with pn−1 < pn-adic topology, and so
on... . A good metaphor would be a wave containing ripples, which in turn would contain still
smaller ripples. The multi-p p-adic fractality would be assigned with the 4-D space-time sheets
associated with elementary particles. The concrete realization of multi-p p-adicity would be in
terms of infinite integers coming as power series

∑
xnN

n and having interpretation as p-adic
numbers for any prime dividing N .

2. Effective 2-dimensionality would suggest that the individual p-adic topologies could be assigned
with the 2-dimensional partonic surfaces. Thus infinite prime would characterize at the lowest
level space-time sheet and corresponding partonic 2-surfaces. There are however reasons to think
that even single partonic 2-surface corresponds to a multi-p p-adic topology.
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2. Do infinite primes code for the finite measurement resolution?

The above describe heuristic picture is not yet satisfactory. In order to proceed, it is good to ask
what determines the finite prime or set of them associated with a given partonic 2-surface. It is good
to recall first the recent view about the p-adicization program relying crucially on the notion of finite
measurement resolution.

1. The vision about p-adicization characterizes finite measurement resolution for angle measure-
ment in the most general case as ∆φ = 2πM/N , where M and N are positive integers having
no common factors. The powers of the phases exp(i2πM/N) define identical Fourier basis ir-
respective of the value of M and measurement resolution does not depend on on the value of
M . Situation is different if one allows only the powers exp(i2πkM/N) for which kM < N holds
true: in the latter case the measurement resolutions with different values of M correspond to
different numbers of Fourier components. If one regards N as an ordinary integer, one must
have N = pn by the p-adic continuity requirement.

2. One can also interpret N as a p-adic integer. For N = pnM , where M is not divisible by
p, one can express 1/M as a p-adic integer 1/M =

∑
k≥0Mkp

k, which is infinite as a real

integer but effectively reduces to a finite integer K(p) =
∑N−1
k=0 Mkp

k. As a root of unity
the entire phase exp(i2πM/N) is equivalent with exp(i2πR/pn), R = K(p)M mod pn. The
phase would non-trivial only for p-adic primes appearing as factors in N . The corresponding
measurement resolution would be ∆φ = R2π/N if modular arithetmics is used to define the the
measurement resolution. This works at the first level of the hierarcy but not at higher levels.
The alternative manner to assign a finite measurement resolution to M/N for given p is as
∆φ = 2π|N/M |p = 2π/pn. In this case the small fermionic part of the infinite prime would fix
the measurement resolution. The argument below shows that only this option works also at the
higher levels of hierarchy and is therefore more plausible.

3. p-Adicization conditions in their strong form require that the notion of integration based on har-
monic analysis [14] in symmetric spaces [37] makes sense even at the level of partonic 2-surfaces.
These conditions are satisfied if the partonic 2-surfaces in a given measurement resolution can
be regarded as algebraic continuations of discrete surfaces whose points belong to the discrete
variant of the δM4

± × CP2. This condition is extremely powerful since it effectively allows to
code the geometry of partonic 2-surfaces by the geometry of finite sub-manifold geometries for a
given measurement resolution. This condition assigns the integer N to a given partonic surface
and all primes appearing as factors of N define possible effective p-adic topologies assignable to
the partonic 2-surface.

How infinite primes could then code for the finite measurement resolution? Can one identify the
measurement resolution for M/N = M/(Rpn) as ∆φ = ((M/R) mod pn)× 2π/pn or as ∆φ = 2π/pn?
The following argument allows only the latter option.

1. Suppose that p-adic topology makes sense also for infinite primes and that state function reduc-
tion selects power of infinite prime P from the product of lower level infinite primes defining the
integer N in M/N . Suppose that the rational defined by infinite integer defines measurement
resolution also at the higher levels of the hierarchy.

2. The infinite primes at the first level of hierarchy representing Fock states are in one-one corre-
spondence with finite rationals M/N for which integers M and N can be chosen to characterize
the infinite bosonic part and finite fermionic part of the infinite prime. This correspondence
makes sense also at higher levels of the hierarchy but M and N are infinite integers. Also other
option obtained by exchanging ”bosonic” and ”fermionic” but later it will be found that only
the first identification makes sense.

3. The first guess is that the rational M/N characterizing the infinite prime characterizes the mea-
surement resolution for angles and therefore partially classifies also the finite sub-manifold geom-
etry assignable to the partonic 2-surface. One should define what M/N = ((M/R) mod Pn)×
P−n is for infinite primes. This would require expression of M/R in modular arithmetics modulo
Pn. This does not make sense.
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4. For the second option the measurement resolution defined as ∆φ = 2π|N/M |P = 2π/Pn makes
sense. The Fourier basis obtained in this manner would be infinite but all states exp(ik/Pn)
would correspond in real sense to real unity unless one allows k to be infinite P -adic integer
smaller than Pn and thus expressible as k =

∑
m<n kmP

m, where km are infinite integers smaller
than P . In real sense one obtains all roots exp(iq2π) of unity with q < 1 rational. For instance,
for n = 1 one can have 0 < k/P < 1 for a suitably chosen infinite prime k. Thus one would have
essentially continuum theory at higher levels of the hierarchy. The purely fermionic part N of
the infinite prime would code for both the number of Fourier components in discretization for
each power of prime involved and the ratio characterize the angle resolution.

The proposed relation betweeen infinite prime and finite measurement resolution implies very
strong number theoretic selection rules on the reaction vertices.

1. The point is that the vertices of generalized Feyman diagrams correspond to partonic 2-surfaces
at which the ends of light-like 3-surfaces describing the orbits of partonic 2-surfaces join together.
Suppose that the partonic 2-surfaces appearing a both ends of the propagator lines correspond to
same rational as finite sub-manifold geometries. If so, then for a given p-adic effective topology
the integers assignable to all lines entering the vertex must contain this p-adic prime as a factor.
Particles would correspond to integers and only the particles having common prime factors could
appear in the same vertex.

2. In fact, already the work with modelling dark matter [30] led to ask whether particle could
be characterized by a collection of p-adic primes to which one can assign weak, color, em,
gravitational interactions, and possibly also other interactions. It also seemed natural to assume
that that only the space-time sheets containing common primes in this collection can interact.
This inspired the notions of relative and partial darkness. An entire hierarchy of weak and color
physics such that weak bosons and gluons of given physics are characterized by a given p-adic
prime p and also the fermions of this physics contain space-time sheet characterized by same
p-adic prime, say M89 as in case of weak interactions. In this picture the decay widths of weak
bosons do not pose limitations on the number of light particles if weak interactions for them are
characterized by p-adic prime p 6= M89. Same applies to color interactions.

The possibility of multi-p p-adicity raises the question about how to fix the p-adic prime charac-
terizing the mass of the particle. The mass scale of the contribution of a given throat to the mass
squared is given by p−n/2, where T = 1/n corresponds to the p-adic temperature of throat. Hence the
dominating contribution to the mass squared corresponds to the smallest prime power pn associated
with the throats of the particle. This works if the integers characterizing other particles than graviton
are divisible by the gravitonic p-adic prime or a product of p-adic primes assignable to graviton. If the
smallest power pn assignable to the graviton is large enough, the mass of graviton is consistent with
the empirical bounds on it. The same consideration applies in the case of photons. Recall that the
number theoretically very natural condition that in zero energy ontology the number of generalized
Feynman graphs contributing to a given process is finite is satisfied if all particles have a non-vanishing
but arbitrarily small p-adic thermal mass [31] .

3. Interpretational problem

The identification of infinite prime as a characterizer of finite measurement resolution looks nice
but there is an interpretational problem.

1. The model characterizing the quantum numbers of WCW spinor fields to be discussed in the
next section involves a pair of infinite primes P+ and P− corresponding to the two vacuum
primes X ± 1. Do they correspond to two different measurement resolutions perhaps assignable
to CD and CP2 degrees of freedom?

2. Different measurement resolutions in CD and CP2 degrees of freedom need not be not a problem
as long as one considers only the discrete variants of symmetric spaces involved. What might
be a problem is that in the general case the p-adic primes associated with CD and CP2 degrees
of freedom would not be same unless the integers N+ and N− are assumed to have have same
prime factors (they indeed do if p0 = 1 is formally counted as prime power factors).
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3. The idea of assigning different p-adic effective topologies to CD and CP2 does not look attractive.
Both CD and CP2 and thus also partonic 2-surface could however possess simultaneously both
p-adic effective topologies. This kind of option might make sense since the integers representable
as infinite powers series of integer N can be regarded as p-adic integers for all prime factors of
N . As a matter fact, this kind of multi-p p-adicity could make sense also for the partonic 2-
surfaces characterized by a measurement resolution ∆φ = 2πM/N . One would have what might
be interpreted as N+N−-adicity.

4. It will be found that quantum measurement means also the measurement of the p-adic prime
selecting same p-adic prime fromN+ andN−. IfN± is divisible only by p0 = 1, the corresponding
angle measurement resolution is trivial. From the point of view of consciousness state function
reduction selects also the p-adic prime characterizing the cognitive representation which is very
natural since quantum superpositions of different p-adic topologies are not natural physically.

How the hierarchy of Planck constants could relate to infinite primes and p-adic hierar-
chy?

Besides the hierarchy of space-time sheets, TGD predicts, or at least suggests, several hierarchies
such as the hierarchy of infinite primes, the hierarchy of Jones inclusions identifiable in terms of finite
measurement resolution [97] , the dark matter hierarchy characterized by increasing values of ~ [30]
, the hierarchy of extensions of given p-adic number field, and the hierarchy of selves and quantum
jumps with increasing duration with respect to geometric time. There are good reasons to expect that
these hierarchies are closely related. Number theoretical considerations give hopes about developing
a more quantitative vision about the relationship between these hierarchies, in particular between the
hierarchy of infinite primes, p-adic length scale hierarchy, and the hierarchy if Planck constants.

If infinite primes code for the hierarchy of measurement resolutions, the correlations between the
p-adic hierarchy and the hierarchy of Planck constants indeed suggest themselves and allow also to
select between two interpretations for the fact that two infinite primes N+ and N− are needed to
characterize elementary particles (see the next section).

Recall that the hierarchy of Planck constants in the most general situation corresponds to a
replacement M4 and CP2 factors of the imbedding space with singular coverings and factor spaces.
The condition that Planck constant is integer valued allows only singular coverings characterized by
two integers na resp. nb assignable to CD resp. CP2. This condition also guarantees that a given
value of Planck constant corresponds to only a finite number of pages of the ”Big Book” and therefore
looks rather attractive mathematically. This option also forces evolution as a dispersion to the pages
of the books characterized by increasing values of Planck constant.

Concerning the correspondence between the hierarchy of Planck constants and p-adic length scale
hierarchy there seems to be only single working option. The following assumptions make precise the
relationship between finite measurement resolution, infinite primes and hierarchy of Planck constants.

1. Measurement resolution CD resp. CP2 degrees of freedom is assumed to correspond to the
rational M+/N+ resp. M−/N−. N± is identified as the integer assigned to the fermionic part
of the infinite integer..

2. One must always fix the consideration to a fixed p-adic prime. This process could be regarded
as analogous to fixing the quantization axes and p would also characterize the p-adic cognitive
space-time sheets involved. The p-adic prime is therefore same for CD and CP2 degrees of
freedom as required by internal consistency.

3. The relationship to the hierarchy of Planck constants is fixed by the identifications na = n+(p)
and nb = n−(p) so that the number of sheets of the covering equals to the number of bosons in
the fermionic mode p of the quantum state defined by infinite prime.

4. A physically attractive hypothesis is that number theoretical bosons resp. fermions correspond
to WCW orbital resp. spin degrees of freedom. The first ones correspond to the symplectic
algebra [72, 39, 38] of WCW and the latter one to purely fermionic degrees of freedom.

Consider now the basic consequences of these assumptions from the point of view of physics and
cognition.



830 Chapter 10. Physics as a Generalized Number Theory

1. Finite measurement resolution reduces for a given value of p to

∆φ =
2π

pn±(p)+1
=

2π

pna/b
,

where n±(p) = na/b − 1 is the number of bosons in the mode p in the fermionic part of the
state. The number theoretical fermions and bosons and also their probably existing physical
counterparts are necessary for a non-trivial angle measurement resolution. The value of Planck
constant given by

~
~0

= nanb = (n+(p) + 1)× (n−(p) + 1)

tells the total number of bosons added to the fermionic mode p assigned to the infinite prime.

2. The presence of ~ > ~0 partonic 2-surfaces is absolutely essential for a Universe able to measure
its own state. This is in accordance with the interpretation of hierarchy of Planck constants
in TGD inspired theory of consciousness. One can also say that ~ = 0 sector does not allow
cognition at all since N± = 1 holds true. For given p ~ = nanb = 0 means that given fermionic
prime corresponds to a fermion in the Dirac sea meaning n±(p) = −1. Kicking out of fermions
from Direac sea makes possible cognition. For purely bosonic vacuum primes one has ~ =
0 meaning trivial measurement resolution so that the physics is purely classical and would
correspond to the purely bosonic sector of the quantum TGD.

3. For ~ = ~0 the number of bosons in the fermionic state vanishes and the general expression
for the measurement resolution reduces to ∆φ = 2π/p. When one adds n±(p) bosons to the
fermionic part of the infinite prime, the measurement resolution increases from ∆φ = 2π/p
to ∆φ = 2π/pn±(p)+1. Adding a sheet to the covering means addition of a number theoretic
boson to the fermionic part of infinite prime. The presence of both number theoretic bosons
and fermions with the values of p-adic prime p1 6= p does not affect the measurement resolution
∆φ = 2π/pn for a given prime p.

4. The resolutions in CD and CP2 degrees of freedom correspond to the same value of the p-adic
prime p so that one has dicretizations based on ∆φ = 2π/pna in CD degrees of freedom and
∆φ = 2π/pnb in CP2 degrees of freedom. The finite sub-manifold geometries make sense in
this case and since the effective p-adic topology is same, the continuation to continuous p-adic
partonic 2-surface is possible.

p-Adic thermodynamics involves the p-adic temperature T = 1/n as basic parameter and the
p-adic mass scale of the particle comes as p−(n+1)/2. The natural question is whether one could
assume the relation T± = 1/(n±(p) + 1) between p-adic temperature and infinite prime and thus the
relations Ta = 1/na(p) and Tb = 1/nb(p). This identification is not consistent with the recent physical
interpretation of the p-adic thermodynamics nor with the view about dark matter hierarchy and must
be given up.

1. The minimal non-trivial measurement resolution with ni = 1 and ~ = ~0 corresponds to the
p-adic temperature Ti = 1. p-Adic mass calculations indeed predict T = 1 for fermions for
~ = ~0. In the case of gauge bosons T ≥ 2 is favored so that gauge bosons would be dark.
This would require that gauge bosons propagate along dark pages of the Big Book and become
”visible” before entering to the interaction vertex.

2. p-Adic thermodynamics also assumes same p-adic temperature in CD and CP2 degrees of free-
dom but the proposed identification allows also different temperatures. In principle the sepa-
ration of the super-conformal degrees of freedom of CD and CP2 might allow different p-adic
temperatures. This would assign to different p-adic mass scales to the particles and the larger
mass scale should give the dominant contribution.

3. For dark particles the p-adic mass scale would be by a factor 1/
√
pni(p)−1 lower than for ordinary

particles. This is in conflict with the assumption that the mass of the particle does not depend
on ~. This prediction would kill completely the recent vision about the dark matter.
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10.4.5 How infinite primes could correspond to quantum states and space-
time surfaces?

The hierarchy of infinite primes is in one-one correspondence with a hierarchy of second quantizations
of an arithmetic quantum field theory. The additive quantum number in question is energy like quan-
tity for ordinary primes and given by the logarithm of prime whereas p-adic length scale hypothesis
suggests that the conserved quantity is proportional to the inverse of prime or its square root. For
infinite primes at the first level of hierarchy these quantum numbers label single particles states hav-
ing interpretation as ordinary elementary particles. For octonionic and hyper-octonionic primes the
quantum number is analogous to a momentum with 8 components. The question is whether these
number theoretic quantum numbers could have interpretation as genuine quantum numbers. Quan-
tum classical correspondence raises another question. Is it possible to label space-time surfaces by
infinite primes? Could this correspondence be even one-to-one?

I have considered these questions already more than decade ago. The discussion at that time was
necessarily highly speculative and just a mathematical exercise. After that time however a lot of
progress has taken place in quantum TGD and it is highly interaction to see what comes out from the
interaction of the notion of infinite prime with the notions of zero energy ontology and generalized
imbedding space, and with the recent vision about how measurement interaction in the modified Dirac
action allows to code information about quantum numbers to the space-time geometry. The possibility
of this coding allows to simplify the discussion dramatically. If one can map infinite hyper-octonionic
primes to quantum numbers of the standard model naturally, then the their map of to the geometry
of space-time surfaces realizes the coding of space-time surfaces by infinite primes (and more generally
by integers and rationals). Also a detailed realization of number theoretic Brahman=Atman identity
emerges as an outcome.

A brief summary about various moduli spaces and their symmetries

It is good to sum up the number theoretic symmetries before trying to construct an overall view
about the situation. Several kinds of number theoretical symmetry groups are involved corresponding
to symmetries in the moduli spaces of hyper-octonionic and hyper-quaternionic structures, symmetries
mapping hyper-octonionic primes to hyper-octonionic primes, and translations acting in the space of
causal diamonds (CDs) and shifting. The moduli space for CDs labeled by pairs of its tips that its
pairs of points of M4 × CP2 is also in important role.

1. The basic idea is that color SU(3) ⊂ G2 acts as automorphisms of hyper-octonion structure
with a preferred imaginary unit. SO(7, 1) acts as symmetries in the moduli space of hyper-
octonion structures. Associativity implies symmetry breaking so that only hyper-quaternionic
structures are considered and SO(3, 1) × SO(4) acts as symmetries of the moduli space for
hyper-quaternionic structures.

2. CP2 parameterizes the moduli space of hyper-quaternionic structures induced from a given
hyper-octonionic structure with preferred imaginary unit.

3. Color group SU(3) is the analog of Galois group for the extension of reals to octonions and has
a natural action on the decompositions of rational infinite primes to hyper-octonionic infinite
primes. For given hyper-octonionic prime one can identify a subgroup of SU(3) generating a
finite set of hyper-octonionic primes for it at sphere S7. This suggests wave function at the orbit
of given hyper-octonionic prime in turn generalizing to wave functions in the space of infinite
primes.

4. Four-momenta correspond to translational degrees of freedom associated with the preferred
points of M4 coded by the infinite rational (tip of the light-cone). Color quantum numbers in
cm degrees of freedom can be assigned to the CP2 projection of the preferred point of H. As
a matter fact, the definition of hyper-octonionic structure involves the choice of origin of M8

giving rise to the preferred point of H.

These symmetries deserve a more detailed discussion.
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1. The choice of global hyper-octonionic coordinate is dictated only modulo a transformation of
SO(1, 7) acting as isometries of hyper-octonionic norm and as transformations in moduli space
of hyper-octonion structures. SO(7) respects the choice of the real unit. SO(1, 3)× SO(4) acts
in the moduli space of global hyper-quaternionic structures identified as sub-structures of hyper-
octonionic structure. The choice of global hyper-octonionic structures involves also a choice of
origin implying preferred point of H. The M4 projection of this point corresponds to the tip of
CD. Since the integers representing physical states must be hyper-quaternionic by associativity
conditions, the symmetry breaking (”number theoretic compactification”) to SO(1, 3)× SO(4)
occurs very naturally. This group acts as spinor rotations in H picture and as isometries in M8

picture. The choice of both tips of CD reduces SO(1, 3) to SO(3).

2. SO(1, 7) allows 3 different 8-dimensional representations (8v, 8s, and 8s). All these represen-
tations must decompose under SU(3) as 1 + 1 + 3 + 3 as little exercise with SO(8) triality
demonstrates. Under SO(6) ∼= SU(4) the decompositions are 1 + 1 + 6 and 4 + 4 for 8v and
8s and its conjugate. Both hyper-octonion spinors and gamma matrices are identified as hyper-
octonion units rather than as matrices. It would be natural to assign to bosonic M8 primes 8v
and to fermionic M8 primes 8s and 8s. One can distinguish between 8v, 8s and 8s for hyper-
octonionic units only if one considers the full SO(1, 3) × SO(4) action in the moduli space of
hyper-octonionic structures.

3. G2 acts as automorphisms on octonionic imaginary units and SU(3) respects the choice of pre-
ferred imaginary unit meaning a choice of preferred hyper-complex plane M4 ⊂M4. Associativ-
ity requires a reduction to hyper-quaternionic primes and implies color confinement in number
theoretical and as it turns also in physical sense. For hyper-quaternionic primes the automor-
phisms restrict to SO(3) which has right/left action of fermionic hyper-quaternionic primes and
adjoint action on bosonic hyper-quaternionc primes. The choice of hyper-quaternionic structure
is global as opposed to the local choice of hyper-quaternionic tangent space of space-time sur-
face assigning to a point of HQ ⊂ HO a point of CP2. U(2) ⊂ SU(3) leaves invariant given
hyper-quaternionic structure which are thus parameterized by CP2. Color partial waves can be
interpreted as partial waves in this moduli space.

Associativity and commutativity or only their quantum variants?

Associativity and commutativity conditions are absolutely essential notions in quantum TGD and
also in the mapping of infinite primes to the space-time sheets. Hyper-quaternionicity formulated in
terms of the modified gamma matrices defined by Kähler action fixes classical space-time dynamics
and a very beautiful algebra formulation of quantum TGD in terms of the complexified local Clifford
algebra of imbedding space emerges.

Associativity implies hyper-quaternionicity and commutativity requirement in turn leads to com-
plex rational infinite primes. Since one can decompose complex rational primes to hyper-quaternionic
and even hyper-octonionic primes, one might hope that this could allow to represent states which
consist of colored constituents. This representations has however the flavor of a formal trick and the
considerations related to concrete representations of infinite primes suggest that the rationality of
infinite primes might be a too restrictive condition.

A more radical possibility is that physical states are only quantum associative and commutative.
In case of associativity this means that they are obtained as quantum superpositions in the space
of real units over all possible associations performed for a given product of hyper-octonion primes
(for instance, |A(BC)〉 + |(AB)C〉). These states would be associative in quantum sense but would
not reduce to hyper-quaternionic primes. Also the notion of quantum commutativity makes sense.
The fact that mesons are quantum superpositions of quark-antiquark pairs which each corresponds
to different pair of hyper-quaternionic primes and are thus not representable classically, suggests that
one can require only quantum associativity and quantum commutativity.

The correspondence between infinite primes and standard model quantum numbers

I have considered several candidates for the correspondence between infinite primes and standard
model quantum numbers. The confusing aspect has been the dual nature of hyper-octonionic primes.
One one hand they could be interpreted as components of 8-D momentum representing perhaps
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momentum and other quantum numbers. On the other hand, they transform like representations of
SU(3) ⊂ G2 and behave like color singlets and triplets so that the idea about quantum superpositions
of infinite primes related by SU(3) action is attractive. The second puzzling feature is that there are
two kinds of infinite primes corresponding to two signs for the ”small” part of the infinite prime. The
following proposal leads to an interpretation for these aspects.

1. The number of components of hyper-octonionic prime is 8 as is the dimension of the Cartan
algebra of the product of Poincare group, color group SU(3) and electro-weak gauge group
SU(2)L ×U(1) defining the quantum numbers of particles. One might therefore dream about a
number theoretic interpretation of elementary particle quantum numbers by intepreting hyper-
octonionic prime as 8-momentum. This form of the big idea fails. The point is that complexified
basis for octonions consists of two color singlets and color triplet and its conjugate. For a
given hyper-octonionic prime one can construct new primes by using a subgroup G of SU(3)
by definition respecting the property that the values of the components of prime as integers
and as a consquence also the modulus squared so that the primes are at sphere S7. This
group is analogous to Galois group. Identifying prime as an element of basis of quantum states,
one can form wave functions at the discrete orbit of given prime transforming according to
irreducible representations of color group. Triality t± 1 states correspond to color partial waves
associated with quarks and antiquarks and triality t = 0 states to gluons and leptons and their
color excitations. The states can be chosen to be eigenstates of the preferred hyper-octonionic
imaginary unit ie1. Additive four-momentum could be assigned the M2 part of the hyper-
octonion as will be found. Therefore the construction applies in special but natural coordinates
assignable to the particle required also by zero energy ontology and hierarchy of Planck constants
as well as by p-adicization program.

2. This construction gives only the quantum numbers assignable to color partial waves in configura-
tion space degrees of freedom. Also the quantum numbers assignable to imbedding space spinors
are wanted. Luckily, there are two kinds of infinite primes, which might be denoted by P± be-
cause the sign of the ”small” part of the infinite prime can be chosen freely. Super-conformal
symmetry [32] suggests that quantum numbers associated with spinorial and configuration space
degrees freedom can be assigned to the infinite primes of these two types.

(a) In the case of spinor degrees of freedom one can restrict the multiplets to those generated
by SU(2) subgroup of SU(3) identified as rotation group. The interpretation is in terms
of automorphism group of quaternions. Discrete subgroups of SU(2) generate the orbit
of given hyper-octonionic prime and one obtains finite number of SU(2) multiplets hav-
ing interpretation in terms of rotational degrees of freedom associated with the light-cone
boundary. In the case of fermions (bosons) only half odd integer (integer) spins are allowed.

(b) Remarkably, four of the hyper-octonionic units remain invariant under SU(2). Also now
only the hyper-complex projection in M2 ⊂ M4 can be interpreted as four-momentum in
the preferred frame and the interpretation as a counterpart of Dirac equation eliminat-
ing four complex non-physical helicities of the imbedding spinor of given chirality. The
states of same spin associated with the two spin doublets have interpretation as electro-
weak doublets. As a representation of SU(3) electro-weak doublets would correspond to
quark and antiquark in color isospin doublet. This leaves two additional quantum numbers
assignable to the color isospin singlets. The natural interpretation is in terms of electro-
magnetic charge and weak isospin. An analogous picture emerges also in the description of
super-symmetric QFT limit of TGD [32] replacing massless particles identified as light-like
geodesics of M4 with light like geodesics of M4×CP2 and assigning to them two quantum
numbers in the Cartan algebra of SU(3) and identified as electro-weak charges. Also con-
formal weight expressible in terms of stringy mass formula allows a description in terms of
infinite primes. What is not achieved is the number theoretical description of genus of the
partonic 2-surface and wave functions in the moduli space of the partonic 2-surfaces.

3. In this picture leptons, gauge bosons, and gluons correspond to an infinite prime of type P+

or P− whereas quarks as well as color excitations of leptons correspond to a pair of primes of
type P+ and P−. One can fix the notations by assigning color quantum numbers to P+ and and
spinorial quantum numbers to P−. Both P+ and P− contribute to four-momentum. Each pair of
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infinite primes of this kind defines a finite-dimensional space of quantum states assignable to the
subgroups of SU(3) and SU(2) respecting the prime property. Needless to say, this prediction
is extremely powerful and fixes the spectrum of the quantum numbers almost completely!

4. An interesting question is whether one can require number theoretical color confinement in the
sense that the physical states resulting as tensor products of states assignable to a given infinite
prime in P+ are color singlets. This might be necessary to guarantee associativity. G2 singletness
would be even stronger condition but not possible for massless states. What is interesting is
that spin and color in well-defined sense separate from each other. One can wonder whether this
relates somehow to the spin puzzle of proton meaning that quarks do not seem to contribute to
baryonic spin.

5. The appearance of discrete subgroups of SU(3) and SU(2) strongly suggests a connection with
the inclusions of the hyper-finite factors of type II1 characterized by these subgroups, which are
expected to play a fundamental role in quantum TGD. An interesting question is whether also
infinite subgroups could be involved. For instance, one can consider the subgroups generated
by discrete subgroup and infinite cyclic group and these might be involved with the inclusions
for which the index is equal to four. The appearance of these groups suggests also a connection
with the hierarchy of Planck constants and one can ask how the singular coverings defining the
pages of the book like structure relate to the moduli space of causal diamonds.

The rather unexpected conclusion is that the wave functions in the discrete space defined by infinite
primes are able to code for the quantum numbers of configuration space spinor fields and thus for
configuration space spinor fields. A fascinating possibility is that even M-matrix- which is nothing but
a characterization of zero energy state- could find an elegant formulation as entanglement coefficients
associated with the pair of the integer and inverse integer characterizing the positive and negative
energy states.

1. The great vision is that associativity and commutativity conditions fix the number theoretical
quantum dynamics completely. Quantum associativity states that the wave functions in the
space of infinite primes, integers, and rationals are invariant under associations of finite hyper-
octonionic primes (A(BC) and (AB)C are the basic associations), physics requires associativity
only apart from a phase factor, in the simplest situation +1/ − 1 but in more general case
phase factor. The condition of commutativity poses a more familiar condition implying that
permutations induce only a phase factor which is +/- 1 for boson and fermion statistics and a
more general phase for quantum group statistics for the anyonic phases, which correspond to
nonstandard values of Planck constant in TGD framework. These symmetries induce time-like
entanglement for zero energy stats and perhaps non-trivial enough M-matrix.

2. One must also remember that besides the infinite primes defining the counterparts of free Fock
states of supersymmetric QFT, also infinite primes analogous to bound states are predicted.
The analogy with polynomial primes illustrates what is involved. In the space of polynomials
with integer coefficients polynomials of degree one correspond free single particle states and one
can form free many particle states as their products. Higher degree polynomials with algebraic
roots correspond to bound states being not decomposable to a product of polynomials of first
degree in the field of rationals. Could also positive and negative energy parts of zero energy
states form a analog of bound state giving rise to highly non-trivial M-matrix?

How space-time geometry could be coded by infinite primes

Second key question is whether space-time geometry could be characterized in terms of infinite primes
(and integers and rationals in the most general case) and how this is achieved. This problem trivializes
by quantum classical correspondence realized in terms of the measurement interaction term in the
modified Dirac action.

1. The addition of the measurement interaction term to the modified Dirac action defined by Kähler
action implies that space-time sheets carry information about four-momentum, color quantum
numbers, and electro-weak quantum numbers. One must assing assign to the space-time sheet
assignable to a given collection of partonic 2-surfaces at least one pair of infinite primes or rather
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wave function at the orbits of these primes under the group respecting the prime property. Pairs
of infinite-primes at the first level would characterize the quantum numbers assigned with the
partonic surface X2, that is the tangent space of the space-time surface at X2 fixing the initial
values for the preferred extremal of Kähler action.

2. Zero energy ontology implies a hierarchy of CDs within CDs and this hierarchy as well as the
hierarchy of space-time sheets corresponds naturally to the hierarchy of infinite primes. One
can assign standard model quantum numbers to various partonic 2-surfaces with positive and
negative energy parts of the quantum state assignable to the light-like boundaries of CD. Also
infinite integers and rationals are possible and the inverses of infinite primes would naturally
correspond to elementary particles with negative energy. The condition that zero energy state
has vanishing net quantum numbers implies that the ratio of infinite integers assignable to zero
energy state equals to real unit in real sense and has has vanishing total quantum numbers.

3. Neither quantum numbers nor infinite primes coding them cannot characterize the partonic
2-surface itself completely since they say nothing about the deformation of the space-time sur-
face but only about labels characterizing the WCW spinor field. Also the topology of partonic
2-surface fails to be coded. Quantum classical correspondence however suggests that this cor-
respondence could be possible in a weaker sense. In the Gaussian approximation for functional
integral over the world of classical worlds space-time surface and thus the collection of partonic
2-surfaces is effectively replaced with the one corresponding to the maximum of Kähler function,
and in this sense one-one correspondence is possible unless the situation is non-perturbative. In
this case the physics implied by the hierarchy of Planck constants could however guarantee
uniqueness. One of the basic ideas behind the identification of the dark matter as phases with
non-standard value of Planck constant is that when perturbative description of the system fails,
a phase transition increasing the value of Planck constant takes place and makes perturbative
description possible. Geometrically this phase transition means a leakage to another sector of
the imbedding space realized as a book like structure with pages partially labeled by the values
of Planck constant. Anyonic phases and fractionization of quantum numbers is one possible
outcome of this phase transition. An interesting question is what the fractionization of the
quantum numbers means number theoretically.

How to achieve consistency with p-adic mass formula

The first argument against the proposal that infinite primes could code for four-momentum in preferred
coordinates is that the logarithms of finite primes and even less those of hyper-octonionic primes are
natural from the point of view of p-adic mass calculations predicting that the mass squared of particle
behaves as 1/p for Tp = 1 (fermions) and 1/p2 for Tp = 1/2 (gauge bosons). This difficulty might be
circumvented.

1. Ordinary primes

Consider first ordinary primes for which the inverse always exists.

1. One can map finite primes p to phase factors exp(i2π/p). The roots of unity play the role of
primes in the decomposition of the roots of unity exp(i2π/n), n =

∏
i p
ni
i . 1/n is expressible as

a sum of form

1

n
=

∑
i

Pi ,

Pi =
ki
pnii

. (10.4.23)
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) = exp(i2π

∑
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Apart from a common normalization factor one can interpret the coefficients Pi as energy like
quantities assigned to the single particle states. The power pnii would correspond to various
p-adic inverse temperature 1/Tp = 2ni in this expansion.

2. The representation in terms of phase factors is not unique since P ki and P ki + npki define the
same phase. This non-uniqueness is completely analogous to the non-uniqueness of momentum
in the presence of a discrete translational symmetry and can be interpreted in terms of lattice
momentum. Physically this corresponds to a finite measurement resolution. Also in the formu-
lation of symplectic QFT defining one part of quantum TGD only phases defined by the roots
of unity appear and similar non-uniqueness emerges and is due to the discretization serving as
a space-time correlate for a finite measurement resolution implying UV cutoff.

3. Mass squared is proportional to 1/p2
i so that only the p-adic temperatures Tp = 1/2ni are

possible for rational primes. For more general primes one can however have also a situation in
which the modulus square of prime is ordinary prime. For instance, Gaussian (complex) primes
P = m + in satisfy |P |2 = p for p mod 4 = 1 and |P |2 = p2 for p mod 4 = 3 (for example,
rational prime 5 decomposes as 5 = (2 + i)(2 − i)). Therefore it is possible to have states
satisfying M2 ∝ 1/p, p ordinary prime for hyper-octonionic primes. These primes correspond
to the rational primes decomposing to the products of ordinary primes and also also higher
roots of p might be possible. The finite prime assignable to the hyper-octonionic prime has a
natural interpretation as the p-adic prime assignable to an elementary particle. In zero energy
ontology this assignment makes sense also for virtual particles having interpretation as pairs
of positive and negative energy on mass shell particles assignable to the light-like throats of
wormhole contact.

2. Hyper-octonionic primes with inverse

Consider next the situation for hyper-octonionic primes when the integers in question have inverse.
We are interested only in the longitudinal part of infinite prime in M2. The phase factor makes sense
also in the case of hyper-octonionic primes if the condition |P | > 0 holds true so that one has massive
particles in 8-D sense possibly resulting via p-adic thermodynamics. If the imaginary unit appearing
in the exponent is the imaginary unit i appearing in the complexification of octonions, the exponent
has the character of a phase factor for hyper-octonionic primes. The reason is that 1/P = P ∗/|P |2 is
hyper-octonionic number of form O0 + iO1, where O1 is a purely imaginary octonion. The exponent
in the phase factor is therefore 2π(iO0 − O1) and involves only imaginary units, and one can write
exp(i2π(O0 + iO1)) = exp(iO0)×exp(−O1). Both factors are phase factors. This condition analogous
to unitarity is one further good reason for hyper-octonions and Minkowskian signature.

3. Light-like hyper-octonionic primes

The proposed representation as a phase factor fails for massless particles since light-like hyper-
primes do not possess an inverse. One must therefore define the notion of primeness differently to
see what might be the physical interpretation of these primes. Since the multiplication of hyper-
octonionic integer by light-like prime yields zero norm prime, the natural interpretation would be as a
gauge transformation and one might consider gauge transformations obtained by exponentiating Lie
algebra with light-like coefficients.

One can consider two options depending on whether one requires that the relevant algebra has
unit or not.

1. For the first option hyper-octonionic light-like integers are of form n(1 + e) and the product
of two light-like integers ni(1 + e) is of form 2n1n2(1 + e). Here e could be arbitrary hyper-
octonionic imaginary unit consistent with the prime property. This does not however allow unit
light-like integer acting like unit since one has (1 + e)2 = 2(1 + e). All odd integers would be
primes.

2. The number E = (1 + e)/2 behaves as a unit. If one requires that unit is included in the algebra
integers can be defined as numbers of form nE so that their product is n1n2E and equivalent
with the ordinary product of integers so that primes correspond to ordinary primes.
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One can construct the first level infinite primes from these primes just as in the case of ordinary
primes. Now however X =

∏
pi is replaced with X =

∏
n[(2n + 1)(1 + e)] for the first option and

equal to the X = E
∏
pi for the second option.

The multiplicative phase factor could be defined for both options as exp(i2πE/N) where N is a
light-like hyper-octonionic integer. This definition would eliminate the singular 1/E factor and the
situation reduces essentially to that for ordinary primes in the case of massless states. If the infinite
prime P± is such that one can assign to it non-trivial multiplets in color or rotational degrees of freedom
(half odd integer spin for fermions) it must have a part in the complement of M2. For standard model
elementary particles this is always the case. The energy spectrum is of form 1/2(2m + 1) or 1/p.
For light-like hyper-octonions the projection to M2 is in general time-like and quantized. If one does
not allow the unit E in exponent the phase factor is ill-defined and one must identify the light-like
hyper-octonionic primes as gauge degrees of freedom.

M2 momentum is light-like only for states which are spinless color and electro-weak singlets hav-
ing no counterpart in standard model counterpart nor in quantum TGD. Therefore light-like hyper-
octonionic primes reducing to M2 could correspond to gauge degrees of freedom. M2 momentum is
of form P = (1, 1)/2(2m+ 1) for the first option and of form P = (1, 1)/p for the second option. Even
for graviton, photon, gluons, and right handed neutrino either hyper-octonionic prime is space-like
if the state is massless. Light-like hyper-octonions can however characterize massive states but the
proposed interpretation in terms of gauge degrees of freedom is highly suggestive.

If one interprets hyper-octonionic prime as 8-D momentum, which is of course not necessary in the
recent framework, one could worry about conflict with TGD variant of twistor program. In accordance
with associativity the role of 8-momentum in fermionic propagator is however taken by its projection
to the hyper-quaternionic sub-space defined by the modified gamma matrices at given point of space-
time sheet and masslessness holds for this projection so that 8-D tachyons are possible [96] . This is
highly analogous to the identification of the four-momentum as M2 projection of hyperfinite prime.

4. The treatment of zero modes

There are also zero modes which are absolutely crucial for quantum measurement theory. They
entangle with quantum fluctuating degrees of freedom in quantum measurement situation and thus
map quantum numbers to positions of pointers. The interior degrees of freedom of space-time interior
must correspond to zero modes and they represent space-time correlates for quantum states realized
at light-like partonic 3-surfaces. Quantum measurement theory suggests 1-1 correspondence between
zero modes and quantum fluctuating degrees of freedom so that also super-symmetry should have zero
mode counterpart. The recent progress in understanding of the modified Dirac action [31] leads to a
concrete identification of the super-conformal algebra of zero modes as related to the deformation of
the space-time surface defining vanishing second variations of Kähler action.

Complexification of octonions in zero energy ontology

The complexification of octonions plays a crucial role in the number theoretical vision and could be
regarded as its weakest point. It has however a natural physical interpretation in zero energy ontology.

1. CD has two tips, which correspond to the points of M4. For M4 the fixing of the quantization
axes requires choosing a time-like direction fixing the rest system. This direction is naturally
defined by the tips of CD. The moduli space for CDs is M4 ×M4

+. The realization of the
hierarchy of Planck constants forces also a choice of a space-like direction fixing the quantization
axes of spin.

2. In the case of CP2 the choice of the quantization axes requires fixing of a preferred point of
CP2 remaining invariant under U(2) subgroup of SU(3) acting linearly on complex coordinates
having origin at this point and containing also the Cartan subgroup. This fixes the quantization
axes of color hyper-charge. If the preferred CP2 points associated with the light-like boundaries
of CD are different they fix a unique geodesic circle of CP2 fixing the quantization axes for color
isospin. The moduli space is therefore (CP2)2.

3. The full moduli space is M4×M4
+×(CP2)2. In M8 description the moduli space would naturally

correspond to pairs of points of M4 and E4 so that the moduli space for the choices CDs and
quantization axes would be M4 ×M4

+ × (E4)2. This space can be regarded locally as the space
of complexified octonions.
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4. p-Adic length scale hypothesis follows if the time-like distance between the tips of CDs is quan-
tized in powers of two so that a union of 3-D proper-time constant hyperboloids of M4

+ results.
Hierarchy of Planck constants implies rational multiples of these basic distances. Hyperboloids
are coset spaces of Lorentz group and this suggests even more general quantization in which one
replaces the hyperboloids with spaces obtained by identifying the points related by the action
of a discrete subgroup of Lorentz group. This would give the analog of lattice cell obtained
and one would obtain a lattice like structure consisting of unit cells labeled by the elements of
the sub-group of Lorentz group. The interpretation of the moduli space of CDs as a discrete
momentum space dual to the configuration space is suggestive. In the case of CP2 similar quan-
tization could correspond to the replacement of CP2 with equivalence classes of points of CP2

under action of a discrete subgroup of SU(3).

5. Could this discrete space be identified as the space of hyper-octonionic primes as looks natural?
In other words, could the discrete points of the dual spaceM4

+×CP2 decompose to subsets in one-
one corresponds with the orbits of G+ and G− appearing in the reductions SO(7, 1)→ SO(7)→
G2 → SU(3)→ G+ for primes in P+ and SO(7, 1)→ SO(7)→ G2 → SU(3)→ SU(2)→ G− in
P−? One can also consider the subgroups of G2 respecting the hyperbolic prime property. This
would allow to integrate G+×G− multiplets to larger multiplets and get an over all view about
multiplet structure. An interesting question is whether SO(7, 1) could contain non-compact
discrete subgroups with infinite number of elements and respecting the property of being hyper-
octonionic prime. If this idea is correct, the dual space M4

+×CP2 would play a role of heavenly
sphere providing a representation for the quantum numbers labeling configuration space spinor
fields.

The relation to number theoretic Brahman=Atman identity

Number theoretic Brahman=Atman identity -one might also use the term algebraic holography -
states the number theoretic anatomy of single space-time point is enough to code for both WCW and
and WCW spinors fields- the quantum states of entire Universe or at least the sub-Universe defined by
CD. The entire quantum TGD could be represented in terms of 8-D imbedding space with the notion
of number generalized to allow real units defined as ration of infinite integers and having number
theoretical anatomy.

Before continuing it is perhaps good to represent the most obvious objection against the idea.
The correspondence between WCW and WCW spinors with infinite rationals and their discreteness
means that also WCW (world of classical worlds) and space of WCW spinors should be discrete.
First this looks non-sensible but is indeed what one obtains if space-time surfaces correspond to light-
like 3-surfaces expressible in terms of algebraic equations involving rational functions with rational
coefficients.

By the above considerations it is indeed clear that zero energy states correspond to ratios of infinite
integers boiling down to a hyper-octonionic unit with vanishing net four-momentum and electro-weak
charges. Configuration space spinor fields can be mapped to wave functions in the space of these units
and even the reduced configuration space consisting of the maxima of Kähler function could be coded
by these wave functions. The wave functions in the space of hyper-octonion units would be induced
by the discrete wave functions associated with the orbits of hyper-octonionic finite primes appearing
in the decomposition of the infinite hyper-octonionic primes of type P+ and P−. The net color and
quantum numbers and spin associated with the wave function in the space of hyper-octonionic units
are vanishing. Clearly, a detailed realization of number theoretic Brahman=Atman identity emerges
predicting reducing even the spectrum of possible quantum numbers to number theory.

In the original formulation of Brahman-Atman identity the description based on H was used.
This leads to the conclusion that that the analog of a complex Schrödinger amplitude in the space
of number-theoretic anatomies of a given imbedding space point represented by single point of H
and represented as 8-tuples of real units should naturally represent the dependence of WCW spinors
understood as ground states of super-conformal representations obtained as an 8-fold tensor power of
a fundamental representation or product of representations perhaps differing somehow. The 8-tuples
define a number theoretical analog of U(1)8 group in terms of which all number theoretical symmetries
are represented. This description should be equivalent with the use of single hyper-octonion unit.
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Chapter 11

Was von Neumann Right After All?

11.1 Introduction

The work with TGD inspired model [95] for topological quantum computation [50] led to the realization
that von Neumann algebras [81, 132, 113, 76] , in particular so called hyper-finite factors of type II1 [96]
, seem to provide the mathematics needed to develop a more explicit view about the construction
of S-matrix. In this chapter I will discuss various aspects of type II1 factors and their physical
interpretation in TGD framework. The lecture notes of R. Longo [105] give a concise and readable
summary about the basic definitions and results related to von Neumann algebras and I have used
this material freely in this chapter. The original discussion has transformed during years from free
speculation reflecting in many aspects my ignorance about the mathematics involved to a more realistic
view about the role of these algebras in quantum TGD.

11.1.1 Philosophical ideas behind von Neumann algebras

The goal of von Neumann was to generalize the algebra of quantum mechanical observables. The basic
ideas behind the von Neumann algebra are dictated by physics. The algebra elements allow Hermitian
conjugation ∗ and observables correspond to Hermitian operators. Any measurable function f(A) of
operator A belongs to the algebra and one can say that non-commutative measure theory is in question.

The predictions of quantum theory are expressible in terms of traces of observables. Density
matrix defining expectations of observables in ensemble is the basic example. The highly non-trivial
requirement of von Neumann was that identical a priori probabilities for a detection of states of infinite
state system must make sense. Since quantum mechanical expectation values are expressible in terms
of operator traces, this requires that unit operator has unit trace: tr(Id) = 1.

In the finite-dimensional case it is easy to build observables out of minimal projections to 1-
dimensional eigen spaces of observables. For infinite-dimensional case the probably of projection to
1-dimensional sub-space vanishes if each state is equally probable. The notion of observable must thus
be modified by excluding 1-dimensional minimal projections, and allow only projections for which the
trace would be infinite using the straightforward generalization of the matrix algebra trace as the
dimension of the projection.

The non-trivial implication of the fact that traces of projections are never larger than one is
that the eigen spaces of the density matrix must be infinite-dimensional for non-vanishing projection
probabilities. Quantum measurements can lead with a finite probability only to mixed states with a
density matrix which is projection operator to infinite-dimensional subspace. The simple von Neumann
algebras for which unit operator has unit trace are known as factors of type II1 [96] .

The definitions of adopted by von Neumann allow however more general algebras. Type In algebras
correspond to finite-dimensional matrix algebras with finite traces whereas I∞ associated with a
separable infinite-dimensional Hilbert space does not allow bounded traces. For algebras of type III
non-trivial traces are always infinite and the notion of trace becomes useless being replaced by the
notion of state which is generalization of the notion of thermodynamical state. The fascinating feature
of this notion of state is that it defines a unique modular automorphism of the factor defined apart
from unitary inner automorphism and the question is whether this notion or its generalization might
be relevant for the construction of M-matrix in TGD.
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11.1.2 Von Neumann, Dirac, and Feynman

The association of algebras of type I with the standard quantum mechanics allowed to unify matrix
mechanism with wave mechanics. Note however that the assumption about continuous momentum
state basis is in conflict with separability but the particle-in-box idealization allows to circumvent this
problem (the notion of space-time sheet brings the box in physics as something completely real).

Because of the finiteness of traces von Neumann regarded the factors of type II1 as fundamental
and factors of type III as pathological. The highly pragmatic and successful approach of Dirac [75]
based on the notion of delta function, plus the emergence of s [84] , the possibility to formulate the
notion of delta function rigorously in terms of distributions [95, 122] , and the emergence of path
integral approach [114] meant that von Neumann approach was forgotten by particle physicists.

Algebras of type II1 have emerged only much later in conformal and topological quantum field
theories [120, 136] allowing to deduce invariants of knots, links and 3-manifolds. Also algebraic
structures known as bi-algebras, Hopf algebras, and ribbon algebras [99] relate closely to type II1
factors. In topological quantum computation [50] based on braid groups [62] modular S-matrices they
play an especially important role.

In algebraic quantum field theory [34] defined in Minkowski space the algebras of observables
associated with bounded space-time regions correspond quite generally to the type III1 hyper-finite
factor [72, 17] .

11.1.3 Hyper-finite factors in quantum TGD

The following argument suggests that von Neumann algebras known as hyper-finite factors (HFFs)
of type III1 appearing in relativistic quantum field theories provide also the proper mathematical
framework for quantum TGD.

1. The Clifford algebra of the infinite-dimensional Hilbert space is a von Neumann algebra known
as HFF of type II1. There also the Clifford algebra at a given point (light-like 3-surface) of world
of classical worlds (WCW) is therefore HFF of type II1. If the fermionic Fock algebra defined
by the fermionic oscillator operators assignable to the induced spinor fields (this is actually not
obvious!) is infinite-dimensional it defines a representation for HFF of type II1. Super-conformal
symmetry suggests that the extension of the Clifford algebra defining the fermionic part of a
super-conformal algebra by adding bosonic super-generators representing symmetries of WCW
respects the HFF property. It could however occur that HFF of type II∞ results.

2. WCW is a union of sub-WCWs associated with causal diamonds (CD) defined as intersections
of future and past directed light-cones. One can allow also unions of CDs and the proposal is
that CDs within CDs are possible. Whether CDs can intersect is not clear.

3. The assumption that the M4 proper distance a between the tips of CD is quantized in powers
of 2 reproduces p-adic length scale hypothesis but one must also consider the possibility that
a can have all possible values. Since SO(3) is the isotropy group of CD, the CDs associated
with a given value of a and with fixed lower tip are parameterized by the Lobatchevski space
L(a) = SO(3, 1)/SO(3). Therefore the CDs with a free position of lower tip are parameterized
by M4 × L(a). A possible interpretation is in terms of quantum cosmology with a identified as
cosmic time [78] . Since Lorentz boosts define a non-compact group, the generalization of so
called crossed product construction strongly suggests that the local Clifford algebra of WCW
is HFF of type III1. If one allows all values of a, one ends up with M4 ×M4

+ as the space of
moduli for WCW.

4. An interesting special aspect of 8-dimensional Clifford algebra with Minkowski signature is
that it allows an octonionic representation of gamma matrices obtained as tensor products of
unit matrix 1 and 7-D gamma matrices γk and Pauli sigma matrices by replacing 1 and γk
by octonions. This inspires the idea that it might be possible to end up with quantum TGD
from purely number theoretical arguments. This seems to be the case. One can start from
a local octonionic Clifford algebra in M8. Associativity condition is satisfied if one restricts
the octonionic algebra to a subalgebra associated with any hyper-quaternionic and thus 4-D
sub-manifold of M8. This means that the modified gamma matrices associated with the Kähler
action span a complex quaternionic sub-space at each point of the sub-manifold. This associative
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sub-algebra can be mapped a matrix algebra. Together with M8 −H duality [20, 24] this leads
automatically to quantum TGD and therefore also to the notion of WCW and its Clifford algebra
which is however only mappable to an associative algebra and thus to HFF of type II1.

11.1.4 Hyper-finite factors and M-matrix

HFFs of type III1 provide a general vision about M-matrix.

1. The factors of type III allow unique modular automorphism ∆it (fixed apart from unitary inner
automorphism). This raises the question whether the modular automorphism could be used to
define the M-matrix of quantum TGD. This is not the case as is obvious already from the fact
that unitary time evolution is not a sensible concept in zero energy ontology.

2. Concerning the identification of M-matrix the notion of state as it is used in theory of factors is a
more appropriate starting point than the notion modular automorphism but as a generalization
of thermodynamical state is certainly not enough for the purposes of quantum TGD and quantum
field theories (algebraic quantum field theorists might disagree!). Zero energy ontology requires
that the notion of thermodynamical state should be replaced with its ”complex square root”
abstracting the idea about M-matrix as a product of positive square root of a diagonal density
matrix and a unitary S-matrix. This generalization of thermodynamical state -if it exists- would
provide a firm mathematical basis for the notion of M-matrix and for the fuzzy notion of path
integral.

3. The existence of the modular automorphisms relies on Tomita-Takesaki theorem, which assumes
that the Hilbert space in which HFF acts allows cyclic and separable vector serving as ground
state for both HFF and its commutant. The translation to the language of physicists states that
the vacuum is a tensor product of two vacua annihilated by annihilation oscillator type algebra
elements of HFF and creation operator type algebra elements of its commutant isomorphic to it.
Note however that these algebras commute so that the two algebras are not hermitian conjugates
of each other. This kind of situation is exactly what emerges in zero energy ontology: the two
vacua can be assigned with the positive and negative energy parts of the zero energy states
entangled by M-matrix.

4. There exists infinite number of thermodynamical states related by modular automorphisms.
This must be true also for their possibly existing ”complex square roots”. Physically they
would correspond to different measurement interactions giving rise to Kähler functions of WCW
differing only by a real part of holomorphic function of complex coordinates of WCW and
arbitrary function of zero mode coordinates and giving rise to the same Kähler metric of WCW.

The concrete construction of M-matrix utilizing the idea of bosonic emergence (bosons as fermion
anti-fermion pairs at opposite throats of wormhole contact) meaning that bosonic propagators reduce
to fermionic loops identifiable as wormhole contacts leads to generalized Feynman rules for M-matrix
in which modified Dirac action containing measurement interaction term defines stringy propagators.
This M-matrix should be consistent with the above proposal.

11.1.5 Connes tensor product as a realization of finite measurement reso-
lution

The inclusions N ⊂M of factors allow an attractive mathematical description of finite measurement
resolution in terms of Connes tensor product but do not fix M-matrix as was the original optimistic
belief.

1. In zero energy ontology N would create states experimentally indistinguishable from the origi-
nal one. Therefore N takes the role of complex numbers in non-commutative quantum theory.
The space M/N would correspond to the operators creating physical states modulo measure-
ment resolution and has typically fractal dimension given as the index of the inclusion. The
corresponding spinor spaces have an identification as quantum spaces with non-commutative
N -valued coordinates.
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2. This leads to an elegant description of finite measurement resolution. Suppose that a universal
M-matrix describing the situation for an ideal measurement resolution exists as the idea about
square root of state encourages to think. Finite measurement resolution forces to replace the
probabilities defined by the M-matrix with their N ”averaged” counterparts. The ”averaging”
would be in terms of the complex square root of N -state and a direct analog of functionally or
path integral over the degrees of freedom below measurement resolution defined by (say) length
scale cutoff.

3. One can construct also directly M-matrices satisfying the measurement resolution constraint.
The condition that N acts like complex numbers on M-matrix elements as far as N -”averaged”
probabilities are considered is satisfied if M-matrix is a tensor product of M-matrix in M(N
interpreted as finite-dimensional space with a projection operator to N . The condition that
N averaging in terms of a complex square root of N state produces this kind of M-matrix
poses a very strong constraint on M-matrix if it is assumed to be universal (apart from variants
corresponding to different measurement interactions).

11.1.6 Quantum spinors and fuzzy quantum mechanics

The notion of quantum spinor leads to a quantum mechanical description of fuzzy probabilities. For
quantum spinors state function reduction cannot be performed unless quantum deformation parameter
equals to q = 1. The reason is that the components of quantum spinor do not commute: it is however
possible to measure the commuting operators representing moduli squared of the components giving
the probabilities associated with ’true’ and ’false’. The universal eigenvalue spectrum for probabilities
does not in general contain (1,0) so that quantum qbits are inherently fuzzy. State function reduction
would occur only after a transition to q=1 phase and decoherence is not a problem as long as it does
not induce this transition.

This chapter represents a summary about the development of the ideas with last sections represent-
ing the recent vision about the role of HFFs in TGD. I have saved the reader from those speculations
that have turned out to reflect my own ignorance or are inconsistent with what I regarded established
parts of quantum TGD.

11.2 Von Neumann algebras

In this section basic facts about von Neumann algebras are summarized using as a background material
the concise summary given in the lecture notes of Longo [105] .

11.2.1 Basic definitions

A formal definition of von Neumann algebra [132, 113, 76] is as a ∗-subalgebra of the set of bounded
operators B(H) on a Hilbert space H closed under weak operator topology, stable under the conju-
gation J =∗: x → x∗, and containing identity operator Id. This definition allows also von Neumann
algebras for which the trace of the unit operator is not finite.

Identity operator is the only operator commuting with a simple von Neumann algebra. A gen-
eral von Neumann algebra allows a decomposition as a direct integral of simple algebras, which von
Neumann called factors. Classification of von Neumann algebras reduces to that for factors.
B(H) has involution ∗ and is thus a ∗-algebra. B(H) has order order structure A ≥ 0 : (Ax, x) ≥ 0.

This is equivalent to A = BB∗ so that order structure is determined by algebraic structure. B(H) has
metric structure in the sense that norm defined as supremum of ||Ax||, ||x|| ≤ 1 defines the notion of
continuity. ||A||2 = inf{λ > 0 : AA∗ ≤ λI} so that algebraic structure determines metric structure.

There are also other topologies for B(H) besides norm topology.

1. Ai → A strongly if ||Ax−Aix|| → 0 for all x. This topology defines the topology of C∗ algebra.
B(H) is a Banach algebra that is ||AB|| ≤ ||A|| × ||B|| (inner product is not necessary) and also
C∗ algebra that is ||AA∗|| = ||A||2.

2. Ai → A weakly if (Aix, y) → (Ax, y) for all pairs (x, y) (inner product is necessary). This
topology defines the topology of von Neumann algebra as a sub-algebra of B(H).
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Denote by M ′ the commutant of M which is also algebra. Von Neumann’s bicommutant theorem
says thatM equals to its own bi-commutant. Depending on whether the identity operator has a finite
trace or not, one distinguishes between algebras of type II1 and type II∞. II1 factor allow trace with
properties tr(Id) = 1, tr(xy) = tr(yx), and tr(x∗x) > 0, for all x 6= 0. Let L2(M) be the Hilbert
space obtained by completing M respect to the inner product defined 〈x|y〉 = tr(x∗y) defines inner
product inM interpreted as Hilbert space. The normalized trace induces a trace in M ′, natural trace
TrM ′ , which is however not necessarily normalized. JxJ defines an element of M ′: if H = L2(M),
the natural trace is given by TrM ′(JxJ) = trM (x) for all x ∈M and bounded.

11.2.2 Basic classification of von Neumann algebras

Consider first some definitions. First of all, Hermitian operators with positive trace expressible as
products xx∗ are of special interest since their sums with positive coefficients are also positive.

In quantum mechanics Hermitian operators can be expressed in terms of projectors to the eigen
states. There is a natural partial order in the set of isomorphism classes of projectors by inclusion:
E < F if the image of H by E is contained to the image of H by a suitable isomorph of F . Projectors
are said to be metrically equivalent if there exist a partial isometry which maps the images H by them
to each other. In the finite-dimensional case metric equivalence means that isomorphism classes are
identical E = F .

The algebras possessing a minimal projection E0 satisfying E0 ≤ F for any F are called type I
algebras. Bounded operators of n-dimensional Hilbert space define algebras In whereas the bounded
operators of infinite-dimensional separable Hilbert space define the algebra I∞. In and I∞ correspond
to the operator algebras of quantum mechanics. The states of harmonic oscillator correspond to a
factor of type I.

The projection F is said to be finite if F < E and F ≡ E implies F = E. Hence metric equivalence
means identity. Simple von Neumann algebras possessing finite projections but no minimal projections
so that any projection E can be further decomposed as E = F +G, are called factors of type II.

Hyper-finiteness means that any finite set of elements can be approximated arbitrary well with
the elements of a finite-dimensional sub-algebra. The hyper-finite II∞ algebra can be regarded as a
tensor product of hyper-finite II1 and I∞ algebras. Hyper-finite II1 algebra can be regarded as a
Clifford algebra of an infinite-dimensional separable Hilbert space sub-algebra of I∞.

Hyper-finite II1 algebra can be constructed using Clifford algebras C(2n) of 2n-dimensional spaces
and identifying the element x of 2n×2n dimensional C(n) as the element diag(x, x)/2 of 2n+1×2n+1-
dimensional C(n+1). The union of algebras C(n) is formed and completed in the weak operator topol-
ogy to give a hyper-finite II1 factor. This algebra defines the Clifford algebra of infinite-dimensional
separable Hilbert space and is thus a sub-algebra of I∞ so that hyper-finite II1 algebra is more regular
than I∞.

von Neumann algebras possessing no finite projections (all traces are infinite or zero) are called
algebras of type III. It was later shown by [69] [65] that these algebras are labeled by a parameter
varying in the range [0, 1], and referred to as algebras of type IIIx. III1 category contains a unique
hyper-finite algebra. It has been found that the algebras of observables associated with bounded
regions of 4-dimensional Minkowski space in quantum field theories correspond to hyper-finite factors
of type III1 [105] . Also statistical systems at finite temperature correspond to factors of type III and
temperature parameterizes one-parameter set of automorphisms of this algebra [72] . Zero temperature
limit correspond to I∞ factor and infinite temperature limit to II1 factor.

11.2.3 Non-commutative measure theory and non-commutative topologies
and geometries

von Neumann algebras and C∗ algebras give rise to non-commutative generalizations of ordinary
measure theory (integration), topology, and geometry. It must be emphasized that these structures
are completely natural aspects of quantum theory. In particular, for the hyper-finite type II1 factors
quantum groups and Kac Moody algebras [38] emerge quite naturally without any need for ad hoc
modifications such as making space-time coordinates non-commutative. The effective 2-dimensionality
of quantum TGD (partonic or stringy 2-surfaces code for states) means that these structures appear
completely naturally in TGD framework.
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Non-commutative measure theory

von Neumann algebras define what might be a non-commutative generalization of measure theory and
probability theory [105] .

1. Consider first the commutative case. Measure theory is something more general than topology
since the existence of measure (integral) does not necessitate topology. Any measurable function
f in the space L∞(X,µ) in measure space (X,µ) defines a bounded operator Mf in the space
B(L2(X,µ)) of bounded operators in the space L2(X,µ) of square integrable functions with
action of Mf defined as Mfg = fg.

2. Integral overM is very much like trace of an operator fx,y = f(x)δ(x, y). Thus trace is a natural
non-commutative generalization of integral (measure) to the non-commutative case and defined
for von Neumann algebras. In particular, generalization of probability measure results if the
case tr(Id) = 1 and algebras of type In and II1 are thus very natural from the point of view of
non-commutative probability theory.

The trace can be expressed in terms of a cyclic vector Ω or vacuum/ground state in physicist’s
terminology. Ω is said to be cyclic if the completion MΩ = H and separating if xΩ vanishes only for
x = 0. Ω is cyclic for M if and only if it is separating for M ′. The expression for the trace given by

Tr(ab) =

(
(ab+ ba)

2
,Ω

)
(11.2.1)

is symmetric and allows to defined also inner product as (a, b) = Tr(a∗b) in M. If Ω has unit norm
(Ω,Ω) = 1, unit operator has unit norm and the algebra is of type II1. Fermionic oscillator operator
algebra with discrete index labeling the oscillators defines II1 factor. Group algebra is second example
of II1 factor.

The notion of probability measure can be abstracted using the notion of state. State ω on a C∗

algebra with unit is a positive linear functional on U , ω(1) = 1. By so called KMS construction [105]
any state ω in C∗ algebra U can be expressed as ω(x) = (π(x)Ω,Ω) for some cyclic vector Ω and π is
a homomorphism U → B(H).

Non-commutative topology and geometry

C∗ algebras generalize in a well-defined sense ordinary topology to non-commutative topology.

1. In the Abelian case Gelfand Naimark theorem [105] states that there exists a contravariant
functor F from the category of unital abelian C∗ algebras and category of compact topological
spaces. The inverse of this functor assigns to space X the continuous functions f on X with
norm defined by the maximum of f . The functor assigns to these functions having interpretation
as eigen states of mutually commuting observables defined by the function algebra. These eigen
states are delta functions localized at single point of X. The points of X label the eigenfunctions
and thus define the spectrum and obviously span X. The connection with topology comes from
the fact that continuous map Y → X corresponds to homomorphism C(X)→ C(Y ).

2. In non-commutative topology the function algebra C(X) is replaced with a general C∗ algebra.
Spectrum is identified as labels of simultaneous eigen states of the Cartan algebra of C∗ and
defines what can be observed about non-commutative space X.

3. Non-commutative geometry can be very roughly said to correspond to ∗-subalgebras of C∗

algebras plus additional structure such as symmetries. The non-commutative geometry of
Connes [66] is a basic example here.

11.2.4 Modular automorphisms

von Neumann algebras allow a canonical unitary evolution associated with any state ω fixed by the
selection of the vacuum state Ω [105] . This unitary evolution is an automorphism fixed apart form
unitary automorphisms A→ UAU∗ related with the choice of Ω.
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Let ω be a normal faithful state: ω(x∗x) > 0 for any x. One can map M to L2(M) defined as
a completion of M by x → xΩ. The conjugation ∗ in M has image at Hilbert space level as a map
S0 : xΩ→ x∗Ω. The closure of S0 is an anti-linear operator and has polar decomposition S = J∆1/2,
∆ = SS∗. ∆ is positive self-adjoint operator and J anti-unitary involution. The following conditions
are satisfied

∆itM∆−it = M ,

JMJ = M′ . (11.2.2)

∆it is obviously analogous to the time evolution induced by positive definite Hamiltonian and induces
also the evolution of the expectation ω as π → ∆itπ∆−it.

11.2.5 Joint modular structure and sectors

Let N ⊂ M be an inclusion. The unitary operator γ = JNJM defines a canonical endomorphisms
M → N in the sense that it depends only up to inner automorphism on N , γ defines a sector of M.
The sectors of M are defined as Sect(M) = End(M)/Inn(M) and form a semi-ring with respected
to direct sum and composition by the usual operator product. It allows also conjugation.

L2(M) is a normal bi-module in the sense that it allows commuting left and right multiplications.
For a, b ∈ M and x ∈ L2(M) these multiplications are defined as axb = aJb∗Jx and it is easy to
verify the commutativity using the factor Jy∗J ∈M′. [69] [66] has shown that all normal bi-modules
arise in this way up to unitary equivalence so that representation concepts make sense. It is possible
to assign to any endomorphism ρ index Ind(ρ) ≡ M : ρ(M). This means that the sectors are in
1-1 correspondence with inclusions. For instance, in the case of hyper-finite II1 they are labeled by
Jones index. Furthermore, the objects with non-integral dimension

√
[M : ρ(M)] can be identified as

quantum groups, loop groups, infinite-dimensional Lie algebras, etc...

11.2.6 Basic facts about hyper-finite factors of type III

Hyper-finite factors of type II1, II∞ and III1, III0, IIIλ, λ ∈ (0, 1), allow by definition hierarchy of
finite approximations and are unique as von Neumann algebras. Also hyper-finite factors of type II∞
and type III could be relevant for the formulation of TGD. HFFs of type II∞ and III could appear
at the level operator algebra but that at the level of quantum states one would obtain HFFs of type
II1. These extended factors inspire highly non-trivial conjectures about quantum TGD. The book of
Connes [66] provides a detailed view about von Neumann algebras in general.

Basic definitions and facts

A highly non-trivial result is that HFFs of type II∞ are expressible as tensor products II∞ = II1⊗I∞,
where II1 is hyper-finite [66] .

1. The existence of one-parameter family of outer automorphisms

The unique feature of factors of type III is the existence of one-parameter unitary group of outer
automorphisms. The automorphism group originates in the following manner.

1. Introduce the notion of linear functional in the algebra as a map ω : M → C. ω is said to be
hermitian it respects conjugation in M; positive if it is consistent with the notion of positivity
for elements ofM in which case it is called weight; state if it is positive and normalized meaning
that ω(1) = 1, faithful if ω(A) > 0 for all positive A; a trace if ω(AB) = ω(BA), a vector state if
ω(A) is ”vacuum expectation” ωΩ(A) = (Ω, ω(A)Ω) for a non-degenerate representation (H, π)
of M and some vector Ω ∈ H with ||Ω|| = 1.

2. The existence of trace is essential for hyper-finite factors of type II1. Trace does not exist for
factors of type III and is replaced with the weaker notion of state. State defines inner product
via the formula (x, y) = φ(y∗x) and * is isometry of the inner product. *-operator has property
known as pre-closedness implying polar decomposition S = J∆1/2 of its closure. ∆ is positive
definite unbounded operator and J is isometry which restores the symmetry betweenM and its
commutant M′ in the Hilbert space Hφ, where M acts via left multiplication: M′ = JMJ .
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3. The basic result of Tomita-Takesaki theory is that ∆ defines a one-parameter group σtφ(x) =

∆itx∆−it of automorphisms of M since one has ∆itM∆−it =M. This unitary evolution is an
automorphism fixed apart from unitary automorphism A → UAU∗ related with the choice of
φ. For factors of type I and II this automorphism reduces to inner automorphism so that the
group of outer automorphisms is trivial as is also the outer automorphism associated with ω.
For factors of type III the group of these automorphisms divided by inner automorphisms gives
a one-parameter group of Out(M) of outer automorphisms, which does not depend at all on the
choice of the state φ.

More precisely, let ω be a normal faithful state: ω(x∗x) > 0 for any x. One can map M to L2(M)
defined as a completion of M by x → xΩ. The conjugation ∗ in M has image at Hilbert space level
as a map S0 : xΩ → x∗Ω. The closure of S0 is an anti-linear operator and has polar decomposition
S = J∆1/2, ∆ = SS∗. ∆ is positive self-adjoint operator and J anti-unitary involution. The following
conditions are satisfied

∆itM∆−it = M ,

JMJ = M′ . (11.2.3)

∆it is obviously analogous to the time evolution induced by positive definite Hamiltonian and induces
also the evolution of the expectation ω as π → ∆itπ∆−it. What makes this result thought provoking
is that it might mean a universal quantum dynamics apart from inner automorphisms and thus a
realization of general coordinate invariance and gauge invariance at the level of Hilbert space.

2. Classification of HFFs of type III

Connes achieved an almost complete classification of hyper-finite factors of type III completed
later by others. He demonstrated that they are labeled by single parameter 0 ≤ λ ≤ 1] and that factors
of type IIIλ, 0 ≤ λ < 1 are unique. Haagerup showed the uniqueness for λ = 1. The idea was that
the the group has an invariant, the kernel T (M) of the map from time like R to Out(M), consisting
of those values of the parameter t for which σtφ reduces to an inner automorphism and to unity as
outer automorphism. Connes also discovered also an invariant, which he called spectrum S(M) ofM
identified as the intersection of spectra of ∆φ\{0}, which is closed multiplicative subgroup of R+.

Connes showed that there are three cases according to whether S(M) is

1. R+, type III1

2. {λn, n ∈ Z}, type IIIλ.

3. {1}, type III0.

The value range of λ is this by convention. For the reversal of the automorphism it would be
that associated with 1/λ.

Connes constructed also an explicit representation of the factors 0 < λ < 1 as crossed product II∞
factor N and group Z represented as powers of automorphism of II∞ factor inducing the scaling of
trace by λ. The classification of HFFs of type III reduced thus to the classification of automorphisms
of N ⊗B(H. In this sense the theory of HFFs of type III was reduced to that for HFFs of type II∞
or even II1. The representation of Connes might be also physically interesting.

Probabilistic view about factors of type III

Second very concise representation of HFFs relies on thermodynamical thinking and realizes factors
as infinite tensor product of finite-dimensional matrix algebras acting on state spaces of finite state
systems with a varying and finite dimension n such that one assigns to each factor a density matrix
characterized by its eigen values. Intuitively one can think the finite matrix factors as associated
with n-state system characterized by its energies with density matrix ρ defining a thermodynamics.
The logarithm of the ρ defines the single particle quantum Hamiltonian as H = log(ρ) and ∆ = ρ =
exp(H) defines the automorphism σφ for each finite tensor factor as exp(iHt). Obviously free field
representation is in question.

Depending on the asymptotic behavior of the eigenvalue spectrum one obtains different factors [66]
.
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1. Factor of type I corresponds to ordinary thermodynamics for which the density matrix as a
function of matrix factor approaches sufficiently fast that for a system for which only ground
state has non-vanishing Boltzmann weight.

2. Factor of type II1 results if the density matrix approaches to identity matrix sufficiently fast.
This means that the states are completely degenerate which for ordinary thermodynamics results
only at the limit of infinite temperature. Spin glass could be a counterpart for this kind of
situation.

3. Factor of type III results if one of the eigenvalues is above some lower bound for all tensor
factors in such a manner that neither factor of type I or II1 results but thermodynamics for
systems having infinite number of degrees of freedom could yield this kind of situation.

This construction demonstrates how varied representations factors can have, a fact which might
look frustrating for a novice in the field. In particular, the infinite tensor power of M(2, C) with state
defined as an infinite tensor power of M(2, C) state assigning to the matrix A the complex number
(λ1/2A11 +λ−1/2 φ(A) = A22)/(λ1/2 +λ−1/2) defines HFF IIIλ [66] , [31] . Formally the same algebra
which for λ = 1 gives ordinary trace and HFF of type II1, gives III factor only by replacing trace
with state. This simple model was discovered by Powers in 1967.

It is indeed the notion of state or thermodynamics is what distinguishes between factors. This
looks somewhat weird unless one realizes that the Hilbert space inner product is defined by the
”thermodynamical” state φ and thus probability distribution for operators and for their thermal
expectation values. Inner product in turn defines the notion of norm and thus of continuity and it
is this notion which differs dramatically for λ = 1 and λ < 1 so that the completions of the algebra
differ dramatically.

In particular, there is no sign about I∞ tensor factor or crossed product with Z represented as
automorphisms inducing the scaling of trace by λ. By taking tensor product of I∞ factor represented
as tensor power with induces running from −∞ to 0 and II1 HFF with indices running from 1 to ∞
one can make explicit the representation of the automorphism of II∞ factor inducing scaling of trace
by λ and transforming matrix factors possessing trace given by square root of index M : N to those
with trace 2.

11.3 Braid group, von Neumann algebras, quantum TGD,
and formation of bound states

The article of Vaughan Jones in [62] discusses the relation between knot theory, statistical physics,
and von Neumann algebras. The intriguing results represented stimulate concrete ideas about how
to understand the formation of bound states quantitatively using the notion of join along boundaries
bond. All mathematical results represented in the following discussion can be found in [62] and in the
references cited therein so that I will not bother to refer repeatedly to this article in the sequel.

11.3.1 Factors of von Neumann algebras

Von Neumann algebras M are algebras of bounded linear operators acting in Hilbert space. These
algebras contain identity, are closed with respect to Hermitian conjugation, and are topologically
complete. Finite-dimensional von Neuman algebras decompose into a direct sum of algebras Mn,
which act essentially as matrix algebras in Hilbert spaces Hnm, which are tensor products Cn ⊗Hm.
Here Hm is an m-dimensional Hilbert space in which Mn acts trivially. m is called the multiplicity of
Mn.

A factor of von Neumann algebra is a von Neumann algebra whose center is just the scalar multiples
of identity. The algebra of bounded operators in an infinite-dimensional Hilbert space is certainly a
factor. This algebra decomposes into ”atoms” represented by one-dimensional projection operators.
This kind of von Neumann algebras are called type I factors.

The so called type II1 factors and type III factors came as a surprise even for Murray and von
Neumann. II1 factors are infinite-dimensional and analogs of the matrix algebra factors Mn. They
allow a trace making possible to define an inner product in the algebra. The trace defines a generalized
dimension for any subspace as the trace of the corresponding projection operator. This dimension is



880 Chapter 11. Was von Neumann Right After All?

however continuous and in the range [0, 1]: the finite-dimensional analog would be the dimension of
the sub-space divided by the dimension of Hn and having values (0, 1/n, 2/n, ..., 1). II1 factors are
isomorphic and there exists a minimal ”hyper-finite” II1 factor is contained by every other II1 factor.

Just as in the finite-dimensional case, one can to assign a multiplicity to the Hilbert spaces where
II1 factors act on. This multiplicity, call it dimM (H) is analogous to the dimension of the Hilbert
space tensor factor Hm, in which II1 factor acts trivially. This multiplicity can have all positive real
values. Quite generally, von Neumann factors of type I and II1 are in many respects analogous to the
coefficient field of a vector space.

11.3.2 Sub-factors

Sub-factors N ⊂M , where N and M are of type II1 and have same identity, can be also defined. The
observation that M is analogous to an algebraic extension of N motivates the introduction of index
|M : N |, which is essentially the dimension of M with respect to N . This dimension is an analog for
the complex dimension of CP2 equal to 2 or for the algebraic dimension of the extension of p-adic
numbers.

The following highly non-trivial results about the dimensions of the tensor factors hold true.

1. If N ⊂ M are II1 factors and |M : N | < 4, there is an integer n ≥ 3 such |M : N | = r =
4cos2(π/n), n ≥ 3.

2. For each number r = 4cos2(π/n) and for all r ≥ 4 there is a sub-factor Rr ⊂ R with |R : Rr| = r.

One can say that M effectively decomposes to a tensor product of N with a space, whose
dimension is quantized to a certain algebraic number r. The values of r corresponding to
n = 3, 4, 5, 6... are r = 1, 2, 1 + Φ ' 2.61, 3, ... and approach to the limiting value r = 4. For
r ≥ 4 the dimension becomes continuous.

An even more intriguing result is that by starting from N ⊂ M with a projection eN : M → N
one can extend M to a larger II1 algebra 〈M, eN 〉 such that one has

|〈M, eN 〉 : M | = |M : N | ,
tr(xeN ) = |M : N |−1tr(x) , x ∈M . (11.3.1)

One can continue this process and the outcome is a tower of II1 factors Mi ⊂ Mi+1 defined by
M1 = N , M2 = M , Mi+1 = 〈Mi, eMi−1

〉. Furthermore, the projection operators eMi
≡ ei define a

Temperley-Lieb representation of the braid algebra via the formulas

e2
i = ei ,

eiei±1ei = τei , τ = 1/|M : N |
eiej = ejei , |i− j| ≥ 2 . (11.3.2)

Temperley Lieb algebra will be discussed in more detail later. Obviously the addition of a tensor
factor of dimension r is analogous with the addition of a strand to a braid.

The hyper-finite algebra R is generated by the set of braid generators {e1, e2, .....} in the braid
representation corresponding to r. Sub-factor R1 is obtained simply by dropping the lowest generator
e1, R2 by dropping e1 and e2, etc..

11.3.3 II1 factors and the spinor structure of infinite-dimensional configu-
ration space of 3-surfaces

The following observations serve as very suggestive guidelines for how one could interpret the above
described results in TGD framework.

1. The discrete spectrum of dimensions 1, 2, 1 + Φ, 3, .. below r < 4 brings in mind the discrete
energy spectrum for bound states whereas the for r ≥ 4 the spectrum of dimensions is analogous
to a continuum of unbound states. The fact that r is an algebraic number for r < 4 conforms
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with the vision that bound state entanglement corresponds to entanglement probabilities in an
extension of rationals defining a finite-dimensional extension of p-adic numbers for every prime
p.

2. The discrete values of r correspond precisely to the angles φ allowed by the unitarity of Temperley-
Lieb representations of the braid algebra with d = −

√
r. For r ≥ 4 Temperley-Lieb representa-

tion is not unitary since cos2(π/n) becomes formally larger than one (n would become imaginary
and continuous). This could mean that r ≥ 4, which in the generic case is a transcendental
number, represents unbound entanglement, which in TGD Universe is not stable against state
preparation and state function reduction processes.

3. The formula tr(xeN ) = |M : N |−1tr(x) is completely analogous to the formula characterizing
the normalization of the link invariant induced by the second Markov move in which a new
strand is added to a braid such that it braids only with the leftmost strand and therefore does
not change the knot resulting as a link closure. Hence the addition of a single strand seems to
correspond to an introduction of an r-dimensional sub-factor to II1 factor.

In TGD framework the generation of bound state has the formation of (possibly braided join along
boundaries bonds as a space-time correlate and this encourages a rather concrete interpretation of
these findings. Also the I1 factors themselves have a nice interpretation in terms of the configuration
space spinor structure.

1. The interpretation of II1 factors in terms of Clifford algebra of configuration space

The Clifford algebra of an infinite-dimensional Hilbert space defines a II1 factor. The counterparts
for ei would naturally correspond to the analogs of projection operators (1+σi)/2 and thus to operators
of form (1 + Σij)/2, defined by a subset of sigma matrices. The first guess is that the index pairs are
(i, j) = (1, 2), (2, 3), (3, 4), ..... The dimension of the Clifford algebra is 2N for N -dimensional space
so that ∆N = 1 would correspond to r = 2 in the classical case and to one qubit. The problem with
this interpretation is r > 2 has no physical interpretation: the formation of bound states is expected
to reduce the value of r from its classical value rather than increase it.

One can however consider also the sequence (i, j) = (1, 1 + k), (1 + k, 1 + 2k), (1 + 2k, 1 + 3k), ....
For k = 2 the reduction of r from r = 4 would be due to the loss of degrees of freedom due to the
formation of a bound state and (r = 4,∆N = 2) would correspond to the classical limit resulting at
the limit of weak binding. The effective elimination of the projection operators from the braid algebra
would reflect this loss of degrees of freedom. This interpretation could at least be an appropriate
starting point in TGD framework.

In TGD Universe physical states correspond to configuration space spinor fields, whose gamma
matrix algebra is constructed in terms of second quantized free induced spinor fields defined at space-
time sheets. The original motivation was the idea that the quantum states of the Universe correspond
to the modes of purely classical free spinor fields in the infinite-dimensional configuration space of
3-surfaces (the world of classical worlds) possessing general coordinate invariant (in 4-dimensional
sense!) Kähler geometry. Quantum information-theoretical motivation could have come from the
requirement that these fields must be able to code information about the properties of the point (3-
surface, and corresponding space-time sheet). Scalar fields would treat the 3-surfaces as points and
are thus not enough. Induced spinor fields allow however an infinite number of modes: according to
the naive Fourier analyst’s intuition these modes are in one-one correspondence with the points of
the 3-surface. Second quantization gives much more. Also non-local information about the induced
geometry and topology must be coded, and here quantum entanglement for states generated by the
fermionic oscillator operators coding information about the geometry of 3-surface provides enormous
information storage capacity.

In algebraic geometry also the algebra of the imbedding space of algebraic variety divided by the
ideal formed by functions vanishing on the surface codes information about the surface: for instance,
the maximal ideals of this algebra code for the points of the surface (functions of imbedding space
vanishing at a particular point). The function algebra of the imbedding space indeed plays a key role
in the construction of the configuration space-geometry besides second quantized fermions.

The Clifford algebra generated by the configuration space gamma matrices at a given point (3-
surface) of the configuration space of 3-surfaces could be regarded as a II1-factor associated with the
local tangent space endowed with Hilbert space structure (configuration space Kähler metric). The
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counterparts for ei would naturally correspond to the analogs of projection operators (1 + σi)/2 and
thus operators of form (GAB × 1 + ΣAB) formed as linear combinations of components of the Kähler
metric and of the sigma matrices defined by gamma matrices and contracted with the generators of the
isometries of the configuration space. The addition of single complex degree of freedom corresponds
to ∆N = 2 and r = 4 and the classical limit and would correspond to the addition of single braid.
(r < 4,∆N < 2) would be due to the binding effects.

r = 1 corresponds to ∆N = 0. The first interpretation is in terms of strong binding so that the
addition of particle does not increase the number of degrees of freedom. In TGD framework r = 1
might also correspond to the addition of zero modes which do not contribute to the configuration
space metric and spinor structure but have a deep physical significance. (r = 2,∆N = 1) would
correspond to strong binding reducing the spinor and space-time degrees of freedom by a factor of
half. r = Φ2 (n = 5) resp. r = 3 (n = 6) corresponds to ∆Nr ' 1.3885 resp. ∆Nr = 1.585. Using
the terminology of quantum field theories, one might say that in the infinite-dimensional context a
given complex bound state degree of freedom possesses anomalous real dimension r < 2. r ≥ 4 would
correspond to a unbound entanglement and increasingly classical behavior.

11.3.4 About possible space-time correlates for the hierarchy of II1 sub-
factors

By quantum classical correspondence the infinite-dimensional physics at the configuration space level
should have definite space-time correlates. In particular, the dimension r should have some fractal
dimension as a space-time correlate.

1. Quantum classical correspondence

Join along boundaries bonds serve as correlates for bound state formation. The presence of join
along boundaries bonds would lead to a generation of bound states just by reducing the degrees of
freedom to those of connected 3-surface. The bonds would constrain the two 3-surfaces to single
space-like section of imbedding space.

This picture would allow to understand the difficulties related to Bethe-Salpeter equations for
bound states based on the assumption that particles are points moving in M4. The restriction of
particles to time=constant section leads to a successful theory which is however non-relativistic. The
basic binding energy would relate to the entanglement of the states associated with the bonded 3-
surfaces. Since the classical energy associated with the bonds is positive, the binding energy tends to
be reduced as r increases.

By spin glass degeneracy join along boundaries bonds have an infinite number of degrees of freedom
in the ordinary sense. Since the system is infinite-dimensional and quantum critical, one expects that
the number r of degrees freedom associated with a single join along boundaries bond is universal.
Since join along boundaries bonds correspond to the strands of a braid and are correlates for the
bound state formation, the natural guess is that r = 4cos2(π/n), n = 3, 4, 5, ... holds true. r < 4
should characterize both binding energy and the dimension of the effective tensor factor introduced
by a new join along boundaries bond.

The assignment of 2 ”bare” and ∆N ≤ 2 renormalized real dimensions to single join along bound-
aries bond is consistent with the effective two-dimensionality of anyon systems and with the very
notion of the braid group. The picture conforms also with the fact that the degrees of freedom in
question are associated with metrically 2-dimensional light-like boundaries (of say magnetic flux tubes)
acting as causal determinants. Also vibrational degrees of freedom described by Kac-Moody algebra
are present and the effective 2-dimensionality means that these degrees of freedom are not excited and
only topological degrees of freedom coded by the position of the puncture remain.

(r ≥ 4,∆N ≥ 2), if possible at all, would mean that the tensor factor associated with the join
along boundaries bond is effectively more than 4-dimensional due to the excitation of the vibrational
Kac-Moody degrees of freedom. The finite value of r would mean that most of theme are eliminated
also now but that their number is so large that bound state entanglement is not possible anymore.

The introduction of non-integer dimension could be seen as an effective description of an infinite-
dimensional system as a finite-dimensional system in the spirit of renormalization group philosophy.
The non-unitarity of r ≥ 4 Temperley-Lieb representations could mean that they correspond to
unbound entanglement unstable against state function reduction and preparation processes. Since
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this kind of entanglement does not survive in quantum jump it is not representable in terms of braid
groups.

2. Does r define a fractal dimension of CP2 projection of partonic 2-surface?

On basis of the quantum classical correspondence one expects that r should define some fractal
dimension at the space-time level. Since r varies in the range 1, .., 4 and corresponds to the fractal
dimension of 2-D Clifford algebra the corresponding spinors would have dimension d =

√
r. There are

two options.

1. D = r/2 is suggested on basis of the construction of quantum version of Md.

2. D = log2(r) is natural on basis of the dimension d = 2D/2 of spinors in D-dimensional space.

r can be assigned with CP2 degrees of freedom in the model for the quantization of Planck constant
based on the explicit identification of Josephson inclusions in terms of finite subgroups of SU(2) ⊂
SU(3). Hence D should relate to the CP2 projection of the partonic 2-surface and one could have
D = D(X2), the latter being the average dimension of the CP2 projection of the partonic 2-surface
for the preferred extremals of Kähler action.

Since a strongly interacting non-perturbative phase should be in question, the dimension for the
CP2 projection of the space-time surface must be at least D(X4) = 2 to guarantee that non-vacuum
extremals are in question. This is true for D(X2) = r/2 ≥ 1. The logarithmic formula D(X2) =
log2(r) ≥ 0 gives D(X2) = 0 for n = 3 meaning that partonic 2-surfaces are vacua: space-time surface
can still be a non-vacuum extremal.

As n increases, the number of CP2 points covering a given M4 point and related by the finite
subgroup of G ⊂ SU(2) ⊂ SU(3) defining the inclusion increases so that the fractal dimension of
the CP2 projection is expected to increase also. D(X2) = 2 would correspond to the space-time
surfaces for which partons have topological magnetic charge forcing them to have a 2-dimensional
CP2 projection. There are reasons to believe that the projection must be homologically non-trivial
geodesic sphere of CP2.

11.3.5 Could binding energy spectra reflect the hierarchy of effective ten-
sor factor dimensions?

If one takes completely seriously the idea that join along boundaries bonds are a correlate of binding
then the spectrum of binding energies might reveal the hierarchy of the fractal dimensions r(n).
Hydrogen atom and harmonic oscillator have become symbols for bound state systems. Hence it
is of interest to find whether the binding energy spectrum of these systems might be expressed in
terms of the ”binding dimension” x(n) = 4 − r(n) characterizing the deviation of dimension from
that at the limit of a vanishing binding energy. The binding energies of hydrogen atom are in a
good approximation given by E(n)/E(1) = 1/n2 whereas in the case of harmonic oscillator one has
E(n)/E0 = 2n+1. The constraint n ≥ 3 implies that the principal quantum number must correspond
n− 2 in the case of hydrogen atom and to n− 3 in the case of harmonic oscillator.

Before continuing one must face an obvious objection. By previous arguments different values of
r correspond to different values of ~. The value of ~ cannot however differ for the states of hydrogen
atom. This is certainly true. The objection however leaves open the possibility that the states of the
light-like boundaries of join along boundaries bonds correspond to reflective level and represent some
aspects of the physics of, say, hydrogen atom.

In the general case the energy spectrum satisfies the condition

EB(n)

EB(3)
=

f(4− r(n))

f(3)
, (11.3.3)

where f is some function. The simplest assumption is that the spectrum of binding energies EB(n) =
E(n)− E(∞) is a linear function of r(n)− 4:

EB(n)

EB(3)
=

4− r(n)

3
=

4

3
sin2(

π

n
)→ 4π2

3
× 1

n2
. (11.3.4)



884 Chapter 11. Was von Neumann Right After All?

In the linear approximation the ratio E(n+ 1)/E(n) approaches (n/n+ 1)2 as in the case of hydrogen
atom but for small values the linear approximation fails badly. An exact correspondence results for

E(n)
E(1) = 1

n2 ,

n = 1

π arcsin
(√

1−r(n+2)/4
) − 2 .

Also the ionized states with r ≥ 4 would correspond to bound states in the sense that two particle
would be constrained to move in the same space-like section of space-time surface and should be
distinguished from genuinely free states when particles correspond to disjoint space-time sheets.

For the harmonic oscillator one express E(n) − E(0) instead of E(n) − E(∞) as a function of
x = 4− r and one would have

E(n)
E(0) = 2n+ 1 ,

n = 1

π arcsin
(√

1−r(n+3)/4
) − 3 .

In this case ionized states would not be possible due to the infinite depth of the harmonic oscillator
potential well.

11.3.6 Four-color problem, II1 factors, and anyons

The so called four-color problem can be phrased as a question whether it is possible to color the
regions of a plane map using only four colors in such a manner that no adjacent regions have the
same color (for an enjoyable discussion of the problem see [52] ). One might call this kind of coloring
complete. There is no loss of generality in assuming that the map can be represented as a graph
with regions represented as triangle shaped faces of the graph. For the dual graph the coloring of
faces becomes coloring of vertices and the question becomes whether the coloring is possible in such a
manner that no vertices at the ends of the same edge have same color. The problem can be generalized
by replacing planar maps with maps defined on any two-dimensional surface with or without boundary
and arbitrary topology. The four-color problem has been solved with an extensive use of computer [48]
but it would be nice to understand why the complete coloring with four colors is indeed possible.

There is a mysterious looking connection between four-color problem and the dimensions r(n) =
4cos2(π/n), which are in fact known as Beraha numbers in honor of the discoverer of this connection
[119] . Consider a more general problem of coloring two-dimensional map using m colors. One can
construct a polynomial P (m), so called chromatic polynomial, which tells the number of colorings
satisfying the condition that no neighboring vertices have the same color. The vanishing of the
chromatic polynomial for an integer value of m tells that the complete coloring using m colors is not
possible.

P (m) has also other than integer valued real roots. The strange discovery due to Beraha is that
the numbers B(n) appear as approximate roots of the chromatic polynomial in many situations. For
instance, the four non-integral real roots of the chromatic polynomial of the truncated icosahedron
are very close to B(5), B(7), B(8) and B(9). These findings led Beraha to formulate the following
conjecture. Let Pi be a sequence of chromatic polynomials for a graph for which the number of
vertices approaches infinity. If ri is a root of the polynomial approaching a well-defined value at the
limit i→∞, then the limiting value of r(i) is Beraha number.

A physicist’s proof for Beraha’s conjecture based on quantum groups and conformal theory has
been proposed [119] . It is interesting to look for the a possible physical interpretation of 4-color
problem and Beraha’s conjecture in TGD framework.

1. In TGD framework B(n) corresponds to a renormalized dimension for a 2-spin system consisting
of two qubits, which corresponds to 4 different colors. For B(n) = 4 two spin 1/2 fermions
obeying Fermi statistics are in question. Since the system is 2-dimensional, the general case
corresponds to two anyons with fractional spin B(n)/4 giving rise to B(n) < 4 colors and
obeying fractional statistics instead of Fermi statistics. One can replace coloring problem with
the problem whether an ideal antiferro-magnetic lattice using anyons with fractional spin B(n)/4
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is possible energetically. In other words, does this system form a quantum mechanical bound
state even at the limit when the lengths of the edges approach to zero.

2. The failure of coloring means that there are at least two neighboring vertices in the lattice with
the property that the spins at the ends of the same edge are in the same direction. Lattice
defect would be in question. At the limit of an infinitesimally short edge length the failure
of coloring is certainly not an energetically favored option for fermionic spins (m = 4) but is
allowed by anyonic statistics for m = B(n) < 4. Thus one has reasons to expect that when
anyonic spin is B(n)/4 the formation of a purely 2-anyon bound states becomes possible and
they form at the limit of an infinitesimal edge length a kind of topological macroscopic quantum
phase with a non-vanishing binding energy. That B(n) are roots of the chromatic polynomial
at the continuum limit would have a clear physical interpretation.

3. Only B(n) < 4 defines a sub-factor of von Neumann algebra allowing unitary Temperley-Lieb
representations. This is consistent with the fact that for m = 4 complete coloring must exists.
The physical argument is that otherwise a macroscopic quantum phase with non-vanishing
binding energy could result at the continuum limit and the upper bound for r from unitarity
would be larger than 4. For m = 4 the completely anti-ferromagnetic state would represent the
ground state and the absence of anyon-pair condensate would mean a vanishing binding energy.

11.4 Inclusions of II1 and III1 factors

Inclusions N ⊂M of von Neumann algebras have physical interpretation as a mathematical descrip-
tion for sub-system-system relation. For type I algebras the inclusions are trivial and tensor product
description applies as such. For factors of II1 and III the inclusions are highly non-trivial. The
inclusion of type II1 factors were understood by Vaughan Jones [5] and those of factors of type III
by Alain Connes [65] .

Sub-factor N of M is defined as a closed ∗-stable C-subalgebra of M. Let N be a sub-factor
of type II1 factor M. Jones index M : N for the inclusion N ⊂ M can be defined as M : N =
dimN (L2(M)) = TrN ′(idL2(M)). One can say that the dimension of completion of M as N module
is in question.

11.4.1 Basic findings about inclusions

What makes the inclusions non-trivial is that the position of N in M matters. This position is
characterized in case of hyper-finite II1 factors by index M : N which can be said to the dimension
of M as N module and also as the inverse of the dimension defined by the trace of the projector
from M to N . It is important to notice that M : N does not characterize either M or M, only the
imbedding.

The basic facts proved by Jones are following [5] .

1. For pairs N ⊂M with a finite principal graph the values of M : N are given by

a) M : N = 4cos2(π/h) , h ≥ 3 ,

b) M : N ≥ 4 .
(11.4.1)

the numbers at right hand side are known as Beraha numbers [119] . The comments below give
a rough idea about what finiteness of principal graph means.

2. As explained in [38] , for M : N < 4 one can assign to the inclusion Dynkin graph of ADE
type Lie-algebra g with h equal to the Coxeter number h of the Lie algebra given in terms of
its dimension and dimension r of Cartan algebra r as h = (dimg(g)− r)/r. The Lie algebras of
SU(n), E7 and D2n+1 are however not allowed. For M : N = 4 one can assign to the inclusion
an extended Dynkin graph of type ADE characterizing Kac Moody algebra. Extended ADE
diagrams characterize also the subgroups of SU(2) and the interpretation proposed in [97] is
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following. The ADE diagrams are associated with the n = ∞ case having M : N ≥ 4. There
are diagrams corresponding to infinite subgroups: SU(2) itself, circle group U(1), and infinite
dihedral groups (generated by a rotation by a non-rational angle and reflection. The diagrams
corresponding to finite subgroups are extension of An for cyclic groups, of Dn dihedral groups,
and of En with n=6,7,8 for tedrahedron, cube, dodecahedron. For M : N < 4 ordinary Dynkin
graphs of D2n and E6, E8 are allowed.

The interpretation of [97] is that the subfactors correspond to inclusions N ⊂ M defined in the
following manner.

1. Let G be a finite subgroup of SU(2). Denote by R the infinite-dimensional Clifford algebras
resulting from infinite-dimensional tensor power of M2(C) and by R0 its subalgebra obtained
by restricting M2(C) element of the first factor to be unit matrix. Let G act by automorphisms
in each tensor factor. G leaves R0 invariant. Denote by RG0 and RG the sub-algebras which
remain element wise invariant under the action of G. The resulting Jones inclusions RG0 ⊂ RG

are consistent with the ADE correspondence.

2. The argument suggests the existence of quantum versions of subgroups of SU(2) for which rep-
resentations are truncations of those for ordinary subgroups. The results have been generalized
to other Lie groups.

3. Also SL(2, C) acts as automorphisms of M2(C). An interesting question is what happens if one
allows G to be any discrete subgroups of SL(2,C). Could this give inclusions with M : N > 4?.
The strong analogy of the spectrum of indices with spectrum of energies with hydrogen atom
would encourage this interpretation: the subgroup SL(2,C) not reducing to those of SU(2) would
correspond to the possibility for the particle to move with respect to each other with constant
velocity.

11.4.2 The fundamental construction and Temperley-Lieb algebras

It was shown by Jones [82] that for a given Jones inclusion with β =M : N <∞ there exists a tower
of finite II1 factors Mk for k = 0, 1, 2, .... such that

1. M0 = N , M1 =M,

2. Mk+1 = EndMk−1
Mk is the von Neumann algebra of operators on L2(Mk) generated by Mk

and an orthogonal projection ek : L2(Mk) → L2(Mk−1) for k ≥ 1, where Mk is regarded as a
subalgebra of Mk+1 under right multiplication.

It can be shown thatMk+1 is a finite factor. The sequence of projections onM∞ = ∪k≥0Mk satisfies
the relations

e2
i = ei , e=

i ei ,
ei = βeiejei for |i− j| = 1 ,
eiej = ejei for |i− j| ≥ 2 .

(11.4.2)

The construction of hyper-finite II1 factor using Clifford algebra C(2) represented by 2×2 matrices
allows to understand the theorem in β = 4 case in a straightforward manner. In particular, the second
formula involving β follows from the identification of x at (k − 1)th level with (1/β)diag(x, x) at kth

level.
By replacing 2 × 2 matrices with

√
β ×
√
β matrices one can understand heuristically what is

involved in the more general case. Mk isMk−1 module with dimension
√
β andMk+1 is the space of√

β×
√
β matricesMk−1 valued entries acting inMk. The transition fromMk toMk−1 linear maps

ofMk happens in the transition to the next level. x at (k−1)th level is identified as (x/β)×Id√β×√β
at the next level. The projection ek picks up the projection of the matrix with Mk−1 valued entries
in the direction of the Id√β×

√
β .

The union of algebras Aβ,k generated by 1, e1, ..., ek defines Temperley-Lieb algebra Aβ [130] . This
algebra is naturally associated with braids. Addition of one strand to a braid adds one generator to
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this algebra and the representations of the Temperley Lieb algebra provide link, knot, and 3-manifold
invariants [62] . There is also a connection with systems of statistical physics and with Yang-Baxter
algebras [58] .

A further interesting fact about the inclusion hierarchy is that the elements inMi belonging to the
commutator N ′ of N form finite-dimensional spaces. Presumably the dimension approaches infinity
for n→∞.

11.4.3 Connection with Dynkin diagrams

The possibility to assign Dynkin diagrams (β < 4) and extended Dynkin diagrams (β = 4 to Jones
inclusions can be understood heuristically by considering a characterization of so called bipartite
graphs [98] , [38] by the norm of the adjacency matrix of the graph.

Bipartite graphs Γ is a finite, connected graph with multiple edges and black and white vertices
such that any edge connects white and black vertex and starts from a white one. Denote by w(Γ)
(b(Γ)) the number of white (black) vertices. Define the adjacency matrix Λ = Λ(Γ) of size b(Γ)×w(Γ)
by

wb,w =

{
m(e) if there exists e such that δe = b− w ,
0 otherwise .

(11.4.3)

Here m(e) is the multiplicity of the edge e.
Define norm ||Γ|| as

||X|| = max{||X||; ||x|| ≤ 1} ,

||Γ|| = ||Λ(Γ)|| =
∣∣∣∣∣∣ 0 Λ(Γ)

Λ(Γ)t 0

∣∣∣∣∣∣ . (11.4.4)

Note that the matrix appearing in the formula is (m+ n)× (m+ n) symmetric square matrix so that
the norm is the eigenvalue with largest absolute value.

Suppose that Γ is a connected finite graph with multiple edges (sequences of edges are regarded
as edges). Then

1. If ||Γ|| ≤ 2 and if Γ has a multiple edge, ||Γ|| = 2 and Γ = Ã1, the extended Dynkin diagram for
SU(2) Kac Moody algebra.

2. ||Γ|| < 2 if and only Γ is one of the Dynkin diagrams of A,D,E. In this case ||Γ|| = 2cos(π/h),
where h is the Coxeter number of Γ.

3. ||Γ|| = 2 if and only if Γ is one of the extended Dynkin diagrams Ã, D̃, Ẽ.

This result suggests that one can indeed assign to the Jones inclusions Dynkin diagrams. To really
understand how the inclusions can be characterized in terms bipartite diagrams would require a deeper
understanding of von Neumann algebras. The following argument only demonstrates that bipartite
graphs naturally describe inclusions of algebras.

1. Consider a bipartite graph. Assign to each white vertex linear space W (w) and to each edge of
a linear space W (b, w). Assign to a given black vertex the vector space ⊕δe=b−wW (b, w)⊗W (w)
where (b, w) corresponds to an edge ending to b.

2. Define N as the direct sum of algebras End(W (w)) associated with white vertices and M as
direct sum of algebras ⊕δe=b−wEnd(W (b, w))⊗ End(W (w)) associated with black vertices.

3. There is homomorphism N → M defined by imbedding direct sum of white endomorphisms x
to direct sum of tensor products x with the identity endomorphisms associated with the edges
starting from x.

It is possible to show that Jones inclusions correspond to the Dynkin diagrams of An, D2n, and E6, E8

and extended Dynkin diagrams of ADE type. In particular, the dual of the bi-partite graph associated
withMn−1 ⊂Mn obtained by exchanging the roles of white and black vertices describes the inclusion
Mn ⊂ Mn+1 so that two subsequent Jones inclusions might define something fundamental (the
corresponding space-time dimension is 2× log2(M : N ) ≤ 4.
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11.4.4 Indices for the inclusions of type III1 factors

Type III1 factors appear in relativistic quantum field theory defined in 4-dimensional Minkowski
space [72] . An overall summary of basic results discovered in algebraic quantum field theory is
described in the lectures of Longo [105] . In this case the inclusions for algebras of observables are
induced by the inclusions for bounded regions of M4 in axiomatic quantum field theory. Tomita’s
theory of modular Hilbert algebras [129] , [17] forms the mathematical corner stone of the theory.

The basic notion is Haag-Kastler net [112] consisting of bounded regions of M4. Double cone serves
as a representative example. The von Neumann algebra A(O) is generated by observables localized
in bounded region O. The net satisfies the conditions implied by local causality:

1. Isotony: O1 ⊂ O2 implies A(O1) ⊂ A(O2).

2. Locality: O1 ⊂ O′2 implies A(O1) ⊂ A(O2)′ with O′ defined as {x : 〈x, y〉 < 0 for all y ∈ O}.

3. Haag duality A(O′)′ = A(O).

Besides this Poincare covariance, positive energy condition, and the existence of vacuum state
is assumed.

DHR (Doplicher-Haag-Roberts) [117] theory allows to deduce the values of Jones index and they
are squares of integers in dimensions D > 2 so that the situation is rather trivial. The 2-dimensional
case is distinguished from higher dimensional situations in that braid group replaces permutation
group since the paths representing the flows permuting identical particles can be linked in X2×T and
anyonic statistics [23, 21] becomes possible. In the case of 2-D Minkowski space M2 Jones inclusions
with M : N < 4 plus a set of discrete values of M : N in the range (4, 6) are possible. In [105] some
values are given (M : N = 5, 5.5049..., 5.236...., 5.828...).

At least intersections of future and past light cones seem to appear naturally in TGD framework
such that the boundaries of future/past directed light cones serve as seats for incoming/outgoing
states defined as intersections of space-time surface with these light cones. III1 sectors cannot thus
be excluded as factors in TGD framework. On the other hand, the construction of S-matrix at
space-time level is reduced to II1 case by effective 2-dimensionality.

11.5 TGD and hyper-finite factors of type II1: ideas and ques-
tions

By effective 2-dimensionality of the construction of quantum states the hyper-finite factors of type
II1 fit naturally to TGD framework. In particular, infinite dimensional spinors define a canonical
representations of this kind of factor. The basic question is whether only hyper-finite factors of type
II1 appear in TGD framework. Affirmative answer would allow to interpret physical M -matrix as
time like entanglement coefficients.

11.5.1 What kind of hyper-finite factors one can imagine in TGD?

The working hypothesis has been that only hyper-finite factors of type II1 appear in TGD. The basic
motivation has been that they allow a new view about M -matrix as an operator representable as
time-like entanglement coefficients of zero energy states so that physical states would represent laws
of physics in their structure. They allow also the introduction of the notion of measurement resolution
directly to the definition of reaction probabilities by using Jones inclusion and the replacement of state
space with a finite-dimensional state space defined by quantum spinors. This hypothesis is of course
just an attractive working hypothesis and deserves to be challenged.

Configuration space spinors

For configuration space spinors the HFF II1 property is very natural because of the properties of
infinite-dimensional Clifford algebra and the inner product defined by the configuration space geom-
etry does not allow other factors than this. A good guess is that the values of conformal weights
label the factors appearing in the tensor power defining configuration space spinors. Because of
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the non-degeneracy and super-symplectic symmetries the density matrix representing metric must
be essentially unit matrix for each conformal weight which would be the defining characteristic of
hyper-finite factor of type II1.

Bosonic degrees of freedom

The bosonic part of the super-symplectic algebra consists of Hamiltonians of CH in one-one corre-
spondence with those of δM4

±×CP2. Also the Kac-Moody algebra acting leaving the light-likeness of
the partonic 3-surfaces intact contributes to the bosonic degrees of freedom. The commutator of these
algebras annihilates physical states and there are also Virasoro conditions associated with ordinary
conformal symmetries of partonic 2-surface [24] . The labels of Hamiltonians of configuration space
and spin indices contribute to bosonic degrees of freedom.

Hyper-finite factors of type II1 result naturally if the system is an infinite tensor product finite-
dimensional matrix algebra associated with finite dimensional systems [66] . Unfortunately, neither
Virasoro, symplectic nor Kac-Moody algebras do have decomposition into this kind of infinite tensor
product. If bosonic degrees for super-symplectic and super-Kac Moody algebra indeed give I∞ factor
one has HFF if type II∞. This looks the most natural option but threatens to spoil the beautiful idea
about M -matrix as time-like entanglement coefficients between positive and negative energy parts of
zero energy state.

The resolution of the problem is surprisingly simple and trivial after one has discovered it. The
requirement that state is normalizable forces to project M -matrix to a finite-dimensional sub-space
in bosonic degrees of freedom so that the reduction I∞ → In occurs and one has the reduction
II∞ → II1 × In = II1 to the desired HFF.

One can consider also the possibility of taking the limit n→∞. One could indeed say that since
I∞ factor can be mapped to an infinite tensor power of M(2, C) characterized by a state which is
not trace, it is possible to map this representation to HFF by replacing state with trace [66] . The
question is whether the forcing the bosonic foot to fermionic shoe is physically natural. One could
also regard the II1 type notion of probability as fundamental and also argue that it is required by
full super-symmetry realized also at the level of many-particle states rather than mere single particle
states.

How the bosonic cutoff is realized?

Normalizability of state requires that projection to a finite-dimensional bosonic sub-space is carried out
for the bosonic part of the M -matrix. This requires a cutoff in quantum numbers of super-conformal
algebras. The cutoff for the values of conformal weight could be formulated by replacing integers with
Zn or with some finite field G(p, 1). The cutoff for the labels associated with Hamiltonians defined as
an upper bound for the dimension of the representation looks also natural.

Number theoretical braids which are discrete and finite structures would define space-time correlate
for this cutoff. p-Adic length scale p ' 2k hypothesis could be interpreted as stating the fact that only
powers of p up to pk are significant in p-adic thermodynamics which would correspond to finite field
G(k, 1) if k is prime. This has no consequences for p-adic mass calculations since already the first two
terms give practically exact results for the large primes associated with elementary particles [55] .

Finite number of strands for the theoretical braids would serve as a correlate for the reduction of
the representation of Galois group S∞ of rationals to an infinite produce of diagonal copies of finite-
dimensional Galois group so that same braid would repeat itself like a unit cell of lattice i condensed
matter [20] .

HFF of type III for field operators and HFF of type II1 for states?

One could also argue that the Hamiltonians with fixed conformal weight are included in fermionic II1
factor and bosonic factor I∞ factor, and that the inclusion of conformal weights leads to a factor of
type III. Conformal weight could relate to the integer appearing in the crossed product representation
III = Z ×cr II∞ of HFF of type III [66] .

The value of conformal weight is non-negative for physical states which suggests that Z reduces to
semigroup N so that a factor of type III would reduce to a factor of type II∞ since trace would become
finite. If unitary process corresponds to an automorphism for II∞ factor, the action of automorphisms
affecting scaling must be uni-directional. Also thermodynamical irreversibility suggests the same. The
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assumption that state function reduction for positive energy part of state implies unitary process for
negative energy state and vice versa would only mean that the shifts for positive and negative energy
parts of state are opposite so that Z → N reduction would still hold true.

HFF of type II1 for the maxima of Kähler function?

Probabilistic interpretation allows to gain heuristic insights about whether and how hyper-finite factors
of type type II1 might be associated with configuration space degrees of freedom. They can appear
both in quantum fluctuating degrees of freedom associated with a given maximum of Kähler function
and in the discrete space of maxima of Kähler function.

Spin glass degeneracy is the basic prediction of classical TGD and means that instead of a single
maximum of Kähler function analogous to single free energy minimum of a thermodynamical system
there is a fractal spin glass energy landscape with valleys inside valleys. The discretization of the
configuration space in terms of the maxima of Kähler function crucial for the p-adicization problem,
leads to the analog of spin glass energy landscape and hyper-finite factor of type II1 might be the
appropriate description of the situation.

The presence of the tensor product structure is a powerful additional constraint and something
analogous to this should emerge in configuration space degrees of freedom. Fractality of the many-
sheeted space-time is a natural candidate here since the decomposition of the original geometric
structure to parts and replacing them with the scaled down variant of original structure is the geometric
analog of forming a tensor power of the original structure.

11.5.2 Direct sum of HFFs of type II1 as a minimal option

HFF II1 property for the Clifford algebra of the configuration space means a definite distinction
from the ordinary Clifford algebra defined by the fermionic oscillator operators since the trace of the
unit matrix of the Clifford algebra is normalized to one. This does not affect the anti-commutation
relations at the basic level and delta functions can appear in them at space-time level. At the level of
momentum space I∞ property requires discrete basis and anti-commutators involve only Kronecker
deltas. This conforms with the fact that HFF of type II1 can be identified as the Clifford algebra
associated with a separable Hilbert space.

II∞ factor or direct sum of HFFs of type II1?

The expectation is that super-symplectic algebra is a direct sum over HFFs of type II1 labeled by
the radial conformal weight. In the same manner the algebra defined by fermionic anti-commutation
relations at partonic 2-surface would decompose to a direct sum of algebras labeled by the conformal
weight associated with the light-like coordinate of X3

l . Super-conformal symmetry suggests that also
the configuration space degrees of freedom correspond to a direct sum of HFFs of type II1.

One can of course ask why not II∞ = I∞ × II1 structures so that one would have single factor
rather than a direct sum of factors.

1. The physical motivation is that the direct sum property allow to decompose M-matrix to direct
summands associated with various sectors with weights whose moduli squared have an interpre-
tation in terms of the density matrix. This is also consistent with p-adic thermodynamics where
conformal weights take the place of energy eigen values.

2. II∞ property would predict automorphisms scaling the trace by an arbitrary positive real num-
ber λ ∈ R+. These automorphisms would require the scaling of the trace of the projectors
of Clifford algebra having values in the range [0, 1] and it is difficult to imagine how these
automorphisms could be realized geometrically.

How HFF property reflects itself in the construction of geometry of WCW?

The interesting question is what HFF property and finite measurement resolution realizing itself as
the use of projection operators means concretely at the level of the configuration space geometry.

Super-Hamiltonians define the Clifford algebra of the configuration space. Super-conformal sym-
metry suggests that the unavoidable restriction to projection operators instead of complex rays is
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realized also configuration space degrees of freedom. Of course, infinite precision in the determination
of the shape of 3-surface would be physically a completely unrealistic idea.

In the fermionic situation the anti-commutators for the gamma matrices associated with configura-
tion space individual Hamiltonians in 3-D sense are replaced with anti-commutators where Hamiltoni-
ans are replaced with projectors to subspaces of the space spanned by Hamiltonians. This projection
is realized by restricting the anti-commutator to partonic 2-surfaces so that the anti-commutator
depends only the restriction of the Hamiltonian to those surfaces.

What is interesting that the measurement resolution has a concrete particle physical meaning since
the parton content of the system characterizes the projection. The larger the number of partons, the
better the resolution about configuration space degrees of freedom is. The degeneracy of configuration
space metric would be interpreted in terms of finite measurement resolution inherent to HFFs of type
II1, which is not due to Jones inclusions but due to the fact that one can project only to infinite-D
subspaces rather than complex rays.

Effective 2-dimensionality in the sense that configuration space Hamiltonians reduce to functionals
of the partonic 2-surfaces of X3

l rather than functionals of X3
l could be interpreted in this manner.

For a wide class of Hamiltonians actually effective 1-dimensionality holds true in accordance with
conformal invariance.

The generalization of configuration space Hamiltonians and super-Hamiltonians by allowing in-
tegrals over the 2-D boundaries of the patches of X3

l would be natural and is suggested by the
requirement of discretized 3-dimensionality at the level of configuration space.

By quantum classical correspondence the inclusions of HFFs related to the measurement resolution
should also have a geometric description. Measurement resolution corresponds to braids in given time
scale and as already explained there is a hierarchy of braids in time scales coming as negative powers
of two corresponding to the addition of zero energy components to positive/negative energy state.
Note however that particle reactions understood as decays and fusions of braid strands could also lead
to a notion of measurement resolution.

11.5.3 Bott periodicity, its generalization, and dimension D = 8 as an
inherent property of the hyper-finite II1 factor

Hyper-finite II1 factor can be constructed as infinite-dimensional tensor power of the Clifford algebra
M2(C) = C(2) in dimension D = 2. More precisely, one forms the union of the Clifford algebras
C(2n) = C(2)⊗n of 2n-dimensional spaces by identifying the element x ∈ C(2n) as block diagonal
elements diag(x, x) of C(2(n+1)). The union of these algebras is completed in weak operator topology
and can be regarded as a Clifford algebra of real infinite-dimensional separable Hilbert space and thus
as sub-algebra of I∞. Also generalizations obtained by replacing complex numbers by quaternions
and octions are possible.

1. The dimension 8 is an inherent property of the hyper-finite II1 factor since Bott periodicity
theorem states C(n + 8) = Cn(16). In other words, the Clifford algebra C(n + 8) is equivalent
with the algebra of 16 × 16 matrices with entries in C(n). Or articulating it still differently:
C(n + 8) can be regarded as 16× 16 dimensional module with C(n) valued coefficients. Hence
the elements in the union defining the canonical representation of hyper-finite II1 factor are
16n × 16n matrices having C(0), C(2), C(4) or C(6) valued valued elements.

2. The idea about a local variant of the infinite-dimensional Clifford algebra defined by power series
of space-time coordinate with Taylor coefficients which are Clifford algebra elements fixes the
interpretation. The representation as a linear combination of the generators of Clifford algebra
of the finite-dimensional space allows quantum generalization only in the case of Minkowski
spaces. However, if Clifford algebra generators are representable as gamma matrices, the powers
of coordinate can be absorbed to the Clifford algebra and the local algebra is lost. Only if the
generators are represented as quantum versions of octonions allowing no matrix representation
because of their non-associativity, the local algebra makes sense. From this it is easy to deduce
both quantum and classical TGD.
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11.5.4 The interpretation of Jones inclusions in TGD framework

By the basic self-referential property of von Neumann algebras one can consider several interpreta-
tions of Jones inclusions consistent with sub-system-system relationship, and it is better to start by
considering the options that one can imagine.

How Jones inclusions relate to the new view about sub-system?

Jones inclusion characterizes the imbedding of sub-system N to Mand M as a finite-dimensional
N -module is the counterpart for the tensor product in finite-dimensional context. The possibility
to express M as N module M/N states fractality and can be regarded as a kind of self-referential
”Brahman=Atman identity” at the level of infinite-dimensional systems.

Also the mysterious looking almost identity CH2 = CH for the configuration space of 3-surfaces
would fit nicely with the identity M ⊕M = M . M ⊗M ⊂M in configuration space Clifford algebra
degrees of freedom is also implied and the construction of M as a union of tensor powers of C(2)
suggests that M ⊗M allows M : N = 4 inclusion to M. This paradoxical result conforms with the
strange self-referential property of factors of II1.

The notion of many-sheeted space-time forces a considerable generalization of the notion of sub-
system and simple tensor product description is not enough. Topological picture based on the length
scale resolution suggests even the possibility of entanglement between sub-systems of un-entangled
sub-systems. The possibility that hyper-finite II1-factors describe the physics of TGD also in bosonic
degrees of freedom is suggested by configuration space super-symmetry. On the other hand, bosonic
degrees could naturally correspond to I∞ factor so that hyper-finite II∞ would be the net result.

The most general view is that Jones inclusion describes all kinds of sub-system-system inclusions.
The possibility to assign conformal field theory to the inclusion gives hopes of rather detailed view
about dynamics of inclusion.

1. The topological condensation of space-time sheet to a larger space-time sheet mediated by worm-
hole contacts could be regarded as Jones inclusion. N would correspond to the condensing
space-time sheet, M to the system consisting of both space-time sheets, and

√
M : N would

characterize the number of quantum spinorial degrees of freedom associated with the interac-
tion between space-time sheets. Note that by general results M : N characterizes the fractal
dimension of quantum group (M : N < 4) or Kac-Moody algebra (M : N = 4) [38] .

2. The branchings of space-time sheets (space-time surface is thus homologically like branching
like of Feynman diagram) correspond naturally to n-particle vertices in TGD framework. What
is nice is that vertices are nice 2-dimensional surfaces rather than surfaces having typically
pinch singularities. Jones inclusion would naturally appear as inclusion of operator spaces Ni
(essentially Fock spaces for fermionic oscillator operators) creating states at various lines as
sub-spaces Ni ⊂M of operators creating states in common von Neumann factorM. This would
allow to construct vertices and vertices in natural manner using quantum groups or Kac-Moody
algebras.

The fundamental N ⊂M ⊂M⊗NM inclusion suggests a concrete representation based on the
identification Ni = M , where M is the universal Clifford algebra associated with incoming line
and N is defined by the condition thatM/N is the quantum variant of Clifford algebra of H. N -
particle vertices could be defined as traces of Connes products of the operators creating incoming
and outgoing states. It will be found that this leads to a master formula for S-matrix if the
generalization of the old-fashioned string model duality implying that all generalized Feynman
diagrams reduce to diagrams involving only single vertex is accepted.

3. If 4-surfaces can branch as the construction of vertices requires, it is difficult to argue that 3-
surfaces and partonic/stringy 2-surfaces could not do the same. As a matter fact, the master
formula for S-matrix to be discussed later explains the branching of 4-surfaces as an apparent
affect. Despite this one can consider the possibility that this kind of joins are possible so that a
new kind of mechanism of topological condensation would become possible. 3-space-sheets and
partonic 2-surfaces whose p-adic fractality is characterized by different p-adic primes could be
connected by ”joins” representing branchings of 2-surfaces. The structures formed by soap film
foam provide a very concrete illustration about what would happen. In the TGD based model
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of hadrons [58] it has been assumed that join along boundaries bonds (JABs) connect quark
space-time space-time sheets to the hadronic space-time sheet. The problem is that, at least for
identical primes, the formation of join along boundaries bond fuses two systems to single bound
state. If JABs are replaced joins, this objection is circumvented.

4. The space-time correlate for the formation of bound states is the formation of JABs. Standard
intuition tells that the number of degrees of freedom associated with the bound state is smaller
than the number of degrees of freedom associated with the pair of free systems. Hence the
inclusion of the bound state to the tensor product could be regarded as Jones inclusion. On
the other hand, one could argue that the JABs carry additional vibrational degrees of freedom
so that the idea about reduction of degrees of freedom might be wrong: free system could
be regarded as sub-system of bound state by Jones inclusion. The self-referential holographic
properties of von Neumann algebras allow both interpretations: any system can be regarded as
sub-system of any system in accordance with the bootstrap idea.

5. Maximal deterministic regions inside given space-time sheet bounded by light-like causal deter-
minants define also sub-systems in a natural manner and also their inclusions would naturally
correspond to Jones inclusions.

6. The TGD inspired model for topological quantum computation involves the magnetic flux tubes
defined by join along boundaries bonds connecting space-time sheets having light-like boundaries.
These tubes condensed to background 3-space can become linked and knotted and code for
quantum computations in this manner. In this case the addition of new strand to the system
corresponds to Jones inclusion in the hierarchy associated with inclusion N ⊂ M. The anyon
states associated with strands would be represented by a finite tensor product of quantum spinors
assignable to M/N and representing quantum counterpart of H-spinors.

One can regardM : N degrees of freedom correspond to quantum group or Kac-Moody degrees of
freedom. Quantum group degrees of freedom relate closely to the conformal and topological degrees
of freedom as the connection of II1 factors with topological quantum field theories and braid matrices
suggests itself. For the canonical inclusion this factorization would correspond to factorization of
quantum H-spinor from configuration space spinor.

A more detailed study of canonical inclusions to be carried out later demonstrates what this
factorization corresponds at the space-time level to a formation of space-time sheets which can be
regarded as multiple coverings of M4 and CP2 with invariance group G = Ga×Gb ⊂ SL(2, C)×SU(2),
SU(2) ⊂ SU(3). The unexpected outcome is that Planck constants assignable to M4 and CP2 degrees
of freedom depend on the canonical inclusions. The existence of macroscopic quantum phases with
arbitrarily large Planck constants is predicted.

It would seem possible to assign the M : N degrees quantum spinorial degrees of freedom to the
interface between subsystems represented by N andM. The interface could correspond to the worm-
hole contacts, joins, JABs, or light-like causal determinants serving as boundary between maximal
deterministic regions, etc... In terms of the bipartite diagrams representing the inclusions, joins (say)
would correspond to the edges connecting white vertices representing sub-system (the entire system
without the joins) to black vertices (entire system).

About the interpretation of M : N degrees of freedom

The Clifford algebra N associated with a system formed by two space-time sheet can be regarded as
1 ≤ M : N ≤ 4-dimensional module having N as its coefficients. It is possible to imagine several
interpretations the degrees of freedom labeled by β.

1. The β = M : N degrees of freedom could relate to the interaction of the space-time sheets.
Beraha numbers appear in the construction of S-matrices of topological quantum field theories
and an interpretation in terms of braids is possible. This would suggest that the interaction
between space-time sheets can be described in terms of conformal quantum field theory and the
S-matrices associated with braids describe this interaction. Jones inclusions would characterize
the effective number of active conformal degrees of freedom. At n = 3 limit these degrees of
freedom disappear completely since the conformal field theory defined by the Chern-Simons
action describing this interaction would become trivial (c = 0 as will be found).
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2. The interpretation in terms of imbedding space Clifford algebra would suggest that β-dimensional
Clifford algebra of

√
β-dimensional spinor space is in question. For β = 4 the algebra would

be the Clifford algebra of 2-dimensional space. M/N would have interpretation as complex
quantum spinors with components satisfying z1z2 = qz2z1 and its conjugate and having fractal
complex dimension

√
β. This would conform with the effective 2-dimensionality of TGD. For

β < 4 the fractal dimension of partonic quantum spinors defining the basic conformal fields would
be reduced and become d = 1 for n = 3: the interpretation is in terms of strong correlations
caused by the non-commutativity of the components of quantum spinor. For number theo-
retical generalizations of infinite-dimensional Clifford algebras Cl(C) obtained by replacing C
with Abelian complexification of quaternions or octonions one would obtain higher-dimensional
spinors.

11.5.5 Configuration space, space-time, and imbedding space and hyper-
finite type II1 factors

The preceding considerations have by-passed the question about the relationship of the configuration
space tangent space to its Clifford algebra. Also the relationship between space-time and imbedding
space and their quantum variants could be better. In particular, one should understand how effective
2-dimensionality can be consistent with the 4-dimensionality of space-time.

Super-conformal symmetry and configuration space Poisson algebra as hyper-finite type
II1 factor

It would be highly desirable to achieve also a description of the configuration space degrees of freedom
using von Neumann algebras. Super-conformal symmetry relating fermionic degrees of freedom and
configuration space degrees of freedom suggests that this might be the case. Super-symplectic algebra
has as its generators configuration space Hamiltonians and their super-counterparts identifiable as
CH gamma matrices. Super-symmetry requires that the Clifford algebra of CH and the Hamiltonian
vector fields of CH with symplectic central extension both define hyper-finite II1 factors. By super-
symmetry Poisson bracket corresponds to an anti-commutator for gamma matrices. The ordinary
quantized version of Poisson bracket is obtained as {Pi, Qj} → [Pi, Qj ] = JijId. Finite trace version
results by assuming that Id corresponds to the projector CH Clifford algebra having unit norm. The
presence of zero modes means direct integral over these factors.

Configuration space gamma matrices anti-commuting to identity operator with unit norm corre-
sponds to the tangent space T (CH) of CH. Thus it would be not be surprising if T (CH) could be
imbedded in the sigma matrix algebra as a sub-space of operators defined by the gamma matrices
generating this algebra. At least for β = 4 construction of hyper-finite II1 factor this definitely makes
sense.

The dimension of the configuration space defined as the trace of the projection operator to the
sub-space spanned by gamma matrices is obviously zero. Thus configuration space has in this sense
the dimensionality of single space-time point. This sounds perhaps absurd but the generalization of
the number concept implied by infinite primes indeed leads to the view that single space-time point is
infinitely structured in the number theoretical sense although in the real sense all states of the point
are equivalen. The reason is that there is infinitely many numbers expressible as ratios of infinite
integers having unit real norm in the real sense but having different p-adic norms.

How to understand the dimensions of space-time and imbedding space?

One should be able to understand the dimensions of 3-space, space-time and imbedding space in a
convincing matter in the proposed framework. There is also the question whether space-time and
imbedding space emerge uniquely from the mathematics of von Neumann algebras alone.

1. The dimensions of space-time and imbedding space

Two sub-sequent inclusions dual to each other define a special kind of inclusion giving rise to
a quantum counterpart of D = 4 naturally. This would mean that space-time is something which
emerges at the level of cognitive states.
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The special role of classical division algebras in the construction of quantum TGD [86] , D = 8
Bott periodicity generalized to quantum context, plus self-referential property of type II1 factors
might explain why 8-dimensional imbedding space is the only possibility.

State space has naturally quantum dimension D ≤ 8 as the following simple argument shows. The
space of quantum states has quark and lepton sectors which both are super-symmetric implying D ≤ 4
for each. Since these sectors correspond to different Hamiltonian algebras (triality one for quarks and
triality zero for leptonic sector), the state space has quantum dimension D ≤ 8.

2. How the lacking two space-time dimensions emerge?

3-surface is the basic dynamical unit in TGD framework. This seems to be in conflict with the
effective 2-dimensionality [86] meaning that partonic 2-surface code for quantum states, and with the
fact that hyper-finite II1 factors have intrinsic quantum dimension 2.

A possible resolution of the problem is that the foliation of 3-surface by partonic two-surfaces
defines a one-dimensional direct integral of isomorphic hyper-finite type II1 factors, and the zero
mode labeling the 2-surfaces in the foliation serves as the third spatial coordinate. For a given 3-
surface the contribution to the configuration space metric can come only from 2-D partonic surfaces
defined as intersections of 3-D light-like CDs with X7

± [21] . Hence the direct integral should somehow
relate to the classical non-determinism of Kähler action.

1. The one-parameter family of intersections of light-like CD with X7
± inside X4∩X7

± could indeed
be basically due to the classical non-determinism of Kähler action. The contribution to the
metric from the normal light-like direction to X3 = X4 ∩ X7

± can cause the vanishing of the
metric determinant

√
g4 of the space-time metric at X2 ⊂ X3 under some conditions on X2. This

would mean that the space-time surface X4(X3) is not uniquely determined by the minimization
principle defining the value of the Kähler action, and the complete dynamical specification of
X3 requires the specification of partonic 2-surfaces X2

i with
√
g4 = 0.

2. The known solutions of field equations [12] define a double foliation of the space-time surface
defined by Hamilton-Jacobi coordinates consisting of complex transversal coordinate and two
light-like coordinates for M4 (rather than space-time surface). Number theoretical considera-
tions inspire the hypothesis that this foliation exists always [86] . Hence a natural hypothesis
is that the allowed partonic 2-surfaces correspond to the 2-surfaces in the restriction of the
double foliation of the space-time surface by partonic 2-surfaces to X3, and are thus locally
parameterized by single parameter defining the third spatial coordinate.

3. There is however also a second light-like coordinate involved and one might ask whether both
light-like coordinates appear in the direct sum decomposition of II1 factors defining T (CH). The
presence of two kinds of light-like CDs would provide the lacking two space-time coordinates and
quantum dimension D = 4 would emerge at the limit of full non-determinism. Note that the
duality of space-like partonic and light-like stringy 2-surfaces conforms with this interpretation
since it corresponds to a selection of partonic/stringy 2-surface inside given 3-D CD whereas the
dual pairs correspond to different CDs.

4. That the quantum dimension would be 2Dq = β < 4 above CP2 length scale conforms with
the fact that non-determinism is only partial and time direction is dynamically frozen to a
high degree. For vacuum extremals there is strong non-determinism but in this case there is
no real dynamics. For CP2 type extremals, which are not vacuum extremals as far action and
small perturbations are considered, and which correspond to β = 4 there is a complete non-
determinism in time direction since the M4 projection of the extremal is a light-like random
curve and there is full 4-D dynamics. Light-likeness gives rise to conformal symmetry consistent
with the emergence of Kac Moody algebra [12] .

3. Time and cognition

In a completely deterministic physics time dimension is strictly speaking redundant since the
information about physical states is coded by the initial values at 3-dimensional slice of space-time.
Hence the notion of time should emerge at the level of cognitive representations possible by to the
non-determinism of the classical dynamics of TGD.
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Since Jones inclusion means the emergence of cognitive representation, the space-time view about
physics should correspond to cognitive representations provided by Feynman diagram states with zero
energy with entanglement defined by a two-sided projection of the lowest level S-matrix. These states
would represent the ”laws of quantum physics” cognitively. Also space-time surface serves as a classical
correlate for the evolution by quantum jumps with maximal deterministic regions serving as correlates
of quantum states. Thus the classical non-determinism making possible cognitive representations
would bring in time. The fact that quantum dimension of space-time is smaller than D = 4 would
reflect the fact that the loss of determinism is not complete.

4. Do space-time and imbedding space emerge from the theory of von Neumann algebras and
number theory?

The considerations above force to ask whether the notions of space-time and imbedding space
emerge from von Neumann algebras as predictions rather than input. The fact that it seems possible
to formulate the S-matrix and its generalization in terms of inherent properties of infinite-dimensional
Clifford algebras suggest that this might be the case.

Inner automorphisms as universal gauge symmetries?

The continuous outer automorphisms ∆it of HFFs of type III are not completely unique and one
can worry about the interpretation of the inner automorphisms. A possible resolution of the worries
is that inner automorphisms act as universal gauge symmetries containing various super-conformal
symmetries as a special case. For hyper-finite factors of type II1 in the representation as an infinite
tensor power of M2(C) this would mean that the transformations non-trivial in a finite number
of tensor factors only act as analogs of local gauge symmetries. In the representation as a group
algebra of S∞ all unitary transformations acting on a finite number of braid strands act as gauge
transformations whereas the infinite powers P × P × ..., P ∈ Sn, would act as counterparts of global
gauge transformations. In particular, the Galois group of the closure of rationals would act as local
gauge transformations but diagonally represented finite Galois groups would act like global gauge
transformations and periodicity would make possible to have finite braids as space-time correlates
without a loss of information.

Do unitary isomorphisms between tensor powers of II1 define vertices?

What would be left would be the construction of unitary isomorphisms between the tensor products
of the HFFs of type II1⊗ In = II1 at the partonic 2-surfaces defining the vertices. This would be the
only new element added to the construction of braiding M -matrices.

As a matter fact, this element is actually not completely new since it generalizes the fusion rules of
conformal field theories, about which standard example is the fusion rule φi = c jk

i φjφk for primary
fields. These fusion rules would tell how a state of incoming HFF decomposes to the states of tensor
product of two outgoing HFFs.

These rules indeed have interpretation in terms of Connes tensor products M⊗N ... ⊗N M for
which the sub-factor N takes the role of complex numbers [80] so that one has M becomes N
bimodule and ”quantum quantum states” have N as coefficients instead of complex numbers. In
TGD framework this has interpretation as quantum measurement resolution characterized by N (the
group G characterizing leaving the elements of N invariant defines the measured quantum numbers).

11.5.6 Quaternions, octonions, and hyper-finite type II1 factors

Quaternions and octonions as well as their hyper counterparts obtained by multiplying imaginary
units by commuting

√
−1 and forming a sub-space of complexified division algebra, are in in a central

role in the number theoretical vision about quantum TGD [86] . Therefore the question arises whether
complexified quaternions and perhaps even octonions could be somehow inherent properties of von
Neumann algebras. One can also wonder whether the quantum counterparts of quaternions and
octonions could emerge naturally from von Neumann algebras. The following considerations allow to
get grasp of the problem.
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Quantum quaternions and quantum octonions

Quantum quaternions have been constructed as deformation of quaternions [109] . The key observation
that the Glebsch Gordan coefficients for the tensor product 3⊗3 = 5⊕⊕3⊕1 of spin 1 representation
of SU(2) with itself gives the anti-commutative part of quaternionic product as spin 1 part in the
decomposition whereas the commutative part giving spin 0 representation is identifiable as the scalar
product of the imaginary parts. By combining spin 0 and spin 1 representations, quaternionic product
can be expressed in terms of Glebsh-Gordan coefficients. By replacing GGC:s by their quantum group
versions for group sl(2)q, one obtains quantum quaternions.

There are two different proposals for the construction of quantum octonions [60, 2] . Also now the
idea is to express quaternionic and octonionic multiplication in terms of Glebsch-Gordan coefficients
and replace them with their quantum versions.

1. The first proposal [60] relies on the observation that for the tensor product of j = 3 representa-
tions of SU(2) the Glebsch-Gordan coefficients for 7⊗7→ 7 in 7⊗7 = 9⊕7⊕5⊕3⊕1 defines a
product, which is equivalent with the antisymmetric part of the product of octonionic imaginary
units. As a matter fact, the antisymmetry defines 7-dimensional Malcev algebra defined by the
anticommutator of octonion units and satisfying b definition the identity

[[x, y, z] , x] = [x, y, [x, z]] , [x, y, z] ≡ [x, [y, z]] + [y, [z, x]] + [z, [x, y]] . (11.5.1)

7-element Malcev algebra defining derivations of octonionic algebra is the only complex Malcev
algebra not reducing to a Lie algebra. The j = 0 part of the product corresponds also now to
scalar product for imaginary units. Octonions are constructed as sums of j = 0 and j = 3 parts
and quantum Glebsch-Gordan coefficients define the octonionic product.

2. In the second proposal [2] the quantum group associated with SO(8) is used. This representation
does not allow unit but produces a quantum version of octonionic triality assigning to three
octonions a real number.

Quaternionic or octonionic quantum mechanics?

There have been numerous attempts to introduce quaternions and octonions to quantum theory.
Quaternionic or octonionic quantum mechanics, which means the replacement of the complex numbers
as coefficient field of Hilbert space with quaternions or octonions, is the most obvious approach (for
example and references to the literature see for instance [104] .

In both cases non-commutativity poses serious interpretational problems. In the octonionic case
the non-associativity causes even more serious obstacles [36, 104] , [36] .

1. Assuming that an orthonormalized state basis with respect to an octonion valued inner product
has been found, the multiplication of any basis with octonion spoils the orthonormality. The
proposal to circumvent this difficulty discussed in [36] , [36] eliminates non-associativity by
assuming that octonions multiply states one by one (rather than multiplying each other before
multiplying the state). Effectively this means that octonions are replaced with 8× 8-matrices.

2. The definition of the tensor product leads also to difficulties since associativity is lost (recall
that Yang-Baxter equation codes for associativity in case of braid statistics [99] ).

3. The notion of hermitian conjugation is problematic and forces a selection of a preferred imaginary
unit, which does not look nice. Note however that the local selection of a preferred imaginary
unit is in a key role in the proposed construction of space-time surfaces as hyper-quaternionic
or co-hyper-quaternionic surfaces and allows to interpret space-time surfaces either as surfaces
in 8-D Minkowski space M8 of hyper-octonions or in M4 × CP2. This selection turns out to
have quite different interpretation in the proposed framework.
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Hyper-finite factor II1 has a natural Hyper-Kähler structure

In the case of hyper-finite factors of type II1 quaternions a more natural approach is based on the
generalization of the Hyper-Kähler structure rather than quaternionic quantum mechanics. The reason
is that also configuration space tangent space should and is expected to have this structure [21] . The
Hilbert space remains a complex Hilbert space but the quaternionic units are represented as operators
in Hilbert space. The selection of the preferred unit is necessary and natural. The identity operator
representing quaternionic real unit has trace equal to one, is expected to give rise to the series of
quantum quaternion algebras in terms of inclusions N ⊂M having interpretation as N -modules.

The representation of the quaternion units is rather explicit in the structure of hyper-finite II1 fac-
tor. TheM : N ≡ β = 4 hierarchical construction can be regarded as Connes tensor product of infinite
number of 4-D Clifford algebras of Euclidian plane with Euclidian signature of metric (diag(−1,−1)).
This algebra is nothing but the quaternionic algebra in the representation of quaternionic imaginary
units by Pauli spin matrices multiplied by i.

The imaginary unit of the underlying complex Hilbert space must be chosen and there is whole
sphere S2 of choices and in every point of configuration space the choice can be made differently.
The space-time correlate for this local choice of preferred hyper-octonionic unit [86] . At the level
of configuration space geometry the quaternion structure of the tangent space means the existence
of Hyper-Kähler structure guaranteing that configuration space has a vanishing Einstein tensor. It
it would not vanish, curvature scalar would be infinite by symmetric space property (as in case of
loop spaces) and induce a divergence in the functional integral over 3-surfaces from the expansion of√
g [21] .

The quaternionic units for the II1 factor, are simply limiting case for the direct sums of 2 × 2
units normalized to one. Generalizing from β = 4 to β < 4, the natural expectation is that the
representation of the algebra as β =M : N -dimensional N -module gives rise to quantum quaternions
with quaternion units defined as infinite sums of

√
β ×
√
β matrices.

At Hilbert space level one has an infinite Connes tensor product of 2-component spinor spaces
on which quaternionic matrices have a natural action. The tensor product of Clifford algebras gives
the algebra of 2 × 2 quaternionic matrices acting on 2-component quaternionic spinors (complex 4-
component spinors). Thus double inclusion could correspond to (hyper-)quaternionic structure at
space-time level. Note however that the correspondence is not complete since hyper-quaternions
appear at space-time level and quaternions at Hilbert space level.

Von Neumann algebras and octonions

The octonionic generalization of the Hyper-Kähler manifold does not make sense as such since octo-
nionic units are not representable as linear operators. The allowance of anti-linear operators inherently
present in von Neumann algebras could however save the situation. Indeed, the Cayley-Dickson con-
struction for the division algebras (for a nice explanation see [52] ), which allows to extend any ∗

algebra, and thus also any von Neumann algebra, by adding an imaginary unit it and identified as ∗,
comes in rescue.

The basic idea of the Cayley-Dickson construction is following. The ∗ operator, call it J , repre-
senting a conjugation defines an anti-linear operator in the original algebra A. One can extend A by
adding this operator as a new element to the algebra. The conditions satisfied by J are

a(Jb) = J(a∗b) , (aJ)b = (ab∗)J , (Ja)(bJ−1) = (ab)∗ . (11.5.2)

In the associative case the conditions are equivalent to the first condition.
It is intuitively clear that this addition extends the hyper-Kähler structure to an octonionic struc-

ture at the level of the operator algebra. The quantum version of the octonionic algebra is fixed by
the quantum quaternion algebra uniquely and is consistent with the Cayley-Dickson construction. It
is not clear whether the construction is equivalent with either of the earlier proposals [60, 2] . It would
however seem that the proposal is simpler.

Physical interpretation of quantum octonion structure

Without further restrictions the extension by J would mean that vertices contain operators, which
are superpositions of linear and anti-linear operators. This would give superpositions of states and
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their time-reversals and mean that state could be a superposition of states with opposite values of say
fermion numbers. The problem disappears if either the linear operators A or anti-linear operators JA
can be used to construct physical states from vacuum. The fact, that space-time surfaces are either
hyper-quaternionic or co-hyper-quaternionic, is a space-time correlate for this restriction.

The HQ−coHQ duality discussed in [86] states that the descriptions based on hyper-quaternionic
and co-hyper-quaternionic surfaces are dual to each other. The duality can have two meanings.

1. The vacuum is invariant under J so that one can use either complexified quaternionic operators
A or their co-counterparts of form JA to create physical states from vacuum.

2. The vacuum is not invariant under J . This could relate to the breaking of CP and T invari-
ance known to occur in meson-antimeson systems. In TGD framework two kinds of vacua are
predicted corresponding intuitively to vacua in which either the product of all positive or neg-
ative energy fermionic oscillator operators defines the vacuum state, and these two vacua could
correspond to a vacuum and its J conjugate, and thus to positive and negative energy states.
In this case the two state spaces would not be equivalent although the physics associated with
them would be equivalent.

The considerations of [86] related to the detailed dynamics of HQ−coHQ duality demonstrate that the
variational principles defining the dynamics of hyper-quaternionic and co-hyper-quaternionic space-
time surfaces are antagonistic and correspond to world as seen by a conscientous book-keeper on one
hand and an imaginative artist on the other hand. HQ case is conservative: differences measured
by the magnitude of Kähler action tend to be minimized, the dynamics is highly predictive, and
minimizes the classical energy of the initial state. coHQ case is radical: differences are maximized
(this is what the construction of sensory representations would require). The interpretation proposed
in [86] was that the two space-time dynamics are just different predictions for what would happen (has
happened) if no quantum jumps would occur (had occurred). A stronger assumption is that these two
views are associated with systems related by time reversal symmetry.

What comes in mind first is that this antagonism follows from the assumption that these dynamics
are actually time-reversals of each other with respect to M4 time (the rapid elimination of differences
in the first dynamics would correspond to their rapid enhancement in the second dynamics). This is
not the case so that T and CP symmetries are predicted to be broken in accordance with the CP
breaking in meson-antimeson systems [53] and cosmological matter-antimatter asymmetry [78] .

11.5.7 Does the hierarchy of infinite primes relate to the hierarchy of II1
factors?

The hierarchy of Feynman diagrams accompanying the hierarchy defined by Jones inclusions M0 ⊂
M1 ⊂ ... gives a concrete representation for the hierarchy of cognitive dynamics providing a repre-
sentation for the material world at the lowest level of the hierarchy. This hierarchy seems to relate
directly to the hierarchy of space-time sheets.

Also the construction of infinite primes [84] leads to an infinite hierarchy. Infinite primes at the
lowest level correspond to polynomials of single variable x1 with rational coefficients, next level to
polynomials x1 for which coefficients are rational functions of variable x2, etc... so that a natural
ordering of the variables is involved.

If the variables xi are hyper-octonions (subs-space of complexified octonions for which elements
are of form x +

√
−1y, where x is real number and y imaginary octonion and

√
−1 is commuting

imaginary unit, this hierarchy of states could provide a realistic representation of physical states as
far as quantum numbers related to imbedding space degrees of freedom are considered in M8 picture
dual to M4 × CP2 picture [86] . Infinite primes are mapped to space-time surfaces in a manner
analogous to the mapping of polynomials to the loci of their zeros so that infinite primes, integers,
and rationals become concrete geometrical objects.

Infinite primes are also obtained by a repeated second quantization of a super-symmetric arithmetic
quantum field theory. Infinite rational numbers correspond in this description to pairs of positive
energy and negative energy states of opposite energies having interpretation as pairs of initial and
final states so that higher level states indeed represent transitions between the states. For these
reasons this hierarchy has been interpreted as a correlate for a cognitive hierarchy coding information
about quantum dynamics at lower levels. This hierarchy has also been assigned with the hierarchy of
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space-time sheets. Just as the hierarchy of generalized Feynman diagrams provides self representations
of the lowest matter level and is coded by it, finite primes code the hierarchy of infinite primes.

Infinite primes, integers, and rationals have finite p-adic norms equal to 1, and one can wonder
whether a Hilbert space like structure with dimension given by an infinite prime or integer makes
sense, and whether it has anything to do with the Hilbert space for which dimension is infinite in the
sense of the limiting value for a dimension of sub-space. The Hilbert spaces with dimension equal to
infinite prime would define primes for the tensor product of these spaces. The dimension of this kind
of space defined as any p-adic norm would be equal to one.

One cannot exclude the possibility that infinite primes could express the infinite dimensions of
hyper-finite III1 factors, which cannot be excluded and correspond to that part of quantum TGD
which relates to the imbedding space rather than space-time surface. Indeed, infinite primes code
naturally for the quantum numbers associated with the imbedding space. Secondly, the appearance
of 7-D light-like causal determinants X7

± = M4
± × CP2 forming nested structures in the construction

of S-matrix brings in mind similar nested structures of algebraic quantum field theory [72] . If this is
were the case, the hierarchy of Beraha numbers possibly associated with the phase resolution could
correspond to hyper-finite factors of type II1, and the decomposition of space-time surface to regions
labeled by p-adic primes and characterized by infinite primes could correspond to hyper-finite factors
of type III1 and represent imbedding space degrees of freedom.

The state space would in this picture correspond to the tensor products of hyper-finite factors of
type II1 and III1 (of course, also factors In and I∞ are also possible). III1 factors could be assigned
to the sub-configuration spaces defined by 3-surfaces in regions of M4 expressible in terms of unions
and intersections of X7

± = M4
± × CP2. By conservation of four-momentum, bounded regions of this

kind are possible only for the states of zero net energy appearing at the higher levels of hierarchy.
These sub-configuration spaces would be characterized by the positions of the tips of light cones
M4
± ⊂M4 involved. This indeed brings in continuous spectrum of four-momenta forcing to introduce

non-separable Hilbert spaces for momentum eigen states and necessitating III1 factors. Infinities
would be avoided since the dynamics proper would occur at the level of space-time surfaces and
involve only II1 factors.

11.6 Could HFFs of type III have application in TGD frame-
work?

One can imagine several manners for how HFFs of type III could emerge in TGD although the
proposed view about M -matrix in zero energy ontology suggests that HFFs of type III1 should be
only an auxiliary tool at best. Same is suggested with interpretational problems associated with
them. Both TGD inspired quantum measurement theory, the idea about a variant of HFF of type
II1 analogous to a local gauge algebra, and some other arguments, suggest that HFFs of type III
could be seen as a useful idealization allowing to make non-trivial conjectures both about quantum
TGD and about HFFs of type III. Quantum fields would correspond to HFFs of type III and II∞
whereas physical states (M -matrix) would correspond to HFF of type II1. I have summarized first
the problems of III1 factors so that reader can decide whether the further reading is worth of it.

11.6.1 Problems associated with the physical interpretation of III1 factors

Algebraic quantum field theory approach [34, 72] has led to a considerable understanding of relativistic
quantum field theories in terms of hyper-finite III1 factors. There are however several reasons to
suspect that the resulting picture is in conflict with physical intuition. Also the infinities of non-
trivial relativistic QFTs suggest that something goes wrong.

Are the infinities of quantum field theories due the wrong type of von Neumann algebra?

The infinities of quantum field theories involve basically infinite traces and it is now known that the
algebras of observables for relativistic quantum field theories for bounded regions of Minkowski space
correspond to hyper-finite III1 algebras, for which non-trivial traces are always infinite. This might
be the basic cause of the divergence problems of relativistic quantum field theory.
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On basis of this observations there is some temptation to think that the finite traces of hyper-finite
II1 algebras might provide a resolution to the problems but not necessarily in QFT context. One
can play with the thought that the subtraction of infinities might be actually a process in which III1
algebra is transformed to II1 algebra. A more plausible idea suggested by dimensional regularization
is that the elimination of infinities actually gives rise to II1 inclusion at the limit M : N → 4.
It is indeed known that the dimensional regularization procedure of quantum field theories can be
formulated in terms of bi-algebras assignable to Feynman diagrams and [67] and the emergence of
bi-algebras suggests that a connection with II1 factors and critical role of dimension D = 4 might
exist.

Continuum of inequivalent representations of commutation relations

There is also a second difficulty related to type III algebras. There is a continuum of inequivalent
representations for canonical commutation relations [89] . In thermodynamics this is blessing since
temperature parameterizes these representations. In quantum field theory context situation is however
different and this problem has been usually put under the rug.

Entanglement and von Neumann algebras

In quantum field theories where 4-D regions of space-time are assigned to observables. In this case
hyper-finite type III1 von Neumann factors appear. Also now inclusions make sense and has been
studiedin fact, the parameters characterizing Jones inclusions appear also now and this due to the
very general properties of the inclusions.

The algebras of type III1 have rather counter-intuitive properties from the point of view of entan-
glement. For instance, product states between systems having space-like separation are not possible at
all so that one can speak of intrinsic entanglement [90] . What looks worse is that the decomposition
of entangled state to product states is highly non-unique.

Mimicking the steps of von Neumann one could ask what the notion of observables could mean
in TGD framework. Effective 2-dimensionality states that quantum states can be constructed using
the data given at partonic or stringy 2-surfaces. This data includes also information about normal
derivatives so that 3-dimensionality actually lurks in. In any case this would mean that observables are
assignable to 2-D surfaces. This would suggest that hyper-finite II1 factors appear in quantum TGD
at least as the contribution of single space-time surface to S-matrix is considered. The contributions
for configuration space degrees of freedom meaning functional (not path-) integral over 3-surfaces
could of course change the situation.

Also in case of II1 factors, entanglement shows completely new features which need not however
be in conflict with TGD inspired view about entanglement. The eigen values of density matrices
are infinitely degenerate and quantum measurement can remove this degeneracy only partially. TGD
inspired theory of consciousness has led to the identification of rational (more generally algebraic en-
tanglement) as bound state entanglement stable in state function reduction. When an infinite number
of states are entangled, the entanglement would correspond to rational (algebraic number) valued
traces for the projections to the eigen states of the density matrix. The symplectic transformations
of CP2 are almost U(1) gauge symmetries broken only by classical gravitation. They imply a gigan-
tic spin glass degeneracy which could be behind the infinite degeneracies of eigen states of density
matrices in case of II1 factors.

11.6.2 Quantum measurement theory and HFFs of type III

The attempt to interpret the HFFs of type III in terms of quantum measurement theory based on
Jones inclusions leads to highly non-trivial conjectures about these factors.

Could the scalings of trace relate to quantum measurements?

What should be understood is the physical meaning of the automorphism inducing the scaling of
trace. In the representation based of factors based on infinite tensor powers the action of g should
transform single n×n matrix factor with density matrix Id/n to a density matrix e11 of a pure state.

Obviously the number of degrees of freedom is affected and this can be interpreted in terms of ap-
pearance or disappearance of correlations. Quantization and emergence of non-commutativity indeed



902 Chapter 11. Was von Neumann Right After All?

implies the emergence of correlations and effective reduction of degrees of freedom. In particular, the
fundamental quantum Clifford algebra has reduced dimension M : N = r ≤ 4 instead of r = 4 since
the replacement of complex valued matrix elements with N valued ones implies non-commutativity
and correlations.

The transformation would be induced by the shift of finite-dimensional state to right or left so
that the number of matrix factors overlapping with I∞ part increases or is reduced. Could it have
interpretation in terms of quantum measurement for a quantum Clifford factor? Could quantum
measurement for M/N degrees of freedom reducing the state in these degrees of freedom to a pure
state be interpreted as a transformation of single finite-dimensional matrix factor to a type I factor
inducing the scaling of the trace and could the scalings associated with automorphisms of HFFs of
type III also be interpreted in terms of quantum measurement?

This interpretation does not as such say anything about HFF factors of type III since only a
decomposition of II1 factor to Ik2 factor and II1 factor with a reduced trace of projector to the
latter. However, one can ask whether the scaling of trace for HFFs of type III could correspond to
a situation in which infinite number of finite-dimensional factors have been quantum measured. This
would correspond to the inclusion N ⊂M∞ = ∪nMn where N ⊂M ⊂ ...Mn... defines the canonical
inclusion sequence. Physicist can of course ask whether the presence of infinite number of I2-, or more
generally, In-factors is at all relevant to quantum measurement and it has already become clear that
situation at the level of M -matrix reduces to In.

Could the theory of HHFs of type III relate to the theory of Jones inclusions?

The idea about a connection of HFFs of type III and quantum measurement theory seems to be
consistent with the basic facts about inclusions and HFFs of type III1.

1. Quantum measurement would scale the trace by a factor 2k/
√
M : N since the trace would

become a product for the trace of the projector to the newly born M(2, C)⊗k factor and the
trace for the projection to N given by 1/

√
M : N . The continuous range of values M : N ≥ 4

gives good hopes that all values of λ are realized. The prediction would be that 2k
√
M : N ≥ 1

holds always true.

2. The values M : N ∈ {rn = 4cos2(π/n)} for which the single M(2, C) factor emerges in state
function reduction would define preferred values of the inverse of λ =

√
M : N/4 parameterizing

factors IIIλ. These preferred values vary in the range [1/2, 1].

3. λ = 1 at the end of continuum would correspond to HFF III1 and to Jones inclusions defined
by infinite cyclic subgroups dense in U(1) ⊂ SU(2) and this group combined with reflection.
These groups correspond to the Dynkin diagrams A∞ and D∞. Also the classical values of
M : N = n2 characterizing the dimension of the quantum Clifford M : N are possible. In this
case the scaling of trace would be trivial since the factor n to the trace would be compensated
by the factor 1/n due to the disappearance of M/N factor III1 factor.

4. Inclusions with M : N = ∞ are also possible and they would correspond to λ = 0 so that also
III0 factor would also have a natural identification in this framework. These factors correspond
to ergodic systems and one might perhaps argue that quantum measurement in this case would
give infinite amount of information.

5. This picture makes sense also physically. p-Adic thermodynamics for the representations of
super-conformal algebra could be formulated in terms of factors of type I∞ and in excellent
approximation using factors In. The generation of arbitrary number of type II1 factors in
quantum measurement allow this possibility.

The end points of spectrum of preferred values of λ are physically special

The fact that the end points of the spectrum of preferred values of λ are physically special, supports
the hopes that this picture might have something to do with reality.

1. The Jones inclusion with q = exp(iπ/n), n = 3 (with principal diagram reducing to a Dynkin
diagram of group SU(3)) corresponds to λ = 1/2, which corresponds to HFF III1 differing in
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essential manner from factors IIIλ, λ < 1. On the other hand, SU(3) corresponds to color group
which appears as an isometry group and important subgroup of automorphisms of octonions thus
differs physically from the ADE gauge groups predicted to be realized dynamically by the TGD
based view about McKay correspondence [20] .

2. For r = 4 SU(2) inclusion parameterized by extended ADE diagrams M(2, C)⊗2 would be
created in the state function reduction and also this would give λ = 1/2 and scaling by a factor
of 2. Hence the end points of the range of discrete spectrum would correspond to the same
scaling factor and same HFF of type III. SU(2) could be interpreted either as electro-weak
gauge group, group of rotations of th geodesic sphere of δM4

±, or a subgroup of SU(3). In TGD
interpretation for McKay correspondence a phase transition replacing gauge symmetry with
Kac-Moody symmetry.

3. The scalings of trace by factor 2 seem to be preferred physically which should be contrasted with
the fact that primes near prime powers of 2 and with the fact that quantum phases q = exp(iπ/n)
with n equal to Fermat integer proportional to power of 2 and product of the Fermat primes
(the known ones are 5, 17, 257, and 216 + 1) are in a special role in TGD Universe.

11.6.3 What could one say about II1 automorphism associated with the
II∞ automorphism defining factor of type III?

An interesting question relates to the interpretation of the automorphisms of II∞ factor inducing the
scaling of trace.

1. If the automorphism for Jones inclusion involves the generator of cyclic automorphism sub-group
Zn of II1 factor then it would seem that for other values of λ this group cannot be cyclic. SU(2)
has discrete subgroups generated by arbitrary phase q and these are dense in U(1) ⊂ SU(2)
sub-group. If the interpretation in terms of Jones inclusion makes sense then the identification
λ =
√
M : N/2k makes sense.

2. If HFF of type II1 is realized as group algebra of infinite symmetric group [20] , the outer
automorphism induced by the diagonally imbedded finite Galois groups can induce only integer
values of n and Zn would correspond to cyclic subgroups. This interpretation conforms with
the fact that the automorphisms in the completion of inner automorphisms of HFF of type II1
induce trivial scalings. Therefore only automorphisms which do not belong to this completion
can define HFFs of type III.

11.6.4 What could be the physical interpretation of two kinds of invariants
associated with HFFs type III?

TGD predicts two kinds of counterparts for S-matrix: M -matrix and U -matrix. Both are expected
to be more or less universal.

There are also two kinds of invariants and automorphisms associated with HFFs of type III.

1. The first invariant corresponds to the scaling λ ∈]0, 1[ of the trace associated with the auto-
morphism of factor of II∞. Also the end points of the interval make sense. The inverse of this
scaling accompanies the inverse of this automorphism.

2. Second invariant corresponds to the time scales t = T0 for which the outer automorphism σt
reduces to inner automorphism. It turns out that T0 and λ are related by the formula λiT0 = 1,
which gives the allowed values of T0 as T0 = n2π/log(λ) [66] . This formula can be understood
intuitively by realizing that λ corresponds to the eigenvalue of the density matrix ∆ = eH in
the simplest possible realization of the state φ.

The presence of two automorphisms and invariants brings in mind U matrix characterizing the
unitary process occurring in quantum jump and M -matrix characterizing time like entanglement.
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1. If one accepts the vision based on quantum measurement theory then λ corresponds to the
scaling of the trace resulting when quantum Clifford algebraM/N reduces to a tensor power of
M(2, C) factor in the state function reduction. The proposed interpretation for U process would
be as the inverse of state function reduction transforming this factor back to M/N . Thus U
process and state function reduction would correspond naturally to the scaling and its inverse.
This picture might apply not only in single particle case but also for zero energy states which
can be seen as states associated the a tensor power of HFFs of type II1 associated with partons.

2. The implication is that U process can occur only in the direction in which trace is reduced. This
would suggest that the full III1 factor is not a physical notion and that one must restrict the
group Z in the crossed product Z×cr II∞ to the group N of non-negative integers. In this kind
of situation the trace is well defined since the traces for the terms in the crossed product comes
as powers λ−n so that the net result is finite. This would mean a reduction to II∞ factor.

3. Since time t is a natural parameter in elementary particle physics experiment, one could argue
that σt could define naturally M -matrix. Time parameter would most naturally correspond to
a parameter of scaling affecting all M4

± coordinates rather than linear time. This conforms also
with the fundamental role of conformal transformations and scalings in TGD framework.

The identification of the full M -matrix in terms of σ does not seem to make sense generally. It
would however make sense for incoming and outgoing number theoretic braids so that σ could define
universal braiding M -matrices. Inner automorphisms would bring in the dependence on experimental
situation. The reduction of the braiding matrix to an inner automorphism for critical values of t which
could be interpreted in terms of scaling by power of p. This trivialization would be a counterpart
for the elimination of propagator legs from M -matrix element. Vertex itself could be interpreted as
unitary isomorphism between tensor product of incoming and outgoing HFFs of type II1 would code
all what is relevant about the particle reaction.

11.6.5 Does the time parameter t represent time translation or scaling?

The connection Tn = n2π/log(λ) would give a relationship between the scaling of trace and value of
time parameter for which the outer automorphism represented by σ reduces to inner automorphism.
It must be emphasized that the time parameter t appearing in σ need not have anything to do with
time translation. The alternative interpretation is in terms of M4

± scaling (implying also time scaling)
but one cannot exclude even preferred Lorentz boosts in the direction of quantization axis of angular
momentum.

Could the time parameter correspond to scaling?

The central role of conformal invariance in quantum TGD suggests that t parameterizes scaling rather
than translation. In this case scalings would correspond to powers of (Kλ)n. The numerical factor K
which cannot be excluded a priori, seems to reduce to K = 1.

1. The scalings by powers of p have a simple realization in terms of the representation of HFF of
type II∞ as infinite tensor power of M(p, C) with suitably chosen densities matrices in factors
to get product of I∞ and II1 factor. These matrix algebras have the remarkable property of
defining prime tensor power factors of finite matrix algebras. Thus p-adic fractality would reflect
directly basic properties of matrix algebras as suggested already earlier. That scalings by powers
of p would correspond to automorphism reducing to inner automorphisms would conform with
p-adic fractality.

2. Also scalings by powers [
√
M : N/2k]n would be physically preferred if one takes previous ar-

guments about Jones inclusions seriously and if also in this case scalings are involved. For
q = exp(iπ/n), n = 5 the minimal value of n allowing universal topological quantum computa-
tion would correspond to a scaling by Golden Mean and these fractal scalings indeed play a key
role in living matter. In particular, Golden Mean makes it visible in the geometry of DNA.
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Could the time parameter correspond to time translation?

One can consider also the interpretation of σt as time translation. TGD predicts a hierarchy of Planck
constants parameterized by rational numbers such that integer multiples are favored. In particular,
integers defining ruler and compass polygons are predicted to be in a very special role physically.
Since the geometric time span associated with zero energy state should scale as Planck constant one
expects that preferred values of time t associated with σ are quantized as rational multiples of some
fundamental time scales, say the basic time scale defined by CP2 length or p-adic time scales.

1. For λ = 1/p, p prime, the time scale would be Tn = nT1, T1 = T0 = 2π/log(p) which is not
what p-adic length scale hypothesis would suggest.

2. For Jones inclusions one would have Tn/T0 = n2π/log(22k/M : N ). In the limit when λ
becomes very small (the number k of reduced M(2, C) factors is large one obtains Tn = (n/k)t1,
T1 = T0π/log(2). Approximate rational multiples of the basic length scale would be obtained as
also predicted by the general quantization of Planck constant.

p-Adic thermodynamics from first principles

Quantum field theory at non-zero temperature can be formulated in the functional integral formalism
by replacing the time parameter associated with the unitary time evolution operator U(t) with a
complexified time containing as imaginary part the inverse of the temperature: t→ t+ i~/T . In the
framework of standard quantum field theory this is a mere computational trick but the time parameter
associated with the automorphisms σt of HFF of type III is a temperature like parameter from the
beginning, and its complexification would naturally lead to the analog of thermal QFT.

Thus thermal equilibrium state would be a genuine quantum state rather than fictive but use-
ful auxiliary notion. Thermal equilibrium is defined separately for each incoming parton braid and
perhaps even braid (partons can have arbitrarily large size). At elementary particle level p-adic ther-
modynamics could be in question so that particle massivation would have first principle description.
p-Adic thermodynamics is under relatively mild conditions equivalent with its real counterpart ob-
tained by the replacement of pL0 interpreted as a p-adic number with p−L0 interpreted as a real
number.

11.6.6 Could HFFs of type III be associated with the dynamics in M4
±

degrees of freedom?

HFFs of type III could be also assigned with the poorly understood dynamics in M4
± degrees of

freedom which should have a lot of to do with four-dimensional quantum field theory. Hyper-finite
factors of type III1 might emerge when one extends II1 to a local algebra by multiplying it with
hyper-octonions replaced as analog of matrix factor and considers hyper-quaternionic subalgebra.
The resulting algebra would be the analog of local gauge algebra and the elements of algebra would be
analogous to conformal fields with complex argument replaced with hyper-octonionic, -quaternionic,
or -complex one. Since quantum field theory in M4 gives rise to hyper-finite III1 factors one might
guess that the hyper-quaternionic restriction indeed gives these factors.

The expansion of the local HFF II∞ element as O(m) =
∑
nm

nOn, where M4 coordinate m is
interpreted as hyper-quaternion, could have interpretation as expansion in which On belongs to N gn
in the crossed product N ×cr {gn, n ∈ Z}. The analogy with conformal fields suggests that the power
gn inducing λn fold scaling of trace increases the conformal weight by n.

One can ask whether the scaling of trace by powers of λ defines an inclusion hierarchy of sub-
algebras of conformal sub-algebras as suggested by previous arguments. One such hierarchy would be
the hierarchy of sub-algebras containing only the generators Om with conformal weight m ≥ n, n ∈ Z.

It has been suggested that the automorphism ∆ could correspond to scaling inside light-cone.
This interpretation would fit nicely with Lorentz invariance and TGD in general. The factors IIIλ
with λ generating semi-subgroups of integers (in particular powers of primes) could be of special
physical importance in TGD framework. The values of t for which automorphism reduces to inner
automorphism should be of special physical importance in TGD framework. These automorphisms
correspond to scalings identifiable in terms of powers of p-adic prime p so that p-adic fractality would
find an explanation at the fundamental level.
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If the above mentioned expansion in powers of mn of M4
± coordinate makes sense then the action

of σt representing a scaling by pn would leave the elements O invariant or induce a mere inner
automorphism. Conformal weight n corresponds naturally to n-ary p-adic length scale by uncertainty
principle in p-adic mass calculations.

The basic question is the physical interpretation of the automorphism inducing the scaling of
trace by λ and its detailed action in HFF. This scaling could relate to a scaling in M4 and to the
appearance in the trace of an integral over M4 or subspace of it defining the trace. Fractal structures
suggests itself strongly here. At the level of construction of physical states one always selects some
minimum non-positive conformal weight defining the tachyonic ground state and physical states have
non-negative conformal weights. The interpretation would be as a reduction to HHF of type II∞ or
even II1.

11.6.7 Could the continuation of braidings to homotopies involve ∆it au-
tomorphisms

The representation of braidings as special case of homotopies might lead from discrete automorphisms
for HFFs type II1 to continuous outer automorphisms for HFFs of type III1. The question is whether
the periodic automorphism of II1 represented as a discrete sub-group of U(1) would be continued to
U(1) in the transition.

The automorphism of II∞ HFF associated with a given value of the scaling factor λ is unique. If
Jones inclusions defined by the preferred values of λ as λ =

√
M : N/2k (see the previous consider-

ations), then this automorphism could involve a periodic automorphism of II1 factor defined by the
generator of cyclic subgroup Zn forM : N < 4 besides additional shift transforming II1 factor to I∞
factor and inducing the scaling.

11.6.8 HFFs of type III as super-structures providing additional unique-
ness?

If the braiding M -matrices are as such highly unique. One could however consider the possibility
that they are induced from the automorphisms σt for the HFFs of type III restricted to HFFs of
type II∞. If a reduction to inner automorphism in HFF of type III implies same with respect to
HFF of type II∞ and even II1, they could be trivial for special values of time scaling t assignable
to the partons and identifiable as a power of prime p characterizing the parton. This would allow to
eliminate incoming and outgoing legs. This elimination would be the counterpart of the division of
propagator legs in quantum field theories. Particle masses would however play no role in this process
now although the power of padic prime would fix the mass scale of the particle.

11.7 The latest vision about the role of HFFs in TGD

It is clear that at least the hyper-finite factors of type II1 assignable to WCW spinors must have a
profound role in TGD. Whether also HFFS of type III1 appearing also in relativistic quantum field
theories emerge when WCW spinors are replaced with spinor fields is not completely clear. I have
proposed several ideas about the role of hyper-finite factors in TGD framework. In particular, Connes
tensor product is an excellent candidate for defining the notion of measurement resolution.

In the following this topic is discussed from the perspective made possible by zero energy ontology
and the recent advances in the understanding of M-matrix using the notion of bosonic emergence.
The conclusion is that the notion of state as it appears in the theory of factors is not enough for
the purposes of quantum TGD. The reason is that state in this sense is essentially the counterpart
of thermodynamical state. The construction of M-matrix might be understood in the framework of
factors if one replaces state with its ”complex square root” natural if quantum theory is regarded
as a ”complex square root” of thermodynamics. It is also found that the idea that Connes tensor
product could fix M-matrix is too optimistic but an elegant formulation in terms of partial trace
for the notion of M-matrix modulo measurement resolution exists and Connes tensor product allows
interpretation as entanglement between sub-spaces consisting of states not distinguishable in the
measurement resolution used. The partial trace also gives rise to non-pure states naturally.
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11.7.1 Basic facts about factors

In this section basic facts about factors are discussed. My hope that the discussion is more mature
than or at least complementary to the summary that I could afford when I started the work with
factors for more than half decade ago. I of course admit that this just a humble attempt of a physicist
to express physical vision in terms of only superficially understood mathematical notions.

Basic notions

First some standard notations. Let B(H) denote the algebra of linear operators of Hilbert space H
bounded in the norm topology with norm defined by the supremum of for the length of the image
of a point of unit sphere H. This algebra has a lot of common with complex numbers in that the
counterparts of complex conjugation, order structure and metric structure determined by the algebraic
structure exist. This means the existence involution -that is *- algebra property. The order structure
determined by algebraic structure means following: A ≥ 0 defined as the condition (Aξ, ξ) ≥ 0 is
equivalent with A = B∗B. The algebra has also metric structure ||AB|| ≤ ||A||||B| (Banach algebra
property) determined by the algebraic structure. The algebra is also C∗ algebra: ||A∗A|| = ||A||2
meaning that the norm is algebraically like that for complex numbers.

A von Neumann algebra M [43] is defined as a weakly closed non-degenerate *-subalgebra of
B(H) and has therefore all the above mentioned properties. From the point of view of physicist it is
important that a sub-algebra is in question.

In order to define factors one must introduce additional structure.

1. Let M be subalgebra of B(H) and denote by M′ its commutant defined as the sub-algebra of
B(H) commuting with it and allowing to express B(H) as B(H) =M∨M′.

2. A factor is defined as a von Neumann algebra satisfying M′′ = M M is called factor. The
equality of double commutant with the original algebra is thus the defining condition so that
also the commutant is a factor. An equivalent definition for factor is as the condition that
the intersection of the algebra and its commutant reduces to a complex line spanned by a unit
operator. The condition that the only operator commuting with all operators of the factor is
unit operator corresponds to irreducibility in representation theory.

3. Some further basic definitions are needed. Ω ∈ H is cyclic if the closure of MΩ is H and
separating if the only element of M annihilating Ω is zero. Ω is cyclic for M if and only if
it is separating for its commutant. In so called standard representation Ω is both cyclic and
separating.

4. For hyperfinite factors an inclusion hierarchy of finite-dimensional algebras whose union is dense
in the factor exists. This roughly means that one can approximate the algebra in arbitrary
accuracy with a finite-dimensional sub-algebra.

The definition of the factor might look somewhat artificial unless one is aware of the underlying
physical motivations. The motivating question is what the decomposition of a physical system to
non-interacting sub-systems could mean. The decomposition of B(H) to ∨ product realizes this
decomposition.

1. Tensor product H = H1⊗H2 is the decomposition according to the standard quantum measure-
ment theory and means the decomposition of operators in B(H) to tensor products of mutually
commuting operators inM = B(H1) andM′ = B(H2). The information aboutM can be coded
in terms of projection operators. In this case projection operators projecting to a complex ray of
Hilbert space exist and arbitrary compact operator can be expressed as a sum of these projectors.
For factors of type I minimal projectors exist. Factors of type In correspond to sub-algebras of
B(H) associated with infinite-dimensional Hilbert space and I∞ to B(H) itself. These factors
appear in the standard quantum measurement theory where state function reduction can lead
to a ray of Hilbert space.

2. For factors of type II no minimal projectors exists whereas finite projectors exist. For factors of
type II1 all projectors have trace not larger than one and the trace varies in the range (0, 1]. In
this case cyclic vectors Ω exist. State function reduction can lead only to an infinite-dimensional
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subspace characterized by a projector with trace smaller than 1 but larger than zero. The
natural interpretation would be in terms of finite measurement resolution. The tensor product
of II1 factor and I∞ is II∞ factor for which the trace for a projector can have arbitrarily large
values. II1 factor has a unique finite tracial state and the set of traces of projections spans unit
interval. There is uncountable number of factors of type II but hyper-finite factors of type II1

are the exceptional ones and physically most interesting.

3. Factors of type III correspond to an extreme situation. In this case the projection operators E
spanning the factor have either infinite or vanishing trace and there exists an isometry mapping
EH to H meaning that the projection operator spans almost all of H. All projectors are also
related to each other by isometry. Factors of type III are smallest if the factors are regarded
as sub-algebras of a fixed B(H) where H corresponds to isomorphism class of Hilbert spaces.
Situation changes when one speaks about concrete representations. Also now hyper-finite factors
are exceptional.

4. Von Neumann algebras define a non-commutative measure theory. Commutative von Neumann
algebras indeed reduce to L∞(X) for some measure space (X,µ) and vice versa.

Weights, states and traces

The notions of weight, state, and trace are standard notions in the theory of von Neumann algebras.

1. A weight of von Neumann algebra is a linear map from the set of positive elements (those of
form a∗a) to non-negative reals.

2. A positive linear functional is weight with ω(1) finite.

3. A state is a weight with ω(1) = 1.

4. A trace is a weight with ω(aa∗) = ω(a∗a) for all a.

5. A tracial state is a weight with ω(1) = 1.

A factor has a trace such that the trace of a non-zero projector is non-zero and the trace of
projection is infinite only if the projection is infinite. The trace is unique up to a rescaling. For
factors that are separable or finite, two projections are equivalent if and only if they have the same
trace. Factors of type In the values of trace are equal to multiples of 1/n. For a factor of type I∞ the
value of trace are 0, 1, 2, .... For factors of type II1 the values span the range [0, 1] and for factors of
type II∞ n the range [0,∞). For factors of type III the values of the trace are 0, and ∞.

Tomita-Takesaki theory

Tomita-Takesaki theory is a vital part of the theory of factors. First some definitions.

1. Let ω(x) be a faithful state of von Neumann algebra so that one has ω(xx∗) > 0 for x > 0.
Assume by Riesz lemma the representation of ω as a vacuum expectation value: ω = (·Ω,Ω),
where Ω is cyclic and separating state.

2. Let

L∞(M) ≡M , L2(M) = H , L1(M) =M∗ , (11.7.1)

where M∗ is the pre-dual of M defined by linear functionals in M. One has M ∗
∗ =M.

3. The conjugation x → x∗ is isometric in M and defines a map M→ L2(M) via x → xΩ. The
map S0;xΩ→ x∗Ω is however non-isometric.
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4. Denote by S the closure of the anti-linear operator S0 and by S = J∆1/2 its polar decomposition
analogous that for complex number and generalizing polar decomposition of linear operators by
replacing (almost) unitary operator with anti-unitary J . Therefore ∆ = S∗S > 0 is positive
self-adjoint and J an anti-unitary involution. The non-triviality of ∆ reflects the fact that the
state is not trace so that hermitian conjugation represented by S in the state space brings in
additional factor ∆1/2.

5. What x can be is puzzling to physicists. The restriction fermionic Fock space and thus to
creation operators would imply that ∆ would act non-trivially only vacuum state so that ∆ > 0
condition would not hold true. The resolution of puzzle is the allowance of tensor product of
Fock spaces for which vacua are conjugates: only this gives cyclic and separating state. This is
natural in zero energy ontology.

The basic results of Tomita-Takesaki theory are following.

1. The basic result can be summarized through the following formulas

∆itM∆−it =M , JMJ =M′ .

2. The latter formula implies that M and M′ are isomorphic algebras. The first formula implies
that a one parameter group of modular automorphisms characterizes partially the factor. The
physical meaning of modular automorphisms is discussed in [70, 137] ∆ is Hermitian and positive
definite so that the eigenvalues of log(∆) are real but can be negative. ∆it is however not unitary
for factors of type II and III. Physically the non-unitarity must relate to the fact that the flow
is contracting so that hermiticity as a local condition is not enough to guarantee unitarity.

3. ω → σωt = Ad∆it defines a canonical evolution -modular automorphism- associated with ω
and depending on it. The ∆:s associated with different ω:s are related by a unitary inner
automorphism so that their equivalence classes define an invariant of the factor.

Tomita-Takesaki theory gives rise to a non-commutative measure theory which is highly non-trivial.
In particular the spectrum of ∆ can be used to classify the factors of type II and III.

Modular automorphisms

Modular automorphisms of factors are central for their classification.

1. One can divide the automorphisms to inner and outer ones. Inner automorphisms correspond
to unitary operators obtained by exponentiating Hermitian Hamiltonian belonging to the factor
and connected to identity by a flow. Outer automorphisms do not allow a representation as a
unitary transformations although log(∆) is formally a Hermitian operator.

2. The fundamental group of the type II1 factor defined as fundamental group group of correspond-
ing II∞ factor characterizes partially a factor of type II1. This group consists real numbers λ
such that there is an automorphism scaling the trace by λ. Fundamental group typically contains
all reals but it can be also discrete and even trivial.

3. Factors of type III allow a one-parameter group of modular automorphisms, which can be used
to achieve a partial classification of these factors. These automorphisms define a flow in the
center of the factor known as flow of weights. The set of parameter values λ for which ω is
mapped to itself and the center of the factor defined by the identity operator (projector to the
factor as a sub-algebra of B(H)) is mapped to itself in the modular automorphism defines the
Connes spectrum of the factor. For factors of type IIIλ this set consists of powers of λ < 1. For
factors of type III0 this set contains only identity automorphism so that there is no periodicity.
For factors of type III1 Connes spectrum contains all real numbers so that the automorphisms
do not affect the identity operator of the factor at all.
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The modules over a factor correspond to separable Hilbert spaces that the factor acts on. These
modules can be characterized by M-dimension. The idea is roughly that complex rays are replaced
by the sub-spaces defined by the action of M as basic units. M-dimension is not integer valued in
general. The so called standard module has a cyclic separating vector and each factor has a standard
representation possessing antilinear involution J such that M′ = JMJ holds true (note that J
changes the order of the operators in conjugation). The inclusions of factors define modules having
interpretation in terms of a finite measurement resolution defined by M.

Crossed product as a manner to construct factors of type III

By using so called crossed product [9] for a group G acting in algebra A one can obtain new von
Neumann algebras. One ends up with crossed product by a two-step generalization by starting from
the semidirect product G / H for groups defined as (g1, h1)(g2, h2) = (g1h1(g2), h1h2) (note that
Poincare group has interpretation as a semidirect product M4 / SO(3, 1) of Lorentz and translation
groups). At the first step one replaces the group H with its group algebra. At the second step the
the group algebra is replaced with a more general algebra. What is formed is the semidirect product
A / G which is sum of algebras Ag. The product is given by (a1, g1)(a2, g2) = (a1g1(a2), g1g2). This
construction works for both locally compact groups and quantum groups. A not too highly educated
guess is that the construction in the case of quantum groups gives the factorM as a crossed product
of the included factor N and quantum group defined by the factor space M/N .

The construction allows to express factors of type III as crossed products of factors of type II∞
and the 1-parameter group G of modular automorphisms assignable to any vector which is cyclic for
both factor and its commutant. The ergodic flow θλ scales the trace of projector in II∞ factor by
λ > 0. The dual flow defined by G restricted to the center of II∞ factor does not depend on the
choice of cyclic vector.

The Connes spectrum - a closed subgroup of positive reals - is obtained as the exponent of the
kernel of the dual flow defined as set of values of flow parameter λ for which the flow in the center is
trivial. Kernel equals to {0} for III0, contains numbers of form log(λ)Z for factors of type IIIλ and
contains all real numbers for factors of type III1 meaning that the flow does not affect the center.

11.7.2 Inclusions and Connes tensor product

Inclusions N ⊂M of von Neumann algebras have physical interpretation as a mathematical descrip-
tion for sub-system-system relation. For type I algebras the inclusions are trivial and tensor product
description applies as such. For factors of II1 and III the inclusions are highly non-trivial. The
inclusion of type II1 factors were understood by Vaughan Jones [5] and those of factors of type III
by Alain Connes [65] .

Formally sub-factor N of M is defined as a closed ∗-stable C-subalgebra of M. Let N be a
sub-factor of type II1 factor M. Jones index M : N for the inclusion N ⊂ M can be defined as
M : N = dimN (L2(M)) = TrN ′(idL2(M)). One can say that the dimension of completion of M as
N module is in question.

Basic findings about inclusions

What makes the inclusions non-trivial is that the position of N in M matters. This position is
characterized in case of hyper-finite II1 factors by index M : N which can be said to the dimension
of M as N module and also as the inverse of the dimension defined by the trace of the projector
from M to N . It is important to notice that M : N does not characterize either M or M, only the
imbedding.

The basic facts proved by Jones are following [5] .

1. For pairs N ⊂M with a finite principal graph the values of M : N are given by

a) M : N = 4cos2(π/h) , h ≥ 3 ,

b) M : N ≥ 4 .
(11.7.2)
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the numbers at right hand side are known as Beraha numbers [119] . The comments below give
a rough idea about what finiteness of principal graph means.

2. As explained in [38] , for M : N < 4 one can assign to the inclusion Dynkin graph of ADE
type Lie-algebra g with h equal to the Coxeter number h of the Lie algebra given in terms of
its dimension and dimension r of Cartan algebra r as h = (dimg(g)− r)/r. The Lie algebras of
SU(n), E7 and D2n+1 are however not allowed. For M : N = 4 one can assign to the inclusion
an extended Dynkin graph of type ADE characterizing Kac Moody algebra. Extended ADE
diagrams characterize also the subgroups of SU(2) and the interpretation proposed in [97] is
following. The ADE diagrams are associated with the n = ∞ case having M : N ≥ 4. There
are diagrams corresponding to infinite subgroups: SU(2) itself, circle group U(1), and infinite
dihedral groups (generated by a rotation by a non-rational angle and reflection. The diagrams
corresponding to finite subgroups are extension of An for cyclic groups, of Dn dihedral groups,
and of En with n=6,7,8 for tedrahedron, cube, dodecahedron. For M : N < 4 ordinary Dynkin
graphs of D2n and E6, E8 are allowed.

Connes tensor product

The inclusions The basic idea of Connes tensor product is that a sub-space generated sub-factor N
takes the role of the complex ray of Hilbert space. The physical interpretation is in terms of finite
measurement resolution: it is not possible to distinguish between states obtained by applying elements
of N .

Intuitively it is clear that it should be possible to decomposeM to a tensor product of factor space
M/N and N :

M = M/N ⊗N . (11.7.3)

One could regard the factor spaceM/N as a non-commutative space in which each point corresponds
to a particular representative in the equivalence class of points defined by N . The connections between
quantum groups and Jones inclusions suggest that this space closely relates to quantum groups. An
alternative interpretation is as an ordinary linear space obtained by mapping N rays to ordinary
complex rays. These spaces appear in the representations of quantum groups. Similar procedure
makes sense also for the Hilbert spaces in which M acts.

Connes tensor product can be defined in the space M⊗M as entanglement which effectively
reduces to entanglement between N sub-spaces. This is achieved if N multiplication from right is
equivalent with N multiplication from left so that N acts like complex numbers on states. One can
imagine variants of the Connes tensor product and in TGD framework one particular variant appears
naturally as will be found.

In the finite-dimensional case Connes tensor product of Hilbert spaces has a rather simple repre-
sentation. If the matrix algebra N of n × n matrices acts on V from right, V can be regarded as a
space formed by m × n matrices for some value of m. If N acts from left on W , W can be regarded
as space of n× r matrices.

1. In the first representation the Connes tensor product of spaces V andW consists ofm×r matrices
and Connes tensor product is represented as the product VW of matrices as (VW )mre

mr. In
this representation the information about N disappears completely as the interpretation in terms
of measurement resolution suggests. The sum over intermediate states defined by N brings in
mind path integral.

2. An alternative and more physical representation is as a state

∑
n

VmnWnre
mn ⊗ enr

in the tensor product V ⊗W .
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3. One can also consider two spaces V and W in which N acts from right and define Connes tensor
product for A†⊗NB or its tensor product counterpart. This case corresponds to the modification
of the Connes tensor product of positive and negative energy states. Since Hermitian conjugation
is involved, matrix product does not define the Connes tensor product now. For m = r case
entanglement coefficients should define a unitary matrix commuting with the action of the
Hermitian matrices of N and interpretation would be in terms of symmetry. HFF property
would encourage to think that this representation has an analog in the case of HFFs of type II1.

4. Also type In factors are possible and for them Connes tensor product makes sense if one can
assign the inclusion of finite-D matrix algebras to a measurement resolution.

11.7.3 Factors in quantum field theory and thermodynamics

Factors arise in thermodynamics and in quantum field theories [105, 70, 137] . There are good
arguments showing that in HFFS of III1 appear are relativistic quantum field theories. In non-
relativistic QFTs the factors of type I appear so that the non-compactness of Lorentz group is essential.
Factors of type III1 and IIIλ appear also in relativistic thermodynamics.

The geometric picture about factors is based on open subsets of Minkowski space. The basic
intuitive view is that for two subsets of M4, which cannot be connected by a classical signal moving
with at most light velocity, the von Neumann algebras commute with each other so that ∨ product
should make sense.

Some basic mathematical results of algebraic quantum field theory [137] deserve to be listed since
they are suggestive also from the point of view of TGD.

1. Let O be a bounded region of R4 and define the region of M4 as a union ∪|x|<ε(O + x) where
(O+x) is the translate of O and |x| denotes Minkowski norm. Then every projection E ∈M(O)
can be written as WW ∗ with W ∈M(Oε) and W ∗W = 1. Note that the union is not a bounded
set of M4. This almost establishes the type III property.

2. Both the complement of light-cone and double light-cone define HFF of type III1. Lorentz boosts
induce modular automorphisms.

3. The so called split property suggested by the description of two systems of this kind as a tensor
product in relativistic QFTs is believed to hold true. This means that the HFFs of type III1

associated with causally disjoint regions are sub-factors of factor of type I∞. This means

M1 ⊂ B(H1)× 1 , M2 ⊂ 1⊗ B(H2) .

An infinite hierarchy of inclusions of HFFS of type III1s is induced by set theoretic inclusions.

11.7.4 TGD and factors

The following vision about TGD and factors relies heavily on zero energy ontology, TGD inspired
quantum measurement theory, basic vision about quantum TGD, and bosonic emergence.

The problems

Concerning the role of factors in TGD framework there are several problems of both conceptual and
technical character.

1. Conceptual problems

It is safest to start from the conceptual problems and take a role of skeptic.

1. Under what conditions the assumptions of Tomita-Takesaki formula stating the existence of
modular automorphism and isomorphy of the factor and its commutant hold true? What is the
physical interpretation of the formula M′ = JMJ relating factor and its commutant in TGD
framework?
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2. Is the identification M = ∆it sensible is quantum TGD and zero energy ontology, where M-
matrix is ”complex square root” of exponent of Hamiltonian defining thermodynamical state
and the notion of unitary time evolution is given up? The notion of state ω leading to ∆
is essentially thermodynamical and one can wonder whether one should take also a ”complex
square root” of ω to get M-matrix giving rise to a genuine quantum theory.

3. TGD based quantum measurement theory involves both quantum fluctuating degrees of freedom
assignable to light-like 3-surfaces and zero modes identifiable as classical degrees of freedom
assignable to interior of the space-time sheet. Zero modes have also fermionic counterparts.
State preparation should generate entanglement between the quantal and classical states. What
this means at the level of von Neumann algebras?

4. What is the TGD counterpart for causal disjointness. At space-time level different space-time
sheets could correspond to such regions whereas at imbedding space level causally disjoint CDs
would represent such regions.

2. Technical problems

There are also more technical questions.

1. What is the von Neumann algebra needed in TGD framework? Does one have a a direct integral
over factors (at least a direct integral over zero modes labeling factors)? Which factors appear
in it? Can one construct the factor as a crossed product of some group G with a direct physical
interpretation and of naturally appearing factor A? Is A a HFF of type II∞? assignable to a
fixed CD? What is the natural Hilbert space H in which A acts?

2. What are the geometric transformations inducing modular automorphisms of II∞ inducing the
scaling down of the trace? Is the action of G induced by the boosts in Lorentz group. Could
also translations and scalings induce the action? What is the factor associated with the union
of Poincare transforms of CD? log(∆) is Hermitian algebraically: what does the non-unitarity
of exp(log(∆)it) mean physically?

3. Could Ω correspond to a vacuum which in conformal degrees of freedom depends on the choice
of the sphere S2 defining the radial coordinate playing the role of complex variable in the case
of the radial conformal algebra. Does ∗-operation in M correspond to Hermitian conjugation
for fermionic oscillator operators and change of sign of super conformal weights?

The exponent of the modified Dirac action gives rise to the exponent of Kähler function as Dirac
determinant and fermionic inner product defined by fermionic Feynman rules. It is implausible that
this exponent could as such correspond to ω or ∆it having conceptual roots in thermodynamics rather
than QFT. If one assumes that the exponent of the modified Dirac action defines a ”complex square
root” of ω the situation changes. This raises technical questions relating to the notion of square root
of ω.

1. Does the square root of ω in the have a polar decomposition to a product of positive definite
matrix (square root of the density matrix) and unitary matrix and does ω1/2 correspond to
the modulus in the decomposition? Does the square root of ∆ have similar decomposition
with modulus equal equal to ∆1/2 in standard picture so that modular automorphism, which is
inherent property of von Neumann algebra, would not be affected?

2. ∆it or rather its generalization is defined modulo a unitary operator defined by some Hamiltonian
and is therefore highly non-unique as such. This non-uniqueness applies also to |∆|. Could this
non-uniqueness correspond to the thermodynamical degrees of freedom?

Zero energy ontology and factors

The first question concerns the identification of the Hilbert space associated with the factors in zero
energy ontology. As the positive or negative energy part of the zero energy state space or as the entire
space of zero energy states? The latter option would look more natural physically and is forced by
the condition that the vacuum state is cyclic and separating.
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1. The commutant of HFF given as M′ = JMJ , where J is involution transforming fermionic
oscillator operators and bosonic vector fields to their Hermitian conjugates. Also conformal
weights would change sign in the map which conforms with the view that the light-like boundaries
of CD are analogous to upper and lower hemispheres of S2 in conformal field theory. The
presence of J representing essentially Hermitian conjugation would suggest that positive and
zero energy parts of zero energy states are related by this formula so that state space decomposes
to a tensor product of positive and negative energy states and M -matrix can be regarded as a
map between these two sub-spaces.

2. The fact that HFF of type II1 has the algebra of fermionic oscillator operators as a canonical
representation makes the situation puzzling for a novice. The assumption that the vacuum
is cyclic and separating means that neither creation nor annihilation operators can annihilate
it. Therefore Fermionic Fock space cannot appear as the Hilbert space in the Tomita-Takesaki
theorem. The paradox is circumvented if the action of ∗ transforms creation operators acting on
the positive energy part of the state to annihilation operators acting on negative energy part of
the state. If J permutes the two Fock vacuums in their tensor product, the action of S indeed
maps permutes the tensor factors associated with M and M′.

It is far from obvious whether the identification M = ∆it makes sense in zero energy ontology.

1. In zero energy ontology M -matrix defines time-like entanglement coefficients between positive
and negative energy parts of the state. M -matrix is essentially ”complex square root” of the
density matrix and quantum theory similar square root of thermodynamics. The notion of state
as it appears in the theory of HFFS is however essentially thermodynamical. Therefore it is good
to ask whether the ”complex square root of state” could make sense in the theory of factors.

2. Quantum field theory suggests an obvious proposal concerning the meaning of the square root:
one replaces exponent of Hamiltonian with imaginary exponential of action at T → 0 limit. In
quantum TGD the exponent of modified Dirac action giving exponent of Kähler function as
real exponent could be the manner to take this complex square root. Modified Dirac action can
therefore be regarded as a ”square root” of Kähler action.

3. The identification M = ∆it relies on the idea of unitary time evolution which is given up in zero
energy ontology based on CDs? Is the reduction of the quantum dynamics to a flow a realistic
idea? As will be found this automorphism could correspond to a time translation or scaling
for either upper or lower light-cone defining CD and can ask whether ∆it corresponds to the
exponent of scaling operator L0 defining single particle propagator as one integrates over t. Its
complex square root would correspond to fermionic propagator.

4. In this framework J∆it would map the positive energy and negative energy sectors to each
other. If the positive and negative energy state spaces can identified by isometry then M = J∆it

identification can be considered but seems unrealistic. S = J∆1/2 maps positive and negative
energy states to each other: could S or its generalization appear in M -matrix as a part which
gives thermodynamics? The exponent of the modified Dirac action does not seem to provide
thermodynamical aspect and p-adic thermodynamics suggests strongly the presence exponent
of exp(−L0/Tp) with Tp chose in such manner that consistency with p-adic thermodynamics
is obtained. Could the generalization of J∆n/2 with ∆ replaced with its ”square root” give
rise to padic thermodynamics and also ordinary thermodynamics at the level of density matrix?
The minimal option would be that power of ∆it which imaginary value of t is responsible for
thermodynamical degrees of freedom whereas everything else is dictated by the unitary S-matrix
appearing as phase of the ”square root” of ω.

Zero modes and factors

The presence of zero modes justifies quantum measurement theory in TGD framework and the rela-
tionship between zero modes and HFFS involves further conceptual problems.

1. The presence of zero modes means that one has a direct integral over HFFs labeled by zero modes
which by definition do not contribute to the configuration space line element. The realization
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of quantum criticality in terms of modified Dirac action [20] suggests that also fermionic zero
mode degrees of freedom are present and correspond to conserved charges assignable to the
critical deformations of the pace-time sheets. Induced Kähler form characterizes the values
of zero modes for a given space-time sheet and the symplectic group of light-cone boundary
characterizes the quantum fluctuating degrees of freedom. The entanglement between zero modes
and quantum fluctuating degrees of freedom is essential for quantum measurement theory. One
should understand this entanglement.

2. Physical intuition suggests that classical observables should correspond to longer length scale
than quantal ones. Hence it would seem that the interior degrees of freedom outside CD should
correspond to classical degrees of freedom correlating with quantum fluctuating degrees of free-
dom of CD.

3. Quantum criticality means that modified Dirac action allows an infinite number of conserved
charges which correspond to deformations leaving metric invariant and therefore act on zero
modes. Does this super-conformal algebra commute with the super-conformal algebra associated
with quantum fluctuating degrees of freedom? Could the restriction of elements of quantum
fluctuating currents to 3-D light-like 3-surfaces actually imply this commutativity. Quantum
holography would suggest a duality between these algebras. Quantum measurement theory
suggests even 1-1 correspondence between the elements of the two super-conformal algebras.
The entanglement between classical and quantum degrees of freedom would mean that prepared
quantum states are created by operators for which the operators in the two algebras are entangled
in diagonal manner.

4. The notion of finite measurement resolution has become key element of quantum TGD and
one should understand how finite measurement resolution is realized in terms of inclusions of
hyper-finite factors for which sub-factor defines the resolution in the sense that its action creates
states not distinguishable from each other in the resolution used. The notion of finite measure-
ment resolution suggests that one should speak about entanglement between sub-factors and
corresponding sub-spaces rather than between states. Connes tensor product would code for the
idea that the action of sub-factors is analogous to that of complex numbers and tracing over
sub-factor realizes this idea.

5. Just for fun one can ask whether the duality between zero modes and quantum fluctuating
degrees of freedom representing quantum holography could correspond to M′ = JMJ? This
interpretation must be consistent with the interpretation forced by zero energy ontology. If this
crazy guess is correct (very probably not!), both positive and negative energy states would be
observed in quantum measurement but in totally different manner. Since this identity would
simplify enormously the structure of the theory, it deserves therefore to be shown wrong.

Crossed product construction in TGD framework

The identification of the von Neumann algebra by crossed product construction is the basic challenge.
Consider first the question how HFFs of type II∞ could emerge, how modular automorphisms act on
them, and how one can could understand the non-unitary character of the ∆it in an apparent conflict
with the hermiticity and positivity of ∆.

1. If the number of spinor modes is infinite, the Clifford algebra at a given point of WCW(CD)
(light-like 3-surfaces with ends at the boundaries of CD) defines HFF of type II1 or possibly a
direct integral of them. For a given CD having compact isotropy group SO(3) leaving the rest
frame defined by the tips of CD invariant the factor defined by Clifford algebra valued fields in
WCW(CD) is most naturally HFF of type II∞. The Hilbert space in which this Clifford algebra
acts, consists of spinor fields in WCW(CD). Also the symplectic transformations of light-cone
boundary leaving light-like 3-surfaces inside CD can be included to G. In fact all conformal
algebras leaving CD invariant could be included in CD.

2. The downwards scalings of the radial coordinate rM of the light-cone boundary applied to
the basis of WCW (CD) spinor fields could induce modular automorphism. These scalings
reduce the size of the portion of light-cone in which the WCW spinor fields are non-vanishing
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and effectively scale down the size of CD. exp(iL0) as algebraic operator acts as a phase
multiplication on eigen states of conformal weight and therefore as apparently unitary operator.
The geometric flow however contracts the CD so that the interpretation of exp(itL0) as a
unitary modular automorphism is not possible. The scaling down of CD reduces the value of
the trace if it involves integral over the boundary of CD. A similar reduction is implied by
the downward shift of the upper boundary of CD so that also time translations would induce
modular automorphism. These shifts seem to be necessary to define rest energies of positive and
negative energy parts of the zero energy state.

3. The non-triviality of the modular automorphisms of II∞ factor reflects different choices of ω.
The degeneracy of ω could be due to the non-uniqueness of conformal vacuum which is part of the
definition of ω. The radial Virasoro algebra of light-cone boundary is generated by Ln = L∗−n,
n 6= 0 and L0 = L∗0 and negative and positive frequencies are in asymmetric position. The
conformal gauge is fixed by the choice of SO(3) subgroup of Lorentz group defining the slicing
of light-cone boundary by spheres and the tips of CD fix SO(3) uniquely. One can however
consider also alternative choices of SO(3) and each corresponds to a slicing of the light-cone
boundary by spheres but in general the sphere defining the intersection of the two light-cone
does not belong to the slicing. Hence the action of Lorentz transformation inducing different
choice of SO(3) can lead out from the preferred state space so that its representation must be
non-unitary unless Virasoro generators annihilate the physical states. The non-vanishing of the
conformal central charge c and vacuum weight h seems to be necessary and indeed can take
place for super-symplectic algebra and Super Kac-Moody algebra since only the differences of
the algebra elements are assumed to annihilate physical states.

The essential assumption in the above argument is that the number of modes DKΨ = 0 for the
induced spinor field is infinite. This assumption is highly non-trivial and need not hold true always
as the detailed considerations of [31] demonstrate.

1. The Dirac determinant defining the vacuum functional is identified as the product of generalized
eigenvalues of the 3-D dimensional reduction DK,3 of DK to light-like 3-surfaces Y 3

l . A physical
analogy for the modified Dirac equation is fermion in a magnetic field.

2. When the dimension D of the CP2 projection of the space-time sheet satisfies D > 2, the
counterpart of the Schrödinger amplitude - call it R- can depend on single CP2 coordinate only.
For D = 2 (cosmic strings would be the basic example) R can depend on 2 CP2 coordinates. In
this case infinite number of modes are possible and are analogous to 2-D spherical harmonics in
the cross section of the string like object. At least in the interior of cosmic strings this option
seems to be realized so that in this case the Clifford algebra would be infinite-dimensional.

3. What is essential is that for string like objects the slicings by light-like 3-surfaces associated with
the wormhole throats at the opposite ends of string like object can correspond to the same slicing.
Hence the situation is expected to be the same for all string like objects irrespective of the value
of D. The coordinate on which R depends could be analogous to cylindrical angle coordinate and
one would have infinite number of rotational modes. For infinite-dimensional case zeta function
regularization must be used in the definition of Dirac determinant and under rather general
conditions on spectrum reduces to the analytic continuation used to define Riemann Zeta.

4. For D > 2 and for objects which are not string like objects situation is different. The slicings by
light-like 3-surfaces associated with different wormhole throats must be defined on finite-sized
basins separated by boundaries at which the spinor modes associated with particular throat
must vanish. The modes are therefore restricted to a finite region of space-time sheet with a
boundary. If R is analogous to a radial mode in constant magnetic field, there is a natural
cutoff in oscillator modes which are analogous harmonic oscillator wave functions and Dirac
determinant is automatically finite. Thus for D > 2 or at least for D = 4- a phase analogous
to QFT in M4 - the number of modes would be finite meaning that the Clifford algebra is
finite-dimensional and one obtains only factor of type In.

Modular automorphism of HFFs type III1 can be induced by several geometric transformations
for HFFs of type III1 obtained using the crossed product construction from II∞ factor by extending
CD to a union of its Lorentz transforms.
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1. The crossed product would correspond to an extension of II∞ by allowing a union of some
geometric transforms of CD. If one assumes that only CDs for which the distance between
tips is quantized in powers of 2, then scalings of either upper or lower boundary of CD cannot
correspond to these transformations. Same applies to time translations acting on either boundary
but not to ordinary translations. As found, the modular automorphisms reducing the size of
CD could act in HFF of type II∞.

2. The geometric counterparts of the modular transformations would most naturally correspond to
any non-compact one parameter sub-group of Lorentz group as also QFT suggests. The Lorentz
boosts would replace the radial coordinate rM of the light-cone boundary associated with the
radial Virasoro algebra with a new one so that the slicing of light-cone boundary with spheres
would be affected and one could speak of a new conformal gauge. The temporal distance between
tips of CD in the rest frame would not be affected. The effect would seem to be however unitary
because the transformation does not only modify the states but also transforms CD.

3. Since Lorentz boosts affect the isotropy group SO(3) of CD and thus also the conformal gauge
defining the radial coordinate of the light-cone boundary, they affect also the definition of the
conformal vacuum so that also ω is affected so that the interpretation as a modular automorphism
makes sense. The simplistic intuition of the novice suggests that if one allows wave functions in
the space of Lorentz transforms of CD, unitarity of ∆it is possible. Note that the hierarchy of
Planck constants assigns to CD preferred M2 and thus direction of quantization axes of angular
momentum and boosts in this direction would be in preferred role.

4. One can also consider the HFF of type IIIλ if the radial scalings by negative powers of 2
correspond to the automorphism group of II∞ factor as the vision about allowed CDs suggests.
λ = 1/2 would naturally hold true for the factor obtained by allowing only the radial scalings.
Lorentz boosts would expand the factor to HFF of type III1. Why scalings by powers of 2 would
give rise to periodicity should be understood.

The identification ofM -matrix as modular automorphism ∆it, where t is complex number having as
its real part the temporal distance between tips of CD quantized as 2n and temperature as imaginary
part, looks at first highly attractive, since it would mean that M -matrix indeed exists mathematically.
The proposed interpretations of modular automorphisms do not support the idea that they could define
the S-matrix of the theory. In any case, the identification as modular automorphism would not lead
to a magic universal formula since arbitrary unitary transformation is involved.

11.7.5 Can one identify M-matrix from physical arguments?

Consider next the identification of M -matrix from physical arguments.

Basic physical picture

The following physical picture could help in the attempt to guess what the complex square root of ω
is and also whether this idea makes sense at all. Consider first quantum TGD proper.

1. The exponent of Kähler function identified as Kähler action for preferred extremals defines the
bosonic vacuum functional appearing in the functional integral over WCW(CD). The exponent
of Kähler function depends on the real part of t identified as Minkowski distance between the
tips of CD. This dependence is not consistent with the dependence of ∆it on t and the natural
interpretation is that the vacuum functional can be included in the definition of the inner product
for spinors fields of WCW . More formally, the exponent of Kähler function defines ω in bosonic
degrees of freedom.

2. One can assign to the modified Dirac action Dirac determinant identified tentatively as the
exponent of Kähler function. This determinant is defined as the product of the generalized
eigenvalues of a 3-dimensional modified Dirac operator assignable to light-like 3-surfaces. The
definition relies on quantum holography involving the slicing of space-time surface both by
light-like 3-surfaces and by string world sheets. Hence also Kähler coupling strength follows as
a prediction so that the theory involves therefore no free coupling parameters. Kähler function
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is defined only apart from an additive term which is sum of holomorphic and anti-holomorphic
functions of the configuration space and this would naturally correspond to the effect of the
modular automorphism. I have proposed that the choices of a particular light-like 3-surface
in the slicing of X4 by light-like 3-surfaces at which vacuum functional is defined as Dirac
determinant can differ by this kind of term having therefore interpretation also as a modular
automorphism for a factor of type II∞.

3. Quantum criticality -implied by the condition that the modified Dirac action gives rise to con-
served currents assignable to the deformations of the space-time surface - means the vanishing of
the second variation of Kähler action for these deformations. Preferred extremals correspond to
these 4-surfaces and M8−M4×CP2 duality allows to identify them also as hyper-quaternionic
space-time surfaces.

4. Second quantized spinor fields are the only quantum fields appearing at the space-time level.
This justifies to the notion of bosonic emergence [65] , which means that gauge bosons and
possible counterpart of Higgs particle are identified as bound states of fermion and antifermion
at opposite light-like throats of wormhole contact. This suggests that the M -matrix should allow
a formulation solely in terms of the modified Dirac action.

HFFs and the definition of Dirac determinant

The definition of the Dirac determinant -call it det(D)- discussed in [20] involves two assumptions.
First, finite measurement resolution is assumed to correspond to a replacement of light-like 3-surfaces
with braids whose strands carry fermion number. Secondly, the quantum holography justifies the
assumption about dimensional reduction to a determinant assignable to 3-D Dirac operator.

1. The finiteness of the trace for HFF of type II1 indeed encourages the question whether one
could define det(D) as the exponent of the trace of the logarithm of 3-D Dirac operator D3 even
without the assumption of finite measurement resolution. The trace would be induced from the
trace of the tensor product of hyper-finite factor of type II1 and factor of type I.

2. One might wonder whether holography could allow to define det(D) also in terms of the 4-D
modified Dirac operator. The basic problem is of course that only the spinor fields satisfying
D4Ψ = 0 are allowed and eigenvalue equation in standard sense breaks baryon and lepton
number conservation. The critical deformation representing zero modes might however allow
to circumvent this difficulty. The modified Dirac equation DΨ = 0 holding true for the 4-
surfaces obtained as critical deformations can be written in the form D0Ψ = D0δΨ = −δDΨ,
where the subscript 0 refers to the non-deformed surface and one has δΨ = OΨ0 which involves
propagator defined by D4. Maybe one could define det(D) as the determinant of the operator
−δD by identifying it as the exponent of the trace of the operator log(−δD). This would require
a division by the deformation parameter δt at both sides of the modified Dirac equation and
means only the elimination of an infinite proportionality factor from the determinant.

Bosonic emergence and QFT limit of TGD

The QFT limit of TGD gives further valuable hints about the formulation of quantum TGD proper.
In QFT limit Dirac action coupled to gauge potentials (and possibly the TGD counterpart of Higgs)
defines the theory and bosonic propagators and vertices involving bosons as external particles emerge
as radiative corrections [65] . There are no free coupling constants in the theory.

1. The construction involves at the first step the coupling of spinor fields Ψ to fermionic sources ξ
leading to an expression of the effective action as a functional of gauge potentials and ξ containing
the counterpart of YM action in the purely bosonic sector plus interaction terms representing
N-boson vertices. Bosonic dynamics is therefore generated purely radiatively in accordance with
the emergence idea. At the next step the coupling to external YM currents leads to Feynman
rules in the standard manner.

2. The inverse of the bosonic propagator and N-boson vertices correspond to fermionic loops and
coupling constants are predicted completely in terms of them provided one can define the loop
integrals uniquely.
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3. Fermionic loops do not make sense without cutoff in both mass squared and hyperbolic angle
defining the maximum Lorentz boost which can be applied to a virtual fermion in the rest
system of the virtual gauge boson. Zero energy ontology realized in terms of a hierarchy of
CDs provides a physical justification for the hierarchy of hyperbolic cutoffs. p-Adic length scale
hypothesis (the sizes of CDs come in powers of 2) allows to decompose momentum space to
shells corresponding to mass squared intervals [n, n + 1) using CP2 mass squared as a unit.
The hyperbolic cutoff can depend on p-adic mass scale and can differ for time-like and space-like
momenta: the relationship between these cutoffs is fixed from the condition that gauge bosons do
not generate mass radiatively. One can find a simple ansatz for the hyperbolic cutoff consistent
with the coupling constant evolution in standard model. The vanishing of all on-mass-shell
N > 2-boson vertices defined by the fermionic loops states their irreducibility to lower vertices
and serves as a candidate for the condition fixing the hyperbolic cutoff as a function of the p-adic
mass scale.

A proposal for M-matrix

This picture can be taken as a template as one tries to to imagine how the construction of M -matrix
could proceed in quantum TGD proper.

1. Modified Dirac action should replace the ordinary Dirac action and define the theory. The linear
couplings of spinors to fermionic external currents are needed. Also bosons represented as bound
states of fermion and antifermion to the analogs of gauge currents are needed to construct the
M -matrix and would correspond to an addition of quantum part to induced spinor connection.
One can consider also the addition of quantum parts to the induced metric and induced gamma
matrices.

2. The couplings of the induced spinor fields to external sources would be given as contractions
of the fermionic sources with conformal super-currents. Conformal currents would couple to
bosonic external currents analogous to external YM currents and M -matrix would result via
the usual procedure leading to generalized Feynman diagrams for which sub-CDs would contain
vertices.

One cannot however argue that everything would be crystal clear.

1. There are two kinds of super-conformal algebras corresponding to quantum fluctuating degrees
of freedom and zero modes. The super-conformal algebra associated with the zero modes fol-
lows from quantum criticality guaranteing the conservation of these currents. These currents
are defined in the interior of the space-time surface. By quantum holography the quantum fluc-
tuating super-conformal algebra is assigned with light-like 3-surfaces. Both these algebras form
a hierarchy of inclusions identifiable as counterparts for inclusions of HFFs. Which of the two
super-conformal algebras one should use? Does quantum holography - interpreted as possibility
of 1-1 entanglement between the two kinds of conformal currents for prepared states- mean that
one can use either of them to construct M -matrix? How the dimensional reduction could be
understood in terms of this duality?

2. The bosonic conserved currents in the interior of X4 implied by quantum criticality involve a
purely local pairing of the induced spinor field and its conjugate. The problem is that gauge
bosons as wormhole throats appearing in the dimensionally reduced description correspond to a
non-local (in CP2 scale) pairing of spinor field and its conjugate at opposite wormhole throats.
Should one accept as a fact that dimensionally reduced quantum fluctuating counterparts for
the purely local zero mode currents are bi-local?

3. Only few days after posing these questions a plausible answer to them came through a resolu-
tion of several problems related to the formulation of quantum TGD (see the section ”Handful
of problems with a common resolution” of [24] ). One important outcome of the formulation
allowing to understand how stringy fermionic propagators emerge from the theory was that grav-
itational coupling vanishes for purely local composites of fermion and antifermion represented by
Kac-Moody algebra and super-conformal algebra associated with critical deformations. Hence
the only sensible identification of bosons seems to be as wormhole throats.
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4. The construction of the bosonic propagators in terms of fermionic loops [65] as functionals
integral over Grassmann variables generalizes. Fermionic loops correspond geometrically to
wormhole contacts having fermion and anti-fermion at their opposite light-like throats. This
implies a cutoff for momentum squared and hyperbolic angle of the virtual fermion in the rest
system of boson crucial for the absence of loop divergences. Hence bosonic propagation is
emergent as is also fermionic propagation which can be seen as induced by the measurement
interaction for momentum. This justifies the cutoffs due to the finite measurement resolution.

5. It is essential that one first functionally integrates over the fermionic degrees of freedom and
over the small deformations of light-like 3-surfaces and only after that constructs diagrams
from tree diagrams with bosonic and fermionic lines by using generalized Cutkosky rules. Here
the generalization of twistors to 8-D context allowing to regard massive particles as massless
particles in 8-D framework is expected to be a crucial technical tool possibly allowing to achieve
summations over large classes of generalized Feynman diagrams. Also the hierarchy of CDs is
expected to be crucial in the construction.

The key idea is the addition of measurement interaction term to the modified Dirac action coupling
to the conserved currents defined by quantum critical deformations for which the second variation of
Kähler action vanishes. There remains a considerable freedom in choosing the precise form of the
measurement interaction but there is a long list of arguments supporting the identification of the
measurement interaction as the one defined by 3-D Chern-Simons term assignable with wormhole
throats so that the dynamics in the interior of space-time sheet is not affected. This means that 3-D
light-like wormhole throats carry induced spinor field which can be regarded as independent degrees
of freedom having the spinor fields at partonic 2-surfaces as sources and acting as 3-D sources for the
4-D induced spinor field. The most general measurement interaction would involve the corresponding
coupling also for Kähler action but is not physically motivated. Here are the arguments in favor of
Chern-Simons Dirac action and corresponding measurement interaction.

1. A correlation between 4-D geometry of space-time sheet and quantum numbers is achieved
by the identification of exponent of Kähler function as Dirac determinant making possible the
entanglement of classical degrees of freedom in the interior of space-time sheet with quantum
numbers.

2. Cartan algebra plays a key role not only at quantum level but also at the level of space-time
geometry since quantum critical conserved currents vanish for Cartan algebra of isometries
and the measurement interaction terms giving rise to conserved currents are possible only for
Cartan algebras. Furthermore, modified Dirac equation makes sense only for eigen states of
Cartan algebra generators. The hierarchy of Planck constants realized in terms of the book like
structure of the generalized imbedding space assigns to each CD (causal diamond) preferred
Cartan algebra: in case of Poincare algebra there are two of them corresponding to linear and
cylindrical M4 coordinates.

3. Quantum holography and dimensional reduction hierarchy in which partonic 2-surface defined
fermionic sources for 3-D fermionic fields at light-like 3-surfaces Y 3

l in turn defining fermionic
sources for 4-D spinors find an elegant realization. Effective 2-dimensionality is achieved if the
replacement of light-like wormhole throat X3

l with light-like 3-surface Y 3
l ”parallel” with it in the

definition of Dirac determinant corresponds to the U(1) gauge transformation K → K + f + f
for Kähler function of WCW so that WCW Kähler metric is not affected. Here f is holomorphic
function of WCW (”world of classical worlds”) complex coordinates and arbitrary function of
zero mode coordinates.

4. An elegant description of the interaction between super-conformal representations realized at
partonic 2-surfaces and dynamics of space-time surfaces is achieved since the values of Cartan
charges are feeded to the 3-D Dirac equation which also receives mass term at the same time.
Almost topological QFT at wormhole throats results at the limit when four-momenta vanish:
this is in accordance with the original vision about TGD as almost topological QFT.

5. A detailed view about the physical role of quantum criticality results. Quantum criticality
fixes the values of Kähler coupling strength as the analog of critical temperature. Quantum
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criticality implies that second variation of Kähler action vanishes for critical deformations and
the existence of conserved current except in the case of Cartan algebra of isometries. Quantum
criticality allows to fix the values of couplings appearing in the measurement interaction by
using the condition K → K+ f + f . p-Adic coupling constant evolution can be understood also
and corresponds to scale hierarchy for the sizes of causal diamonds (CDs). To achieve internal
consistency the quantum critical deformations for Kähler action must be also quantum critical
for Chern-Simons action which implies that the deformations are orthogonal to Kähler magnetic
field at each light-like 3-surface in the slicing of space-time sheet by light-like 3-surfaces.

6. CP breaking, irreversibility and the space-time description of dissipation are closely related. Also
the interpretation of preferred extremals of Kähler action in regions where [DC−S , DC−S,int] = 0
as asymptotic self organization patterns makes sense. Here DC−S denotes the 3-D modified
Dirac operator associated with Chern-Simons action and DC−S,int to the corresponding mea-
surement interaction term expressible as superposition of couplings to various observables to
critical conserved currents.

7. A radically new view about matter antimatter asymmetry based on zero energy ontology emerges
and one could understand the experimental absence of antimatter as being due to the fact
antimatter corresponds to negative energy states. The identification of bosons as wormhole
contacts is the only possible option in this framework.

8. Almost stringy propagators and a consistency with the identification of wormhole throats as
lines of generalized Feynman diagrams is achieved. The notion of bosonic emergence leads to a
long sought general master formula for the M -matrix elements. The counterpart for fermionic
loop defining bosonic inverse propagator at QFT limit is wormhole contact with fermion and
cutoffs in mass squared and hyperbolic angle for loop momenta of fermion and antifermion in
the rest system of emitting boson have precise geometric counterpart.

On basis of above considerations it seems that the idea about ”complex square root” of ω might
make sense in quantum TGD and that different measurement interactions correspond to various
choices of ω. Also the modular automorphism would make sense and because of its non-uniqueness ∆
could bring in the flexibility needed one wants thermodynamics. Stringy picture forces to ask whether
∆ could in some situation be proportional exp(L0), where L0 represents as the infinitesimal scaling
generator of either super-symplectic algebra or super Kac-Moody algebra (the choice does not matter
since the differences of the generators annihilate physical states in coset construction). This would
allow to reproduce real thermodynamics consistent with p-adic thermodynamics.

In string models exp(iL0τ) is identified as the time evolution operator at single particle level whose
integral over τ defines the propagator. The quantization for the sizes of CDs does not however allow
integration over t in this sense. Could the integration over projectors with traces differing by scalings
parameterized by t correspond to this integral? Or should one give up this idea since modified Dirac
operator defines a propagator in any case?

11.7.6 Finite measurement resolution and HFFs

The finite resolution of quantum measurement leads in TGD framework naturally to the notion of
quantum M -matrix for which elements have values in sub-factor N of HFF rather than being complex
numbers. M-matrix in the factor space M/N is obtained by tracing over N . The condition that N
acts like complex numbers in the tracing implies that M-matrix elements are proportional to maximal
projectors to N so that M-matrix is effectively a matrix in M/N and situation becomes finite-
dimensional. It is still possible to satisfy generalized unitarity conditions but in general case tracing
gives a weighted sum of unitary M-matrices defining what can be regarded as a square root of density
matrix.

About the notion of observable in zero energy ontology

Some clarifications concerning the notion of observable in zero energy ontology are in order.

1. As in standard quantum theory observables correspond to hermitian operators acting on either
positive or negative energy part of the state. One can indeed define hermitian conjugation for
positive and negative energy parts of the states in standard manner.
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2. Also the conjugation A→ JAJ is analogous to hermitian conjugation. It exchanges the positive
and negative energy parts of the states also maps the light-like 3-surfaces at the upper boundary
of CD to the lower boundary and vice versa. The map is induced by time reflection in the rest
frame of CD with respect to the origin at the center of CD and has a well defined action on
light-like 3-surfaces and space-time surfaces. This operation cannot correspond to the sought for
hermitian conjugation since JAJ and A commute. The formulation of quantum TGD in terms
of the modified Dirac action requires the addition of CP and T breaking fermionic counterpart
of instanton term to the modified Dirac action. An interesting question is what this term means
from the point of view of the conjugation.

3. Zero energy ontology gives Cartan sub-algebra of the Lie algebra of symmetries a special status.
Only Cartan algebra acting on either positive or negative states respects the zero energy property
but this is enough to define quantum numbers of the state. In absence of symmetry breaking
positive and negative energy parts of the state combine to form a state in a singlet representation
of group. Since only the net quantum numbers must vanish zero energy ontology allows a
symmetry breaking respecting a chosen Cartan algebra.

4. In order to speak about four-momenta for positive and negative energy parts of the states one
must be able to define how the translations act on CDs. The most natural action is a shift of
the upper (lower) tip of CD. In the scale of entire CD this transformation induced Lorentz
boost fixing the other tip. The value of mass squared is identified as proportional to the average
of conformal weight in p-adic thermodynamics for the scaling generator L0 for either super-
symplectic or Super Kac-Moody algebra.

Inclusion of HFFS as characterizer of finite measurement resolution at the level of S-
matrix

The inclusion N ⊂ M of factors characterizes naturally finite measurement resolution. This means
following things.

1. Complex rays of state space resulting usually in an ideal state function reduction are replaced
by N -rays since N defines the measurement resolution and takes the role of complex numbers in
ordinary quantum theory so that non-commutative quantum theory results. Non-commutativity
corresponds to a finite measurement resolution rather than something exotic occurring in Planck
length scales. The quantum Clifford algebra M/N creates physical states modulo resolution.
The fact that N takes the role of gauge algebra suggests that it might be necessary to fix a
gauge by assigning to each element ofM/N a unique element ofM. Quantum Clifford algebra
with fractal dimension β = M : N creates physical states having interpretation as quantum
spinors of fractal dimension d =

√
β. Hence direct connection with quantum groups emerges.

2. The notions of unitarity, hermiticity, and eigenvalue generalize. The elements of unitary and
hermitian matrices andN -valued. Eigenvalues are Hermitian elements ofN and thus correspond
entire spectra of Hermitian operators. The mutual non-commutativity of eigenvalues guarantees
that it is possible to speak about state function reduction for quantum spinors. In the simplest
case of a 2-component quantum spinor this means that second component of quantum spinor
vanishes in the sense that second component of spinor annihilates physical state and second
acts as element of N on it. The non-commutativity of spinor components implies correlations
between then and thus fractal dimension is smaller than 2.

3. The intuition about ordinary tensor products suggests that one can decompose Tr in M as

TrM(X) = TrM/N × TrN (X) . (11.7.4)

Suppose one has fixed gauge by selecting basis |rk〉 for M/N . In this case one expects that
operator in M defines an operator in M/N by a projection to the preferred elements of M.

〈r1|X|r2〉 = 〈r1|TrN (X)|r2〉 . (11.7.5)
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4. Scattering probabilities in the resolution defined by N are obtained in the following manner.
The scattering probability between states |r1〉 and |r2〉 is obtained by summing over the final
states obtained by the action of N from |r2〉 and taking the analog of spin average over the
states created in the similar from |r1〉. N average requires a division by Tr(PN ) = 1/M : N
defining fractal dimension of N . This gives

p(r1 → r2) = M : N × 〈r1|TrN (SPNS
†)|r2〉 . (11.7.6)

This formula is consistent with probability conservation since one has

∑
r2

p(r1 → r2) = M : N × TrN (SS†) =M : N × Tr(PN ) = 1 . (11.7.7)

5. Unitarity at the level ofM/N can be achieved if the unit operator Id forM can be decomposed
into an analog of tensor product for the unit operators ofM/N and N and M decomposes to a
tensor product of unitary M-matrices inM/N and N . For HFFs of type II projection operators
of N with varying traces are present and one expects a weighted sum of unitary M-matrices to
result from the tracing having interpretation in terms of square root of thermodynamics.

6. This argument assumes that N is HFF of type II1 with finite trace. For HFFs of type III1

this assumption must be given up. This might be possible if one compensates the trace over N
by dividing with the trace of the infinite trace of the projection operator to N . This probably
requires a limiting procedure which indeed makes sense for HFFs.

Quantum M-matrix

The description of finite measurement resolution in terms of inclusion N ⊂ M seems to boil down
to a simple rule. Replace ordinary quantum mechanics in complex number field C with that in N .
This means that the notions of unitarity, hermiticity, Hilbert space ray, etc.. are replaced with their
N counterparts.

The full M -matrix in M should be reducible to a finite-dimensional quantum M -matrix in the
state space generated by quantum Clifford algebraM/N which can be regarded as a finite-dimensional
matrix algebra with non-commuting N -valued matrix elements. This suggests that full M -matrix can
be expressed as M -matrix with N -valued elements satisfying N -unitarity conditions.

Physical intuition also suggests that the transition probabilities defined by quantum S-matrix
must be commuting hermitian N -valued operators inside every row and column. The traces of these
operators give N -averaged transition probabilities. The eigenvalue spectrum of these Hermitian ma-
trices gives more detailed information about details below experimental resolution. N -hermicity and
commutativity pose powerful additional restrictions on the M -matrix.

Quantum M -matrix defines N -valued entanglement coefficients between quantum states with N -
valued coefficients. How this affects the situation? The non-commutativity of quantum spinors has
a natural interpretation in terms of fuzzy state function reduction meaning that quantum spinor
corresponds effectively to a statistical ensemble which cannot correspond to pure state. Does this
mean that predictions for transition probabilities must be averaged over the ensemble defined by
”quantum quantum states”?

Quantum fluctuations and inclusions

Inclusions N ⊂ M of factors provide also a first principle description of quantum fluctuations since
quantum fluctuations are by definition quantum dynamics below the measurement resolution. This
gives hopes for articulating precisely what the important phrase ”long range quantum fluctuations
around quantum criticality” really means mathematically.
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1. Phase transitions involve a change of symmetry. One might hope that the change of the symme-
try group Ga×Gb could universally code this aspect of phase transitions. This need not always
mean a change of Planck constant but it means always a leakage between sectors of imbedding
space. At quantum criticality 3-surfaces would have regions belonging to at least two sectors of
H.

2. The long range of quantum fluctuations would naturally relate to a partial or total leakage of
the 3-surface to a sector of imbedding space with larger Planck constant meaning zooming up
of various quantal lengths.

3. For M -matrix inM/N regarded as calN module quantum criticality would mean a special kind
of eigen state for the transition probability operator defined by the M -matrix. The properties
of the number theoretic braids contributing to the M -matrix should characterize this state. The
strands of the critical braids would correspond to fixed points for Ga ×Gb or its subgroup.

M-matrix in finite measurement resolution

The following arguments relying on the proposed identification of the space of zero energy states give
a precise formulation for M -matrix in finite measurement resolution and the Connes tensor product
involved. The original expectation that Connes tensor product could lead to a unique M-matrix is
wrong. The replacement of ω with its complex square root could lead to a unique hierarchy of M-
matrices with finite measurement resolution and allow completely finite theory despite the fact that
projectors have infinite trace for HFFs of type III1.

1. In zero energy ontology the counterpart of Hermitian conjugation for operator is replaced with
M→ JMJ permuting the factors. Therefore N ∈ N acting to positive (negative) energy part
of state corresponds to N → N ′ = JNJ acting on negative (positive) energy part of the state.

2. The allowed elements of N much be such that zero energy state remains zero energy state. The
superposition of zero energy states involved can however change. Hence one must have that the
counterparts of complex numbers are of form N = JN1J ∨ N2, where N1 and N2 have same
quantum numbers. A superposition of terms of this kind with varying quantum numbers for
positive energy part of the state is possible.

3. The condition that N1i and N2i act like complex numbers in N -trace means that the effect of
JN1iJ ∨N2i and JN2iJi∨N1i to the trace are identical and correspond to a multiplication by a
constant. If N is HFF of type II1 this follows from the decompositionM =M/N ⊗N and from
Tr(AB) = Tr(BA) assuming that M is of form M = MM/N × PN . Contrary to the original
hopes that Connes tensor product could fix the M-matrix there are no conditions on MM/N
which would give rise to a finite-dimensional M-matrix for Jones inclusions. One can replaced
the projector PN with a more general state if one takes this into account in ∗ operation.

4. In the case of HFFs of type III1 the trace is infinite so that the replacement of TrN with a state
ωN in the sense of factors looks more natural. This means that the counterpart of ∗ operation
exchanging N1 and N2 represented as SAΩ = A∗Ω involves ∆ via S = J∆1/2. The exchange of
N1 and N2 gives altogether ∆. In this case the KMS condition ωN (AB) = ωN∆A) guarantees
the effective complex number property [18] .

5. Quantum TGD more or less requires the replacement of ω with its ”complex square root” so that
also a unitary matrix U multiplying ∆ is expected to appear in the formula for S and guarantee
the symmetry. One could speak of a square root of KMS condition [18] in this case. The QFT
counterpart would be a cutoff involving path integral over the degrees of freedom below the
measurement resolution. In TGD framework it would mean a cutoff in the functional integral
over WCW and for the modes of the second quantized induced spinor fields and also cutoff in
sizes of causal diamonds. Discretization in terms of braids replacing light-like 3-surfaces should
be the counterpart for the cutoff.

6. If one has M -matrix in M expressible as a sum of M -matrices of form MM/N × MN with
coefficients which correspond to the square roots of probabilities defining density matrix the
tracing operation gives rise to square root of density matrix in M .
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Is universal M-matrix possible?

The realization of the finite measurement resolution could apply only to transition probabilities in
which N -trace or its generalization in terms of state ωN is needed. One might however dream of
something more.

1. Maybe there exists a universal M-matrix in the sense that the same M-matrix gives the M-
matrices in finite measurement resolution for all inclusions N ⊂M. This would mean that one
can write

M = MM/N ⊗MN (11.7.8)

for any physically reasonable choice of N . This would formally express the idea that M is as
near as possible to M-matrix of free theory. Also fractality suggests itself in the sense that MN
is essentially the same as MM in the same sense as N is same asM. It might be that the trivial
solution M = 1 is the only possible solution to the condition.

2. MM/N would be obtained by the analog of TrN or ωN operation involving the ”complex square
root” of the state ω in case of HFFs of type III1. The QFT counterpart would be path integration
over the degrees of freedom below cutoff to get effective action.

3. Universality probably requires assumptions about the thermodynamical part of the universal
M-matrix. A possible alternative form of the condition is that it holds true only for canonical
choice of ”complex square root” of ω or for the S-matrix part of M :

S = SM/N ⊗ SN (11.7.9)

for any physically reasonable choice N .

4. In TGD framework the condition would say that the M-matrix defined by the modified Dirac
action gives M-matrices in finite measurement resolution via the counterpart of integration over
the degrees of freedom below the measurement resolution.

An objection against the universality is that if the M-matrix is ”complex square root of state”
cannot be unique and there are infinitely many choices related by a unitary transformation induced
by the flows representing modular automorphism giving rise to new choices. This would actually
be a well-come result and make possible quantum measurement theory. In the section ”Handful of
problems with a common resolution” of [23] it was found that one must add to the modified Dirac
action a measurement interaction term characterizing the measured observables. This implies stringy
propagation as well as space-time correlates for quantum numbers characterizing the partonic states.
These different modified Dirac actions would give rise to different Kähler functions. The corresponding
Kähler metrics would not however differ if the real parts of the Kähler functions associated with the
two choices differ by a term f(Z) + f(Z), where Z denotes complex coordinates of WCW, the Kähler
metric remains the same. The function f can depend also on zero modes. If this is the case then one
can allow in given CD superpositions of WCW spinor fields for which the measurement interactions
are different.

Connes tensor product and space-like entanglement

Ordinary linear Connes tensor product makes sense also in positive/negative energy sector and also
now it makes sense to speak about measurement resolution. Hence one can ask whether Connes
tensor product should be posed as a constraint on space-like entanglement. The interpretation could
be in terms of the formation of bound states. The reducibility of HFFs and inclusions means that
the tensor product is not uniquely fixed and ordinary entanglement could correspond to this kind of
entanglement.

Also the counterpart of p-adic coupling constant evolution would makes sense. The interpretation
of Connes tensor product would be as the variance of the states with respect to some subgroup of U(n)
associated with the measurement resolution: the analog of color confinement would be in question.
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2-vector spaces and entanglement modulo measurement resolution

John Baez and collaborators [50] are playing with very formal looking formal structures obtained by
replacing vectors with vector spaces. Direct sum and tensor product serve as the basic arithmetic
operations for the vector spaces and one can define category of n-tuples of vectors spaces with mor-
phisms defined by linear maps between vectors spaces of the tuple. n-tuples allow also element-wise
product and sum. They obtain results which make them happy. For instance, the category of linear
representations of a given group forms 2-vector spaces since direct sums and tensor products of repre-
sentations as well as n-tuples make sense. The 2-vector space however looks more or less trivial from
the point of physics.

The situation could become more interesting in quantum measurement theory with finite mea-
surement resolution described in terms of inclusions of hyper-finite factors of type II1. The reason is
that Connes tensor product replaces ordinary tensor product and brings in interactions via irreducible
entanglement as a representation of finite measurement resolution. The category in question could
give Connes tensor products of quantum state spaces and describing interactions. For instance, one
could multiply M -matrices via Connes tensor product to obtain category of M -matrices having also
the structure of 2-operator algebra.

1. The included algebra represents measurement resolution and this means that the infinite-D sub-
Hilbert spaces obtained by the action of this algebra replace the rays. Sub-factor takes the role of
complex numbers in generalized QM so that one obtains non-commutative quantum mechanics.
For instance, quantum entanglement for two systems of this kind would not be between rays but
between infinite-D subspaces corresponding to sub-factors. One could build a generalization of
QM by replacing rays with sub-spaces and it would seem that quantum group concept does more
or less this: the states in representations of quantum groups could be seen as infinite-dimensional
Hilbert spaces.

2. One could speak about both operator algebras and corresponding state spaces modulo finite
measurement resolution as quantum operator algebras and quantum state spaces with fractal
dimension defined as factor space like entities obtained from HFF by dividing with the action of
included HFF. Possible values of the fractal dimension are fixed completely for Jones inclusions.
Maybe these quantum state spaces could define the notions of quantum 2-Hilbert space and
2-operator algebra via direct sum and tensor production operations. Fractal dimensions would
make the situation interesting both mathematically and physically.

Suppose one takes the fractal factor spaces as the basic structures and keeps the information about
inclusion.

1. Direct sums for quantum vectors spaces would be just ordinary direct sums with HFF containing
included algebras replaced with direct sum of included HFFs.

2. The tensor products for quantum state spaces and quantum operator algebras are not anymore
trivial. The condition that measurement algebras act effectively like complex numbers would
require Connes tensor product involving irreducible entanglement between elements belonging
to the two HFFs. This would have direct physical relevance since this entanglement cannot be
reduced in state function reduction. The category would defined interactions in terms of Connes
tensor product and finite measurement resolution.

3. The sequences of super-conformal symmetry breakings identifiable in terms of inclusions of
super-conformal algebras and corresponding HFFs could have a natural description using the
2-Hilbert spaces and quantum 2-operator algebras.

11.7.7 Questions about quantum measurement theory in zero energy on-
tology

In the following some questions about quantum measurement theory are posed. First however a result
about the relationship between U -matrix and M -matrix not known when the questions were made
will be represented. The background allowing a deeper understanding of this result can be found
from [52] discussing Negentropy Maximization Principle, which is the basic dynamical principle of
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TGD inspired theory of consciousness and states that the information content of conscious experience
is maximal.

The relationship between U-matrix and M-matrix

Before proceeding it is a good idea to clarify the relationship between the notions of U -matrix and M -
matrix. If state function reduction associated with time-like entanglement leads always to a product of
positive and negative energy states (so that there is no counterpart of bound state entanglement and
negentropic entanglement possible for zero energy states: these notions are discussed below) U -matrix
and can be regarded as a collection of M -matrices

Um+n−,r+,s− = M(m+, n−)r+,s− (11.7.10)

labeled by the pairs (m+, n−) labelling zero energy states assumed to reduced to pairs of positive
and negative energy states. M -matrix element is the counterpart of S-matrix element Sr,s in positive
energy ontology. Unitarity conditions for U -matrix read as

(UU†)m+n−,r+s− =
∑
k+,l−

M(m+, n−)k+,l−M(r+, s−)k+,l− = δm+r+,n−s− ,

(U†U)m+n−,r+s− =
∑
k+,l−

M(k+, l−)m+,n−M(k+, l−)r+,s− = δm+r+,n−s− .

(11.7.11)

The conditions state that the zero energy states associated with different labels are orthogonal as zero
energy states and also that the zero energy states defined by the dual M -matrix

M†(m+, n−)k+,l− ≡M(k+l−)m+,n− (11.7.12)

-perhaps identifiable as phase conjugate states- define an orthonormal basis of zero energy states.
When time-like binding and negentropic entanglement are allowed also zero energy states with

a label not implying a decomposition to a product state are involved with the unitarity condition
but this does not affect the situation dramatically. As a matter fact, the situation is mathematically
the same as for ordinary S-matrix in the presence of bound states. Here time-like bound states
are analogous to space-like bound states and by definition are unable to decay to product states (free
states). Negentropic entanglement makes sense only for entanglement probabilities, which are rationals
or belong to their algebraic extensions. This is possible in what might be called the intersection of
real and p-adic worlds (partonic surfaces in question have representation making sense for both real
and p-adic numbers). Number theoretic entropy is obtained by replacing in the Shannon entropy the
logarithms of probabilities with the logarithms of their p-adic norms. They satisfy the same defining
conditions as ordinary Shannon entropy but can be also negative. One can always find prime p for
which the entropy is maximally negative. The interpretation of negentropic entanglement is in terms
of formations of rule or association. Schrödinger cat knows that it is better to not open the bottle:
open bottle-dead cat, closed bottle-living cat and negentropic entanglement measures this information.

Fractal hierarchy of state function reductions

In accordance with fractality, the conditions for the Connes tensor product at a given time scale imply
the conditions at shorter time scales. On the other hand, in shorter time scales the inclusion would be
deeper and would give rise to a larger reducibility of the representation of N in M. Formally, as N
approaches to a trivial algebra, one would have a square root of density matrix and trivial S-matrix
in accordance with the idea about asymptotic freedom.

M -matrix would give rise to a matrix of probabilities via the expression P (P+ → P−) = Tr[P+M
†P−M ],

where P+ and P− are projectors to positive and negative energy energy N -rays. The projectors give
rise to the averaging over the initial and final states inside N ray. The reduction could continue step
by step to shorter length scales so that one would obtain a sequence of inclusions. If the U -process of
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the next quantum jump can return the M -matrix associated with M or some larger HFF, U process
would be kind of reversal for state function reduction.

Analytic thinking proceeding from vision to details; human life cycle proceeding from dreams and
wild actions to the age when most decisions relate to the routine daily activities; the progress of science
from macroscopic to microscopic scales; even biological decay processes: all these have an intriguing
resemblance to the fractal state function reduction process proceeding to to shorter and shorter time
scales. Since this means increasing thermality of M -matrix, U process as a reversal of state function
reduction might break the second law of thermodynamics.

The conservative option would be that only the transformation of intentions to action by U process
giving rise to new zero energy states can bring in something new and is responsible for evolution. The
non-conservative option is that the biological death is the U -process of the next quantum jump leading
to a new life cycle. Breathing would become a universal metaphor for what happens in quantum
Universe. The 4-D body would be lived again and again.

How quantum classical correspondence is realized at parton level?

Quantum classical correspondence must assign to a given quantum state the most probable space-
time sheet depending on its quantum numbers. The space-time sheet X4(X3) defined by the Kähler
function depends however only on the partonic 3-surface X3, and one must be able to assign to a
given quantum state the most probable X3 - call it X3

max - depending on its quantum numbers.
X4(X3

max) should carry the gauge fields created by classical gauge charges associated with the
Cartan algebra of the gauge group (color isospin and hypercharge and electromagnetic and Z0 charge)
as well as classical gravitational fields created by the partons. This picture is very similar to that
of quantum field theories relying on path integral except that the path integral is restricted to 3-
surfaces X3 with exponent of Kähler function bringing in genuine convergence and that 4-D dynamics
is deterministic apart from the delicacies due to the 4-D spin glass type vacuum degeneracy of Kähler
action.

Stationary phase approximation selects X3
max if the quantum state contains a phase factor depend-

ing not only on X3 but also on the quantum numbers of the state. A good guess is that the needed
phase factor corresponds to either Chern-Simons type action or an action describing the interaction
of the induced gauge field with the charges associated with the braid strand. This action would be
defined for the induced gauge fields. YM action seems to be excluded since it is singular for light-
like 3-surfaces associated with the light-like wormhole throats (not only

√
det(g3) but also

√
det(g4)

vanishes).
The challenge is to show that this is enough to guarantee that X4(X3

max) carries correct gauge
charges. Kind of electric-magnetic duality should relate the normal components Fni of the gauge
fields in X4(X3

max) to the gauge fields Fij induced at X3. An alternative interpretation is in terms
of quantum gravitational holography. The difference between Chern-Simons action characterizing
quantum state and the fundamental Chern-Simons type factor associated with the Kähler form would
be that the latter emerges as the phase of the Dirac determinant.

One is forced to introduce gauge couplings and also electro-weak symmetry breaking via the phase
factor. This is in apparent conflict with the idea that all couplings are predictable. The essential
uniqueness of M -matrix in the case of HFFs of type II1 (at least) however means that their values
as a function of measurement resolution time scale are fixed by internal consistency. Also quantum
criticality leads to the same conclusion. Obviously a kind of bootstrap approach suggests itself.

11.7.8 How p-adic coupling constant evolution and p-adic length scale hy-
pothesis emerge from quantum TGD proper?

What p-adic coupling constant evolution really means has remained for a long time more or less open.
The progress made in the understanding of the S-matrix of theory has however changed the situation
dramatically.

M-matrix and coupling constant evolution

The final breakthrough in the understanding of p-adic coupling constant evolution came through the
understanding of S-matrix, or actually M-matrix defining entanglement coefficients between positive
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and negative energy parts of zero energy states in zero energy ontology [23] . M-matrix has interpreta-
tion as a ”complex square root” of density matrix and thus provides a unification of thermodynamics
and quantum theory. S-matrix is analogous to the phase of Schrödinger amplitude multiplying positive
and real square root of density matrix analogous to modulus of Schrödinger amplitude.

The notion of finite measurement resolution realized in terms of inclusions of von Neumann al-
gebras allows to demonstrate that the irreducible components of M-matrix are unique and possesses
huge symmetries in the sense that the hermitian elements of included factor N ⊂ M defining the
measurement resolution act as symmetries of M-matrix, which suggests a connection with integrable
quantum field theories.

It is also possible to understand coupling constant evolution as a discretized evolution associated
with time scales Tn, which come as octaves of a fundamental time scale: Tn = 2nT0. Number theoretic
universality requires that renormalized coupling constants are rational or at most algebraic numbers
and this is achieved by this discretization since the logarithms of discretized mass scale appearing in
the expressions of renormalized coupling constants reduce to the form log(2n) = nlog(2) and with
a proper choice of the coefficient of logarithm log(2) dependence disappears so that rational number
results. Recall that also the weaker condition Tp = pT0, p prime, would assign secondary p-adic time
scales to the size scale hierarchy of CDs: p ' 2n would result as an outcome of some kind of ”natural
selection” for this option. The highly satisfactory feature would be that p-adic time scales would
reflect directly the geometry of imbedding space and configuration space.

p-Adic coupling constant evolution

An attractive conjecture is that the coupling constant evolution associated with CDs in powers of 2
implying time scale hierarchy Tn = 2nT0 induces p-adic coupling constant evolution and explain why
p-adic length scales correspond to Lp ∝

√
pR, p ' 2k, R CP2 length scale? This looks attractive

but there seems to be a problem. p-Adic length scales come as powers of
√

2 rather than 2 and the
strongly favored values of k are primes and thus odd so that n = k/2 would be half odd integer. This
problem can be solved.

1. The observation that the distance traveled by a Brownian particle during time t satisfies r2 = Dt
suggests a solution to the problem. p-Adic thermodynamics applies because the partonic 3-
surfaces X2 are as 2-D dynamical systems random apart from light-likeness of their orbit. For
CP2 type vacuum extremals the situation reduces to that for a one-dimensional random light-like
curve in M4. The orbits of Brownian particle would now correspond to light-like geodesics γ3 at
X3. The projection of γ3 to a time=constant section X2 ⊂ X3 would define the 2-D path γ2 of
the Brownian particle. The M4 distance r between the end points of γ2 would be given r2 = Dt.
The favored values of t would correspond to Tn = 2nT0 (the full light-like geodesic). p-Adic
length scales would result as L2(k) = DT (k) = D2kT0 for D = R2/T0. Since only CP2 scale is
available as a fundamental scale, one would have T0 = R and D = R and L2(k) = T (k)R.

2. p-Adic primes near powers of 2 would be in preferred position. p-Adic time scale would not relate
to the p-adic length scale via Tp = Lp/c as assumed implicitly earlier but via Tp = L2

p/R0 =√
pLp, which corresponds to secondary p-adic length scale. For instance, in the case of electron

with p = M127 one would have T127 = .1 second which defines a fundamental biological rhythm.
Neutrinos with mass around .1 eV would correspond to L(169) ' 5 µm (size of a small cell) and
T (169) ' 1. × 104 years. A deep connection between elementary particle physics and biology
becomes highly suggestive.

3. In the proposed picture the p-adic prime p ' 2k would characterize the thermodynamics of the
random motion of light-like geodesics of X3 so that p-adic prime p would indeed be an inherent
property of X3. For the weaker condition would be Tp = pT0, p prime, p ' 2n could be seen as
an outcome of some kind of ”natural selection”. In this case, p would a property of CD and all
light-like 3-surfaces inside it and also that corresponding sector of configuration space.

4. The fundamental role of 2-adicity suggests that the fundamental coupling constant evolution
and p-adic mass calculations could be formulated also in terms of 2-adic thermodynamics. With
a suitable definition of the canonical identification used to map 2-adic mass squared values to
real numbers this is possible, and the differences between 2-adic and p-adic thermodynamics
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are extremely small for large values of for p ' 2k. 2-adic temperature must be chosen to be
T2 = 1/k whereas p-adic temperature is Tp = 1 for fermions. If the canonical identification is
defined as

∑
n≥0

bn2n →
∑
m≥1

2−m+1
∑

(k−1)m≤n<km

bn2n ,

it maps all 2-adic integers n < 2k to themselves and the predictions are essentially same as for
p-adic thermodynamics. For large values of p ' 2k 2-adic real thermodynamics with TR = 1/k
gives essentially the same results as the 2-adic one in the lowest order so that the interpretation
in terms of effective 2-adic/p-adic topology is possible.

11.7.9 Planar algebras and generalized Feynman diagrams

Planar algebras [27] are a very general notion due to Vaughan Jones and a special class of them is
known to characterize inclusion sequences of hyper-finite factors of type II1 [54] . In the following an
argument is developed that planar algebras might have interpretation in terms of planar projections
of generalized Feynman diagrams (these structures are metrically 2-D by presence of one light-like
direction so that 2-D representation is especially natural). In [18] the role of planar algebras and their
generalizations is also discussed.

Planar algebra very briefly

First a brief definition of planar algebra.

1. One starts from planar k-tangles obtained by putting disks inside a big disk. Inner disks are
empty. Big disk contains 2k braid strands starting from its boundary and returning back or
ending to the boundaries of small empty disks in the interior containing also even number of
incoming lines. It is possible to have also loops. Disk boundaries and braid strands connecting
them are different objects. A black-white coloring of the disjoint regions of k-tangle is assumed
and there are two possible options (photo and its negative). Equivalence of planar tangles under
diffeomorphisms is assumed.

2. One can define a product of k-tangles by identifying k-tangle along its outer boundary with
some inner disk of another k-tangle. Obviously the product is not unique when the number of
inner disks is larger than one. In the product one deletes the inner disk boundary but if one
interprets this disk as a vertex-parton, it would be better to keep the boundary.

3. One assigns to the planar k-tangle a vector space Vk and a linear map from the tensor product of
spaces Vki associated with the inner disks such that this map is consistent with the decomposition
k-tangles. Under certain additional conditions the resulting algebra gives rise to an algebra
characterizing multi-step inclusion of HFFs of type II1.

4. It is possible to bring in additional structure and in TGD framework it seems necessary to assign
to each line of tangle an arrow telling whether it corresponds to a strand of a braid associated
with positive or negative energy parton. One can also wonder whether disks could be replaced
with closed 2-D surfaces characterized by genus if braids are defined on partonic surfaces of
genus g. In this case there is no topological distinction between big disk and small disks. One
can also ask why not allow the strands to get linked (as suggested by the interpretation as planar
projections of generalized Feynman diagrams) in which case one would not have a planar tangle
anymore.

General arguments favoring the assignment of a planar algebra to a generalized Feynman
diagram

There are some general arguments in favor of the assignment of planar algebra to generalized Feynman
diagrams.
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1. Planar diagrams describe sequences of inclusions of HFF:s and assign to them a multi-parameter
algebra corresponding indices of inclusions. They describe also Connes tensor powers in the
simplest situation corresponding to Jones inclusion sequence. Suppose that also general Connes
tensor product has a description in terms of planar diagrams. This might be trivial.

2. Generalized vertices identified geometrically as partonic 2-surfaces indeed contain Connes tensor
products. The smallest sub-factor N would play the role of complex numbers meaning that due
to a finite measurement resolution one can speak only about N-rays of state space and the
situation becomes effectively finite-dimensional but non-commutative.

3. The product of planar diagrams could be seen as a projection of 3-D Feynman diagram to plane
or to one of the partonic vertices. It would contain a set of 2-D partonic 2-surfaces. Some of
them would correspond vertices and the rest to partonic 2-surfaces at future and past directed
light-cones corresponding to the incoming and outgoing particles.

4. The question is how to distinguish between vertex-partons and incoming and outgoing partons.
If one does not delete the disk boundary of inner disk in the product, the fact that lines arrive
at it from both sides could distinguish it as a vertex-parton whereas outgoing partons would
correspond to empty disks. The direction of the arrows associated with the lines of planar
diagram would allow to distinguish between positive and negative energy partons (note however
line returning back).

5. One could worry about preferred role of the big disk identifiable as incoming or outgoing parton
but this role is only apparent since by compactifying to say S2 the big disk exterior becomes an
interior of a small disk.

A more detailed view

The basic fact about planar algebras is that in the product of planar diagrams one glues two disks
with identical boundary data together. One should understand the counterpart of this in more detail.

1. The boundaries of disks would correspond to 1-D closed space-like stringy curves at partonic
2-surfaces along which fermionic anti-commutators vanish.

2. The lines connecting the boundaries of disks to each other would correspond to the strands of
number theoretic braids and thus to braidy time evolutions. The intersection points of lines
with disk boundaries would correspond to the intersection points of strands of number theoretic
braids meeting at the generalized vertex.

[Number theoretic braid belongs to an algebraic intersection of a real parton 3-surface and its
p-adic counterpart obeying same algebraic equations: of course, in time direction algebraicity
allows only a sequence of snapshots about braid evolution].

3. Planar diagrams contain lines, which begin and return to the same disk boundary. Also ”vacuum
bubbles” are possible. Braid strands would disappear or appear in pairwise manner since they
correspond to zeros of a polynomial and can transform from complex to real and vice versa
under rather stringent algebraic conditions.

4. Planar diagrams contain also lines connecting any pair of disk boundaries. Stringy decay of
partonic 2-surfaces with some strands of braid taken by the first and some strands by the
second parton might bring in the lines connecting boundaries of any given pair of disks (if really
possible!).

5. There is also something to worry about. The number of lines associated with disks is even in the
case of k-tangles. In TGD framework incoming and outgoing tangles could have odd number of
strands whereas partonic vertices would contain even number of k-tangles from fermion number
conservation. One can wonder whether the replacement of boson lines with fermion lines could
imply naturally the notion of half-k-tangle or whether one could assign half-k-tangles to the
spinors of the configuration space (”world of classical worlds”) whereas corresponding Clifford
algebra defining HFF of type II1 would correspond to k-tangles.
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11.7.10 Miscellaneous

The following considerations are somewhat out-of-date: hence the title ’Miscellaneous’.

Connes tensor product and fusion rules

One should demonstrate that Connes tensor product indeed produces an M -matrix with physically
acceptable properties.

The reduction of the construction of vertices to that for n-point functions of a conformal field
theory suggest that Connes tensor product is essentially equivalent with the fusion rules for conformal
fields defined by the Clifford algebra elements of CH(CD) (4-surfaces associated with 3-surfaces at
the boundary of causal diamond CD in M4), extended to local fields in M4 with gamma matrices
acting on configuration space spinors assignable to the partonic boundary components.

Jones speculates that the fusion rules of conformal field theories can be understood in terms of
Connes tensor product [97] and refers to the work of Wassermann about the fusion of loop group
representations as a demonstration of the possibility to formula the fusion rules in terms of Connes
tensor product [134] .

Fusion rules are indeed something more intricate that the naive product of free fields expanded
using oscillator operators. By its very definition Connes tensor product means a dramatic reduction
of degrees of freedom and this indeed happens also in conformal field theories.

1. For non-vanishing n-point functions the tensor product of representations of Kac Moody group
associated with the conformal fields must give singlet representation.

2. The ordinary tensor product of Kac Moody representations characterized by given value of
central extension parameter k is not possible since k would be additive.

3. A much stronger restriction comes from the fact that the allowed representations must define
integrable representations of Kac-Moody group [63] . For instance, in case of SU(2)k Kac
Moody algebra only spins j ≤ k/2 are allowed. In this case the quantum phase corresponds
to n = k + 2. SU(2) is indeed very natural in TGD framework since it corresponds to both
electro-weak SU(2)L and isotropy group of particle at rest.

Fusion rules for localized Clifford algebra elements representing operators creating physical states
would replace naive tensor product with something more intricate. The naivest approach would start
from M4 local variants of gamma matrices since gamma matrices generate the Clifford algebra Cl
associated with CH(CD). This is certainly too naive an approach. The next step would be the
localization of more general products of Clifford algebra elements elements of Kac Moody algebras
creating physical states and defining free on mass shell quantum fields. In standard quantum field
theory the next step would be the introduction of purely local interaction vertices leading to divergence
difficulties. In the recent case one transfers the partonic states assignable to the light-cone boundaries
δM4
±(mi) × CP2 to the common partonic 2-surfaces X2

V along X3
L,i so that the products of field

operators at the same space-time point do not appear and one avoids infinities.
The remaining problem would be the construction an explicit realization of Connes tensor product.

The formal definition states that left and right N actions in the Connes tensor product M⊗N M
are identical so that the elements nm1 ⊗m2 and m1 ⊗m2n are identified. This implies a reduction
of degrees of freedom so that free tensor product is not in question. One might hope that at least in
the simplest choices for N characterizing the limitations of quantum measurement this reduction is
equivalent with the reduction of degrees of freedom caused by the integrability constraints for Kac-
Moody representations and dropping away of higher spins from the ordinary tensor product for the
representations of quantum groups. If fusion rules are equivalent with Connes tensor product, each
type of quantum measurement would be characterized by its own conformal field theory.

In practice it seems safest to utilize as much as possible the physical intuition provided by quantum
field theories. In [23] a rather precise vision about generalized Feynman diagrams is developed and
the challenge is to relate this vision to Connes tensor product.

Connection with topological quantum field theories defined by Chern-Simons action

There is also connection with topological quantum field theories (TQFTs) defined by Chern- Simons
action [136] .
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1. The light-like 3-surfaces X3
l defining propagators can contain unitary matrix characterizing

the braiding of the lines connecting fermions at the ends of the propagator line. Therefore
the modular S-matrix representing the braiding would become part of propagator line. Also
incoming particle lines can contain similar S-matrices but they should not be visible in the M -
matrix. Also entanglement between different partonic boundary components of a given incoming
3-surface by a modular S-matrix is possible.

2. Besides CP2 type extremals MEs with light-like momenta can appear as brehmstrahlung like
exchanges always accompanied by exchanges of CP2 type extremals making possible momentum
conservation. Also light-like boundaries of magnetic flux tubes having macroscopic size could
carry light-like momenta and represent similar brehmstrahlung like exchanges. In this case the
modular S-matrix could make possible topological quantum computations in q 6= 1 phase [95] .
Notice the somewhat counter intuitive implication that magnetic flux tubes of macroscopic size
would represent change in quantum jump rather than quantum state. These quantum jumps
can have an arbitrary long geometric duration in macroscopic quantum phases with large Planck
constant [27] .

There is also a connection with topological QFT defined by Chern-Simons action allowing to assign
topological invariants to the 3-manifolds [136] . If the light-like CDs X3

L,i are boundary components,
the 3-surfaces associated with particles are glued together somewhat like they are glued in the process
allowing to construct 3-manifold by gluing them together along boundaries. All 3-manifold topologies
can be constructed by using only torus like boundary components.

This would suggest a connection with 2+1-dimensional topological quantum field theory defined
by Chern-Simons action allowing to define invariants for knots, links, and braids and 3-manifolds using
surgery along links in terms of Wilson lines. In these theories one consider gluing of two 3-manifolds,
say three-spheres S3 along a link to obtain a topologically non-trivial 3-manifold. The replacement of
link with Wilson lines in S3#S3 = S3 reduces the calculation of link invariants defined in this manner
to Chern-Simons theory in S3.

In the recent situation more general structures are possible since arbitrary number of 3-manifolds
are glued together along link so that a singular 3-manifolds with a book like structure are possible.
The allowance of CDs which are not boundaries, typically 3-D light-like throats of wormhole contacts
at which induced metric transforms from Minkowskian to Euclidian, brings in additional richness of
structure. If the scaling factor of CP2 metric can be arbitrary large as the quantization of Planck
constant predicts, this kind of structure could be macroscopic and could be also linked and knotted. In
fact, topological condensation could be seen as a process in which two 4-manifolds are glued together
by drilling light-like CDs and connected by a piece of CP2 type extremal.

11.8 Jones inclusions and cognitive consciousness

Configuration space spinors have a natural interpretation in terms of a quantum version of Boolean
algebra. Beliefs of various kinds are the basic element of cognition and obviously involve a represen-
tation of the external world or part of it as states of the system defining the believer. Jones inclusions
mediating unitary mappings between the spaces of configuration spaces spinors of two systems are
excellent candidates for these maps, and it is interesting to find what one kind of model for beliefs
this picture leads to.

The resulting quantum model for beliefs provides a cognitive interpretation for quantum groups
and predicts a universal spectrum for the probabilities that a given belief is true. This spectrum
depends only on the integer n characterizing the quantum phase q = exp(i2π/n) characterizing the
Jones inclusion. For n 6=∞ the logic is inherently fuzzy so that absolute knowledge is impossible. q = 1
gives ordinary quantum logic with qbits having precise truth values after state function reduction.

11.8.1 Does one have a hierarchy of U- and M-matrices?

U -matrix describes scattering of zero energy states and since zero energy states can be illustrated in
terms of Feynman diagrams one can say that scattering of Feynman diagrams is in question. The
initial and final states of the scattering are superpositions of Feynman diagrams characterizing the
corresponding M -matrices which contain also the positive square root of density matrix as a factor.
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The hypothesis that U -matrix is the tensor product of S-matrix part ofM -matrix and its Hermitian
conjugate would make U -matrix an object deducible by physical measurements. One cannot of course
exclude that something totally new emerges. For instance, the description of quantum jumps creating
zero energy state from vacuum might require that U -matrix does not reduce in this manner. One can
assign to the U -matrix a square like structure with S-matrix and its Hermitian conjugate assigned
with the opposite sides of a square.

One can imagine of constructing higher level physical states as composites of zero energy states
by replacing the S-matrix with M -matrix in the square like structure. These states would provide a
physical representation of U -matrix. One could define U -matrix for these states in a similar manner.
This kind of hierarchy could be continued indefinitely and the hierarchy of higher level U and M -
matrices would be labeled by a hierarchy of n-cubes, n = 1, 2,... TGD inspired theory of consciousness
suggests that this hierarchy can be interpreted as a hierarchy of abstractions represented in terms of
physical states. This hierarchy brings strongly in mind also the hierarchies of n-algebras and n-groups
and this forces to consider the possibility that something genuinely new emerges at each step of the
hierarchy. A connection with the hierarchies of infinite primes [84] and Jones inclusions are suggestive.

11.8.2 Feynman diagrams as higher level particles and their scattering as
dynamics of self consciousness

The hierarchy of inclusions of hyper-finite factors of II1 as counterpart for many-sheeted space-time
lead inevitably to the idea that this hierarchy corresponds to a hierarchy of generalized Feynman
diagrams for which Feynman diagrams at a given level become particles at the next level. Accepting
this idea, one is led to ask what kind of quantum states these Feynman diagrams correspond, how one
could describe interactions of these higher level particles, what is the interpretation for these higher
level states, and whether they can be detected.

Jones inclusions as analogs of space-time surfaces

The idea about space-time as a 4-surface replicates itself at the level of operator algebra and state
space in the sense that Jones inclusion can be seen as a representation of the operator algebra N
as infinite-dimensional linear sub-space (surface) of the operator algebra M. This encourages to
think that generalized Feynman diagrams could correspond to image surfaces in II1 factor having
identification as kind of quantum space-time surfaces.

Suppose that the modular S-matrices are representable as the inner automorphisms ∆(Mit
k as-

signed to the external lines of Feynman diagrams. This would mean that N ⊂ Mk moves inside
calMk along a geodesic line determined by the inner automorphism. At the vertex the factors calMk

to fuse along N to form a Connes tensor product. Hence the copies of N move insideMk like incoming
3-surfaces in H and fuse together at the vertex. Since allMk are isomorphic to a universal factorM,
many-sheeted space-time would have a kind of quantum image inside II1 factor consisting of pieces
which are d =M : N/2-dimensional quantum spaces according to the identification of the quantum
space as subspace of quantum group to be discussed later. In the case of partonic Clifford algebras
the dimension would be indeed d ≤ 2.

The hierarchy of Jones inclusions defines a hierarchy of S-matrices

It is possible to assign to a given Jones inclusion N ⊂ M an entire hierarchy of Jones inclusions
M0 ⊂M1 ⊂M2..., M0 = N , M1 = M . A possible interpretation for these inclusions would be as a
sequence of topological condensations.

This sequence also defines a hierarchy of Feynman diagrams inside Feynman diagrams. The factor
M containing the Feynman diagram having as its lines the unitary orbits of N under ∆M becomes a
parton inM1 and its unitary orbits under ∆M1 define lines of Feynman diagrams in M1. The concrete
representation forM -matrix or projection of it to some subspace as entanglement coefficients of partons
at the ends of a braid assignable to the space-like 3-surface representing a vertex of a higher level
Feynman diagram. In this manner quantum dynamics would be coded and simulated by quantum
states.

The outcome can be said to be a hierarchy of Feynman diagrams within Feynman diagrams, a
fractal structure for which many particle scattering events at a given level become particles at the next
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level. The particles at the next level represent dynamics at the lower level: they have the property
of ”being about” representing perhaps the most crucial element of conscious experience. Since net
conserved quantum numbers can vanish for a system in TGD Universe, this kind of hierarchy indeed
allows a realization as zero energy states. Crossing symmetry can be understood in terms of this
picture and has been applied to construct a model for M -matrix at high energy limit [23] .

One might perhaps say that quantum space-time corresponds to a double inclusion and that further
inclusions bring in N -parameter families of space-time surfaces.

Higher level Feynman diagrams

The lines of Feynman diagram in Mn+1 are geodesic lines representing orbits of Mn and this kind
of lines meet at vertex and scatter. The evolution along lines is determined by ∆Mn+1

. These lines
contain within themselvesMn Feynman diagrams with similar structure and the hierarchy continues
down to the lowest level at which ordinary elementary particles are encountered.

For instance, the generalized Feynman diagrams at the second level are ribbon diagrams obtained
by thickening the ordinary diagrams in the new time direction. The interpretation as ribbon diagrams
crucial for topological quantum computation and suggested to be realizable in terms of zero energy
states in [95] is natural. At each level a new time parameter is introduced so that the dimension of
the diagram can be arbitrarily high. The dynamics is not that of ordinary surfaces but the dynamics
induced by the ∆Mn

.

Quantum states defined by higher level Feynman diagrams

The intuitive picture is that higher level quantum states corresponds to the self reflective aspect of
existence and must provide representations for the quantum dynamics of lower levels in their own
structure. This dynamics is characterized by M -matrix whose elements have representation in terms
of Feynman diagrams.

1. These states correspond to zero energy states in which initial states have ”positive energies” and
final states have ”negative energies”. The net conserved quantum numbers of initial and final
state partons compensate each other. Gravitational energies, and more generally gravitational
quantum numbers defined as absolute values of the net quantum numbers of initial and final
states do not vanish. One can say that thoughts have gravitational mass but no inertial mass.

2. States in sub-spaces of positive and negative energy states are entangled with entanglement
coefficients given by M -matrix at the level below.

To make this more concrete, consider first the simplest non-trivial case. In this case the particles
can be characterized as ordinary Feynman diagrams, or more precisely as scattering events so that
the state is characterized by Ŝ = PinSPout, where S is S-matrix and Pin resp. Pout is the projection
to a subspace of initial resp. final states. An entangled state with the projection of S-matrix giving
the entanglement coefficients is in question.

The larger the domains of projectors Pin and Pout, the higher the representative capacity of the
state. The norm of the non-normalized state Ŝ is Tr(ŜŜ†) ≤ 1 for II1 factors, and at the limit Ŝ = S
the norm equals to 1. Hence, by II1 property, the state always entangles infinite number of states,
and can in principle code the entire S-matrix to entanglement coefficients.

The states in which positive and negative energy states are entangled by a projection of S-matrix
might define only a particular instance of states for which conserved quantum numbers vanish. The
model for the interaction of Feynman diagrams discussed below applies also to these more general
states.

The interaction of Mn Feynman diagrams at the second level of hierarchy

What constraints can one pose to the higher level reactions? How Feynman diagrams interact?
Consider first the scattering at the second level of hierarchy (M1), the first level M0 being assigned
to the interactions of the ordinary matter.

1. Conservation laws pose constraints on the scattering at level M1. The Feynman diagrams can
transform to new Feynman diagrams only in such a manner that the net quantum numbers are
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conserved separately for the initial positive energy states and final negative energy states of the
diagram. The simplest assumption is that positive energy matter and negative energy matter
know nothing about each other and effectively live in separate worlds. The scattering matrix
form Feynman diagram like states would thus be simply the tensor product S ⊗ S†, where S is
the S-matrix characterizing the lowest level interactions and identifiable as unitary factor of M -
matrix for zero energy states. Reductionism would be realized in the sense that, apart from the
new elements brought in by ∆Mn defining single particle free dynamics, the lowest level would
determine in principle everything occurring at the higher level providing representations about
representations about... for what occurs at the basic level. The lowest level would represent the
physical world and higher levels the theory about it.

2. The description of hadronic reactions in terms of partons serves as a guide line when one tries
to understand higher level Feynman diagrams. The fusion of hadronic space-time sheets corre-
sponds to the vertices M1. In the vertex the analog of parton plasma is formed by a process
known as parton fragmentation. This means that the partonic Feynman diagrams belonging to
disjoint copies of M0 find themselves inside the same copy of M0. The standard description
would apply to the scattering of the initial resp. final state partons.

3. After the scattering of partons hadronization takes place. The analog of hadronization in the
recent case is the organization of the initial and final state partons to groups Ii and Fi such that
the net conserved quantum numbers are same for Ii and Fi. These conditions can be satisfied
if the interactions in the plasma phase occur only between particles belonging to the clusters
labeled by the index i. Otherwise only single particle states in M1 would be produced in the
reactions in the generic case. The cluster decomposition of S-matrix to a direct sum of terms
corresponding to partitions of the initial state particles to clusters which do not interact with
each other obviously corresponds to the ”hadronization”. Therefore no new dynamics need to
be introduced.

4. One cannot avoid the question whether the parton picture about hadrons indeed corresponds to
a higher level physics of this kind. This would require that hadronic space-time sheets carry the
net quantum numbers of hadrons. The net quantum numbers associated with the initial state
partons would be naturally identical with the net quantum numbers of hadron. Partons and
they negative energy conjugates would provide in this picture a representation of hadron about
hadron. This kind of interpretation of partons would make understandable why they cannot be
observed directly. A possible objection is that the net gravitational mass of hadron would be
three times the gravitational mass deduced from the inertial mass of hadron if partons feed their
gravitational fluxes to the space-time sheet carrying Earth’s gravitational field.

5. This picture could also relate to the suggested duality between string and parton pictures [86] . In
parton picture hadron is formed from partons represented by space-like 2-surfaces X2

i connected
by join along boundaries bonds. In string picture partonic 2-surfaces are replaced with string
orbits. If one puts positive and negative energy particles at the ends of string diagram one indeed
obtains a higher level representation of hadron. If these pictures are dual then also in parton
picture positive and negative energies should compensate each other. Interestingly, light-like
3-D causal determinants identified as orbits of partons could be interpreted as orbits of light like
string word sheets with ”time” coordinate varying in space-like direction.

Scattering of Feynman diagrams at the higher levels of hierarchy

This picture generalizes to the description of higher level Feynman diagrams.

1. Assume that higher level vertices have recursive structure allowing to reduce the Feynman
diagrams to ordinary Feynman diagrams by a procedure consisting of finite steps.

2. The lines of diagrams are classified as incoming or outgoing lines according to whether the time
orientation of the line is positive or negative. The time orientation is associated with the time
parameter tn characterizing the automorphism ∆itn

M\ . The incoming and outgoing net quantum

numbers compensate each other. These quantum numbers are basically the quantum numbers
of the state at the lowest level of the hierarchy.
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3. In the vertices theMn+1 particles fuse andMn particles form the analog of quark gluon plasma.
The initial and final state particles of Mn Feynman diagram scatter independently and the S-
matrix Sn+1 describing the process is tensor product Sn ⊗ S†n. By the clustering property of
S-matrix, this scattering occurs only for groups formed by partons formed by the incoming
and outgoing particlesMn particles and each outgoingMn+1 line contains and irreducibleMn

diagram. By continuing the recursion one finally ends down with ordinary Feynman diagrams.

11.8.3 Logic, beliefs, and spinor fields in the world of classical worlds

Beliefs can be characterized as Boolean value maps βi(p) telling whether i believes in proposition p
or not. Additional structure is brought in by introducing the map λi(p) telling whether p is true or
not in the environment of i. The task is to find quantum counterpart for this model.

Configuration space spinors as logic statements

In TGD framework the infinite-dimensional configuration space (CH) spinor fields defined in CH,
the ”world of classical worlds”, describe quantum states of the Universe [20] . CH spinor field can
be regarded as a state in infinite-dimensional Fock space and are labeled by a collection of various
two valued indices like spin and weak isospin. The interpretation is as a collection of truth values
of logic statements one for each fermionic oscillator operator in the state. For instance, spin up and
down would correspond to two possible truth values of a proposition characterized by other quantum
numbers of the mode.

The hierarchy of space-time sheet could define a physical correlate for the hierarchy of higher
order logics (statements about statements about...). The space-time sheet containing N fermions
topologically condensed at a larger space-time sheet behaves as a fermion or boson depending on
whether N is odd or even. This hierarchy has also a number theoretic counterpart: the construction
of infinite primes [84] corresponds to a repeated second quantization of a super-symmetric quantum
field theory.

Quantal description of beliefs

The question is whether TGD inspired theory of consciousness allows a fundamental description of
beliefs.

1. Beliefs define a model about some subsystem of universe constructed by the believer. This model
can be understood as some kind of representation of real word in the state space representing
the beliefs.

2. One can wonder what is the difference between real and p-adic variants of CH spinor fields and
whether they could represent reality and beliefs about reality. CH spinors (as opposed to spinor
fields) are constructible in terms of fermionic oscillator operators and seem to be universal in the
sense that one cannot speak about p-adic and real CH spinors as different objects. Real/ p-adic
spinor fields however have real/p-adic space-time sheets as arguments. This would suggest that
there is no fundamental difference between the logic statements represented by p-adic and real
CH spinors.

These observations suggest a more concrete view about how beliefs emerge physically.
The idea that p-adic CH spinor fields could serve as representations of beliefs and real CH spinor

fields as representations of reality looks very nice but the fact that the outcomes of p-adic-to-real
phase transition and its reversal are highly non-predictable does not support it as such.

Quantum statistical determinism could however come into rescue. Belief could be represented as
an ensemble of p-adic mental images resulting in transitions of real mental images representing reality
to p-adic states. p-Adic ensemble average would represent the belief.

It is not at all clear whether real-to-padic transitions can occur at high enough rate since p-
adic-to-real transition are expected to be highly irreversible. The real initial states much have nearly
vanishing quantum numbers emitted in the transition to p-adic state to guarantee conservation laws (p-
adic conservation laws hold true only piecewise since conserved quantities are pseudo constants). The
system defined by an ensemble of real Boolean mental images representing reality would automatically
generate a p-adic variant representing a belief about reality.
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p-Adic CH spinors can also represent the cognitive aspects of intention whereas p-adic space-time
sheets would represent its geometric aspects reflected in sensory experience.p-Adic space-time sheet
could also serve only as a space-time correlate for the fundamental representation of intention in terms
of p-adic CH spinor field. This view is consistent with the proposed identification of beliefs since the
transitions associated with intentions resp. beliefs would be p-adic-to-real resp. real-to-padic.

11.8.4 Jones inclusions for hyperfinite factors of type II1 as a model for
symbolic and cognitive representations

Consider next a more detailed model for how cognitive representations and beliefs are realized at
quantum level. This model generalizes trivially to symbolic representations.

The Clifford algebra of gamma matrices associated with CH spinor fields corresponds to a von
Neumann algebra known as hyper-finite factor of type II1. The mathematics of these algebras is
extremely beautiful and reproduces basic mathematical structures of modern physics (conformal field
theories, quantum groups, knot and braid groups,....) from the mere assumption that the world of
classical worlds possesses infinite-dimensional Kähler geometry and allows spinor structure.

The almost defining feature is that the infinite-dimensional unit matrix of the Clifford algebra in
question has by definition unit trace. Type II1 factors allow also what are known as Jones inclusions
of Clifford algebras N ⊂ M. What is special to II1 factors is that the induced unitary mappings
between spinor spaces are genuine inclusions rather than 1-1 maps.

The S-matrix associated with the real-to-p-adic quantum transition inducing belief from reality
would naturally define Jones inclusion of CH Clifford algebra N associated with the real space-time
sheet to the Clifford algebra M associated with the p-adic space-time sheet. The moduli squared of
S-matrix elements would define probabilities for pairs or real and belief states.

In Jones inclusion N ⊂ M the factor N is included in factor M such that M can be expressed
as N -module over quantum space M/N which has fractal dimension given by Jones index M : N =
4cos2(π/n) ≤ 4, n = 3, 4, .... varying in the range [1, 4]. The interpretation is as the fractal dimension
corresponding to a dimension of Clifford algebra acting in d =

√
M : N -dimensional spinor space: d

varies in the range [1, 2]. The interpretation in terms of a quantal variant of logic is natural.

Probabilistic beliefs

For M : N = 4 (n = ∞) the dimension of spinor space is d = 2 and one can speak about ordinary
2-component spinors with N -valued coefficients representing generalizations of qubits. Hence the
inclusion of a given N -spinor as M-spinor can be regarded as a belief on the proposition and for the
decomposition to a spinor in N-moduleM/N involves for each index a choiceM/N spinor component
selecting super-position of up and down spins. Hence one has a superposition of truth values in general
and one can speak only about probabilistic beliefs. It is not clear whether one can choose the basis
in such a manner that M/N spinor corresponds always to truth value 1. Since CH spinor field is in
question and even if this choice might be possible for a single 3-surface, it need not be possible for
deformations of it so that at quantum level one can only speak about probabilistic beliefs.

Fractal probabilistic beliefs

For d < 2 the spinor space associated with M/N can be regarded as quantum plane having complex
quantum dimension d with two non-commuting complex coordinates z1 and z2 satisfying z1z2 = qz2z1

and z1z2 = qz2z1. These relations are consistent with hermiticity of the real and imaginary parts of
z1 and z2 which define ordinary quantum planes. Hermiticity also implies that one can identify the
complex conjugates of zi as Hermitian conjugates.

The further commutation relations [z1, z2] = [z2, z1] = 0 and [z1, z1] = [z2, z2] = r give a closed
algebra satisfying Jacobi identities. One could argue that r ≥ 0 should be a function r(n) of the
quantum phase q = exp(i2π/n) vanishing at the limit n→∞ to guarantee that the algebra becomes
commutative at this limit and truth values can be chosen to be non-fuzzy. r = sin(π/n) would be the
simplest choice. As will be found, the choice of r(n) does not however affect at all the spectrum for
the probabilities of the truth values. n = ∞ case corresponding to non-fuzzy quantum logic is also
possible and must be treated separately: it corresponds to Kac Moody algebra instead of quantum
groups.
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The non-commutativity of complex spinor components means that z1 and z2 are not independent
coordinates: this explains the reduction of the number of the effective number of truth values to d < 2.
The maximal reduction occurs to d = 1 for n = 3 so that there is effectively only single truth value
and one could perhaps speak about taboo or dogma or complete disappearance of the notions of truth
and false (this brings in mind reports about meditative states: in fact n = 3 corresponds to a phase
in which Planck constant becomes infinite so that the system is maximally quantal).

As non-commuting operators the components of d-spinor are not simultaneously measurable for
d < 2. It is however possible to measure simultaneously the operators describing the probabilities z1z1

and z2z2 for truth values since these operators commute. An inherently fuzzy Boolean logic would be
in question with the additional feature that the spinorial counterparts of statement and its negation
cannot be regarded as independent observables although the corresponding probabilities satisfy the
defining conditions for commuting observables.

If one can speak of a measurement of probabilities for d < 2, it differs from the ordinary quantum
measurement in the sense that it cannot involve a state function reduction to a pure qubit meaning
irreducible quantal fuzziness. One could speak of fuzzy qbits or fqbits (or quantum qbits) instead of
qbits. This picture would provide the long sought interpretation for quantum groups.

The previous picture applies to all representations M1 ⊂ M2, where M1 and M2 denote either
real or p-adic Clifford algebras for some prime p. For instance, real-real Jones inclusion could be
interpreted as symbolic representations assignable to a unitary mapping of the states of a subsystem
M1 of the external world to the state space M2 of another real subsystem. p1 → p2 unitary inclusions
would in turn map cognitive representations to cognitive representations. There is a strong temptation
to assume that these Jones inclusions define unitary maps realizing universe as a universal quantum
computer mimicking itself at all levels utilizing cognitive and symbolic representations. Subsystem-
system inclusion would naturally define one example of Jones inclusion.

The spectrum of probabilities of truth values is universal

It is actually possible to calculate the spectrum of the probabilities of truth values with rather mild
additional assumptions.

1. Since the Hermitian operators X1 = (z1z1+z1z1)/2 and X2 = (z2z2+z2z2)/2 commute, physical
states can be chosen to be eigen states of these operators and it is possible to assign to the truth
values probabilities given by p1 = X1/R

2 and p2 = X2/R
2, R2 = X1 +X2.

2. By introducing the analog of the harmonic oscillator vacuum as a state |0〉 satisfying z1|0〉 =

z2|0〉 = 0, one obtains eigen states of X1 and X2 as states |n1, n2〉 = z1
n1
z2
n2 |0〉, n1 ≥ 0, n2 ≥

0. The eigenvalues of X1 and X2 are given by a modified harmonic oscillator spectrum as
(1/2 + n1q

n2)r and (1/2 + n2q
n1)r. The reality of eigenvalues (hermiticity) is guaranteed if one

has n1 = N1n and n1 = N2n and implies that the spectrum of eigen states gets increasingly
thinner for n→∞. This must somehow reflect the fractal dimension. The fact that large values
of oscillator quantum numbers n1 and n2 correspond to the classical limit suggests that modulo
condition guarantees approximate classicality of the logic for n→∞.

3. The probabilities p1 and p2 for the truth values given by (p1, p2) = (1/2 +N1n, 1/2 +N2n)/[1 +
(N1 +N2)n] are rational and allow an interpretation as both real and p-adic numbers. All states
are are inherently fuzzy and only at the limits N1 � N2 and N2 � N1 non-fuzzy states result.
As noticed, n = ∞ must be treated separately and corresponds to an ordinary non-fuzzy qbit
logic. At n → ∞ limit one has (p1, p2) = (N1, N2)/(N1, N2): at this limit N1 = 0 or N2 = 0
states are non-fuzzy.

How to define variants of belief quantum mechanically?

Probabilities of true and false for Jones inclusion characterize the plausibility of the belief and one
can ask whether this description is enough to characterize states such as knowledge, misbelief, doubt,
delusion, and ignorance. The truth value of βi(p) is determined by the measurement of probability
assignable to Jones inclusion on the p-adic side. The truth value of λi(p) is determined by a similar
measurement on the real side. β and λ appear completely symmetrically and one can consider all
kinds of triplets M1 ⊂M2 ⊂M3 assuming that there exist unitary S-matrix like maps mediating a
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sequenceM1 ⊂M2 ⊂M3 of Jones inclusions. Interestingly, the hierarchies of Jones inclusions are a
key concept in the theory of hyper-finite factors of type II1 and pair of inclusions plays a fundamental
role.

Let us restrict the consideration to the situation when M1 corresponds to a real subsystem of
the external world, M2 its real representation by a real subsystem, and M3 to p-adic cognitive
representation of M3. Assume that both real and p-adic sides involve a preferred state basis for qubits
representing truth and false.

Assume first that both M1 ⊂ M2 and M2 ⊂ M3 correspond to d = 2 case for which ordinary
quantum measurement or truth value is possible giving outcome true or false. Assume further that
the truth values have been measured in both M2 and M3.

1. Knowledge corresponds to the proposition βi(p) ∧ λi(p).

2. Misbelief to the proposition βi(p)∧ 6= λi(p).
Knowledge and misbelief would involve both the measurement of real and p-adic probabilities .

3. Assume next that one has d < 2 form M2 ⊂ M3. Doubt can be regarded neither belief or
disbelief: βi(p)∧ 6= βi( 6= p): belief is inherently fuzzy although proposition can be non-fuzzy.

Assume next that truth values in M1 ⊂ M2 inclusion corresponds to d < 2 so that the basic
propositions are inherently fuzzy.

4. Delusion is a belief which cannot be justified: βi(p) ∧ λi(p)∧ 6= λ( 6= p)). This case is possible
if d = 2 holds true for M2 ⊂ M3. Note that also misbelief that cannot be shown wrong is
possible.
In this case truth values cannot be quantum measured for M1 ⊂M2 but can be measured for
M2 ⊂M3. Hence the states are products of pure M3 states with fuzzy M2 states.

5. Ignorance corresponds to the proposition βi(p)∧ 6= βi(6= p) ∧ λi(p)∧ 6= λ(6= p)). Both real
representational states and belief states are inherently fuzzy.

Quite generally, only for d1 = d2 = 2 ideal knowledge and ideal misbelief are possible. Fuzzy beliefs and
logics approach to ordinary one at the limit n→∞, which according to the proposal of [77] corresponds
to the ordinary value of Planck constant. For other cases these notions are only approximate and
quantal approach allows to characterize the goodness of the approximation. A new kind of inherent
quantum uncertainty of knowledge is in question and one could speak about a Uncertainty Principle
for cognition and symbolic representations. Also the unification of symbolic and various kinds of
cognitive representations deserves to be mentioned.

11.8.5 Intentional comparison of beliefs by topological quantum computa-
tion?

Intentional comparison would mean that for a given initial state also the final state of the quantum
jump is fixed. This requires the ability to engineer S-matrix so that it leads from a given state to
single state only. Any S-matrix representing permutation of the initial states fulfills these conditions.
This condition is perhaps unnecessarily strong.

Quantum computation is basically the engineering of S-matrix so that it represents a superpo-
sition of parallel computations. In TGD framework topological quantum computation based on the
braiding of magnetic flux tubes would be represented as an evolution characterized by braid [95] . The
dynamical evolution would be associated with light-like boundaries of braids. This evolution has dual
interpretations either as a limit of time evolution of quantum state (program running) or a quantum
state satisfying conformal invariance constraints (program code).

The dual interpretation would mean that conformally invariant states are equivalent with en-
gineered time evolutions and topological computation realized as braiding connecting the quantum
states to be compared (beliefs represented as many-fermion states at the boundaries of magnetic flux
tubes) could give rise to conscious computational comparison of beliefs. The complexity of braiding
would give a measure for how much the states to be compared differ.

Note that quantum computation is defined by a unitary map which could also be interpreted as
symbolic representation of states of system M1 as states of system M2 mediated by the braid of
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join along boundaries bonds connecting the two space-time sheets in question and having light-like
boundaries. These considerations suggest that the idea about S-matrix of the Universe should be
generalized so that the dynamics of the Universe is dynamics of mimicry described by an infinite
collection of fermionic S-matrices representable in terms of Jones inclusions.

11.8.6 The stability of fuzzy qbits and quantum computation

The stability of fqbits against state function reduction might have deep implications for quantum
computation since quantum spinors would be stable against state function reduction induced by
the perturbations inducing de-coherence in the normal situation. If this is really true, and if the
only dangerous perturbations are those inducing the phase transition to qbits, the implications for
quantum computation could be dramatic. Of course, the rigidity of qbits could be just another way to
say that topological quantum computations are stable against thermal perturbations not destroying
anyons [95] .

The stability of fqbits could also be another manner to state the stability of rational, or more
generally algebraic, bound state entanglement against state function reduction, which is one of the
basic hypothesis of TGD inspired theory of consciousness [51] . For sequences of Jones inclusions
or equivalently, for multiple Connes tensor products, one would obtain tensor products of quantum
spinors making possible arbitrary complex configurations of fqbits. Anyonic braids in topological
quantum computation would have interpretation as representations for this kind of tensor products.

11.8.7 Fuzzy quantum logic and possible anomalies in the experimental
data for the EPR-Bohm experiment

The experimental data for EPR-Bohm experiment [7] excluding hidden variable interpretations of
quantum theory. What is less known that the experimental data indicates about possibility of an
anomaly challenging quantum mechanics [10] . The obvious question is whether this anomaly might
provide a test for the notion of fuzzy quantum logic inspired by the TGD based quantum measurement
theory with finite measurement resolution.

The anomaly

The experimental situation involves emission of two photons from spin zero system so that photons
have opposite spins. What is measured are polarizations of the two photons with respect to polar-
ization axes which differ from standard choice of this axis by rotations around the axis of photon
momentum characterized by angles α and β. The probabilities for observing polarizations (i, j),
where i, j is taken Z2 valued variable for a convenience of notation are Pij(α, β), are predicted to be
P00 = P11 = cos2(α− β)/2 and P01 = P10 = sin2(α− β)/2.

Consider now the discrepancies.

1. One has four identities Pi,i + Pi,i+1 = Pii + Pi+1,i = 1/2 having interpretation in terms of
probability conservation. Experimental data of [7] are not consistent with this prediction [1]
and this is identified as the anomaly.

2. The QM prediction E(α, β) =
∑
i(Pi,i − Pi,i+1) = cos(2(α − β) is not satisfied neither: the

maxima for the magnitude of E are scaled down by a factor ' .9. This deviation is not discussed
in [1] .

Both these findings raise the possibility that QM might not be consistent with the data. It turns out
that fuzzy quantum logic predicted by TGD and implying that the predictions for the probabilities
and correlation must be replaced by ensemble averages, can explain anomaly b) but not anomaly a).
A ”mundane” explanation for anomaly a) is proposed.

Predictions of fuzzy quantum logic for the probabilities and correlations

1. The description of fuzzy quantum logic in terms statistical ensemble
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The fuzzy quantum logic implies that the predictions Pi,j for the probabilities should be replaced
with ensemble averages over the ensembles defined by fuzzy quantum logic. In practice this means
that following replacements should be carried out:

Pi,j → P 2Pi,j + (1− P )2Pi+1,j+1

+ P (1− P ) [Pi,j+1 + Pi+1,j ] . (11.8.1)

Here P is one of the state dependent universal probabilities/fuzzy truth values for some value of n
characterizing the measurement situation. The concrete predictions would be following

P0,0 = P1,1 → A
cos2(α− β)

2
+B

sin2(α− β)

2

= (A−B)
cos2(α− β)

2
+
B

2
,

P0,1 = P1,0 → A
sin2(α− β)

2
+B

cos2(α− β)

2

= (A−B)
sin2(α− β)

2
+
B

2
,

A = P 2 + (1− P )2 , B = 2P (1− P ) . (11.8.2)

The prediction is that the graphs of probabilities as a function as function of the angle α−β are scaled
by a factor 1 − 4P (1 − P ) and shifted upwards by P (1 − P ). The value of P , and one might hope
even the value of n labeling Jones inclusion and the integer m labeling the quantum state might be
deducible from the experimental data as the upward shift. The basic prediction is that the maxima
of curves measuring probabilities P(i, j) have minimum at B/2 = P (1 − P ) and maximum is scaled
down to (A−B)/2 = 1/2− 2P (1− P ).

If the P is same for all pairs i, j, the correlation E =
∑
i(Pii − Pi,i+1) transforms as

E(α, β) → [1− 4P (1− P )]E(α, β) . (11.8.3)

Only the normalization of E(α, β) as a function of α − β reducing the magnitude of E occurs. In
particular the maximum/minimum of E are scaled down from E = ±1 to E = ±(1− 4P (1− P )).

From the figure 1b) of [1] the scaling down indeed occurs for magnitudes of E with same amount for
minimum and maximum. Writing P = 1− ε one has A−B ' 1−4ε and B ' 2ε so that the maximum
is in the first approximation predicted to be at 1− 4ε. The graph would give 1− P ' ε ' .025. Thus
the model explains the reduction of the magnitude for the maximum and minimum of E which was
not however considered to be an anomaly in [10, 1] .

A further prediction is that the identities P (i, i) +P (i+ 1, i) = 1/2 should still hold true since one
has Pi,i + Pi,i+1 = (A − B)/2 + B = 1. This is implied also by probability conservation. The four
curves corresponding to these identities do not however co-incide as the figure 6 of [1] demonstrates.
This is regarded as the basic anomaly in [10, 1] . From the same figure it is also clear that below
α − β < 10 degrees P++ = P−− ∆P+− = −∆P−+ holds true in a reasonable approximation. After
that one has also non-vanishing ∆Pii satisfying ∆P++ = −∆P−−. This kind of splittings guarantee
the identity

∑
ij Pij = 1. These splittings are not visible in E.

Since probability conservation requires Pii+Pii+1 = 1, a mundane explanation for the discrepancy
could be that the failure of the conditions Pi,i + Pii+1 = 1 means that the measurement efficiency is
too low for P+− and yields too low values of P+−+P−− and P+−+P++. The constraint

∑
ij Pij = 1

would then yield too high value for P−+. Similar reduction of measurement efficiency for P++ could
explain the splitting for α− β > 10 degrees.

Clearly asymmetry with respect to exchange of photons or of detectors is in question.

1. The asymmetry of two photon state with respect to the exchange of photons could be considered
as a source of asymmetry. This would mean that the photons are not maximally entangled. This
could be seen as an alternative ”mundane” explanation.
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2. The assumption that the parameter P is different for the detectors does not change the situation
as is easy to check.

3. One manner to achieve splittings which resemble observed splittings is to assume that the value
of the probability parameter P depends on the polarization pair: P = P (i, j) so that one has
(P (−,+), P (+,−)) = (P+∆, P−∆) and (P (−,−), P (+,+)) = (P+∆1, P−∆1). ∆ ' .025 and
∆1 ' ∆/2 could produce the observed splittings qualitatively. One would however always have
P (i, i) + P (i, i+ 1) ≥ 1/2. Only if the procedure extracting the correlations uses the constraint∑
i,j Pij = 1 effectively inducing a constant shift of Pij downwards an asymmetry of observed

kind can result. A further objection is that there are no special reason for the values of P (i, j)
to satisfy the constraints.

2. Is it possible to say anything about the value of n in the case of EPR-Bohm experiment?

To explain the reduction of the maximum magnitudes of the correlation E from 1 to ∼ .9 in the
experiment discussed above one should have p1 ' .9. It is interesting to look whether this allows to
deduce any information about the valued of n. At the limit of large values of Nin one would have
(N1 − N2)/(N1 + N2) ' .4 so that one cannot say anything about n in this case. (N1, N2) = (3, 1)
satisfies the condition exactly. For n = 3, the smallest possible value of n, this would give p1 ' .88
and for n = 4 p1 = .41. With high enough precision it might be possible to select between n = 3 and
n = 4 options if small values of Ni are accepted.

11.8.8 Category theoretic formulation for quantum measurement theory
with finite measurement resolution?

I have been trying to understand whether category theory might provide some deeper understanding
about quantum TGD, not just as a powerful organizer of fuzzy thoughts but also as a tool providing
genuine physical insights. Marni Dee Sheppeard (or Kea in her blog Arcadian Functor at http://kea-
monad.blogspot.com/) is also interested in categories but in much more technical sense. Her dream is
to find a category theoretical formulation of M-theory as something, which is not the 11-D something
making me rather unhappy as a physicist with second foot still deep in the muds of low energy
phenomenology.

Locales, frames, Sierpinski topologies and Sierpinski space

The ideas below popped up when Kea mentioned in M-theory lesson 51 the notions of locale and
frame [12] . In Wikipedia I learned that complete Heyting algebras, which are fundamental to category
theory, are objects of three categories with differing arrows. CHey, Loc and its opposite category Frm
(arrows reversed). Complete Heyting algebras are partially ordered sets which are complete lattices.
Besides the basic logical operations there is also algebra multiplication (I have considered the possible
role of categories and Heyting algebras in TGD in [19] ). From Wikipedia I also learned that locales
and the dual notion of frames form the foundation of pointless topology [28] . These topologies are
important in topos theory which does not assume axiom of choice.

The so called particular point topology [25] assumes a selection of single point but I have the
physicist’s feeling that it is otherwise rather near to pointless topology. Sierpinski topology [34] is this
kind of topology. Sierpinski topology is defined in a simple manner: the set is open only if it contains
a given preferred point p. The dual of this topology defined in the obvious sense exists also. Sierpinski
space consisting of just two points 0 and 1 is the universal building block of these topologies in the
sense that a map of an arbitrary space to Sierpinski space provides it with Sierpinski topology as the
induced topology. In category theoretical terms Sierpinski space is the initial object in the category
of frames and terminal object in the dual category of locales. This category theoretic reductionism
looks highly attractive.

Particular point topologies, their generalization, and number theoretical braids

Pointless, or rather particular point topologies might be very interesting from physicist’s point of view.
After all, every classical physical measurement has a finite space-time resolution. In TGD framework
discretization by number theoretic braids replaces partonic 2-surface with a discrete set consisting of



944 Chapter 11. Was von Neumann Right After All?

algebraic points in some extension of rationals: this brings in mind something which might be called
a topology with a set of particular algebraic points. Could this preferred set belongs to any open set
in the particular point topology appropriate in this situation?

Perhaps the physical variant for the axiom of choice could be restricted so that only sets of algebraic
points in some extension of rationals can be chosen freely and the choices is defined by the intersection
of p-adic and real partonic 2-surfaces and in the framework of TGD inspired theory of consciousness
would thus involve the interaction of cognition and intentionality with the material world. The
extension would depend on the position of the physical system in the algebraic evolutionary hierarchy
defining also a cognitive hierarchy. Certainly this would fit very nicely to the formulation of quantum
TGD unifying real and p-adic physics by gluing real and p-adic number fields to single super-structure
via common algebraic points.

Analogs of particular point topologies at the level of state space: finite measurement
resolution

There is also a finite measurement resolution in Hilbert space sense not taken into account in the
standard quantum measurement theory based on factors of type I. In TGD framework one indeed
introduces quantum measurement theory with a finite measurement resolution so that complex rays
become included hyper-finite factors of type II1 (HFFs).

1. Could topology with particular algebraic points have a generalization allowing a category the-
oretic formulation of the quantum measurement theory without states identified as complex
rays?

2. How to achieve this? In the transition of ordinary Boolean logic to quantum logic in the old
fashioned sense (von Neuman again!) the set of subsets is replaced with the set of subspaces of
Hilbert space. Perhaps this transition has a counterpart as a transition from Sierpinski topology
to a structure in which sub-spaces of Hilbert space are quantum sub-spaces with complex rays
replaced with the orbits of subalgebra defining the measurement resolution. Sierpinski space
{0,1} would in this generalization be replaced with the quantum counterpart of the space of
2-spinors. Perhaps one should also introduce q-category theory with Heyting algebra being
replaced with q-quantum logic.

Fuzzy quantum logic as counterpart for Sierpinksi space

The program formulated above might indeed make sense. The lucky association induced by Kea’s
blog was to the ideas about fuzzy quantum logic realized in terms of quantum 2-spinor that I had
developed a couple of years ago. Fuzzy quantum logic would reflect the finite measurement resolution.
I just list the pieces of the argument.

Spinors and qbits: Spinors define a quantal variant of Boolean statements, qbits. One can
however go further and define the notion of quantum qbit, qqbit. I indeed did this for couple of years
ago (the last section of this chapter).

Q-spinors and qqbits: For q-spinors the two components a and b are not commuting numbers
but non-Hermitian operators: ab = qba, q a root of unity. This means that one cannot measure both
a and b simultaneously, only either of them. aa† and bb† however commute so that probabilities for
bits 1 and 0 can be measured simultaneously. State function reduction is not possible to a state in
which a or b gives zero. The interpretation is that one has q-logic is inherently fuzzy: there are no
absolute truths or falsehoods. One can actually predict the spectrum of eigenvalues of probabilities
for say 1. Obviously quantum spinors would be state space counterparts of Sierpinski space and for
q 6= 1 the choice of preferred spinor component is very natural. Perhaps this fuzzy quantum logic
replaces the logic defined by the Heyting algebra.

Q-locale: Could one think of generalizing the notion of locale to quantum locale by using the idea
that sets are replaced by sub-spaces of Hilbert space in the conventional quantum logic. Q-openness
would be defined by identifying quantum spinors as the initial object, q-Sierpinski space. a (resp. b
for the dual category) would define q-open set in this space. Q-open sets for other quantum spaces
would be defined as inverse images of a (resp. b) for morphisms to this space. Only for q=1 one could
have the q-counterpart of rather uninteresting topology in which all sets are open and every map is
continuous.
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Q-locale and HFFs: The q-Sierpinski character of q-spinors would conform with the very special
role of Clifford algebra in the theory of HFFs, in particular, the special role of Jones inclusions to
which one can assign spinor representations of SU(2). The Clifford algebra and spinors of the world
of classical worlds identifiable as Fock space of quark and lepton spinors is the fundamental example
in which 2-spinors and corresponding Clifford algebra serves as basic building brick although tensor
powers of any matrix algebra provides a representation of HFF.

Q-measurement theory: Finite measurement resolution (q-quantum measurement theory) means
that complex rays are replaced by sub-algebra rays. This would force the Jones inclusions associated
with SU(2) spinor representation and would be characterized by quantum phase q and bring in the
q-topology and q-spinors. Fuzzyness of qqbits of course correlates with the finite measurement reso-
lution.

Q-n-logos: For other q-representations of SU(2) and for representations of compact groups (Ap-
pendix) one would obtain something which might have something to do with quantum n-logos, quan-
tum generalization of n-valued logic. All of these would be however less fundamental and induced by
q-morphisms to the fundamental representation in terms of spinors of the world of classical worlds.
What would be however very nice that if these q-morphisms are constructible explicitly it would
become possible to build up q-representations of various groups using the fundamental physical real-
ization - and as I have conjectured [73] - McKay correspondence and huge variety of its generalizations
would emerge in this manner.

The analogs of Sierpinski spaces: The discrete subgroups of SU(2), and quite generally, the
groups Zn associated with Jones inclusions and leaving the choice of quantization axes invariant,
bring in mind the n-point analogs of Sierpinski space with unit element defining the particular point.
Note however that n ≥ 3 holds true always so that one does not obtain Sierpinski space itself. If all
these n preferred points belong to any open set it would not be possible to decompose this preferred
set to two subsets belonging to disjoint open sets. Recall that the generalized imbedding space
related to the quantization of Planck constant is obtained by gluing together coverings M4 ×CP2 →
M4×CP2/Ga×Gb along their common points of base spaces. The topology in question would mean
that if some point in the covering belongs to an open set, all of them do so. The interpretation would
be that the points of fiber form a single inseparable quantal unit.

Number theoretical braids identified as as subsets of the intersection of real and p-adic variants of
algebraic partonic 2-surface define a second candidate for the generalized Sierpinski space with a set
of preferred points.

11.9 Appendix: Inclusions of hyper-finite factors of type II1

Many names have been assigned to inclusions: Jones, Wenzl, Ocneacnu, Pimsner-Popa, Wasserman
[64] . It would seem to me that the notion Jones inclusion includes them all so that various names would
correspond to different concrete realizations of the inclusions conjugate under outer automorphisms.

1. According to [64] for inclusions with M : N ≤ 4 (with A
(1)
1 excluded) there exists a countable

infinity of sub-factors with are pairwise non inner conjugate but conjugate to N .

2. Also for any finite group G and its outer action there exists uncountably many sub-factors which
are pairwise non inner conjugate but conjugate to the fixed point algebra of G [64] . For any
amenable group G the the inclusion is also unique apart from outer automorphism [80] .

Thus it seems that not only Jones inclusions but also more general inclusions are unique apart from
outer automorphism.

Any *-endomorphism σ, which is unit preserving, faithful, and weakly continuous, defines a sub-
factor of type II1 factor [64] . The construction of Jones leads to a atandard inclusion sequence
N ⊂M ⊂M1 ⊂ .... This sequence means addition of projectors ei, i < 0, having visualization as an
addition of braid strand in braid picture. This hierarchy exists for all factors of type II. At the limit
M∞ = ∪iMi the braid sequence extends from −∞ to ∞. Inclusion hierarchy can be understood as a
hierarchy of Connes tensor powersM⊗NM....⊗NM. Also the ordinary tensor powers of hyper-finite
factors of type II1 (HFF) as well as their tensor products with finite-dimensional matrix algebras are
isomorphic to the original HFF so that these objects share the magic of fractals.
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Under certain assumptions the hierarchy can be continued also in opposite direction. For a finite
index an infinite inclusion hierarchy of factors results with the same value of index. σ is said to be
basic if it can be extended to *-endomorphisms from M1 to M. This means that the hierarchy of
inclusions can be continued in the opposite direction: this means elimination of strands in the braid
picture. For finite factors (as opposed to hyper-finite ones) there are no basic *-endomorphisms ofM
having fixed point algebra of non-abelian G as a sub-factor [64] .

11.9.1 Jones inclusions

For hyper-finite factors of type II1 Jones inclusions allow basic *-endomorphism. They exist for all
values of M : N = r with r ∈ {4cos2(π/n)|n ≥ 3} ∩ [4,∞) [64] . They are defined for an algebra
defined by projectors ei, i ≥ 1. All but nearest neighbor projectors commute. λ = 1/r appears in the
relations for the generators of the algebra given by eiejei = λei, |i − j| = 1. N ⊂ M is identified as
the double commutator of algebra generated by ei, i ≥ 2.

This means that principal graph and its dual are equivalent and the braid defined by projectors can
be continued not only to −∞ but that also the dropping of arbitrary number of strands is possible [64]
. It would seem that ADE property of the principal graph meaning single root length codes for the
duality in the case of r ≤ 4 inclusions.

Irreducibility holds true for r < 4 in the sense that the intersection of Q′ ∩ P = P ′ ∩ P = C. For
r ≥ 4 one has dim(Q′∩P ) = 2. The operators commuting with Q contain besides identify operator of
Q also the identify operator of P . Q would contain a single finite-dimensional matrix factor less than
P in this case. Basic *-endomorphisms with σ(P ) = Q is σ(ei) = ei+1. The difference between genuine
symmetries of quantum TGD and symmetries which can be mimicked by TGD could relate to the
irreducibility for r < 4 and raise these inclusions in a unique position. This difference could partially
justify the hypothesis [30] that only the groups Ga×Gb ⊂ SU(2)×SU(2) ⊂ SL(2, C)×SU(3) define
orbifold coverings of H± = M4

± × CP2 → H±/Ga ×Gb.

11.9.2 Wassermann’s inclusion

Wasserman’s construction of r = 4 factors clarifies the role of the subgroup of G ⊂ SU(2) for these
inclusions. Also now r = 4 inclusion is characterized by a discrete subgroup G ⊂ SU(2) and is given
by (1⊗M)G ⊂ (M2(C)×M)G. According to [64] Jones inclusions are irreducible also for r = 4. The
definition of Wasserman inclusion for r = 4 seems however to imply that the identity matrices of both
MG and (M(2, C)⊗M)G commute with MG so that the inclusion should be reducible for r = 4.

Note that G leaves both the elements of N and M invariant whereas SU(2) leaves the elements
of N invariant. M(2, C) is effectively replaced with the orbifold M(2, C)/G, with G acting as auto-
moprhisms. The space of these orbits has complex dimension d = 4 for finite G.

For r < 4 inclusion is defined as MG ⊂M . The representation of G as outer automorphism must
change step by step in the inclusion sequence ... ⊂ N ⊂M ⊂ ... since otherwise G would act trivially
as one proceeds in the inclusion sequence. This is true since each step brings in additional finite-
dimensional tensor factor in which G acts as automorphisms so that although M can be invariant
under GM it is not invariant under GN .

These two inclusions might accompany each other in TGD based physics. One could consider
r < 4 inclusion N = MG ⊂ M with G acting non-trivially in M/N quantum Clifford algebra. N
would decompose by r = 4 inclusion to N1 ⊂ N with SU(2) taking the role of G. N/N1 quantum
Clifford algebra would transform non-trivially under SU(2) but would be G singlet.

In TGD framework the G-invariance for SU(2) representations means a reduction of S2 to the
orbifold S2/G. The coverings H± → H±/Ga×Gb should relate to these double inclusions and SU(2)
inclusion could mean Kac-Moody type gauge symmetry for N . Note that the presence of the factor
containing only unit matrix should relate directly to the generator d in the generator set of affine
algebra in the McKay construction [20] . The physical interpretation of the fact that almost all ADE

type extended diagrams (D
(1)
n must have n ≥ 4) are allowed for r = 4 inclusions whereas D2n+1 and

E6 are not allowed for r < 4, remains open.
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11.9.3 Generalization from SU(2) to arbitrary compact group

The inclusions with index M : N < 4 have one-dimensional relative commutant N ′ ∪ M. The
most obvious conjecture that M : N ≥ 4 corresponds to a non-trivial relative commutant is wrong.
The index for Jones inclusion is identifiable as the square of quantum dimension of the fundamental
representation of SU(2). This identification generalizes to an arbitrary representation of arbitrary
compact Lie group.

In his thesis Wenzl [135] studied the representations of Hecke algebras Hn(q) of type An obtained
from the defining relations of symmetric group by the replacement e2

i = (q−1)ei+q. Hn is isomorphic
to complex group algebra of Sn if q is not a root of unity and for q = 1 the irreducible representations
of Hn(q) reduce trivially to Young’s representations of symmetric groups. For primitive roots of
unity q = exp(i2π/l), l = 4, 5..., the representations of Hn(∞) give rise to inclusions for which index
corresponds to a quantum dimension of any irreducible representation of SU(k), k ≥ 2. For SU(2)
also the value l = 3 is allowed for spin 1/2 representation.

The inclusions are obtained by dropping the first m generators ek from H∞(q) and taking double
commutant of both H∞ and the resulting algebra. The relative commutant corresponds to Hm(q). By
reducing by the minimal projection to relative commutant one obtains an inclusion with a trivial rel-
ative commutant. These inclusions are analogous to a discrete states superposed in continuum. Thus
the results of Jones generalize from the fundamental representation of SU(2) to all representations of
all groups SU(k), and in fact to those of general compact groups as it turns out.

The generalization of the formula for index to square of quantum dimension of an irreducible
representation of SU(k) reads as

M : N =
∏

1≤r<s≤k

sin2 ((λr − λs + s− r)π/l)
sin2 ((s− r)n/l)

. (11.9.1)

Here λr is the number of boxes in the rth row of the Yang diagram with n boxes characterizing the
representations and the condition 1 ≤ k ≤ l − 1 holds true. Only Young diagrams satisfying the
condition l − k = λ1 − λrmax are allowed.

The result would allow to restrict the generalization of the imbedding space in such a manner that
only cyclic group Zn appears in the covering of M4 →M4/Ga or CP2 → CP2/Gb factor. Be as it may,
it seems that quantum representations of any compact Lie group can be realized using the generaliza-
tion of the imbedding space. In the case of SU(2) the interpretation of higher-dimensional quantum
representations in terms of Connes tensor products of 2-dimensional fundamental representations is
highly suggestive.

The groups SO(3, 1)×SU(3) and SL(2, C)×U(2)ew have a distinguished position both in physics
and quantum TGD and the vision about physics as a generalized number theory implies them. Also
the general pattern for inclusions selects these groups, and one can say that the condition that all
possible statistics are realized is guaranteed by the choice M4 × CP2.

1. n > 2 for the quantum counterparts of the fundamental representation of SU(2) means that
braid statistics for Jones inclusions cannot give the usual fermionic statistics. That Fermi
statistics cannot ”emerge” conforms with the role of infinite-D Clifford algebra as a canonical
representation of HFF of type II1. SO(3, 1) as isometries of H gives Z2 statistics via the action
on spinors of M4 and U(2) holonomies for CP2 realize Z2 statistics in CP2 degrees of freedom.

2. n > 3 for more general inclusions in turn excludes Z3 statistics as braid statistics in the general
case. SU(3) as isometries induces a non-trivial Z3 action on quark spinors but trivial action at
the imbedding space level so that Z3 statistics would be in question.
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Chapter 12

Does TGD Predict a Spectrum of
Planck Constants?

12.1 Introduction

The quantization of Planck constant has been the basic them of TGD since 2005 and the perspective
in the earlier version of this chapter reflected the situation for about year and one half after the basic
idea stimulated by the finding of Nottale [27] that planetary orbits could be seen as Bohr orbits with
enormous value of Planck constant given by ~gr = GM1M2/v0, v0 ' 2−11 for the inner planets. The
general form of ~gr is dictated by Equivalence Principle. This inspired the ideas that quantization is
due to a condensation of ordinary matter around dark matter concentrated near Bohr orbits and that
dark matter is in macroscopic quantum phase in astrophysical scales.

The second crucial empirical input were the anomalies associated with living matter. Mention
only the effects of ELF radiation at EEG frequencies on vertebrate brain and anomalous behavior of
the ionic currents through cell membrane. If the value of Planck constant is large, the energy of EEG
photons is above thermal energy and one can understand the effects on both physiology and behavior.
If ionic currents through cell membrane have large Planck constant the scale of quantum coherence is
large and one can understand the observed low dissipation in terms of quantum coherence.

12.1.1 The evolution of mathematical ideas

From the beginning the basic challenge -besides the need to deduce a general formula for the quan-
tized Planck constant- was to understand how the quantization of Planck constant is mathematically
possible. From the beginning it was clear that since particles with different values of Planck constant
cannot appear in the same vertex, a generalization of space-time concept is needed to achieve this.

During last five years or so many deep ideas -both physical and mathematical- related to the
construction of quantum TGD have emerged and this has led to a profound change of perspective in
this and also other chapters. The overall view about TGD is described briefly in [9] .

1. For more than five years ago I realized that von Neumann algebras known as hyperfinite factors
of type II1 (HFFs) are highly relevant for quantum TGD since the Clifford algebra of configu-
ration space (”world of classical worlds”, WCW) is direct sum over HFFs. Jones inclusions are
particular class of inclusions of HFFs and quantum groups are closely related to them. This led
to a conviction that Jones inclusions can provide a detailed understanding of what is involved
and predict very simple spectrum for Planck constants associated with M4 and CP2 degrees
of freedom (later I replaced M4 by its light cone M4

± and finally with the causal diamond CD
defined as intersection of future and past light-cones of M4).

2. The notion of zero energy ontology replaces physical states with zero energy states consisting
of pairs of positive and negative energy states at the light-like boundaries δM4

± × CP2 of CDs
forming a fractal hierarchy containing CDs within CDs. In standard ontology zero energy state
corresponds to a physical event, say particle reaction. This led to the generalization of S-matrix
to M-matrix identified as Connes tensor product characterizing time like entanglement between
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positive and negative energy states. M-matrix is product of square root of density matrix and
unitary S-matrix just like Schrödinger amplitude is product of modulus and phase, which means
that thermodynamics becomes part of quantum theory and thermodynamical ensembles are
realized as single particle quantum states. This led also to a solution of long standing problem
of understanding how geometric time of the physicist is related to the experienced time identified
as a sequence of quantum jumps interpreted as moments of consciousness [7] in TGD inspired
theory of consciousness which can be also seen as a generalization of quantum measurement
theory [8] .

3. Another closely related idea was the emergence of measurement resolution as the basic element
of quantum theory. Measurement resolution is characterized by inclusionM⊂ N of HFFs with
M characterizing the measurement resolution in the sense that the action of M creates states
which cannot be distinguished from each other within measurement resolution used. Hence
complex rays of state space are replaced with M rays. One of the basic challenges is to define
the nebulous factor space N/M having finite fractional dimension N : M given by the index
of inclusion. It was clear that this space should correspond to quantum counterpart of Clifford
algebra of world of classical worlds reduced to a finite-quantum dimensional algebra by the finite
measurement resolution [20] .

4. The realization that light-like 3-surfaces at which the signature of induced metric of space-time
surface changes from Minkowskian to Euclidian are ideal candidates for basic dynamical objects
besides light-like boundaries of space-time surface was a further decisive step or progress. This
led to vision that quantum TGD is almost topological quantum field theory (”almost” because
light-likeness brings in induced metric) characterized by Chern-Simons action for induced Kähler
gauge potential of CP2. Together with zero energy ontology this led to the generalization of
the notion of Feynman diagram to a light-like 3-surface for which lines correspond to light-like
3-surfaces and vertices to 2-D partonic surface at which these 3-D surface meet. This means a
strong departure from string model picture. The interaction vertices should be given by N-point
functions of a conformal field theory with second quantized induced spinor fields defining the
basic fields in terms of which also the gamma matrices of world of classical worlds could be
constructed as super generators of super conformal symmetries [20] .

5. By quantum classical correspondence finite measurement resolution should have a space-time
correlate. The obvious guess was that this correlate is discretization at the level of construction
of M-matrix. In almost-TQFT context the effective replacement of light-like 3-surface with
braids defining basic objects of TQFTs is the obvious guess. Also number theoretic universality
necessary for the p-adicization of quantum TGD by a process analogous to the completion of
rationals to reals and various p-adic number fields requires discretization since only rational and
possibly some algebraic points of the imbedding space (in suitable preferred coordinates) allow
interpretation both as real and p-adic points. It was clear that the construction of M-matrix
boils to the precise understanding of number theoretic braids [20] .

6. The interaction with M-theory dualities [81] led to a handful of speculations about dualities
possible in TGD framework, and one of these dualities- M8 −M4 × CP2 duality - eventually
led to a unique identification of number theoretic braids. The dimensions of partonic 2-surface,
space-time, and imbedding space strongly suggest that classical number fields, or more precisely
their complexifications might help to understand quantum TGD. If the choice of imbedding space
is unique because of uniqueness of infinite-dimensional Kähler geometric existence of world of
classical worlds then standard model symmetries coded by M4 ×CP2 should have some deeper
meaning and the most obvious guess is that M4×CP2 can be understood geometrically. SU(3)
belongs to the automorphism group of octonions as well as hyper-octonions M8 identified by
subspace of complexified octonions with Minkowskian signature of induced metric. This led to
the discovery that hyper-quaternionic 4-surfaces in M8 can be mapped to M4 × CP2 provided
their tangent space contains preferred M2 ⊂M4 ⊂M4×E4. Years later I realized that the map
generalizes so that M2 can depend on the point of X4. The interpretation of M2(x) is both as
a preferred hyper-complex (commutative) sub-space of M8 and as a local plane of non-physical
polarizations so that a purely number theoretic interpretation of gauge conditions emerges in
TGD framework. This led to a rapid progress in the construction of the quantum TGD. In
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particular, the challenge of identifying the preferred extremal of Kähler action associated with a
given light-like 3-surface X3

l could be solved and the precise relation between M8 and M4×CP2

descriptions was understood [20] .

7. Also the challenge of reducing quantum TGD to the physics of second quantized induced spinor
fields found a resolution recently [20] . For years ago it became clear that the vacuum functional
of the theory must be the Dirac determinant associated with the induced spinor fields so that the
theory would predict all coupling parameters from quantum criticality. Even more, the vacuum
functional should correspond to the exponent of Kähler action for a preferred extremal. The
problem was that the generalized eigenmodes of Chern-Simons Dirac operator allow a generalized
eigenvalues to be arbitrary functions of two coordinates in the directions transversal to the light-
like direction of X3

l . The progress in the understanding of number theoretic compactification
however allowed to understand how the information about the preferred extremal of Kähler
action is coded to the spectrum of eigen modes.

The basic idea is simple and I actually discovered it for more than half decade ago but forgot!
The generalized eigen modes of 3-D Chern-Simons Dirac operator DC−S correspond to the zero
modes of a 4-D modified Dirac operator defined by Kähler action localized to X3

l so that induced
spinor fields can be seen as 4-D spinorial shock waves. The led to a concrete interpretation of
the eigenvalues as analogous to cyclotron energies of fermion in classical electro-weak magnetic
fields defined by the induced spinor connection and a connection with anyon physics emerges by
2-dimensionality of the evolving system. Also it was possible to identify the boundary conditions
for the preferred extremal of Kähler action -analog of Bohr orbit- at X3

l and also to the vision
about how general coordinate invariance allows to use any light-like 3-surface X3 ⊂ X4(X3

l )
instead of using only wormhole throat to second quantize induced spinor field.

8. It became as a total surprise that due to the huge vacuum degeneracy of induced spinor fields the
number of generalized eigenmodes identified in this manner was finite. The good news was that
the theory is manifestly finite and zeta function regularization is not needed to define the Dirac
determinant. The manifest finiteness had been actually must-be-true from the beginning. The
apparently bad news was that the Clifford algebra of WCW world constructed from the oscillator
operators is bound to be finite-dimensional. The resolution of the paradox comes from the
realization that this algebra represents the somewhat mysterious coset space N/M so that finite
measurement resolution and the notion inclusion are coded by the vacuum degeneracy of Kähler
action and the maximally economical description in terms of inclusions emerges automatically.

9. A unique identification of number theoretic braids became also possible and relates to the con-
struction of the generalized imbedding space by gluing together singular coverings and factor
spaces of CD\M2 and CP2\S2

I to form a book like structure. Here M2 is preferred plane of M4

defining quantization axis of energy and angular momentum and S2
I is one of the two geodesic

sphere of CP2. The interpretation of the selection of these sub-manifolds is as a geometric cor-
relate for the selection of quantization axes and CD defining basic sector of world of classical
worlds is replaced by a union corresponding to these choices. Number theoretic braids come in
too variants dual to each other, and correspond to the intersection of M2 and M4 projection of
X3
l on one hand and S2

I and CP2 projection of X3
l on the other hand. This is simplest option

and would mean that the points of number theoretic braid belong to M2 (S2
I ) and are thus

quantum critical although entire X2 at the boundaries of CD belongs to a fixed page of the Big
Book. This means solution of a long standing problem of understanding in what sense TGD
Universe is quantum critical. The phase transitions changing Planck constant correspond to
tunneling represented geometrically by a leakage of partonic 2-surface from a page of Big Book
to another one.

10. Many other steps of progress have occurred during the last years. Much earlier it had become
clear that the basic difference between TGD and string models is that in TGD framework
the super algebra generators are non-hermitian and carry quark or lepton number [20] . Super-
space concept is un-necessary because super generators anticommute to Hamiltonians of bosonic
symmetries rather than corresponding vector fields. This allows to avoid the Majorana condition
of super string models fixing space-time dimension to 10 or 11. During last years a much more
precise understanding of super-symplectic and super Kac-Moody symmetries has emerged. The
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generalized coset representation for these two Super Virasoro algebras generalizes Equivalence
Principle and predicts as a special case the equivalence of gravitational and inertial masses. Coset
construction also provides justification for p-adic thermodynamics in apparent conflict with
super-conformal invariance. The construction of the fusion rules of symplectic QFT as analog
of conformal QFT led to the notion of number theoretic braid and to an explicit construction
of a hierarchy of algebras realizing symplectic fusion rules and the notion of finite measurement
resolution [18] . This approach led to the formulation of generalized Feynman diagrams and
coupling constant evolution in terms of operads Taylor made for a mathematical realization of
the notion of coupling constant evolution. One of the future challenges is to combine symplectic
fusion algebras with the realization for the hierarchy of Planck constants.

12.1.2 The evolution of physical ideas

The evolution of physical ideas related to the hierarchy of Planck constants and dark matter as a
hierarchy of phases of matter with non-standard value of Planck constants was much faster than the
evolution of mathematical ideas and quite a number of applications have been developed during last
five years.

1. The basic idea was that ordinary matter condenses around dark matter which is a phase of
matter characterized by non-standard value of Planck constant.

2. The realization that non-standard values of Planck constant give rise to charge and spin fraction-
ization and anyonization led to the precise identification of the prerequisites of anyonic phase [66]
. If the partonic 2-surface, which can have even astrophysical size, surrounds the tip of CD, the
matter at the surface is anyonic and particles are confined at this surface. Dark matter could
be confined inside this kind of light-like 3-surfaces around which ordinary matter condenses. If
the radii of the basic pieces of these nearly spherical anyonic surfaces - glued to a connected
structure by flux tubes mediating gravitational interaction - are given by Bohr rules, the findings
of Nottale [27] can be understood. Dark matter would resemble to a high degree matter in black
holes replaced in TGD framework by light-like partonic 2-surfaces with minimum size of order
Schwarstchild radius rS of order scaled up Planck length: rS ∼

√
~G. Black hole entropy being

inversely proportional to ~ is predicted to be of order unity so that dramatic modification of the
picture about black holes is implied.

3. Darkness is a relative concept and due to the fact that particles at different pages of book cannot
appear in the same vertex of the generalized Feynman diagram. The phase transitions in which
partonic 2-surface X2 during its travel along X3

l leaks to different page of book are however
possible and change Planck constant so that particle exchanges of this kind allow particles at
different pages to interact. The interactions are strongly constrained by charge fractionization
and are essentially phase transitions involving many particles. Classical interactions are also
possible. This allows to conclude that we are actually observing dark matter via classical fields
all the time and perhaps have even photographed it [89] , [12] .

4. Perhaps the most fascinating applications are in biology. The anomalous behavior ionic currents
through cell membrane (low dissipation, quantal character, no change when the membrane is
replaced with artificial one) has a natural explanation in terms of dark supra currents. This
leads to a vision about how dark matter and phase transitions changing the value of Planck
constant could relate to the basic functions of cell, functioning of DNA and aminoacids, and to
the mysteries of bio-catalysis. This leads also a model for EEG interpreted as a communication
and control tool of magnetic body containing dark matter and using biological body as motor
instrument and sensory receptor. One especially shocking outcome is the emergence of genetic
code of vertebrates from the model of dark nuclei as nuclear strings [6, 89] , [6] .

12.1.3 Brief summary about the generalization of the imbedding space
concept

A brief summary of the basic vision in order might help reader to assimilate the more detailed repre-
sentation about the generalization of imbedding space.
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1. The hierarchy of Planck constants cannot be realized without generalizing the notions of imbed-
ding space and space-time since particles with different values of Planck constant cannot appear
in the same interaction vertex. This suggests some kind of book like structure for both M4 and
CP2 factors of the generalized imbedding space is suggestive.

2. Schrödinger equation suggests that Planck constant corresponds to a scaling factor of M4 metric
whose value labels different pages of the book. The scaling of M4 coordinate so that original
metric results in M4 factor is possible so that the scaling of ~ corresponds to the scaling of the
size of causal diamond CD defined as the intersection of future and past directed light-cones.
The light-like 3-surfaces having their 2-D and light-boundaries of CD are in a key role in the
realization of zero energy states. The infinite-D spaces formed by these 3-surfaces define the
fundamental sectors of the configuration space (world of classical worlds). Since the scaling of
CD does not simply scale space-time surfaces, the coding of radiative corrections to the geometry
of space-time sheets becomes possible and Kähler action can be seen as expansion in powers of
~/~0.

3. Quantum criticality of TGD Universe is one of the key postulates of quantum TGD. The most
important implication is that Kähler coupling strength is analogous to critical temperature.
The exact realization of quantum criticality would be in terms of critical sub-manifolds of M4

and CP2 common to all sectors of the generalized imbedding space. Quantum criticality would
mean that the two kinds of number theoretic braids assignable to M4 and CP2 projections of
the partonic 2-surface belong by the definition of number theoretic braids to these critical sub-
manifolds. At the boundaries of CD associated with positive and negative energy parts of zero
energy state in given time scale partonic two-surfaces belong to a fixed page of the Big Book
whereas light-like 3-surface decomposes into regions corresponding to different values of Planck
constant much like matter decomposes to several phases at thermodynamical criticality.

4. The connection with Jones inclusions was originally a purely heuristic guess based on the ob-
servation that the finite groups characterizing Jones inclusion characterize also pages of the
Big Book. The key observation is that Jones inclusions are characterized by a finite subgroup
G ⊂ SU(2) and that this group also characterizes the singular covering or factor spaces asso-
ciated with CD or CP2 so that the pages of generalized imbedding space could indeed serve
as correlates for Jones inclusions. The elements of the included algebra M are invariant under
the action of G and M takes the role of complex numbers in the resulting non-commutative
quantum theory.

5. The understanding of quantum TGD at parton level led to the realization that the dynamics
of Kähler action realizes finite measurement resolution in terms of finite number of modes of
the induced spinor field. This automatically implies cutoffs to the representations of various
super-conformal algebras typical for the representations of quantum groups closely associated
with Jones inclusions [11] . The Clifford algebra spanned by the fermionic oscillator operators
would provide a realization for the factor space N/M of hyper-finite factors of type II1 identified
as the infinite-dimensional Clifford algebra N of the configuration space and included algebra
M determining the finite measurement resolution. The resulting quantum Clifford algebra has
anti-commutation relations dictated by the fractionization of fermion number so that its unit
becomes r = ~/~0. SU(2) Lie algebra transforms to its quantum variant corresponding to the
quantum phase q = exp(i2π/r).

6. Jones inclusions appear as two variants corresponding to N : M < 4 and N : M = 4. The
tentative interpretation is in terms of singular G-factor spaces and G-coverings of M4 or CP2 in
some sense. The alternative interpretation in terms of two geodesic spheres of CP2 would mean
asymmetry between M4 and CP2 degrees of freedom.

7. Number theoretic Universality suggests an answer why the hierarchy of Planck constants is
necessary. One must be able to define the notion of angle -or at least the notion of phase and
of trigonometric functions- also in p-adic context. All that one can achieve naturally is the
notion of phase defined as root of unity and introduced by allowing algebraic extension of p-adic
number field by introducing the phase if needed. In the framework of TGD inspired theory
of consciousness this inspires a vision about cognitive evolution as the gradual emergence of
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increasingly complex algebraic extensions of p-adic numbers and involving also the emergence of
improved angle resolution expressible in terms of phases exp(i2π/n) up to some maximum value
of n. The coverings and factor spaces would realize these phases geometrically and quantum
phases q naturally assignable to Jones inclusions would realize them algebraically. Besides p-adic
coupling constant evolution based on hierarchy of p-adic length scales there would be coupling
constant evolution with respect to ~ and associated with angular resolution.

12.2 Experimental input

In this section basic experimental inputs suggesting a hierarchy of Planck constants and the identifi-
cation of dark matter as phases with non-standard value of Planck constant are discussed.

12.2.1 Hints for the existence of large ~ phases

Quantum classical correspondence suggests the identification of space-time sheets identifiable as quan-
tum coherence regions. Since they can have arbitrarily large sizes, phases with arbitrarily large quan-
tum coherence lengths and arbitrarily long de-coherence times seem to be possible in TGD Universe.
In standard physics context this seems highly implausible. If Planck constant can have arbitrarily
large values, the situation changes since Compton lengths and other quantum scales are proportional
to ~. Dark matter is excellent candidate for large ~ phases.

The expression for ~gr in the model explaining the Bohr orbits for planets is of form ~gr =
GM1M2/v0 [77] . This suggests that the interaction is associated with some kind of interface between
the systems, perhaps join along boundaries connecting the space-time sheets associated with systems
possessing gravitational masses M1 and M2. Also a large space-time sheet carrying the mutual classical
gravitational field could be in question. This argument generalizes to the case ~/~0 = Q1Q2α/v0 in
case of generic phase transition to a strongly interacting phase with α describing gauge coupling
strength.

There exist indeed some experimental indications for the existence of phases with a large ~.

1. With inspiration coming from the finding of Nottale [27] I have proposed an explanation of
dark matter as a macroscopic quantum phase with a large value of ~ [77] . Any interaction,
if sufficiently strong, can lead to this kind of phase. The increase of ~ would make the fine
structure constant α in question small and guarantee the convergence of perturbation series.

2. Living matter could represent a basic example of large ~ phase [26, 7] . Even ordinary condensed
matter could be ”partially dark” in many-sheeted space-time [28] . In fact, the realization of
hierarchy of Planck constants leads to a considerably weaker notion of darkness stating that only
the interaction vertices involving particles with different values of Planck constant are impossible
and that the notion of darkness is relative notion. For instance, classical interactions and photon
exchanges involving a phase transition changing the value of ~ of photon are possible in this
framework.

3. There is claim about a detection in RHIC (Relativistic Heavy Ion Collider in Brookhaven) of
states behaving in some respects like mini black holes [59]. These states could have explanation
as color flux tubes at Hagedorn temperature forming a highly tangled state and identifiable as
stringy black holes of strong gravitation. The strings would carry a quantum coherent color glass
condensate, and would be characterized by a large value of ~ naturally resulting in confinement
phase with a large value of αs [78] . The progress in hadronic mass calculations led to a concrete
model of color glass condensate of single hadron as many-particle state of super-symplectic gluons
[58, 53] - something completely new from the point of QCD - responsible for non-perturbative
aspects of hadron physics. In RHIC events these color glass condensate would fuse to single large
condensate. This condensate would be present also in ordinary black-holes and the blackness of
black-hole would be darkness.

4. I have also discussed a model for cold fusion based on the assumption that nucleons can be in
large ~ phase. In this case the relevant strong interaction strength is Q1Q2αem for two nucleon
clusters inside nucleus which can increase ~ so large that the Compton length of protons becomes
of order atomic size and nuclear protons form a macroscopic quantum phase [28, 26] .
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12.2.2 Quantum coherent dark matter and ~
The argument based on gigantic value of ~gr explaining darkness of dark mater is attractive but one
should be very cautious.

Consider first ordinary QEde =
√
α4π~ appears in vertices so that perturbation expansion in

powers of
√
~ basically. This would suggest that large ~ leads to large effects. All predictions are

however in powers of alpha and large ~ means small higher order corrections. What happens can
be understood on basis of dimensional analysis. For instance, cross sections are proportional to
(~/m)2, where m is the relevant mass and the remaining factor depends on α = e2/(4π~) only. In
the more general case tree amplitudes with n vertices are proportional to en and thus to ~n/2 and
loop corrections give only powers of α which get smaller when ~ increases. This must relate to the
powers of 1/~ from the integration measure associated with the momentum loop integrals affected by
the change of α.

Consider now the effects of the scaling of ~. The scaling of Compton lengths and other quantum
kinematical parameters is the most obvious effect. An obvious effect is due to the change of ~ in the
commutation relations and in the change of unit of various quantum numbers. In particular, the right
hand side of oscillator operator commutation and anti-commutation relations is scaled. A further
effect is due to the scaling of the eigenvalues of the modified Dirac operator ~ΓαDα.

The exponent exp(K) of Kähler function K defining perturbation series in the configuration space
degrees of freedom is proportional to 1/g2

K and does not depend on ~ at all if there is only single Planck
constant. The propagator is proportional to g2

K . This can be achieved also in QED by absorbing e
from vertices to e2 in photon propagator. Hence it would seem that the dependence on αK (and ~)
must come from vertices which indeed involve Jones inclusions of the II1 factors of the incoming and
outgoing lines.

This however suggests that the dependence of the scattering amplitudes on ~ is purely kinematical
so that all higher radiative corrections would be absent. This seems to leave only one option: the
scale factors of covariant CD and CP2 metrics can vary and might have discrete spectrum of values.

1. The invariance of Kähler action with respect to overall scaling of metric however allows to keep
CP2 metric fixed and consider only a spectrum for the scale factors of M4 metric.

2. The first guess motivated by Schrödinger equation is that the scaling factor of covariant CD
metric corresponds the ratio r2 = (~/~0)2. This would mean that the value of Kähler action
depends on r2. The scaling of M4 coordinate by r the metric reduces to the standard form but
if causal diamonds with quantized temporal distance between their tips are the basic building
blocks of the configuration space geometry as zero energy ontology requires, this scaling of ~
scales the size of CD by r so that genuine effect results since M4 scalings are not symmetries of
Kähler action.

3. In this picture r would code for radiative corrections to Kähler function and thus space-time
physics. Even in the case that the radiative corrections to the configuration space functional
integral vanish, as suggested by quantum criticality, they would be actually taken into account.

This kind of dynamics is not consistent with the original view about imbedding space and forces to
generalize the notion of imbedding spaces since it is clear that particles with different Planck constants
cannot appear in the same vertex of Feynman diagram. Somehow different values of Planck constant
must be analogous to different pages of book having almost copies of imbedding space as pages. A
possible resolution of the problem cames from the realization that the fundamental structure might be
the inclusion hierarchy of number theoretical Clifford algebras from which entire TGD could emerge
including generalization of the imbedding space concept.

12.2.3 The phase transition changing the value of Planck constant as a
transition to non-perturbative phase

A phase transition increasing ~ as a transition guaranteing the convergence of perturba-
tion theory

The general vision is that a phase transition increasing ~ occurs when perturbation theory ceases
to converge. Very roughly, this would occur when the parameter x = Q1Q2α becomes larger than
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one. The net quantum numbers for ”spontaneously magnetized” regions provide new natural units
for quantum numbers. The assumption that standard quantization rules prevail poses very strong
restrictions on allowed physical states and selects a subspace of the original configuration space. One
can of course, consider the possibility of giving up these rules at least partially in which case a
spectrum of fractionally charged anyon like states would result with confinement guaranteed by the
fractionization of charges.

The necessity of large ~ phases has been actually highly suggestive since the first days of quantum
mechanics. The classical looking behavior of macroscopic quantum systems remains still a poorly
understood problem and large ~ phases provide a natural solution of the problem.

In TGD framework quantum coherence regions correspond to space-time sheets. Since their sizes
are arbitrarily large the conclusion is that macroscopic and macro-temporal quantum coherence are
possible in all scales. Standard quantum theory definitely fails to predict this and the conclusion is
that large ~ phases for which quantum length and time scales are proportional to ~ and long are
needed.

Somewhat paradoxically, large ~ phases explain the effective classical behavior in long length and
time scales. Quantum perturbation theory is an expansion in terms of gauge coupling strengths
inversely proportional to ~ and thus at the limit of large ~ classical approximation becomes exact.
Also the Coulombic contribution to the binding energies of atoms vanishes at this limit. The fact that
we experience world as a classical only tells that large ~ phase is essential for our sensory perception.
Of course, this is not the whole story and the full explanation requires a detailed anatomy of quantum
jump.

The criterion for the occurrence of the phase transition increasing the value of ~

In the case of planetary orbits the large value of ~gr = 2GM/v0 makes possible to apply Bohr
quantization to planetary orbits. This leads to a more general idea that the phase transition increasing
~ occurs when the system consisting of interacting units with charges Qi becomes non-perturbative
in the sense that the perturbation series in the coupling strength αQiQj , where α is the appropriate
coupling strength and QiQj represents the maximum value for products of gauge charges, ceases to
converge. Thus Mother Nature would resolve the problems of theoretician. A primitive formulation
for this criterion is the condition αQiQj ≥ 1.

The first working hypothesis was the existence of dark matter hierarchies with ~ = λk~0, k =
0, 1, ..., λ = n/v0 or λ = 1/nv0, v0 ' 2−11. This rule turned out to be quite too specific. The mathe-
matically plausible formulation predicts that in principle any rational value for r = ~(M4)/~(CP2) is
possible but there are certain number theoretically preferred values of r such as those coming powers
of 2.

12.3 A generalization of the notion of imbedding space as a
realization of the hierarchy of Planck constants

In the following the basic ideas concerning the realization of the hierarchy of Planck constants are
summarized and after that a summary about generalization of the imbedding space is given. In [66]
the important delicacies associated with the Kähler structure of generalized imbedding space are
discussed. The background for the recent vision is quite different from that for half decade ago. Zero
energy ontology and the notion of causal diamond, number theoretic compactification leading to the
precise identification of number theoretic braids, the realization of number theoretic universality, and
the understanding of the quantum dynamics at the level of modified Dirac action fix to a high degree
the vision about generalized imbedding space.

12.3.1 Basic ideas

The first key idea in the geometric realization of the hierarchy of Planck constants emerges from
the study of Schrödinger equation and states that Planck constant appears a scaling factor of M4

metric. Second key idea is the connection with Jones inclusions inspiring an explicit formula for
Planck constants. For a long time this idea remained heuristic must-be-true feeling but the recent
view about quantum TGD provide a justification for it.
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Scaling of Planck constant and scalings of CD and CP2 metrics

The key property of Schrödinger equation is that kinetic energy term depends on ~ whereas the po-
tential energy term has no dependence on it. This makes the scaling of ~ a non-trivial transformation.
If the contravariant metric scales as r = ~/~0 the effect of scaling of Planck constant is realized at
the level of imbedding space geometry provided it is such that it is possible to compare the regions of
generalized imbedding space having different value of Planck constant.

In the case of Dirac equation same conclusion applies and corresponds to the minimal substitution
p− eA→ i~∇− eA. Consider next the situation in TGD framework.

1. The minimal substitution p − eA → i~∇ − eA does not make sense in the case of CP2 Dirac
operator since, by the non-triviality of spinor connection, one cannot choose the value of ~
freely. In fact, spinor connection of CP2 is defined in such a manner that spinor connection
corresponds to the quantity ~eQA, where denotes A gauge potential, and there is no natural
manner to separate ~e from it.

2. The contravariant CD metric scales like ~2. In the case of Dirac operator in M4 × CP2 one
can assign separate Planck constants to Poincare and color algebras and the scalings of CD and
CP2 metrics induce scalings of corresponding values of ~2. As far as Kähler action is considered,
CP2 metric could be always thought of being scaled to its standard form.

3. Dirac equation gives the eigenvalues of wave vector squared k2 = kiki rather than four-momentum
squared p2 = pipi in CD degrees of freedom and its analog in CP2 degrees of freedom. The
values of k2 are proportional to 1/r2 so that p2 does not depend on it for pi = ~ki: analogous
conclusion applies in CP2 degrees of freedom. This gives rise to the invariance of mass squared
and the desired scaling of wave vector when ~ changes.

This consideration generalizes to the case of the induced gamma matrices and induced metric in
X4, modified Dirac operator, and Kähler action which carry dynamical information about the ratio
r = ~eff/~0.

Kähler function codes for a perturbative expansion in powers of ~(CD)/~(CP2)

Suppose that one accepts that the spectrum of CD resp. CP2 Planck constants is accompanied by
a hierarchy of overall scalings of covariant CD (causal diamond) metric by (~(M4)/~0)2 and CP2

metric by (~(CP2)/~0)2 followed by overall scaling by r2 = (~0/~(CP2))2 so that CP2 metric suffers
no scaling and difficulties with isometric gluing procedure of sectors are avoided.

The first implication of this picture is that the modified Dirac operator determined by the induced
metric and spinor structure depends on r in a highly nonlinear manner but there is no dependence on
the overall scaling of the H metric. This in turn implies that the fermionic oscillator algebra used to
define configuration space spinor structure and metric depends on the value of r. Same is true also
for Kähler action and configuration space Kähler function. Hence Kähler function is analogous to an
effective action expressible as infinite series in powers of r.

This interpretation allows to overcome the paradox caused by the hypothesis that loop corrections
to the functional integral over configuration space defined by the exponent of Kähler function serving as
vacuum functional vanish so that tree approximation is exact. This would imply that all higher order
corrections usually interpreted in terms of perturbative series in powers of 1/~ vanish. The paradox
would result from the fact that scattering amplitudes would not receive higher order corrections and
classical approximation would be exact.

The dependence of both states created by Super Kac-Moody algebra and the Kähler function and
corresponding propagator identifiable as contravariant configuration space metric would mean that
the expressions for scattering amplitudes indeed allow an expression in powers of r. What is so re-
markable is that the TGD approach would be non-perturbative from the beginning and ”semiclassical”
approximation, which might be actually exact, automatically would give a full expansion in powers of
r. This is in a sharp contrast to the usual quantization approach.

Jones inclusions and hierarchy of Planck constants

From the beginning it was clear that Jones inclusions of hyper-finite factors of type II1 are somehow
related to the hierarchy of Planck constants. The basic motivation for this belief has been that
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configuration space Clifford algebra provides a canonical example of hyper-finite factor of type II1
and that Jones inclusion of these Clifford algebras is excellent candidate for a first principle description
of finite measurement resolution.

Consider the inclusion N ⊂ M of hyper-finite factors of type II1 [97] . A deep result is that
one can express M as N : M-dimensional module over N with fractal dimension N : M = Bn.√
bn represents the dimension of a space of spinor space renormalized from the value 2 corresponding

to n = ∞ down to
√
bn = 2cos(π/n) varying thus in the range [1, 2]. Bn in turn would represent

the dimension of the corresponding Clifford algebra. The interpretation is that finite measurement
resolution introduces correlations between components of quantum spinor implying effective reduction
of the dimension of quantum spinors providing a description of the factor space N/M.

This would suggest that somehow the hierarchy of Planck constants must represent finite measure-
ment resolution and since phase factors coming as roots of unity are naturally associated with Jones
inclusions the natural guess was that angular resolution and coupling constant evolution associated
with it is in question. This picture would suggest that the realization of the hierarchy of Planck
constant in terms of a book like structure of generalized imbedding space provides also a geometric
realization for a hierarchy of Jones inclusions.

The notion of number theoretic braid and realization that the modified Dirac operator has only
finite number of generalized eigenmodes -thanks to the vacuum degeneracy of Kähler action- finally
led to the understanding how the notion of finite measurement resolution is coded to the Kähler action
and the realized in practice by second quantization of induced spinor fields and how these spinor fields
endowed with q-anticommutation relations give rise to a representations of finite-quantum dimensional
factor spaces N/M associated with the hierarchy of Jones inclusions having generalized imbedding
space as space-time correlate. This means enormous simplification since infinite-dimensional spinor
fields in infinite-dimensional world of classical worlds are replaced with finite-quantum-dimensional
spinor fields in discrete points sets provided by number theoretic braids.

The study of a concrete model for Jones inclusions in terms of finite subgroups G of SU(2) defining
sub-algebras of infinite-dimensional Clifford algebra as fixed point sub-algebras leads to what looks
like a correct track concerning the understanding of quantization of Planck constants.

The ADE diagrams of An and D2n characterize cyclic and dihedral groups whereas those of E6

and E8 characterize tedrahedral and icosahedral groups. This approach leads to the hypothesis that
the scaling factor of Planck constant assignable to Poincare (color) algebra corresponds to the order
of the maximal cyclic subgroup of Gb ⊂ SU(2) (Ga ⊂ SL(2, C)) acting as symmetry of space-time
sheet in CP2 (CD) degrees of freedom. It predicts arbitrarily large CD and CP2 Planck constants in
the case of An and D2n under rather general assumptions.

There are two manners for how Ga and Gb can act as symmetries corresponding to Gi coverings
and factors spaces. These coverings and factor spaces are singular and associated with spaces ĈD\M2

and CP2\S2
I , where S2

I is homologically trivial geodesic sphere of CP2. The physical interpretation is
that M2 and S2

I fix preferred quantization axes for energy and angular moment and color quantum
numbers so that also a connection with quantum measurement theory emerges.

12.3.2 The vision

A brief summary of the basic vision behind the generalization of the imbedding space concept needed
to realize the hierarchy of Planck constants is in order before going to the detailed representation.

1. The hierarchy of Planck constants cannot be realized without generalizing the notions of imbed-
ding space and space-time because particles with different values of Planck constant cannot
appear in the same interaction vertex. Some kind of book like structure for the generalized
imbedding space forced also by p-adicization but in different sense is suggestive. Both M4 and
CP2 factors would have the book like structure so that a Cartesian product of books would be
in question.

2. The study of Schrödinger equation suggests that Planck constant corresponds to a scaling factor
of CD metric whose value labels different pages of the book. The scaling of M4 coordinate so
that original metric results in CD factor is possible so that the interpretation for scaled up value
of ~ is as scaling of the size of causal diamond CD.
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3. The light-like 3-surfaces having their 2-D and light-boundaries of CD are in a key role in the
realization of zero energy states, and the infinite-D spaces of light-like 3-surfaces inside scaled
variants of CD define the fundamental building brick of the configuration space (world of classical
worlds). Since the scaling of CD does not simply scale space-time surfaces the effect of scaling
on classical and quantum dynamics is non-trivial and a coupling constant evolution results and
the coding of radiative corrections to the geometry of space-time sheets becomes possible. The
basic geometry of CD suggests that the allowed sizes of CD come in the basic sector ~ = ~0

as powers of two. This predicts p-adic length scale hypothesis and lead to number theoretically
universal discretized p-adic coupling constant evolution. Since the scaling is accompanied by a
formation of singular coverings and factor spaces, different scales are distinguished at the level
of topology. p-Adic length scale hierarchy affords similar characterization of length scales in
terms of effective topology.

4. The idea that TGD Universe is quantum critical in some sense is one of the key postulates
of quantum TGD. The basic ensuing prediction is that Kähler coupling strength is analogous
to critical temperature. Quantum criticality in principle fixes the p-adic evolution of various
coupling constants also the value of gravitational constant. The exact realization of quantum
criticality would be in terms of critical sub-manifolds of M4 and CP2 common to all sectors
of the generalized imbedding space. Quantum criticality of TGD Universe means that the two
kinds of number theoretic braids assignable to M4 and CP2 projections of the partonic 2-surface
belong by the very definition of number theoretic braids to these critical sub-manifolds. At the
boundaries of CD associated with positive and negative energy parts of zero energy state in a
given time scale partonic two-surfaces belong to a fixed page of the Big Book whereas light-like
3-surface decomposes to regions corresponding to different values of Planck constant much like
matter decomposes to several phases at criticality.

The connection with Jones inclusions was originally a purely heuristic guess, and it took half
decade to really understand why and how they are involved. The notion of measurement resolution
is the key concept.

1. The key observation is that Jones inclusions are characterized by a finite subgroup G ⊂ SU(2)
and the this group also characterizes the singular covering or factor spaces associated with CD
or CP2 so that the pages of generalized imbedding space could indeed serve as correlates for
Jones inclusions.

2. The dynamics of Kähler action realizes finite measurement resolution in terms of finite number of
modes of the induced spinor field automatically implying cutoffs to the representations of various
super-conformal algebras typical for the representations of quantum groups associated with
Jones inclusions. The interpretation of the Clifford algebra spanned by the fermionic oscillator
operators is as a realization for the concept of the factor space N/M of hyper-finite factors
of type II1 identified as the infinite-dimensional Clifford algebra N of the configuration space
and included algebra M determining the finite measurement resolution for angle measurement
in the sense that the action of this algebra on zero energy state has no detectable physical
effects. M takes the role of complex numbers in quantum theory and makes physics non-
commutative. The resulting quantum Clifford algebra has anti-commutation relations dictated
by the fractionization of fermion number so that unit becomes r = ~/~0. SU(2) Lie algebra
transforms to its quantum variant corresponding to the quantum phase q = exp(i2π/r).

3. G invariance for the elements of the included algebra can be interpreted in terms of finite
measurement resolution in the sense that action by G invariant Clifford algebra element has no
detectable effects. Quantum groups realize this view about measurement resolution for angle
measurement. The G-invariance of the physical states created by fermionic oscillator operators
which by definition are not G invariant guarantees that quantum states as a whole have non-
fractional quantum numbers so that the leakage between different pages is possible in principle.
This hypothesis is consistent with the TGD inspired model of quantum Hall effect [66] .

4. Concerning the formula for Planck constant in terms of the integers na and nb characterizing
orders of the maximal cyclic subgroups of groups Ga and Gb defining coverings and factor spaces
associated with CD and CP2 the basic constraint is that the overall scaling of H metric has no
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effect on physics. What matters is the ratio of Planck constants r = ~(M4)/~(CP2) appearing
as a scaling factor of M4 metric. This leaves two options if one requires that the Planck constant
defines a homomorphism. The model for dark gravitons suggests a unique choice between these
two options but one must keep still mind open for the alternative.

5. Jones inclusions appear as two variants corresponding to N : M < 4 and N : M = 4. The
tentative interpretation is in terms of singular G-factor spaces and G-coverings of M4 and CP2 in
some sense. The alternative interpretation assigning the inclusions to the two different geodesic
spheres of CP2 would mean asymmetry between M4 and CP2 degrees of freedom and is therefore
not convincing.

6. The natural question is why the hierarchy of Planck constants is needed. Is it really necessary?
Number theoretic Universality suggests that this is the case. One must be able to define the
notion of angle -or at least the notion of phase and of trigonometric functions- also in the
p-adic context. All that one can achieve naturally is the notion of phase defined as a root
of unity and introduced by allowing algebraic extension of p-adic number field by introducing
the phase. In the framework of TGD inspired theory of consciousness this inspires a vision
about cognitive evolution as the gradual emergence of increasingly complex algebraic extensions
of p-adic numbers and involving also the emergence of improved angle resolution expressible
in terms of phases exp(i2π/n) up to some maximum value of n. The coverings and factor
spaces would realize these phases purely geometrically and quantum phases q assignable to
Jones inclusions would realize them algebraically. Besides p-adic coupling constant evolution
based on the hierarchy of p-adic length scales there would be coupling constant evolution with
respect to ~ and associated with angular resolution.

12.3.3 Hierarchy of Planck constants and the generalization of the notion
of imbedding space

In the following the recent view about structure of imbedding space forced by the quantization of
Planck constant is summarized. The question is whether it might be possible in some sense to replace
H or its Cartesian factors by their necessarily singular multiple coverings and factor spaces. One can
consider two options: either M4 or the causal diamond CD. The latter one is the more plausible
option from the point of view of WCW geometry.

The evolution of physical ideas about hierarchy of Planck constants

The evolution of the physical ideas related to the hierarchy of Planck constants and dark matter as a
hierarchy of phases of matter with non-standard value of Planck constants was much faster than the
evolution of mathematical ideas and quite a number of applications have been developed during last
five years.

1. The starting point was the proposal of Nottale [27] that the orbits of inner planets correspond
to Bohr orbits with Planck constant ~gr = GMm/v0 and outer planets with Planck constant
~gr = 5GMm/v0, v0/c ' 2−11. The basic proposal [77] was that ordinary matter condenses
around dark matter which is a phase of matter characterized by a non-standard value of Planck
constant whose value is gigantic for the space-time sheets mediating gravitational interaction.
The interpretation of these space-time sheets could be as magnetic flux quanta or as massless
extremals assignable to gravitons.

2. Ordinary particles possibly residing at these space-time sheet have enormous value of Compton
length meaning that the density of matter at these space-time sheets must be very slowly vary-
ing. The string tension of string like objects implies effective negative pressure characterizing
dark energy so that the interpretation in terms of dark energy might make sense [78] . TGD
predicted a one-parameter family of Robertson-Walker cosmologies with critical or over-critical
mass density and the ”pressure” associated with these cosmologies is negative.

3. The quantization of Planck constant does not make sense unless one modifies the view about
standard space-time is. Particles with different Planck constant must belong to different worlds
in the sense local interactions of particles with different values of ~ are not possible. This inspires
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the idea about the book like structure of the imbedding space obtained by gluing almost copies
of H together along common ”back” and partially labeled by different values of Planck constant.

4. Darkness is a relative notion in this framework and due to the fact that particles at different
pages of the book like structure cannot appear in the same vertex of the generalized Feynman
diagram. The phase transitions in which partonic 2-surface X2 during its travel along X3

l leaks
to another page of book are however possible and change Planck constant. Particle (say photon
-) exchanges of this kind allow particles at different pages to interact. The interactions are
strongly constrained by charge fractionization and are essentially phase transitions involving
many particles. Classical interactions are also possible. It might be that we are actually ob-
serving dark matter via classical fields all the time and perhaps have even photographed it [89]
.

5. The realization that non-standard values of Planck constant give rise to charge and spin fraction-
ization and anyonization led to the precise identification of the prerequisites of anyonic phase [66]
. If the partonic 2-surface, which can have even astrophysical size, surrounds the tip of CD, the
matter at the surface is anyonic and particles are confined at this surface. Dark matter could
be confined inside this kind of light-like 3-surfaces around which ordinary matter condenses. If
the radii of the basic pieces of these nearly spherical anyonic surfaces - glued to a connected
structure by flux tubes mediating gravitational interaction - are given by Bohr rules, the find-
ings of Nottale [27] can be understood. Dark matter would resemble to a high degree matter in
black holes replaced in TGD framework by light-like partonic 2-surfaces with a minimum size
of order Schwartschild radius rS of order scaled up Planck length lPl =

√
~grG = GM . Black

hole entropy is inversely proportional to ~ and predicted to be of order unity so that dramatic
modification of the picture about black holes is implied.

6. Perhaps the most fascinating applications are in biology. The anomalous behavior ionic currents
through cell membrane (low dissipation, quantal character, no change when the membrane is
replaced with artificial one) has a natural explanation in terms of dark supra currents. This
leads to a vision about how dark matter and phase transitions changing the value of Planck
constant could relate to the basic functions of cell, functioning of DNA and aminoacids, and to
the mysteries of bio-catalysis. This leads also a model for EEG interpreted as a communication
and control tool of magnetic body containing dark matter and using biological body as motor
instrument and sensory receptor. One especially amazing outcome is the emergence of genetic
code of vertebrates from the model of dark nuclei as nuclear strings [6, 89] , [6] .

The most general option for the generalized imbedding space

Simple physical arguments pose constraints on the choice of the most general form of the imbedding
space.

1. The fundamental group of the space for which one constructs a non-singular covering space or
factor space should be non-trivial. This is certainly not possible for M4, CD, CP2, or H. One
can however construct singular covering spaces. The fixing of the quantization axes implies a
selection of the sub-space H4 = M2 × S2 ⊂ M4 × CP2, where S2 is geodesic sphere of CP2.
M̂4 = M4\M2 and ĈP 2 = CP2\S2 have fundamental group Z since the codimension of the
excluded sub-manifold is equal to two and homotopically the situation is like that for a punctured
plane. The exclusion of these sub-manifolds defined by the choice of quantization axes could
naturally give rise to the desired situation.

2. CP2 allows two geodesic spheres which left invariant by U(2 resp. SO(3). The first one is homo-
logically non-trivial. For homologically non-trivial geodesic sphere H4 = M2 × S2 represents a
straight cosmic string which is non-vacuum extremal of Kähler action (not necessarily preferred
extremal). One can argue that the many-valuedness of ~ is un-acceptable for non-vacuum ex-
tremals so that only homologically trivial geodesic sphere S2 would be acceptable. One could go
even further. If the extremals in M2×CP2 can be preferred non-vacuum extremals, the singular
coverings of M4 are not possible. Therefore only the singular coverings and factor spaces of
CP2 over the homologically trivial geodesic sphere S2 would be possible. This however looks a
non-physical outcome.
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(a) The situation changes if the extremals of type M2×Y 2, Y 2 a holomorphic surface of CP3,
fail to be hyperquaternionic. The tangent space M2 represents hypercomplex sub-space
and the product of the modified gamma matrices associated with the tangent spaces of Y 2

should belong to M2 algebra. This need not be the case in general.

(b) The situation changes also if one reinterprets the gluing procedure by introducing scaled
up coordinates for M4 so that metric is continuous at M2 × CP2 but CDs with different
size have different sizes differing by the ratio of Planck constants and would thus have only
piece of lower or upper boundary in common.

3. For the more general option one would have four different options corresponding to the Cartesian
products of singular coverings and factor spaces. These options can be denoted by C−C, C−F ,
F − C, and F − F , where C (F ) signifies for covering (factor space) and first (second) letter
signifies for CD (CP2) and correspond to the spaces (ĈD×̂Ga) × ( ˆCP2×̂Gb), (ĈD×̂Ga) ×

ˆCP2/Gb, ĈD/Ga × ( ˆCP2×̂Gb), and ĈD/Ga × ˆCP2/Gb.

4. The groups Gi could correspond to cyclic groups Zn. One can also consider an extension by
replacing M2 and S2 with its orbit under more general group G (say tedrahedral, octahedral, or
icosahedral group). One expects that the discrete subgroups of SU(2) emerge naturally in this
framework if one allows the action of these groups on the singular sub-manifolds M2 or S2. This
would replace the singular manifold with a set of its rotated copies in the case that the subgroups
have genuinely 3-dimensional action (the subgroups which corresponds to exceptional groups in
the ADE correspondence). For instance, in the case of M2 the quantization axes for angular
momentum would be replaced by the set of quantization axes going through the vertices of
tedrahedron, octahedron, or icosahedron. This would bring non-commutative homotopy groups
into the picture in a natural manner.

About the phase transitions changing Planck constant

There are several non-trivial questions related to the details of the gluing procedure and phase tran-
sition as motion of partonic 2-surface from one sector of the imbedding space to another one.

1. How the gluing of copies of imbedding space at M2 × CP2 takes place? It would seem that the
covariant metric of CD factor proportional to ~2 must be discontinuous at the singular manifold
since only in this manner the idea about different scaling factor of CD metric can make sense.
On the other hand, one can always scale the M4 coordinates so that the metric is continuous
but the sizes of CDs with different Planck constants differ by the ratio of the Planck constants.

2. One might worry whether the phase transition changing Planck constant means an instantaneous
change of the size of partonic 2-surface in M4 degrees of freedom. This is not the case. Light-
likeness in M2 × S2 makes sense only for surfaces X1 ×D2 ⊂ M2 × S2, where X1 is light-like
geodesic. The requirement that the partonic 2-surface X2 moving from one sector of H to
another one is light-like at M2 × S2 irrespective of the value of Planck constant requires that
X2 has single point of M2 as M2 projection. Hence no sudden change of the size X2 occurs.

3. A natural question is whether the phase transition changing the value of Planck constant can
occur purely classically or whether it is analogous to quantum tunneling. Classical non-vacuum
extremals of Chern-Simons action have two-dimensional CP2 projection to homologically non-
trivial geodesic sphere S2

I . The deformation of the entire S2
I to homologically trivial geodesic

sphere S2
II is not possible so that only combinations of partonic 2-surfaces with vanishing total

homology charge (Kähler magnetic charge) can in principle move from sector to another one,
and this process involves fusion of these 2-surfaces such that CP2 projection becomes single
homologically trivial 2-surface. A piece of a non-trivial geodesic sphere S2

I of CP2 can be
deformed to that of S2

II using 2-dimensional homotopy flattening the piece of S2 to curve. If this
homotopy cannot be chosen to be light-like, the phase transitions changing Planck constant take
place only via quantum tunnelling. Obviously the notions of light-like homotopies (cobordisms)
are very relevant for the understanding of phase transitions changing Planck constant.
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How one could fix the spectrum of Planck constants?

The question how the observed Planck constant relates to the integers na and nb defining the covering
and factors spaces, is far from trivial and I have considered several options. The basic physical inputs
are the condition that scaling of Planck constant must correspond to the scaling of the metric of CD
(that is Compton lengths) on one hand and the scaling of the gauge coupling strength g2/4π~ on the
other hand.

1. One can assign to Planck constant to both CD and CP2 by assuming that it appears in the
commutation relations of corresponding symmetry algebras. Algebraist would argue that Planck
constants ~(CD) and ~(CP2) must define a homomorphism respecting multiplication and divi-
sion (when possible) by Gi. This requires r(X) = ~(X)~0 = n for covering and r(X) = 1/n for
factor space or vice versa.

2. If one assumes that ~2(X), X = M4, CP2 corresponds to the scaling of the covariant metric
tensor gij and performs an over-all scaling of H-metric allowed by the Weyl invariance of Kähler
action by dividing metric with ~2(CP2), one obtains the scaling of M4 covariant metric by
r2 ≡ ~2/~2

0 = ~2(M4)/~2(CP2) whereas CP2 metric is not scaled at all.

3. The condition that ~ scales as na is guaranteed if one has ~(CD) = na~0. This does not fix
the dependence of ~(CP2) on nb and one could have ~(CP2) = nb~0 or ~(CP2) = ~0/nb. The
intuitive picture is that nb- fold covering gives in good approximation rise to nanb sheets and
multiplies YM action action by nanb which is equivalent with the ~ = nanb~0 if one effectively
compresses the covering to CD×CP2. One would have ~(CP2) = ~0/nb and ~ = nanb~0. Note
that the descriptions using ordinary Planck constant and coverings and scaled Planck constant
but contracting the covering would be alternative descriptions.

This gives the following formulas r ≡ ~/~0 = r(M4)/r(CP2) in various cases.

C − C F − C C − F F − F

r nanb
na
nb

nb
na

1
nanb

Preferred values of Planck constants

Number theoretic considerations favor the hypothesis that the integers corresponding to Fermat
polygons constructible using only ruler and compass and given as products nF = 2k

∏
s Fs, where

Fs = 22s + 1 are distinct Fermat primes, are favored. The reason would be that quantum phase
q = exp(iπ/n) is in this case expressible using only iterated square root operation by starting from
rationals. The known Fermat primes correspond to s = 0, 1, 2, 3, 4 so that the hypothesis is very
strong and predicts that p-adic length scales have satellite length scales given as multiples of nF of
fundamental p-adic length scale. nF = 211 corresponds in TGD framework to a fundamental constant
expressible as a combination of Kähler coupling strength, CP2 radius and Planck length appearing in
the expression for the tension of cosmic strings, and the powers of 211 was proposed to define favored
as values of na in living matter [27] .

The hypothesis that Mersenne primes Mk = 2k − 1, k ∈ {89, 107, 127}, and Gaussian Mersennes
MG,k = (1 + i)k − 1, k ∈ {113, 151, 157, 163, 167, 239, 241..} (the number theoretical miracle is that
all the four p-adic length scales sith k ∈ {151, 157, 163, 167} are in the biologically highly interesting
range 10 nm-2.5 µm) define scaled up copies of electro-weak and QCD type physics with ordinary
value of ~ and that these physics are induced by dark variants of corresponding lower level physics
leads to a prediction for the preferred values of r = 2kd , kd = ki − kj , and the resulting picture finds
support from the ensuing models for biological evolution and for EEG [27] . This hypothesis - to be
referred to as Mersenne hypothesis - replaces the rather ad hoc proposal r = ~/~0 = 211k for the
preferred values of Planck constant.

How Planck constants are visible in Kähler action?

~(M4) and ~(CP2) appear in the commutation and anticommutation relations of various supercon-
formal algebras. Only the ratio of M4 and CP2 Planck constants appears in Kähler action and is
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due to the fact that the M4 and CP2 metrics of the imbedding space sector with given values of
Planck constants are proportional to the corresponding Planck. This implies that Kähler function
codes for radiative corrections to the classical action, which makes possible to consider the possibility
that higher order radiative corrections to functional integral vanish as one might expect at quantum
criticality. For a given p-adic length scale space-time sheets with all allowed values of Planck constants
are possible. Hence the spectrum of quantum critical fluctuations could in the ideal case correspond to
the spectrum of ~ coding for the scaled up values of Compton lengths and other quantal lengths and
times. If so, large ~ phases could be crucial for understanding of quantum critical superconductors,
in particular high Tc superconductors.

A simple model for fractional quantum Hall effect

The generalization of the imbedding space suggests that it could possible to understand fractional
quantum Hall effect [2] at the level of basic quantum TGD as integer QHE for non-standard value of
Planck constant.

The formula for the quantized Hall conductance is given by

σ = ν × e2

h
,

ν =
n

m
. (12.3.1)

Series of fractions in ν = 1/3, 2/5, 3/7, 4/9, 5/11, 6/13, 7/15..., 2/3, 3/5, 4/7, 5/9, 6/11, 7/13...,
5/3, 8/5, 11/7, 14/9...4/3, 7/5, 10/7, 13/9..., 1/5, 2/9, 3/13..., 2/7, 3/11..., 1/7.... with odd denominator
have been observed as are also ν = 1/2 and ν = 5/2 states with even denominator [2] .

The model of Laughlin [21] cannot explain all aspects of FQHE. The best existing model proposed
originally by Jain is based on composite fermions resulting as bound states of electron and even
number of magnetic flux quanta [18] . Electrons remain integer charged but due to the effective
magnetic field electrons appear to have fractional charges. Composite fermion picture predicts all the
observed fractions and also their relative intensities and the order in which they appear as the quality
of sample improves.

Before proposing the TGD based model of FQHE as IQHE with non-standard value of Planck
constant, it is good to represent a simple explanation of IQHE effect. Choose the coordinates of the
current currying slab so that x varies in the direction of Hall current and y in the direction of the
main current. For IQHE the value of Hall conductivity is given by σ = jy/Ex = neev/vB = nee/B =
Ne2/hBS = Ne2/mh, were m characterizes the value of magnetized flux and N is the total number
of electrons in the current. In the Landau gauge Ay = xB one can assume that energy eigenstates are
momentum eigenstates in the direction of current and harmonic oscillator Gaussians in x-direction in
which Hall current runs. This gives

Ψ ∝ exp(iky)Hn(x+ kl2)exp(− (x+kl2)2

2l2 ) , l2 = ~
eB . (12.3.2)

Only the states for which the oscillator Gaussian differs considerably from zero inside slab are impor-
tant so that the momentum eigenvalues are in good approximation in the range 0 ≤ k ≤ kmax = Lx/l

2.

Using N = (Ly/2π)
∫ kmax

0
dk one obtains that the total number of momentum eigenstates associated

with the given value of n is N = eBdLxLy/h = n. If ν Landau states are filled, the value of σ is
σ = νe2/h.

The interpretation of FQHE as IQHE with non standard value of Planck constant could explain
also the fractionization of charge, spin, and electron number. There are 2 × 2 = 4 combinations of
covering and factor spaces of CP2 and three of them can lead to the increase or at least fractionization
of the Planck constant required by FQHE.

1. The prediction for the filling fraction in FQHE would be

ν = ν0
~0

~ , ν0 = 1, 2, ... . (12.3.3)

ν0 denotes the number of filled Landau levels.
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2. Let us denote the options as C-C, C-F, F-C, F-F, where the first (second) letter tells whether
a singular covering or factor space of CD (CP2) is in question. The observed filling fractions
are consistent with options C-C, C-F, and F-C for which CD or CP2 or both correspond to a
singular covering space. The values of ν in various cases are given by the following table.

Option C − C C − F F − C

ν ν0

nanb
ν0nb
na

ν0na
nb

(12.3.4)

There is a complete symmetry under the exchange of CD and CP2 as far as values of ν are
considered.

3. All three options are consistent with observations. Charge fractionization allows only the options
C −C and F −C. If one believes the general arguments stating that also spin is fractionized in
FQHE then only the option C −C, for which charge and spin units are equal to 1/nb and 1/na
respectively, remains. For C − C option one must allow ν0 > 1.

4. Both ν = 1/2 and ν = 5/2 state has been observed [2, 13] . The fractionized charge is believed
to be e/4 in the latter case [24, 22] . This requires nb = 4 allowing only (C,C) and (F,C)
options. ni ≥ 3 holds true if coverings and factor spaces are correlates for Jones inclusions and
this gives additional constraint. The minimal values of (ν0, na, nb) are (2, 1, 4) for ν = 1/2 and
(10, 1, 4) for ν = 5/2) for both C − C and F − C option. Filling fraction 1/2 corresponds in
the composite fermion model and also experimentally to the limit of zero magnetic field [18] .
nb = 2 would be inconsistent with the observed fractionization of electric charge for ν = 5/2
and with the vision inspired by Jones inclusions implying ni ≥ 3.

5. A possible problematic aspect of the TGD based model is the experimental absence of even values
of m except m = 2 (Laughlin’s model predicts only odd values of m). A possible explanation is
that by some symmetry condition possibly related to fermionic statistics (as in Laughlin model)
both na and nb must be odd. This would require that m = 2 case differs in some manner from
the remaining cases.

6. Large values of m in ν = n/m emerge as B increases. This can be understood from flux
quantization. One has e

∫
BdS = n~. By using actual fractional charge eF = e/nb in the flux

factor would give for (C,C) option eF
∫
BdS = nna~0. The interpretation is that each of the nb

sheets contributes one unit to the flux for e. Note that the value of magnetic field at given sheet
is not affected so that the build-up of multiple covering seems to keep magnetic field strength
below critical value.

7. The understanding of the thermal stability is not trivial. The original FQHE was observed in
80 mK temperature corresponding roughly to a thermal energy of T ∼ 10−5 eV. For graphene
the effect is observed at room temperature. Cyclotron energy for electron is (from fe = 6 ×
105 Hz at B = .2 Gauss) of order thermal energy at room temperature in a magnetic field
varying in the range 1-10 Tesla. This raises the question why the original FQHE requires such
a low temperature. A possible explanation is that since FQHE involves several values of Planck
constant, it is quantum critical phenomenon and is characterized by a critical temperature. The
differences of single particle energies associated with the phase with ordinary Planck constant
and phases with different Planck constant would characterize the transition temperature.

12.3.4 Could the dynamics of Kähler action predict the hierarchy of Planck
constants?

The original justification for the hierarchy of Planck constants came from the indications that Planck
constant could have large values in both astrophysical systems involving dark matter and also in
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biology. The realization of the hierarchy in terms of the singular coverings and possibly also factor
spaces of CD and CP2 emerged from consistency conditions. The formula for the Planck constant
involves heuristic guess work and physical plausibility arguments. There are good arguments in
favor of the hypothesis that only coverings are possible. Only a finite number of pages of the Big
Book correspond to a given value of Planck constant, biological evolution corresponds to a gradual
dispersion to the pages of the Big Book with larger Planck constant, and a connection with the
hierarchy of infinite primes and p-adicization program based on the mathematical realization of finite
measurement resolution emerges.

One can however ask whether this hierarchy could emerge directly from the basic quantum TGD
rather than as a separate hypothesis. The following arguments suggest that this might be possible. One
finds also a precise geometric interpretation of preferred extremal property interpreted as criticality
in zero energy ontology.

1-1 correspondence between canonical momentum densities and time derivatives fails for
Kähler action

The basic motivation for the geometrization program was the observation that canonical quantization
for TGD fails. To see what is involved let us try to perform a canonical quantization in zero energy
ontology at the 3-D surfaces located at the light-like boundaries of CD × CP2.

1. In canonical quantization canonical momentum densities π0
k ≡ πk = ∂LK/∂(∂0h

k), where ∂0h
k

denotes the time derivative of imbedding space coordinate, are the physically natural quantities
in terms of which to fix the initial values: once their value distribution is fixed also conserved
charges are fixed. Also the weak form of electric-magnetic duality given by J03√g4 = 4παKJ12

and a mild generalization of this condition to be discussed below can be interpreted as a manner
to fix the values of conserved gauge charges (not Noether charges) to their quantized values
since Kähler magnetic flux equals to the integer giving the homology class of the (wormhole)
throat. This condition alone need not characterize criticality, which requires an infinite number
of deformations of X4 for which the second variation of the Kähler action vanishes and implies
infinite number conserved charges. This in fact gives hopes of replacing πk with these conserved
Noether charges.

2. Canonical quantization requires that ∂0h
k in the energy is expressed in terms of πk. The equation

defining πk in terms of ∂0h
k is however highly non-linear although algebraic. By taking squares

the equations reduces to equations for rational functions of ∂0h
k. ∂0h

k appears in contravariant
and covariant metric at most quadratically and in the induced Kähler electric field linearly and
by multplying the equations by det(g4)3 one can transform the equations to a polynomial form
so that in principle ∂0h

k can obtained as a solution of polynomial equations.

3. One can always eliminate one half of the coordinates by choosing 4 imbedding space coordinates
as the coordinates of the spacetime surface so that the initial value conditions reduce to those for
the canonical momentum densities associated with the remaining four coordinates. For instance,
for space-time surfaces representable as map M4 → CP2 M

4 coordinates are natural and the
time derivatives ∂0s

k of CP2 coordinates are multivalued. One would obtain four polynomial
equations with ∂0s

k as unknowns. In regions where CP2 projection is 4-dimensional -in particular
for the deformations of CP2 vacuum extremals the natural coordinates are CP2 coordinates and
one can regard ∂0m

k as unknows. For the deformations of cosmic strings, which are of form
X4 = X2 × Y 2 ⊂M4 × CP2, one can use coordinates of M2 × S2, where S2 is geodesic sphere
as natural coordinates and regard as unknowns E2 coordinates and remaining CP2 coordinates.

4. One can imagine solving one of the four polynomials equations for time derivaties in terms of
other obtaining N roots. Then one would substitute these roots to the remaining 3 conditions
to obtain algebraic equations from which one solves then second variable. Obviously situa-
tion is very complex without additional symmetries. The criticality of the preferred extremals
might however give additional conditions allowing simplifications. The reasons for giving up the
canonical quantization program was following. For the vacuum extremals of Kähler action πk
are however identically vanishing and this means that there is an infinite number of value distri-
butions for ∂0h

k. For small deformations of vacuum extremals one might however hope a finite
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number of solutions to the conditions and thus finite number of space-time surfaces carrying
same conserved charges.

If one assumes that physics is characterized by the values of the conserved charges one must treat
the the many-valuedness of ∂0h

k. The most obvious guess is that one should replace the space of
space-like 4-surfaces corresponding to different roots ∂0h

k = F k(πl) with four-surfaces in the covering
space of CD × CP2 corresponding to different branches of the many-valued function ∂0h

k = F (πl)
co-inciding at the ends of CD.

Do the coverings forces by the many-valuedness of ∂0h
k correspond to the coverings

associated with the hierarchy of Planck constants?

The obvious question is whether this covering space actually corresponds to the covering spaces asso-
ciated with the hierarchy of Planck constants. This would conform with quantum classical correspon-
dence. The hierarchy of Planck constants and hierarchy of covering spaces was introduced to cure
the failure of the perturbation theory at quantum level. At classical level the multivaluedness of ∂0h

k

means a failure of perturbative canonical quantization and forces the introduction of the covering
spaces. The interpretation would be that when the density of matter becomes critical the space-time
surface splits to several branches so that the density at each branches is sub-critical. It is of course not
at all obvious whether the proposed structure of the Big Book is really consistent with this hypothesis
and one also consider modifications of this structure if necessary. The manner to proceed is by making
questions.

1. The proposed picture would give only single integer characterizing the covering. Two integers
assignable to CD and CP2 degrees of freedom are however needed. How these two coverings
could emerge?

(a) One should fix also the values of πnk = ∂LK/∂h
k
n, where n refers to space-like normal

coordinate at the wormhole throats. If one requires that charges do not flow between
regions with different signatures of the metric the natural condition is πnk = 0 and allows
also multi-valued solution. Since wormhole throats carry magnetic charge and since weak
form of electric-magnetic duality is assumed, one can assume that CP2 projection is four-
dimensional so that one can use CP2 coordinates and regard ∂0m

k as un-knows. The basic
idea about topological condensation in turn suggests that M4 projection can be assumed
to be 4-D inside space-like 3-surfaces so that here ∂0s

k are the unknowns. At partonic 2-
surfaces one would have conditions for both π0

k and πnk . One might hope that the numbers
of solutions are finite for preferred extremals because of their symmetries and given by na
for ∂0m

k and by nb for ∂0s
k. The optimistic guess is that na and nb corresponds to the

numbers of sheets for singular coverings of CD and CP2. The covering could be visualized
as replacement of space-time surfaces with space-time surfaces which have nanb branches.
nb branches would degenerate to single branch at the ends of diagrams of the generaled
Feynman graph and na branches would degenerate to single one at wormhole throats.

(b) This picture is not quite correct yet. The fixing of π0
k and πnk should relate closely to the

effective 2-dimensionality as an additional condition perhaps crucial for criticality. One
could argue that both π0

k and πnk must be fixed at X3 and X3
l in order to effectively bring

in dynamics in two directions so that X3 could be interpreted as a an orbit of partonic
2-surface in space-like direction and X3

l as its orbit in light-like direction. The additional
conditions could be seen as gauge conditions made possible by symplectic and Kac-Moody
type conformal symmetries. The conditions for πk0 would give nb branches in CP2 degrees
of freedom and the conditions for πnk would split each of these branches to na branches.

(c) The existence of these two kinds of conserved charges (possibly vanishing for πnk ) could
relate also very closely to the slicing of the space-time sheets by string world sheets and
partonic 2-surfaces.

2. Should one then treat these branches as separate space-time surfaces or as a single space-time
surface? The treatment as a single surface seems to be the correct thing to do. Classically the
conserved changes would be nanb times larger than for single branch. Kähler action need not
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(but could!) be same for different branches but the total action is nanb times the average action
and this effectively corresponds to the replacement of the ~0/g

2
K factor of the action with ~/g2

K ,
r ≡ ~/~0 = nanb. Since the conserved quantum charges are proportional to ~ one could argue
that r = nanb tells only that the charge conserved charge is nanb times larger than without
multi-valuedness. ~ would be only effectively nanb fold. This is of course poor man’s argument
but might catch something essential about the situation.

3. How could one interpret the condition J03√g4 = 4παKJ12 and its generalization to be discussed
below in this framework? The first observation is that the total Kähler electric charge is by
αK ∝ 1/(nanb) same always. The interpretation would be in terms of charge fractionization
meaning that each branch would carry Kähler electric charge QK = ngK/nanb. I have indeed
suggested explanation of charge fractionization and quantum Hall effect based on this picture.

4. The vision about the hierarchy of Planck constants involves also assumptions about imbedding
space metric. The assumption that the M4 covariant metric is proportional to ~2 follows from
the physical idea about ~ scaling of quantum lengths as what Compton length is. One can
always introduce scaled M4 coordinates bringing M4 metric into the standard form by scaling
up the M4 size of CD. It is not clear whether the scaling up of CD size follows automatically
from the proposed scenario. The basic question is why the M4 size scale of the critical extremals
must scale like nanb? This should somehow relate to the weak self-duality conditions implying
that Kähler field at each branch is reduced by a factor 1/r at each branch. Field equations
should posses a dynamical symmetry involving the scaling of CD by integer k and J0β√g4 and
Jnβ
√
g4 by 1/k. The scaling of CD should be due to the scaling up of the M4 time interval

during which the branched light-like 3-surface returns back to a non-branched one.

5. The proposed view about hierarchy of Planck constants is that the singular coverings reduce
to single-sheeted coverings at M2 ⊂ M4 for CD and to S2 ⊂ CP2 for CP2. Here S2 is any
homologically trivial geodesic sphere of CP2 and has vanishing Kähler form. Weak self-duality
condition is indeed consistent with any value of ~ and impies that the vacuum property for the
partonic 2-surface implies vacuum property for the entire space-time sheet as holography indeed
requires. This condition however generalizes. In weak self-duality conditions the value of ~ is
free for any 2-D Lagrangian sub-manifold of CP2.

The branching along M2 would mean that the branches of preferred extremals always collapse
to single branch when their M4 projection belongs to M2. Magnetically charged light-light-like
throats cannot have M4 projection in M2 so that self-duality conditions for different values of
~ do not lead to inconsistencies. For spacelike 3-surfaces at the boundaries of CD the condition
would mean that the M4 projection becomes light-like geodesic. Straight cosmic strings would
have M2 as M4 projection. Also CP2 type vacuum extremals for which the random light-
like projection in M4 belongs to M2 would represent this of situation. One can ask whether
the degeneration of branches actually takes place along any string like object X2 × Y 2, where
X2 defines a minimal surface in M4. For these the weak self-duality condition would imply
~ =∞ at the ends of the string. It is very plausible that string like objects feed their magnetic
fluxes to larger space-times sheets through wormhole contacts so that these conditions are not
encountered.

Connection with the criticality of preferred extremals

Also a connection with quantum criticality and the criticality of the preferred extremals suggests
itself. Criticality for the preferred extremals must be a property of space-like 3-surfaces and light-
like 3-surfaces with degenerate 4-metric and the degeneration of the nanb branches of the space-time
surface at the its ends and at wormhole throats is exactly what happens at criticality. For instance,
in catastrophe theory roots of the polynomial equation giving extrema of a potential as function of
control parameters co-incide at criticality. If this picture is correct the hierarchy of Planck constants
would be an outcome of criticality and of preferred extremal property and preferred extremals would
be just those multi-branched space-time surfaces for which branches co-incide at the the boundaries
of CD × CP2 and at the throats.
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12.3.5 Realization of quantum criticality in terms of number theoretic
braids

The long standing question has been how to define formally the vision that TGD Universe is quantum
critical. The notion of number theoretical braid combined with hierarchy of Planck constant provide
a solution to this question and also fixes the precise realization of the generalized imbedding space.

The notion of number theoretical braid

The notion of number theoretic braid is essential for the view about quantum TGD as almost topo-
logical quantum field theory. It also realization discretization as a space-time correlate for the finite
measurement resolution. Number theoretical universality leads to this notion also and requires that
the points in the intersection of the number theoretic braid with partonic 2-surface correspond to
rational or at most algebraic points of H in preferred coordinates fixed by symmetry considerations.
The challenge has been to find a unique identification of the number theoretic braid. Number theoretic
vision indeed makes this possible.

The core element of number theoretic vision is that the laws of physics could be reduced to
associativity conditions. One realization for associativity conditions is the level of M8 endowed with
hyper-octonionic structure as a condition that the points sets possible as arguments ofN -point function
in X4 are associative and thus belong to hyper-quaternionic subspace M4 ⊂M8. This decomposition
must be consistent with the M4×E4 decomposition implied by M4×CP2 decomposition of H. What
comes first in mind is that partonic 2-surfaces X2 belong to δM4

± ⊂M8 defining the ends of the causal
diamond and are thus associative. This boundary condition however freezes E4 degrees of freedom
completely so that M8 configuration space geometry trivializes.

1. Are the points of number theoretic braid commutative?

One can also consider the commutativity condition by requiring that arguments belong to a pre-
ferred commutative hyper-complex sub-space M2 of M8 which can be regarded as a curve in complex
plane. Fixing preferred real and imaginary units means a choice of M2 interpreted as a partial choice of
quantization axes at the level of M8. One must distinguish this choice from the hyper-quaternionicity
of space-time surfaces and from the condition that each tangent space of X4 contains M2(x) ⊂ M4

in its tangent space or normal space. Commutativity condition indeed implies the notion of number
theoretic braid and fixes it uniquely once a global selection of M2 ⊂ M8 is made. There is also an
alternative identification of number theoretic braid based on the assumption that braids are light-like
curves with tangent vector in M2(x).

1. The strong form of commutativity condition would require that the arguments of the n-point
function at partonic 2-surface belong to the intersection X2 ∩M±. This however allows quite
too few points since an intersection of 2-D and 1-D objects in 7-D space would be in question.
Associativity condition would reduce cure the problem but would trivialize configuration space
geometry.

2. The weaker condition that only δCD projections for the points of X2 commute is however
sensible since the intersection of 1-D and 2-D surfaces of 3-D space results. This condition is
also invariant under number theoretical duality. In the generic case this gives a discrete set
of points as intersection of light-like radial geodesic and the projection PδM4

±
(X2). This set

is naturally identifiable in terms of points in the intersection of number theoretic braids with
δCD × E4. One should show that this set of points consists of rational or at most algebraic
points. Here the possibility to choose X2 to some degree could be essential. Any radial light
ray from the tip of light-cone allows commutativity and one can consider the possibility of
integrating over n-point functions with arguments at light ray to obtain maximal information.

3. For the pre-images of light-like 3-surfaces commutativity of the points in δM4
± projection would

allow the projections to be one-dimensional curves of M2 having thus interpretation as braid
strands. M2 would play exactly the same role as the plane into which braid strands are projected
in the construction of braid invariants. Therefore the plane of non-physical polarizations in
gauge theories corresponds to the plane to which braids and knots are projected in braid and
knot theories. A further constraint is that the braid strand connects algebraic points of M8 to
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algebraic points of M8. It seems that this can be guaranteed only by posing some additional
conditions to the light-like 3-surfaces themselves which is of course possible since they are in the
role of fundamental dynamical objects.

2. Are number theoretic braids light-like curves with tangent in M2(x)?

There are reasons why the identification of the number theoretic braid strand as a curve having
hyper-complex light-like tangent looks more attractive.

1. An alternative identification of the number theoretic braid would give up commutativity con-
dition for CD projection and assume braid strand to be as a light-like curve having light-like
tangent belonging to the local hyper-complex tangent sub-space M2(x) at point x. This defini-
tion would apply both in X3 ⊂ δM4

± × CP2 and in X3
l . Also now one would have a continuous

distribution of number theoretic braids, with one braid assignable to each light-like curve with
tangent δM4

+ ⊃ M+(x) ⊂ M2(x). In this case each light-like curve at δM4
+ with tangent in

M+(x) would define a number theoretic braid so that the only difference would be the replace-
ment of light-like ray with a more general light-like curve.

2. The preferred plane M2(x) can be interpreted as the local plane of non-physical polarizations so
that the interpretation as a number theoretic analog of gauge conditions posed in both quantum
field theories and string models is possible. In TGD framework this would mean that super-
conformal degrees of freedom are restricted to the orthogonal complement of M2(x) and M2(x)
does not contribute to the configuration space metric. In Hamilton-Jacobi coordinates the pairs
of light-like curves associated with coordinate lines can be interpreted as curved light rays. Hence
the partonic planes M2(xi) associated with the points of the number theoretic braid could be
also regarded as carriers four-momenta of fermions associated with the braid strands so that
the standard gauge conditions ε · p = 0 for polarization vector and four-momentum would be
realized geometrically. The possibility of M2 to depend on point of X3

l would be essential to
have non-collinear momenta and for a classical description of interactions between braid strands.

3. One could also define analogs of string world sheets as sub-manifolds of PM4
+

(X4) having

M2(x) ⊂ M4 as their tangent space or being assignable to their tangent containing M+(x)
in the case that the distribution defined by the planes M2(x) exists and is integrable. It must be
emphasized that in the case of massless extremals one can assign only M+(x) ⊂M4 to T (X4(x))
so that only a foliation of X4 by light-like curves in CD is possible. For PM4

+
(X4) however a fo-

liation by 2-D stringy surfaces is obtained. Integrability of this distribution and thus the duality
with stringy description has been suggested to be a basic feature of the preferred extremals and
is equivalent with the existence of Hamilton-Jacobi coordinates for a large class of extremals of
Kähler action [12] .

4. The possibility of dual descriptions based on integrable distribution of planes M2(x) allowing
identification as 2-dimensional stringy sub-manifolds of X4(X3) and the flexibility provided
by the hyper-complex conformal invariance raise the hopes of achieving the lifting of super-
symplectic algebra SS and super Kac-Moody algebra SKM to H. At the light-cone boundary
the light-like radial coordinate could be lifted to a hyper-complex coordinate defining coordinate
for M2. At X3

l one could fix the light-like coordinate varying along the braid strands and it can
can be lifted to a light-like hyper-complex coordinate in CD by requiring that the tangent to
the coordinate curve is light-like line of M2(x) at point x. The total four-momenta and color
quantum numbers assignable to SS and SKM degrees of freedom are naturally identical since
they can be identified as the four-momentum of the partonic 2-surface X2 ⊂ X3 ∩ δM4

± ×CP2.
Equivalence Principle would emerge as an identity.

3. Are also CP2 duals of number theoretic braids possible?

This picture is probably not enough. From the beginning the idea that also the CP2 projections
of points of X2 define number theoretic braids has been present. The dual role of the braids defined
by M2 and CP2 projections of X2 is suggested both by the construction of the symplectic fusion
algebras [18] and by the model of anyons [66] . M2 and the geodesic sphere S2

i ⊂ CP2, where one has
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either i = I or i = II, where i = I/II corresponds to homologically trivial/non-trivial geodesic sphere,
are in a key role in the geometric realization of the hierarchy of Planck constants in terms of the book
like structure of the generalized imbedding space. The fact that S2

I corresponds to vacuum extremals
would suggest that only the intersection S2

II ∩ PCP2
(X2) can define CP2 counterpart of the number

theoretic braid. CD braid could be the proper description in the associative case (Minkowskian
signature of induced metric) and CP2 braid in the co-associative case (Euclidian signature of induced
metric). The duality of these descriptions would be reflected also by the fact that the physical Planck
constant is given by ~ = r~0, r = ~(M4)/~(CP2), so that only the ratio of the two Planck constants
matters in commutation relations.

Number theoretic braids are quantum critical

The elegant manner to realized quantum criticality is as quantum criticality of number theoretic
braids.

1. All particles, be their elementary particles or anyonic systems of astrophysical size, have light-like
partonic 3-surfaces as space-time correlates. If the corresponding partonic 2-surfaces X2 are as
a whole quantum critical their M2 projection belongs to to M+ ⊂ δM4

± or CP2 projection to S2
i ,

i = I or II corresponding to homological trivial and non-trivial geodesic spheres. If X2 is fully
quantum critical, it belongs M2×S2 defining the intersection of all pages of the big book. This
definition is quite too stringent. The geometric picture about phase transition implies that only
a 1-D curves of partonic 2-surface correspond to exact quantum criticality so that 2-surface could
consist of several parts having different values of Planck constant during transition. This would
realize at the level of partonic 2-surfaces the geometric view about criticality as decomposition
to regions consisting of different phases.

2. The construction of M-matrix utilizes only the data from the discrete number theoretic braids
defined by the intersections of with M± ∩ PδM4

±
(X2) where one has M± ⊂ M2 ∩ δM4± where

M± = M2∩ δM4± is light-like ray. The proposed dual description uses number theoretic braids
defined by CP2 projection S2

i ∩ PCP2(X2), i = I or II. Quantum criticality of TGD Universe
would mean that M2 and S2

i defining the quantum measurement axis and quantum critical
manifolds also define number theoretical braids.

Which geodesic sphere?

There are two geodesic spheres in CP2. Which one should choose or are both possible? It seems that
it is not possible to make final conclusion yet.

1. For the homologically non-trivial geodesic sphere S2
II corresponding to the simplest cosmic

strings, the isometry group is U(2) ⊂ SU(3). The homologically trivial geodesic sphere S2
I has

vanishing induced Kähler form and in maximal quantum criticality would correspond to vacuum
extremals. It has isometry group SO(3) ⊂ SU(3). One could argue that U(1) factor excludes
S2
II but there is actually no reason for restring the consideration to SU(2). For SU(2) color

isospin would be the quantum number involved and G would act as phase rotations for complex
coordinates of CP2. For SO(3) SO(2) would mix complex coordinates like real coordinates of
plane and SO(2) quantum number would not allow interpretation in terms of color.

2. One could also argue that for a quantum critical partonic 2-surface containing regions with
different values of Planck constant these regions must correspond to different regions inside
which induced Kähler form is non-vanishing since second quantization in this case would be
done for a fixed value of Planck constant. This is not guaranteed in the case S2

II but in the case
of S2

I there exists a 1-D curve separating the regions with different Planck constant from each
other. Again one can however simply restrict the partonic two-surfaces at δCD×CP2 to belong
to single page of generalized imbedding space so that quantum criticality as decomposition to
regions belonging to different pages would hold true only for X3

l and quantum criticality would
be purely dynamical phenomenon analogous to quantum tunneling. In particular, there would
be no vertex characterizing the phase transition changing the page.
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3. Quantum criticality corresponds to long range fluctuations and non-deterministic behavior and
there is a strong temptation to assign with with the vacuum degeneracy of Kähler action implying
also 4-D spin glass like character of TGD Universe. This would favor S2

I . If S2
I is chosen one can

ask whether all surfaces M2× Y 2, Y 2 Lagrangian sub-manifold of CP2 defining vacuum sectors
of the theory should be allowed. The answer seems to be ”No” since in the generic case SO(3)
does not act as H-isometries of Y 2. If one allows these sub-manifolds or even sub-manifolds
of form M4 × Y 2 to appear as intersection of fractally scaled up variants, one must replace
Cartan algebra as algebra associated with SO(3) subgroup of symplectic transformations of
CP2 mapping Y 2 to itself (if this kind of algebra exists).

4. If partonic 2-surfaces belong to single page of the Big book, there is no reason to exclude the
option allowing both S2

I and S2
II . This raises the question whether the two kinds of Jones

inclusions corresponding toM : N < 4 andM : N = 4 correspond to the two geodesic spheres.
S2
I would correspond to a phase obtained as small perturbations of vacuum extremals and S2

II

to string like objects (Kähler magnetic flux tubes) obtained as perturbations of cosmic strings.
The objection is that there would be asymmetry between CD and CP2 degrees of freedom since
for CD only M2 appears and would correspond to either M : N < 4 or M : N = 4. If singular
coverings and factor spaces correspond to the two kinds of Jones inclusions, the factors are in
completely symmetric position.

5. An argument favoring S2
I is that situation should be symmetric with respect to CD and CP2.

Since M2 corresponds to non-physical polarizations and S2
I to vacuum extremals, one might

argue that these are the correct choices. S2
I corresponds also to a non-holomorphic sub-manifold

of CP2 being given by ξ2 = ξ
2

in Eguchi-Hanson coordinates. Symmetry argument suggests
also that M2(x) ⊕ E2(x) decomposition should have CP2 counter part and correspond to a
slicing of CP2 to geodesic spheres. This slicing would be analogous to the slicing of sphere by
geodesic circles labeled by the value of the coordinate θ and intersecting at two diametrically
opposite points at equator. The variation range θ defines half-geodesic circle orthogonal to the
slices. The spherical CP2 coordinate pairs (r,Ψ) and (r,Φ) would label the slices of S2

I and S2
II

slicings with three intersection points. (r,Ψ) and the complex coordinate for S2
II would define

the analog of Hamilton-Jacobi coordinates for CP2 and the analogy with sphere would suggest
that the variation ranges of (r,Ψ) resp. (r,Φ) define pieces of S2

II resp. S2
I . The dual geodesic

spheres are not orthogonal to the geodesic spheres which they label as the expression of CP2

metric in Eguchi-Hanson coordinates shows [5] , [5] . In fact, orthogonality fails of longitudinal
and transversal planes fails for Hamilton-Jacobi coordinates too.

What are the correct anti-commutation relations for fermionic oscillator operators?

Quantum commutation relations make sense only for quantum version of the SU(2) Lie algebra. The
reason is that the quantum commutation relations of form a†a + qaa† = ~ are consistent with the
hermiticity of the right hand side only for real values of q.

The vision about fractionization of various quantum numbers as being due to the fractionization
of fermion number suggests that the correct anti-commutation relations are of form

a†a+ aa† = ~ = r~0 ,

r =
~(CD)

~(CP2)
. (12.3.5)

One cannot transform these relations to the standard form for all pages of the Big Book simultaneously
by scaling the oscillator operators by 1/

√
r. The unit of fermion number becomes r so that single

fermion leakage between sectors with different value of r is not possible.
One can consider also a more delicate modification is based on the replacement of r with its

q-counterpart rq.

a†a+ aa† = ~q = rq~0 . (12.3.6)
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It is however not completely clear what one means with q-rational. The counterpart nq of integer n
is nq = (qn − q−n)/(q − q−1). The two alternative definitions of rq for r = n1/n2 would be

rq =
(qr − q−r)
q − q−1

and

rq =
mq

nq
.

q = exp(i2π/r) however implies that rq vanishes in both cases so that the modification does not make
sense.

A good guess for the commutation relations of quantum SU(2) is as

[Jz, J±] = ±J± ,

[J+, J−] = r~0 ×
q
Jz
r~0 − q−r

Jz
r~0

q − q−1
,

q = exp(i
2π

r
) . (12.3.7)

For the eigenstates of Jz with Jz = mr~0 the right hand side gives exp(im2π/r)− exp(−im2π/r) just
as for the standard quantum group for which one has r = n.

One could criticize the appearance of ~(CP2) in the denominator of r as something having no
concrete interpretation: why the covering of CP2 should reduce the unit of fermion number? The
interpretation in terms of the scaling of metric does not leave however leave any other option and
one should find some elegant interpretation for the formula before one can accept it. A possible
interpretation in the case of CD braids is that fermion number r = na/nb for coverings is associated
with single CP2 page so that the nb pages would carry fermion number na. If CP2 corresponds to
factor space and CD to covering, single pages would carry fermion number na but only 1/nB CP2

pages would be present so that again the unit of fermion number would be na.

12.4 Jones inclusions and generalization of the imbedding space

The original motivation for the generalization of the imbedding space was the idea that the pages of
the Big Book would provide correlates for Jones inclusions. In the following an attempt to formulate
this vision more precisely is carried out.

12.4.1 Basic facts about Jones inclusions

Here only basic facts about Jones inclusions are discussed. Appendix contains a more detailed discus-
sion of inclusions of HFFs.

Jones inclusions defined by subgroups of SL(2, C)× SU(2)

Jones inclusions with M : N < 4 have representation as RG0 ⊂ RG with G a discrete subgroup of
SU(2). SO(3) or SU(2) can be interpreted as acting in CP2 as rotations. On quantum spinors the
action corresponds to double cover of G.

A more general choice for G would be as a discrete subgroup Ga×Gb ⊂ SL(2, C)×SU(2)×SU(2).
Poincare invariance suggests that the subgroup of SL(2, C) reduces either to a discrete subgroup of
SU(2) and in the case that the rotation are genuinely 3-dimensional (E6, E8), the only possible
interpretation would be as isotropy group of a particle at rest. When the group acts on plane as in
case of An and D2n, it could be also assigned to a massless particle.

If the group involves boosts it contains an infinite number of elements and it is not clear whether
this kind of situation is physically sensible. In this case Jones inclusion could be interpreted as an
inclusion for the tensor product of G invariant algebras associated with CD and CP2 degrees of
freedom and one would have M : N = M : N (Ga) ×M : N (Gb). Since the index increases as the
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order of G increases one has reasons to expect that in the case of Ga = SL(2, C) Na = ∞ implies
larger M : N (Ga) > 4.

A possible interpretation is that the values M : N ≤ 4 are analogous to bound state energies
so that a discrete rotation group acting in the relative rotational degrees of freedom can act as a
symmetry group whereas the valuesM : N > 4 are analogous to ionized states for which particles are
almost freely moving with respect to each other with a constant velocity.

When one restricts the coefficients to G-invariant elements of Clifford algebra the Clifford field is
G-invariant under the natural action of G. This allows two interpretations. Either the Clifford field is
G invariant or that the Clifford field is defined in orbifold CD/Ga ×CP2/Gb. CD/Ga is obtained by
replacing hyperboloid Ha (t2 − x2 − y2 − z2 = a2) with Ha/Ga. These spaces have been considered
as cosmological models having 3-space with finite volume [78] (also a lattice like structure could be in
question).

The quantum phases associated with sub-groups of SU(2)

It is natural to identify quantum phase as that defined by the maximal cyclic subgroup for finite
subgroups of SU(2) and infinite subgroups of SL(2, C). Before continuing a brief summary about
quantum phases associated with finite subgroups of SU(2) is in order. E6 corresponds to N = 24 and
n = 3 and E8 to icosahedron with N = 120, n = 5 and Golden mean and the minimal value of n
making possible universal topological quantum computer [95] .

Dn and An have orders 2n and n+1 and act as symmetry groups of n-polygon and have n-element
cyclic group as a maximal cyclic subgroup. For double covers the orders are twice this. Thus An
resp. D2n correspond to q = exp(iπ/n) resp. q = exp(iπ/2n). Note that the restriction n ≥ 3 means
geometrically that only non-trivial polygons are allowed.

12.4.2 Jones inclusions and the hierarchy of Planck constants

The anyonic arguments for the quantization of Planck constant suggest that one can assign separate
scalings of Planck constant to CD and CP2 degrees of freedom and that these scalings in turn reflect
as scalings of M4± and CP2 metrics. This is definitely not in accordance with the original TGD
vision based on uniqueness of imbedding space but makes sense if space-time and imbedding space
are emergent concepts as the hierarchy of number theoretical von Neumann algebra inclusions indeed
suggests. Indeed, the scaling factors of CD and CP2 metric remain non-fixed by the general uniqueness
arguments since Cartesian product is in question.

Hierarchy of Planck constants and choice of quantization axis

Jones inclusions seem to relate in a natural manner to the selection of quantization axis.

1. In the case of CD the orbifold singularity is for all groups Ga except E6 and E8 the time-
like plane M2 corresponding to a radial ray through origin defining the quantization axis of
angular momentum and intersecting light-cone boundary along a preferred light-like ray. For E6

and E8 (tedrahedral and icosahedral symmetries) the singularity consists of planes M2 related
by symmetries of G sharing time-like line M1 and in this case there are several alternative
identifications of the quantization axes as axis around which the maximal cyclic subgroup acts
as rotations.

2. From this it should be obvious that Jones inclusions represented in this manner would relate
very closely to the selection of quantization axes and provide a geometric representation for this
selection at the level of space-time and configuration space. The existence of the preferred direc-
tion of quantization at a given level of dark matter level should have observable consequences.
For instance, in cosmology this could mean a breaking of perfect rotational symmetry at dark
matter space-time sheets. The interpretation would be as a quantum effect in cosmological
length scales. An interesting question is whether the observed asymmetry of cosmic microwave
background could have interpretation as a quantum effect in cosmological length and time scales.
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Do factor spaces and coverings correspond to the two kinds of Jones inclusions?

What could be the interpretation of the singular coverings and and factor spaces? If both geodesic
spheres of CP2 are allowed M : N = 4 could correspond to the allowance of cosmic strings and other
analogous objects. This option is however asymmetric with respect to CD and CP2 and the more
plausible option is that the two kinds of Jones inclusions correspond to singular factor spaces and
coverings.

1. Jones inclusions appear in two varieties corresponding to M : N < 4 and M : N = 4 and one
can assign a hierarchy of subgroups of SU(2) with both of them. In particular, their maximal
Abelian subgroups Zn label these inclusions. The interpretation of Zn as invariance group is
natural for M : N < 4 and it naturally corresponds to the coset spaces. For M : N = 4 the
interpretation of Zn has remained open. Obviously the interpretation of Zn as the homology
group defining covering would be natural.

2. For covering spaces one would however obtain the degrees of freedom associated with the discrete
fiber and the degrees of freedom in question would not disappear completely and would be
characterized by the discrete subgroup of SU(2). For anyons the non-trivial homotopy of plane
brings in non-trivial connection with a flat curvature and the non-trivial dynamics of topological
QFTs. Also now one might expect similar non-trivial contribution to appear in the spinor
connection of ĈD×̂Ga and ĈP 2×̂Gb. In conformal field theory models non-trivial monodromy
would correspond to the presence of punctures in plane. This picture is also consistent with the
G singlets of the quantum states despite the fact that fermionic oscillator operators belong to
non-trivial irreps of G.

Coverings and factors spaces form an algebra like structure

It is easy to see that coverings and factor spaces defining the pages of the Big Book form an algebra
like structure.

1. For factor spaces the unit for quantum numbers like orbital angular momentum is multiplied
by na resp. nb and for coverings it is divided by this number. These two kind of spaces are
in a well defined sense obtained by multiplying and dividing the factors of Ĥ by Ga resp. Gb
and multiplication and division are expected to relate to Jones inclusions with M : N < 4 and
M : N = 4, which both are labeled by a subset of discrete subgroups of SU(2).

2. The discrete subgroups of SU(2) with fixed quantization axis possess a well defined multiplication
with product defined as the group generated by forming all possible products of group elements
as elements of SU(2). This product is commutative and all elements are idempotent and thus
analogous to projectors. Trivial group G1, two-element group G2 consisting of reflection and
identity, the cyclic groups Zp, p prime, and tedrahedral, octahedral, and icosahedral groups are
the generators of this algebra.

By commutativity one can regard this algebra as an 11-dimensional module having natural numbers
as coefficients (”rig”). The trivial group G1, two-element group G2 generated by reflection, and
tedrahedral, octahedral, and icosahedral groups define 5 generating elements for this algebra. The
products of groups other than trivial group define 10 units for this algebra so that there are 11 units
altogether. The groups Zp generate a structure analogous to natural numbers acting as analog of
coefficients of this structure. Clearly, one has effectively 11-dimensional commutative algebra in 1-1
correspondence with the 11-dimensional ”half-lattice” N11 (N denotes natural numbers). Leaving
away reflections, one obtains N7. The projector representation suggests a connection with Jones
inclusions. An interesting question concerns the possible Jones inclusions assignable to the subgroups
containing infinitely manner elements. Reader has of course already asked whether dimensions 11,
7 and their difference 4 might relate somehow to the mathematical structures of M-theory with 7
compactified dimensions. One could introduce generalized configuration space spinor fields in the
configuration space labeled by sectors of H with given quantization axes. By introducing Fourier
transform in N11 one would formally obtain an infinite-component field in 11-D space.
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Connection between Jones inclusions, hierarchy of Planck constants, and finite number
of spinor modes

The original generalization of the imbedding space to accommodate the hierarchy of Planck constants
was based on the idea that the singular coverings and factor spaces associated with the causal diamond
CD and CP2, which appears as factors of CD × CP2 correspond somehow to Jones inclusions, and
that the integers na and nb characterizing the orders of maximal cyclic groups of groups Ga and Gb
associated with the two Cartesian factors correspond to quantum phases q = exp(i2π/ni) in such a
manner that singular factor spaces correspond to Jones inclusions with indexM : N < 4 and coverings
to those with index M : N = 4.

Since Jones inclusions are interpreted in terms of finite measurement resolution, the mathematical
realization of this heuristic picture should rely on the same concept realized also by the fact that the
number of non-zero modes for induced spinor fields is finite. This allows to consider two possible
interpretations.

1. The finite number of modes defines an approximation to the hyper-finite factor of type II1 defined
by configuration space Clifford algebra.

2. The Clifford algebra spanned by fermionic oscillator operators is quantum Clifford algebra and
corresponds to the somewhat nebulous object N/M associated with the inclusion M⊂ N and
coding the finite measurement resolution to a finite quantum dimension of the Clifford algebra.
The fact that quantum dimension is smaller than the actual dimension would reflect correlations
between spinor components so that they are not completely independent.

If the latter interpretation is correct then second quantized induced spinor fields should obey
quantum variant of anticommutation relations reducing to ordinary anticommutation relations only
for na = nb = 0 (no singular coverings nor factor spaces). This would give the desired connection
between inclusions and hierarchy of Planck constants. It is possible to have infinite number of quantum
group like structure for ~ = ~0.

There are two quantum phases q and one should understand what is the phase that appears in
the quantum variant of anti-commutation relations. A possible resolution of the problem relies on the
observation that there are two kinds of number theoretic braids. The first kind of number theoretic
braid is defined as the intersection of M+ (or light-like curve of δM4

+ in more general case) and of
δM4

+ projection of X2. Second of braid is defined as the intersection of CP2 projection of X2 of
homologically non-trivial sphere S2

II of CP2. The intuitive expectation is that these dual descriptions
apply for light-like 3-surfaces associated resp. co-associative regions of space-time surface and that
both descriptions apply at wormhole throats. The duality of these descriptions is guaranteed also at
wormhole throats if physical Planck constant is given by ~ = r~0, r = ~(M4)/~(CP2), so that only
the ratio of the two Planck constants matters in commutation relations. This would suggest that it
is q = exp(i2π/r), which appears in quantum variant of anti-commutation relations of the induced
spinor fields.

The action of Ga ×Gb on configuration space spinors and spinor fields

The first question is what kind of measurement resolution is in question. In zero energy ontology the
included states would typically correspond to insertion of zero energy states to the positive or negative
part of the physical state in time scale below the time resolution defined by the time scale assignable
to the smallest CD present in the zero energy state. Does the description in terms of G invariance
apply in this case or does it relate only to time and length scale resolution whereas hierarchy of Planck
constants would relate to angle resolution? Assume that this is the case.

The second question is how the idea about M as an included algebra defining finite measurement
resolution and G invariance as a symmetry defining M as the included algebra relate to each other.

1. One cannot say that G creates states, which cannot be distinguished from each other. Rather
G-invariant elements of M create states whose presence in the state cannot be detected.

2. For covering space option M represents states which are invariant under discrete subgroup of
SU(2) acting in the covering. States with integer spin would be below measurement resolution
and only factional spins of form j/n would be observable. For factor space option M would
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represents states which are invariant under discrete subgroup of SU(2) acting in H-say states
with spin. States with spin which is multiple of n would be below measurement resolution. The
situation would be very similar to each other. Number theoretic considerations and the fact
that the number of fermionic oscillator operators is finite suggest that that for coverings the
condition Lz < 1 and for factor spaces the condition Lz < n is satisfied by the generators of
Clifford algebra regarded as irreducible representation of G. For factor spaces the interpretation
could be in terms of finite angular resolution ∆φ ≤ 2π/n excluding angular momenta Lz ≥ n.
For coverings the resolution would be related to rotations (or rather, braidings) as multiples of
2π: multiples m2π m ≥ n cannot be distinguished from m mod n multiples.

3. The minimal assumption is that integer orbital angular momenta are excluded for coverings and
n-multiples are excluded for factors spaces. The stronger assumption would be that there is
angular momentum cutoff. This point is however very delicate. The states with j > n can be
obtained as tensor products of representations with j = m. If entanglement is present one cannot
anymore express the state as a product of M element and N element so that the states j > n
created in this manner would not be equivalent with those with j mod n. The replacement of
the ordinary tensor product with Connes tensor product would indeed generate automatically
entangled states and one could interpret Connes tensor product as a manner to create only the
allowed states.

4. For quantum groups allow only finite number of representations up to some maximum spin
determined by the integer n characterizing quantum phase q. This would mean angular mo-
mentum cutoff leaving only a finite number of representations of quantum group [11] . This
fits nicely with what one obtains in the case of factor spaces. For coverings the new element is
that the unit of spin becomes 1/n: otherwise the situation seems to be similar. Quantum group
like structure is obtained if the fermionic oscillator operators satisfy the quantum version of
anti-commutation relations. The algebra would be very similar except that the orbital angular
momentum labeling oscillator operators has different unit. Oscillator operators are naturally in
irreducible representations of G and only the non-trivial representations of G are allowed.

5. Besides Jones inclusions corresponding to M : N < 4 there are inclusions with M : N = 4 to
which one can also assign quantum phases. It would be natural to assign covering spaces and
factor spaces to these two kinds of inclusions. For the minimal option excluding only the orbital
angular momentum which are integers or multiples of n the fraction of excluded states is very
small for coverings so that M : N = 4 is natural for this option. M : N < 4 would in turn
correspond naturally to factor spaces.

6. Since the two kinds of number theoretic braids correspond to points which belong to M2 or S2,
one might argue that several quantum anticommutation relations must be satisfied simultane-
ously. This is not the case since the eigen modes of DC−S and hence also oscillator operators
code information about partonic surface X2 itself and also about X4(X3

l ) rather than being
purely local objects. In the case of covering space the oscillator operators can be arranged
to irreducible representations of G and in the case of factor space the oscillator operators are
G-invariant.

One must distinguish between G invariance for configuration space spinors and spinor fields.

1. In the case of factor spaces 3-surface are G invariant so that there is no difference between spinors
and spinor fields as far as G is considered. Irreducible representations of G would correspond to
the superpositions of G-transforms of oscillator operators for a fixed G-invariant X3

l .

2. For covering space option G-invariance would mean that 3-surface is a mere G-fold copy of
single 3-surface. There is no obvious reason to assume this. Hence one cannot separate spinorial
degrees of freedom from configuration space degrees of freedom since G affects both the spin
degrees of freedom and the 3-surface. Irreducible representations of G would correspond to
genuine configuration space spinor fields involving a superposition of G-transforms of also X3

l .
The presence of both orbital and spin degrees of freedom could provide alternative explanation
for why M : N = 4 holds true for covering space option.
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If the fermionic oscillator algebra is interpreted as a representation for N/M, allowed fermionic
oscillator operators belong to non-trivial irreps of G. One can however ask whether the many-fermion
states created by these operators are G-invariant for some physical reason so that one would have
kind of G-confinement forcing the states to be many-fermion states with standard unit of quantum
numbers for coverings and integer multiples of n for factor spaces. This would conform with the ideas
that anyonicity is a microscopic property not visible at the level of entire state and that many-fermion
systems in the anyonic state resulting in strong coupling limit for ordinary value of ~ are in question.
The processes changing the value of Planck constant would be phase transitions involving all fermions
of the G-invariant state and would be slow for this reason. This would also contribute to the invisibility
of dark matter.

12.4.3 Questions

What is the role of dimensions?

Could the dimensions of CD and CP2 and the dimensions of spaces defined by the choice of the
quantization axes play a fundamental role in the construction from the constraint that the fundamental
group is non-trivial?

1. Suppose that the sub-manifold in question is geodesic sub-manifold containing the orbits of its
points under Cartan subgroup defining quantization axes. A stronger assumption would be that
the orbit of maximal compact subgroup is in question.

2. For M2n Cartan group contains translations in time direction with orbit M1 and Cartan sub-
group of SO(2n− 1) and would be Mn so that M̂2n would have a trivial fundamental group for
n > 2. Same result applies in massless case for which one has SO(1, 1) × SO(2n − 2) acts as
Cartan subgroup. The orbit under maximal compact subgroup would not be in question.

3. For CP2 homologically non-trivial geodesic sphere CP1 contains orbits of the Cartan subgroup.
For CPn = SU(n + 1)/SU(n) × U(1) having real dimension 2n the sub-manifold CPn−1 con-
tains orbits of the Cartan subgroup and defines a sub-manifold with codimension 2 so that the
dimensional restriction does not appear.

4. For spheres Sn−1 = SO(n)/SO(n − 1) the dimension is n − 1 and orbit of SO(n − 1) of point
left fixed by Cartan subgroup SO(2)× .. would for n = 2 consist of two points and Sn−2 in more
general case. Again co-dimension 2 condition would be satisfied.

What about holes of the configuration space?

One can raise analogous questions at the level of configuration space geometry. Vacuum extremals
correspond to Lagrangian sub-manifolds Y 2 ⊂ CP2 with vanishing induced Kähler form. They corre-
spond to singularities of the configuration space (”world of classical worlds”) and configuration space
spinor fields should vanish for the vacuum extremals. Effectively this would mean a hole in config-
uration space, and the question is whether this hole could also naturally lead to the introduction
of covering spaces and factor spaces of the configuration spaces. How much information about the
general structure of the theory just this kind of decomposition might allow to deduce? This kind of
singularities are infinite-dimensional variants of those discussed in catastrophe theory and this suggests
that their understanding might be crucial.

Are more general inclusions of HFFs possible?

The proposed scenario could be criticized because discrete subgroups of SU(2) are in a preferred
position. The Jones inclusions considered correspond to quantum spinor representations of various
quantum groups SU(2)q, q = exp(i2π/n). This explains the resultM : N ≤ 4. These representations
are certainly in preferred role as far as configuration space spinor fields are considered but it is possible
to assign a hierarchy of inclusions of HFFs labeled by quantum phase q with arbitrary representation
of an arbitrary compact Lie group. These inclusions would be analogous to discrete states in the
continuum M : N > 4.
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Since the inclusions are characterized by single quantum phase q = exp(i2π/n) in the case of
compact Lie groups (Appendix), one can ask whether more general discrete groups than subgroups
of SU(2) should be allowed. The inclusions of HFFs associated with higher dimensional Lie groups
have M : N > 4 and are analogous to bound states in continuum (Appendix). In the case of CP2

this would allow to consider much more general sub-groups.

The question is therefore whether some principle selects subgroups of SU(2). There are indeed
good arguments supporting the hypothesis that only discrete Abelian subgroups of SU(2) are possible.

1. The notion of number theoretic braid allows only the only subgroups of rotation group leaving
M2 invariant and sub-groups of SU(3) leaving geodesic sphere S2

i invariant. This would drop
groups having genuinely 3-D action. In the case of SU(3) discrete subgroups of SO(3) or U(2)
remain under consideration. The geodesic sphere of type II is however analogous to North/South
pole of S2 and second phase factor associated with the coordinates (ξ1, ξ2) becomes redundant
since (|ξ1|2 + |ξ2|2)1/2 becomes infinite at S2

II so that ξ1/ξ2 becomes appropriate coordinate.
Hence action of U(2) reduces to that of SU(2) since ξ1 and ξ2 correspond to same value of color
hyper charge associated with U(1).

2. A physically attractive possibility is that Ga×Gb leaves the choice of quantization axes invariant.
This condition makes sense also for coverings. This would leave only Abelian groups into consid-
eration and drop D2n, E6, and E8. It is quite possible that only these groups define sectors of the
generalized imbedding space. This means thatGb = Zn1×Zn2 ⊂ U(1)I×U(1)Y ⊂ SU(2)×U(1)Y
and even more general subgroups of SU(3) (if non-commutativity is allowed) are a priori possible.
Again the first argument reduces the list to cyclic subgroups of SU(2).

3. The products of groups Zn are also number theoretically in a very special position since they
relate naturally to the finite cyclic extensions and also to the maximal Abelian extension of
rationals. With this restriction on Ga × Gb one can consider the hypothesis that elementary
particles correspond are maximally quantum critical systems left invariant by all groups Ga×Gb
respecting a given choice of quantization axis and implying that darkness is associated only to
field bodies and Planck constant becomes characterizer of interactions rather than elementary
particles themselves.

12.4.4 How does the hierarchy of Planck constants affect the modified
Dirac equation?

It is not quite obvious how ~/~0 = ~(M4)/~(CP2) and ~(M4) and ~(CP2) make themselves visible
in the dynamics of the theory. To see what is involved some simple dimensional considerations are
needed.

General view about the role of ~

The usual convention of putting ~ = 1 simplifies things tremendously but when ~ is assumed to have
a spectrum, one is forced to check how ~ appears in the theory.

1. ~ appears in the anticommutators of the induced fermion fields restricted to the points of the
number theoretic braids. Standard canonical anticommutation rule states that the anticommu-
tator {ΨΓ̂0(xm),Ψ(xn)} equals to ~δm,n. This is due to the dimension

√
~/L3/2 of the induced

spinor field forcing the modified Dirac action to be proportional to 1/~. The overall scaling of
the action does not matter at all since it implies only an overall scaling of the eigenvalue spec-
trum giving an additive constant to Kähler action. The scaling of M4 and CP2 metrics by the
same factor induces the scaling of the modified gamma matrices Γ̂α by same factor which does
not affect the value Kähler function apart from additive constant. This conforms with the Weyl
invariance of Kähler action. One can therefore identify ~ as a scaling factor of M4 metric when
CP2 metric is scaled down to its standard form. By introducing a scaled up M4 coordinate,
the standard form of metric is obtained but the size of causal diamond CD is scaled up so that
various values of ~ label different sizes of CD. Therefore radiative corrections reflect breaking
of the scaling invariance with respect to M4 scalings for the preferred extremals.
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2. General Coordinate Invariance forces to conclude that Kähler gauge potential is dimensionless
so that Kähler action must be proportional to ~0/g

2
K or ~/g2

K . The latter option would lead
to non-sensible results since the action of CP2 type vacuum extremals would be scaled up and
gravitational constant would be extremely small for dark matter with large Planck constant.
The first option is also consistent with the fact that the scaling of 1/~-factor in the modified
Dirac action affects Kähler function only by an addition of a constant term.

3. It is important to notice the difference between Kähler gauge potential, which is classical
field, and gauge potential of QFTs which is quantum field. By General Coordinate Invariance
Kähler gauge potential is dimensionless whereas quantal gauge potential has different dimension
[~/g]/L = [

√
~]/L. The instanton term in Kähler action is also dimensionless and the invariance

under the overall scaling of ~ requires that the scaling factor equals to k/4π. Instanton term
therefore brings in no dependence on ~ at the classical level and the character of CP breaking
depends on ~ only via the breaking of scale invariance.

The book like structure of M4 and CP2 means that if the M4 resp. CP2 projection partonic
surface corresponds to a light-like ray of M2 or preferred geodesic sphere S2

i of CP2, problems might
be encountered since the value of ~ is non-unique. S2

I produces no problems since it corresponds to
vanishing induced Kähler field so that vertices vanish. Partonic 2-surfaces with S2

II projection need
not correspond to preferred extremals. Problems are avoided if these kind of 2-surfaces are not allowed
as vertices. Since M-matrix characterizes zero energy state, this kind of condition can be posed at
least formally.

An interesting question is what happens in exact quantum criticality (with respect to the change
of Planck constant). Could one have a topological field theory in S2

i or factorizing QFT in M2 as one
might expect on basis of the observation that at criticality the theory reduces to a pure topological
QFT or something analogous to it? For factorizing QFT in M2 particle scattering is elastic [24]
: particles just pass by and at most permute their momenta. The S-matrix reduces to a braiding
S-matrix at the limits v → 0 and v → c for particle velocities. The S-matrix of factorizing QFTs
does not depend on ~ as is clear from the fact that it depends only on the rapidity differences of
the incoming and outgoing particles: this can be seen also from exact some exact solutions to the
defining relations of Zamolodchikov algebra [48] . Also the N-point functions of topological QFTs
are independent of ~ since there is no coupling constant strength with dimensions of ~ (such as g2 in
gauge theory) and no fundamental mass parameter so that ~ω/m for some characteristic frequency
could introduce ~ dependence.

Fusion rules suggest that also the N-point functions of conformal field theories can be made in-
dependent of Planck constant by a suitable scaling of conformal fields. This is suggested also by the
fact that the commutation relations of conformal algebras (energy momentum tensor and Kac-Moody
currents) allow indeed elimination of ~ completely by an appropriate scaling of generators. All this
conforms with the notion that radiative corrections correspond to the breaking of scale invariance in
M4 degrees of freedom.

Do anyonic phases make ~(M4) and ~(CP2) separately visible?

There are good reasons to expect that something in the modified Dirac equation differentiates between
different pages of book like structure associated with CD (causal diamond ofM4) and CP2 realizing the
hierarchy of phases with different Planck constants. The ratio ~(CD)/~(CP2) is visible via radiative
corrections and reflects the breaking of scale invariance associated with scalings of CD making itself
manifest at the level of preferred extremals. One could however ask whether also information about
~(CD) and ~(CP2) rather than only their ratio could be coded to the modified Dirac action.

The intuitive view is that non-standard values of Planck constant correspond to anyonic or at least
potentially anyonic phases of matter with fractionization of quantum numbers. This suggests that the
Kähler gauge potential of CP2 extends to that in CD × CP2 and possess what gauge theorist would
call a pure gauge part. This part could be present also in CD. Since Kähler gauge potential does not
relate to a genuine gauge field (U(1) gauge transformations correspond to symplectic transformations
of CP2 and are symmetries only for vacuum extremals), even the addition of a pure gauge might
change physics. A more conservative assumption is that the pure gauge part cannot be eliminated by
a non-singular global gauge transformation as it typically is in topological gauge theories defined by
Chern-Simons action.
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The modification of Kähler gauge potential in CD

The singular pure gauge part is visible in the modified Dirac equation in the covariant derivative Dα,
which receives ∆Aα term: Dα → Dα + ∆Aα.

Let us consider first what happens in the case of CD.

1. Let M2×E2 denote the decomposition of M4 implied by the hierarchy of Planck constants and
introduce cylindrical coordinates (t, z, ρ, φ).

2. The presence of M2 singularity means that there z-axis represents an infinitely thin cylindrical
hole in E3 and homology group is thus non-trivial. Therefore one can one introduce a modifi-
cation of Kähler gauge potential not allowed in E3. The modification is ∆Aφ = ∆ = k/n. As a
consequence, the phases exp(imφ) associated with the eigenstates of orbital angular momentum
are transformed to exp(i(m− k/n)φ) and become many-valued unless one replaces CD with its
n-fold covering, which is just what has been done.

3. That spin fractionization takes place becomes clear by studying the expression of the angular
momentum current Jz for modified Dirac operator. If the first variation of DK vanishes in
absence of ∆A, there is no contribution to conserved charges from Dα term and only the change
of Ψ under the symmetry transformation contributes. ∆Aφ however brings to the current
associated with Jz an additional term which reduces to fermion current multiplied by ∆A when
∆Aφ constant. Genuine charge fractionization results but only if one cannot eliminate ∆Aφ by
a gauge transformation, which is well defined for the entire partonic 2-surface. This is the case
if X2 encloses the tip of CD so that homological triviality of X2 in CD\M2 can be seen as a
necessary condition for anyonization.

4. ∆A modifies conserved currents associated with all those symmetries which affect the value of φ,
in particular translations in the plane E2. If one accepts the angular momentum fractionization
in this manner, then only the projection of four-momentum to the plane M2 is good quantum
number. Angular momentum and square of transversal momentum would be additional good
quantum numbers. That this is the case is suggested also by p-adic mass calculations and parton
model of hadrons.

The modification of Kähler gauge potential in CP2

In CP2 degrees of freedom the homologically trivial geodesic sphere S2
I and its homologically non-

trivial counterpart S2
II define candidates for the two backs of the CP2 book.

1. First a summary of some basic facts about CP2 is in order.

(a) The Eguchi-Hanson coordinates (ξ1, ξ2) of CP2 to which U(2) by definition acts linearly
are related to the ”spherical coordinates” via the equations

ξ1 = rexp(i
(Ψ + Φ)

2
)cos(

Θ

2
) ,

ξ2 = rexp(i
(Ψ− Φ)

2
)sin(

Θ

2
) . (12.4.1)

The ranges of the variables r,Θ,Φ,Ψ are [0,∞], [0, π], [0, 4π], [0, 2π] respectively. The differ-
ent choices of quantization of I3 and YA are related by SU(3) rotations of these coordinates.

(b) In these coordinates Kähler gauge potential is given by

BK =
r(dΨ + cosΘdΦ)

2F
, F = 1 + r2 . (12.4.2)

Kähler gauge potentials for different choices of quantization axes are related by U(1) gauge
transformation induced by the SU(3) rotation in question.
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(c) The standard representatives for the geodesic spheres of CP2 are given by the equations

S2
I : ξ1 = ξ

2
or equivalently (Θ = π/2,Ψ = 0) ,

S2
II : ξ1 = ξ2 or equivalently (Θ = π/2,Φ = 0) .

2. The natural identification of the quantization axes corresponds to directions which remain in-
variant under SO(2) ⊂ SO(3) ⊂ SU(3) for S2

I . For S2
II the action of U(2) reduces to that

of SU(2) since and U(1) inducing same phase rotation of both complex coordinates (ξ1, ξ2) is
the natural identification defined the invariant manifolds which induce slicing of S2 to circles
parallel to equator. The circles to which ∆A can be assigned are circles ”going around” S2

I .

3. In the case of S2
I different values of angle Φ correspond to the same point of S2

I and rotations
”around” S2

I correspond to rotations Ψ→ Ψ+δΨ so that ∆AΨ would be naturally non-vanishing
in this case. For S2

II the roles of Φ and Ψ are changed.

4. ∆A would be thus of form ∆AΦ + ∆AΨ if one accepts CP2 book with two backs.

∆A is necessary for charge fractionization

The introduction of ∆A explicitly into the modified Dirac equation means an explicit breaking of
Lorentz invariance and color symmetry. The interpretation is as an imbedding space correlate for the
choice of quantization axes. Lorentz symmetry is something sacred and this motivates the question
whether the instanton term in modified Dirac action could be enough. It however seems impossible
to understand charge fractionization without this term. A further justification for ∆A comes from
the requirement that it makes both ~(CD) and ~(CP2) visible in the fundamental physics rather than
only their ratio ~/~0 = ~(CD)/~(CP2). ∆A indeed implies charge fractionization as the following
argument shows in more detail.

1. The values of ∆A relate to the values of integers na and nb appearing in the integers na and nb
appearing in the expression of Planck constants ~(CD) and ~(CP2) and characterizing the orders
of maximal cyclic subgroups associated with the covering. For singular coverings ∆A(CD) =
1/na (∆A(CP2) = 1/nb) would hold true naturally. For singular factor spaces one would have
∆A(CD) = na (∆A(XP2) = nb).

2. The full Kähler gauge potential would be of form A+∆A(M4)+∆A(CP2). As consequence, the
Chern-Simons term appearing at X3

l is of form A∧J+∆A(M4)∧J+∆A(M4)∧J and contains
anomalous parts. ∆A(M4) implies that C − S action is non-vanishing also for 2-dimensional
CP2 projection at least when X2 has homologically non-trivial CP2 projection.

(a) As already explained, ∆A gives an anomalous contribution to spin and color hypercharge
and isopin. The contribution is of form ΨΓ̂α∆AφΨ and boils down to a shift ∆Sz = ∆Aφ
for single fermion state. Shift is in question whereas non-standard values of ~ imply scaling
of the basic charge unit.

(b) What happens in the case of electro-weak charges is not quite obvious. Electro-weak
gauge charges can be identified as fermionic Noether charges associated with DK . Noether
currents are of form Ψ{Γ̂α, Q}Ψ. The charge matrices associated with the couplings of
photon and Z0 are covariantly constant being combinations of matrices P± = (1 ± Γ9)/2
(coupling to Kähler gauge potential), matrix P±J , J = JklΣkl(coupling to the vectorial
part of spinor curvature), P±(1 − γ5)JklΣkl (left handed coupling of Z0). {Γ̂α, Q} does
not contribute to the divergence of Noether current so that these Noether currents are
conserved. W boson charge matrices are not covariantly constant. The non-conservation of
corresponding Noether currents obviously reflects electro-weak symmetry breaking. There
is no anomalous contribution to electro-weak gauge charges.

(c) An old idea of TGD - motivated by the fact that U(2) ⊂ SU(3) can be identified with the
holonomy group of spinor connection identifiable as U(2)ew - is that electro-weak gauge
charges can be identified as color gauge charges assignable to color Noether currents whereas
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quark and gluon color resides in CP2 partial waves for center of mass degrees of freedom
of X3 and thus in configuration space degrees of freedom. In fact, the vanishing of the
first variation of DK implies that these charges are vanishing so that the idea as such does
not work and by previous observation need not to do so. The anomalous contribution
is however non-vanishing since its first variation does not vanish and gives to the electro
weak currents an anomalous contribution of form ΨΓ̂α(a∆AΦ + b∆AΨ)Ψ, where a and b
depend on the detailed correspondence between electro-weak and color hyper-charge and
isospin. Anomalous contributions to isospins are identifiable as such and anomalous Kähler
contribution must be proportional to the anomalous color hyper-charge. Leptons (quarks)
couple to n = −3 (n = 1) multiple of Kähler gauge potential so that the contribution
to anomalous Kähler charge is of form nk∆AΨ, where k = 1 is the simplest guess. This
predicts the shifts ∆I3,ew = ∆AΦ and ∆QK = n∆AΨ allowing to deduce the shifts of em
and Z0 charges.

3. ∆A affects the transversal part DK(X2) of the modified Dirac operator via covariant deriva-
tive, which means that the preferred extremal is modified since the moduli of the eigenvalues
are modified. Charge fractionization should also make itself visible as a selection of the pre-
ferred extremal of Kähler action through stationary phase approximation. The phase factor
exp(i

∫
Tr(QAµ)dxµ), where Q is the charge matrix characterizing particle assigned to the

strands of number theoretic braid generates a correlation between the properties of preferred ex-
tremal and quantum numbers associated with X3

l . If Q is replaced with the fractionized charge
the desired correlation results but not otherwise if one believes following argument. Stationary
phase approximation gives field equations in which charges at partonic strands play the role of
sources: ∆A is not visible in the source nor in the motion of sources nor in the equations of the
extremals of C − S action. Thus it seems that extremum is not affected by the modification of
Chern-Simons action unless very delicate effects are involved.

12.5 Vision about dark matter as phases with non-standard
value of Planck constant

12.5.1 Dark rules

It is useful to summarize the basic phenomenological view about dark matter.

The notion of relative darkness

The essential difference between TGD and more conventional models of dark matter is that darkness
is only relative concept.

1. Generalized imbedding space forms a book like structure and particles at different pages of the
book are dark relative to each other since they cannot appear in the same vertex identified
as the partonic 2-surface along which light-like 3-surfaces representing the lines of generalized
Feynman diagram meet.

2. Particles at different space-time sheets act via classical gauge field and gravitational field and
can also exchange gauge bosons and gravitons (as also fermions) provided these particles can
leak from page to another. This means that dark matter can be even photographed [12] . This
interpretation is crucial for the model of living matter based on the assumption that dark matter
at magnetic body controls matter visible to us. Dark matter can also suffer a phase transition
to visible matter by leaking between the pages of the Big Book.

3. The notion of standard value ~0 of ~ is not a relative concept in the sense that it corresponds
to rational r = 1. In particular, the situation in which both CD and CP2 correspond to trivial
coverings and factor spaces would naturally correspond to standard physics.
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Is dark matter anyonic?

In [66] a detailed model for the Kähler structure of the generalized imbedding space is constructed.
What makes this model non-trivial is the possibility that CP2 Kähler form can have gauge parts which
would be excluded in full imbedding space but are allowed because of singular covering/factor-space
property. The model leads to the conclusion that dark matter is anyonic if the partonic 2-surface,
which can have macroscopic or even astrophysical size, encloses the tip of CD within it. Therefore
the partonic 2-surface is homologically non-trivial when the tip is regarded as a puncture. Fractional
charges for anyonic elementary particles imply confinement to the partonic 2-surface and the particles
can escape the two surface only via reactions transforming them to ordinary particles. This would
mean that the leakage between different pages of the big book is a rare phenomenon. This could
partially explain why dark matter is so difficult to observe.

Field body as carrier of dark matter

The notion of ”field body” implied by topological field quantization is essential. There would be em,
Z0, W , gluonic, and gravitonic field bodies, each characterized by its one prime. The motivation for
considering the possibility of separate field bodies seriously is that the notion of induced gauge field
means that all induced gauge fields are expressible in terms of four CP2 coordinates so that only single
component of a gauge potential allows a representation as and independent field quantity. Perhaps
also separate magnetic and electric field bodies for each interaction and identifiable as flux quanta
must be considered. This kind of separation requires that the fermionic content of the flux quantum
(say fermion and anti-fermion at the ends of color flux tube) is such that it conforms with the quantum
numbers of the corresponding boson.

What is interesting that the conceptual separation of interactions to various types would have
a direct correlate at the level of space-time topology. From a different perspective inspired by the
general vision that many-sheeted space-time provides symbolic representations of quantum physics,
the very fact that we make this conceptual separation of fundamental interactions could reflect the
topological separation at space-time level.

p-Adic mass calculations for quarks encourage to think that the p-adic length scale characterizing
the mass of particle is associated with its electromagnetic body and in the case of neutrinos with its
Z0 body. Z0 body can contribute also to the mass of charged particles but the contribution would be
small. It is also possible that these field bodies are purely magnetic for color and weak interactions.
Color flux tubes would have exotic fermion and anti-fermion at their ends and define colored variants
of pions. This would apply not only in the case of nuclear strings but also to molecules and larger
structures so that scaled variants of elementary particles and standard model would appear in all
length scales as indeed implied by the fact that classical electro-weak and color fields are unavoidable
in TGD framework.

One can also go further and distinguish between magnetic field body of free particle for which flux
quanta start and return to the particle and ”relative field” bodies associated with pairs of particles.
Very complex structures emerge and should be essential for the understanding the space-time correlates
of various interactions. In a well-defined sense they would define space-time correlate for the conceptual
analysis of the interactions into separate parts. In order to minimize confusion it should be emphasized
that the notion of field body used in this chapter relates to those space-time correlates of interactions,
which are more or less static and related to the formation of bound states.

12.5.2 Phase transitions changing Planck constant

The general picture is that p-adic length scale hierarchy corresponds to p-adic coupling constant evolu-
tion and hierarchy of Planck constants to the coupling constant evolution related to phase resolution.
Both evolutions imply a book like structure of the generalized imbedding space.

Transition to large ~ phase and failure of perturbation theory

One of the first ideas was that the transition to large ~ phase occurs when perturbation theory based
on the expansion in terms of gauge coupling constant ceases to converge: Mother Nature would take
care of the problems of theoretician. The transition to large ~ phase obviously reduces the value of
gauge coupling strength α ∝ 1/~ so that higher orders in perturbation theory are reduced whereas
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the lowest order ”classical” predictions remain unchanged. A possible quantitative formulation of the
criterion is that maximal 2-particle gauge interaction strength parameterized as Q1Q2α satisfies the
condition Q1Q2α ' 1.

A justification for this picture would be that in non-perturbative phase large quantum fluctuations
are present (as functional integral formalism suggests). At space-time level this could mean that space-
time sheet is near to a non-deterministic vacuum extremal -at least if homologically trivial geodesic
sphere defines the number theoretic braids. At certain critical value of coupling constant strength one
expects that the transition amplitude for phase transition becomes very large. The resulting phase
would be of course different from the original since typically charge fractionization would occur.

One should understand why the failure of the perturbation theory (expected to occur for αQ1Q2 >
1) induces the reduction of Clifford algebra, scaling down of CP2 metric, and whether the G-symmetry
is exact or only approximate. A partial understanding already exists. The discrete G symmetry and
the reduction of the dimension of Clifford algebra would have interpretation in terms of a loss of
degrees of freedom as a strongly bound state is formed. The multiple covering of M4

± accompanying
strong binding can be understood as an automatic consequence of G-invariance. A concrete realization
for the binding could be charge fractionization which would not allow the particles bound on large
light-like 3-surface to escape without transformation to ordinary particles.

Two examples perhaps provide more concrete view about this idea.

1. The proposed scenario can reproduce the huge value of the gravitational Planck constant. One
should however develop a convincing argument why non-perturbative phase for the gravitating
dark matter leads to a formation of Ga× covering of CD\M2 ×CP2\S2

I with the huge value of
~eff = na/nb ' GM1M2/v0. The basic argument is that the dimensionless parameter αgr =
GM1M2/4π~ should be so small that perturbation theory works. This gives ~gr ≥ GM1M2/4π
so that order of magnitude is predicted correctly.

2. Color confinement represents the simplest example of a transition to a non-perturbative phase.
In this case A2 and n = 3 would be the natural option. The value of Planck constant would be
3 times higher than its value in perturbative QCD. Hadronic space-time sheets would be 3-fold
coverings of M4

± and baryonic quarks of different color would reside on 3 separate sheets of the
covering. This would resolve the color statistics paradox suggested by the fact that induced
spinor fields do not possess color as spin like quantum number and by the facts that for orbifolds
different quarks cannot move in independent CP2 partial waves assignable to CP2 cm degrees
of freedom as in perturbative phase.

The mechanism of phase transition and selection rules

The mechanism of phase transition is at classical level similar to that for ordinary phase transitions.
The partonic 2-surface decomposes to regions corresponding to difference values of ~ at quantum
criticality in such a manner that regions in which induced Kähler form is non-vanishing are contained
within single page of imbedding space. It might be necessary to assume that only a region correspond-
ing to single value of ~ is possible for partonic 2-surfaces and δCD×CP2 so that quantum criticality
would be associated with the intermediate state described by the light-like 3-surface. One could also
see the phase transition as a leakage of X2 from given page to another: this is like going through
a closed door through a narrow slit between door and floor. By quantum criticality the points of
number theoretic braid are already in the slit.

As in the case of ordinary phase transitions the allowed phase transitions must be consistent with
the symmetries involved. This means that if the state is invariant under the maximal cyclic subgroups
Ga and Gb then also the final state must satisfy this condition. This gives constraints to the orders
of maximal cyclic subgroups Za and Zb for initial and final state: n(Zai) resp. n(Zbi)) must divide
n(Zaf ) resp. n(Zbf or vice versa in the case that factors of Zi do not leave invariant the states. If
this is the case similar condition must hold true for apppropriate subgroups. In particular, powers of
prime Zpn , n = 1, 2, ... define hierarchies of allowed phase transitions.

12.5.3 Coupling constant evolution and hierarchy of Planck constants

If the overall vision is correct, quantum TGD would be characterized by two kinds of couplings
constant evolutions. p-Adic coupling constant evolution would correspond to length scale resolution
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and the evolution with respect to Planck constant to phase resolution. Both evolution would have
number theoretic interpretation.

Evolution with respect to phase resolution

The coupling constant evolution in phase resolution in p-adic degrees of freedom corresponds to
emergence of algebraic extensions allowing increasing variety of phases exp(i2π/n) expressible p-
adically. This evolution can be assigned to the emergence of increasingly complex quantum phases
and the increase of Planck constant.

One expects that quantum phases q = exp(iπ/n) which are expressible using only iterated square
root operation are number theoretically very special since they correspond to algebraic extensions of p-
adic numbers obtained by an iterated square root operation, which should emerge first. Therefore sys-
tems involving these values of q should be especially abundant in Nature. That arbitrarily high square
roots are involved as becomes clear by studying the case n = 2k: cos(π/2k) =

√
[1 + cos(π/2k−1)]/2.

These polygons are obtained by ruler and compass construction and Gauss showed that these
polygons, which could be called Fermat polygons, have nF = 2k

∏
s Fns sides/vertices: all Fermat

primes Fns in this expression must be different. The analog of the p-adic length scale hypothesis
emerges since larger Fermat primes are near a power of 2. The known Fermat primes Fn = 22n + 1
correspond to n = 0, 1, 2, 3, 4 with F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537. It is not
known whether there are higher Fermat primes. n = 3, 5, 15-multiples of p-adic length scales clearly
distinguishable from them are also predicted and this prediction is testable in living matter. I have
already earlier considered the possibility that Fermat polygons could be of special importance for
cognition and for biological information processing [59] .

This condition could be interpreted as a kind of resonance condition guaranteing that scaled up
sizes for space-time sheets have sizes given by p-adic length scales. The numbers nF could take the
same role in the evolution of Planck constant assignable with the phase resolution as Mersenne primes
have in the evolution assignable to the p-adic length scale resolution.

The Dynkin diagrams of exceptional Lie groups E6 and E8 are exceptional as subgroups of ro-
tation group in the sense that they cannot be reduced to symmetry transformations of plane. They
correspond to the symmetry group S4 × Z2 of tedrahedron and A5 × Z2 of dodecahedron or its dual
polytope icosahedron (A5 is 60-element subgroup of S5 consisting of even permutations). Maximal
cyclic subgroups are Z4 and Z5 and and thus their orders correspond to Fermat polygons. Interest-
ingly, n = 5 corresponds to minimum value of n making possible topological quantum computation
using braids and also to Golden Mean.

Is there a correlation between the values of p-adic prime and Planck constant?

The obvious question is whether there is a correlation between p-adic length scale and the value of
Planck constant. One-to-one correspondence is certainly excluded but loose correlation seems to exist.

1. In [5] the information about the number theoretic anatomy of Kähler coupling strength is com-
bined with input from p-adic mass calculations predicting αK to be the value of fine structure
constant at the p-adic length scale associated with electron. One can also develop an explicit
expression for gravitational constant assuming its renormalization group invariance on basis of
dimensional considerations and this model leads to a model for the fraction of volume of the
wormhole contact (piece of CP2 type extremal) from the volume of CP2 characterizing gauge
boson and for similar volume fraction for the piece of the CP2 type vacuum extremal associated
with fermion.

2. The requirement that gravitational constant is renormalization group invariant implies that the
volume fraction depends logarithmically on p-adic length scale and Planck constant (character-
izing quantum scale). The requirement that this fraction in the range (0, 1) poses a correlation
between the rational characterizing Planck constant and p-adic length scale. In particular, for
space-time sheets mediating gravitational interaction Planck constant must be larger than ~0

above length scale which is about .1 Angstrom. Also an upper bound for ~ for given p-adic
length scale results but is very large. This means that quantum gravitational effects should
become important above atomic length scale [5] .
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12.6 Some applications

Below some applications of the hierarchy of Planck constants as a model of dark matter are briefly
discussed. The range of applications varying from elementary particle physics to cosmology and I
hope that this will convince the reader that the idea has strong physical motivations.

12.6.1 A simple model of fractional quantum Hall effect

The generalization of the imbedding space suggests that it could possible to understand fractional
quantum Hall effect [2] at the level of basic quantum TGD. This section represents the first rough
model of QHE constructed for a couple of years ago is discussed. Needless to emphasize, the model
represents only the basic idea and involves ad hoc assumption about charge fractionization.

Recall that the formula for the quantized Hall conductance is given by

σ = ν × e2

h
,

ν =
n

m
. (12.6.1)

Series of fractions in ν = 1/3, 2/5, 3/7, 4/9, 5/11, 6/13, 7/15..., 2/3, 3/5, 4/7, 5/9, 6/11, 7/13...,
5/3, 8/5, 11/7, 14/9...4/3, 7/5, 10/7, 13/9..., 1/5, 2/9, 3/13..., 2/7, 3/11..., 1/7.... with odd denominator
have been observed as are also ν = 1/2 and ν = 5/2 states with even denominator [2] .

The model of Laughlin [21] cannot explain all aspects of FQHE. The best existing model proposed
originally by Jain is based on composite fermions resulting as bound states of electron and even
number of magnetic flux quanta [18] . Electrons remain integer charged but due to the effective
magnetic field electrons appear to have fractional charges. Composite fermion picture predicts all the
observed fractions and also their relative intensities and the order in which they appear as the quality
of sample improves.

The generalization of the notion of imbedding space suggests the possibility to interpret these
states in terms of fractionized charge, spin, and electron number. There are 2 × 2 = 4 combinations
of covering and factors spaces of CP2 and three of them can lead to the increase of Planck constant.
Besides this one can consider two options for the formula of Planck constant so that which the very
meager theoretical background one can make only guesses. In the following a model based on option
II for which the number of states is conserved in the phase transition changing ~.

1. The easiest manner to understand the observed fractions is by assuming that both CD and CP2

correspond to covering spaces so that both spin and electric charge and fermion number are
fractionized. This means that e in electronic charge density is replaced with fractional charge.
Quantized magnetic flux is proportional to e and the question is whether also here fractional
charge appears. Assume that this does not occur.

2. With this assumption the expression for the Planck constant becomes for Option II as r =
~/~0 = na/nb and charge and spin units are equal to 1/nb and 1/na respectively. This gives
ν = nna/nb. The values m = 2, 3, 5, 7, .. are observed. Planck constant can have arbitrarily
large values. There are general arguments stating that also spin is fractionized in FQHE.

3. Both ν = 1/2 and ν = 5/2 state has been observed [2, 13] . The fractionized charge is e/4 in
the latter case [13, 24] . Since ni > 3 holds true if coverings and factor spaces are correlates
for Jones inclusions, this requires na = 4 and nb = 8 for ν = 1/2 and nb = 4 and na = 10 for
ν = 5/2. Correct fractionization of charge is predicted. For nb = 2 also Z2 would appear as
the fundamental group of the covering space. Filling fraction 1/2 corresponds in the composite
fermion model and also experimentally to the limit of zero magnetic field [18] . nb = 2 is
inconsistent with the observed fractionization of electric charge for ν = 5/2 and with the vision
inspired by Jones inclusions.

4. A possible problematic aspect of the TGD based model is the experimental absence of even values
of nb except nb = 2 (Laughlin’s model predicts only odd values of n). A possible explanation is
that by some symmetry condition possibly related to fermionic statistics (as in Laughlin model)
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na/nb must reduce to a rational with an odd denominator for nb > 2. In other words, one has
na ∝ 2r, where 2r the largest power of 2 divisor of nb.

5. Large values of na emerge as B increases. This can be understood from flux quantization. One
has e

∫
BdS = n~(M4) = nna~0. By using actual fractional charge eF = e/nb in the flux factor

would give eF
∫
BdS = n(na/nb)~0 = n~. The interpretation is that each of the na sheets

contributes one unit to the flux for e. Note that the value of magnetic field in given sheet is not
affected so that the build-up of multiple covering seems to keep magnetic field strength below
critical value.

6. The understanding of the thermal stability is not trivial. The original FQHE was observed in
80 mK temperature corresponding roughly to a thermal energy of T ∼ 10−5 eV. For graphene
the effect is observed at room temperature. Cyclotron energy for electron is (from fe = 6 ×
105 Hz at B = .2 Gauss) of order thermal energy at room temperature in a magnetic field
varying in the range 1-10 Tesla. This raises the question why the original FQHE requires
so low temperature. The magnetic energy of a flux tube of length L is by flux quantization
roughly e2B2S ∼ Ec(e)meL (~0 = c = 1) and exceeds cyclotron roughly by a factor L/Le, Le
electron Compton length so that thermal stability of magnetic flux quanta is not the explanation.
A possible explanation is that since FQHE involves several values of Planck constant, it is
quantum critical phenomenon and is characterized by a critical temperature. The differences of
the energies associated with the phase with ordinary Planck constant and phases with different
Planck constant would characterize the transition temperature.

As already noticed, it is possible to imagine several other options and the assumption about charge
fractionization -although consistent with fractionization for ν = 5/2, is rather adhoc. Therefore the
model can be taken as a warm-up exercise only. In [66] , where the delicacies of Kähler structure of
generalized imbedding space are discussed, also a more detailed of QHE is discussed.

12.6.2 Gravitational Bohr orbitology

The basic question concerns justification for gravitational Bohr orbitology [77] . The basic vision is
that visible matter identified as matter with ~ = ~0 (na = nb = 1) concentrates around dark matter
at Bohr orbits for dark matter particles. The question is what these Bohr orbits really mean. Should
one in improved approximation relate Bohr orbits to 3-D wave functions for dark matter as ordinary
Bohr rules would suggest or do the Bohr orbits have some deeper meaning different from that in wave
mechanics. Anyonic variants of partonic 2-surfaces with astrophysical size are a natural guess for the
generalization of Bohr orbits.

Dark matter as large ~ phase

D. Da Rocha and Laurent Nottale have proposed that Schrödinger equation with Planck constant ~
replaced with what might be called gravitational Planck constant ~gr = GmM

v0
(~ = c = 1). v0 is a

velocity parameter having the value v0 = 144.7 ± .7 km/s giving v0/c = 4.6 × 10−4. This is rather
near to the peak orbital velocity of stars in galactic halos. Also subharmonics and harmonics of v0

seem to appear. The support for the hypothesis coming from empirical data is impressive [77] .
Nottale and Da Rocha believe that their Schrödinger equation results from a fractal hydrodynamics.

Many-sheeted space-time however suggests astrophysical systems are not only quantum systems at
larger space-time sheets but correspond to a gigantic value of gravitational Planck constant. The
gravitational (ordinary) Schrödinger equation -or at least Bohr rules with appropriate interpretation
- would provide a solution of the black hole collapse (IR catastrophe) problem encountered at the
classical level. The resolution of the problem inspired by TGD inspired theory of living matter is that
it is the dark matter at larger space-time sheets which is quantum coherent in the required time scale.

Prediction for the parameter v0

One of the key questions relate to the value of the parameter v0. Before the introduction of the
hierarchy of Planck constants I proposed that the value of the parameter v0 assuming that cosmic
strings and their decay remnants are responsible for the dark matter. The harmonics of v0 can be
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understood as corresponding to perturbations replacing cosmic strings with their n-branched coverings
so that tension becomes n-foldmuch like the replacement of a closed orbit with an orbit closing only
after n turns. 1/n-sub-harmonic would result when a magnetic flux tube split into n disjoint magnetic
flux tubes. The planetary mass ratios can be produced with an accuracy better than 10 per cent
assuming ruler and compass phases.

Further predictions

The study of inclinations (tilt angles with respect to the Earth’s orbital plane) leads to a concrete
model for the quantum evolution of the planetary system. Only a stepwise breaking of the rotational
symmetry and angular momentum Bohr rules plus Newton’s equation (or geodesic equation) are
needed, and gravitational Shrödinger equation holds true only inside flux quanta for the dark matter.

1. During pre-planetary period dark matter formed a quantum coherent state on the (Z0) magnetic
flux quanta (spherical cells or flux tubes). This made the flux quantum effectively a single rigid
body with rotational degrees of freedom corresponding to a sphere or circle (full SO(3) or SO(2)
symmetry).

2. In the case of spherical shells associated with inner planets the SO(3) → SO(2) symmetry
breaking led to the generation of a flux tube with the inclination determined by m and j and a
further symmetry breaking, kind of an astral traffic jam inside the flux tube, generated a planet
moving inside flux tube. The semiclassical interpretation of the angular momentum algebra
predicts the inclinations of the inner planets. The predicted (real) inclinations are 6 (7) resp.
2.6 (3.4) degrees for Mercury resp. Venus). The predicted (real) inclination of the Earth’s spin
axis is 24 (23.5) degrees.

3. The v0 → v0/5 transition allowing to understand the radii of the outer planets in the model
of Da Rocha and Nottale can be understood as resulting from the splitting of (Z0) magnetic
flux tube to five flux tubes representing Earth and outer planets except Pluto, whose orbital
parameters indeed differ dramatically from those of other planets. The flux tube has a shape of
a disk with a hole glued to the Earth’s spherical flux shell.

It is important to notice that effectively a multiplication n → 5n of the principal quantum
number is in question. This allows to consider also alternative explanations. Perhaps external
gravitational perturbations have kicked dark matter from the orbit or Earth to n = 5k, k =
2, 3, ..., 7 orbits: the fact that the tilt angles for Earth and all outer planets except Pluto are
nearly the same, supports this explanation. Or perhaps there exist at least small amounts of
dark matter at all orbits but visible matter is concentrated only around orbits containing some
critical amount of dark matter and these orbits satisfy n mod 5 = 0 for some reason.

4. A remnant of the dark matter is still in a macroscopic quantum state at the flux quanta. It
couples to photons as a quantum coherent state but the coupling is extremely small due to the
gigantic value of ~gr scaling alpha by ~/~gr: hence the darkness.

The rather amazing coincidences between basic bio-rhythms and the periods associated with
the states of orbits in solar system suggest that the frequencies defined by the energy levels of
the gravitational Schrödinger equation might entrain with various biological frequencies such
as the cyclotron frequencies associated with the magnetic flux tubes. For instance, the period
associated with n = 1 orbit in the case of Sun is 24 hours within experimental accuracy for v0.

Comparison with Bohr quantization of planetary orbits

The predictions of the generalization of the p-adic length scale hypothesis are consistent with the
TGD based model for the Bohr quantization of planetary orbits and some new non-trivial predictions
follow.

1. The model can explain the enormous values of gravitational Planck constant ~gr/~0 =' GMm/v0) =
na/nb. The favored values of this parameter should correspond to nFa/nFb so that the mass
ratios m1/m2 = nFa,1nFb,2/nFb,1nFa,2 for planetary masses should be preferred. The general
prediction GMm/v0 = na/nb is of course not testable.
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2. Nottale [27] has suggested that also the harmonics and sub-harmonics of ~gr are possible and in
fact required by the model for planetary Bohr orbits (in TGD framework this is not absolutely
necessary [77] ). The prediction is that favored values of n should be of form nF = 2k

∏
Fi

such that Fi appears at most once. In Nottale’s model for planetary orbits as Bohr orbits in
solar system [77] n = 5 harmonics appear and are consistent with either nF,a → F1nFa or with
nF,b → nFb/F1 if possible.

The prediction for the ratios of planetary masses can be tested. In the table below are the
experimental mass ratios rexp = m(pl)/m(E), the best choice of rR = [nF,a/nF,b] ∗ X, X common
factor for all planets, and the ratios rpred/rexp = nF,a(planet)nF,b(Earth)/nF,a(Earth)nF,b(planet).
The deviations are at most 2 per cent.

planet Me V E M J

y 213×5
17 211 × 17 29 × 5× 17 28 × 17 223×5

7

y/x 1.01 .98 1.00 .98 1.01
planet S U N P

y 214 × 3× 5× 17 221×5
17

217×17
3

24×17
3

y/x 1.01 .98 .99 .99

Table 1. The table compares the ratios x = m(pl)/(m(E) of planetary mass to the mass of Earth
to prediction for these ratios in terms of integers nF associated with Fermat polygons. y gives the best
fit for the allowed factors of the known part y of the rational nF,a/nF,b = yX characterizing planet,
and the ratios y/x. Errors are at most 2 per cent.

A stronger prediction comes from the requirement that GMm/v0 equals to n = nFa/nF,b nF =

2k
∏
k Fnk , where Fi = 22i + 1, i = 0, 1, 2, 3, 4 is Fibonacci prime. The fit using solar mass and Earth

mass gives nF = 2254 × 5× 17 for 1/v0 = 2044, which within the experimental accuracy equals to the
value 211 = 2048 whose powers appear as scaling factors of Planck constant in the model for living
matter [27] . For v0 = 4.6× 10−4 reported by Nottale the prediction is by a factor 16/17.01 too small
(6 per cent discrepancy).

A possible solution of the discrepancy is that the empirical estimate for the factor GMm/v0 is too
large since m contains also the the visible mass not actually contributing to the gravitational force
between dark matter objects whereas M is known correctly. The assumption that the dark mass is a
fraction 1/(1 + ε) of the total mass for Earth gives

1 + ε =
17

16
(12.6.2)

in an excellent approximation. This gives for the fraction of the visible matter the estimate ε =
1/16 ' 6 per cent. The estimate for the fraction of visible matter in cosmos is about 4 per cent so
that estimate is reasonable and would mean that most of planetary and solar mass would be also dark
(as a matter dark energy would be in question).

That v0(eff) = v0/(1− ε) ' 4.6× 10−4 equals with v0(eff) = 1/(27×F2) = 4.5956× 10−4 within
the experimental accuracy suggests a number theoretical explanation for the visible-to-dark fraction.

The original unconsciously performed identification of the gravitational and inertial Planck con-
stants leads to some confusing conclusions but it seems that the new view about the quantization of
Planck constants resolves these problems and allows to see ~gr as a special case of ~I .

1. ~gr is proportional to the product of masses of interacting systems and not a universal constant
like ~. One can however express the gravitational Bohr conditions as a quantization of circulation∮
v · dl = n(GM/v0)~0 so that the dependence on the planet mass disappears as required by

Equivalence Principle. This would suggest that gravitational Bohr rules relate to velocity rather
than inertial momentum as is indeed natural. The quantization of circulation is consistent with
the basic prediction that space-time surfaces are analogous to Bohr orbits.
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2. ~gr seems to characterize a relationship between planet and central mass and quite generally
between two systems with the property that smaller system is topologically condensed at the
space-time sheet of the larger system. Thus it would seem that ~gr is not a universal constant
and cannot correspond to a special value of ordinary Planck constant. Certainly this would be
the case if ~I is quantized as λk-multiplet of ordinary Planck constant with λ ' 211.

The recent view about the quantization of Planck constant in terms of coverings of CD seems to
resolve these problems.

1. The integer quantization of Planck constants is consistent with the huge values of gravitational
Planck constant within experimental resolution and the killer test for ~ = ~gr emerges if one
takes seriously the stronger prediction ~gr = nF,a/nF,b.

2. One can also regard ~gr as ordinary Planck constant ~eff associated with the space-time sheet
along which the masses interact provided each pair (M,mi) of masses is characterized by its own
sheets. These sheets could correspond to flux tube like structures carrying the gravitational flux
of dark matter. If these sheets corresponds to nFa -fold covering of CD, one can understand ~gr
as a particular instance of the ~eff .

Quantum Hall effect and dark anyonic systems in astrophysical scales

Bohr orbitology could be understood if dark matter concentrates on 2-dimensional partonic surfaces
usually assigned with elementary particles and having size of order CP2 radius. The interpretation
is in terms of wormhole throats assignable to topologically condensed CP2 type extremals (fermions)
and pairs of them assignable to wormhole contacts (gauge bosons). Wormhole throat defines the
light-like 3-surface at which the signature of metric of space-time surface changes from Minkowskian
to Euclidian.

Large value of Planck constant would allow partons with astrophysical size. Since anyonic systems
are 2-dimensional, the natural idea is that dark matter corresponds to systems carrying large fermion
number residing at partonic 2-surfaces of astrophysical size and that visible matter condenses around
these. Not only black holes but also ordinary stars, planetary systems, and planets could correspond
at the level of dark matter to atom like structures consisting of anyonic 2-surfaces which can have
complex topology (flux tubes associated with planetary orbits connected by radial flux tubes to the
central spherical anyonic surface) . Charge and spin fractionization are key features of anyonic systems
and Jones inclusions inspiring the generalization of imbedding space indeed involve quantum groups
central in the modeling of anyonic systems. Hence one has could hopes that a coherent theoretical
picture could emerge along these lines.

This seems to be the case. Anyons and charge and spin fractionization are discussed in detail [66]
and leads to a precise identification of the delicacies involved with the Kähler gauge potential of CP2

Kähler form in the sectors of the generalized imbedding space corresponding to various pages of boook
like structures assignable to CD and CP2. The basic outcome is that anyons correspond geometrically
to partonic 2-surfaces at the light-like boundaries of CD containing the tip of CD inside them. This is
what gives rise to charge fractionization and also to confinement like effects since elementary particles
in anyonic states cannot as such leak to the other pages of the generalized imbedding space. Ga and
Gb invariance of the states imply that fractionization occurs only at single particle level and total
charge is integer valued.

This picture is much more flexible that that based on Ga symmetries of CD orbifold since partonic
2-surfaces do not possess any orbifold symmetries in CD sector anymore. In this framework various
astrophysical structures such as spokes and circles would be parts of anyonic 2-surfaces with complex
topology representing quantum geometrically quantum coherence in the scale of say solar system.
Planets would have formed by the condensation of ordinary matter in the vicinity of the anyonic
matter. This would predict stars, planetary system, and even planets to have onion-like structure
consisting of shells at the level of dark matter. Similar conclusion is suggested also by purely classical
model for the final state of star predicting that matter is strongly concentrated at the surface of the
star [91] .
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Anyonic view about blackholes

A new element to the model of black hole comes from the vision that black hole horizon as a light-
like 3-surface corresponds to a light-like orbit of light-like partonic 2-surface. This allows two kinds
of black holes. Fermion like black hole would correspond to a deformed CP2 type extremal which
Euclidian signature of metric and topologically condensed at a space-time sheet with a Minkowskian
signature. Boson like black hole would correspond to a wormhole contact connecting two space-time
sheets with Minkowskian signature. Wormhole contact would be a piece deformed CP2 type extremal
possessing two light-like throats defining two black hole horizons very near to each other. It does not
seem absolutely necessary to assume that the interior metric of the black-hole is realized in another
space-time sheet with Minkowskian signature.

Second new element relates to the value of Planck constant. For ~gr = 4GM2 the Planck length

LP (~) =
√
~G equals to Schwartschild radius and Planck mass equals to MP (~) =

√
~/G = 2M . If

the mass of the system is below the ordinary Planck mass: M ≤ mP (~0)/2 =
√

~0/4G, gravitational
Planck constant is smaller than the ordinary Planck constant.

Black hole surface contains ultra dense matter so that perturbation theory is not expected to
converge for the standard value of Planck constant but do so for gravitational Planck constant. If the
phase transition increasing Planck constant is a friendly gesture of Nature making perturbation theory
convergent, one expects that only the black holes for which Planck constant is such that GM2/4π~ < 1
holds true are formed. Black hole entropy -being proportional to 1/~- is of order unity so that TGD
black holes are not very entropic.

If the partonic 2-surface surrounds the tip of causal diamond CD, the matter at its surface is in
anyonic state with fractional charges. Anyonic black hole can be seen as single gigantic elementary
particle stabilized by fractional quantum numbers of the constituents preventing them from escaping
from the system and transforming to ordinary visible matter. A huge number of different black holes
are possible for given value of ~ since there is infinite variety of pairs (na, nb) of integers giving rise
to same value of ~.

One can imagine that the partonic surface is not exact sphere except for ideal black holes but
contains large number of magnetic flux tubes giving rise to handles. Also a pair of spheres with
different radii can be considered with surfaces of spheres connected by braided flux tubes. The
braiding of these handles can represent information and one can even consider the possibility that
black hole can act as a topological quantum computer. There would be no sharp difference between
the dark parts of black holes and those of ordinary stars. Only the volume containing the complex flux
tube structures associated with the orbits of planets and various objects around star would become
very small for black hole so that the black hole might code for the topological information of the
matter collapsed into it.

12.6.3 Accelerating periods of cosmic expansion as phase transitions in-
creasing the value of Planck constant

There are several pieces of evidence for accelerated expansion, which need not mean cosmological
constant, although this is the interpretation adopted in [10, 5] . Quantum cosmology predicts that
astrophysical objects do not follow cosmic expansion except in jerk-wise quantum leaps increasing the
value of the gravitational Planck constant. This assumption provides explanation for the apparent
cosmological constant. Also planets are predicted to expand in this manner. This provides a new
version of Expanding Earth theory originally postulated to explain the intriguing findings suggesting
that continents have once formed a connected continent covering the entire surface of Earth but with
radius which was one half of the recent one.

The four pieces of evidence for accelerated expansion

1. Supernovas of type Ia

Supernovas of type Ia define standard candles since their luminosity varies in an oscillatory manner
and the period is proportional to the luminosity. The period gives luminosity and from this the distance
can be deduced by using Hubble’s law: d = cz/H0, H0 Hubble’s constant. The observation was that
the farther the supernova was the more dimmer it was as it should have been. In other words, Hubble’s
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constant increased with distance and the cosmic expansion was accelerating rather than decelerating
as predicted by the standard matter dominated and radiation dominated cosmologies.

2. Mass density is critical and 3-space is flat

It is known that the contribution of ordinary and dark matter explaining the constant velocity of
distance stars rotating around galaxy is about 25 per cent from the critical density. Could it be that
total mass density is critical?

From the anisotropy of cosmic microwave background one can deduce that this is the case. What
criticality means geometrically is that 3-space defined as surface with constant value of cosmic time is
flat. This reflects in the spectrum of microwave radiation. The spots representing small anisotropies
in the microwave background temperature is 1 degree and this correspond to flat 3-space. If one had
dark matter instead of dark energy the size of spot would be .5 degrees!

Thus in a cosmology based on general relativity cosmological constant remains the only viable
option. The situation is different in TGD based quantum cosmology based on sub-manifold gravity
and hierarchy of gravitational Planck constants.

3. The energy density of vacuum is constant in the size scale of big voids

It was observed that the density of dark energy would be constant in the scale of 108 light years.
This length scale corresponds to the size of big voids containing galaxies at their boundaries.

4. Integrated Sachs-Wolf effect

Also so called integrated Integrated Sachs-Wolf effect supports accelerated expansion. Very slow
variations of mass density are considered. These correspond to gravitational potentials. Cosmic
expansion tends to flatten them but mass accretion to form structures compensates this effect so that
gravitational potentials are unaffected and there is no effect of CMB. Situation changes if dark matter
is replaced with dark energy the accelerated expansion flattening the gravitational potentials wins the
tendency of mass accretion to make them deeper. Hence if photon passes by an over-dense region, it
receives a little energy. Similarly, photon loses energy when passing by an under-dense region. This
effect has been observed.

Accelerated expansion in classical TGD

The minimum TGD based explanation for accelerated expansion involves only the fact that the imbed-
dings of critical cosmologies correspond to accelerated expansion. A more detailed model allows to
understand why the critical cosmology appears during some periods.

The first observation is that critical cosmologies (flat 3-space) imbeddable to 8-D imbedding space
H correspond to negative pressure cosmologies and thus to accelerating expansion. The negativity
of the counterpart of pressure in Einstein tensor is due to the fact that space-time sheet is forced to
be a 4-D surface in 8-D imbedding space. This condition is analogous to a force forcing a particle
at the surface of 2-sphere and gives rise to what could be called constraint force. Gravitation in
TGD is sub-manifold gravitation whereas in GRT it is manifold gravitation. This would be minimum
interpretation involving no assumptions about what mechanism gives rise to the critical periods.

Accelerated expansion and hierarchy of Planck constants

One can go one step further and introduce the hierarchy of Planck constants. The basic difference
between TGD and GRT based cosmologies is that TGD cosmology is quantum cosmology. Smooth
cosmic expansion is replaced by an expansion occurring in discrete jerks corresponding to the increase
of gravitational Planck constant. At space-time level this means the replacement of 8-D imbedding
space H with a book like structure containing almost-copies of H with various values of Planck
constant as pages glued together along critical manifold through which space-time sheet can leak
between sectors with different values of ~. This process is the geometric correlate for the the phase
transition changing the value of Planck constant.

During these phase transition periods critical cosmology applies and predicts automatically accel-
erated expansion. Neither genuine negative pressure due to ”quintessence” nor cosmological constant
is needed. Note that quantum criticality replaces inflationary cosmology and predicts a unique cosmol-
ogy apart from single parameter. Criticality also explains the fluctuations in microwave temperature
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as long range fluctuations characterizing criticality.

Accelerated expansion and flatness of 3-cosmology

Observations 1) and 2) about super-novae and critical cosmology (flat 3-space) are consistent with
this cosmology. In TGD dark energy must be replaced with dark matter because the mass density is
critical during the phase transition. This does not lead to wrong sized spots since it is the increase
of Planck constant which induces the accelerated expansion understandable also as a constraint force
due to imbedding to H.

The size of large voids is the characteristic scale

The TGD based model in its simplest form model assigns the critical periods of expansion to large
voids of size 108 ly. Also larger and smaller regions can express similar periods and dark space-time
sheets are expected to obey same universal ”cosmology” apart from a parameter characterizing the
duration of the phase transition. Observation 3) that just this length scale defines the scale below
which dark energy density is constant is consistent with TGD based model.

The basic prediction is jerkwise cosmic expansion with jerks analogous to quantum transitions
between states of atom increasing the size of atom. The discovery of large voids with size of order 108

ly but age much longer than the age of galactic large voids conforms with this prediction. One the
other hand, it is known that the size of galactic clusters has not remained constant in very long time
scale so that jerkwise expansion indeed seems to occur.

Do cosmic strings with negative gravitational mass cause the phase transition inducing
accelerated expansion

Quantum classical correspondence is the basic principle of quantum TGD and suggest that the effective
antigravity manifested by accelerated expansion might have some kind of concrete space-time correlate.
A possible correlate is super heavy cosmic string like objects at the center of large voids which have
negative gravitational mass under very general assumptions. The repulsive gravitational force created
by these objects would drive galaxies to the boundaries of large voids. At some state the pressure
of galaxies would become too strong and induce a quantum phase transition forcing the increase of
gravitational Planck constant and expansion of the void taking place much faster than the outward
drift of the galaxies. This process would repeat itself. In the average sense the cosmic expansion
would not be accelerating.

12.6.4 Phase transition changing Planck constant and expanding Earth
theory

TGD predicts that cosmic expansion at the level of individual astrophysical systems does not take
place continuously as in classical gravitation but through discrete quantum phase transitions increasing
gravitational Planck constant and thus various quantum length and time scales. The reason would
be that stationary quantum states for dark matter in astrophysical length scales cannot expand. One
would have the analog of atomic physics in cosmic scales. Increases of ~ by a power of two are favored
in these transitions but also other scalings are possible.

This has quite far reaching implications.

1. These periods have a highly unique description in terms of a critical cosmology for the expanding
space-time sheet. The expansion is accelerating. The accelerating cosmic expansion can be
assigned to this kind of phase transition in some length scale (TGD Universe is fractal). There
is no need to introduce cosmological constant and dark energy would be actually dark matter.

2. The recently observed void which has same size of about 108 light years as large voids having
galaxies near their boundaries but having an age which is much higher than that of the large
voids, would represent one example of jerk-wise expansion.

3. This picture applies also to solar system and planets might be perhaps seen as having once
been parts of a more or less connected system, the primordial Sun. The Bohr orbits for inner
and outer planets correspond to gravitational Planck constant which is 5 times larger for outer
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planets. This suggests that the space-time sheet of outer planets has suffered a phase transition
increasing the size scale by a factor of 5. Earth can be regarded either as n=1 orbit for Planck
constant associated with outer planets or n= 5 orbit for inner planetary system. This might
have something to do with the very special position of Earth in planetary system. One could
even consider the possibility that both orbits are present as dark matter structures. The phase
transition would also explain why n=1 and n=2 Bohr orbits are absent and one only n=3,4, and
5 are present.

4. Also planets should have experienced this kind of phase transitions increasing the radius: the
increase by a factor two would be the simplest situation.

The obvious question - that I did not ask - is whether this kind of phase transition might have
occurred for Earth and led from a completely granite covered Earth - Pangeia without seas - to the
recent Earth. Neither it did not occur to me to check whether there is any support for a rapid
expansion of Earth during some period of its history.

Situation changed when my son visited me last Saturday and told me about a Youtube video [8]
by Neal Adams, an American comic book and commercial artist who has also produced animations
for geologists. We looked the amazing video a couple of times and I looked it again yesterday. The
video is very impressive artwork but in the lack of references skeptic probably cannot avoid the feeling
that Neal Adams might use his highly developed animation skills to cheat you. I found also a polemic
article [1] of Adams but again the references were lacking. Perhaps the reason of polemic tone was that
the concrete animation models make the expanding Earth hypothesis very convincing but geologists
refuse to consider seriously arguments by a layman without a formal academic background.

The claims of Adams

The basic claims of Adams were following.

1. The radius of Earth has increased during last 185 million years (dinosaurs [2] appeared for about
230 million years ago) by about factor 2. If this is assumed all continents have formed at that
time a single super-continent, Pangeia, filling the entire Earth surface rather than only 1/4 of
it since the total area would have grown by a factor of 4. The basic argument was that it is
very difficult to imagine Earth with 1/4 of surface containing granite and 3/4 covered by basalt.
If the initial situation was covering by mere granite -as would look natural- it is very difficult
for a believer in thermodynamics to imagine how the granite would have gathered to a single
connected continent.

2. Adams claims that Earth has grown by keeping its density constant, rather than expanded, so
that the mass of Earth has grown linearly with radius. Gravitational acceleration would have
thus doubled and could provide a partial explanation for the disappearance of dinosaurs: it is
difficult to cope in evolving environment when you get slower all the time.

3. Most of the sea floor is very young and the areas covered by the youngest basalt are the largest
ones. This Adams interprets this by saying that the expansion of Earth is accelerating. The
alternative interpretation is that the flow rate of the magma slows down as it recedes from the
ridge where it erupts. The upper bound of 185 million years for the age of sea floor requires that
the expansion period - if it is already over - lasted about 185 million years after which the flow
increasing the area of the sea floor transformed to a convective flow with subduction so that the
area is not increasing anymore.

4. The fact that the continents fit together - not only at the Atlantic side - but also at the Pacific
side gives strong support for the idea that the entire planet was once covered by the super-
continent. After the emergence of subduction theory this evidence as been dismissed.

5. I am not sure whether Adams mentions the following objections [2] . Subduction only occurs on
the other side of the subduction zone so that the other side should show evidence of being much
older in the case that oceanic subduction zones are in question. This is definitely not the case.
This is explained in plate tectonics as a change of the subduction direction. My explanation
would be that by the symmetry of the situation both oceanic plates bend down so that this
would represent new type of boundary not assumed in the tectonic plate theory.
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6. As a master visualizer Adams notices that Africa and South-America do not actually fit together
in absence of expansion unless one assumes that these continents have suffered a deformation.
Continents are not easily deformable stuff. The assumption of expansion implies a perfect fit of
all continents without deformation.

Knowing that the devil is in the details, I must admit that these arguments look rather convincing
to me and what I learned from Wikipedia articles supports this picture.

The critic of Adams of the subduction mechanism

The prevailing tectonic plate theory [5] has been compared to the Copernican revolution in geology.
The theory explains the young age of the seafloor in terms of the decomposition of the litosphere to
tectonic plates and the convective flow of magma to which oceanic tectonic plates participate. The
magma emerges from the crests of the mid ocean ridges representing a boundary of two plates and
leads to the expansion of sea floor. The variations of the polarity of Earth’s magnetic field coded in
sea floor provide a strong support for the hypothesis that magma emerges from the crests.

The flow back to would take place at so called oceanic trenches [3] near continents which represent
the deepest parts of ocean. This process is known as subduction. In subduction oceanic tectonic
plate bends and penetrates below the continental tectonic plate, the material in the oceanic plate gets
denser and sinks into the magma. In this manner the oceanic tectonic plate suffers a metamorphosis
returning back to the magma: everything which comes from Earth’s interior returns back. Subduction
mechanism explains elegantly formation of mountains [4] (orogeny), earth quake zones, and associated
zones of volcanic activity [6] .

Adams is very polemic about the notion of subduction, in particular about the assumption that it
generates steady convective cycle. The basic objections of Adams against subduction are following.

1. There are not enough subduction zones to allow a steady situation. According to Adams, the
situation resembles that for a flow in a tube which becomes narrower. In a steady situation the
flow should accelerate as it approaches subduction zones rather than slow down. Subduction
zones should be surrounded by large areas of sea floor with constant age. Just the opposite
is suggested by the fact that the youngest portion of sea-floor near the ridges is largest. The
presence of zones at which both ocean plates bend down could improve the situation. Also
jamming of the flow could occur so that the thickness of oceanic plate increases with the distance
from the eruption ridge. Jamming could increase also the density of the oceanic plate and thus
the effectiveness of subduction.

2. There is no clear evidence that subduction has occurred at other planets. The usual defense is
that the presence of sea is essential for the subduction mechanism.

3. One can also wonder what is the mechanism that led to the formation of single super continent
Pangeia covering 1/4 of Earth’s surface. How probable the gathering of all separate continents
to form single cluster is? The later events would suggest that just the opposite should have
occurred from the beginning.

Expanding Earth theories are not new

After I had decided to check the claims of Adams, the first thing that I learned is that Expanding
Earth theory [2] , whose existence Adams actually mentions, is by no means new. There are actually
many of them.

The general reason why these theories were rejected by the main stream community was the
absence of a convincing physical mechanism of expansion or of growth in which the density of Earth
remains constant.

1. 1888 Yarkovski postulated some sort of aether absorbed by Earth and transforming to chemical
elements (TGD version of aether could be dark matter). 1909 Mantovani postulated thermal
expansion but no growth of the Earth’s mass.

2. Paul Dirac’s idea about changing Planck constant led Pascual Jordan in 1964 to a modification
of general relativity predicting slow expansion of planets. The recent measurement of the grav-
itational constant imply that the upper bound for the relative change of gravitational constant
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is 10 time too small to produce large enough rate of expansion. Also many other theories have
been proposed but they are in general conflict with modern physics.

3. The most modern version of Expanding Earth theory is by Australian geologist Samuel W.
Carey. He calculated that in Cambrian period (about 500 million years ago) all continents were
stuck together and covered the entire Earth. Deep seas began to evolve then.

Summary of TGD based theory of Expanding Earth

TGD based model differs from the tectonic plate model but allows subduction which cannot imply
considerable back-flow of magma. Let us sum up the basic assumptions and implications.

1. The expansion is or was due to a quantum phase transition increasing the value of gravitational
Planck constant and forced by the cosmic expansion in the average sense.

2. Tectonic plates do not participate to the expansion and therefore new plate must be formed
and the flow of magma from the crests of mid ocean ridges is needed. The decomposition of a
single plate covering the entire planet to plates to create the mid ocean ridges is necessary for
the generation of new tectonic plate. The decomposition into tectonic plates is thus prediction
rather than assumption.

3. The expansion forced the decomposition of Pangeia super-continent covering entire Earth for
about 530 million years ago to split into tectonic plates which began to recede as new non-
expanding tectonic plate was generated at the ridges creating expanding sea floor. The initiation
of the phase transition generated formation of deep seas.

4. The eruption of plasma from the crests of ocean ridges generated oceanic tectonic plates which
did not participate to the expansion by density reduction but by growing in size. This led to a
reduction of density in the interior of the Earth roughly by a factor 1/8. From the upper bound
for the age of the seafloor one can conclude that the period lasted for about 185 million years
after which it transformed to convective flow in which the material returned back to the Earth
interior. Subduction at continent-ocean floor boundaries and downwards double bending of
tectonic plates at the boundaries between two ocean floors were the mechanisms. Thus tectonic
plate theory would be more or less the correct description for the recent situation.

5. One can consider the possibility that the subducted tectonic plate does not transform to magma
but is fused to the tectonic layer below continent so that it grows to an iceberg like structure. This
need not lead to a loss of the successful predictions of plate tectonics explaining the generation
of mountains, earthquake zones, zones of volcanic activity, etc...

6. From the video of Adams it becomes clear that the tectonic flow is East-West asymmetric in
the sense that the western side is more irregular at large distances from the ocean ridge at the
western side. If the magma rotates with slightly lower velocity than the surface of Earth (like
liquid in a rotating vessel), the erupting magma would rotate slightly slower than the tectonic
plate and asymmetry would be generated.

7. If the planet has not experienced a phase transition increasing the value of Planck constant,
there is no need for the decomposition to tectonic plates and one can understand why there is
no clear evidence for tectonic plates and subduction in other planets. The conductive flow of
magma could occur below this plate and remain invisible.

The biological implications might provide a possibility to test the hypothesis.

1. Great steps of progress in biological evolution are associated with catastrophic geological events
generating new evolutionary pressures forcing new solutions to cope in the new situation. Cam-
brian explosion indeed occurred about 530 years ago (the book ”Wonderful Life” of Stephen
Gould [8] explains this revolution in detail) and led to the emergence of multicellular crea-
tures, and generated huge number of new life forms living in seas. Later most of them suffered
extinction: large number of phylae and groups emerged which are not present nowadays.
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Thus Cambrian explosion is completely exceptional as compared to all other dramatic events
in the evolution in the sense that it created something totally new rather than only making
more complex something which already existed. Gould also emphasizes the failure to identify
any great change in the environment as a fundamental puzzle of Cambrian explosion. Cambrian
explosion is also regarded in many quantum theories of consciousness (including TGD) as a
revolution in the evolution of consciousness: for instance, micro-tubuli emerged at this time.
The periods of expansion might be necessary for the emergence of multicellular life forms on
planets and the fact that they unavoidably occur sooner or later suggests that also life develops
unavoidably.

2. TGD predicts a decrease of the surface gravity by a factor 1/4 during this period. The reduction
of the surface gravity would have naturally led to the emergence of dinosaurs 230 million years
ago as a response coming 45 million years after the accelerated expansion ceased. Other reasons
led then to the decline and eventual catastrophic disappearance of the dinosaurs. The reduction
of gravity might have had some gradually increasing effects on the shape of organisms also at
microscopic level and manifest itself in the evolution of genome during expansion period.

3. A possibly testable prediction following from angular momentum conservation (ωR2 = constant)
is that the duration of day has increased gradually and was four times shorter during the Cam-
brian era. For instance, genetically coded bio-clocks of simple organisms during the expansion
period could have followed the increase of the length of day with certain lag or failed to follow
it completely. The simplest known circadian clock is that of the prokaryotic cyanobacteria.
Recent research has demonstrated that the circadian clock of Synechococcus elongatus can be
reconstituted in vitro with just the three proteins of their central oscillator. This clock has been
shown to sustain a 22 hour rhythm over several days upon the addition of ATP: the rhythm is
indeed faster than the circadian rhythm. For humans the average innate circadian rhythm is
however 24 hours 11 minutes and thus conforms with the fact that human genome has evolved
much later than the expansion ceased.

4. Scientists have found a fossil of a sea scorpion with size of 2.5 meters [14] , which has lived for
about 10 million years for 400 million years ago in Germany. The gigantic size would conform
nicely with the much smaller value of surface gravity at that time. The finding would conform
nicely with the much smaller value of surface gravity at that time. Also the emergence of trees
could be understood in terms of a gradual growth of the maximum plant size as the surface
gravity was reduced. The fact that the oldest known tree fossil is 385 million years old [11]
conforms with this picture.

Did intra-terrestrial life burst to the surface of Earth during Cambrian expansion?

The possibility of intra-terrestrial life [33] is one of the craziest TGD inspired ideas about the evolution
of life and it is quite possible that in its strongest form the hypothesis is unrealistic. One can however
try to find what one obtains from the combination of the IT hypothesis with the idea of pre-Cambrian
granite Earth. Could the harsh pre-Cambrian conditions have allowed only intra-terrestrial multicel-
lular life? Could the Cambrian explosion correspond to the moment of birth for this life in the very
concrete sense that the magma flow brought it into the day-light?

1. Gould emphasizes the mysterious fact that very many life forms of Cambrian explosion looked
like final products of a long evolutionary process. Could the eruption of magma from the Earth
interior have induced a burst of intra-terrestrial life forms to the Earth’s surface? This might
make sense: the life forms living at the bottom of sea do not need direct solar light so that they
could have had intra-terrestrial origin. It is quite possible that Earth’s mantle contained low
temperature water pockets, where the complex life forms might have evolved in an environment
shielded from meteoric bombardment and UV radiation.

2. Sea water is salty. It is often claimed that the average salt concentration inside cell is that of the
primordial sea: I do not know whether this claim can be really justified. If the claim is true, the
cellular salt concentration should reflect the salt concentration of the water inside the pockets.
The water inside water pockets could have been salty due to the diffusion of the salt from ground
but need not have been same as that for the ocean water (higher than for cell interior and for
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obvious reasons). Indeed, the water in the underground reservoirs in arid regions such as Sahara
is salty, which is the reason for why agriculture is absent in these regions. Note also that the
cells of marine invertebrates are osmoconformers able to cope with the changing salinity of the
environment so that the Cambrian revolutionaries could have survived the change in the salt
concentration of environment.

3. What applies to Earth should apply also to other similar planets and Mars [6] is very similar to
Earth. The radius is .533 times that for Earth so that after quantum leap doubling the radius
and thus Schumann frequency scale (7.8 Hz would be the lowest Schumann frequency) would
be essentially same as for Earth now. Mass is .131 times that for Earth so that surface gravity
would be .532 of that for Earth now and would be reduced to .131 meaning quite big dinosaurs!
have learned that Mars probably contains large water reservoirs in it’s interior and that there
is an un-identified source of methane gas usually assigned with the presence of life. Could it
be that Mother Mars is pregnant and just waiting for the great quantum leap when it starts
to expand and gives rise to a birth of multicellular life forms. Or expressing freely how Bible
describes the moment of birth: in the beginning there was only darkness and water and then
God saidLet the light come!

To sum up, TGD would provide only the long sought mechanism of expansion and a possible
connection with the biological evolution. It would be indeed fascinating if Planck constant changing
quantum phase transitions in planetary scale would have profoundly affected the biosphere.

12.6.5 Allais effect as evidence for large values of gravitational Planck
constant?

Allais effect [1, 11] is a fascinating gravitational anomaly associated with solar eclipses. It was dis-
covered originally by M. Allais, a Nobelist in the field of economy, and has been reproduced in several
experiments but not as a rule. The experimental arrangement uses so called paraconical pendulum,
which differs from the Foucault pendulum in that the oscillation plane of the pendulum can rotate in
certain limits so that the motion occurs effectively at the surface of sphere.

Experimental findings

Consider first a brief summary of the findings of Allais and others [11] .

a) In the ideal situation (that is in the absence of any other forces than gravitation of Earth) para-
conical pendulum should behave like a Foucault pendulum. The oscillation plane of the paraconical
pendulum however begins to rotate.

b) Allais concludes from his experimental studies that the orbital plane approach always asymp-
totically to a limiting plane and the effect is only particularly spectacular during the eclipse. During
solar eclipse the limiting plane contains the line connecting Earth, Moon, and Sun. Allais explains
this in terms of what he calls the anisotropy of space.

c) Some experiments carried out during eclipse have reproduced the findings of Allais, some ex-
periments not. In the experiment carried out by Jeverdan and collaborators in Romania it was found
that the period of oscillation of the pendulum decreases by ∆f/f ' 5×10−4 [1, 19] which happens to
correspond to the constant v0 = 2−11 appearing in the formula of the gravitational Planck constant.
It must be however emphasized that the overall magnitude of ∆f/f varies by five orders of magnitude.
Even the sign of ∆f/f varies from experiment to experiment.

d) There is also quite recent finding by Popescu and Olenici, which they interpret as a quantization
of the plane of oscillation of paraconical oscillator during solar eclipse [32] .

TGD based models for Allais effect

I have already earlier proposed an explanation of the effect in terms of classical Z0 force [10] . If the
Z0 charge to mass ratio of pendulum varies and if Earth and Moon are Z0 conductors, the resulting
model is quite flexible and one might hope it could explain the high variation of the experimental
results.
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The rapid variation of the effect during the eclipse is however a problem for this approach and
suggests that gravitational screening or some more general interference effect might be present. Grav-
itational screening alone cannot however explain Allais effect.

A model based on the idea that gravitational interaction is mediated by topological light rays
(MEs) and that gravitons correspond to a gigantic value of the gravitational Planck constant however
explains the Allais effect as an interference effect made possible by macroscopic quantum coherence
in astrophysical length scales. Equivalence Principle fixes the model to a high degree and one ends
up with an explicit formula for the anomalous gravitational acceleration and the general order of
magnitude and the large variation of the frequency change as being due to the variation of the distance
ratio rS,P /rM,P (S,M ,and P refer to Sun, Moon, and pendulum respectively). One can say that the
pendulum acts as an interferometer.

12.6.6 Applications to elementary particle physics, nuclear physics, and
condensed matter physics

The hierarchy of Planck constants could have profound implications for even elementary particle
physics since the strong constraints on the existence of new light particles coming from the decay
widths of intermediate gauge bosons can be circumvented because direct decays to dark matter are
not possible. On the other hand, if light scaled versions of elementary particles exist they must be
dark since otherwise their existence would be visible in these decay widths. The constraints on the
existence of dark nuclei and dark condensed matter are much milder. Cold fusion and some other
anomalies of nuclear and condensed matter physics - in particular the anomalies of water- might have
elegant explanation in terms of dark nuclei.

Leptohadron hypothesis

TGD suggests strongly the existence of lepto-hadron [90] . Lepto-hadrons are bound states of color
excited leptons and the anomalous production of e+e− pairs in heavy ion collisions finds a nice
explanation as resulting from the decays of lepto-hadrons with basic condensate level k = 127 and
having typical mass scale of one MeV . The recent indications on the existence of a new fermion with
quantum numbers of muon neutrino and the anomaly observed in the decay of orto-positronium give
further support for the lepto-hadron hypothesis. There is also evidence for anomalous production of
low energy photons and e+e− pairs in hadronic collisions.

The identification of lepto-hadrons as a particular instance in the predicted hierarchy of dark mat-
ters interacting directly only via graviton exchange allows to circumvent the lethal counter arguments
against the lepto-hadron hypothesis (Z0 decay width and production of colored lepton jets in e+e−

annihilation) even without assumption about the loss of asymptotic freedom.

PCAC hypothesis and its sigma model realization lead to a model containing only the coupling of
the lepto-pion to the axial vector current as a free parameter. The prediction for e+e− production
cross section is of correct order of magnitude only provided one assumes that lepto-pions (or electro-
pions) decay to lepto-nucleon pair e+

exe
−
ex first and that lepto-nucleons, having quantum numbers of

electron and having mass only slightly larger than electron mass, decay to lepton and photon. The
peculiar production characteristics are correctly predicted. There is some evidence that the resonances
decay to a final state containing n > 2 particle and the experimental demonstration that lepto-nucleon
pairs are indeed in question, would be a breakthrough for TGD.

During 18 years after the first published version of the model also evidence for colored µ has
emerged [78] . Towards the end of 2008 CDF anomaly [17] gave a strong support for the colored
excitation of τ . The lifetime of the light long lived state identified as a charged τ -pion comes out
correctly and the identification of the reported 3 new particles as p-adically scaled up variants of
neutral τ -pion predicts their masses correctly. The observed muon jets can be understood in terms of
the special reaction kinematics for the decays of neutral τ -pion to 3 τ -pions with mass scale smaller
by a factor 1/2 and therefore almost at rest. A spectrum of new particles is predicted. The discussion
of CDF anomaly [90] led to a modification and generalization of the original model for lepto-pion
production and the predicted production cross section is consistent with the experimental estimate.
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Cold fusion, plasma electrolysis, and burning salt water

The article of Kanarev and Mizuno [20] reports findings supporting the occurrence of cold fusion in
NaOH and KOH hydrolysis. The situation is different from standard cold fusion where heavy water
D2O is used instead of H2O.

In nuclear string model nucleon are connected by color bonds representing the color magnetic
body of nucleus and having length considerably longer than nuclear size. One can consider also dark
nuclei for which the scale of nucleus is of atomic size [6] , [6] . In this framework can understand the
cold fusion reactions reported by Mizuno as nuclear reactions in which part of what I call dark proton
string having negatively charged color bonds (essentially a zoomed up variant of ordinary nucleus with
large Planck constant) suffers a phase transition to ordinary matter and experiences ordinary strong
interactions with the nuclei at the cathode. In the simplest model the final state would contain only
ordinary nuclear matter. The generation of plasma in plasma electrolysis can be seen as a process
analogous to the positive feedback loop in ordinary nuclear reactions.

Rather encouragingly, the model allows to understand also deuterium cold fusion and leads to a
solution of several other anomalies.

1. The so called lithium problem of cosmology (the observed abundance of lithium is by a factor
2.5 lower than predicted by standard cosmology [13] ) can be resolved if lithium nuclei transform
partially to dark lithium nuclei.

2. The so called H1.5O anomaly of water [6, 5, 9, 28] can be understood if 1/4 of protons of water
forms dark lithium nuclei or heavier dark nuclei formed as sequences of these just as ordinary
nuclei are constructed as sequences of 4He and lighter nuclei in nuclear string model. The results
force to consider the possibility that nuclear isotopes unstable as ordinary matter can be stable
dark matter.

3. The mysterious behavior burning salt water [1] can be also understood in the same framework.

4. The model explains the nuclear transmutations observed in Kanarev’s plasma electrolysis. This
kind of transmutations have been reported also in living matter long time ago [56, 72] . Intrigu-
ingly, several biologically important ions belong to the reaction products in the case of NaOH
electrolysis. This raises the question whether cold nuclear reactions occur in living matter and
are responsible for generation of biologically most important ions.

12.6.7 Applications to biology and neuroscience

The notion of field or magnetic body regarded as carrier of dark matter with large Planck constant and
quantum controller of ordinary matter is the basic idea in the TGD inspired model of living matter.

Do molecular symmetries in living matter relate to non-standard values of Planck con-
stant?

Water is exceptional element and the possibility that Ga as symmetry of singular factor space of CD
in water and living matter is intriguing.

1. There is evidence for an icosahedral clustering in [17] [7] . Synaptic contacts contain clathrin
molecules which are truncated icosahedrons and form lattice structures and are speculated to be
involved with quantum computation like activities possibly performed by microtubules. Many
viruses have the shape of icosahedron. One can ask whether these structures could be formed
around templates formed by dark matter corresponding to 120-fold covering of CP2 points by
CD points and having ~(CP2) = 5~0 perhaps corresponding color confined light dark quarks.
Of course, a similar covering of CD points by CP2 could be involved.

2. It should be noticed that single nucleotide in DNA double strands corresponds to a twist of
2π/10 per single DNA triplet so that 10 DNA strands corresponding to length L(151) = 10 nm
(cell membrane thickness) correspond to 3 × 2π twist. This could be perhaps interpreted as
evidence for group C10 perhaps making possible quantum computation at the level of DNA.
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3. What makes realization of Ga as a symmetry of singular factor space of CD is that the
biomolecules most relevant for the functioning of brain (DNA nucleotides, aminoacids acting
as neurotransmitters, molecules having hallucinogenic effects) contain aromatic 5- and 6-cycles.

These observations led to an identification of the formula for Planck constant (two alternatives were
allowed by the condition that Planck constant is algebraic homomorphism) which was not consistent
with the model for dark gravitons. If one accepts the proposed formula of Planck constant, the dark
space-time sheets with large Planck constant correspond to factor spaces of both ĈD\M2 and of
CP2\S2

I . This identification is of course possible and it remains to be seen whether it leads to any
problems. For gravitational space-time sheets only coverings of both CD and CP2 make sense and the
covering group Ga has very large order and does not correspond to geometric symmetries analogous
to those of molecules.

High Tc super-conductivity in living matter

The model for high Tc super-conductivity realized as quantum critical phenomenon predicts the basic
scales of cell membrane [16] from energy minimization and p-adic length scale hypothesis. This leads
to the vision that cell membrane and possibly also its scaled up dark fractal variants define Josephson
junctions generating Josephson radiation communicating information about the nearby environment
to the magnetic body.

Any model of high Tc superconductivity should explain various strange features of high Tc super-
conductors. One should understand the high value of Tc, the ambivalent character of high Tc super
conductors suggesting both BCS type Cooper pairs and exotic Cooper pairs with non-vanishing spin,
the existence of pseudogap temperature Tc1 > Tc and scaling law for resistance for Tc ≤ T < Tc1 ,
the role of fluctuating charged stripes which are anti-ferromagnetic defects of a Mott insulator, the
existence of a critical doping, etc... [30, 29] .

There are reasons to believe that high Tc super-conductors correspond to quantum criticality
in which at least two (cusp catastrophe as in van der Waals model), or possibly three or even more
phases, are competing. A possible analogy is provided by the triple critical point for water vapor, liquid
phase and ice coexist. Instead of long range thermal fluctuations long range quantum fluctuations
manifesting themselves as fluctuating stripes are present [30] .

The TGD based model for high Tc super-conductivity [16] relies on the notions of quantum criti-
cality, general ideas of catastrophe theory, dynamical Planck constant, and many-sheeted space-time.
The 4-dimensional spin glass character of space-time dynamics deriving from the vacuum degeneracy
of the Kähler action defining the basic variational principle would realize space-time correlates for
quantum fluctuations.

1. Two kinds of super-conductivities and ordinary non-super-conducting phase would be competing
at quantum criticality at Tc and above it only one super-conducting phase and ordinary con-
ducting phase located at stripes representing ferromagnetic defects making possible formation
of S = 1 Cooper pairs.

2. The first super-conductivity would be based on exotic Cooper pairs of large ~ dark electrons with
~ = 211~0 and able to have spin S = 1, angular momentum L = 2, and total angular momentum
J = 2. Second type of super-conductivity would be based on BCS type Cooper pairs having
vanishing spin and bound by phonon interaction. Also they have large ~ so that gap energy
and critical temperature are scaled up in the same proportion. The exotic Cooper pairs are
possible below the pseudo gap temperature Tc1 > Tc but are unstable against decay to BCS
type Cooper pairs which above Tc are unstable against a further decay to conduction electrons
flowing along stripes. This would reduce the exotic super-conductivity to finite conductivity
obeying the observed scaling law for resistance.

3. The mere assumption that electrons of exotic Cooper pairs feed their electric flux to larger space-
time sheet via two elementary particle sized wormhole contacts rather than only one wormhole
contacts implies that the throats of wormhole contacts defining analogs of Higgs field must carry
quantum numbers of quark and anti-quark. This inspires the idea that cylindrical space-time
sheets, the radius of which turns out to be about about 5 nm, representing zoomed up dark
electrons of Cooper pair with Planck constant ~ = 211~0 are colored and bound by a scaled
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up variant of color force to form a color confined state. Formation of Cooper pairs would have
nothing to do with direct interactions between electrons. Thus high Tc super-conductivity could
be seen as a first indication for the presence of scaled up variant of QCD in mesoscopic length
scales.

This picture leads to a concrete model for high Tc superconductors as quantum critical supercon-
ductors [16] . p-Adic length scale hypothesis stating that preferred p-adic primes p ' 2k, k integer,
with primes (in particular Mersenne primes) preferred, makes the model quantitative.

1. An unexpected prediction is that coherence length ξ is actually ~eff/~0 = 211 times longer than
the coherence length 5-10 Angstroms deduced theoretically from gap energy using conventional
theory and varies in the range 1 − 5 µm, the cell nucleus length scale. Hence type I super-
conductor would be in question with stripes as defects of anti-ferromagnetic Mott insulator
serving as duals for the magnetic defects of type I super-conductor in nearly critical magnetic
field.

2. At quantitative level the model reproduces correctly the four poorly understood photon absorp-
tion lines and allows to understand the critical doping ratio from basic principles.

3. The current carrying structures have structure locally similar to that of axon including the double
layered structure of cell membrane and also the size scales are predicted to be same. One of the
characteristic absorption lines has energy of .05 eV which corresponds to the Josephson energy
for neuronal membrane for activation potential V = 50 mV. Hence the idea that axons are high
Tc superconductors is highly suggestive. Dark matter hierarchy coming in powers ~/~0 = 2k11

suggests hierarchy of Josephson junctions needed in TGD based model of EEG [27] .

Magnetic body as a sensory perceiver and intentional agent

The hypothesis that dark magnetic body serves as an intentional agent using biological body as a
motor instrument and sensory receptor is consistent with Libet’s findings about strange time delays
of consciousness. Magnetic body would carry cyclotron Bose-Einstein condensates of various ions.
Magnetic body must be able to perform motor control and receive sensory input from biological body.

Cell membrane would be a natural sensor providing information about cell interior and exterior to
the magnetic body and dark photons at appropriate frequency range would naturally communicate
this information. The strange quantitative co-incidences with the physics of cell membrane and high
Tc super-conductivity support the idea that Josephson radiation generated by Josephson currents of
dark electrons through cell membrane is responsible for this communication [27] .

Also fractally scaled up versions of cell membrane at higher levels of dark matter hierarchy (in
particular those corresponding to powers n = 2k11) are possible and the model for EEG indeed relies
on this hypothesis. The thickness for the fractal counterpart of cell membrane thickness would be 244

fold and of order of depth of ionosphere! Although this looks weird it is completely consistent with
the notion of magnetic body as an intentional agent.

Motor control would be most naturally performed via genome: this is achieved if flux sheets traverse
through DNA strands. Flux quantization for large values of Planck constant requires rather large
widths for the flux sheets. If flux sheet contains sequences of genomes like the page of book contains
lines of text, a coherent gene expression becomes possible at level of organs and even populations and
one can speak about super- and hyper-genomes. Introns might relate to the collective gene expression
possibly realized electromagnetically rather than only chemically [16, 17] .

Dark cyclotron radiation with photon energy above thermal energy could be used for coordination
purposes at least. The predicted hierarchy of copies of standard model physics leads to ask whether
also dark copies of electro-weak gauge bosons and gluons could be important in living matter. As
already mentioned, dark W bosons could make possible charge entanglement and non-local quantum
bio-control by inducing voltage differences and thus ionic currents in living matter.

The identification of plasmoids as rotating magnetic flux structures carrying dark ions and elec-
trons as primitive life forms is natural in this framework. There exists experimental support for this
identification [10] but the main objection is the high temperature involved: this objection could be
circumvented if large ~ phase is involved. A model for the pre-biotic evolution relying also on this
idea is discussed in [33] .
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At the level of biology there are now several concrete applications leading to a rich spectrum of
predictions. Magnetic flux quanta would carry charged particles with large Planck constant.

1. The shortening of the flux tubes connecting biomolecules in a phase transition reducing Planck
constant could be a basic mechanism of bio-catalysis and explain the mysterious ability of
biomolecules to find each other. Similar process in time direction could explain basic aspects of
symbolic memories as scaled down representations of actual events.

2. The strange behavior of cell membrane suggests that a dominating portion of important bio-
logical ions are actually dark ions at magnetic flux tubes so that ionic pumps and channels are
needed only for visible ions. This leads to a model of nerve pulse explaining its unexpected
thermodynamical properties with basic properties of Josephson currents making it un-necessary
to use pumps to bring ions back after the pulse. The model predicts automatically EEG as
Josephson radiation and explains the synchrony of both kHz radiation and of EEG.

3. The DC currents of Becker could be accompanied by Josephson currents running along flux
tubes making possible dissipation free energy transfer and quantum control over long distances
and meridians of chinese medicine could correspond to these flux tubes.

4. The model of DNA as topological quantum computer assumes that nucleotides and lipids are
connected by ordinary or ”wormhole” magnetic flux tubes acting as strands of braid and carrying
dark matter with large Planck constant. The model leads to a new vision about TGD in which
the assignment of nucleotides to quarks allows to understood basic regularities of DNA not
understood from biochemistry.

5. Each physical system corresponds to an onionlike hierarchy of field bodies characterized by p-
adic primes and value of Planck constant. The highest value of Planck constant in this hierarchy
provides kind of intelligence quotient characterizing the evolutionary level of the system since
the time scale of planned action and memory correspond to the temporal distance between
tips of corresponding causal diamond (CD). Also the spatial size of the system correlates with
the Planck constant. This suggests that great evolutionary leaps correspond to the increase of
Planck constant for the highest level of hierarchy of personal magnetic bodies. For instance,
neurons would have much more evolved magnetic bodies than ordinary cells.

6. At the level of DNA this vision leads to an idea about hierarchy of genomes. Magnetic flux
sheets traversing DNA strands provide a natural mechanism for magnetic body to control the
behavior of biological body by controlling gene expression. The quantization of magnetic flux
states that magnetic flux is proportional to ~ and thus means that the larger the value of ~ is
the larger the width of the flux sheet is. For larger values of ~ single genome is not enough to
satisfy this condition. This leads to the idea that the genomes of organs, organism, and even
population, can organize like lines of text at the magnetic flux sheets and form in this manner a
hierarchy of genomes responsible for a coherent gene expression at level of cell, organ, organism
and population and perhaps even entire biosphere. This would also provide a mechanism by
which collective consciousness would use its biological body - biosphere.

DNA as topological quantum computer

I ended up with the recent model of tqc in bottom-up manner and this representation is followed also
in the text. The model which looks the most plausible one relies on two specific ideas.

1. Sharing of labor means conjugate DNA would do tqc and DNA would ”print” the outcome of
tqc in terms of mRNA yielding amino-acids in the case of exons. RNA could result also in the
case of introns but not always. The experience about computers and the general vision provided
by TGD suggests that introns could express the outcome of tqc also electromagnetically in terms
of standardized field patterns as Gariaev’s findings suggest [7] . Also speech would be a form
of gene expression. The quantum states braid (in zero energy ontology) would entangle with
characteristic gene expressions. This argument turned out to be based on a slightly wrong belief
about DNA: later I learned that both strand and its conjugate are transcribed but in different
directions. The symmetry breaking in the case of transcription is only local which is also visible
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in DNA replication as symmetry breaking between leading and lagging strand. Thus the idea
about entire leading strand devoted to printing and second strand to tqc must be weakened
appropriately.

2. The manipulation of braid strands transversal to DNA must take place at 2-D surface. Here
dancing metaphor for topological quantum computation [69] generalizes. The ends of the space-
like braid are like dancers whose feet are connected by thin threads to a wall so that the dancing
pattern entangles the threads. Dancing pattern defines both the time-like braid, the running of
classical tqc program and its representation as a dynamical pattern. The space-like braid defined
by the entangled threads represents memory storage so that tqc program is automatically written
to memory as the braiding of the threads during the tqc. The inner membrane of the nuclear
envelope and cell membrane with entire endoplasmic reticulum included are good candidates for
dancing halls. The 2-surfaces containing the ends of the hydrophobic ends of lipids could be the
parquets and lipids the dancers. This picture seems to make sense.

One ends up to the model also in top-down manner.

1. Darwinian selection for which standard theory of self-organization [10] provides a model, should
apply also to tqc programs. Tqc programs should correspond to asymptotic self-organization
patterns selected by dissipation in the presence of metabolic energy feed. The spatial and
temporal pattern of the metabolic energy feed characterizes the tqc program - or equivalently -
sub-program call.

2. Since braiding characterizes the tqc program, the self-organization pattern should correspond
to a hydrodynamical flow or a pattern of magnetic field inducing the braiding. Braid strands
must correspond to magnetic flux tubes of the magnetic body of DNA. If each nucleotide is
transversal magnetic dipole it gives rise to transversal flux tubes, which can also connect to the
genome of another cell.

3. The output of tqc sub-program is probability distribution for the outcomes of state function
reduction so that the sub-program must be repeated very many times. It is represented as
four-dimensional patterns for various rates (chemical rates, nerve pulse patterns, EEG power
distributions,...) having also identification as temporal densities of zero energy states in various
scales. By the fractality of TGD Universe there is a hierarchy of tqc’s corresponding to p-adic and
dark matter hierarchies. Programs (space-time sheets defining coherence regions) call programs
in shorter scale. If the self-organizing system has a periodic behavior each tqc module defines a
large number of almost copies of itself asymptotically. Generalized EEG could naturally define
this periodic pattern and each period of EEG would correspond to an initiation and halting of
tqc. This brings in mind the periodically occurring sol-gel phase transition inside cell near the
cell membrane.

4. Fluid flow must induce the braiding which requires that the ends of braid strands must be
anchored to the fluid flow. Recalling that lipid mono-layers of the cell membrane are liquid
crystals and lipids of interior mono-layer have hydrophilic ends pointing towards cell interior,
it is easy to guess that DNA nucleotides are connected to lipids by magnetic flux tubes and
hydrophilic lipid ends are stuck to the flow.

5. The topology of the braid traversing cell membrane cannot affected by the hydrodynamical flow.
Hence braid strands must be split during tqc. This also induces the desired magnetic isolation
from the environment. Halting of tqc reconnects them and make possible the communication of
the outcome of tqc.

6. There are several problems related to the details of the realization. How nucleotides A,T,C,G
are coded to strand color and what this color corresponds to? The prediction that wormhole
contacts carrying quark and anti-quark at their ends appear in all length scales in TGD Universe
resolves the problem. How to split the braid strands in a controlled manner? High Tc super
conductivity provides a partial understanding of the situation: braid strand can be split only if
the supra current flowing through it vanishes. From the proportionality of Josephson current to
the quantity sin(

∫
2eV dt) it follows that a suitable voltage pulse V induces DC supra-current
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and its negative cancels it. The conformation of the lipid controls whether it it can follow the flow
or not. How magnetic flux tubes can be cut without breaking the conservation of the magnetic
flux? The notion of wormhole magnetic field saves the situation now: after the splitting the flux
returns back along the second space-time sheet of wormhole magnetic field.

To sum up, it seems that essentially all new physics involved with TGD based view about quantum
biology enter to the model in crucial manner.

Quantum model of nerve pulse and EEG

In this article a unified model of nerve pulse and EEG is discussed.

1. In TGD Universe the function of EEG and its variants is to make possible communications from
the cell membrane to the magnetic body and the control of the biological body by the magnetic
body via magnetic flux sheets traversing DNA by inducing gene expression. This leads to the
notions of super- and hyper-genome predicting coherent gene expression at level of organs and
population.

2. The assignment the predicted ranged classical weak and color gauge fields to dark matter hier-
archy was a crucial step in the evolution of the model, and led among other things to a model
of high Tc superconductivity predicting the basic scales of cell, and also to a generalization of
EXG to a hierarchy of ZXGs, WXGs, and GXGs corresponding to Z0, W bosons and gluons.

3. Dark matter hierarchy and the associated hierarchy of Planck constants plays a key role in the
model. For instance, in the case of EEG Planck constant must be so large that the energies of
dark EEG photons are above thermal energy at physiological temperatures. The assumption
that a considerable fraction of the ionic currents through the cell membrane are dark currents
flowing along the magnetic flux tubes explains the strange findings about ionic currents through
cell membrane. Concerning the model of nerve pulse generation, the newest input comes from
the model of DNA as a topological quantum computer and experimental findings challenging
Hodgkin-Huxley model as even approximate description of the situation.

4. The identification of the cell interior as gel phase containing most of water as structured wa-
ter around cytoskeleton - rather than water containing bio-molecules as solutes as assumed in
Hodkin-Huxley model - allows to understand many of the anomalous behaviors associated with
the cell membrane and also the different densities of ions in the interior and exterior of cell at
qualitative level. The proposal of Pollack that basic biological functions involve phase transitions
of gel phase generalizes in TGD framework to a proposal that these phase transitions are induced
by quantum phase transitions changing the value of Planck constant. In particular, gel-sol phase
transition for the peripheral cytoskeleton induced by the primary wave would accompany nerve
pulse propagation. This view about nerve pulse is not consistent with Hodkin-Huxley model.

The model leads to the following picture about nerve pulse and EEG.

1. The system would consist of two superconductors- microtubule space-time sheet and the space-
time sheet in cell exterior- connected by Josephson junctions represented by magnetic flux tubes
defining also braiding in the model of tqc. The phase difference between two super-conductors
would obey Sine-Gordon equation allowing both standing and propagating solitonic solutions.
A sequence of rotating gravitational penduli coupled to each other would be the mechanical
analog for the system. Soliton sequences having as a mechanical analog penduli rotating with
constant velocity but with a constant phase difference between them would generate moving
kHz synchronous oscillation. Periodic boundary conditions at the ends of the axon rather than
chemistry determine the propagation velocities of kHz waves and kHz synchrony is an automatic
consequence since the times taken by the pulses to travel along the axon are multiples of same
time unit. Also moving oscillations in EEG range can be considered and would require larger
value of Planck constant in accordance with vision about evolution as gradual increase of Planck
constant.
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2. During nerve pulse one pendulum would be kicked so that it would start to oscillate instead of
rotating and this oscillation pattern would move with the velocity of kHz soliton sequence. The
velocity of kHz wave and nerve pulse is fixed by periodic boundary conditions at the ends of
the axon implying that the time spent by the nerve pulse in traveling along axon is always a
multiple of the same unit: this implies kHz synchrony. The model predicts the value of Planck
constant for the magnetic flux tubes associated with Josephson junctions and the predicted force
caused by the ionic Josephson currents is of correct order of magnitude for reasonable values of
the densities of ions. The model predicts kHz em radiation as Josephson radiation generated
by moving soliton sequences. EEG would also correspond to Josephson radiation: it could be
generated either by moving or standing soliton sequences (latter are naturally assignable to
neuronal cell bodies for which ~ should be correspondingly larger): synchrony is predicted also
now.

12.7 Some mathematical speculations

12.7.1 The content of McKay correspondence in TGD framework

The possibility to assign Dynkin diagrams with the inclusions of II1 algebras is highly suggestive
concerning possible physical interpretations. The basic findings are following.

1. For β = M : N < 4 Dynkin diagrams code for the inclusions and correspond to simply laced
Lie algebras. SU(2), D2n+1, and E7 are excluded.

2. Extended ADE Dynkin diagrams coding for simply laced ADE Kac Moody algebras appear at
β = 4. Also SU(2) Kac Moody algebra appears.

Does TGD give rise to ADE hierarchy of gauge theories

The first question is whether any finite subgroup G ⊂ SU(2) acting in CP2 degrees of freedom could
somehow give rise to multiplets of the corresponding gauge group having interactions described by a
gauge theory. Orbifold picture suggests that might be the case.

1. The ”sheets” for the space-time sheet forming an N(G)-fold cover of CD are in one-one cor-
respondence with group G. This degeneracy gives rise to additional states and these states
correspond to the group algebra having basis given by group characters χ(g). One obtains
irreducible representations of G with degeneracies given by their dimensions. Altogether one
obtains N(G) states in this manner. In the case of A(n) the number of these states is n+ 1, the
number of the states of the fundamental representation of SU(n+ 1). In the same manner, for
D2n the number of these states equals to the number of states in the fundamental representation
of D2n. It seems that the rule is quite general. Thus these representations would in the case of
fermions give the states of the fundamental representation of the corresponding gauge group.

2. From fermion and antifermion states one can construct in a similar manner pairs giving N(G)2

states defining in the case of A(n) n2 − 1-dimensional gauge boson multiplet plus singlet. Also
other groups must give boson multiplet plus possible other multiplets. For instance, for D(4)
the number of states is 64 and boson multiplet is 8-dimensional so that many other spin 1 states
result.

3. These findings give hopes that the orbifold multiplets could be modelled by a gauge theory
based on corresponding gauge group. What is nice that this huge hierarchy of gauge theories
is associated with dark matter so that the predictivity and falsifiability are not lost unlike in
M-theory.

Does one obtain also a hierarchy of conformal theories with ADE Kac Moody symmetry?

Consider next the question Kac Moody interactions correspond to extended ADE diagrams are pos-
sible.
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1. In this case the notion of orbifold seems to break down since the symmetry related points form a
continuum SU(2) and space-time surface would become 6-dimensional if the CD projection is 4-
dimensional. If one takes space-time as something which emerges, one could take this possibility
half seriously. A more natural natural possibility is that CD projection is 2-dimensional geodesic
sphere in which case one would have string like objects so that conformal field theory with Kac-
Moody algebra would emerge naturally.

2. The new degrees of freedom would define 2-dimensional continuum and it would not be com-
pletely surprising if conformal field theory based on ADE Kac Moody algebra could describe
the situation. One possibility is that these continua for different inclusions correspond to SU(2)
decompose to an N(G)-fold covers of S2/G orbifold so that also now groups G would be involved
with the Jones inclusions, which might provide a hint about how to construct them. S2/G would
play the role of stringy world sheet for the conformal field theory in question. This effective
re-arrangement of the topology S2 might be due to the fact that conformal fields possess G
symmetry which effectively groups points of S2 to n(G)-multiplets. The localized representa-
tions of the Lie group corresponding to G would correspond to the multiplets obtained from the
representations of group algebra of G as in previous case.

3. The formula for the scaling factor of CD metric would give infinite scaling factor if one identifies
the scaling factor as maximal order of cyclic subgroup of SU(2). As a matter fact there is no
finite cyclic subgroup of this kind. The solution to the problem would be identification of the
scaling factor as the order of the maximal cyclic subgroup of G so that the scaling factors would
be same for the two situations related by McKay correspondence.

Generalization to CD degrees of freedom

One can ask whether the proposed picture generalizes formally also the case of CD.

1. In this case quantum groups would correspond to discrete subgroups G ⊂ SL(2, C). Kac Moody
group would correspond to G-Kac Moody algebra made local with respect to SL(2, C) orbit in
CD divided by G. These orbits are 3-dimensional hyperboloids Ha with a constant value of
light cone proper time a so that the division by G gives fundamental domain Ha/G with a finite
3-volume.

2. The 4-dimensionality of space-time would require 1-dimensional CP2 projection. Vacuum ex-
tremals of Kähler action would be in question. Robertson-Walker metric have 1-dimensional CP2

projection and carry non-vanishing density of gravitational mass so that in this sense the theory
would be non-trivial. G would label different lattice like cosmologies defined by tesselations with
fundamental domain Ha/G.

3. The multiplets of G would correspond to collections of points, one from each cells of the lattice
like structure. Macroscopic quantum coherence would be realized in cosmological scales. If one
takes seriously the vision about the role of short distance p-adic physics as a generator of long
range correlations of the real physics reflected as p-adic fractality, this idea does not look so
weird anymore.

Complexified modular group SL(2, Z + iZ) and its subgroups are interesting as far as p-
adicization is considered. The principal congruence subgroups Γ(N) of SL(2, Z + iZ) which
are unit matrices modulo N define normal subgroups of the complex modular group and are
especially interesting candidates for groups G ⊂ SL(2, C). The group Γ(N = pk) labeling funda-
mental domains of the tesselation Ha/Γ(N = pk) defines a mathematically attractive candidate
for a point set associated with the intersections of p-adic space-time sheets with real space-time
sheets. Also analogous groups for algebraic extensions of Z are interesting.

The simplest discrete subgroup of SL(2,C) with infinite number of elements would corresponds
to powers of boost to single direction and correspond at the non-relativistic limit to multiples
of basic velocity. This could also give rise to quantization of cosmic recession velocities. There
is evidence for the quantization of cosmic recession velocities (for a model in which single ob-
ject produces quantized redshifts see [25] ) and it is interesting to see whether they could be
interpreted in terms of the lattice like periodicity in cosmological length scales implied by the
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effective reduction of physics to M4
+/Gn. In [22] the values z = 2.63, 3.45, 4.47 of cosmic red shift

are listed. These correspond to recession velocities v = (z2 − 1)/(z2 + 1) are (0.75,0.85,0.90).
The corresponding hyperbolic angles are given by η = acosh(1/(1 − v2)) and the values of η
are (1.46, 1.92, 2.39). The differences η(2)− η(1) = .466 and η(3)− η(2) = .467 are same within
experimental uncertainties. One has however η(n)/(η(2) − η(1)) = (3.13, 4.13, 5.13) instead of
(3, 4, 5). A possible interpretation is in terms of the velocity of the observer with respect to the
frame in which quantization of η happens.

Quantitative support for the interpretation

A more detailed analysis of the situation gives support for the proposed vision.

1. A given value of quantum group deformation parameter q = exp(iπ/n) makes sense for any Lie
algebra but now a preferred Lie-algebra is assigned to a given value of quantum deformation
parameter. At the limit β = 4 when quantum deformation parameter becomes trivial, the gauge
symmetry is replaced by Kac Moody symmetry.

2. The prediction is that Kac-Moody central extension parameter should vanish for β < 4. There
is an intriguing relationship to formula for the quantum phase qKM associated with (possibly
trivial) Kac-Moody central extension and the phase defined by ADE diagram

qKM = exp(iφ) , φ1 = π
k+hv ,

qJones = exp(iφ) , φ = π
h

In the first formula sum of Kac-Moody central extension parameter k and dual Coxeter number
hv appears whereas Coxeter number h appears in the second formula. Internal consistency
requires

k + hv = h . (12.7.1)

It is easy see that the dual Coxeter number hv and Coxeter number h given by h = (dim(g)−r)/r,
where r is the dimension of Cartan algebra of g, are identical for ADE algebras so that the Kac-
Moody central extension parameter k must indeed vanish. For SO(2n + 1), Sp(n), G2, and
F4 the condition h = hv does not hold true but one has h(n) = 2n = hv + 1 for SO(2n + 1),
h(n) = 2n = 2(hv − 1) for Sp(n), h = 6 = hv + 2 for G2, and h = 12 = hv + 3 for F4.

What is intriguing that G2, which seems to play a fundamental role in the dual formulation
of quantum TGD based on the identification of space-times as surfaces in hyper-octonionic
space M8 [86] is not allowed. As a matter fact, G2 → SU(3) reduction occurs also in the
dual formulation based on G2/SU(3) coset model and is required by the separate conservation
of quark and lepton numbers predicted by TGD. ADE groups would be associated with the
interaction between space-time sheets rather than entire dynamics and need not have anything
to do with the Kac-Moody algebra associated with color and electro-weak interactions appearing
in the construction of physical states [49] .

3. There seems to be a concrete connection with conformal field theories. This connection would
allow to understand the emergence of quantum groups appearing naturally in these theories.
Quite generally, the conformal central extension parameter for unitary Virasoro representations
resulting by Sugawara construction from Kac Moody representations satisfies either of the con-
ditions

c ≥ kdim(g)

k + hv
+ 1 ,

c =
kdim(g)

k + hv
+ 1− 6

(h− 1)h
. (12.7.2)
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For k = 0, which should be interesting for β < 4, the second formula reduces to

c = 1− 6

(h− 1)h
. (12.7.3)

The formula gives the values of c for minimal conformal field theories with finite number of
conformal fields and real conformal weights. Indeed, h in this formula seems to correspond to
the same h as appearing in the expression β ≡M : N = 4cos2(π/h) .

β = 3, h = 6 corresponds to three-state Potts model with c = 4/5 which should thus have a
gauge group for which Coxeter number is 6: the group should be either SU(6) or SO(8). Two-
state Potts model, that is Ising model with β = 2, h = 4 would correspond to c = 1/2 and to
a gauge group SU(4) or SO(4). For h = 3 (”one-state Potts model”) with group SU(3) one
would have c = 0 and vanishing conformal anomaly so that conformal degrees of freedom would
become pure gauge degrees of freedom.

These observations give support for the following picture.

1. Quite generally, the number of states of the generalized β-state Potts model has an interpretation
as the dimension β = M : N of M as N -module. Besides the models with integer number of
states there is an infinite number of models for which the number of states is not an integer.
The conditions c ≤ 1 guaranteing real conformal weights and β ≤ 4 correspond to each other
for these models.

2. β > 4 Potts models would be formally obtained by allowing h to be imaginary in the defining
formula for M : N . In this case c would be however complex so that the theory would not be
unitary.

3. For minimal models with (β < 4, c < 1) Kac-Moody central extension parameter is vanishing
so that Kac Moody algebra indeed acts like gauge symmetries and gauge symmetries would be
in question. (β = 4, c = 1) would define a ”four-state Potts model” with infinite-dimensional
unitary group acting as a gauge group. On the other hand, the appearance of extended ADE
Dynkin diagrams suggests strongly that this limit is not realized but that β = M : N = 4
corresponds to k = 1 conformal field theory allowing Kac Moody symmetries for any ADE
group, which as simply-laced groups allows vertex operator construction. The appearance of
kdim(g)/(k + g) in the more general formula would thus code the Kac Moody group whereas
for β < 4 ADE diagram codes for the preferred gauge group characterizing the minimal CFT.

4. The possibility that any ADE gauge group or Kac-Moody group can characterize the interaction
between space-time sheets conforms with the idea about Universe as a Topological Quantum
Computer able to simulate any conceivable quantum dynamics. Of course, one cannot exclude
the possibility that only electro-weak and color symmetries are realized in this manner.

Ga as a symmetry group of magnetic body and McKay correspondence

The group Ga ⊂ SU(2) ⊂ SL(2, C) means exact rotational symmetry realized in terms of CD
coverings of CP2. The 5 and 6-cycles in biochemistry (sugars, DNA,....) are excellent candidates
for these symmetries. For very large values of Planck constant, say for the values ~(CD)/~(CP2) =
GMm/v0 = (na/nb)~0, v0 = 2−11, required by the model for planetary orbits as Bohr orbits [77] , Ga
is huge and corresponds to either Zna or in the case of even value of na to the group generated by Zn
and reflection acting on plane and containing 2na elements.

The notion of magnetic body seems to provide the only conceivable candidate for a geometric object
possessing Ga as symmetries. In the first approximation the magnetic field associated with a dark
matter system is expected to be modellable as a dipole field having rotational symmetry around the
dipole axis. Topological quantization means that this field decomposes into flux tube like structures
related by the rotations of Zn or D2n. Dark particles would have wave functions delocalized to this
set of these flux quanta and span group algebra of Ga. Magnetic flux quanta are indeed assumed to
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mediate gravitational interactions in the TGD based model for the quantization of radii of planetary
orbits and this explains the dependence of ~gr on the masses of planet and central object [77] .

For the model of dark matter hierarchy appearing in the model of living matter one has na = 211k,
k = 1, 2, 3, .., 7 for cyclotron time scales below life cycle for a magnetic field Bd = .2 Gauss at k = 4
level of hierarchy (the field strength is fixed by the model for the effects of ELF em fields on vertebrate
brain at harmonics of cyclotron frequencies of biologically important ions [27] ). Note that Bd scales
as 2−11k from the requirement that cyclotron energy is constant.

ADE correspondence between subgroups of SU(2) and Lie groups in ADE hierarchy encourages
to consider the possibility that TGD could mimic ADE hierarchy of gauge theories. In the case of
Ga this would mean that many fermion states constructed from single fermion states, which are in
one-one correspondence with the elements of Ga group algebra, would define multiplets of the gauge
group corresponding to the Dynkin diagram characterizing Ga: for instance, SU(na) in the case of
Zna . Fermion multiplet would contain na states and gauge boson multiplet n2

a − 1 states. This
would provide enormous information processing capacity since for na = 211k fermion multiplet would
code exactly 11k bits of information. Magnetic body could represent binary information using the
many-particle states belonging to the representations of say SU(na) at its flux tubes.

12.7.2 Jones inclusions, the large N limit of SU(N) gauge theories and
AdS/CFT correspondence

The framework based on Jones inclusions has an obvious resemblance with larger N limit of SU(N)
gauge theories and also with the celebrated AdS/CFT correspondence [44] so that a more detailed
comparison is in order.

Large N limit of gauge theories and series of Jones inclusions

The large N limit of SU(N) gauge field theories has as definite resemblance with the series of Jones
inclusions with the integer n ≥ 3 characterizing the quantum phase q = exp(iπ/n) and the order of
the maximal cyclic subgroup of the subgroup of SU(2) defining the inclusion. Recall that all ADE
groups except D2n+1 and E7 are allowed (SU(2) is excluded since it would correspond to n = 2).

The limiting procedure keeps the value of g2N fixed. Rather remarkably, this is equivalent with
keeping αN constant but assuming ~ to scale as n = N . Thus the quantization of Planck constants
would provide a physical laboratory for the testing of large N limit.

The observation suggesting a description of YM theories in terms of closed strings is that Feynman
diagrams can be interpreted as being imbedded at closed 2-surfaces of minimal genus guaranteing that
the internal lines meet except in vertices. The contribution of genus g diagrams is proportional to Ng−1

at the large N limit. The interpretation in terms of closed partonic 2-surfaces is highly suggestive and
the Ng−1 should come from the multiple covering property of CP2 by N CD-points (or vice versa)
with the finite subgroup of G ⊂ SU(2) defining the Jones inclusion and acting as symmetries of the
surface.

Analogy between stacks of branes and multiple coverings of CD and CP2

An important aspect of AdS/CFT dualities is a prediction of an infinite hierarchy of gauge groups,
which as such is as interesting as the claimed dualities. The prediction relies on the notion Dp-branes.
Dp-branes are p + 1-dimensional surfaces of the target space at which the ends of open strings can
end. In the simplest situation one considers N parallel p-branes at the limit when the distances
between branes characterized by an expectation value of Higgs fields approach zero to obtain what
is called N-stack of branes. There are N2 different strings connecting the branes and the heuristic
idea is that they correspond to gauge bosons of U(N) gauge theory. Note that the requirement that
AdS/CFT dualities exist forces the introduction of branes and the optimistic interpretation is that a
non-perturbative effect of still unknown M-theory is in question. In the limit of an ideal stack one
assumes that U(N) gauge theory at the brane representing the stack is obtained. The branes must
also carry a p-form defining gauge potential for a closed p+ 1-form. This Ramond charge is quantized
and its value equals to N .

Consider now the group Ga×Gb ⊂ SL(2, C)×SU(2) ⊂ SU(3) defining double Jones inclusion and
implying the scalings ~(M4)→ n(Gb)~(M4) and ~(CP2)→ n(Ga)~(CP2). These space-time surfaces
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define n(Ga)-fold multiple coverings of CP2 and n(Gb)-fold multiple coverings of CD. In CP2 degrees
of freedom the collection of Gb-related partonic 2-surfaces (/3-surfaces/4-surfaces) is highly analogous
to the stack of branes. In CD degrees of freedom the stack of copies of surface typically correspond
to along a circle (An, D2n or at vertices of tedrahedron or isosahedron.

In TGD framework the interpretation strings are not needed to define gauge fields. The group
algebra of G realized as discrete plane waves at G-orbit gives rise to representations of G. The
hypothesis supported by few examples is that these additional degrees of freedom allow to construct
multiplets of the gauge group assignable to the ADE diagram characterizing the inclusion.

AdS/CFT duality

AdS/CFT duality is a further aspect of the brane construction. The dual description of the situation
is in terms of a string theory in a background in which N -brane acts as a macroscopic object giving
rise to a black-hole like object in (say) 10-dimensional target space. This background has the form
AdS5 ×X5, where AdS5 is 5-dimensional hyperboloid of M6 and thus allows SO(4, 2) as isometries.
X5 is compact constant curvature space. S5 gives rise to N = 4 SUSY in M4 with M4 interpreted
as a brane. The first support for the dualities comes from the symmetries: for instance, the N = 4
super-symmetrized isometries of AdS5×S5 are same as the symmetries of 4-dimensional N = 4 SUSY
for p = 3 branes. N-branes can be used as models for black holes in target space and black-hole
entropy can be calculated using either target space picture or conformal field theory at brane and the
results turn out be the same.

Does the TGD equivalent of this duality exists in some sense?

1. As far as partonic 2-surfaces identified as 1-branes are considered, conformal field theory descrip-
tion is trivially true. In TGD framework the analog of Ramond charges are the integers na and
nb characterizing the multipliticies of the maximal Abelian subgroups having clear topological
meaning. This conforms with the observation that large N limit of the gauge field theories can
be formulated in terms of closed surfaces at which the Feynman diagrams are imbedded without
self crossings. It seems that the integers na and nb characterizing the Jones inclusion naturally
take the role of Ramond charge: this does not of course exclude the possibility they can be
expressed as fluxes at space-time level as will be indeed found.

2. Conformal field theory description can be generalized in the sense that one replaces the n(Ga)×
n(Gb) partonic surfaces with single one and describes the new states as primary fields arranged
into representations of the ADE group in question. This would mean that the standard model
gauge group extends by additional factor which is however non-trivially related to it.

3. If one can accept the idea that the conformal field theory description for partons gives rise to
M4 gauge theory as an approximate description, it is not too difficult to imagine that also ADE
hierarchy of gauge theories results as a description of the exotic states. One can say that CFT in
p-brane is replaced now with CFT on partonic 2-surface (1-brane) analogous to a closed string.

4. In the minimal interpretation there is no need to add strings connecting the branches of the dou-
ble covering of the partonic 2-surface whose function is essentially that of making possible gauge
bosons as fermion anti-fermion pairs. One could of course imagine gauge fluxes as counterparts
of strings but just the fact that G-invariance dictates the configurations completely forces to
question this kind of dynamics.

5. There is no reason to expect the emergence of N = 4 super-symmetric field theory in M4 as
in the case of super-string models. The reasons should be already obvious: super-conformal
generators G anticommute to L0 proportional to mass squared rather than four-momentum and
the spectrum extended by Ga ×Gb degeneracy contains more states.

One can of course ask whether higher values of p could make sense in TGD framework.

1. It seems that the light-like orbits of the partonic 2-surfaces defining 2-branes do not bring in
anything new since the generalized conformal invariance makes it possible the restriction to a
2-dimensional cross section of the light like causal determinant.
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2. The idea of regarding space-time surface X4 as a 3-brane in H in which some kind of conformal
field theory is defined is in conflict with the basis ideas of TGD. The role of X4 interior is to pro-
vide classical correlates for quantum dynamics to make possible quantum measurement theory
and also introduce correlations between partonic 2-surfaces even in the case that partonic con-
formal dynamics reduces to a topological string theory. It is quantum classical correspondence
which corresponds to this duality.

What is the counterpart of the Ramond charge in TGD?

The condition that there exist a p-form defining p + 1-gauge field with p-charge equal to na or nb
is a rather stringent additional condition also in TGD framework. For n < ∞ this kind of charge
is defined by Jones inclusion and represented topologically so that Ramond charge is not needed in
n < ∞ case. By the earlier arguments one must however be able to assign integers na and nb also
to G = SU(2) inclusions with Kac-Moody algebra characterized by an extended ADE diagram with
the phases qi = exp(iπ/ni) relating to the monodromy of the theory. Since Jones inclusion does not
define in this case the value of n <∞ in any obvious manner, the counterpart of the Ramond charge
is needed.

1. For partonic 2-surfaces ordinary gauge potential would define this form and the condition would
state that magnetic flux equals to n so that the anyonic partonic two-surfaces would be ho-
mologically non-trivial in CP2 degrees of freedom. String ends would define basic example of
this situation. This would be the case also in M4

+ degrees of freedom: the partonic 2-surface
would essentially wind na times around the tip of δCD and the gauge field in question would
be monopole magnetic field in δCD. This kind of situation need not correspond to anything
cosmological since future and past light-cones appear in the basic definition of the scattering
amplitudes.

2. For p = 3 Chern-Simons action for the induced CP2 Kähler form associated with the partonic
2-surface indeed defines this kind of charge. Ramond charge should be simply N . CP2 type
extremals or their small deformations satisfy this constraint and are indeed very natural in
elementary particle physics context but too restrictive in a more general context.

Note that the light-like orbits of non-deformed CP2 extremals have light-like random curve as an
M4 projection and the conformal symmetries of M4 obviously respect light-likeness property. Hence
SO(4, 2) symmetry characterizing AdS5/CFT is not excluded but would be broken by p-adic ther-
modynamics and by TGD based Higgs mechanism involving the identification of inertial momentum
as average value of non-conserved gravitational momentum parallel to the light-like zitterbewegung
orbit.

Can one speak about black hole like structures in TGD framework?

For AdS/CFT correspondence there is also a dynamical coupling to the target space metric. The
coupling to H-metric is present also now since the overall scalings of the CD resp. CP2 metrics
by nb resp. by na are involved. This applies to when multiple covering is used explicitly. In the
description in which one replaces the multiple covering by ordinary M4 × CP2, the metric suffers
a genuine change and something analogous to the black-hole type metrics encountered in AsS/CFT
correspondence might be encountered.

Consider as an example an na-fold covering of CP2 points by M4 points (ADE diagram Ana−1).
The n-fold covering means only n2π rotation for the phase angle ψ of CP2 complex coordinate leads to
the original point. The replacement ψ → ψ/na gives rise to what would look like ordinary M4 ×CP2

but with a modified CP2 metric. The metric components containing ψ as index are scaled down by
1/na or 1/n2

a. Notice that Ψ effectively disappears from the dynamics at the large na limit.
If one uses an effective description in which covering is eliminated the metric is indeed affected

at the level of imbedding space black hole like structures at the level of dynamic space might make
emerge also in TGD framework at large N limit since the masses of the objects in question become
large and CP2 metric is scaled by N so that CP2 has very large size at this limit. This need not lead
to any inconsistencies if these phases are interpreted as dark matter. At the elementary particle level
p-adic thermodynamics predicts that p-adic entropy is proportional to thermal mass squared which
implies elementary particle black-hole analogy.
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Other dualities

Also quantum classical correspondence defines in a loose sense a duality justifying the basic assump-
tions of quantum measurement theory. The light-like orbits of 2-D partons are characterized by a
generalization of ordinary 2-D conformal invariance so that CFT part of the duality would be very
natural. The dynamical target space would be replaced with the space-time surface X4 with a dy-
namical metric providing classical correlates for the quantum dynamics at partonic 2-surfaces. The
duality in this sense cannot be however exact since classical dynamics cannot fully represent quantum
dynamics.

Classical description is not expected to be unique. The basic condition on space-time surfaces
assignable to a given configuration of partonic 2-surfaces associated with the surface X3

V defining
S-matrix element are posed by quantum classical correspondence. Both hyper-quaternionic and co-
hyper-quaternionic space-time surfaces are acceptable and this would define a fundamental duality.

A concrete example about this HQ-coHQ duality would be the equivalence of space-time descrip-
tions using 4-D CP2 type extremals and 4-D string like objects connecting them. If one restricts
to CP2 type extremals and string like objects of from X2 × Y 2, the target space reduces effectively
to M4 and the dynamical degrees of freedom correspond in both cases to transversal M4 degrees of
freedom. Note that for CP2 type extremals the conditions stating that random light-likeness of the
M4 projection of the CP2 type extremal are equivalent to Virasoro conditions. CP2 type extremals
could be identified as co-HQ surfaces whereas stringlike objects would correspond to HQ aspect of the
duality.

HQ-coHQ provides dual classical descriptions of same phenomena. Particle massivation would be
a basic example. Higgs mechanism in a gauge theory description based on CP2 type extremals would
rely on zitterbewegung implying that the average value of gravitational mass identified as inertial mass
is non-vanishing and is discussed already. Higgs field would be assigned to the wormhole contacts.
The dual description for the massivation would be in terms of string tension and mass squared would
be proportional to the distance between G-related points of CP2.

These observations would suggest that also a super-conformal algebra containing SL(2, R) ×
SU(2)L×U(1) or its compact version exists and corresponds to a trivial inclusion. This is indeed the
case [46] . The so called large N = 4 super-conformal algebra contains energy momentum current,
2+2 super generators G, SU(2)× SU(2)× U(1) Kac-Moody algebra (both SU(2) and SL(2,R) could
be interpreted as acting on M4 spin degrees of freedom, and 2 spin 1/2 fermionic currents having
interpretation in terms of right handed neutrinos corresponding to two H-chiralities. Interestingly, the
scalar generator is now missing.

12.7.3 Could McKay correspondence and Jones inclusions relate to each
other?

The understanding of Langlands correspondence for general reductive Lie groups in TGD framework
seems to require some physical mechanism allowing the emergence of these groups in TGD based
physics. The physical idea would be that quantum dynamics of TGD is able to emulate the dynamics
of any gauge theory or even stringy dynamics of conformal field theory having Kac-Moody type
symmetry and that this emulation relies on quantum deformations induced by finite measurement
resolution described in terms of Jones inclusions of sub-factors characterized by group G leaving
elements of sub-factor invariant. Finite measurement resolution would would result simply from the
fact that only quantum numbers defined by the Cartan algebra of G are measured.

There are good reasons to expect that infinite Clifford algebra has the capacity needed to realize
representations of an arbitrary Lie group. It is indeed known that that any quantum group charac-
terized by quantum parameter which is root of unity or positive real number can be assigned to Jones
inclusion [80] . For q = 1 this would gives ordinary Lie groups. In fact, all amenable groups define
unique sub-factor and compact Lie groups are amenable ones.

It was so called McKay correspondence [97] which originally stimulated the idea about TGD as
an analog of Universal Turing machine able to mimic both ADE type gauge theories and theories
with ADE type Kac-Moody symmetry algebra. This correspondence and its generalization might also
provide understanding about how general reductive groups emerge. In the following I try to cheat the
reader to believe that the tensor product of representations of SU(2) Lie algebras for Connes tensor
powers of M could induce ADE type Lie algebras as quantum deformations for the direct sum of n
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copies of SU(2) algebras This argument generalizes also to the case of other compact Lie groups.

About McKay correspondence

McKay correspondence [97] relates discrete finite subgroups of SU(2) ADE groups. A simple descrip-
tion of the correspondences is as follows [97].

1. Consider the irreps of a discrete subgroup G ⊂ SU(2) which correspond to irreps of G and can
be obtained by restricting irreducible representations of SU(2) to those of G. The irreducible
representations of SU(2) define the nodes of the graph.

2. Define the lines of graph by forming a tensor product of any of the representations appearing
in the diagram with a doublet representation which is always present unless the subgroup is
2-element group. The tensor product regarded as that for SU(2) representations gives represen-
tations j − 1/2, and j + 1/2 which one can decompose to irreducibles of G so that a branching
of the graph can occur. Only branching to two branches occurs for subgroups yielding ex-
tended ADE diagrams. For the linear portions of the diagram the spins of corresponding SU(2)
representations increase linearly as .., j, j + 1/2, j + 1, ...

One obtains extended Dynkin diagrams of ADE series representing also Kac-Moody algebras giving
An, Dn, E6, E7, E8. Also A∞ and A−∞,∞ are obtained in case that subgroups are infinite. The Dynkin
diagrams of non-simply laced groups Bn (SO(2n+1)), Cn (symplectic group Sp(2n) and quaternionic
group Sp(n)), and exceptional groups G2 and F4 are not obtained.

ADE Dynkin diagrams labeling Lie groups instead of Kac-Moody algebras and having one node
less, do not appear in this context but appear in the classification of Jones inclusions for M : N < 4.
As a matter fact, ADE type Dynkin diagrams appear in very many contexts as one can learn from
John Baez’s This Week’s Finds [41] .

1. The classification of integral lattices in Rn having a basis of vectors whose length squared equals
2

2. The classification of simply laced semisimple Lie groups.

3. The classification of finite sub-groups of the 3-dimensional rotation group.

4. The classification of simple singularities . In TGD framework these singularities could be as-
signed to origin for orbifold CP2/G, G ⊂ SU(2).

5. The classification of tame quivers.

Principal graphs for Connes tensor powers M

The thought provoking findings are following.

1. The so called principal graphs characterizing M : N = 4 Jones inclusions for G = SU(2)
are extended Dynkin diagrams characterizing ADE type affine (Kac-Moody) algebras. Dn is
possible only for n ≥ 4.

2. M : N < 4 Jones inclusions correspond to ordinary ADE type diagrams for a subset of simply
laced Lie groups (all roots have same length) An (SU(n)), D2n (SO(2n)), and E6 and E8. Thus
D2n+1 (SO(2n + 2)) and E7 are not allowed. For instance, for G = S3 the principal graph is
not D3 Dynkin diagram.

The conceptual background behind principal diagram is necessary if one wants to understand the
relationship with McKay correspondence.

1. The hierarchy of higher commutations defines an invariant of Jones inclusion N ⊂M. Denoting
by N ′ the commutant of N one has sequences of horizontal inclusions defined as C = N ′ ∩N ⊂
N ′ ∩M ⊂ N ′ ∩M1 ⊂ ... and C = M′ ∩M ⊂ M′ ∩M1 ⊂ .... There is also a sequence of
vertical inclusions M′ ∩Mk ⊂ N ′ ∩Mk. This hierarchy defines a hierarchy of Temperley-Lieb
algebras [130] assignable to a finite hierarchy of braids. The commutants in the hierarchy are
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direct sums of finite-dimensional matrix algebras (irreducible representations) and the inclusion
hierarchy can be described in terms of decomposition of irreps of kth level to irreps of (k − 1)th

level irreps. These decomposition can be described in terms of Bratteli diagrams [58] .

2. The information provided by infinite Bratteli diagram can be coded by a much simpler bi-partite
diagram having a preferred vertex. For instance, the number of 2k-loops starting from it tells
the dimension of kth level algebra. This diagram is known as principal graph.

Principal graph emerges also as a concise description of the fusion rules for Connes tensor powers
of M.

1. It is natural to decompose the Connes tensor powers [97] Mk =M⊗N ...⊗NM to irreducible
M−M, N −M,M−N , or N −N bi-modules. IfM : N is finite this decomposition involves
only finite number of terms. The graphical representation of these decompositions gives rise to
Bratteli diagram.

2. If N has finite depth the information provided by Bratteli diagram can be represented in nutshell
using principal graph. The edges of this bipartite graph connectM−N vertices to vertices de-
scribing irreducible N−N representations resulting in the decomposition ofM−N irreducibles.
If this graph is finite, N is said to have finite depth.

A mechanism assigning to tensor powers Jones inclusions ADE type gauge groups and
Kac-Moody algebras

The earliest proposals inspired by the hierarchy of Jones inclusions is that inM : N < 4 case it might
be possible to construct ADE representations of gauge groups or quantum groups and in M : N = 4
using the additional degeneracy of states implied by the multiple-sheeted cover H → H/Ga × Gb
associated with space-time correlates of Jones inclusions. Either Ga or Gb would correspond to G. In
the following this mechanism is articulated in a more refined manner by utilizing the general properties
of generators of Lie-algebras understood now as a minimal set of elements of algebra from which the
entire algebra can be obtained by repeated commutation operator (I have often used ” Lie algebra
generator” as an synonym for ”Lie algebra element”). This set is finite also for Kac-Moody algebras.

1. Two observations

The explanation to be discussed relies on two observations.

1. McKay correspondence for subgroups of G (M : N = 4) resp. its variants (M : N < 4) and
its counterpart for Jones inclusions means that finite-dimensional irreducible representations of
allowed G ⊂ SU(2) label both the Cartan algebra generators and the Lie (Kac-Moody) algebra
generators of t+ and t− in the decomposition g = h ⊕ t+ ⊕ t−, where h is the Lie algebra of
maximal compact subgroup.

2. Second observation is related to the generators of Lie-algebras and their quantum counterparts
(see Appendix for the explicit formulas for the generators of various algebras considered). The
observation is that each Cartan algebra generator of Lie- and quantum group algebras, corre-
sponds to a triplet of generators defining an SU(2) sub-algebra. The Cartan algebra of affine
algebra contains besides Lie group Cartan algebra also a derivation d identifiable as an infinites-
imal scaling operator L0 measuring the conformal weight of the Kac-Moody generators. d is
exceptional in that it does not give rise to a triplet. It corresponds to the preferred node added
to the Dynkin diagram to get the extended Dynkin diagram.

2. Is ADE algebra generated as a quantum deformation of tensor powers of SU(2) Lie algebras
representations?

The ADE type symmetry groups could result as an effect of finite quantum resolution described
by inclusions of HFFs in TGD inspired quantum measurement theory.

1. The description of finite resolution typically leads to quantization since complex rays of state
space are replaced as N rays. Hence operators, which would commute for an ideal resolution
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cease to do so. Therefore the algebra SU(2)⊗...⊗SU(2) characterized by n mutually commuting
triplets, where n is the number of copies of SU(2) algebra in the original situation and identifiable
as quantum algebra appearing in M tensor powers with M interpreted as N module, could
suffer quantum deformation to a simple Lie algebra with 3n Cartan algebra generators. Also a
deformation to a quantum group could occur as a consequence.

2. This argument makes sense also for discrete groups G ⊂ SU(2) since the representations of G
realized in terms of configuration space spinors extend to the representations of SU(2) naturally.

3. Arbitrarily high tensor powers ofM are possible and one can wonder why only finite-dimensional
Lie algebra results. The fact that N has finite depth as a sub-factor means that the tensor
products in tensor powers of N are representable by a finite Dynkin diagram. Finite depth could
thus mean that there is a periodicity involvedthe kn tensor powers decomposes to representations
of a Lie algebra with 3n Cartan algebra generators. Thus the additional requirement would be
that the number of tensor powers of M is multiple of n.

3. Space-time correlate for the tensor powers M⊗N ...⊗N M

By quantum classical correspondence there should exist space-time correlate for the formation
of tensor powers of M regarded as N module. A concrete space-time realization for this kind of
situation in TGD would be based on n-fold cyclic covering of H implied by the H → H/Ga × Gb
bundle structure in the case of say Gb. The sheets of the cyclic covering would correspond to various
factors in the n-fold tensor power of SU(2) and one would obtain a Lie algebra, affine algebra or its
quantum counterpart with n Cartan algebra generators in the process naturally. The number n for
space-time sheets would be also a space-time correlate for the finite depth of N as a factor.

Configuration space spinors could provide fermionic representations of G ⊂ SU(2). The Dynkin
diagram characterizing tensor products of representations of G ⊂ SU(2) with doublet representation
suggests that tensor products of doublet representations associated with n sheets of the covering could
realize the Dynkin diagram.

Singlet representation in the Dynkin diagram associated with irreps of G would not give rise to an
SU(2) sub-algebra in ADE Lie algebra and would correspond to the scaling generator. For ordinary
Dynkin diagram representing gauge group algebra scaling operator would be absent and therefore also
the exceptional node. Thus the difference between (M : N = 4) and (M : N < 4) cases would be
that in the Kac-Moody group would reduce to gauge group M : N < 4 because Kac-Moody central
charge k and therefore also Virasoro central charge resulting in Sugawara construction would vanish.

4. Do finite subgroups of SU(2) play some role also in M : N = 4 case?

One can ask wonder the possible interpretation for the appearance of extended Dynkin diagrams in
(M : N = 4) case. Do finite subgroups G ⊂ SU(2) associated with extended Dynkin diagrams appear
also in this case. The formal analog for H → Ga×Gb bundle structure would be H → H/Ga×SU(2).
This would mean that the geodesic sphere of CP2 would define the fiber. The notion of number
theoretic braid meaning a selection of a discrete subset of algebraic points of the geodesic sphere of
CP2 suggests that SU(2) actually reduces to its subgroup G also in this case.

5. Why Kac-Moody central charge can be non-vanishing only for M : N = 4?

From the physical point of view the vanishing of Kac-Moody central charge for M : N < 4 is
easy to understand. If parton corresponds to a homologically non-trivial geodesic sphere, space-time
surface typically represents a string like object so that the generation of Kac-Moody central extension
would relate directly to the homological non-triviality of partons. For instance, cosmic strings are
string like objects of form X2 × Y 2, where X2 is minimal surface of M2 and Y 2 is a holomorphic
sub-manifold of CP2 reducing to a homologically non-trivial geodesic sphere in the simplest situation.
A conjecture that deserves to be shown wrong is that central charge k is proportional/equal to the
absolute value of the homology (Kähler magnetic) charge h.

6. More general situation

McKay correspondence generalizes also to the case of subgroups of higher-dimensional Lie groups
[97]. The argument above makes sense also for discrete subgroups of more general compact Lie groups
H since also they define unique sub-factors. In this case, algebras having Cartan algebra with nk
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generators, where n is the dimension of Cartan algebra of H, would emerge in the process. Thus
there are reasons to believe that TGD could emulate practically any dynamics having gauge group
or Kac-Moody type symmetry. An interesting question concerns the interpretation of non-ADE type
principal graphs associated with subgroups of SU(2).

7. Flavor groups of hadron physics as a support for HFF?

The deformation assigning to an n-fold tensor power of representations of Lie group G with k-
dimensional Cartan algebra a representation of a Lie group with nk-dimensional Cartan algebra could
be also seen as a dynamically generated symmetry. If quantum measurement is characterized by the
choice of Lie group G defining measured quantum numbers and defining Jones inclusion character-
izing the measurement resolution, the measurement process itself would generate these dynamical
symmetries. Interestingly, the flavor symmetry groups of hadron physics cannot be justified from the
structure of the standard model having only electro-weak and color group as fundamental symmetries.
In TGD framework flavor group SU(n) could emerge naturally as a fusion of n quark doublets to form
a representation of SU(n).

12.7.4 Farey sequences, Riemann hypothesis, tangles, and TGD

Farey sequences allow an alternative formulation of Riemann Hypothesis and subsequent pairs in
Farey sequence characterize so called rational 2-tangles. In TGD framework Farey sequences relate
very closely to dark matter hierarchy, which inspires ”Platonia as the best possible world in the sense
that cognitive representations are optimal” as the basic variational principle of mathematics. This
variational principle supports RH.

Possible TGD realizations of tangles, which are considerably more general objects than braids, are
considered. One can assign to a given rational tangle a rational number a/b and the tangles labeled
by a/b and c/d are equivalent if ad − bc = ±1 holds true. This means that the rationals in question
are neighboring members of Farey sequence. Very light-hearted guesses about possible generalization
of these invariants to the case of general N -tangles are made.

Farey sequences

Some basic facts about Farey sequences [10] demonstrate that they are very interesting also from TGD
point of view.

1. Farey sequence FN is defined as the set of rationals 0 ≤ q = m/n ≤ 1 satisfying the conditions
n ≤ N ordered in an increasing sequence.

2. Two subsequent terms a/b and c/d in FN satisfy the condition ad− bc = 1 and thus define and
element of the modular group SL(2, Z).

3. The number |F (N)| of terms in Farey sequence is given by

|F (N)| = |F (N − 1)|+ φ(N − 1) . (12.7.4)

Here φ(n) is Euler’s totient function giving the number of divisors of n. For primes one has
φ(p) = 1 so that in the transition from p to p+ 1 the length of Farey sequence increases by one
unit by the addition of q = 1/(p+ 1) to the sequence.

The members of Farey sequence FN are in one-one correspondence with the set of quantum phases
qn = exp(i2π/n), 0 ≤ n ≤ N . This suggests a close connection with the hierarchy of Jones inclusions,
quantum groups, and in TGD context with quantum measurement theory with finite measurement
resolution and the hierarchy of Planck constants involving the generalization of the imbedding space.
Also the recent TGD inspired ideas about the hierarchy of subgroups of the rational modular group
with subgroups labeled by integers N and in direct correspondence with the hierarchy of quantum
critical phases [24] would naturally relate to the Farey sequence.
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Riemann Hypothesis and Farey sequences

Farey sequences are used in two equivalent formulations of the Riemann hypothesis. Suppose the
terms of FN are an,N , 0 < n ≤ |FN |. Define

dn,N = an,N −
n

|FN |
.

In other words, dn,N is the difference between the n:th term of the N :th Farey sequence, and the n:th
member of a set of the same number of points, distributed evenly on the unit interval. Franel and
Landau proved that both of the following statements

∑
n=1,...,|FN |

|dn,N | = O(Nr) for any r > 1/2 ,

∑
n=1,...,|FN |

d2
n,N = O(Nr) for any r > 1 . (12.7.5)

are equivalent with Riemann hypothesis.

One could say that RH would guarantee that the numbers of Farey sequence provide the best
possible approximate representation for the evenly distributed rational numbers n/|FN |.

Farey sequences and TGD

Farey sequences seem to relate very closely to TGD.

1. The rationals in the Farey sequence can be mapped to the roots of unity by the map q →
exp(i2πq). The numbers 1/|FN | are in turn mapped to the numbers exp(i2π/|FN |), which are
also roots of unity. The statement would be that the algebraic phases defined by Farey sequence
give the best possible approximate representation for the phases exp(in2π/|FN |) with evenly
distributed phase angle.

2. In TGD framework the phase factors defined by FN corresponds to the set of quantum phases
corresponding to Jones inclusions labeled by q = exp(i2π/n), n ≤ N , and thus to the N lowest
levels of dark matter hierarchy. There are actually two hierarchies corresponding to M4 and
CP2 degrees of freedom and the Planck constant appearing in Schrödinger equation corresponds
to the ratio na/nb defining quantum phases in these degrees of freedom. Zna×nb appears as
a conformal symmetry of ”dark” partonic 2-surfaces and with very general assumptions this
implies that there are only in TGD Universe [24, 22] .

3. The fusion of physics associated with various number fields to single coherent whole requires
algebraic universality. In particular, the roots of unity, which are complex algebraic numbers,
should define approximations to continuum of phase factors. At least the S-matrix associated
with p-adic-to-real transitions and more generally p1 → p2 transitions between states for which
the partonic space-time sheets are p1- resp. p2-adic can involve only this kind of algebraic
phases. One can also say that cognitive representations can involve only algebraic phases and
algebraic numbers in general. For real-to-real transitions and real-to-padic transitions U-matrix
might be non-algebraic or obtained by analytic continuation of algebraic U-matrix. S-matrix
is by definition diagonal with respect to number field and similar continuation principle might
apply also in this case.

4. The subgroups of the hierarchy of subgroups of the modular group with rational matrix elements
are labeled by integer N and relate naturally to the hierarchy of Farey sequences. The hierarchy
of quantum critical phases is labeled by integers N with quantum phase transitions occurring
only between phases for which the smaller integer divides the larger one [24] .
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Interpretation of RH in TGD framework

Number theoretic universality of physics suggests an interpretation for the Riemann hypothesis in TGD
framework. RH would be equivalent to the statement that the Farey numbers provide best possible
approximation to the set of rationals k/|FN | or to the statement that the roots of unity contained
by FN define the best possible approximation for the roots of unity defined as exp(ik2π/|FN |) with
evenly spaced phase angles. The roots of unity allowed by the lowest N levels of the dark matter
hierarchy allows the best possible approximate representation for algebraic phases represented exactly
at |FN |:th level of hierarchy.

A stronger statement would be that the Platonia, where RH holds true would be the best possible
world in the sense that algebraic physics behind the cognitive representations would allow the best
possible approximation hierarchy for the continuum physics (both for numbers in unit interval and
for phases on unit circle). Platonia with RH would be cognitive paradise.

One could see this also from different view point. ”Platonia as the cognitively best possible
world” could be taken as the ”axiom of all axioms”: a kind of fundamental variational principle of
mathematics. Among other things it would allow to conclude that RH is true: RH must hold true
either as a theorem following from some axiomatics or as an axiom in itself.

Could rational N-tangles exist in some sense?

The article of Kauffman and Lambropoulou [100] about rational 2-tangles having commutative sum
and product allowing to map them to rationals is very interesting from TGD point of view. The
illustrations of the article are beautiful and make it easy to get the gist of various ideas. The theorem
of the article states that equivalent rational tangles giving trivial tangle in the product correspond to
subsequent Farey numbers a/b and c/d satisfying ad− bc = ±1 so that the pair defines element of the
modular group SL(2,Z).

1. Rational 2-tangles

1. The basic observation is that 2-tangles are 2-tangles in both ”s- and t-channels”. Product and
sum can be defined for all tangles but only in the case of 2-tangles the sum, which in this case
reduces to product in t-channel obtained by putting tangles in series, gives 2-tangle. The so
called rational tangles are 2-tangles constructible by using addition of ±[1] on left or right of
tangle and multiplication by ±[1] on top or bottom. Product and sum are commutative for
rational 2-tangles but the outcome is not a rational 2-tangle in the general case. One can also
assign to rational 2-tangle its negative and inverse. One can map 2-tangle to a number which
is rational for rational tangles. The tangles [0], [∞], ±[1], ±1/[1], ±[2], ±[1/2] define so called
elementary rational 2-tangles.

2. In the general case the sum of M− and N−tangles is M +N − 2-tangle and combines various
N−tangles to a monoidal structure. Tensor product like operation giving M + N -tangle looks
to me physically more natural than the sum.

3. The reason why general 2-tangles are non-commutative although 2-braids obviously commute is
that 2-tangles can be regarded as sequences of N−tangles with 2-tangles appearing only as the
initial and final state: N is actually even for intermediate states. Since N > 2-braid groups are
non-commutative, non-commutativity results. It would be interesting to know whether braid
group representations have been used to construct representations of N−tangles.

2. Does generalization to N >> 2 case exist?

One can wonder whether the notion of rational tangle and the basic result of the article about
equivalence of tangles might somehow generalize to the N > 2 case.

1. Could the commutativity of tangle product allow to characterize the N > 2 generalizations
of rational 2-tangles. The commutativity of product would be a space-time correlate for the
commutativity of the S-matrices defining time like entanglement between the initial and final
quantum states assignable to the N -tangle. For 2-tangles commutativity of the sum would
have an analogous interpretation. Sum is not a very natural operation for N-tangles for N >
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2. Commutativity means that the representation matrices defined as products of braid group
actions associated with the various intermediate states and acting in the same representation
space commute. Only in very special cases one can expect commutativity for tangles since
commutativity is lost already for braids.

2. The representations of 2-tangles should involve the subgroups of N -braid groups of intermedi-
ate braids identifiable as Galois groups of N :th order polynomials in the realization as number
theoretic tangles. Could non-commutative 2-tangles be characterized by algebraic numbers in
the extensions to which the Galois groups are associated? Could the non-commutativity reflect
directly the non-commutativity of Galois groups involved? Quite generally one can ask whether
the invariants should be expressible using algebraic numbers in the extensions of rationals asso-
ciated with the intermediate braids.

3. Rational 2-tangles can be characterized by a rational number obtained by a projective identi-
fication [a, b]T → a/b from a rational 2-spinor [a, b]T to which SL(2(N-1),Z) acts. Equivalence
means that the columns [a, b]T and [c, d]T combine to form element of SL(2,Z) and thus defining
a modular transformation. Could more general 2-tangles have a similar representation but in
terms of algebraic integers?

4. Could N -tangles be characterized by N − 1 2(N − 1)-component projective column-spinors

[a1
i , a

2
i , .., a

2(N−1)
i ]T , i = 1, ...N − 1 so that only the ratios aki /a

2(N−1)
i ≤ 1 matter? Could

equivalence for them mean that the N − 1 spinors combine to form N − 1 +N − 1 columns of
SL(2(N −1), Z) matrix. Could N -tangles quite generally correspond to collections of projective
N−1 spinors having as components algebraic integers and could ad−bc = ±1 criterion generalize?
Note that the modular group for surfaces of genus g is SL(2g,Z) so that N−1 would be analogous
to g and 1 ≤ N ≥ 3- braids would correspond to g ≤ 2 Riemann surfaces.

5. Dark matter hierarchy leads naturally to a hierarchy of modular sub-groups of SL(2, Q) labeled
by N (the generator τ → τ +2 of modular group is replaced with τ → τ +2/N). What might be
the role of these subgroups and corresponding subgroups of SL(2(N − 1), Q). Could they arise
in ”anyonization” when one considers quantum group representations of 2-tangles with twist
operation represented by an N :th root of unity instead of phase U satisfying U2 = 1?

How tangles could be realized in TGD Universe?

The article of Kauffman and Lambropoulou stimulated the question in what senses N -tangles could
be be realized in TGD Universe as fundamental structures.

1. Tangles as number theoretic braids?

The strands of number theoretical N−braids correspond to roots of N:th order polynomial and if
one allows time evolutions of partonic 2-surface leading to the disappearance or appearance of real
roots N−tangles become possible. This however means continuous evolution of roots so that the
coefficients of polynomials defining the partonic 2-surface can be rational only in initial and final state
but not in all intermediate ”virtual” states.

2. Tangles as tangled partonic 2-surfaces?

Tangles could appear in TGD also in second manner.

1. Partonic 2-surfaces are sub-manifolds of a 3-D section of space-time surface. If partonic 2-
surfaces have genus g > 0 the handles can become knotted and linked and one obtains besides
ordinary knots and links more general knots and links in which circle is replaced by figure eight
and its generalizations obtained by adding more circles (eyeglasses for N−eyed creatures).

2. Since these 2-surfaces are space-like, the resulting structures are indeed tangles rather than only
braids. Tangles made of strands with fixed ends would result by allowing spherical partons
elongate to long strands with fixed ends. DNA tangles would the basic example, and are dis-
cussed also in the article. DNA sequences to which I have speculatively assigned invisible (dark)
braid structures might be seen in this context as space-like ”written language representations”
of genetic programs represented as number theoretic braids.
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12.7.5 Only the quantum variants of M4 and M8 emerge from local hyper-
finite II1 factors

Super-symmetry suggests that the representations of CH Clifford algebra M as N module M/N
should have bosonic counterpart in the sense that the coordinate for M8 representable as a particular
M2(Q) element should have quantum counterpart. Same would apply to M4 coordinate representable
as M2(C) element. Quantum matrix representation of M/N as SLq(2, F ) matrix, F = C,H is the
natural candidate for this representation. As a matter fact, this guess is not quite correct. It is the
interpretation of M2(C) as a quaternionic quantum algebra whose generalization to the octonionic
quantum algebra works.

Quantum variants of MD exist for all dimensions but only spaces M4 and M8 and their linear
sub-spaces emerge from hyper-finite factors of type II1. This is due to the non-associativity of the
octonionic representation of the gamma matrices making it impossible to absorb the powers of the
octonionic coordinate to the Clifford algebra element so that the local algebra character would dis-
appear. Even more: quantum coordinates for these spaces are commutative operators so that their
spectra define ordinary M4 and M8 which are thus already quantal concepts.

The commutation relations for M2,q(C) matrices

(
a b
c d

)
,

(12.7.6)

read as

ab = qba , ac = qac , bd = qdb , cd = qdc ,
[ad, da] = (q − q−1)bc , bc = cb .

(12.7.7)

These relations can be extended by postulating complex conjugates of these relations for complex
conjugates a†, b†, c†, d† plus the following non-vanishing commutators of type [x, y†]:

[a, a†] = [b, b†] = [c, c†] = [d, d†] = 1 . (12.7.8)

The matrices representing M4 point must be expressible as sums of Pauli spin matrices. This can be
represented as following conditions on physical states

O|phys〉 = 0 ,

O ∈ {a− a†, d− d†, b− c†, c− b†} . (12.7.9)

For instance, the first two conditions follow from the reality of Pauli sigma matrices σx, σy, σz. These
conditions are compatible only if the operators O commute. This is the case and means also that
the operators representing M4 coordinates commute and it is possible to define quantum states for
which M4 coordinates have well-defined eigenvalues so that ordinary M4 emerges purely quantally
from quaternions whose real coefficients are made non-Hermitian operators to obtain operator com-
plexificiation of quaternions. Also the quantum states in which M4 coordinates are emerge naturally.

M2,q(C) matrices define the quantum analog of C4 and one can wonder whether other linear sub-
spaces can be defined consistently or whether M4

q and thus Minkowski signature is unique. This seems
to be the case. For instance, the replacement a − a → a + a making also time variable Euclidian is
impossible since [a+ a, d− d] = 2(q − q−1)bc does not vanish. The observation that M4 coordinates
can be regarded as eigenvalues of commuting observables proves that quantum CD and its orbifold
description are equivalent.

What about M8: does it have analogous description? The representation of M4 point as M2(C)
matrix can be interpreted a combination of 4-D gamma matrices defining hyper-quaternionic units.
Hyper-octonionic units indeed have anticommutation relations of gamma matrices of M8 and would
give classical representation of M8. The counterpart of M2,q(C) would thus be obtained by replac-
ing the coefficients of hyper-octonionic units with operators satisfying the generalization of M2,q(C)
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commutation relations. One should identify the reality conditions and find whether they are mutually
consistent.

Introduce the coefficients of E4 gamma matrices having interpretation as quaterionic units as

a0 = ix(a+ d) , a3 = x(a− d) ,
a1 = x(b+ c) , a2 = x(ib− c) ,
x = 1√

2
,

and write the commutations relations for them to see how the generalization should be performed.
The selections of commutative and quaternionic sub-algebras of octonion space are fundamental

for TGD and quantum octonionic algebra should reflect these selections in its structure. In the
case of quaternions the selection of commutative sub-algebra implies the breaking of 4-D Lorentz
symmetry. In the case of octonions the selection of quaternion sub-algebra should induce the breaking
of 8-D Lorentz symmetry. Quaternionic sub-algebra obeys the commutations of Mq(2, C) whereas
the coefficients in in the complement commute mutually and quantum commute with the complex
sub-algebra. This nails down the commutation relations completely:

[a0, a3] = −i(q − q−1)(a2
1 + a2

2) ,

[ai, aj ] = 0 , i, j 6= 0, 3 ,

a0ai = qaia0 , i 6= 0, 3 ,

a3ai = qaia3 , i 6= 0, 3 . (12.7.10)

Checking that M8 indeed corresponds to commutative subspace defined by the eigenvalues of operators
is straightforward.

The argument generalizes easily to other dimensions D ≥ 4 but now quaternionic and octonionic
units must be replaced by gamma matrices and an explicit matrix representation can be introduced.
These gamma matrices can be included as a tensor factor to the infinite-dimensional Clifford alge-
bra so that the local Clifford algebra reduces to a mere Clifford algebra. The units of quantum
octonions which are just ordinary octonion units do not however allow matrix representation so that
this reduction is not possible and imbedding space and space-time indeed emerge genuinely. The
non-associativity of octonions would determine the laws of physics in TGD Universe!

Thus the special role of classical number fields and uniqueness of space-time and imbedding space
dimensions becomes really manifest only when a quantal deformation of the quaternionic and octo-
nionic matrix algebras is performed. It is possible to construct the quantal variants of the coset spaces
M4×E4/Ga×Gb by simply posing restrictions on the of eigen states of the commuting coordinate op-
erators. Also the quantum variants of the space-time surface and quite generally, manifolds obtained
from linear spaces by geometric constructions become possible.

12.8 Appendix

12.8.1 About inclusions of hyper-finite factors of type II1

Many names have been assigned to inclusions: Jones, Wenzl, Ocneacnu, Pimsner-Popa, Wasserman
[64] . It would seem to me that the notion Jones inclusion includes them all so that various names would
correspond to different concrete realizations of the inclusions conjugate under outer automorphisms.

1. According to [64] for inclusions with M : N ≤ 4 (with A
(1)
1 excluded) there exists a countable

infinity of sub-factors with are pairwise non inner conjugate but conjugate to N .

2. Also for any finite group G and its outer action there exists uncountably many sub-factors which
are pairwise non inner conjugate but conjugate to the fixed point algebra of G [64] . For any
amenable group G the the inclusion is also unique apart from outer automorphism [80] .

Thus it seems that not only Jones inclusions but also more general inclusions are unique apart
from outer automorphism.
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Any *-endomorphism σ, which is unit preserving, faithful, and weakly continuous, defines a sub-
factor of type II1 factor [64] . The construction of Jones leads to a atandard inclusion sequence
N ⊂M ⊂M1 ⊂ .... This sequence means addition of projectors ei, i < 0, having visualization as an
addition of braid strand in braid picture. This hierarchy exists for all factors of type II. At the limit
M∞ = ∪iMi the braid sequence extends from −∞ to ∞. Inclusion hierarchy can be understood as a
hierarchy of Connes tensor powersM⊗NM....⊗NM. Also the ordinary tensor powers of hyper-finite
factors of type II1 (HFF) as well as their tensor products with finite-dimensional matrix algebras are
isomorphic to the original HFF so that these objects share the magic of fractals.

Under certain assumptions the hierarchy can be continued also in opposite direction. For a finite
index an infinite inclusion hierarchy of factors results with the same value of index. σ is said to be
basic if it can be extended to *-endomorphisms from M1 to M. This means that the hierarchy of
inclusions can be continued in the opposite direction: this means elimination of strands in the braid
picture. For finite factors (as opposed to hyper-finite ones) there are no basic *-endomorphisms ofM
having fixed point algebra of non-abelian G as a sub-factor [64] .

1. Jones inclusions

For hyper-finite factors of type II1 Jones inclusions allow basic *-endomorphism. They exist for
all values of M : N = r with r ∈ {4cos2(π/n)|n ≥ 3} ∩ [4,∞) [64] . They are defined for an algebra
defined by projectors ei, i ≥ 1. All but nearest neighbor projectors commute. λ = 1/r appears in the
relations for the generators of the algebra given by eiejei = λei, |i − j| = 1. N ⊂ M is identified as
the double commutator of algebra generated by ei, i ≥ 2.

This means that principal graph and its dual are equivalent and the braid defined by projectors can
be continued not only to −∞ but that also the dropping of arbitrary number of strands is possible [64]
. It would seem that ADE property of the principal graph meaning single root length codes for the
duality in the case of r ≤ 4 inclusions.

Irreducibility holds true for r < 4 in the sense that the intersection of Q′ ∩ P = P ′ ∩ P = C. For
r ≥ 4 one has dim(Q′ ∩ P ) = 2. The operators commuting with Q contain besides identify operator
of Q also the identify operator of P . Q would contain a single finite-dimensional matrix factor less
than P in this case. Basic *-endomorphisms with σ(P ) = Q is σ(ei) = ei+1. The difference between
genuine symmetries of quantum TGD and symmetries which can be mimicked by TGD could relate
to the irreducibility for r < 4 and raise these inclusions in a unique position. This difference could
partially justify the hypothesis that only the groups Ga ×Gb ⊂ SU(2)× SU(2) ⊂ SL(2, C)× SU(3)
define orbifold coverings of H± = CD × CP2 → H±/Ga ×Gb.

2. Wasserman’s inclusion

Wasserman’s construction of r = 4 factors clarifies the role of the subgroup of G ⊂ SU(2) for these
inclusions. Also now r = 4 inclusion is characterized by a discrete subgroup G ⊂ SU(2) and is given
by (1⊗M)G ⊂ (M2(C)×M)G. According to [64] Jones inclusions are irreducible also for r = 4. The
definition of Wasserman inclusion for r = 4 seems however to imply that the identity matrices of both
MG and (M(2, C)⊗M)G commute with MG so that the inclusion should be reducible for r = 4.

Note that G leaves both the elements of N and M invariant whereas SU(2) leaves the elements
of N invariant. M(2, C) is effectively replaced with the orbifold M(2, C)/G, with G acting as auto-
moprhisms. The space of these orbits has complex dimension d = 4 for finite G.

For r < 4 inclusion is defined as MG ⊂M . The representation of G as outer automorphism must
change step by step in the inclusion sequence ... ⊂ N ⊂M ⊂ ... since otherwise G would act trivially
as one proceeds in the inclusion sequence. This is true since each step brings in additional finite-
dimensional tensor factor in which G acts as automorphisms so that although M can be invariant
under GM it is not invariant under GN .

These two inclusions might accompany each other in TGD based physics. One could consider
r < 4 inclusion N = MG ⊂ M with G acting non-trivially in M/N quantum Clifford algebra. N
would decompose by r = 4 inclusion to N1 ⊂ N with SU(2) taking the role of G. N/N1 quantum
Clifford algebra would transform non-trivially under SU(2) but would be G singlet.

In TGD framework the G-invariance for SU(2) representations means a reduction of S2 to the
orbifold S2/G. The coverings H± → H±/Ga×Gb should relate to these double inclusions and SU(2)
inclusion could mean Kac-Moody type gauge symmetry for N . Note that the presence of the factor
containing only unit matrix should relate directly to the generator d in the generator set of affine
algebra in the McKay construction. The physical interpretation of the fact that almost all ADE type
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extended diagrams (D
(1)
n must have n ≥ 4) are allowed for r = 4 inclusions whereas D2n+1 and E6

are not allowed for r < 4, remains open.

12.8.2 Generalization from SU(2) to arbitrary compact group

The inclusions with index M : N < 4 have one-dimensional relative commutant N ′ ∪ M. The
most obvious conjecture that M : N ≥ 4 corresponds to a non-trivial relative commutant is wrong.
The index for Jones inclusion is identifiable as the square of quantum dimension of the fundamental
representation of SU(2). This identification generalizes to an arbitrary representation of arbitrary
compact Lie group.

In his thesis Wenzl [135] studied the representations of Hecke algebras Hn(q) of type An obtained
from the defining relations of symmetric group by the replacement e2

i = (q−1)ei+q. Hn is isomorphic
to complex group algebra of Sn if q is not a root of unity and for q = 1 the irreducible representations
of Hn(q) reduce trivially to Young’s representations of symmetric groups. For primitive roots of
unity q = exp(i2π/l), l = 4, 5..., the representations of Hn(∞) give rise to inclusions for which index
corresponds to a quantum dimension of any irreducible representation of SU(k), k ≥ 2. For SU(2)
also the value l = 3 is allowed for spin 1/2 representation.

The inclusions are obtained by dropping the first m generators ek from H∞(q) and taking double
commutant of both H∞ and the resulting algebra. The relative commutant corresponds to Hm(q). By
reducing by the minimal projection to relative commutant one obtains an inclusion with a trivial rel-
ative commutant. These inclusions are analogous to a discrete states superposed in continuum. Thus
the results of Jones generalize from the fundamental representation of SU(2) to all representations of
all groups SU(k), and in fact to those of general compact groups as it turns out.

The generalization of the formula for index to square of quantum dimension of an irreducible
representation of SU(k) reads as

M : N =
∏

1≤r<s≤k

sin2 ((λr − λs + s− r)π/l)
sin2 ((s− r)n/l)

. (12.8.1)

Here λr is the number of boxes in the rth row of the Yang diagram with n boxes characterizing the
representations and the condition 1 ≤ k ≤ l − 1 holds true. Only Young diagrams satisfying the
condition l − k = λ1 − λrmax are allowed.

The result would allow to restrict the generalization of the imbedding space in such a manner that
only cyclic group Zn appears in the covering of M4 →M4/Ga or CP2 → CP2/Gb factor. Be as it may,
it seems that quantum representations of any compact Lie group can be realized using the generaliza-
tion of the imbedding space. In the case of SU(2) the interpretation of higher-dimensional quantum
representations in terms of Connes tensor products of 2-dimensional fundamental representations is
highly suggestive.

The groups SO(3, 1)×SU(3) and SL(2, C)×U(2)ew have a distinguished position both in physics
and quantum TGD and the vision about physics as a generalized number theory implies them. Also
the general pattern for inclusions selects these groups, and one can say that the condition that all
possible statistics are realized is guaranteed by the choice M4 × CP2.

1. n > 2 for the quantum counterparts of the fundamental representation of SU(2) means that
braid statistics for Jones inclusions cannot give the usual fermionic statistics. That Fermi
statistics cannot ”emerge” conforms with the role of infinite-D Clifford algebra as a canonical
representation of HFF of type II1. SO(3, 1) as isometries of H gives Z2 statistics via the action
on spinors of M4 and U(2) holonomies for CP2 realize Z2 statistics in CP2 degrees of freedom.

2. n > 3 for more general inclusions in turn excludes Z3 statistics as braid statistics in the general
case. SU(3) as isometries induces a non-trivial Z3 action on quark spinors but trivial action at
the imbedding space level so that Z3 statistics would be in question.
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Chapter 13

Quantum Hall effect and Hierarchy
of Planck Constants

13.1 Introduction

Quantum Hall effect [23, 21, 24] occurs in 2-dimensional systems, typically a slab carrying a longitu-
dinal voltage V causing longitudinal current j. A magnetic field orthogonal to the slab generates a
transversal current component jT by Lorentz force. jT is proportional to the voltage V along the slab
and the dimensionless coefficient is known as transversal conductivity. Classically the coefficients is
proportional ne/B, where n is 2-dimensional electron density and should have a continuous spectrum.
The finding that came as surprise was that the change of the coefficient as a function of parameters like
magnetic field strength and temperature occurred as discrete steps of same size. In integer quantum
Hall effect the coefficient is quantized to 2να, α = e2/4π, such that ν is integer.

Later came the finding that also smaller steps corresponding to the filling fraction ν = 1/3 of the
basic step were present and could be understood if the charge of electron would have been replaced
with ν = 1/3 of its ordinary value. Later also QH effect with wide large range of filling fractions of
form ν = k/m was observed.

The model explaining the QH effect is based on pseudo particles known as anyons [74] , [23] .
According to the general argument of [16] anyons have fractional charge νe. Also the TGD based
model for fractionization to be discussed later suggests that the anyon charge should be νe quite
generally. The braid statistics of anyon is believed to be fractional so that anyons are neither bosons
nor fermions. Non-fractional statistics is absolutely essential for the vacuum degeneracy used to
represent logical qubits.

In the case of Abelian anyons the gauge potential corresponds to the vector potential of the
divergence free velocity field or equivalently of incompressible anyon current. For non-Abelian anyons
the field theory defined by Chern-Simons action is free field theory and in well-defined sense trivial
although it defines knot invariants. For non-Abelian anyons situation would be different. They would
carry non-Abelian gauge charges possibly related to a symmetry breaking to a discrete subgroup H
of gauge group [74] each of them defining an incompressible hydrodynamical flow. According to [52]
the anyons associated with the filling fraction ν = 5/2 are a good candidate for non-Abelian anyons
and in this case the charge of electron is reduced to Q = e/4 rather than being Q = νe [22] . This
finding favors non-Abelian models [24] .

Non-Abelian anyons [23, 25] are always created in pairs since they carry a conserved topological
charge. In the model of [52] this charge should have values in 4-element group Z4 so that it is conserved
only modulo 4 so that charges +2 and -2 are equivalent as are also charges 3 and -1. The state of n
anyon pairs created from vacuum can be show to possess 2n−1-dimensional vacuum degeneracy [26]
. When two anyons fuse the 2n−1-dimensional state space decomposes to 2n−2-dimensional tensor
factors corresponding to anyon Cooper pairs with topological charges 2 and 0. The topological ”spin”
is ideal for representing logical qubits. Since free topological charges are not possible the notion of
physical qubit does not make sense (note the analogy with quarks). The measurement of topological
qubit reduces to a measurement of whether anyon Cooper pair has vanishing topological charge or
not.
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Topological quantum computation is perhaps the most promising application of anyons [52, 51, 31,
30, 42, 43] , [69] . I have already earlier proposed the explanation of FQHE, anyons, and fractionization
of quantum numbers in terms of hierarchy of Planck constants realized as a generalization of the
imbedding space H = M4 × CP2 to a book like structure [30] . The book like structure applies
separately to CP2 and to causal diamonds (CD ⊂ M4) defined as intersections of future and past
directed light-cones. The pages of the Big Book correspond to singular coverings and factor spaces of
CD (CP2) glued along 2-D subspace of CD (CP2) and are labeled by the values of Planck constants
assignable to CD and CP2 and appearing in Lie algebra commutation relations. The observed Planck
constant ~, whose square defines the scale of M4 metric corresponds to the ratio of these Planck
constants. The key observation is that fractional filling factor results for ordinary integer QHE if ~ is
scaled up by a rational number.

In this chapter I try to formulate more precisely this idea. The outcome is a rather detailed view
about anyons on one hand, and about the Kähler structure of the generalized imbedding space on the
other hand.

1. Fundamental role is played by the assumption that the Kähler gauge potential of CP2 contains
a gauge part with no physical implications in the context of gauge theories but contributing to
physics in TGD framework since U(1) gauge transformations are representations of symplectic
transformations of CP2. Also in the case of CD it makes also sense to speak about Kähler
gauge potential. The gauge part codes for Planck constants of CD and CP2 and leads to
the identification of anyons as states associated with partonic 2-surfaces surrounding the tip of
CD and fractionization of quantum numbers. Explicit formulas relating fractionized charges to
the coefficients characterizing the gauge parts of Kähler gauge potentials of CD and CP2 are
proposed based on some empirical input.

2. One important implication is that Poincare and Lorentz invariance are broken inside given CD
although they remain exact symmetries at the level of the geometry of world of classical worlds
(WCW). The interpretation is as a breaking of symmetries forced by the selection of quantization
axis.

3. Anyons would basically correspond to matter at 2-dimensional ”partonic” surfaces of macro-
scopic size surrounding the tip of the light-cone boundary of CD and could be regarded as gi-
gantic elementary particle states with very large quantum numbers and by charge fractionization
confined around the tip of CD. Charge fractionization and anyons would be basic characteristic
of dark matter (dark only in relative sense). Hence it is not surprising that anyons would have
applications going far beyond condensed matter physics. Anyonic dark matter concentrated at
2-dimensional surfaces would play key key role in the the physics of stars and black holes, and
also in the formation of planetary system via the condensation of the ordinary matter around
dark matter. This assumption was the basic starting point leading to the discovery of the hi-
erarchy of Planck constants [30] . In living matter membrane like structures would represent a
key example of anyonic systems as the model of DNA as topological quantum computer indeed
assumes [29] .

4. One of the basic questions has been whether TGD forces the hierarchy of Planck constants
realized in terms of generalized imbedding space or not. The condition that the choice of
quantization axes has a geometric correlate at the imbedding space level motivated by quantum
classical correspondence of course forces the hierarchy: this has been clear from the beginning.
It is now clear that also the first principle description of anyons requires the hierarchy in TGD
Universe. The hierarchy reveals also new light to the huge vacuum degeneracy of TGD and
reduces it dramatically at pages for which CD corresponds to a non-trivial covering or factor
space, which suggests that mathematical existence of the theory necessitates the hierarchy of
Planck constants. Also the proposed manifestation of Equivalence Principle at the level of
symplectic fusion algebras as a duality between descriptions relying on the symplectic structures
of CD and CP2 [18] forces the hierarchy of Planck constants.

The first sections of the chapter contain summary about theories of quantum Hall effect appearing
already in [95] . Second section is a slightly modified version of the description of the generalized
imbedding space, which has appeared already in [30, 95, 29] and containing brief description of how
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to understand QHE in this framework. The third section represents the basic new results about the
Kähler structure of generalized imbedding space and represents the resulting model of QHE.

13.2 About theories of quantum Hall effect

The most elegant models of quantum Hall effect are in terms of anyons regarded as singularities due
to the symmetry breaking of gauge group G down to a finite sub-group H, which can be also non-
Abelian. Concerning the description of the dynamics of topological degrees of freedom topological
quantum field theories based on Chern-Simons action are the most promising approach.

13.2.1 Quantum Hall effect as a spontaneous symmetry breaking down to
a discrete subgroup of the gauge group

The system exhibiting quantum Hall effect is effectively 2-dimensional. Fractional statistics suggests
that topological defects, anyons, allowing a description in terms of the representations of the homotopy
group of ((R2)n −D)/Sn. The gauge theory description would be in terms of spontaneous symmetry
breaking of the gauge group G to a finite subgroup H by a Higgs mechanism [74] , [23] . This would
make all gauge degrees of freedom massive and leave only topological degrees of freedom. What is
unexpected that also non-Abelian topological degrees of freedom are in principle possible. Quantum
Hall effect is Abelian or non-Abelian depending on whether the group H has this property.

In the symmetry breaking G → H the non-Abelian gauge fluxes defined as non-integrable phase
factors Pexp(i

∮
Aµdx

µ) around large circles (surrounding singularities (so that field approaches a
pure gauge configuration) are elements of the first homotopy group of G/H, which is H in the case
that H is discrete group and G is simple. An idealized manner to model the situation [23] is to assume
that the connection is pure gauge and defined by an H-valued function which is many-valued such that
the values for different branches are related by a gauge transformation in H. In the general case a
gauge transformation of a non-trivial gauge field by a multi-valued element of the gauge group would
give rise to a similar situation.

One can characterize a given topological singularity magnetically by an element in conjugacy class
C ofH representing the transformation ofH induced by a 2π rotation around singularity. The elements
of C define states in given magnetic representation. Electrically the particles are characterized by an
irreducible representations of the subgroup of HC ⊂ H which commutes with an arbitrarily chosen
element of the conjugacy class C.

The action of h(B) resulting on particle A when it makes a closed turn around B reduces in
magnetic degrees of freedom to translation in conjugacy class combined with the action of element of
HC in electric degrees of freedom. Closed paths correspond to elements of the braid group Bn(X2)
identifiable as the mapping class group of the punctured 2-surface X2 and this means that symmetry
breaking G→ H defines a representation of the braid group. The construction of these representations
is discussed in [23] and leads naturally via the group algebra of H to the so called quantum double
D(H) of H, which is a quasi-triangular Hopf algebra allowing non-trivial representations of braid
group.

Anyons could be singularities of gauge fields, perhaps even non-Abelian gauge fields, and the latter
ones could be modelled by these representations. In particular, braid operations could be represented
using anyons.

13.2.2 Witten-Chern-Simons action and topological quantum field theories

The Wess-Zumino-Witten action used to model 2-dimensional critical systems consists of a 2-dimensional
conformally invariant term for the chiral field having values in groupG combined with 2+1-dimensional
term defined as the integral of Chern-Simons 3-form over a 3-space containing 2-D space as its bound-
ary. This term is purely topological and identifiable as winding number for the map from 3-dimensional
space to G. The coefficient of this term is integer k in suitable normalization. k gives the value of
central extension of the Kac-Moody algebra defined by the theory.

One can couple the chiral field g(x) to gauge potential defined for some subgroup of G1 of G. If
the G1 coincides with G, the chiral field can be gauged away by a suitable gauge transformation and
the theory becomes purely topological Witten-Chern-Simons theory. Pure gauge field configuration
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represented either as flat gauge fields with non-trivial holonomy over homotopically non-trivial paths or
as multi-valued gauge group elements however remain and the remaining degrees of freedom correspond
to the topological degrees of freedom.

Witten-Chern-Simons theories are labelled by a positive integer k giving the value of central
extension of the Kac-Moody algebra defined by the theory. The connection with Wess-Zumino-Witten
theory come from the fact that the highest weight states associated with the representations of the Kac-
Moody algebra of WZW theory are in one-one correspondence with the representations Ri possible
for Wilson loops in the topological quantum field theory.

In the Abelian case case 2+1-dimensional Chern-Simons action density is essentially the inner
product A ∧ dA of the vector potential and magnetic field known as helicity density and the theory
in question is a free field theory. In the non-Abelian case the action is defined by the 3-form

k

4π
Tr

(
A ∧ (dA+

2

3
A ∧A)

)
and contains also interaction term so that the field theory defined by the exponential of the interaction
term is non-trivial.

In topological quantum field theory the usual n-point correlation functions defined by the functional
integral are replaced by the functional averages for Diff3 invariant quantities defined in terms of
non-integrable phase factors defined by ordered exponentials over closed loops. One can consider
arbitrary number of loops which can be knotted, linked, and braided. These quantities define both
knot and 3-manifold invariants (the functional integral for zero link in particular). The perturbative
calculation of the quantum averages leads directly to the Gaussian linking numbers and infinite number
of perturbative link and not invariants.

The experience gained from topological quantum field theories defined by Chern-Simons action
has led to a very elegant and surprisingly simple category theoretical approach to the topological
quantum field theory [99, 120] allowing to assign invariants to knots, links, braids, and tangles and
also to 3-manifolds for which braids as morphisms are replaced with cobordisms. The so called
modular Hopf algebras, in particular quantum groups Sl(2)q with q a root of unity, are in key role
in this approach. Also the connection between links and 3-manifolds can be understood since closed,
oriented, 3-manifolds can be constructed from each other by surgery based on links [11] .

Witten’s article [136] ”Quantum Field Theory and the Jones Polynomial” is full of ingenious
constructions, and for a physicist it is the easiest and certainly highly enjoyable manner to learn
about knots and 3-manifolds. For these reasons a little bit more detailed sum up is perhaps in order.

1. Witten discusses first the quantization of Chern-Simons action at the weak coupling limit k →∞.
First it is shown how the functional integration around flat connections defines a topological
invariant for 3-manifolds in the case of a trivial Wilson loop. Next a canonical quantization is
performed in the case X3 = Σ2×R1: in the Coulomb gauge A3 = 0 the action reduces to a sum of
n = dim(G) Abelian Chern-Simons actions with a non-linear constraint expressing the vanishing
of the gauge field. The configuration space consists thus of flat non-Abelian connections, which
are characterized by their holonomy groups and allows Kähler manifold structure.

2. Perhaps the most elegant quantal element of the approach is the decomposition of the 3-manifold
to two pieces glued together along 2-manifold implying the decomposition of the functional inte-
gral to a product of functional integrals over the pieces. This together with the basic properties
of Hilbert of complex numbers (to which the partition functions defined by the functional inte-
grals over the two pieces belong) allows almost a miracle like deduction of the basic results about
the behavior of 3-manifold and link invariants under a connected sum, and leads to the crucial
skein relations allowing to calculate the invariants by decomposing the link step by step to a
union of unknotted, unlinked Wilson loops, which can be calculated exactly for SU(N). The
decomposition by skein relations gives rise to a partition function like representation of invari-
ants and allows to understand the connection between knot theory and statistical physics [62].
A direct relationship with conformal field theories and Wess-Zumino-Witten model emerges via
Wilson loops associated with the highest weight representations for Kac Moody algebras.

3. A similar decomposition procedure applies also to the calculation of 3-manifold invariants using
link surgery to transform 3-manifolds to each other, with 3-manifold invariants being defined as
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Wilson loops associated with the homology generators of these (solid) tori using representations
Ri appearing as highest weight representations of the loop algebra of torus. Surgery operations
are represented as mapping class group operations acting in the Hilbert space defined by the
invariants for representations Ri for the original 3-manifold. The outcome is explicit formulas
for the invariants of trivial knots and 3-manifold invariant of S3 for G = SU(N), in terms of
which more complex invariants are expressible.

4. For SU(N) the invariants are expressible as functions of the phase q = exp(i2π/(k + N))
associated with quantum groups [11] . Note that for SU(2) and k = 3, the invariants are
expressible in terms of Golden Ratio. The central charge k = 3 is in a special position since
it gives rise to k + 1 = 4-vertex representing naturally 2-gate physically. Witten-Chern-Simons
theories define universal unitary modular functors characterizing quantum computations [51] .

13.2.3 Chern-Simons action for anyons

In the case of quantum Hall effect the Chern-Simons action has been deduced from a model of electrons
as a 2-dimensional incompressible fluid [21] . Incompressibility requires that the electron current has
a vanishing divergence, which makes it analogous to a magnetic field. The expressibility of the
current as a curl of a vector potential b, and a detailed study of the interaction Lagrangian leads
to the identification of an Abelian Chern-Simons for b as a low energy effective action. This action
is Abelian, whereas the anyonic realization of quantum computation would suggest a non-Abelian
Chern-Simons action.

Non-Abelian Chern-Simons action could result in the symmetry breaking of a non-Abelian gauge
group G, most naturally electro-weak gauge group, to a non-Abelian discrete subgroup H [74] so that
states would be labelled by representations of H and anyons would be characterized magnetically
H-valued non-Abelian magnetic fluxes each of them defining its own incompressible hydro-dynamical
flow. As will be found, TGD predicts a non-Abelian Chern-Simons term associated with electroweak
long range classical fields.

13.2.4 Topological quantum computation using braids and anyons

By the general mathematical results braids are able to code all quantum logic operations [43] . In
particular, braids allow to realize any quantum circuit consisting of single particle gates acting on
qubits and two particle gates acting on pairs of qubits. The coding of braid requires a classical
computation which can be done in polynomial time. The coding requires that each dancer is able to
remember its dancing history by coding it into its own state.

The general ideas are following.

1. The ground states of anyonic system characterize the logical qubits, One assumes non-Abelian
anyons with Z4 -valued topological charge so that a system of n anyon pairs created from vacuum
allows 2n−1-fold anyon degeneracy [26] . The system is decomposed into blocks containing one
anyonic Cooper pair with QT ∈ {2, 0} and two anyons with such topological charges that the
net topological charge vanishes. One can say that the states (0, 1−1) and (0,−1,+1)) represent
logical qubit 0 whereas the states (2,−1,−1) and (2,+1,+1) represent logical qubit 1. This
would suggest 22-fold degeneracy but actually the degeneracy is 2-fold.

Free physical qubits are not possible and at least four particles are indeed necessarily in order
to represent logical qubit. The reason is that the conservation of Z4 charge would not allow
mixing of qubits 1 and 0, in particular the Hadamard 1-gate generating square root of qubit
would break the conservation of topological charge. The square root of qubit can be generated
only if 2 units of topological charge is transferred between anyon and anyon Cooper pair. Thus
qubits can be represented as entangled states of anyon Cooper pair and anyon and the fourth
anyon is needed to achieve vanishing total topological charge in the batch.

2. In the initial state of the system the anyonic Cooper pairs have QT = 0 and the two anyons have
opposite topological charges inside each block. The initial state codes no information unlike in
ordinary computation but the information is represented by the braid. Of course, also more
general configurations are possible. Anyons are assumed to evolve like free particles except
during swap operations and their time evolution is described by single particle Hamiltonians.
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Free particle approximation fails when the anyons are too near to each other as during braid
operations. The space of logical qubits is realized as k-code defined by the 2n−1 ground states,
which are stable against local single particle perturbations for k = 3 Witten-Chern-Simons
action. In the more general case the stability against n-particle perturbations with n < [k/2] is
achieved but the gates would become [k/2]-particle gates (for k = 5 this would give 6-particle
vertices).

3. Anyonic system provides a unitary modular functor as the S-matrix associated with the anyon
system whose time evolution is fixed by the pre-existing braid structure. What this means that
the S-matrices associated with the braids can be multiplied and thus a unitary representation
for the group formed by braids results. The vacuum degeneracy of anyon system makes this
representation non-trivial. By the NP complexity of braids it is possible to code any quantum
logic operation by a particular braid [30] . There exists a powerful approximation theorem
allowing to achieve this coding classically in polynomial time [43] . From the properties of
the R-matrices inducing gate operations it is indeed clear that two gates can be realized. The
Hadamard 1-gate could be realized as 2-gate in the system formed by anyon Cooper pair and
anyon.

4. In [52] the time evolution is regarded as a discrete sequence of modifications of single anyon
Hamiltonians induced by swaps [31] . If the modifications define a closed loop in the space
of Hamiltonians the resulting unitary operators define a representation of braid group in a
dense discrete sub-group of U(2n). The swap operation is 2-local operation acting like a 2-gate
and induces quantum logical operation modifying also single particle Hamiltonians. What is
important that this modification maps the space of the ground states to a new one and only if
the modifications correspond to a closed loop the final state is in the same code space as the
initial state. What time evolution does is to affect the topological charges of anyon Cooper pairs
representing qubits inside the 4-anyon batches defined by the braids.

In quantum field theory the analog but not equivalent of this description would be following.
Quite generally, a given particle in the final state has suffered a unitary transformation, which
is an ordered product consisting of two kinds of unitary operators. Unitary single particle
operators Un = Pexp(i

∫ tn+1

tn
H0dt) are analogs of operators describing single qubit gate and

play the role of anyon propagators during no-swap periods. Two-particle unitary operators
Uswap = Pexp(i

∫
Hswapdt) are analogous to four-particle interactions and describe the effect of

braid operations inducing entanglement of states having opposite values of topological charge
but conserving the net topological charge of the anyon pair. This entanglement is completely
analogous to spin entanglement. In particular, the braid operation mixes different states of
the anyon. The unitary time development operator generating entangled state of anyons and
defined by the braid structure represents the operation performed by the quantum circuit and
the quantum measurement in the final state selects a particular final state.

5. Formally the computation halts with a measurement of the topological charge of the left-most
anyon Cooper pair when the outcome is just single bit. If decay occurs with sufficiently high
probability it is concluded that the value of the computed bit is 0, otherwise 1.

13.3 Hierarchy of Planck constants and the generalization of
the notion of imbedding space

In the following the recent view about structure of imbedding space forced by the quantization of
Planck constant is summarized. The question is whether it might be possible in some sense to replace
H or its Cartesian factors by their necessarily singular multiple coverings and factor spaces. One can
consider two options: either M4 or the causal diamond CD. The latter one is the more plausible
option from the point of view of WCW geometry.

13.3.1 The evolution of physical ideas about hierarchy of Planck constants

The evolution of the physical ideas related to the hierarchy of Planck constants and dark matter as a
hierarchy of phases of matter with non-standard value of Planck constants was much faster than the
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evolution of mathematical ideas and quite a number of applications have been developed during last
five years.

1. The starting point was the proposal of Nottale [27] that the orbits of inner planets correspond
to Bohr orbits with Planck constant ~gr = GMm/v0 and outer planets with Planck constant
~gr = 5GMm/v0, v0/c ' 2−11. The basic proposal [77, 63] was that ordinary matter condenses
around dark matter which is a phase of matter characterized by a non-standard value of Planck
constant whose value is gigantic for the space-time sheets mediating gravitational interaction.
The interpretation of these space-time sheets could be as magnetic flux quanta or as massless
extremals assignable to gravitons.

2. Ordinary particles possibly residing at these space-time sheet have enormous value of Compton
length meaning that the density of matter at these space-time sheets must be very slowly vary-
ing. The string tension of string like objects implies effective negative pressure characterizing
dark energy so that the interpretation in terms of dark energy might make sense [78] . TGD
predicted a one-parameter family of Robertson-Walker cosmologies with critical or over-critical
mass density and the ”pressure” associated with these cosmologies is negative.

3. The quantization of Planck constant does not make sense unless one modifies the view about
standard space-time is. Particles with different Planck constant must belong to different worlds
in the sense local interactions of particles with different values of ~ are not possible. This inspires
the idea about the book like structure of the imbedding space obtained by gluing almost copies
of H together along common ”back” and partially labeled by different values of Planck constant.

4. Darkness is a relative notion in this framework and due to the fact that particles at different
pages of the book like structure cannot appear in the same vertex of the generalized Feynman
diagram. The phase transitions in which partonic 2-surface X2 during its travel along X3

l leaks
to another page of book are however possible and change Planck constant. Particle (say photon
-) exchanges of this kind allow particles at different pages to interact. The interactions are
strongly constrained by charge fractionization and are essentially phase transitions involving
many particles. Classical interactions are also possible. It might be that we are actually ob-
serving dark matter via classical fields all the time and perhaps have even photographed it [89]
.

5. The realization that non-standard values of Planck constant give rise to charge and spin fraction-
ization and anyonization led to the precise identification of the prerequisites of anyonic phase.
If the partonic 2-surface, which can have even astrophysical size, surrounds the tip of CD, the
matter at the surface is anyonic and particles are confined at this surface. Dark matter could
be confined inside this kind of light-like 3-surfaces around which ordinary matter condenses. If
the radii of the basic pieces of these nearly spherical anyonic surfaces - glued to a connected
structure by flux tubes mediating gravitational interaction - are given by Bohr rules, the find-
ings of Nottale [27] can be understood. Dark matter would resemble to a high degree matter in
black holes replaced in TGD framework by light-like partonic 2-surfaces with a minimum size
of order Schwartschild radius rS of order scaled up Planck length lPl =

√
~grG = GM . Black

hole entropy is inversely proportional to ~ and predicted to be of order unity so that dramatic
modification of the picture about black holes is implied.

6. Perhaps the most fascinating applications are in biology. The anomalous behavior ionic currents
through cell membrane (low dissipation, quantal character, no change when the membrane is
replaced with artificial one) has a natural explanation in terms of dark supra currents. This
leads to a vision about how dark matter and phase transitions changing the value of Planck
constant could relate to the basic functions of cell, functioning of DNA and aminoacids, and to
the mysteries of bio-catalysis. This leads also a model for EEG interpreted as a communication
and control tool of magnetic body containing dark matter and using biological body as motor
instrument and sensory receptor. One especially amazing outcome is the emergence of genetic
code of vertebrates from the model of dark nuclei as nuclear strings [6, 89] , [6] .
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13.3.2 The most general option for the generalized imbedding space

Simple physical arguments pose constraints on the choice of the most general form of the imbedding
space.

1. The fundamental group of the space for which one constructs a non-singular covering space or
factor space should be non-trivial. This is certainly not possible for M4, CD, CP2, or H. One
can however construct singular covering spaces. The fixing of the quantization axes implies a
selection of the sub-space H4 = M2 × S2 ⊂ M4 × CP2, where S2 is geodesic sphere of CP2.
M̂4 = M4\M2 and ĈP 2 = CP2\S2 have fundamental group Z since the codimension of the
excluded sub-manifold is equal to two and homotopically the situation is like that for a punctured
plane. The exclusion of these sub-manifolds defined by the choice of quantization axes could
naturally give rise to the desired situation.

2. CP2 allows two geodesic spheres which left invariant by U(2 resp. SO(3). The first one is homo-
logically non-trivial. For homologically non-trivial geodesic sphere H4 = M2 × S2 represents a
straight cosmic string which is non-vacuum extremal of Kähler action (not necessarily preferred
extremal). One can argue that the many-valuedness of ~ is un-acceptable for non-vacuum ex-
tremals so that only homologically trivial geodesic sphere S2 would be acceptable. One could go
even further. If the extremals in M2×CP2 can be preferred non-vacuum extremals, the singular
coverings of M4 are not possible. Therefore only the singular coverings and factor spaces of
CP2 over the homologically trivial geodesic sphere S2 would be possible. This however looks a
non-physical outcome.

(a) The situation changes if the extremals of type M2×Y 2, Y 2 a holomorphic surface of CP3,
fail to be hyperquaternionic. The tangent space M2 represents hypercomplex sub-space
and the product of the modified gamma matrices associated with the tangent spaces of Y 2

should belong to M2 algebra. This need not be the case in general.

(b) The situation changes also if one reinterprets the gluing procedure by introducing scaled
up coordinates for M4 so that metric is continuous at M2 × CP2 but CDs with different
size have different sizes differing by the ratio of Planck constants and would thus have only
piece of lower or upper boundary in common.

3. For the more general option one would have four different options corresponding to the Cartesian
products of singular coverings and factor spaces. These options can be denoted by C−C, C−F ,
F − C, and F − F , where C (F ) signifies for covering (factor space) and first (second) letter
signifies for CD (CP2) and correspond to the spaces (ĈD×̂Ga) × ( ˆCP2×̂Gb), (ĈD×̂Ga) ×

ˆCP2/Gb, ĈD/Ga × ( ˆCP2×̂Gb), and ĈD/Ga × ˆCP2/Gb.

4. The groups Gi could correspond to cyclic groups Zn. One can also consider an extension by
replacing M2 and S2 with its orbit under more general group G (say tedrahedral, octahedral, or
icosahedral group). One expects that the discrete subgroups of SU(2) emerge naturally in this
framework if one allows the action of these groups on the singular sub-manifolds M2 or S2. This
would replace the singular manifold with a set of its rotated copies in the case that the subgroups
have genuinely 3-dimensional action (the subgroups which corresponds to exceptional groups in
the ADE correspondence). For instance, in the case of M2 the quantization axes for angular
momentum would be replaced by the set of quantization axes going through the vertices of
tedrahedron, octahedron, or icosahedron. This would bring non-commutative homotopy groups
into the picture in a natural manner.

13.3.3 About the phase transitions changing Planck constant

There are several non-trivial questions related to the details of the gluing procedure and phase tran-
sition as motion of partonic 2-surface from one sector of the imbedding space to another one.

1. How the gluing of copies of imbedding space at M2 × CP2 takes place? It would seem that the
covariant metric of CD factor proportional to ~2 must be discontinuous at the singular manifold
since only in this manner the idea about different scaling factor of CD metric can make sense.
On the other hand, one can always scale the M4 coordinates so that the metric is continuous
but the sizes of CDs with different Planck constants differ by the ratio of the Planck constants.
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2. One might worry whether the phase transition changing Planck constant means an instantaneous
change of the size of partonic 2-surface in M4 degrees of freedom. This is not the case. Light-
likeness in M2 × S2 makes sense only for surfaces X1 ×D2 ⊂ M2 × S2, where X1 is light-like
geodesic. The requirement that the partonic 2-surface X2 moving from one sector of H to
another one is light-like at M2 × S2 irrespective of the value of Planck constant requires that
X2 has single point of M2 as M2 projection. Hence no sudden change of the size X2 occurs.

3. A natural question is whether the phase transition changing the value of Planck constant can
occur purely classically or whether it is analogous to quantum tunneling. Classical non-vacuum
extremals of Chern-Simons action have two-dimensional CP2 projection to homologically non-
trivial geodesic sphere S2

I . The deformation of the entire S2
I to homologically trivial geodesic

sphere S2
II is not possible so that only combinations of partonic 2-surfaces with vanishing total

homology charge (Kähler magnetic charge) can in principle move from sector to another one,
and this process involves fusion of these 2-surfaces such that CP2 projection becomes single
homologically trivial 2-surface. A piece of a non-trivial geodesic sphere S2

I of CP2 can be
deformed to that of S2

II using 2-dimensional homotopy flattening the piece of S2 to curve. If this
homotopy cannot be chosen to be light-like, the phase transitions changing Planck constant take
place only via quantum tunnelling. Obviously the notions of light-like homotopies (cobordisms)
are very relevant for the understanding of phase transitions changing Planck constant.

13.3.4 How one could fix the spectrum of Planck constants?

The question how the observed Planck constant relates to the integers na and nb defining the covering
and factors spaces, is far from trivial and I have considered several options. The basic physical inputs
are the condition that scaling of Planck constant must correspond to the scaling of the metric of CD
(that is Compton lengths) on one hand and the scaling of the gauge coupling strength g2/4π~ on the
other hand.

1. One can assign to Planck constant to both CD and CP2 by assuming that it appears in the
commutation relations of corresponding symmetry algebras. Algebraist would argue that Planck
constants ~(CD) and ~(CP2) must define a homomorphism respecting multiplication and divi-
sion (when possible) by Gi. This requires r(X) = ~(X)~0 = n for covering and r(X) = 1/n for
factor space or vice versa.

2. If one assumes that ~2(X), X = M4, CP2 corresponds to the scaling of the covariant metric
tensor gij and performs an over-all scaling of H-metric allowed by the Weyl invariance of Kähler
action by dividing metric with ~2(CP2), one obtains the scaling of M4 covariant metric by
r2 ≡ ~2/~2

0 = ~2(M4)/~2(CP2) whereas CP2 metric is not scaled at all.

3. The condition that ~ scales as na is guaranteed if one has ~(CD) = na~0. This does not fix
the dependence of ~(CP2) on nb and one could have ~(CP2) = nb~0 or ~(CP2) = ~0/nb. The
intuitive picture is that nb- fold covering gives in good approximation rise to nanb sheets and
multiplies YM action action by nanb which is equivalent with the ~ = nanb~0 if one effectively
compresses the covering to CD×CP2. One would have ~(CP2) = ~0/nb and ~ = nanb~0. Note
that the descriptions using ordinary Planck constant and coverings and scaled Planck constant
but contracting the covering would be alternative descriptions.

This gives the following formulas r ≡ ~/~0 = r(M4)/r(CP2) in various cases.

C − C F − C C − F F − F

r nanb
na
nb

nb
na

1
nanb

13.3.5 Preferred values of Planck constants

Number theoretic considerations favor the hypothesis that the integers corresponding to Fermat
polygons constructible using only ruler and compass and given as products nF = 2k

∏
s Fs, where

Fs = 22s + 1 are distinct Fermat primes, are favored. The reason would be that quantum phase
q = exp(iπ/n) is in this case expressible using only iterated square root operation by starting from
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rationals. The known Fermat primes correspond to s = 0, 1, 2, 3, 4 so that the hypothesis is very
strong and predicts that p-adic length scales have satellite length scales given as multiples of nF of
fundamental p-adic length scale. nF = 211 corresponds in TGD framework to a fundamental constant
expressible as a combination of Kähler coupling strength, CP2 radius and Planck length appearing in
the expression for the tension of cosmic strings, and the powers of 211 seem to be especially favored
as values of na in living matter [27] .

13.3.6 How Planck constants are visible in Kähler action?

~(M4) and ~(CP2) appear in the commutation and anticommutation relations of various supercon-
formal algebras. Only the ratio of M4 and CP2 Planck constants appears in Kähler action and is
due to the fact that the M4 and CP2 metrics of the imbedding space sector with given values of
Planck constants are proportional to the corresponding Planck constants. This implies that Kähler
function codes for radiative corrections to the classical action, which makes possible to consider the
possibility that higher order radiative corrections to functional integral vanish as one might expect
at quantum criticality. For a given p-adic length scale space-time sheets with all allowed values of
Planck constants are possible. Hence the spectrum of quantum critical fluctuations could in the ideal
case correspond to the spectrum of ~ coding for the scaled up values of Compton lengths and other
quantal lengths and times. If so, large ~ phases could be crucial for understanding of quantum critical
superconductors, in particular high Tc superconductors.

13.3.7 Could the dynamics of Kähler action predict the hierarchy of Planck
constants?

The original justification for the hierarchy of Planck constants came from the indications that Planck
constant could have large values in both astrophysical systems involving dark matter and also in
biology. The realization of the hierarchy in terms of the singular coverings and possibly also factor
spaces of CD and CP2 emerged from consistency conditions. The formula for the Planck constant
involves heuristic guess work and physical plausibility arguments. There are good arguments in
favor of the hypothesis that only coverings are possible. Only a finite number of pages of the Big
Book correspond to a given value of Planck constant, biological evolution corresponds to a gradual
dispersion to the pages of the Big Book with larger Planck constant, and a connection with the
hierarchy of infinite primes and p-adicization program based on the mathematical realization of finite
measurement resolution emerges.

One can however ask whether this hierarchy could emerge directly from the basic quantum TGD
rather than as a separate hypothesis. The following arguments suggest that this might be possible. One
finds also a precise geometric interpretation of preferred extremal property interpreted as criticality
in zero energy ontology.

1-1 correspondence between canonical momentum densities and time derivatives fails for
Kähler action

The basic motivation for the geometrization program was the observation that canonical quantization
for TGD fails. To see what is involved let us try to perform a canonical quantization in zero energy
ontology at the 3-D surfaces located at the light-like boundaries of CD × CP2.

1. In canonical quantization canonical momentum densities π0
k ≡ πk = ∂LK/∂(∂0h

k), where ∂0h
k

denotes the time derivative of imbedding space coordinate, are the physically natural quantities
in terms of which to fix the initial values: once their value distribution is fixed also conserved
charges are fixed. Also the weak form of electric-magnetic duality given by J03√g4 = 4παKJ12

and a mild generalization of this condition to be discussed below can be interpreted as a manner
to fix the values of conserved gauge charges (not Noether charges) to their quantized values
since Kähler magnetic flux equals to the integer giving the homology class of the (wormhole)
throat. This condition alone need not characterize criticality, which requires an infinite number
of deformations of X4 for which the second variation of the Kähler action vanishes and implies
infinite number conserved charges. This in fact gives hopes of replacing πk with these conserved
Noether charges.
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2. Canonical quantization requires that ∂0h
k in the energy is expressed in terms of πk. The equation

defining πk in terms of ∂0h
k is however highly non-linear although algebraic. By taking squares

the equations reduces to equations for rational functions of ∂0h
k. ∂0h

k appears in contravariant
and covariant metric at most quadratically and in the induced Kähler electric field linearly and
by multplying the equations by det(g4)3 one can transform the equations to a polynomial form
so that in principle ∂0h

k can obtained as a solution of polynomial equations.

3. One can always eliminate one half of the coordinates by choosing 4 imbedding space coordinates
as the coordinates of the spacetime surface so that the initial value conditions reduce to those for
the canonical momentum densities associated with the remaining four coordinates. For instance,
for space-time surfaces representable as map M4 → CP2 M

4 coordinates are natural and the
time derivatives ∂0s

k of CP2 coordinates are multivalued. One would obtain four polynomial
equations with ∂0s

k as unknowns. In regions where CP2 projection is 4-dimensional -in particular
for the deformations of CP2 vacuum extremals the natural coordinates are CP2 coordinates and
one can regard ∂0m

k as unknows. For the deformations of cosmic strings, which are of form
X4 = X2 × Y 2 ⊂M4 × CP2, one can use coordinates of M2 × S2, where S2 is geodesic sphere
as natural coordinates and regard as unknowns E2 coordinates and remaining CP2 coordinates.

4. One can imagine solving one of the four polynomials equations for time derivaties in terms of
other obtaining N roots. Then one would substitute these roots to the remaining 3 conditions
to obtain algebraic equations from which one solves then second variable. Obviously situa-
tion is very complex without additional symmetries. The criticality of the preferred extremals
might however give additional conditions allowing simplifications. The reasons for giving up the
canonical quantization program was following. For the vacuum extremals of Kähler action πk
are however identically vanishing and this means that there is an infinite number of value distri-
butions for ∂0h

k. For small deformations of vacuum extremals one might however hope a finite
number of solutions to the conditions and thus finite number of space-time surfaces carrying
same conserved charges.

If one assumes that physics is characterized by the values of the conserved charges one must treat
the the many-valuedness of ∂0h

k. The most obvious guess is that one should replace the space of
space-like 4-surfaces corresponding to different roots ∂0h

k = F k(πl) with four-surfaces in the covering
space of CD × CP2 corresponding to different branches of the many-valued function ∂0h

k = F (πl)
co-inciding at the ends of CD.

Do the coverings forces by the many-valuedness of ∂0h
k correspond to the coverings

associated with the hierarchy of Planck constants?

The obvious question is whether this covering space actually corresponds to the covering spaces asso-
ciated with the hierarchy of Planck constants. This would conform with quantum classical correspon-
dence. The hierarchy of Planck constants and hierarchy of covering spaces was introduced to cure
the failure of the perturbation theory at quantum level. At classical level the multivaluedness of ∂0h

k

means a failure of perturbative canonical quantization and forces the introduction of the covering
spaces. The interpretation would be that when the density of matter becomes critical the space-time
surface splits to several branches so that the density at each branches is sub-critical. It is of course not
at all obvious whether the proposed structure of the Big Book is really consistent with this hypothesis
and one also consider modifications of this structure if necessary. The manner to proceed is by making
questions.

1. The proposed picture would give only single integer characterizing the covering. Two integers
assignable to CD and CP2 degrees of freedom are however needed. How these two coverings
could emerge?

(a) One should fix also the values of πnk = ∂LK/∂h
k
n, where n refers to space-like normal

coordinate at the wormhole throats. If one requires that charges do not flow between
regions with different signatures of the metric the natural condition is πnk = 0 and allows
also multi-valued solution. Since wormhole throats carry magnetic charge and since weak
form of electric-magnetic duality is assumed, one can assume that CP2 projection is four-
dimensional so that one can use CP2 coordinates and regard ∂0m

k as un-knows. The basic
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idea about topological condensation in turn suggests that M4 projection can be assumed
to be 4-D inside space-like 3-surfaces so that here ∂0s

k are the unknowns. At partonic 2-
surfaces one would have conditions for both π0

k and πnk . One might hope that the numbers
of solutions are finite for preferred extremals because of their symmetries and given by na
for ∂0m

k and by nb for ∂0s
k. The optimistic guess is that na and nb corresponds to the

numbers of sheets for singular coverings of CD and CP2. The covering could be visualized
as replacement of space-time surfaces with space-time surfaces which have nanb branches.
nb branches would degenerate to single branch at the ends of diagrams of the generaled
Feynman graph and na branches would degenerate to single one at wormhole throats.

(b) This picture is not quite correct yet. The fixing of π0
k and πnk should relate closely to the

effective 2-dimensionality as an additional condition perhaps crucial for criticality. One
could argue that both π0

k and πnk must be fixed at X3 and X3
l in order to effectively bring

in dynamics in two directions so that X3 could be interpreted as a an orbit of partonic
2-surface in space-like direction and X3

l as its orbit in light-like direction. The additional
conditions could be seen as gauge conditions made possible by symplectic and Kac-Moody
type conformal symmetries. The conditions for πk0 would give nb branches in CP2 degrees
of freedom and the conditions for πnk would split each of these branches to na branches.

(c) The existence of these two kinds of conserved charges (possibly vanishing for πnk ) could
relate also very closely to the slicing of the space-time sheets by string world sheets and
partonic 2-surfaces.

2. Should one then treat these branches as separate space-time surfaces or as a single space-time
surface? The treatment as a single surface seems to be the correct thing to do. Classically the
conserved changes would be nanb times larger than for single branch. Kähler action need not
(but could!) be same for different branches but the total action is nanb times the average action
and this effectively corresponds to the replacement of the ~0/g

2
K factor of the action with ~/g2

K ,
r ≡ ~/~0 = nanb. Since the conserved quantum charges are proportional to ~ one could argue
that r = nanb tells only that the charge conserved charge is nanb times larger than without
multi-valuedness. ~ would be only effectively nanb fold. This is of course poor man’s argument
but might catch something essential about the situation.

3. How could one interpret the condition J03√g4 = 4παKJ12 and its generalization to be discussed
below in this framework? The first observation is that the total Kähler electric charge is by
αK ∝ 1/(nanb) same always. The interpretation would be in terms of charge fractionization
meaning that each branch would carry Kähler electric charge QK = ngK/nanb. I have indeed
suggested explanation of charge fractionization and quantum Hall effect based on this picture.

4. The vision about the hierarchy of Planck constants involves also assumptions about imbedding
space metric. The assumption that the M4 covariant metric is proportional to ~2 follows from
the physical idea about ~ scaling of quantum lengths as what Compton length is. One can
always introduce scaled M4 coordinates bringing M4 metric into the standard form by scaling
up the M4 size of CD. It is not clear whether the scaling up of CD size follows automatically
from the proposed scenario. The basic question is why the M4 size scale of the critical extremals
must scale like nanb? This should somehow relate to the weak self-duality conditions implying
that Kähler field at each branch is reduced by a factor 1/r at each branch. Field equations
should posses a dynamical symmetry involving the scaling of CD by integer k and J0β√g4 and
Jnβ
√
g4 by 1/k. The scaling of CD should be due to the scaling up of the M4 time interval

during which the branched light-like 3-surface returns back to a non-branched one.

5. The proposed view about hierarchy of Planck constants is that the singular coverings reduce
to single-sheeted coverings at M2 ⊂ M4 for CD and to S2 ⊂ CP2 for CP2. Here S2 is any
homologically trivial geodesic sphere of CP2 and has vanishing Kähler form. Weak self-duality
condition is indeed consistent with any value of ~ and impies that the vacuum property for the
partonic 2-surface implies vacuum property for the entire space-time sheet as holography indeed
requires. This condition however generalizes. In weak self-duality conditions the value of ~ is
free for any 2-D Lagrangian sub-manifold of CP2.

The branching along M2 would mean that the branches of preferred extremals always collapse
to single branch when their M4 projection belongs to M2. Magnetically charged light-light-like
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throats cannot have M4 projection in M2 so that self-duality conditions for different values of
~ do not lead to inconsistencies. For spacelike 3-surfaces at the boundaries of CD the condition
would mean that the M4 projection becomes light-like geodesic. Straight cosmic strings would
have M2 as M4 projection. Also CP2 type vacuum extremals for which the random light-
like projection in M4 belongs to M2 would represent this of situation. One can ask whether
the degeneration of branches actually takes place along any string like object X2 × Y 2, where
X2 defines a minimal surface in M4. For these the weak self-duality condition would imply
~ =∞ at the ends of the string. It is very plausible that string like objects feed their magnetic
fluxes to larger space-times sheets through wormhole contacts so that these conditions are not
encountered.

Connection with the criticality of preferred extremals

Also a connection with quantum criticality and the criticality of the preferred extremals suggests
itself. Criticality for the preferred extremals must be a property of space-like 3-surfaces and light-
like 3-surfaces with degenerate 4-metric and the degeneration of the nanb branches of the space-time
surface at the its ends and at wormhole throats is exactly what happens at criticality. For instance,
in catastrophe theory roots of the polynomial equation giving extrema of a potential as function of
control parameters co-incide at criticality. If this picture is correct the hierarchy of Planck constants
would be an outcome of criticality and of preferred extremal property and preferred extremals would
be just those multi-branched space-time surfaces for which branches co-incide at the the boundaries
of CD × CP2 and at the throats.

13.4 Weak form electric-magnetic duality and its implications

The notion of electric-magnetic duality [8] was proposed first by Olive and Montonen and is central
in N = 4 supersymmetric gauge theories. It states that magnetic monopoles and ordinary particles
are two different phases of theory and that the description in terms of monopoles can be applied
at the limit when the running gauge coupling constant becomes very large and perturbation theory
fails to converge. The notion of electric-magnetic self-duality is more natural since for CP2 geometry
Kähler form is self-dual and Kähler magnetic monopoles are also Kähler electric monopoles and
Kähler coupling strength is by quantum criticality renormalization group invariant rather than running
coupling constant. The notion of electric-magnetic (self-)duality emerged already two decades ago
in the attempts to formulate the Kähler geometric of world of classical worlds. Quite recently a
considerable step of progress took place in the understanding of this notion [21] . What seems to be
essential is that one adopts a weaker form of the self-duality applying at partonic 2-surfaces. What
this means will be discussed in the sequel.

Every new idea must be of course taken with a grain of salt but the good sign is that this concept
leads to precise predictions. The point is that elementary particles do not generate monopole fields in
macroscopic length scales: at least when one considers visible matter. The first question is whether
elementary particles could have vanishing magnetic charges: this turns out to be impossible. The next
question is how the screening of the magnetic charges could take place and leads to an identification
of the physical particles as string like objects identified as pairs magnetic charged wormhole throats
connected by magnetic flux tubes.

1. The first implication is a new view about electro-weak massivation reducing it to weak confine-
ment in TGD framework. The second end of the string contains particle having electroweak
isospin neutralizing that of elementary fermion and the size scale of the string is electro-weak
scale would be in question. Hence the screening of electro-weak force takes place via weak
confinement realized in terms of magnetic confinement.

2. This picture generalizes to the case of color confinement. Also quarks correspond to pairs of
magnetic monopoles but the charges need not vanish now. Rather, valence quarks would be
connected by flux tubes of length of order hadron size such that magnetic charges sum up to
zero. For instance, for baryonic valence quarks these charges could be (2,−1,−1) and could be
proportional to color hyper charge.
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3. The highly non-trivial prediction making more precise the earlier stringy vision is that elementary
particles are string like objects in electro-weak scale: this should become manifest at LHC
energies.

4. The weak form electric-magnetic duality together with Beltrami flow property of Kähler leads to
the reduction of Kähler action to Chern-Simons action so that TGD reduces to almost topological
QFT and that Kähler function is explicitly calculable. This has enormous impact concerning
practical calculability of the theory.

5. One ends up also to a general solution ansatz for field equations from the condition that the
theory reduces to almost topological QFT. The solution ansatz is inspired by the idea that all
isometry currents are proportional to Kähler current which is integrable in the sense that the flow
parameter associated with its flow lines defines a global coordinate. The proposed solution ansatz
would describe a hydrodynamical flow with the property that isometry charges are conserved
along the flow lines (Beltrami flow). A general ansatz satisfying the integrability conditions
is found. The solution ansatz applies also to the extremals of Chern-Simons action and and
to the conserved currents associated with the modified Dirac equation defined as contractions
of the modified gamma matrices between the solutions of the modified Dirac equation. The
strongest form of the solution ansatz states that various classical and quantum currents flow
along flow lines of the Beltrami flow defined by Kähler current (Kähler magnetic field associated
with Chern-Simons action). Intuitively this picture is attractive. A more general ansatz would
allow several Beltrami flows meaning multi-hydrodynamics. The integrability conditions boil
down to two scalar functions: the first one satisfies massless d’Alembert equation in the induced
metric and the the gradients of the scalar functions are orthogonal. The interpretation in terms
of momentum and polarization directions is natural.

6. The general solution ansatz works for induced Kähler Dirac equation and Chern-Simons Dirac
equation and reduces them to ordinary differential equations along flow lines. The induced spinor
fields are simply constant along flow lines of indued spinor field for Dirac equation in suitable
gauge. Also the generalized eigen modes of the modified Chern-Simons Dirac operator can be
deduced explicitly if the throats and the ends of space-time surface at the boundaries of CD are
extremals of Chern-Simons action. Chern-Simons Dirac equation reduces to ordinary differential
equations along flow lines and one can deduce the general form of the spectrum and the explicit
representation of the Dirac determinant in terms of geometric quantities characterizing the 3-
surface (eigenvalues are inversely proportional to the lengths of strands of the flow lines in the
effective metric defined by the modified gamma matrices).

13.4.1 Could a weak form of electric-magnetic duality hold true?

Holography means that the initial data at the partonic 2-surfaces should fix the configuration space
metric. A weak form of this condition allows only the partonic 2-surfaces defined by the wormhole
throats at which the signature of the induced metric changes. A stronger condition allows all partonic
2-surfaces in the slicing of space-time sheet to partonic 2-surfaces and string world sheets. Number
theoretical vision suggests that hyper-quaternionicity resp. co-hyperquaternionicity constraint could
be enough to fix the initial values of time derivatives of the imbedding space coordinates in the space-
time regions with Minkowskian resp. Euclidian signature of the induced metric. This is a condition
on modified gamma matrices and hyper-quaternionicity states that they span a hyper-quaternionic
sub-space.

Definition of the weak form of electric-magnetic duality

One can also consider alternative conditions possibly equivalent with this condition. The argument
goes as follows.

1. The expression of the matrix elements of the metric and Kähler form of WCW in terms of
the Kähler fluxes weighted by Hamiltonians of δM4

± at the partonic 2-surface X2 looks very
attractive. These expressions however carry no information about the 4-D tangent space of the
partonic 2-surfaces so that the theory would reduce to a genuinely 2-dimensional theory, which
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cannot hold true. One would like to code to the WCW metric also information about the electric
part of the induced Kähler form assignable to the complement of the tangent space of X2 ⊂ X4.

2. Electric-magnetic duality of the theory looks a highly attractive symmetry. The trivial manner
to get electric magnetic duality at the level of the full theory would be via the identification of
the flux Hamiltonians as sums of of the magnetic and electric fluxes. The presence of the induced
metric is however troublesome since the presence of the induced metric means that the simple
transformation properties of flux Hamiltonians under symplectic transformations -in particular
color rotations- are lost.

3. A less trivial formulation of electric-magnetic duality would be as an initial condition which
eliminates the induced metric from the electric flux. In the Euclidian version of 4-D YM theory
this duality allows to solve field equations exactly in terms of instantons. This approach involves
also quaternions. These arguments suggest that the duality in some form might work. The full
electric magnetic duality is certainly too strong and implies that space-time surface at the
partonic 2-surface corresponds to piece of CP2 type vacuum extremal and can hold only in the
deep interior of the region with Euclidian signature. In the region surrounding wormhole throat
at both sides the condition must be replaced with a weaker condition.

4. To formulate a weaker form of the condition let us introduce coordinates (x0, x3, x1, x2) such
(x1, x2) define coordinates for the partonic 2-surface and (x0, x3) define coordinates labeling
partonic 2-surfaces in the slicing of the space-time surface by partonic 2-surfaces and string
world sheets making sense in the regions of space-time sheet with Minkowskian signature. The
assumption about the slicing allows to preserve general coordinate invariance. The weakest
condition is that the generalized Kähler electric fluxes are apart from constant proportional to
Kähler magnetic fluxes. This requires the condition

J03√g4 = KJ12 . (13.4.1)

A more general form of this duality is suggested by the considerations of [41] reducing the hierar-
chy of Planck constants to basic quantum TGD and also reducing Kähler function for preferred
extremals to Chern-Simons terms [2] at the boundaries of CD and at light-like wormhole throats.
This form is following

Jnβ
√
g4 = Kε× εnβγδJγδ

√
g4 . (13.4.2)

Here the index n refers to a normal coordinate for the space-like 3-surface at either boundary of
CD or for light-like wormhole throat. ε is a sign factor which is opposite for the two ends of CD.
It could be also opposite of opposite at the opposite sides of the wormhole throat. Note that the
dependence on induced metric disappears at the right hand side and this condition eliminates
the potentials singularity due to the reduction of the rank of the induced metric at wormhole
throat.

5. Information about the tangent space of the space-time surface can be coded to the configuration
space metric with loosing the nice transformation properties of the magnetic flux Hamiltonians
if Kähler electric fluxes or sum of magnetic flux and electric flux satisfying this condition are
used and K is symplectic invariant. Using the sum

Je + Jm = (1 +K)J12 , (13.4.3)

where J denotes the Kähler magnetic flux, , makes it possible to have a non-trivial configuration
space metric even for K = 0, which could correspond to the ends of a cosmic string like solution
carrying only Kähler magnetic fields. This condition suggests that it can depend only on Kähler
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magnetic flux and other symplectic invariants. Whether local symplectic coordinate invariants
are possible at all is far from obvious, If the slicing itself is symplectic invariant then K could be
a non-constant function of X2 depending on string world sheet coordinates. The light-like radial
coordinate of the light-cone boundary indeed defines a symplectically invariant slicing and this
slicing could be shifted along the time axis defined by the tips of CD.

Electric-magnetic duality physically

What could the weak duality condition mean physically? For instance, what constraints are obtained
if one assumes that the quantization of electro-weak charges reduces to this condition at classical
level?

1. The first thing to notice is that the flux of J over the partonic 2-surface is analogous to magnetic
flux

Qm =
e

~

∮
BdS = n .

n is non-vanishing only if the surface is homologically non-trivial and gives the homology charge
of the partonic 2-surface.

2. The expressions of classical electromagnetic and Z0 fields in terms of Kähler form [5] , [5] read
as

γ =
eFem
~

= 3J − sin2(θW )R03 ,

Z0 =
gZFZ
~

= 2R03 . (13.4.4)

Here R03 is one of the components of the curvature tensor in vielbein representation and Fem
and FZ correspond to the standard field tensors. From this expression one can deduce

J =
e

3~
Fem + sin2(θW )

gZ
6~
FZ . (13.4.5)

3. The weak duality condition when integrated over X2 implies

e2

3~
Qem +

g2
Zp

6
QZ,V = K

∮
J = Kn ,

QZ,V =
I3
V

2
−Qem , p = sin2(θW ) . (13.4.6)

Here the vectorial part of the Z0 charge rather than as full Z0 charge QZ = I3
L + sin2(θW )Qem

appears. The reason is that only the vectorial isospin is same for left and right handed compo-
nents of fermion which are in general mixed for the massive states.

The coefficients are dimensionless and expressible in terms of the gauge coupling strengths and
using ~ = r~0 one can write

αemQem + p
αZ
2
QZ,V =

3

4π
× rnK ,

αem =
e2

4π~0
, αZ =

g2
Z

4π~0
=

αem
p(1− p)

. (13.4.7)
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4. There is a great temptation to assume that the values of Qem and QZ correspond to their
quantized values and therefore depend on the quantum state assigned to the partonic 2-surface.
The linear coupling of the modified Dirac operator to conserved charges implies correlation
between the geometry of space-time sheet and quantum numbers assigned to the partonic 2-
surface. The assumption of standard quantized values for Qem and QZ would be also seen as
the identification of the fine structure constants αem and αZ . This however requires weak isospin
invariance.

The value of K from classical quantization of Kähler electric charge

The value of K can be deduced by requiring classical quantization of Kähler electric charge.

1. The condition that the flux of F 03 = (~/gK)J03 defining the counterpart of Kähler electric field
equals to the Kähler charge gK would give the condition K = g2

K/~, where gK is Kähler cou-
pling constant which should invariant under coupling constant evolution by quantum criticality.
Within experimental uncertainties one has αK = g2

K/4π~0 = αem ' 1/137, where αem is finite
structure constant in electron length scale and ~0 is the standard value of Planck constant.

2. The quantization of Planck constants makes the condition highly non-trivial. The most general
quantization of r is as rationals but there are good arguments favoring the quantization as
integers corresponding to the allowance of only singular coverings of CD andn CP2. The point
is that in this case a given value of Planck constant corresponds to a finite number pages of
the ”Big Book”. The quantization of the Planck constant implies a further quantization of K
and would suggest that K scales as 1/r unless the spectrum of values of Qem and QZ allowed
by the quantization condition scales as r. This is quite possible and the interpretation would
be that each of the r sheets of the covering carries (possibly same) elementary charge. Kind
of discrete variant of a full Fermi sphere would be in question. The interpretation in terms of
anyonic phases [66] supports this interpretation.

3. The identification of J as a counterpart of eB/~ means that Kähler action and thus also Kähler
function is proportional to 1/αK and therefore to ~. This implies that for large values of ~
Kähler coupling strength g2

K/4π becomes very small and large fluctuations are suppressed in
the functional integral. The basic motivation for introducing the hierarchy of Planck constants
was indeed that the scaling α→ α/r allows to achieve the convergence of perturbation theory:
Nature itself would solve the problems of the theoretician. This of course does not mean that
the physical states would remain as such and the replacement of single particles with anyonic
states in order to satisfy the condition for K would realize this concretely.

4. The condition K = g2
K/~ implies that the Kähler magnetic charge is always accompanied by

Kähler electric charge. A more general condition would read as

K = n× g2
K

~
, n ∈ Z . (13.4.8)

This would apply in the case of cosmic strings and would allow vanishing Kähler charge possible
when the partonic 2-surface has opposite fermion and antifermion numbers (for both leptons and
quarks) so that Kähler electric charge should vanish. For instance, for neutrinos the vanishing
of electric charge strongly suggests n = 0 besides the condition that abelian Z0 flux contributing
to em charge vanishes.

It took a year to realize that this value of K is natural at the Minkowskian side of the wormhole
throat. At the Euclidian side much more natural condition is

K =
1

hbar
. (13.4.9)

In fact, the self-duality of CP2 Kähler form favours this boundary condition at the Euclidian side of
the wormhole throat. Also the fact that one cannot distinguish between electric and magnetic charges
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in Euclidian region since all charges are magnetic can be used to argue in favor of this form. The
same constraint arises from the condition that the action for CP2 type vacuum extremal has the value
required by the argument leading to a prediction for gravitational constant in terms of the square of
CP2 radius and αK the effective replacement g2

K → 1 would spoil the argument.
The boundary condition JE = JB for the electric and magnetic parts of Kählwer form at the

Euclidian side of the wormhole throat inspires the question whether all Euclidian regions could be
self-dual so that the density of Kähler action would be just the instanton density. Self-duality follows if
the deformation of the metric induced by the deformation of the canonically imbedded CP2 is such that
in CP2 coordinates for the Euclidian region the tensor (gαβgµν −gανgµβ)/

√
g remains invariant. This

is certainly the case for CP2 type vacuum extremals since by the light-likeness of M4 projection the
metric remains invariant. Also conformal scalings of the induced metric would satisfy this condition.
Conformal scaling is not consistent with the degeneracy of the 4-metric at the wormhole

Reduction of the quantization of Kähler electric charge to that of electromagnetic charge

The best manner to learn more is to challenge the form of the weak electric-magnetic duality based
on the induced Kähler form.

1. Physically it would seem more sensible to pose the duality on electromagnetic charge rather
than Kähler charge. This would replace induced Kähler form with electromagnetic field, which
is a linear combination of induced K”ahler field and classical Z0 field

γ = 3J − sin2θWR03 ,

Z0 = 2R03 . (13.4.10)

Here Z0 = 2R03 is the appropriate component of CP2 curvature form [5]. For a vanishing
Weinberg angle the condition reduces to that for Kähler form.

2. For the Euclidian space-time regions having interpretation as lines of generalized Feynman dia-
grams Weinberg angle should be non-vanishing. In Minkowskian regions Weinberg angle could
however vanish. If so, the condition guaranteing that electromagnetic charge of the partonic
2-surfaces equals to the above condition stating that the em charge assignable to the fermion
content of the partonic 2-surfaces reduces to the classical Kähler electric flux at the Minkowskian
side of the wormhole throat. One can argue that Weinberg angle must increase smoothly from a
vanishing value at both sides of wormhole throat to its value in the deep interior of the Euclidian
region.

3. The vanishing of the Weinberg angle in Minkowskian regions conforms with the physical intu-
ition. Above elementary particle length scales one sees only the classical electric field reducing
to the induced Kähler form and classical Z0 fields and color gauge fields are effectively ab-
sent. Only in phases with a large value of Planck constant classical Z0 field and other classical
weak fields and color gauge field could make themselves visible. Cell membrane could be one
such system [69]. This conforms with the general picture about color confinement and weak
massivation.

The GRT limit of TGD suggests a further reason for why Weinberg angle should vanish in
Minkowskian regions.

1. The value of the Kähler coupling strength mut be very near to the value of the fine structure
constant in electron length scale and these constants can be assumed to be equal.

2. GRT limit of TGD with space-time surfaces replaced with abstract 4-geometries would naturally
correspond to Einstein-Maxwell theory with cosmological constant which is non-vanishing only
in Euclidian regions of space-time so that both Reissner-Nordström metric and CP2 are allowed
as simplest possible solutions of field equations [91]. The extremely small value of the observed
cosmological constant needed in GRT type cosmology could be equal to the large cosmological
constant associated with CP2 metric multiplied with the 3-volume fraction of Euclidian regions.
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3. Also at GRT limit quantum theory would reduce to almost topological QFT since Einstein-
Maxwell action reduces to 3-D term by field equations implying the vanishing of the Maxwell
current and of the curvature scalar in Minkowskian regions and curvature scalar + cosmological
constant term in Euclidian regions. The weak form of electric-magnetic duality would guarantee
also now the preferred extremal property and prevent the reduction to a mere topological QFT.

4. GRT limit would make sense only for a vanishing Weinberg angle in Minkowskian regions. A
non-vanishing Weinberg angle would make sense in the deep interior of the Euclidian regions
where the approximation as a small deformation of CP2 makes sense.

The weak form of electric-magnetic duality has surprisingly strong implications for the basic view
about quantum TGD as following considerations show.

13.4.2 Magnetic confinement, the short range of weak forces, and color
confinement

The weak form of electric-magnetic duality has surprisingly strong implications if one combines it with
some very general empirical facts such as the non-existence of magnetic monopole fields in macroscopic
length scales.

How can one avoid macroscopic magnetic monopole fields?

Monopole fields are experimentally absent in length scales above order weak boson length scale and one
should have a mechanism neutralizing the monopole charge. How electroweak interactions become
short ranged in TGD framework is still a poorly understood problem. What suggests itself is the
neutralization of the weak isospin above the intermediate gauge boson Compton length by neutral
Higgs bosons. Could the two neutralization mechanisms be combined to single one?

1. In the case of fermions and their super partners the opposite magnetic monopole would be a
wormhole throat. If the magnetically charged wormhole contact is electromagnetically neutral
but has vectorial weak isospin neutralizing the weak vectorial isospin of the fermion only the
electromagnetic charge of the fermion is visible on longer length scales. The distance of this
wormhole throat from the fermionic one should be of the order weak boson Compton length.
An interpretation as a bound state of fermion and a wormhole throat state with the quantum
numbers of a neutral Higgs boson would therefore make sense. The neutralizing throat would
have quantum numbers of X−1/2 = νLνR or X1/2 = νLνR. νLνR would not be neutral Higgs
boson (which should correspond to a wormhole contact) but a super-partner of left-handed
neutrino obtained by adding a right handed neutrino. This mechanism would apply separately
to the fermionic and anti-fermionic throats of the gauge bosons and corresponding space-time
sheets and leave only electromagnetic interaction as a long ranged interaction.

2. One can of course wonder what is the situation situation for the bosonic wormhole throats feeding
gauge fluxes between space-time sheets. It would seem that these wormhole throats must always
appear as pairs such that for the second member of the pair monopole charges and I3

V cancel
each other at both space-time sheets involved so that one obtains at both space-time sheets
magnetic dipoles of size of weak boson Compton length. The proposed magnetic character of
fundamental particles should become visible at TeV energies so that LHC might have surprises
in store!

Magnetic confinement and color confinement

Magnetic confinement generalizes also to the case of color interactions. One can consider also the
situation in which the magnetic charges of quarks (more generally, of color excited leptons and quarks)
do not vanish and they form color and magnetic singles in the hadronic length scale. This would mean
that magnetic charges of the state q±1/2−X∓1/2 representing the physical quark would not vanish and
magnetic confinement would accompany also color confinement. This would explain why free quarks
are not observed. To how degree then quark confinement corresponds to magnetic confinement is an
interesting question.
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For quark and antiquark of meson the magnetic charges of quark and antiquark would be opposite
and meson would correspond to a Kähler magnetic flux so that a stringy view about meson emerges.
For valence quarks of baryon the vanishing of the net magnetic charge takes place provided that the
magnetic net charges are (±2,∓1,∓1). This brings in mind the spectrum of color hyper charges
coming as (±2,∓1,∓1)/3 and one can indeed ask whether color hyper-charge correlates with the
Kähler magnetic charge. The geometric picture would be three strings connected to single vertex.
Amusingly, the idea that color hypercharge could be proportional to color hyper charge popped up
during the first year of TGD when I had not yet discovered CP2 and believed on M4 × S2.

p-Adic length scale hypothesis and hierarchy of Planck constants defining a hierarchy of dark
variants of particles suggest the existence of scaled up copies of QCD type physics and weak physics.
For p-adically scaled up variants the mass scales would be scaled by a power of

√
2 in the most general

case. The dark variants of the particle would have the same mass as the original one. In particular,
Mersenne primes Mk = 2k − 1 and Gaussian Mersennes MG,k = (1 + i)k − 1 has been proposed to
define zoomed copies of these physics. At the level of magnetic confinement this would mean hierarchy
of length scales for the magnetic confinement.

One particular proposal is that the Mersenne prime M89 should define a scaled up variant of the
ordinary hadron physics with mass scaled up roughly by a factor 2(107−89)/2 = 512. The size scale
of color confinement for this physics would be same as the weal length scale. It would look more
natural that the weak confinement for the quarks of M89 physics takes place in some shorter scale
and M61 is the first Mersenne prime to be considered. The mass scale of M61 weak bosons would
be by a factor 2(89−61)/2 = 214 higher and about 1.6× 104 TeV. M89 quarks would have virtually no
weak interactions but would possess color interactions with weak confinement length scale reflecting
themselves as new kind of jets at collisions above TeV energies.

In the biologically especially important length scale range 10 nm -2500 nm there are as many as
four Gaussian Mersennes corresponding to MG,k, k = 151, 157, 163, 167. This would suggest that the
existence of scaled up scales of magnetic-, weak- and color confinement. An especially interesting
possibly testable prediction is the existence of magnetic monopole pairs with the size scale in this
range. There are recent claims about experimental evidence for magnetic monopole pairs [12] .

Magnetic confinement and stringy picture in TGD sense

The connection between magnetic confinement and weak confinement is rather natural if one recalls
that electric-magnetic duality in super-symmetric quantum field theories means that the descriptions
in terms of particles and monopoles are in some sense dual descriptions. Fermions would be replaced
by string like objects defined by the magnetic flux tubes and bosons as pairs of wormhole contacts
would correspond to pairs of the flux tubes. Therefore the sharp distinction between gravitons and
physical particles would disappear.

The reason why gravitons are necessarily stringy objects formed by a pair of wormhole contacts
is that one cannot construct spin two objects using only single fermion states at wormhole throats.
Of course, also super partners of these states with higher spin obtained by adding fermions and anti-
fermions at the wormhole throat but these do not give rise to graviton like states [32] . The upper and
lower wormhole throat pairs would be quantum superpositions of fermion anti-fermion pairs with sum
over all fermions. The reason is that otherwise one cannot realize graviton emission in terms of joining
of the ends of light-like 3-surfaces together. Also now magnetic monopole charges are necessary but
now there is no need to assign the entities X± with gravitons.

Graviton string is characterized by some p-adic length scale and one can argue that below this
length scale the charges of the fermions become visible. Mersenne hypothesis suggests that some
Mersenne prime is in question. One proposal is that gravitonic size scale is given by electronic
Mersenne prime M127. It is however difficult to test whether graviton has a structure visible below
this length scale.

What happens to the generalized Feynman diagrams is an interesting question. It is not at all
clear how closely they relate to ordinary Feynman diagrams. All depends on what one is ready to
assume about what happens in the vertices. One could of course hope that zero energy ontology could
allow some very simple description allowing perhaps to get rid of the problematic aspects of Feynman
diagrams.

1. Consider first the recent view about generalized Feynman diagrams which relies zero energy
ontology. A highly attractive assumption is that the particles appearing at wormhole throats
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are on mass shell particles. For incoming and outgoing elementary bosons and their super
partners they would be positive it resp. negative energy states with parallel on mass shell
momenta. For virtual bosons they the wormhole throats would have opposite sign of energy
and the sum of on mass shell states would give virtual net momenta. This would make possible
twistor description of virtual particles allowing only massless particles (in 4-D sense usually and
in 8-D sense in TGD framework). The notion of virtual fermion makes sense only if one assumes
in the interaction region a topological condensation creating another wormhole throat having
no fermionic quantum numbers.

2. The addition of the particles X± replaces generalized Feynman diagrams with the analogs of
stringy diagrams with lines replaced by pairs of lines corresponding to fermion and X±1/2. The
members of these pairs would correspond to 3-D light-like surfaces glued together at the vertices
of generalized Feynman diagrams. The analog of 3-vertex would not be splitting of the string to
form shorter strings but the replication of the entire string to form two strings with same length
or fusion of two strings to single string along all their points rather than along ends to form a
longer string. It is not clear whether the duality symmetry of stringy diagrams can hold true
for the TGD variants of stringy diagrams.

3. How should one describe the bound state formed by the fermion and X±? Should one describe
the state as superposition of non-parallel on mass shell states so that the composite state would
be automatically massive? The description as superposition of on mass shell states does not
conform with the idea that bound state formation requires binding energy. In TGD framework
the notion of negentropic entanglement has been suggested to make possible the analogs of
bound states consisting of on mass shell states so that the binding energy is zero [52] . If this
kind of states are in question the description of virtual states in terms of on mass shell states is
not lost. Of course, one cannot exclude the possibility that there is infinite number of this kind
of states serving as analogs for the excitations of string like object.

4. What happens to the states formed by fermions and X±1/2 in the internal lines of the Feynman
diagram? Twistor philosophy suggests that only the higher on mass shell excitations are possible.
If this picture is correct, the situation would not change in an essential manner from the earlier
one.

The highly non-trivial prediction of the magnetic confinement is that elementary particles should
have stringy character in electro-weak length scales and could behaving to become manifest at LHC
energies. This adds one further item to the list of non-trivial predictions of TGD about physics at
LHC energies [53] .

Should J + J1 appear in Kähler action?

The presence of the S2 Kähler form J1 in weak form of electric-magnetic duality was originally
suggested by an erratic argument about the reduction to almost topological QFT to be described in
the next subsection. In any case this argument raises the question whether one could replace J with
J +J1 in the Kähler action. This would not affect the basic non-vacuum extremals but would modify
the vacuum degeneracy of the Kähler action. Canonically imbedded M4 would become a monopole
configuration with an infinite magnetic energy and Kähler action due to the monopole singularity at
the line connecting tips of the CD. Action and energy can be made small by drilling a small hole
around origin. This is however not consistent with the weak form of electro-weak duality. Amusingly,
the modified Dirac equation reduces to ordinary massless Dirac equation in M4.

This extremal can be transformed to a vacuum extremal by assuming that the solution is also
a CP2 magnetic monopole with opposite contribution to the magnetic charge so that J + J1 = 0
holds true. This is achieved if one can regard space-time surface as a map M4 → CP2 reducing to
a map (Θ,Φ) = (θ,±φ) with the sign chosen by properly projecting the homologically non-trivial
rM = constant spheres of CD to the homologically non-trivial geodesic sphere of CP2. Symplectic
transformations of S2×CP2 produce new vacuum extremals of this kind. Using Darboux coordinates
in which one has J =

∑
k=1,2 PkdQ

k and assuming that (P1, Q1) corresponds to the CP2 image of

S2, one can take Q2 to be arbitrary function of P 2 which in turn is an arbitrary function of of M4

coordinates to obtain even more general vacuum extremals with 3-D CP2 projection. Therefore the
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spectrum of vacuum extremals, which is very relevant for the TGD based description of gravitation
in long length scales because it allows to satisfy Einstein’s equations as an additional condition, looks
much richer than for the original option, and it is natural to ask whether this option might make
sense.

An objection is that J1 is a radial monopole field and this breaks Lorentz invariance to SO(3).
Lorentz invariance is broken to SO(3) for a given CD also by the presence of the preferred time
direction defined by the time-like line connecting the tips of the CD becoming carrying the monopole
charge but is compensated since Lorentz boosts of CDs are possible. Could one consider similar com-
pensation also now? Certainly the extremely small breaking of Lorentz invariance and the vanishing
of the monopole charge for the vacuum extremals is all that is needed at the space-time level. No
new gauge fields would be introduced since only the Kähler field part of photon and Z0 boson would
receive an additional contribution.

The ultimate fate of the modification depends on whether it is consistent with the general relativis-
tic description of gravitation. Since a breaking of spherical symmetry is involved, it is not at all clear
whether one can find vacuum extremals which represent small deformations of the Reissner-Nordström
metric and Robertson-Walker metric. The argument below shows that this option does not allow the
imbedding of small deformations of physically plausible space-time metrics as vacuum extremals.

The basic vacuum extremal whose deformations should give vacuum extremals allowing interpre-
tation as solutions of Einstein’s equations is given by a map M4 → CP2 projecting the rM constant
spheres S2 of M2 to the homologically non-trivial geodesic sphere of CP2. The winding number of
this map is −1 in order to achieve vanishing of the induced Kähler form J + J1. For instance, the
following two canonical forms of the map are possible

(Θ,Ψ) = (θM ,−φM ) ,

(Θ,Ψ) = (π − θM , φM ) .

(13.4.11)

Here (Θ,Ψ) refers to the geodesic sphere of CP2 and (θM , φM ) to the sphere of M4.
The resulting space-time surface is not flat and Einstein tensor is non-vanishing. More complex metrics
can be constructed from this metric by a deformation making the CP2 projection 3-dimensional.

Using the expression of the CP2 line element in Eguchi-Hanson coordinates [19]

ds2

R2
=

dr2

F 2
+
r2

F
(dΨ + cosΘdΦ)2 +

r2

4F
(dΘ2 + fracr24Fsin2ΘdΦ2)

(13.4.12)

and s the relationship r = tan(Θ), one obtains following expression for the CP2 metric

ds2

R2
= dθ2

M + sin2(θM )

[
(dφM + cos(θ)dΦ)2 +

1

4
(dθ2 + sin2(θ)dΦ2

]
.

(13.4.13)

The resulting metric is obtained from the metric of S2 by replacing dφ2 which 3-D line element. The
factor sin2(θM ) implies that the induced metric becomes singular at North and South poles of S2.
In particular, the gravitational potential is proportional to sin2(θM ) so that gravitational force in
the radial direction vanishes at equators. It is very difficult to imagine any manner to produce a
small deformation of Reissner-Nordstrm metric or Robertson-Walker metric. Hence it seems that the
vacuum extremals produce by J + J1 option are not physical.

13.4.3 Could Quantum TGD reduce to almost topological QFT?

There seems to be a profound connection with the earlier unrealistic proposal that TGD reduces to
almost topological quantum theory in the sense that the counterpart of Chern-Simons action assigned
with the wormhole throats somehow dictates the dynamics. This proposal can be formulated also
for the modified Dirac action action. I gave up this proposal but the following argument shows that
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Kähler action with weak form of electric-magnetic duality effectively reduces to Chern-Simons action
plus Coulomb term.

1. Kähler action density can be written as a 4-dimensional integral of the Coulomb term jαKAα plus
and integral of the boundary term JnβAβ

√
g4 over the wormhole throats and of the quantity

J0βAβ
√
g4 over the ends of the 3-surface.

2. If the self-duality conditions generalize to Jnβ = 4παKε
nβγδJγδ at throats and to J0β =

4παKε
0βγδJγδ at the ends, the Kähler function reduces to the counterpart of Chern-Simons

action evaluated at the ends and throats. It would have same value for each branch and the
replacement ~0 → r~0 would effectively describe this. Boundary conditions would however give
1/r factor so that ~ would disappear from the Kähler function! The original attempt to real-
ize quantum TGD as an almost topological QFT was in terms of Chern-Simons action but was
given up. It is somewhat surprising that Kähler action gives Chern-Simons action in the vacuum
sector defined as sector for which Kähler current is light-like or vanishes.

Holography encourages to ask whether also the Coulomb interaction terms could vanish. This
kind of dimensional reduction would mean an enormous simplification since TGD would reduce to an
almost topological QFT. The attribute ”almost” would come from the fact that one has non-vanishing
classical Noether charges defined by Kähler action and non-trivial quantum dynamics in M4 degrees
of freedom. One could also assign to space-time surfaces conserved four-momenta which is not possible
in topological QFTs. For this reason the conditions guaranteeing the vanishing of Coulomb interaction
term deserve a detailed analysis.

1. For the known extremals jαK either vanishes or is light-like (”massless extremals” for which
weak self-duality condition does not make sense [12] ) so that the Coulombic term vanishes
identically in the gauge used. The addition of a gradient to A induces terms located at the ends
and wormhole throats of the space-time surface but this term must be cancelled by the other
boundary terms by gauge invariance of Kähler action. This implies that the M4 part of WCW
metric vanishes in this case. Therefore massless extremals as such are not physically realistic:
wormhole throats representing particles are needed.

2. The original naive conclusion was that since Chern-Simons action depends on CP2 coordinates
only, its variation with respect to Minkowski coordinates must vanish so that the WCW met-
ric would be trivial in M4 degrees of freedom. This conclusion is in conflict with quantum
classical correspondence and was indeed too hasty. The point is that the allowed variations of
Kähler function must respect the weak electro-magnetic duality which relates Kähler electric
field depending on the induced 4-metric at 3-surface to the Kähler magnetic field. Therefore the
dependence on M4 coordinates creeps via a Lagrange multiplier term

∫
Λα(Jnα −KεnαβγJβγ)

√
g4d

3x . (13.4.14)

The (1,1) part of second variation contributing to M4 metric comes from this term.

3. This erratic conclusion about the vanishing of M4 part WCW metric raised the question about
how to achieve a non-trivial metric in M4 degrees of freedom. The proposal was a modification of
the weak form of electric-magnetic duality. Besides CP2 Kähler form there would be the Kähler
form assignable to the light-cone boundary reducing to that for rM = constant sphere - call it
J1. The generalization of the weak form of self-duality would be Jnβ = εnβγδK(Jγδ + εJ1

γδ).

This form implies that the boundary term gives a non-trivial contribution to the M4 part of
the WCW metric even without the constraint from electric-magnetic duality. Kähler charge is
not affected unless the partonic 2-surface contains the tip of CD in its interior. In this case the
value of Kähler charge is shifted by a topological contribution. Whether this term can survive
depends on whether the resulting vacuum extremals are consistent with the basic facts about
classical gravitation.



1104 Chapter 13. Quantum Hall effect and Hierarchy of Planck Constants

4. The Coulombic interaction term is not invariant under gauge transformations. The good news
is that this might allow to find a gauge in which the Coulomb term vanishes. The vanishing
condition fixing the gauge transformation φ is

jαK∂αφ = −jαAα . (13.4.15)

This differential equation can be reduced to an ordinary differential equation along the flow
lines jK by using dxα/dt = jαK . Global solution is obtained only if one can combine the flow
parameter t with three other coordinates- say those at the either end of CD to form space-
time coordinates. The condition is that the parameter defining the coordinate differential is
proportional to the covariant form of Kähler current: dt = φjK . This condition in turn implies
d2t = d(φjK) = d(φjK) = dφ ∧ jK + φdjK = 0 implying jK ∧ djK = 0 or more concretely,

εαβγδjKβ ∂γj
K
δ = 0 . (13.4.16)

jK is a four-dimensional counterpart of Beltrami field [47] and could be called generalized Bel-
trami field.

The integrability conditions follow also from the construction of the extremals of Kähler action
[12] . The conjecture was that for the extremals the 4-dimensional Lorentz force vanishes (no
dissipation): this requires jK ∧ J = 0. One manner to guarantee this is the topologization of
the Kähler current meaning that it is proportional to the instanton current: jK = φjI , where
jI = ∗(J ∧ A) is the instanton current, which is not conserved for 4-D CP2 projection. The
conservation of jK implies the condition jαI ∂αφ = ∂αj

αφ and from this φ can be integrated if the
integrability condition jI∧djI = 0 holds true implying the same condition for jK . By introducing
at least 3 or CP2 coordinates as space-time coordinates, one finds that the contravariant form of
jI is purely topological so that the integrability condition fixes the dependence onM4 coordinates
and this selection is coded into the scalar function φ. These functions define families of conserved
currents jαKφ and jαI φ and could be also interpreted as conserved currents associated with the
critical deformations of the space-time surface.

5. There are gauge transformations respecting the vanishing of the Coulomb term. The vanishing
condition for the Coulomb term is gauge invariant only under the gauge transformations A →
A+∇φ for which the scalar function the integral

∫
jαK∂αφ reduces to a total divergence a giving

an integral over various 3-surfaces at the ends of CD and at throats vanishes. This is satisfied
if the allowed gauge transformations define conserved currents

Dα(jαφ) = 0 . (13.4.17)

As a consequence Coulomb term reduces to a difference of the conserved chargesQeφ =
∫
j0φ
√
g4d

3x
at the ends of the CD vanishing identically. The change of the imons type term is trivial if the
total weighted Kähler magnetic flux Qmφ =

∑∫
JφdA over wormhole throats is conserved. The

existence of an infinite number of conserved weighted magnetic fluxes is in accordance with the
electric-magnetic duality. How these fluxes relate to the flux Hamiltonians central for WCW
geometry is not quite clear.

6. The gauge transformations respecting the reduction to almost topological QFT should have some
special physical meaning. The measurement interaction term in the modified Dirac interaction
corresponds to a critical deformation of the space-time sheet and is realized as an addition
of a gauge part to the Kähler gauge potential of CP2. It would be natural to identify this
gauge transformation giving rise to a conserved charge so that the conserved charges would
provide a representation for the charges associated with the infinitesimal critical deformations
not affecting Kähler action. The gauge transformed Kähler potential couples to the modified
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Dirac equation and its effect could be visible in the value of Kähler function and therefore also
in the properties of the preferred extremal. The effect on WCW metric would however vanish
since K would transform only by an addition of a real part of a holomorphic function. Kähler
function is identified as a Dirac determinant for Chern-Simons Dirac action and the spectrum
of this operator should not be invariant under these gauge transformations if this picture is
correct. This is is achieved if the gauge transformation is carried only in the Dirac action
corresponding to the Chern-Simons term: this assumption is motivated by the breaking of time
reversal invariance induced by quantum measurements. The modification of Kähler action can
be guessed to correspond just to the Chern-Simons contribution from the instanton term.

7. A reasonable looking guess for the explicit realization of the quantum classical correspondence
between quantum numbers and space-time geometry is that the deformation of the preferred
extremal due to the addition of the measurement interaction term is induced by a U(1) gauge
transformation induced by a transformation of δCD×CP2 generating the gauge transformation
represented by φ. This interpretation makes sense if the fluxes defined by Qmφ and corresponding
Hamiltonians affect only zero modes rather than quantum fluctuating degrees of freedom.

To sum up, one could understand the basic properties of WCW metric in this framework. Effec-
tive 2-dimensionality would result from the existence of an infinite number of conserved charges in
two different time directions (genuine conservation laws plus gauge fixing). The infinite-dimensional
symmetric space for given values of zero modes corresponds to the Cartesian product of the WCWs
associated with the partonic 2-surfaces at both ends of CD and the generalized Chern-Simons term
decomposes into a sum of terms from the ends giving single particle Kähler functions and to the terms
from light-like wormhole throats giving interaction term between positive and negative energy parts of
the state. Hence Kähler function could be calculated without any knowledge about the interior of the
space-time sheets and TGD would reduce to almost topological QFT as speculated earlier. Needless
to say this would have immense boost to the program of constructing WCW Kähler geometry.

13.4.4 Kähler action for Euclidian regions as Kähler function and Kähler
action for Minkowskian regions as Morse function?

One of the nasty questions about the interpretation of Kähler action relates to the square root of
the metric determinant. If one proceeds completely straightforwardly, the only reason conclusion is
that the square root is imaginary in Minkowskian space-time regions so that Kähler action would be
complex. The Euclidian contribution would have a natural interpretation as positive definite Kähler
function but how should one interpret the imaginary Minkowskian contribution? Certainly the path
integral approach to quantum field theories supports its presence. For some mysterious reason I
was able to forget this nasty question and serious consideration of the obvious answer to it. Only
when I worked betweeen possibile connections between TGD and Floer homology [100] I realized
that the Minkowskian contribution is an excellent candidate for Morse function whose critical points
give information about WCW homology. This would fit nicely with the vision about TGD as almost
topological QFT.

Euclidian regions would guarantee the convergence of the functional integral and one would have
a mathematically well-defined theory. Minkowskian contribution would give the quantal interference
effects and stationary phase approximation. The analog of Floer homology would represent quantum
superpositions of critical points identifiable as ground states defined by the extrema of Kähler action
for Minkowskian regions. Perturbative approach to quantum TGD would rely on functional integrals
around the extrema of Kähler function. One would have maxima also for the Kähler function but
only in the zero modes not contributing to the WCW metric.

There is a further question related to almost topological QFT character of TGD. Should one assume
that the reduction to Chern-Simons terms occurs for the preferred extremals in both Minkowskian and
Euclidian regions or only in Minkowskian regions?

1. All arguments for this have been represented for Minkowskian regions [31] involve local light-
like momentum direction which does not make sense in the Euclidian regions. This does not
however kill the argument: one can have non-trivial solutions of Laplacian equation in the
region of CP2 bounded by wormhole throats: for CP2 itself only covariantly constant right-
handed neutrino represents this kind of solution and at the same time supersymmetry. In the
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general case solutions of Laplacian represent broken super-symmetries and should be in one-one
correspondences with the solutions of the modified Dirac equation. The interpretation for the
counterparts of momentum and polarization would be in terms of classical representation of
color quantum numbers.

If the reduction occurs in Euclidian regions, it gives in the case of CP2 two 3-D terms corre-
sponding to two 3-D gluing regions for three coordinate patches needed to define coordinates
and spinor connection for CP2 so that one would have two Chern-Simons terms. Without any
other contributions the first term would be identical with that from Minkowskian region apart
from imaginary unit. Second Chern-Simons term would be however independent of this. For
wormhole contacts the two terms could be assigned with opposite wormhole throats and would
be identical with their Minkowskian cousins from imaginary unit. This looks a little bit strange.

2. There is however a very delicate issue involved. Quantum classical correspondence requires that
the quantum numbers of partonic states must be coded to the space-time geometry, and this is
achieved by adding to the action a measurement interaction term which reduces to what is almost
a gauge term present only in Chern-Simons-Dirac equation but not at space-time interior [31].
This term would represent a coupling to Poincare quantum numbers at the Minkowskian side
and to color and electro-weak quantum numbers at CP2 side. Therefore the net Chern-Simons
contributions and would be different.

3. There is also a very beautiful argument stating that Dirac determinant for Chern-Simons-Dirac
action equals to Kähler function, which would be lost if Euclidian regions would not obey
holography. The argument obviously generalizes and applies to both Morse and Kähler function.

The Minkowskian contribution of Kähler action is imaginary due to the negative of the metric
determinant and gives a phase factor to vacuum functional reducing to Chern-Simons terms at worm-
hole throats. Ground state degeneracy due to the possibility of having both signs for Minkowskian
contribution to the exponent of vacuum functional provides a general view about the description of
CP breaking in TGD framework.

1. In TGD framework path integral is replaced by inner product involving integral over WCV. The
vacuum functional and its conjugate are associated with the states in the inner product so that
the phases of vacuum functionals cancel if only one sign for the phase is allowed. Minkowskian
contribution would have no physical significance. This of course cannot be the case. The ground
state is actually degenerate corresponding to the phase factor and its complex conjugate since√
g can have two signs in Minkowskian regions. Therefore the inner products between states

associated with the two ground states define 2 × 2 matrix and non-diagonal elements contain
interference terms due to the presence of the phase factor. At the limit of full CP2 type vacuum
extremal the two ground states would reduce to each other and the determinant of the matrix
would vanish.

2. A small mixing of the two ground states would give rise to CP breaking and the first principle
description of CP breaking in systems like K − K and of CKM matrix should reduce to this
mixing. K0 mesons would be CP even and odd states in the first approximation and correspond
to the sum and difference of the ground states. Small mixing would be present having exponential
sensitivity to the actions of CP2 type extremals representing wormhole throats. This might allow
to understand qualitatively why the mixing is about 50 times larger than expected for B0 mesons.

3. There is a strong temptation to assign the two ground states with two possible arrows of geo-
metric time. At the level of M-matrix the two arrows would correspond to state preparation at
either upper or lower boundary of CD. Do long- and shortlived neutral K mesons correspond
to almost fifty-fifty orthogonal superpositions for the two arrow of geometric time or almost
completely to a fixed arrow of time induced by environment? Is the dominant part of the arrow
same for both or is it opposite for long and short-lived neutral measons? Different lifetimes
would suggest that the arrow must be the same and apart from small leakage that induced by
environment. CP breaking would be induced by the fact that CP is performed only K0 but not
for the environment in the construction of states. One can probably imagine also alternative
interpretations.



13.4. Weak form electric-magnetic duality and its implications 1107

Remark: The proportionality of Minkowskian and Euclidian contributions to the same Chern-
Simons term implies that the critical points with respect to zero modes appear for both the phase
and modulus of vacuum functional. The Kähler function property does not allow extrema for vacuum
functional as a function of complex coordinates of WCW since this would mean Kähler metric with
non-Euclidian signature. If this were not the case. the stationary values of phase factor and extrema
of modulus of the vacuum functional would correspond to different configurations.

13.4.5 A general solution ansatz based on almost topological QFT property

The basic vision behind the ansatz is the reduction of quantum TGD to almost topological field
theory. This requires that the flow parameters associated with the flow lines of isometry currents
and Kähler current extend to global coordinates. This leads to integrability conditions implying
generalized Beltrami flow and Kähler action for the preferred extremals reduces to Chern-Simons
action when weak electro-weak duality is applied as boundary conditions. The strongest form of the
hydrodynamical interpretation requires that all conserved currents are parallel to Kähler current. In
the more general case one would have several hydrodynamic flows. Also the braidings (several of them
for the most general ansatz) assigned with the light-like 3-surfaces are naturally defined by the flow
lines of conserved currents. The independent behavior of particles at different flow lines can be seen
as a realization of the complete integrability of the theory. In free quantum field theories on mass
shell Fourier components are in a similar role but the geometric interpretation in terms of flow is of
course lacking. This picture should generalize also to the solution of the modified Dirac equation.

Basic field equations

Consider first the equations at general level.

1. The breaking of the Poincare symmetry due to the presence of monopole field occurs and leads
to the isometry group T×SO(3)×SU(3) corresponding to time translations, rotations, and color
group. The Cartan algebra is four-dimensional and field equations reduce to the conservation
laws of energy E, angular momentum J , color isospin I3, and color hypercharge Y .

2. Quite generally, one can write the field equations as conservation laws for I, J, I3, and Y .

Dα

[
Dβ(JαβHA)− jαKHA + TαβjlAhkl∂βh

l
]

= 0 . (13.4.18)

The first term gives a contraction of the symmetric Ricci tensor with antisymmetric Kähler form
and vanishes so that one has

Dα

[
jαKH

A − TαβjkAhkl∂βhl
]

= 0 . (13.4.19)

For energy one has HA = 1 and energy current associated with the flow lines is proportional to
the Kähler current. Its divergence vanishes identically.

3. One can express the divergence of the term involving energy momentum tensor as as sum of
terms involving jαKJαβ and contraction of second fundamental form with energy momentum
tensor so that one obtains

jαKDαH
A = jαKJ

β
α jAβ + TαβHk

αβj
A
k . (13.4.20)
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Hydrodynamical solution ansatz

The characteristic feature of the solution ansatz would be the reduction of the dynamics to hydrody-
namics analogous to that for a continuous distribution of particles initially at the end of X3 of the
light-like 3-surface moving along flow lines defined by currents jA satisfying the integrability condi-
tion jA ∧ djA = 0. Field theory would reduce effectively to particle mechanics along flow lines with
conserved charges defined by various isometry currents. The strongest condition is that all isometry
currents jA and also Kähler current jK are proportional to the same current j. The more general
option corresponds to multi-hydrodynamics.

Conserved currents are analogous to hydrodynamical currents in the sense that the flow parameter
along flow lines extends to a global space-time coordinate. The conserved current is proportional to
the gradient ∇Φ of the coordinate varying along the flow lines: J = Ψ∇Φ and by a proper choice of
Ψ one can allow to have conservation. The initial values of Ψ and Φ can be selected freely along the
flow lines beginning from either the end of the space-time surface or from wormhole throats.

If one requires hydrodynamics also for Chern-Simons action (effective 2-dimensionality is required
for preferred extremals), the initial values of scalar functions can be chosen freely only at the partonic
2-surfaces. The freedom to chose the initial values of the charges conserved along flow lines at the
partonic 2-surfaces means the existence of an infinite number of conserved charges so that the theory
would be integrable and even in two different coordinate directions. The basic difference as compared
to ordinary conservation laws is that the conserved currents are parallel and their flow parameter
extends to a global coordinate.

1. The most general assumption is that the conserved isometry currents

JαA = jαKH
A − TαβjkAhkl∂βhl (13.4.21)

and Kähler current are integrable in the sense that JA∧JA = 0 and jK ∧ jK = 0 hold true. One
could imagine the possibility that the currents are not parallel.

2. The integrability condition dJA ∧ JA = 0 is satisfied if one one has

JA = ΨAdΦA . (13.4.22)

The conservation of JA gives

d ∗ (ΨAdΦA) = 0 . (13.4.23)

This would mean separate hydrodynamics for each of the currents involved. In principle there is
not need to assume any further conditions and one can imagine infinite basis of scalar function
pairs (ΨA,ΦA) since criticality implies infinite number deformations implying conserved Noether
currents.

3. The conservation condition reduces to d’Alembert equation in the induced metric if one assumes
that ∇ΨA is orthogonal with every dΦA.

d ∗ dΦA = 0 , dΨA · dΦA = 0 . (13.4.24)

Taking x = ΦA as a coordinate the orthogonality condition states gxj∂jΨA = 0 and in the gen-
eral case one cannot solve the condition by simply assuming that ΨA depends on the coordinates
transversal to ΦA only. These conditions bring in mind p · p = 0 and p · e condition for massless
modes of Maxwell field having fixed momentum and polarization. dΦA would correspond to p
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and dΨA to polarization. The condition that each isometry current corresponds its own pair
(ΨA,ΦA) would mean that each isometry current corresponds to independent light-like momen-
tum and polarization. Ordinary free quantum field theory would support this view whereas
hydrodynamics and QFT limit of TGD would support single flow.

These are the most general hydrodynamical conditions that one can assume. One can consider
also more restricted scenarios.

1. The strongest ansatz is inspired by the hydrodynamical picture in which all conserved isometry
charges flow along same flow lines so that one would have

JA = ΨAdΦ . (13.4.25)

In this case same Φ would satisfy simultaneously the d’Alembert type equations.

d ∗ dΦ = 0 , dΨA · dΦ = 0. (13.4.26)

This would mean that the massless modes associated with isometry currents move in parallel
manner but can have different polarizations. The spinor modes associated with light-light like
3-surfaces carry parallel four-momenta, which suggest that this option is correct. This allows a
very general family of solutions and one can have a complete 3-dimensional basis of functions
ΨA with gradient orthogonal to dΦ.

2. Isometry invariance under T × SO(3)× SU(3) allows to consider the possibility that one has

JA = kAΨAdΦG(A) , d ∗ (dΦG(A)) = 0 , dΨA · dΦG(A)) = 0 . (13.4.27)

where G(A) is T for energy current, SO(3) for angular momentum currents and SU(3) for color
currents. Energy would thus flow along its own flux lines, angular momentum along its own flow
lines, and color quantum numbers along their own flow lines. For instance, color currents would
differ from each other only by a numerical constant. The replacement of ΨA with ΨG(A) would
be too strong a condition since Killing vector fields are not related by a constant factor.

To sum up, the most general option is that each conserved current JA defines its own integrable
flow lines defined by the scalar function pair (ΨA,ΦA). A complete basis of scalar functions satisfying
the d’Alembert type equation guaranteeing current conservation could be imagined with restrictions
coming from the effective 2-dimensionality reducing the scalar function basis effectively to the partonic
2-surface. The diametrically opposite option corresponds to the basis obtained by assuming that only
single Φ is involved.

The proposed solution ansatz can be compared to the earlier ansatz [41] stating that Kähler
current is topologized in the sense that for D(CP2) = 3 it is proportional to the identically conserved
instanton current (so that 4-D Lorentz force vanishes) and vanishes for D(CP2) = 4 (Maxwell phase).
This hypothesis requires that instanton current is Beltrami field for D(CP2) = 3. In the recent
case the assumption that also instanton current satisfies the Beltrami hypothesis in strong sense
(single function Φ) generalizes the topologization hypothesis for D(CP2) = 3. As a matter fact, the
topologization hypothesis applies to isometry currents also for D(CP2) = 4 although instanton current
is not conserved anymore.
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Can one require the extremal property in the case of Chern-Simons action?

Effective 2-dimensionality is achieved if the ends and wormhole throats are extremals of Chern-Simons
action. The strongest condition would be that space-time surfaces allow orthogonal slicings by 3-
surfaces which are extremals of Chern-Simons action.

Also in this case one can require that the flow parameter associated with the flow lines of the
isometry currents extends to a global coordinate. Kähler magnetic field B = ∗J defines a conserved
current so that all conserved currents would flow along the field lines of B and one would have 3-D
Beltrami flow. Note that in magnetohydrodynamics the standard assumption is that currents flow
along the field lines of the magnetic field.

For wormhole throats light-likeness causes some complications since the induced metric is degener-
ate and the contravariant metric must be restricted to the complement of the light-like direction. This
means that d’Alembert equation reduces to 2-dimensional Laplace equation. For space-like 3-surfaces
one obtains the counterpart of Laplace equation with partonic 2-surfaces serving as sources. The
interpretation in terms of analogs of Coulomb potentials created by 2-D charge distributions would
be natural.

13.4.6 Hydrodynamic picture in fermionic sector

Super-symmetry inspires the conjecture that the hydrodynamical picture applies also to the solutions
of the modified Dirac equation.

4-dimensional modified Dirac equation and hydrodynamical picture

Consider first the solutions of of the induced spinor field in the interior of space-time surface.

1. The local inner products of the modes of the induced spinor fields define conserved currents

DαJ
α
mn = 0 ,

Jαmn = umΓ̂αun ,

Γ̂α =
∂LK

∂(∂αhk)
Γk . (13.4.28)

The conjecture is that the flow parameters of also these currents extend to a global coordinate
so that one would have in the completely general case the condition

Jαmn = ΦmndΨmn ,

d ∗ (dΦmn) = 0 , ∇Ψmn · Φmn = 0 . (13.4.29)

The condition Φmn = Φ would mean that the massless modes propagate in parallel manner and
along the flow lines of Kähler current. The conservation condition along the flow line implies
tht the current component Jmn is constant along it. Everything would reduce to initial values
at the ends of the space-time sheet boundaries of CD and 3-D modified Dirac equation would
reduce everything to initial values at partonic 2-surfaces.

2. One might hope that the conservation of these super currents for all modes is equivalent with
the modified Dirac equation. The modes un appearing in Ψ in quantized theory would be kind
of ”square roots” of the basis Φmn and the challenge would be to deduce the modes from the
conservation laws.

3. The quantization of the induced spinor field in 4-D sense would be fixed by those at 3-D space-
like ends by the fact that the oscillator operators are carried along the flow lines as such so
that the anti-commutator of the induced spinor field at the opposite ends of the flow lines at
the light-like boundaries of CD is in principle fixed by the anti-commutations at the either end.
The anti-commutations at 3-D surfaces cannot be fixed freely since one has 3-D Chern-Simons
flow reducing the anti-commutations to those at partonic 2-surfaces.
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The following argument suggests that induced spinor fields are in a suitable gauge simply constant
along the flow lines of the Kähler current just as massless spinor modes are constant along the geodesic
in the direction of momentum.

1. The modified gamma matrices are of form Tαk Γk, Tαk = ∂LK/∂(∂αh
k). The H-vectors Tαk can

be expressed as linear combinations of a subset of Killing vector fields jkA spanning the tangent
space of H. For CP2 the natural choice are the 4 Lie-algebra generators in the complement
of U(2) sub-algebra. For CD one can used generator time translation and three generators of
rotation group SO(3). The completeness of the basis defined by the subset of Killing vector
fields gives completeness relation hkl = jAkjAk. This implies Tαk = TαkjAk j

k
A = TαAjkA. One

can defined gamma matrices ΓA as Γkj
k
A to get Tαk Γk = TαAΓA.

2. This together with the condition that all isometry currents are proportional to the Kähler
current (or if this vanishes to same conserved current- say energy current) satisfying Beltrami
flow property implies that one can reduce the modified Dirac equation to an ordinary differential
equation along flow lines. The quantities T tA are constant along the flow lines and one obtains

T tAjADtΨ = 0 . (13.4.30)

By choosing the gauge suitably the spinors are just constant along flow lines so that the spinor
basis reduces by effective 2-dimensionality to a complete spinor basis at partonic 2-surfaces.

Generalized eigen modes for the modified Chern-Simons Dirac equation and hydrody-
namical picture

Hydrodynamical picture helps to understand also the construction of generalized eigen modes of 3-D
Chern-Simons Dirac equation.

The general form of generalized eigenvalue equation for Chern-Simons Dirac action

Consider first the the general form and interpretation of the generalized eigenvalue equation as-
signed with the modified Dirac equation for Chern-Simons action [20] . This is of course only an
approximation since an additional contribution to the modified gamma matrices from the Lagrangian
multiplier term guaranteing the weak form of electric-magnetic duality must be included.

1. The modified Dirac equation for Ψ is consistent with that for its conjugate if the coefficient of
the instanton term is real and one uses the Dirac action Ψ(D→ −D←)Ψ giving modified Dirac
equation as

DC−SΨ +
1

2
(DαΓ̂αC−S)Ψ = 0 . (13.4.31)

As noticed, the divergence DαΓ̂αC−S does not contain second derivatives in the case of Chern-
Simons action. In the case of Kähler action they occur unless field equations equivalent with the
vanishing of the divergence term are satisfied. The extremals of Chern-Simons action provide a
natural manner to define effective 2-dimensionality.

Also the fermionic current is conserved in this case, which conforms with the idea that fermions
flow along the light-like 3-surfaces. If one uses the action ΨD→Ψ, Ψ does not satisfy the Dirac
equation following from the variational principle and fermion current is not conserved.

2. The generalized eigen modes of DC−S should be such that one obtains the counterpart of Dirac
propagator which is purely algebraic and does not therefore depend on the coordinates of the
throat. This is satisfied if the generalized eigenvalues are expressible in terms of covariantly
constant combinations of gamma matrices and here only M4 gamma matrices are possible.
Therefore the eigenvalue equation would read as
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DΨ = λkγkΨ , D = DC−S +
1

2
DαΓ̂αC−S , DC−S = Γ̂αC−SDα .

(13.4.32)

Here the covariant derivatives Dα contain the measurement interaction term as an apparent
gauge term. For extremals one has

D = DC−S . (13.4.33)

Covariant constancy allows to take the square of this equation and one has

(D2 +
[
D,λkγk

]
)Ψ = λkλkΨ . (13.4.34)

The commutator term is analogous to magnetic moment interaction.

3. The generalized eigenvalues correspond to λ =
√
λkλk and Dirac determinant is defined as a

product of the eigenvalues and conjecture to give the exponent of Kähler action reducing to
Chern-Simons term. λ is completely analogous to mass. λk cannot be however interpreted as
ordinary four-momentum: for instance, number theoretic arguments suggest that λk must be
restricted to the preferred plane M2 ⊂ M4 interpreted as a commuting hyper-complex plane
of complexified quaternions. For incoming lines this mass would vanish so that all incoming
particles irrespective their actual quantum numbers would be massless in this sense and the
propagator is indeed that for a massless particle. Note that the eigen-modes define the boundary
values for the solutions of DKΨ = 0 so that the values of λ indeed define the counterpart of the
momentum space.

This transmutation of massive particles to effectively massless ones might make possible the
application of the twistor formalism as such in TGD framework [96] . N = 4 SUSY is one
of the very few gauge theory which might be UV finite but it is definitely unphysical due to
the masslessness of the basic quanta. Could the resolution of the interpretational problems
be that the four-momenta appearing in this theory do not directly correspond to the observed
four-momenta?

2. Inclusion of the constraint term

As already noticed one must include also the constraint term due to the weak form of electric-
magnetic duality and this changes somewhat the above simple picture.

1. At the 3-dimensional ends of the space-time sheet and at wormhole throats the 3-dimensionality
allows to introduce a coordinate varying along the flow lines of Kähler magnetic field B = ∗J .
In this case the integrability conditions state that the flow is Beltrami flow. Note that the
value of Bα along the flow line defining magnetic flux appearing in anti-commutation relations
is constant. This suggests that the generalized eigenvalue equation for the Chern-Simons ac-
tion reduces to a collection of ordinary apparently independent differential equations associated
with the flow lines beginning from the partonic 2-surface. This indeed happens when the CP2

projection is 2-dimensional. In this case it however seems that the basis un is not of much help.

2. The conclusion is wrong: the variations of Chern-Simons action are subject to the constraint
that electric-magnetic duality holds true expressible in terms of Lagrange multiplier term

∫
Λα(Jnα −KεnαβγJβγ)

√
g4d

3x . (13.4.35)
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This gives a constraint force to the field equations and also a dependence on the induced 4-
metric so that one has only almost topological QFT. This term also guarantees the M4 part
of WCW Kähler metric is non-trivial. The condition that the ends of space-time sheet and
wormhole throats are extrema of Chern-Simons action subject to the electric-magnetic duality
constraint is strongly suggested by the effective 2-dimensionality. Without the constraint term
Chern-Simons action would vanish for its extremals so that Kähler function would be identically
zero.

This term implies also an additional contribution to the modified gamma matrices besides the
contribution coming from Chern-Simons action so tht the first guess for the modified Dirac
operator would not be quite correct. This contribution is of exactly of the same general form
as the contribution for any general general coordinate invariant action. The dependence of the
induced metric on M4 degrees of freedom guarantees that also M4 gamma matrices are present.
In the following this term will not be considered.

3. When the contribution of the constraint term to the modifield gamma matrices is neglected,
the explicit expression of the modified Dirac operator DC−S associated with the Chern-Simons
term is given by

D = Γ̂µDµ +
1

2
DµΓ̂µ ,

Γ̂µ =
∂LC−S
∂µhk

Γk = εµαβ
[
2Jkl∂αh

lAβ + JαβAk
]

ΓkDµ ,

DµΓ̂µ = BαK(Jkα + ∂αAk) ,

BαK = εαβγJβγ , Jkα = Jkl∂αs
l , ε̂αβγ = εαβγ

√
g3 . (13.4.36)

For the extremals of Chern-Simons action one has DαΓ̂α = 0. Analogous condition holds true
when the constraing contriabution to the modified gamma matrices is added.

3. Generalized eigenvalue equation for Chern-Simons Dirac action

Consider now the Chern-Simons Dirac equation in more detail assuming that the inclusion of the
constraint contribution to the modified gamma matrices does not induce any complications. Assume
also extremal property for Chern-Simons action with constraint term and Beltrami flow property.

1. For the extremals the Chern-Simons Dirac operator (constraint term not included) reduces to a
one-dimensional Dirac operator

DC−S = ε̂rαβ [2JkαAβ + JαβAk] ΓkDr . (13.4.37)

Constraint term implies only a modification of the modified gamma matrices but the form of
the operator remains otherwise same when extrema are in question so that one has DαΓ̂α = 0.

2. For the extremals of Chern-Simons action the general solution of the modified Chern-Simons
Dirac equation (λk = 0) is covariantly constant with respect to the coordinate r:

DrΨ = 0 . (13.4.38)

The solution to this condition can be written immediately in terms of a non-integrable phase
factor Pexp(i

∫
Ardr), where integration is along curve with constant transversal coordinates. If

Γ̂v is light-like vector field also Γ̂vΨ0 defines a solution of DC−S . This solution corresponds to a
zero mode for DC−S and does not contribute to the Dirac determinant (suggested to give rise to
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the exponent of Kähler function identified as Kähler action). Note that the dependence of these
solutions on transversal coordinates of X3

l is arbitrary which conforms with the hydrodynamic
picture. The solutions of Chern-Simons-Dirac are obtained by similar integration procedure also
when extremals are not in question.

The formal solution associated with a general eigenvalue λ can be constructed by integrating the
eigenvalue equation separately along all coordinate curves. This makes sense if r indeed assigned to
possibly light-like flow lines of Bα or more general Beltrami field possible induced by the constraint
term. There are very strong consistency conditions coming from the conditions that Ψ in the interior
is constant along the flow lines of Kähler current and continuous at the ends and throats (call them
collectively boundaries), where Ψ has a non-trivial variation along the flow lines of Bα.

1. This makes sense only if the flow lines of the Kähler current are transversal to the boundaries
so that the spinor modes at boundaries dictate the modes of the spinor field in the interior.
Effective 2-dimensionality means that the spinor modes in the interior can be calculated either
by starting from the throats or from the ends so that the data at either upper of lower partonic
2-surfaces dictates everything in accordance with zero energy ontology.

2. This gives an infinite number of commuting diagrams stating that the flow-line time evolution
along flow lines along wormhole throats from lower partonic 2-surface to the upper one is equiv-
alent with the flow-line time evolution along the lower end of space-time surface to interior, then
along interior to the upper end of the space-time surface and then back to the upper partonic
2-surface. If the space-time surface allows a slicing by partonic 2-surfaces these conditions can
be assumed for any pair of partonic 2-surfaces connected by Chern-Simons flow evolution.

3. Since the time evolution along interior keeps the spinor field as constant in the proper gauge
and since the flow evolutions at the lower and upper ends are in a reverse direction, there is a
strong atemptation to assume that the spinor field at the ends of the of the flow lines of Kähler
magnetic field are identical apart from a gauge transformation. This leads to a particle-in-box
quantizaton of the values of the pseudo-mass (periodic boundary conditions). These conditions
will be assumed in the sequel.

These assumptions lead to the following picture about the generalized eigen modes.

1. By choosing the gauge so that covariant derivative reduces to ordinary derivative and using the
constancy of Γ̂r, the solution of the generalized eigenvalue equation can be written as

Ψ = exp(iL(r)Γ̂rλkΓk)Ψ0 ,

L(r) =

∫ r

0

1√
ĝrr

dr . (13.4.39)

L(r) can be regarded as the along flux line as defined by the effective metric defined by modified
gamma matrices. If λk is linear combination of Γ0 and ΓrM it anti-commutes with Γr which
contains only CP2 gamma matrices so that the pseudo-momentum is a priori arbitrary.

2. When the constraint term taking care of the electric-magnetric duality is included, also M4

gamma matrices are present. If they are in the orthogonal complement of a preferred plane
M2 ⊂ M4, anti-commutativity is achieved. This assumption cannot be fully justified yet but
conforms with the general physical vision. There is an obvious analogy with the condition that
polarizations are in a plane orthogonal to M2. The condition indeed states that only transversal
deformations define quantum fluctuating WCW degrees of freedom contributing to the WCW
Kähler metric. In M8−H duality the preferred plane M2 is interpreted as a hyper-complex plane
belonging to the tangent space of the space-time surface and defines the plane of non-physical
polarizations. Also a generalization of this plane to an integrable distribution of planes M2(x)
has been proposed and one must consider also now the possibility of a varying plane M2(x) for
the pseudo-momenta. The scalar function Φ appearing in the general solution ansatz for the
field equations satisfies massless d’Alembert equation and its gradient defines a local light-like
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direction at space-time-level and hence a 2-D plane of the tangent space. Maybe the projection
of this plane to M4 could define the preferred M2. The minimum condition is that these planes
are defined only at the ends of space-time surface and at wormhole throats.

3. If one accepts this hypothesis, one can write

Ψ =
[
cos(L(r)λ) + isin(λ(r))Γ̂rλkΓk)

]
Ψ0 ,

λ =
√
λkλk . (13.4.40)

4. Boundary conditions should fix the spectrum of masses. If the the flow lines of Kähler current
coincide with the flow lines of Kähler magnetic field or more general Beltrami current at worm-
hole throats one ends up with difficulties since the induced spinor fields must be constant along
flow lines and only trivial eigenvalues are possible. Hence it seems that the two Beltrami fields
must be transversal. This requires that at the partonic 2-surfaces the value of the induced spinor
mode in the interior coincides with its value at the throat. Since the induced spinor fields in
interior are constant along flow lines, one must have

exp(iλL(max)) = 1 . (13.4.41)

This implies that one has essentially particle in a box with size defined by the effective metric

λn =
n2π

L(rmax)
. (13.4.42)

5. This condition cannot however hold true simultaneously for all points of the partonic 2-surfaces
since L(rmax) depends on the point of the surface. In the most general case one can consider
only a subset consisting of the points for which the values of L(rmax) are rational multiples of the
value of L(rmax) at one of the points -call it L0. This implies the notion of number theoretical
braid. Induced spinor fields are localized to the points of the braid defined by the flow lines of
the Kähler magnetic field (or equivalently, any conserved current- this resolves the longstanding
issue about the identification of number theoretical braids). The number of the included points
depends on measurement resolution characterized somehow by the number rationals which are
allowed. Only finite number of harmonics and sub-harmonics of L0 are possible so that for
integer multiples the number of points is finite. If nmaxL0 and L0/nmin are the largest and
smallest lengths involved, one can argue that the rationals nmax/n, n = 1, ..., nmax and n/nmin,
n = 1, ..., nmin are the natural ones.

6. One can consider also algebraic extensions for which L0 is scaled from its reference value by an
algebraic number so that the mass scale m must be scaled up in similar manner. The spectrum
comes also now in integer multiples. p-Adic mass calculations predicts mass scales to the inverses
of square roots of prime and this raises the expectation that

√
n harmonics and sub-harmonics

of L0 might be necessary. Notice however that pseudo-momentum spectrum is in question so
that this argument is on shaky grounds.

There is also the question about the allowed values of (λ0, λ3) for a given value of λ. This issue will
be discussed in the next section devoted to the attempt to calculate the Dirac determinant assignable
to this spectrum: suffice it to say that integer valued spectrum is the first guess implying that the
pseudo-momenta satisfy n2

0 − n2
3 = n2 and therefore correspond to Pythagorean triangles. What is

remarkable that the notion of number theoretic braid pops up automatically from the Beltrami flow
hypothesis.
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13.5 How to define Dirac determinant?

The basic challenge is to define Dirac determinant hoped to give rise to the exponent of Kähler action
associated with the preferred extremal. The reduction to almost topological QFT gives this kind
of expression in terms of Chern-Simons action and one might hope of obtaining even more concrete
expression from the Chern-Simons Dirac determinant. The calculation of the previous section allowed
to calculate the most general spectrum of the modified Dirac operator. If the number of the eigenvalues
is infinite as the naive expectation is then Dirac determinant diverges if calculated as the product of the
eigenvalues and one must calculate it by using some kind of regularization procedure. Zeta function
regularization is the natural manner to do this.

The following arguments however lead to a concrete vision how the regularization could be avoided
and a connection with infinite primes. In fact, the manifestly finite option and the option involving zeta
function regularization give Kähler functions differing only by a scaling factor and only the manifestly
finite option satisfies number theoretical constraints coming from p-adicization. An explicit expression
for the Dirac determinant in terms of geometric data of the orbit of the partonic 2-surface emerges.

Arithmetic quantum field theory defined by infinite emerges naturally. The lines of the generalized
Feynman graphs are characterized by infinite primes and the selection rules correlating the geometries
of the lines of the generalized Feynman graphs corresponds to the conservation of the sum of number
theoretic momenta log(pi) assignable to sub-braids corresponding to different primes pi assignable to
the orbit of parton. This conforms with the vision that infinite primes indeed characterize the geometry
of light-like 3-surfaces and therefore also of space-time sheets. The eigenvalues of the modified Dirac
operator are proportional 1/

√
pi where pi are the primes appearing in the definition of the p-adic prime

and the interpretation as analogs of Higgs vacuum expectation values makes sense and is consistent
with p-adic length scale hypothesis and p-adic mass calculations. It must be emphasized that all this is
essentially due to single basic hypothesis, namely the reduction of quantum TGD to almost topological
QFT guaranteed by the Beltrami ansatz for field equations and by the weak form of electric-magnetic
duality.

13.5.1 Dirac determinant when the number of eigenvalues is infinite

At first sight the general spectrum looks the only reasonable possibility but if the eigenvalues cor-
relate with the geometry of the partonic surface as quantum classical correspondence suggests, this
conclusion might be wrong. The original hope was the number of eigenvalues would be finite so that
also determinant would be finite automatically. There were some justifications for this hope in the
definition of Dirac determinant based on the dimensional reduction of DK as DK = DK,3 + D1 and
the identification of the generalized eigenvalues as those assigned to DK,3 as analogs of energy eigen-
values assignable to the light-like 3-surface. It will be found that number theoretic input could allow
to achieve a manifest finiteness in the case of DC−S and that this option is the only possible one if
number theoretic universality is required.

If there are no constraints on the eigenvalue spectrum of DC−S for a given partonic orbit, the naive
definition of the determinant gives an infinite result and one must define Dirac determinant using ζ
function regularization implying that Kähler function reduces to the derivative of the zeta function
ζD(s) -call it Dirac Zeta- associated with the eigenvalue spectrum.

Consider now the situation when the number of eigenvalues is infinite.

1. In this kind of situation zeta function regularization is the standard manner to define the Dirac
determinant. What one does is to assign zeta function to the spectrum- let us call it Dirac zeta
function and denote by ζD(s)- as

ζD(s) =
∑
k

λ−sk . (13.5.1)

If the eigenvalue λk has degeneracy gk it appears gk times in the sum. In the case of harmonic
oscillator one obtains Riemann zeta for which sum representation converges only for Re(s) ≥ 1.
Riemann zeta can be however analytically continued to the entire complex plane and the idea
is that this can be done also in the more general case.
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2. By the basic conjecture Kähler function corresponds to the logarithm of the Dirac determinant
and equals to the sum of the logarithms of the eigenvalues

K = log(
∏

λk) = −dζD
ds |s=0

. (13.5.2)

The expression on the left hand side diverges if taken as such but the expression on the right
had side based on the analytical continuation of the zeta function is completely well-defined and
finite quantity. Note that the replacement of eigenvalues λk by their powers λnk -or equivalently
the increase of the degeneracy by a factor n - brings in only a factor n to K: K → nK.

3. Dirac determinant involves in the minimal situation only the integer multiples of pseudo-mass
scale λ = 2π/Lmin. One can consider also rational and even algebraic multiples qLmin < Lmax,
q ≥ 1, of Lmin so that one would have several integer spectra simultaneously corresponding to
different braids. Here Lmin and Lmax are the extrema of the braid strand length determined
in terms of the effective metric as L =

∫
(ĝrr)−1/2dr. The question what multiples are involved

will be needed later.

4. Each rational or algebraic multiple of Lmin gives to the zeta function a contribution which is of
same form so that one has

ζD =
∑
q

ζ(log(qx)s) , x =
Lmin
R

, 1 ≤ q < Lmax
Lmin

. (13.5.3)

Kähler function can be expressed as

K =
∑
n

log(λn) = −dζD(s)

ds
= −

∑
q

log(qx)
dζ(s)

ds |s=0
, x =

Lmin
R

. (13.5.4)

What is remarkable that the number theoretical details of ζD determine only the overall scaling
factor of Kähler function and thus the value of Kähler coupling strength, which would be purely
number theoretically determined if the hypothesis about the role of infinite primes is correct.
Also the value of R is irrelevant since it does not affect the Kähler metric.

5. The dependence of Kähler function on WCW degrees of freedom would be coded completely by
the dependence of the length scales qLmin on the complex coordinates of WCW: note that this
dependence is different for each scale. This is reminiscent of the coding of the shape of the drum
(or more generally - manifold) by the spectrum of its eigen frequencies. Now Kähler geometry
would code for the dependence of the spectrum on the shape of the drum defined by the partonic
2-surface and the 4-D tangent space distribution associated with it.

What happens at the limit of vacuum extremals serves as a test for the identification of Kähler
function as Dirac determinant. The weak form of electric magnetic duality implies that all com-
ponents of the induced Kähler field vanish simultaneously if Kähler magnetic field cancels. In the
modified Chern-Simons Dirac equation one obtains L =

∫
(ĝrr)−1/2dr. The modified gamma matrix

Γ̂r approaches a finite limit when Kähler magnetic field vanishes

Γ̂r = εrβγ(2JβkAγ + JβγAk)Γk → 2εrβγJβkΓk . (13.5.5)

The relevant component of the effective metric is ĝrr and is given by

ĝrr = (Γ̂r)2 = 4εrβγεrµνJβkJ
k

µ AγAν . (13.5.6)
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The limit is non-vanishing in general and therefore the eigenvalues remain finite also at this limit
as also the parameter Lmin =

∫
(ĝrr)−1/2dr defining the minimum of the length of the braid strand

defined by Kähler magnetic flux line in the effective metric unless ĝrr goes to zero everywhere inside
the partonic surface. Chern-Simons action and Kähler action vanish for vacuum extremals so that in
this case one could require that Dirac determinant approaches to unity in a properly chosen gauge.
Dirac determinant should approach to unit for vacuum extremals indeed approaches to unity since
there are no finite eigenvalues at the limit ĝrr = 0.

13.5.2 Hyper-octonionic primes

Before detailed discussion of the hyper-octonionic option it is good to consider the basic properties of
hyper-octonionic primes.

1. Hyper-octonionic primes are of form

Πp = (n0, n3, n1, n2, ..., n7) , Π2
p = n2

0 −
∑
i

n2
i = p or p2 . (13.5.7)

2. Hyper-octonionic primes have a standard representation as hyper-complex primes. The Minkowski
norm squared factorizes into a product as

n2
0 − n2

3 = (n0 + n3)(n0 − n3) . (13.5.8)

If one has n3 6= 0, the prime property implies n0 − n3 = 1 so that one obtains n0 = n3 + 1 and
2n3 + 1 = p giving

(n0, n3) = ((p+ 1)/2, (p− 1)/2) .

(13.5.9)

Note that one has (p + 1)/2 odd for p mod 4 = 1) and (p + 1)/2 even for p mod 4 = 3). The
difference n0 − n3 = 1 characterizes prime property.

If n3 vanishes the prime prime property implies equivalence with ordinary prime and one has
n2

3 = p2. These hyper-octonionic primes represent particles at rest.

3. The action of a discrete subgroup G(p) of the octonionic automorphism group G2 generates form
hyper-complex primes with n3 6= 0 further hyper-octonionic primes Π(p, k) corresponding to the
same value of n0 and p and for these the integer valued projection to M2 satisfies n2

0−n2
3 = n > p.

It is also possible to have a state representing the system at rest with (n0, n3) = ((p + 1)/2, 0)
so that the pseudo-mass varies in the range [

√
p, (p + 1)/2]. The subgroup G(n0, n3) ⊂ SU(3)

leaving invariant the projection (n0, n3) generates the hyper-octonionic primes corresponding
to the same value of mass for hyper-octonionic primes with same Minkowskian length p and
pseudo-mass λ = n ≥ √p.

4. One obtains two kinds of primes corresponding to the lengths of pseudo-momenta equal to p or√
p. The first kind of particles are always at rest whereas the second kind of particles can be

brought at rest only if one interprets the pseudo-momentum as M2 projection. This brings in
mind the secondary p-adic length scales assigned to causal diamonds (CDs) and the primary
p-adic lengths scales assigned to particles.
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If the M2 projections of hyper-octonionic primes with length
√
p characterize the allowed basic

momenta, ζD is sum of zeta functions associated with various projections which must be in the limits
dictated by the geometry of the orbit of the partonic surface giving upper and lower bounds Lmax and
Lmin on the length L. Lmin is scaled up to

√
n2

0 − n2
3Lmin for a given projection (n0, n3). In general

a given M2 projection (n0, n3) corresponds to several hyper-octonionic primes since SU(3) rotations
give a new hyper-octonionic prime with the same M2 projection. This leads to an inconsistency unless
one has a good explanation for why some basic momentum can appear several times. One might argue
that the spinor mode is degenerate due to the possibility to perform discrete color rotations of the
state. For hyper complex representatives there is no such problem and it seems favored. In any case,
one can look how the degeneracy factors for given projection can be calculated.

1. To calculate the degeneracy factor D(n associated with given pseudo-mass value λ = n one must
find all hyper-octonionic primes Π, which can have projection in M2 with length n and sum up
the degeneracy factors D(n, p) associated with them:

D(n) =
∑
p

D(n, p) ,

D(n, p) =
∑

n2
0−n2

3=p

D(p, n0, n3) ,

n2
0 − n2

3 = n , Π2
p(n0, n3) = n2

0 − n2
3 −

∑
i

n2
i = n−

∑
i

n2
i = p . (13.5.10)

2. The condition n2
0 − n2

3 = n allows only Pythagorean triangles and one must find the discrete
subgroup G(n0, n3) ⊂ SU(3) producing hyper-octonions with integer valued components with
length p and components (n0, n3). The points at the orbit satisfy the condition

∑
n2
i = p− n . (13.5.11)

The degeneracy factor D(p, n0, n3) associated with given mass value n is the number of elements
of in the coset space G(n0, n3, p)/H(n0, n3, p), where H(n0, n3, p) is the isotropy group of given
hyper-octonionic prime obtained in this manner. For n2

0−n2
3 = p2 D(n0, n3, p) obviously equals

to unity.

13.5.3 Three basic options for the pseudo-momentum spectrum

The calculation of the scaling factor of the Kähler function requires the knowledge of the degeneracies
of the mass squared eigen values. There are three options to consider.

First option: all pseudo-momenta are allowed

If the degeneracy for pseudo-momenta in M2 is same for all mass values- and formally characterizable
by a number N telling how many 2-D pseudo-momenta reside on mass shell n2

0−n2
3 = m2. In this case

zeta function would be proportional to a sum of Riemann Zetas with scaled arguments corresponding
to scalings of the basic mass m to m/q.

ζD(s) = N
∑
q

ζ(log(qx)s) , x =
Lmin
R

. (13.5.12)

This option provides no idea about the possible values of 1 ≤ q ≤ Lmax/Lmin. The number N
is given by the integral of relativistic density of states

∫
dk/2

√
k2 +m2 over the hyperbola and is

logarithmically divergent so that the normalization factor N of the Kähler function would be infinite.
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Second option: All integer valued pseudomomenta are allowed

Second option is inspired by number theoretic vision and assumes integer valued components for the
momenta using mmax = 2π/Lmin as mass unit. p-Adicization motivates also the assumption that
momentum components using mmax as mass scale are integers. This would restrict the choice of the
number theoretical braids.

Integer valuedness together with masses coming as integer multiples of mmax implies (λ0, λ3) =
(n0, n3) with on mass shell condition n2

0−n2
3 = n2. Note that the condition is invariant under scaling.

These integers correspond to Pythagorean triangles plus the degenerate situation with n3 = 0. There
exists a finite number of pairs (n0, n3) satisfying this condition as one finds by expressing n0 as
n0 = n3 + k giving 2n3k + k2 = p2 giving n3 < n2/2,n0 < n2/2 + 1. This would be enough to have a
finite degeneracy D(n) ≥ 1 for a given value of mass squared and ζD would be well defined. ζD would
be a modification of Riemann zeta given by

ζD =
∑
q

ζ1(log(qx)s) , x =
Lmin
R

,

ζ1(s) =
∑

gnn
−s , gn ≥ 1 . (13.5.13)

For generalized Feynman diagrams this option allows conservation of pseudo-momentum and for loops
no divergences are possible since the integral over two-dimensional virtual momenta is replaced with
a sum over discrete mass shells containing only a finite number of points. This option looks thus
attractive but requires a regularization. On the other hand, the appearance of a zeta function having
a strong resemblance with Riemann zeta could explain the finding that Riemann zeta is closely related
to the description of critical systems. This point will be discussed later.

Third option: Infinite primes code for the allowed mass scales

According to the proposal of [84] , [16] the hyper-complex parts of hyper-octonionic primes appearing
in their infinite counterparts correspond to the M2 projections of real four-momenta. This hypothesis
suggests a very detailed map between infinite primes and standard model quantum numbers and
predicts a universal mass spectrum [84] . Since pseudo-momenta are automatically restricted to
the plane M2, one cannot avoid the question whether they could actually correspond to the hyper-
octonionic primes defining the infinite prime. These interpretations need not of course exclude each
other. This option allows several variants and at this stage it is not possible to exclude any of these
options.

1. One must choose between two alternatives for which pseudo-momentum corresponds to hyper-
complex prime serving as a canonical representative of a hyper-octonionic prime or a projection
of hyper-octonionic prime to M2.

2. One must decide whether one allows a) only the momenta corresponding to hyper-complex
primes, b) also their powers (p-adic fractality), or c) all their integer multiples (”Riemann
option”).

One must also decide what hyper-octonionic primes are allowed.

1. The first guess is that all hyper-complex/hyper-octonionic primes defining length scale
√
pLmin ≤

Lmax or pLmin ≤ Lmax are allowed. p-Adic fractality suggests that also the higher p-adic length
scales pn/2Lmin < Lmax and pnLmin < Lmax, n ≥ 1, are possible.

It can however happen that no primes are allowed by this criterion. This would mean vanishing
Kähler function which is of course also possible since Kähler action can vanish (for instance, for
massless extremals). It seems therefore safer to allow also the scale corresponding to the trivial
prime (n0, n3) = (1, 0) (1 is formally prime because it is not divisible by any prime different
from 1) so that at least Lmin is possible. This option also allows only rather small primes unless
the partonic 2-surface contains vacuum regions in which case Lmax is infinite: in this case all
primes would be allowed and the exponent of Kähler function would vanish.
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2. The hypothesis that only the hyper-complex or hyper-octonionic primes appearing in the infinite
hyper-octonionic prime are possible looks more reasonable since large values of p would be
possible and could be identified in terms of the p-adic length scale hypothesis. All hyper-
octonionic primes appearing in infinite prime would be possible and the geometry of the orbit of
the partonic 2-surface would define an infinite prime. This would also give a concrete physical
interpretation for the earlier hypothesis that hyper-octonionic primes appearing in the infinite
prime characterize partonic 2-surfaces geometrically. One can also identify the fermionic and
purely bosonic primes appearing in the infinite prime as braid strands carrying fermion number
and purely bosonic quantum numbers. This option will be assumed in the following.

13.5.4 Expression for the Dirac determinant for various options

The expressions for the Dirac determinant for various options can be deduced in a straightforward
manner. Numerically Riemann option and manifestly finite option do not differ much but their number
theoretic properties are totally different.

Riemann option

All integer multiples of these basic pseudo-momenta would be allowed for Riemann option so that ζD
would be sum of Riemann zetas with arguments scaled by the basic pseudo-masses coming as inverses
of the basic length scales for braid strands. For the option involving only hyper-complex primes the
formula for ζD reads as

ζD = ζ(log(xmins)) +
∑
i,n ζ(log(xi,ns)) +

∑
i,n ζ(log(yi,ns)) ,

xi,n = p
n/2
i xmin ≤ xmax , pi ≥ 3 , yi,n = pni xmin ≤ xmax . pi ≥ 2 ,

(13.5.14)

Lmax resp. Lmin is the maximal resp. minimal length L =
∫

(ĝrr)−1/2dr for the braid strand defined
by the flux line of the Kähler magnetic field in the effective metric. The contributions correspond to
the effective hyper-complex prime p1 = (1, 0) and hyper-complex primes with Minkowski lengths

√
p

(p ≥ 3) and p, p ≥ 2. If also higher p-adic length scales Ln = pn/2Lmin < Lmax and Ln = pnLmin <
Lmax, n > 1, are allowed there is no further restriction on the summation. For the restricted option
only Ln, n = 0, 2 is allowed.

The expressions for the Kähler function and its exponent reads as

K = k(log(xmin) +
∑
i

log(xi) +
∑
i

log(yi) ,

exp(K) = (
1

xmin
)k ×

∏
i

(
1

xi
)k ×

∏
i

(
1

yi
)k ,

xi ≤ xmax , yi ≤ xmax , k = −dζ(s)

ds |s=0
=

1

2
log(2π) ' .9184 .

(13.5.15)

From the point of view of p-adicization program the appearance of strongly transcendental numbers
in the normalization factor of ζD is not a well-come property.

If the scaling of the WCW Kähler metric by 1/k is a legitimate procedure it would allow to get
rid of the transcendental scaling factor k and this scaling would cancel also the transcendental from
the exponent of Kähler function. The scaling is not however consistent with the view that Kähler
coupling strength determines the normalization of the WCW metric.

This formula generalizes in a rather obvious manner to the cases when one allows M2 projections
of hyper-octonionic primes.
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Manifestly finite options

The options for which one does not allow summation over all integer multiples of the basic momenta
characterized by the canonical representatives of hyper-complex primes or their projections to M2

are manifestly finite. They differ from the Riemann option only in that the normalization factor
k =' .9184 defined by the derivative Riemann Zeta at origin is replaced with k = 1. This would mean
manifest finiteness of ζD. Kähler function and its exponent are given by

K = k(log(xmin) +
∑
i

log(xi) +
∑
i

log(yi) , xi ≤ xmax , yi ≤ xmax ,

exp(K) =
1

xmin
×
∏
i

1

xi
×
∏
i

1

yi
.

(13.5.16)

Numerically the Kähler functions do not differ much since their ratio is .9184. Number theoretically
these functions are however completely different. The resulting dependence involves only square roots
of primes and is an algebraic function of the lengths pi and rational function of xmin. p-Adicization
program would require rational values of the lengths xmin in the intersection of the real and p-adic
worlds if one allows algebraic extension containing the square roots of the primes involved. Note that
in p-adic context this algebraic extension involves two additional square roots for p > 2 if one does
not want square root of p. Whether one should allow for Rp also extension based on

√
p is not quite

clear. This would give 8-D extension.
For the more general option allowing all projections of hyper-complex primes to M2 the general

form of Kähler function is same. Instead of pseudo-masses coming as primes and their square roots
one has pseudomasses coming as square roots of some integers n ≤ p or n ≤ p2 for each p. In this
case the conservation laws are not so strong.

Note that in the case of vacuum extremals xmin = ∞ holds true so that there are no primes
satisfying the condition and Kähler function vanishes as it indeed should.

More concrete picture about the option based on infinite primes

The identification of pseudo-momenta in terms of infinite primes suggests a rather concrete connection
between number theory and physics.

1. One could assign the finite hyper-octonionic primes Πi making the infinite prime to the sub-
braids identified as Kähler magnetic flux lines with the same length L in the effective metric.
The primes assigned to the finite part of the infinite prime correspond to single fermion and
some number of bosons. The primes assigned to the infinite part correspond to purely bosonic
states assignable to the purely bosonic braid strands. Purely bosonic state would correspond to
the action of a WCW Hamiltonian to the state.

This correspondence can be expanded to include all quantum numbers by using the pair of
infinite primes corresponding to the ”vacuum primes” X±1, where X is the product of all finite
primes [84] . The only difference with respect to the earlier proposal is that physical momenta
would be replaced by pseudo-momenta.

2. Different primes pi appearing in the infinite prime would correspond to their own sub-braids.
For each sub-braid there is a N -fold degeneracy of the generalized eigen modes corresponding
to the number N of braid strands so that many particle states are possible as required by the
braid picture.

3. The correspondence of infinite primes with the hierarchy of Planck constants could allow to
understand the fermion-many boson states and many boson states assigned with a given finite
prime in terms of many-particle states assigned to na and nb-sheeted singular covering spaces of
CD and CP2 assignable to the two infinite primes. This interpretation requires that only single
p-adic prime pi is realized as quantum state meaning that quantum measurement always selects
a particular p-adic prime pi (and corresponding sub-braid) characterizing the p-adicity of the
quantum state. This selection of number field behind p-adic physics responsible for cognition
looks very plausible.
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4. The correspondence between pairs of infinite primes and quantum states [84] allows to interpret
color quantum numbers in terms of the states associated with the representations of a finite
subgroup of SU(3) transforming hyper-octonionic primes to each other and preserving the M2

pseudo-momentum. Same applies to SO(3). The most natural interpretation is in terms of wave
functions in the space of discrete SU(3) and SO(3) transforms of the partonic 2-surface. The
dependence of the pseudo-masses on these quantum numbers is natural so that the projection
hypothesis finds support from this interpretation.

5. The infinite prime characterizing the orbit of the partonic 2-surface would thus code which
multiples of the basic mass 2π/Lmin are possible. Either the M2 projections of hyper-octonionic
primes or their hyper-complex canonical representatives would fix the basic M2 pseudo-momenta
for the corresponding number theoretic braid associated. In the reverse direction the knowledge
of the light-like 3-surface, the CD and CP2 coverings, and the number of the allowed discrete
SU(3) and SU(2) rotations of the partonic 2-surface would dictate the infinite prime assignable
to the orbit of the partonic 2-surface.

One would also like to understand whether there is some kind of conservation laws associated
with the pseudo-momenta at vertices. The arithmetic QFT assignable to infinite primes would indeed
predict this kind of conservation laws.

1. For the manifestly finite option the ordinary conservation of pseudo-momentum conservation
at vertices is not possible since the addition of pseudo-momenta does not respect the condition
n0−n3 = 1. In fact, this difference in the sum of hyper-complex prime momenta tells how many
momenta are present. If one applies the conservation law to the sum of the pseudo-momenta
corresponding to different primes and corresponding braids, one can have reactions in which the
number of primes involved is conserved. This would give the selection rule

∑N
1 pi =

∑N
1 pf .

These reactions have interpretation in terms of the geometry of the 3-surface representing the
line of the generalized Feynman diagram.

2. Infinite primes define an arithmetic quantum field theory in which the total momentum defined
as
∑
nilog(pi) is a conserved quantity. As matter fact, each prime pi would define a separately

conserved momentum so that there would be an infinite number of conservation laws. If the sum∑
i log(pi) is conserved in the vertex , the primes pi associated with the incoming particle are

shared with the outgoing particles so that also the total momentum is conserved. This looks the
most plausible option and would give very powerful number theoretical selection rules at vertices
since the collection of primes associated with incoming line would be union of the collections
associated with the outgoing lines and also total pseudo-momentum would be conserved.

3. For the both Riemann zeta option and manifestly finite options the arithmetic QFT associated
with infinite primes would be realized at the level of pseudo-momenta meaning very strong
selection rules at vertices coding for how the geometries of the partonic lines entering the vertex
correlate. WCW integration would reduce for the lines of Feynman diagram to a sum over light-
like 3-surfaces characterized by (xmin, xmax) with a suitable weighting factor and the exponent
of Kähler function would give an exponential damping as a function of xmin.

Which option to choose?

One should be able to make two choices. One must select between hyper-complex representations
and the projections of hyper-octonionic primes and between the manifestly finite options and the one
producing Riemann zeta?

Hyper-complex option seems to be slightly favored over the projection option.

1. The appearance of the scales
√
pixmin and possibly also their pn multiples brings in mind p-

adic length scales coming as
√
pn multiples of CP2 length scale. The scales pixmin associated

with hyper-complex primes reducing to ordinary primes in turn bring in mind the size scales
assignable to CDs. The hierarchy of Planck constants implies also ~/~0 =

√
nanb multiples of

these length scales but mass scales would not depend on na and nb [85] . For large values of
p the pseudo-momenta are almost light-like for hyper-complex option whereas the projection
option allows also states at rest.
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2. Hyper-complex option predicts that only the p-adic pseudo-mass scales appear in the partition
function and is thus favored by the p-adic length scale hypothesis. Projection option predicts
also the possibility of the mass scales (not all of them) coming as 1/

√
n. These mass scales are

however not predicted by the hierarchy of Planck constants.

3. The same pseudo-mass scale can appear several times for the projection option. This degeneracy
corresponds to the orbit of the hyper-complex prime under the subgroup of SU(3) respecting
integer property. Similar statement holds true in the case of SO(3): these groups are assigned
to the two infinite primes characterizing parton. The natural assignment of this degeneracy is to
the discrete color rotational and rotational degrees associated with the partonic 2-surface itself
rather than spinor modes at fixed partonic 2-surface. That the pseudo-mass would depend on
color and angular momentum quantum numbers would make sense.

Consider next the arguments in favor of the manifestly finite option.

1. The manifestly finite option is admittedly more elegant than the one based on Riemann zeta
and also guarantees that no additional loop summations over pseudo-momenta are present. The
strongest support for the manifestly finite option comes from number theoretical universality.

2. One could however argue that the restriction of the pseudo-momenta to a finite number is not
consistent with the modified Dirac-Chern-Simons equation. Quantum classical correspondence
however implies correlation between the geometry of the partonic orbits and the pseudo-momenta
and the summation over all prime valued pseudo-momenta is present but with a weighting factor
coming from Kähler function implying exponential suppression.

The Riemann zeta option could be also defended.

1. The numerical difference of the normalization factors of the Kähler function is however only
about 8 per cent and quantum field theorists might interpret the replacement the length scales
xi and yi with xdi and ydi , d ' .9184, in terms of an anomalous dimension of these length scales.
Could one say that radiative corrections mean the scaling of the original preferred coordinates
so that one could still have consistency with number theoretic universality?

2. Riemann zeta with a non-vanishing argument could have also other applications in quantum
TGD. Riemann zeta has interpretation as a partition function and the zeros of partition func-
tions have interpretation in terms of phase transitions. The quantum criticality of TGD indeed
corresponds to a phase transition point. There is also experimental evidence that the distribu-
tion of zeros of zeta corresponds to the distribution of energies of quantum critical systems in
the sense that the energies correspond to the imaginary parts of the zeros of zeta [40] .

The first explanation would be in terms of the analogs of the harmonic oscillator coherent
states with integer multiple of the basic momentum taking the role of occupation number of
harmonic oscillator and the zeros s = 1/2 + iy of ζ defining the values of the complex coherence
parameters. TGD inspired strategy for the proof of Riemann hypothesis indeed leads to the
identification of the zeros as coherence parameters rather than energies as in the case of Hilbert-
Polya hypothesis [75] and the vanishing of the zeta at zero has interpretation as orthogonality
of the state with respect to the state defined by a vanishing coherence parameter interpreted as
a tachyon. One should demonstrate that the energies of quantum states can correspond to the
imaginary parts of the coherence parameters.

Second interpretation could be in terms of quantum critical zero energy states for which the
”complex square root of density matrix” defines time-like entanglement coefficients of M -matrix.
The complex square roots of the probabilities defined by the coefficient of harmonic oscillator
states (perhaps identifiable in terms of the multiples of pseudo-momentum) in the coherent state
defined by the zero of ζ would define the M -matrix in this situation. Energy would correspond
also now to the imaginary part of the coherence parameter. The norm of the state would be
completely well-defined.
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Representation of configuration Kähler metric in terms of eigenvalues of DC−S

A surprisingly concrete connection of the configuration space metric in terms of generalized eigenvalue
spectrum of DC−S results. From the general expression of Kähler metric in terms of Kähler function

Gkl = ∂k∂lK =
∂k∂lexp(K)

exp(K)
− ∂kexp(K)

exp(K)

∂lexp(K)

exp(K)
, (13.5.17)

and from the expression of exp(K) =
∏
i λi as the product of of finite number of eigenvalues of DC−S

, the expression

Gkl =
∑
i

∂k∂lλi
λi

− ∂kλi
λi

∂lλi
λi

(13.5.18)

for the configuration space metric follows. Here complex coordinates refer to the complex coordinates
of configuration space. Hence the knowledge of the eigenvalue spectrum of DC−S(X3) as function of
some complex coordinates of configuration space allows to deduce the metric to arbitrary accuracy.
If the above arguments are correct the calculation reduces to the calculation of the derivatives of
log(
√
pLmin/R), where Lmin is the length of the Kähler magnetic flux line between partonic 2-surfaces

with respect to the effective metric defined by the anti-commutators of the modified gamma matrices.
Note that these length scales have different dependence on WCW coordinates so that one cannot
reduce everything to Lmin. Therefore one would have explicit representation of the basic building
brick of WCW Kähler metric in terms of the geometric data associated with the orbit of the partonic
2-surface.

The formula for the Kähler action of CP2 type vacuum extremals is consistent with the
Dirac determinant formula

The first killer test for the formula of Kähler function in terms of the Dirac determinant based on
infinite prime hypothesis is provided by the action of CP2 type vacuum extremals. One of the first
attempts to make quantitative predictions in TGD framework was the prediction for the gravitational
constant. The argument went as follows.

1. For dimensional reasons gravitational constant must be proportional to p-adic length scale
squared, where p characterizes the space-time sheet of the graviton. It must be also proportional
to the square of the vacuum function for the graviton representing a line of generalized Feynman
diagram and thus to the exponent exp(−2K) of Kähler action for topologically condensed CP2

type vacuum extremals with very long projection. If topological condensation does not reduce
much of the volume of CP2 type vacuum extremal, the action is just Kähler action for CP2

itself. This gives

~0G = L2
pexp(2LK(CP2) = pR2exp(2LK(CP2) . (13.5.19)

2. Using as input the constraint αK ' αem ∼ 1/137 for Kähler coupling strengths coming from the
comparison of the TGD prediction for the rotation velocity of distant galaxies around galactic
nucleus and the p-adic mass calculation for the electron mass, one obtained the result

exp(2LK(CP2) =
1

p×
∏
pi≤23 pi

. (13.5.20)

The product contains the product of all primes smaller than 24 (pi ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23}).
The expression for the Kähler function would be just of the form predicted by the Dirac deter-
minant formula with Lmin replaced with CP2 length scale. As a matter fact, this was the first
indication that particles are characterized by several p-adic primes but that only one of them is
”active”. As explained, the number theoretical state function reduction explains this.
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3. The same formula for the gravitational constant would result for any prime p but the value
of Kähler coupling strength would depend on prime p logarithmically for this option. I indeed
proposed that this formula fixes the discrete evolution of the Kähler coupling strength as function
of p-adic prime from the condition that gravitational constant is renormalization group invariant
quantity but gave up this hypothesis later. It is wisest to keep an agnostic attitude to this issue.

4. I also made numerous brave attempts to deduce an explicit formula for Kähler coupling strength.
The general form of the formula is

1

αK
= klog(K2), K2 = p× 2× 3× 5..× 23 . (13.5.21)

The problem is the exact value of k cannot be known precisely and the guesses for is value depend
on what one means with number theoretical universality. Should Kähler action be a rational
number? Or is it Kähler function which is rational number (it is for the Dirac determinant
option in this particular case). Is Kähler coupling strength g2

K/4π or g2
K a rational number?

Some of the guesses were k = π/4 and k = 137/107. The facts that the value of Kähler action
for the line of a generalized diagram is not exactly CP2 action and the value of αK is not known
precisely makes these kind of attempts hopeless in absence of additional ideas.

Also other elementary particles -in particular exchanged bosons- should involve the exponent of
Kähler action for CP2 type vacuum extremal. Since the values of gauge couplings are gigantic as
compared to the expression of the gravitational constant the value of Kähler action must be rather
small form them. CP2 type vacuum extremals must be short in the sense that Lmin in the effective
metric is very short. Note however that the p-adic prime characterizing the particle according to
p-adic mass calculations would be large also now. One can of course ask whether this p-adic prime
characterizes the gravitational space-time sheets associated with the particle and not the particle
itself. The assignment of p-adic mass calculations with thermodynamics at gravitational space-time
sheets of the particle would be indeed natural. The value of αK would depend on p in logarithmic
manner for this option. The topological condensation of could also eat a lot of CP2 volume for them.

Eigenvalues of DC−S as vacuum expectations of Higgs field?

Infinite prime hypothesis implies the analog of p-adic length scale hypothesis but since pseudo-
momenta are in question, this need not correspond to the p-adic length scale hypothesis for the
actual masses justified by p-adic thermodynamics. Note also that Lmin does not correspond to CP2

length scale. This is actually not a problem since the effective metric is not M4 metric and one can
quite well consider the possibility that Lmin corresponds to CP2 length scale in the the induced metric.
The reason is that light-like 3- surface is in question the distance along the Kähler magnetic flux line
reduces essentially to a distance along the partonic 2-surface having size scale of order CP2 length for
the partonic 2-surfaces identified as wormhole throats. Therefore infinite prime can code for genuine
p-adic length scales associated with the light-like 3-surface and quantum states would correspond by
number theoretical state function reduction hypothesis to single ordinary prime.

Support for this identification comes also from the expression of gravitational constant deduced
from p-adic length scale hypothesis. The result is that gravitational constant is assumed to be pro-
portional to have the expression G = L2

pexp(−2SK(CP2)), where p characterizes graviton or the
space-time sheet mediating gravitational interaction and exponent gives Kähler action for CP2 type
vacuum extremal representing graviton. The argument allows to identify the p-adic prime p = M127

associated with electron (largest Mersenne prime which does not correspond to super-astronomical
length scale) as the p-adic prime characterizing also graviton. The exponent of Kähler action is pro-
portional to 1/p which conforms with the general expression for Kähler function. I have considered
several identifications of the numerical factor and one of them has been as product of primes 2 ≤ p ≤ 23
assuming that somehow the primes {2, ..., 23, p} characterize graviton. This guess is indeed consistent
with the prediction of the infinite-prime hypothesis.

The first guess inspired by the p-adic mass calculations is that the squares λ2
i of the eigenvalues

of DC−S could correspond to the conformal weights of ground states. Another natural physical
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interpretation of λ is as an analog of the Higgs vacuum expectation. The instability of the Higgs=0
phase would corresponds to the fact that λ = 0 mode is not localized to any region in which ew
magnetic field or induced Kähler field is non-vanishing. By the previous argument one would have
order of magnitude estimate h0 =

√
2π/Lmin.

1. The vacuum expectation value of Higgs is only proportional to the scale of λ. Indeed, Higgs
and gauge bosons as elementary particles correspond to wormhole contacts carrying fermion
and anti-fermion at the two wormhole throats and must be distinguished from the space-time
correlate of its vacuum expectation as something proportional to λ. For free fermions the vacuum
expectation value of Higgs does not seem to be even possible since free fermions do not correspond
to wormhole contacts between two space-time sheets but possess only single wormhole throat
(p-adic mass calculations are consistent with this). If fermion suffers topological condensation as
indeed assumed to do in interaction region, a wormhole contact is generated and makes possible
the generation of Higgs vacuum expectation value.

2. Physical considerations suggest that the vacuum expectation of Higgs field corresponds to a
particular eigenvalue λi of modified Chern-Simons Dirac operator so that the eigenvalues λi
would define TGD counterparts for the minima of Higgs potential. For the minimal option
one has only a finite number of pseudo-mass eigenvalues inversely proportional

√
p so that the

identification as a Higgs vacuum expectation is consistent with the p-adic length scale hypothesis.
Since the vacuum expectation of Higgs corresponds to a condensate of wormhole contacts giving
rise to a coherent state, the vacuum expectation cannot be present for topologically condensed
CP2 type vacuum extremals representing fermions since only single wormhole throat is involved.
This raises a hen-egg question about whether Higgs contributes to the mass or whether Higgs is
only a correlate for massivation having description using more profound concepts. From TGD
point of view the most elegant option is that Higgs does not give rise to mass but Higgs vacuum
expectation value accompanies bosonic states and is naturally proportional to λi. With this
interpretation λi could give a contribution to both fermionic and bosonic masses.

3. If the coset construction for super-symplectic and super Kac-Moody algebra implying Equiva-
lence Principle is accepted, one encounters what looks like a problem. p-Adic mass calculations
require negative ground state conformal weight compensated by Super Virasoro generators in
order to obtain massless states. The tachyonicity of the ground states would mean a close anal-
ogy with both string models and Higgs mechanism. λ2

i is very natural candidate for the ground
state conformal weights identified but would have wrong sign. Therefore it seems that λ2

i can
define only a deviation of the ground state conformal weight from negative value and is positive.

4. In accordance with this λ2
i would give constant contribution to the ground state conformal

weight. What contributes to the thermal mass squared is the deviation of the ground state
conformal weight from half-odd integer since the negative integer part of the total conformal
weight can be compensated by applying Virasoro generators to the ground state. The first
guess motivated by cyclotron energy analogy is that the lowest conformal weights are of form
hc = −n/2+λ2

i where the negative contribution comes from Super Virasoro representation. The
negative integer part of the net conformal weight can be canceled using Super Virasoro generators
but ∆hc would give to mass squared a contribution analogous to Higgs contribution. The
mapping of the real ground state conformal weight to a p-adic number by canonical identification
involves some delicacies.

5. p-Adic mass calculations are consistent with the assumption that Higgs type contribution is
vanishing (that is small) for fermions and dominates for gauge bosons. This requires that the
deviation of λ2

i with smallest magnitude from half-odd integer value in the case of fermions is
considerably smaller than in the case of gauge bosons in the scale defined by p-adic mass scale
1/L(k) in question. Somehow this difference could relate to the fact that bosons correspond to
pairs of wormhole throats.

Is there a connection between p-adic thermodynamics, hierarchy of Planck constants,
and infinite primes

The following observations suggest that there might be an intrinsic connection between p-adic ther-
modynamics, hierarchy of Planck constants, and infinite primes.
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1. p-Adic thermodynamics [49] is based on string mass formula in which mass squared is pro-
portional to conformal weight having values which are integers apart from the contribution of
the conformal weight of vacuum which can be non-integer valued. The thermal expectation
in p-adic thermodynamics is obtained by replacing the Boltzman weight exp(−E/T ) of ordi-
nary thermodynamics with p-adic conformal weight pn/Tp , where n is the value of conformal
weight and 1/Tp = m is integer values inverse p-adic temperature. Apart from the ground state
contribution and scale factor p-adic mass squared is essentially the expectation value

〈n〉 =

∑
n g(n)np

n
Tp∑

n g(n)p
n
Tp

. (13.5.22)

g(n) denotes the degeneracy of a state with given conformal weight and depends only on the
number of tensor factors in the representations of Virasoro or Super-Virasoro algebra. p-Adic
mass squared is mapped to its real counterpart by canonical identification

∑
xnp

n →
∑
xnp

−n.

The real counterpart of p-adic thermodynamics is obtained by the replacement p
− n
Tp and gives

under certain additional assumptions in an excellent accuracy the same results as the p-adic
thermodynamics.

2. An intriguing observation is that one could interpret p-adic and real thermodynamics for mass
squared also in terms of number theoretic thermodynamics for the number theoretic momentum
log(pn) = nlog(p). The expectation value for this differs from the expression for 〈n〉 only by the
factor log(p).

3. In the proposed characterization of the partonic orbits in terms of infinite primes the primes
appearing in infinite prime are identified as p-adic primes. For minimal option the p-adic prime
characterizes

√
p- or p- multiple of the minimum length Lmin of braid strand in the effective

metric defined by modified Chern-Simons gamma matrice. One can consider also (
√
p)n and

pn (p-adic fractality)- and even integer multiples of Lmin if they are below Lmax. If light-like
3-surface contains vacuum regions arbitrary large p:s are possible since for these one has Lmin →
∞. Number theoretic state function reduction implies that only single p can be realized -one
might say ”is active”- for a given quantum state. The powers pni appearing in the infinite prime
have interpretation as many particle states with total number theoretic momentum nilog(p)i.
For the finite part of infinite prime one has one fermion and ni−1 bosons and for the bosonic part
ni bosons. The arithmetic QFT associated with infinite primes - in particular the conservation
of the number theoretic momentum

∑
nilog(pi) - would naturally describe the correlations

between the geometries of light-like 3-surfaces representing the incoming lines of the vertex of
generalized Feynman diagram. As a matter fact, the momenta associated with different primes
are separately conserved so that one has infinite number of conservation laws.

4. One must assign two infinite primes to given partonic two surface so that one has for a given
prime p two integers n+ and n−. Also the hierarchy of Planck constants assigns to a given page
of the Big Book two integers and one has ~ = nanb~0. If one has na = n+ and nb = n− then
the reactions in which given initial number theoretic momenta n±,ilog(pi) is shared between
final states would have concrete interpretation in terms of the integers na, nb characterizing the
coverings of incoming and outgoing lines.

Note that one can also consider the possibility that the hierarchy of Planck constants emerges
from the basic quantum TGD. Basically due to the vacuum degeneracy of Kähler action the
canonical momentum densities correspond to several values of the time derivatives of the imbed-
ding space oordinates so that for a given partonic 2-surface there are several space-time sheets
with same conserved quantities defined by isometry currents and Kähler current. This forces the
introduction of N -fold covering of CD × CP2 in order to describe the situation. The splitting
of the partonic 2-surface into N pieces implies a charge fractionization during its travel to the
upper end of CD. One can also develop an argument suggesting that the coverings factorize to
coverings of CD and CP2 so that the number of the sheets of the covering is N = nanb [41] .
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These observations make one wonder whether there could be a connection between p-adic thermo-
dynamics, hierarchy of Planck constants, and infinite primes.

1. Suppose that one accepts the identification na = n+ and nb = n−. Could one perform a
further identification of these integers as non-negative conformal weights characterizing physical
states so that conservation of the number theoretic momentum for a given p-adic prime would
correspond to the conservation of conformal weight. In p-adic thermodynamics this conformal
weight is sum of conformal weights of 5 tensor factors of Super-Virasoro algebra. The number
must be indeed five and one could assign them to the factors of the symmetry group. One factor
for color symmetries and two factors of electro-weak SU(2)L × U(1) are certainly present. The
remaining two factors could correspond to transversal degrees of freedom assignable to string
like objects but one can imagine also other identifications [49] .

2. If this interpretation is correct, a given conformal weight n = na = n+ (say) would correspond
to all possible distributions of five conformal weights ni, i = 1, ..., 5 between the na sheets of
covering of CD satisfying

∑5
i=1 ni = na = n+. Single sheet of covering would carry only unit

conformal weight so that one would have the analog of fractionization also now and a possible
interpretation would be in terms of the instability of states with conformal weight n > 1.
Conformal thermodynamics would also mean thermodynamics in the space of states determined
by infinite primes and in the space of coverings.

3. The conformal weight assignable to the CD would naturally correspond to mass squared but
there is also the conformal weight assignable to CP2 and one can wonder what its interpretation
might be. Could it correspond to the expectation of pseudo mass squared characterizing the
generalized eigenstates of the modified Dirac operator? Note that one should allow in the
spectrum also the powers of hyper-complex primes up to some maximum power pnmax/2 ≤
Lmax/Lmin so that Dirac determinant would be non-vanishing and Kähler function finite. From
the point of conformal invariance this is indeed natural.

13.6 Quantum Hall effect, charge fractionization, and hierar-
chy of Planck constants

In this section the most recent view about the relationship between dark matter hierarchy and quantum
Hall effect is discussed. This discussion leads to a more realistic view about FQHE allowing to
formulate precisely the conditions under which anyons emerge, describes the fractionization of electric
and magnetic charges in terms of the delicacies of the Kähler gauge potential of generalized imbedding
space, and relates the TGD based model to the original model of Laughlin. The discussion allows also
to sharpen the vision about the formulation of quantum TGD itself.

13.6.1 Quantum Hall effect

Recall first the basic facts. Quantum Hall effect (QHE) [23, 2, 21] is an essentially 2-dimensional
phenomenon and occurs at the end of current carrying region for the current flowing transversally
along the end of the wire in external magnetic field along the wire. For quantum Hall effect transversal
Hall conductance characterizing the 2-dimensional current flow is dimensionless and quantized and
given by

σxy = 2ναem ,

ν is so called filling factor telling the number of filled Landau levels in the magnetic field. In the case
of integer quantum Hall effect (IQHE) ν is integer valued. For fractional quantum Hall effect (FQHE)
ν is rational number. Laughlin introduced his many-electron wave wave function predicting fractional
quantum Hall effect for filling fractions ν = 1/m [21] . The further attempts to understand FQHE
led to the notion of anyon by Wilzeck [23] . Anyon has been compared to a vortex like excitation of a
dense 2-D electron plasma formed by the current carriers. ν is inversely proportional to the magnetic
flux and the fractional filling factor can be also understood in terms of fractional magnetic flux.

The starting point of the quantum field theoretical models is the effective 2-dimensionality of the
system implying that the projective representations for the permutation group of n objects are repre-
sentations of braid group allowing fractional statistics. This is due to the non-trivial first homotopy
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group of 2-dimensional manifold containing punctures. Quantum field theoretical models allow to
assign to the anyon like states also magnetic charge, fractional spin, and fractional electric charge.

Topological quantum computation [95, 29] , [52] , [69] is one of the most fascinating applications of
FQHE. It relies on the notion of braids with strands representing the orbits of of anyons. The unitary
time evolution operator coding for topological computation is a representation of the element of the
element of braid group represented by the time evolution of the braid. It is essential that the group
involved is non-Abelian so that the system remembers the order of elementary braiding operations
(exchange of neighboring strands). There is experimental evidence that ν = 5/2 anyons possessing
fractional charge Q = e/4 are non-Abelian [24, 22] .

During last year I have been developing a model for DNA as topological quantum computer [29] .
Therefore it is of considerable interest to find whether TGD could provide a first principle description
of anyons and related phenomena. The introduction of a hierarchy of Planck constants realized in
terms of generalized imbedding space with a book like structure is an excellent candidate in this
respect [30] . As a rule the encounters between real world and quantum TGD have led to a more
precise quantitative articulation of basic notions of quantum TGD and the same might happen also
now.

13.6.2 A simple model for fractional quantum Hall effect

The generalization of the imbedding space suggests that it could possible to understand fractional
quantum Hall effect [2] at the level of basic quantum TGD as integer QHE for non-standard value of
Planck constant.

The formula for the quantized Hall conductance is given by

σ = ν × e2

h
,

ν =
n

m
. (13.6.1)

Series of fractions in ν = 1/3, 2/5, 3/7, 4/9, 5/11, 6/13, 7/15..., 2/3, 3/5, 4/7, 5/9, 6/11, 7/13...,
5/3, 8/5, 11/7, 14/9...4/3, 7/5, 10/7, 13/9..., 1/5, 2/9, 3/13..., 2/7, 3/11..., 1/7.... with odd denominator
have been observed as are also ν = 1/2 and ν = 5/2 states with even denominator [2] .

The model of Laughlin [21] cannot explain all aspects of FQHE. The best existing model proposed
originally by Jain is based on composite fermions resulting as bound states of electron and even
number of magnetic flux quanta [18] . Electrons remain integer charged but due to the effective
magnetic field electrons appear to have fractional charges. Composite fermion picture predicts all the
observed fractions and also their relative intensities and the order in which they appear as the quality
of sample improves.

Before proposing the TGD based model of FQHE as IQHE with non-standard value of Planck
constant, it is good to represent a simple explanation of IQHE effect. Choose the coordinates of the
current currying slab so that x varies in the direction of Hall current and y in the direction of the
main current. For IQHE the value of Hall conductivity is given by σ = jy/Ex = neev/vB = nee/B =
Ne2/hBS = Ne2/mh, were m characterizes the value of magnetized flux and N is the total number
of electrons in the current. In the Landau gauge Ay = xB one can assume that energy eigenstates are
momentum eigenstates in the direction of current and harmonic oscillator Gaussians in x-direction in
which Hall current runs. This gives

Ψ ∝ exp(iky)Hn(x+ kl2)exp(− (x+kl2)2

2l2 ) , l2 = ~
eB . (13.6.2)

Only the states for which the oscillator Gaussian differs considerably from zero inside slab are impor-
tant so that the momentum eigenvalues are in good approximation in the range 0 ≤ k ≤ kmax = Lx/l

2.

Using N = (Ly/2π)
∫ kmax

0
dk one obtains that the total number of momentum eigenstates associated

with the given value of n is N = eBdLxLy/h = n. If ν Landau states are filled, the value of σ is
σ = νe2/h.

The interpretation of FQHE as IQHE with non standard value of Planck constant could explain
also the fractionization of charge, spin, and electron number. There are 2 × 2 = 4 combinations of
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covering and factor spaces of CP2 and three of them can lead to the increase or at least fractionization
of the Planck constant required by FQHE.

1. The prediction for the filling fraction in FQHE would be

ν = ν0
~0

~ , ν0 = 1, 2, ... . (13.6.3)

ν0 denotes the number of filled Landau levels.

2. Let us denote the options as C-C, C-F, F-C, F-F, where the first (second) letter tells whether
a singular covering or factor space of CD (CP2) is in question. The observed filling fractions
are consistent with options C-C, C-F, and F-C for which CD or CP2 or both correspond to a
singular covering space. The values of ν in various cases are given by the following table.

Option C − C C − F F − C

ν ν0

nanb
ν0nb
na

ν0na
nb

(13.6.4)

There is a complete symmetry under the exchange of CD and CP2 as far as values of ν are
considered.

3. All three options are consistent with observations. Charge fractionization allows only the options
C −C and F −C. If one believes the general arguments stating that also spin is fractionized in
FQHE then only the option C −C, for which charge and spin units are equal to 1/nb and 1/na
respectively, remains. For C − C option one must allow ν0 > 1.

4. Both ν = 1/2 and ν = 5/2 state has been observed [2, 13] . The fractionized charge is believed
to be e/4 in the latter case [24, 22] . This requires nb = 4 allowing only (C,C) and (F,C)
options. ni ≥ 3 holds true if coverings and factor spaces are correlates for Jones inclusions and
this gives additional constraint. The minimal values of (ν0, na, nb) are (2, 1, 4) for ν = 1/2 and
(10, 1, 4) for ν = 5/2) for both C − C and F − C option. Filling fraction 1/2 corresponds in
the composite fermion model and also experimentally to the limit of zero magnetic field [18] .
nb = 2 would be inconsistent with the observed fractionization of electric charge for ν = 5/2
and with the vision inspired by Jones inclusions implying ni ≥ 3.

5. A possible problematic aspect of the TGD based model is the experimental absence of even values
of m except m = 2 (Laughlin’s model predicts only odd values of m). A possible explanation is
that by some symmetry condition possibly related to fermionic statistics (as in Laughlin model)
both na and nb must be odd. This would require that m = 2 case differs in some manner from
the remaining cases.

6. Large values of m in ν = n/m emerge as B increases. This can be understood from flux
quantization. One has e

∫
BdS = n~. By using actual fractional charge eF = e/nb in the flux

factor would give for (C,C) option eF
∫
BdS = nna~0. The interpretation is that each of the nb

sheets contributes one unit to the flux for e. Note that the value of magnetic field at given sheet
is not affected so that the build-up of multiple covering seems to keep magnetic field strength
below critical value.

7. The understanding of the thermal stability is not trivial. The original FQHE was observed in
80 mK temperature corresponding roughly to a thermal energy of T ∼ 10−5 eV. For graphene
the effect is observed at room temperature. Cyclotron energy for electron is (from fe = 6 ×
105 Hz at B = .2 Gauss) of order thermal energy at room temperature in a magnetic field
varying in the range 1-10 Tesla. This raises the question why the original FQHE requires such



1132 Chapter 13. Quantum Hall effect and Hierarchy of Planck Constants

a low temperature. A possible explanation is that since FQHE involves several values of Planck
constant, it is quantum critical phenomenon and is characterized by a critical temperature. The
differences of single particle energies associated with the phase with ordinary Planck constant
and phases with different Planck constant would characterize the transition temperature.

13.6.3 Description of QHE in terms of hierarchy of Planck constants

The proportionality σxy ∝ αem ∝ 1/~ suggests an explanation of FQHE [23, 2, 21] in terms of the
hierarchy of Planck constants. Perhaps filling factors and magnetic fluxes are actually integer valued
but the value of Planck constant defining the unit of magnetic flux is changed from its standard value
- to its rational multiple in the most general case. The killer test for the hypothesis is to find whether
higher order perturbative QED corrections in powers of αem are reduced from those predicted by
QED in QHE phase. The proposed general principle governing the transition to large ~ phase is
states that Nature loves lazy theoreticians: if perturbation theory fails to converge, a phase transition
increasing Planck constant occurs and guarantees the convergence. Geometrically the phase transition
corresponds to the leakage of 3-surface from a given 8-D page to another one in the Big Book having
singular coverings and factor spaces of CD × CP2 as pages. Only cove

The hierarchy of Planck constants strongly suggests the emergence of quantum groups and frac-
tionalization of quantum numbers [11] . The challenge is to figure out the details and see whether
this framework is consistent with what is known about FQHE. At least the following questions pop
up immediately in the mind of physicist.

1. What the effective 2-dimensionality of the system exhibiting QHE corresponds in TGD frame-
work?

2. What happens in the phase transition leading to the phase exhibiting QHE effect?

3. What are the counterparts anyons? How the fractional electric and magnetic charges emerge at
classical and quantum level in the two descriptions?

The TGD inspired description of charge fractionization is based on the weak form of electric-
magnetic duality and the reduction of the hierarchy of Planck constants to the basic quantum TGD.
Also now one can raise a series of questions.

1. Electric magnetic duality provides a natural description of charge quantization and fraction-
ization. The explanation for the hierarchy of Planck constants predicts that all charges- even
Noether charges- are fractionized in the same manner and come as multiples of 1/na and 1/nb.
Does this prediction make sense physically?

2. Does the singular gauge part ∆A = dΦ of Kähler gauge potential whose exponent is na- (nb-)
valued function of appropriate angle coordinates of M4 and CP2 provide a description of charge
fractionization for a given sheet of the covering associated with a given value of Planck constant?
Does this description reduce to the measurement interaction term which is indeed effective gauge
part added to the Kähler gauge potential of either space-time surface or of wormhole throats or
ends of space-time surface.

3. The Chern-Simons action associated with the induced Kähler gauge potential is Abelian: is this
consistent with the non-Abelian character of the braiding matrix?

In the following I try to summarize the basic ideas giving hopes about a coherent description of
quantum Hall effect and charge and spin fractionization in TGD framework.

Hierarchy of Planck constants and book like structure of imbedding space

TGD leads to a description for the hierarchy of Planck constants in terms of the generalization of
CD × CP2 to book like structure. To be more precise, the generalization takes place for any region
CD×CP2 ⊂ H, where CD corresponds to a causal diamond defined as an intersection of future and
past directed light-cones of M4. CDs play key role in the formulation of quantum TGD in zero energy
ontology in which the light-like boundaries of CD connected by light-like 3-surfaces can be said to be
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carriers of positive and negative energy parts of zero energy states. They are also crucial for TGD
inspired theory of consciousness, in particular for understanding the relationship between experienced
and geometric time [6] .

1. Should one postulate the hierarchy of Planck constants separately?

In the most general case both CD and CP2 are replaced with a book like structure consisting of
singular coverings and factor spaces associated with them. A simple geometric argument identifying
the square of Planck constant as scaling factor of the covariant metric tensor of M4 (or actually CD)
leads in the most general case to the identification of Planck constant as the ratio ~/~0 = xaxb, where
x = n holds true for a singular covering of X and x = 1/n holds true for a singular factor space.
x is the order of the maximal cyclic subgroup of the covering/divisor group G ⊂ SO(3). The order
of G can be thus larger than n. As a consequence, the spectrum of Planck constants is in principle
rational-valued. ~0 is unique since it corresponds to the unit of rational numbers.

2. Does the hierarchy follow from the basic quantum TGD?

The proposed option is too general if one believes on the argument reducing the hierarchy of Planck
constants to the basic quantum TGD. Recall that the argument goes as follows.

1. By the extreme non-linearity of the Kähler action the correspondence between the time deriva-
tives of the imbedding space coordinates and canonical momentum densities is many-to-one.
This leads naturally to the introduction of covering spaces of CD × CP2, which are singular in
the sense that the sheets of the covering co-incide at the ends of CD and at wormhole throats.
One can say that quantum criticality means also the instability of the 3-surfaces defined by
the throats and the ends against the decay to several space-time sheets and consequent charge
fractionization. The interpretation is as an instability caused by too strong density of mass and
making perturbative description possible since the matter density at various branches is reduced.
The nearer the vacuum extremal the system is, the lower the mass density needed to induce the
instability is and the larger is the number of sheets resulting in this manner is.

2. The singular regions of the covering are regions in which the integer characterizing the multiple-
valuedness of the time derivatives of the imbedding space coordinates as functions of canonical
momentum densities is reduced from the maximal value. The reduction to single sheeted cov-
ering could (but need not!) take place over any Lagrangian manifold of CP2 rather than only
over a homologically trivial geodesic sphere and would thus directly correspond to the vacuum
degeneracy of Kähler action. One can also imagine the reduction of the integer characterizing
multivaluedness to a smaller value different from one in non-vacuum regions.

3. In M4 degrees of freedom branching to a single sheeted covering can occur over any partonic
2-surface which does not enclose the tip of CD. In this case the Kähler gauge potential would
contain a singular gauge term having an archetypal form ∆A = dφ/na at say upper hemisphere
so that the magnetic flux would receive a non-vanishing contribution from North pole and give
rise to a fractionized Kähler magnetic and therefore also to Kähler electric charge. This term is
pure gauge for all partonic 2-surface not containing the tip of CD. Thus one species of anyons
would be associated with this kind of partonic 2-surfaces. Second species would correspond to
singular gauge transforms about which example would be ∆A = dΨ/nb, where Ψ is the angle
coordinate associated with a homologically non-trivial geodesic sphere. The modification of the
Kähler gauge potential could be interpreted in terms of a measurement interaction term added
to the Dirac action and their sum at the ends would give rise to the non-fractional contribution
to the measurement interaction term. This kind of term would be also associated with Noether
charges such as 4-momentum. Depending on whether one consdiders the end of space-time
sheet or at wormhole throat, the measurement interaction term would be given as 1/nb or
1/na multiple of the measurement interaction term in absence of branching and would be more
complex than the simple archetypal forms. The general form of the measurement interaction
term is discussed in [31] .

4. Classically the fractional Noether charges would emerge from Chern-Simons representation of
Kähler function with the Lagrangian multiplier term realizing the weak form of electric-magnetic
duality as a constraint. The latter term would be responsible for the non-vanishing values of
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four-momentum and angular momentum. The isometry charges in CP2 degrees of freedom would
receive a contribution also from the Chern-Simons term.

5. The situation can be described mathematically either by using effectively only single sheet but
an integer multiple of Planck constant or many-sheeted covering and ordinary value of Planck
constant. In [30] the argument that this indeed leads to hierarchy of Planck constants including
charge fractionization is developed in detail. The restriction to singular coverings is consistent
with the experimental constraints and means that only integer valued Planck constants are
possible. A given value of Planck constant corresponds only to a finite number of the pages of
the Big Book and that the evolution by quantum jumps is analogous to a diffusion at half-line
and tends to increase the value of Planck constant.

6. The following argument would suggest a direct connection between vacuum degeneracy, cover-
ings, and the hierarchy of infinite primes. For vacuum extremal the number of sheets is formally
infinite but the sheets are in a well-define sense ”passive”. On the other hand, by the argu-
ments of [31] the numbers na and nb for sheets correspond to powers pna and pnb for a prime
appearing in infinite prime characterizing the partonic 3-surface and having interpretation as
particle numbers. The unit infinite primes X ± 1 correspond to the two basic infinite primes
having interpretation as fermionic vacua are interpreted as Dirac sea: the numbers of bosons
and fermions are vanishing for them. This suggests that the fermions of Dirac sea correspond to
the ”passive” sheets. This raises the question whether one could characterize the infinite degen-
eracy associated with vacuum extremals by these two infinite primes and non-vacuum extremals
by infinite primes for which boson and fermion numbers are non-vanishing. The two infinite
primes would correspond to CD and CP2 degrees of freedom. They could also correspond to
the space-time sheets of Euclidian and Minkowskian signature of the induced metric meeting at
the wormhole throat at which the induced 4-metric is degenerate. Bose-Einstein condensate of
ni bosons (i = a, b) or fermion plus ni − 1 bosons would correspond to ni sheets of covering.

Arithmetic quantum field theory allows infinite number of conservation laws corresponding to
the conservation of the number theoretic momentum p =

∑
i nilog(pi) which forces separate

conservation of each number theoreticl momentum nilog(pi) since the logarithms of primes are
linearly independent in the realm of rationals. This conservation law could correlate the partonic
lines arriving in the interaction vertices and state that the total number of sheets of the covering
is conserved although it can be shared by several partonic space-time sheets in the final state.

The reduction of the hierarchy of Planck constants to basic quantum TGD is of course only an
interesting idea and the best strategy to proceed is to develop objections against it.

1. The branching of partonic 2-surfaces at the ends of space-time sheets and wormhole throats
is analogous to the branching of the line of Feynman graph. The 3-D lines of generalized
Feynman graphs indeed branch at the vertices and this leads to the basic objection against the
proposed interpretation of the fractionization. Could one consider the possibility that branching
corresponds to what happens in the vertices of Feynman diagrams? This cannot not seem to
be the case. The point is that canonical momentum densities are identical so that also the
conserved classical Noether and Kähler charges associated with various branches should be the
same.

2. The value of gravitational Planck constant is enormous and one would mean enormously many-
fold branching of partonic 2-surfaces of astrophysical size. Does this really make sense? Is this
simply due the fact that the basic parameter GM1M2 characterizing the strength of gravita-
tional interaction is much larger than unity so that perturbation theory in terms of it fails to
converge and the splitting to ~gr/~0 sheets guarantees that the perturbation theory at each
sheet converges.

3. One can also ask whether the fractional charges can be observed directly since it seems that
only the partonic 2-surfaces at the ends of the space-time sheet are observable.

4. Perhaps the most serious objection relates to the basic intuition about scaling of quantum lengths
by ~ since this scaling is fundamental for all predictions in the model of quantum biology. It is
not obvious why the basic quantum lengths in M4 degrees of freedom - in particular the size
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scale of CD - should be scaled up by nanb. Could this scaling up result dynamically or can
one find some simple kinematic argument forcing the size scale spectrum of CDs? Kinematic
argument is more plausible and indeed exists. Suppose that one can speak about plane waves
exp(inEt/~0), where t is proper time coordinate associated with the line connecting the tips of
CD. Periodic boundary conditions at t = T imply E = n~0/2πT where T is the proper time
distance between the tips of CD. Suppose that ~0 is replaced with its nanb multiple in the plane
wave. As a consequence, the plane waves for sheets and for same value of E do not anymore
satisfy periodic boundary conditions at t = T anymore. These conditions are however satisfied
for t = nanbT .

3. Connection with quantum measurement theory

The hierarchy of Planck constants relates closely to quantum measurement theory. The selection
of quantization axis implied by the gauge terms ∆A proportional to appropriate angle coordinates
has a direct correlate at the level of imbedding space geometry. This means breaking of isometries
of H for a given CD with preferred choice time axis (rest frame) and quantization axis of spin. For
CP2 the choice of the quantization axes of color hyper charge and isospin imply symmetry breaking
SU(3) → U(2) → U(1) × U(1). The ”world of classical worlds” (WCW) is union over all Poincare
and color translates of given CD × CP2 so that these symmetries are not lost at the level of WCW
although the loss can happen at the level of quantum states.

4. How the different sectors of the generalized imbedding space are glued together?

Intuitively the scaling of Planck constant scales up quantum lengths, in particular the size of CD.
This looks trivial but one one must describe precisely what is involved to check internal consistency
and also to understand how to model the quantum phase transitions changing Planck constant. The
first manner to understand the situation is to consider CD with a fixed range of M4 coordinates.
The scaling up of the covariant Kähler metric of CD by r2 = (~/~0)2 scales up the size of CD by r.
Another manner to see the situation is by scaling up the linear M4 coordinates by r for the larger
CD so that M4 metric becomes same for both CDs. The smaller CD is glued to the larger one
isometrically together along (M2 ∩ CD) ⊂ CD anywhere in the interior of the larger CD. What
happens is non-trivial for the following reasons.

1. The singular coverings (and possibly also factor spaces) are different and M4 scaling is not a
symmetry of the Kähler action so that the preferred extrema in the two cases do not relate by
a simple scaling. The interpretation is in terms of the coding of the radiative corrections in
powers of ~ to the shape of the preferred extremals. This becomes clear from the representation
of Kähler action in which M4 coordinates have the same range for two CDs but M4 metric
differs by r2 factor.

2. In common M4 coordinates the M4 gauge part Aa of CP2 Kähler potential for the larger CD
differs by a factor 1/r from that for the smaller CD. This guarantees the invariance of four-
momentum assignable to Chern-Simons action in the phase transition changing ~. The resulting
discontinuity of Aa at M2 is analogous to a static voltage difference between the two CDs and
M2 could be seen as an analog of Josephson junction. In absence of dissipation (expected in
quantum criticality) the Kähler voltage could generate oscillatory fermion, em, and Z0 Josephson
currents between the two CDs. Fermion current would flow in opposite directions for fermions
and antifermions and also for quarks and leptons since Kähler gauge potential couples to quarks
and leptons with opposite signs. In presence of dissipation fermionic currents would be ohmic
and could force quarks and leptons and matter and antimatter to different pages of the Big
Book. Quarks inside hadrons could have nonstandard value of Planck constant.

Measurement interaction term as gauge transform of Kähler gauge potential and de-
scription of charge fractionization in terms of singular gauge transforms

The introduction of a gauge part to the Kähler gauge potential of the imbedding space looks somewhat
tricky idea. Can one really assing non-trivial physics to a mere gauge transformation? This is certainly
the case if the gauge transformation is singular and induces a fractional Kähler magnetic charge and by
electric-magnetic duality also a fractional Kähler electric charge. The introduction of a measurement
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interaction term as a formal gauge transform of the Kähler gauge potential only in Dirac Kähler action
or Kähler Chern-Simons Dirac action but not both provides a second manner to achieve a non-trivial
physical effect. It is good to summarize the background in more detail before continuing.

The idea about description of quantum Hall effect in terms of a gauge part of Kähler gauge potential
emerged from the idea that Chern-Simons action for Kähler gauge potential (equivalently the for
induced classical color gauge field proportional to the Kähler form) could define TGD as an almost
topological QFT. It turned out however that Kähler action and the corresponding modified Dirac
action containing also Chern-Simons boundary term with the constraint term coming from electric-
magnetic duality are the fundamental actions. The general ansatz for the classical field equations based
on the proportionality of Kähler current to instanton current reduces TGD to almost topological QFT
with action reducing to Chern-Simons term with a Lagrangian multiplier term guaranteing the weak
form of electric-magnetic duality. This term is of extreme importance since the extremals of mere
Chern-Simons action would give rise to identically vanishing Kähler function and Kähler metric and
WCW metric would not have any M4 part even if one gives up the extremality condition.

The measurement interaction term which corresponds to a gauge part of the Kähler gauge potential
and can be added either to the interior part of Kähler Dirac action (and Kähler action) or to the Chern-
Simons Dirac action. The measurement interaction term therefore modifies the physics and is visible
also in the classical dynamics by the proportionality of Kähler current to instanton current. Note that
the modification of Chern-Simons term assigned to the ends of the space-time sheet and to wormhole
throats affects the space-time sheet since the Kähler action changes.

For Noether charges the Lagrangian multiplier term guaranteing the weak form of electric magnetic
duality in Chern-Simons action gives rise to non-vanishing Noether charges also in M4 degrees of
freedom. The proposed view about the basic process behind the charge fractionization implies that
all charges are fractionized in basically the same manner although it seems that M4 charges are nb
multiples and CP2 charges na multiples of 1/nanb . Also in this case the additional of a formal gauge
term would realize the fractionization at the level of couplings and total anomalous coupling would
correspond to a non-singular gauge transformation of A.

One can imagine several kinds of pseudo gauge transformations appearing in the measurement
interaction term.

1. The first kind of gauge transformation corresponds to a gauge change for Aµ with no reference
to the fact that it is a projection of CP2 Kähler gauge potential. It is not clear whether
measurement interaction could be induced also by this kind of gauge transform. In any case, the
proposed form of measurement interaction coan be interpreted in terms of a gauge transform at
the level of imbedding space [31]

2. Second kind of gauge transformations are induced by the symplectic transformations of δM4
± ×

CP2 and in general affect the induced metric and thus the gravitational properties of the system
in the case of non-vacuum extremals. Furthermore, there exist no symplectic transformation
allowing to eliminate the ”gauge part” of A in M2 ⊂ M4 or gauge part in CD\M2 or CP2\S2

if it corresponds to a scalar function which is discontinuous. ∆Aφ = kφ, k 6= n, where φ is an
angle variable in M4 or CP2 would represent a canonical example of this.

3. Third kind of gauge transform would characterize the pages of the Big Book and give rise to
fractional Kähler magnetic charge and by definition would not be reducible to a gauge transform
induced by a symplectic transformation. This raises the idea that the gauge parts of A in CD
and CP2 could characterize the pages of the Big Book andthus the charge fractionization. In
particular in the case of coverings one might argue that ∆A must be pure gauge in the covering
implying k = m/na or k = m/nb.

The simplest hypothesis is that the ordinary measurement interaction term for trivial covering
is simply scaled down by 1/nanb in the interior of the space-time sheet and by 1/nb or 1/nb at its
ends and at throats where nb or na sheets co-incide. With this interpretation ∆A would provide
a description of physics at a particular sheet of covering and there would be no need to introduce
anything new at the level of imbedding space geometry since the coverings of the imbedding space
would provide only a formal tool to describe the situation caused by the extreme non-linearity of the
Kähler action.
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13.6.4 In what kind of situations do anyons emerge?

Charge fractionization is a fundamental piece of quantum TGD and should be extremely general
phenomenon and the basic characteristic of dark matter known to contribute 95 per cent to the
matter of Universe.

1. In TGD framework scaling ~ = m~0 implies the scaling of the unit of angular momentum for
m-fold covering of CD only if the many particle state is Zm singlet. Zm singletness for many
particle states allows of course non-singletness for single particle states. For factor spaces of CD
-if present- the scaling ~→ ~/m is compensated by the scaling l → ml for Lz = l~ guaranteing
invariance under rotations by multiples of 2π/m. Again one can pose the invariance condition on
many-particle states but not to individual particles so that genuine physical effect is in question.

2. There is analogy with Z3-singletness holding true for many quark states and one cannot com-
pletely exclude the possibility that quarks are actually fractionally charged leptons with m = 3-
covering of CP2 reducing the value of Planck constant [97, 30] so that quarks would be anyonic
dark matter with smaller Planck constant and the impossibility to observe quarks directly would
reduce to the impossibility for them to exist at our space-time sheet. Confinement would in this
picture relate to the fractionization requiring that the 2-surface associated with quark must
surround the tip of CD. Whether this option really works remains an open question. In any
case, TGD anyons are quite generally confined around the tip of CD.

3. The model of DNA as topological quantum computer [29] assumes that DNA nucleotides are
connected by magnetic flux tubes to the lipids of the cell membrane. In this case, p-adically
scaled down u and d quarks and their antiquarks are assumed to be associated with the ends
of the flux tubes and provide a representation of DNA nucleotides. Quantum Hall states would
be associated with partonic 2-surfaces assignable to the lipid layers of the cell and nuclear
membranes and also endoplasmic reticulum filling the cell interior and making it macroscopic
quantum system and explaining also its stability. The entire system formed in this manner
would be single extremely complex anyonic surface and the coherent behavior of living system
would result from the fusion of anyonic 2-surfaces associated with cells to larger anyonic surfaces
giving rise to organs and organisms and maybe even larger macroscopically quantum coherent
connected systems. An interesting possibility is that the ends of the flux tubes assumed to
connect DNA nucleotides to lipids of various membranes carry instead of u, d and their anti-
quarks fractionally charged electrons and neutrinos and their anti-particles having nb = 3 and
large value of na.

In astrophysical scales gigantic values of Planck constants would be realized meaning coverings
with huge number of sheets. This conforms with the fact that for vacuum extremals the coverings
would be formally infinitely many sheeted.

1. Quite generally, one would expect that dark matter and its anyonic forms emerge in situations
where the density of plasma like state of matter is very high so that N -fold cover of CD reduces
the density of matter by 1/N factor at given sheet of covering and thus also the repulsive
Coulomb energy. Plasma state resulting in QHE is one example of this. The interiors of neutron
stars and black hole like structures are extreme examples of this, and I have proposed that black
holes are dark matter with a gigantic value of gravitational Planck constant implying that black
hole entropy -which is proportional to 1/~ - is of the same order of magnitude and even smaller
as the entropy assignable to the spin of elementary particle. If the covering results from the
basic quantum TGD this entropy would characterize single sheet of the covering only. The fact
that there are nanb sheets would mean that the total entropy has just the standard value! Could
this mean that entropy is the critical contrple parameter which splits the 3-surface into parallel
sheets?

2. The confinement of matter inside black hole could have interpretation in terms of macroscopic
anyonic 2-surfaces containing the topologically condensed elementary particles. This conforms
with the TGD inspired model for the final state of star [91] inspiring the conjecture that even
ordinary stars could possess onion like structure with thin layers with radii given by p-adic
length scale hypothesis.
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3. The idea about hierarchy of Planck constants was inspired by the finding that planetary orbits
can be regarded as Bohr orbits [30] , [27] : the explanation was that visible matter has condensed
around dark matter at spherical cells or tubular structures around planetary orbits. This led
to the proposal that planetary system has formed through this kind of condensation process
around spherical shells or flux tubes surrounding planetary orbits and containing dark matter.

The question why dark matter would concentrate around flux tubes surrounding planetary orbits
was not answered. The answer could be that dark matter is anyonic matter at partonic 2-surfaces
whose light-like orbits define the basic geometric objects of quantum TGD. These partonic 2-
surfaces could contain a central spherical anyonic 2-surface connected by radial flux tubes to
flux tubes surrounding the orbits of planets and other massive objects of solar system to form
connected anyonic surfaces analogous to elementary particles.

4. If factor spaces appear in M4 degrees of freedom, they give rise to Zn ⊂ Ga symmetries. In
astrophysical systems the large value of ~ necessarily requires a large value of na for CD coverings
as the considerations of [63] - in particular the model for graviton dark graviton emission and
detection - forces to conclude. The same conclusion follows also from the absence of evidence
for exact orbifold type symmetries in M4 degrees of freedom for dark matter in astrophysical
scales.

Coverings alone are enough to produce rational number valued spectrum for ~ consistent with the
observed spectrum of ν, and one must keep in mind that the applications of theory do not allow to
decide whether singular factor spaces are really needed and that the reduction of the hierarchy of
Planck constants to basic quantum TGD for coverings disfavors the factor spaces. The possibility to
interpret evolution in terms of the increase of Planck constant also favors coverings-only option.

13.6.5 What happens in FQHE?

This picture suggest following description for what would happen in QHE in TGD Universe accepting
the C-C option implied by the basic quantum TGD.

1. Light-like 3-surfaces - locally random light-like orbits of partonic 2-surfaces- are identifiable as
very tiny wormhole throats in the case of elementary particles. This is the case for electrons in
particular. Partonic surfaces can be also large, even macroscopic, and the size scales up in the
scaling of Planck constant. To avoid confusion, it must be emphasized that light-likeness is with
respect to the induced metric and does not imply expansion with light velocity in Minkowski
space since the contribution to the induced metric implying light-likeness typically comes from
CP2 degrees of freedom. Strong classical gravitational fields are present near the wormhole
throats. Second important point is that regions of space-time surface with Euclidian signature
of the induced metric are implied: CP2 type extremals representing elementary particles and
having light-like random curve as CP2 projection represents basic example of this. Hence rather
exotic gravitational physics is predicted to manifest itself in everyday length scales.

2. The simplest identification for what happens in the phase transition to quantum Hall phase
is that the end of wire carrying the Hall current corresponds to a partonic 2-surface having a
macroscopic size. The electrons in the current correspond to similar 2-surfaces but with size of
elementary particle for the ordinary value of Planck constant. As the electrons meet the end of
the wire, the tiny wormhole throats of electrons suffer topological condensation to the boundary.
One can say that one very large elementary particle having very high electron number is formed.

3. Fractionization occurs for charges in CP2 degrees of freedom with unit 1/na. If the end of the
wire forms part of a spherical surface surrounding the tip of the CD involved fractionization
occurs also in CD degrees of freedom so that electrons can become carriers of anomalous electric
and magnetic charges. If not then the total spin is na multiple of fundamental spin unit.

One of the basic question was whether it is possible to describe non-Abelian FQHE in TGD
framework.

1. Chern- Simons action for Kähler gauge potential is Abelian. This raises the question whether the
representations of the number theoretical braid group are also Abelian. Since there is evidence
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for non-Abelian anyons, one might argue that this means a failure of the proposed approach.
There are however may reasons to expect that braid group representations are non-Abelian.
The action is for induced Kähler form rather than primary Maxwell field, U(1) gauge symme-
try is transformed to a dynamical symmetry (symplectic transformations of CP2 representing
isometries of WCW and definitely non-Abelian), and the particles of the theory belong to the
representations of electro-weak and color gauge groups naturally defining the representations of
braid group.

2. The finite subgroups of SU(2) defining covering and factor groups are in the general case non-
commutative subgroups of SU(2) since the hierarchies of coverings and factors spaces are as-
sumed to correspond to the two hierarchy of Jones inclusions to which one can assign ADE Lie
algebras by McKay correspondence. The ADE Lie algebras define effective gauge symmetries
having interpretation in terms of finite measurement resolution described in terms of Jones in-
clusion so that extremely rich structures are expected. The question arises whether the covering
option implied by the basic quantum TGD allows coverings defined by finite groups. There
seems to be no obvious reason why this could not be the case.

An interesting challenge is to relate concrete models of FQHE to the proposed description. Here
only some comments about Laughlin’s wave function are made.

1. In the description provided by Lauglin wave function FQHE results from a minimization of
Coulomb energy. In TGD framework the tunneling to the page of H with m sheets of covering
has the same effect since the density of electrons is reduced by 1/m factor.

2. The formula ν ∝ e2Ne/e
∫
BdS with scaling up of magnetic flux by ~/~0 = m implies effective

fractional filling factor. The scaling up of magnetic flux results from the presence of m sheets
carrying magnetic field with same strength. Since the Ne electrons are shared between m sheets,
the filling factor is fractional when one restricts the consideration to single sheet as one indeed
does.

3. Laughlin wave function makes sense for ν = 1/m, m odd, and is m:th power of the many electron
wave function for IQHE and expressible as the product

∏
i<j(zi − zj)

m, where z represents
complex coordinate for the anyonic plane. The relative orbital angular momenta of electrons
satisfy Lz ≥ m if the value of Planck constant is standard. If Laughlin wave function makes
sense also in TGD framework, then m:th power implies that many-electron wave function is
singlet with respect to Zm acting in covering and the value of relative angular momentum
indeed satisfies Lz ≥ m~0 just as in Laughlin’s theory.
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[113] M. Redei and M. Stöltzner (eds). John von Neumann and the Foundations of Quantum Physics.
Vol. 8, Dordrecht. Kluwer, 2001.

[114] R. J. Rivers. Path Integral Methods in Quantum Field Theory. Cambridge University Press,
Cambridge, 1987.

[115] A. Robinson. Nonstandard Analysis. North-Holland, Amsterdam, 1974.

[116] D. Ruberman. Comment in discussion about unitary cobordisms. http://math.ucr.edu/home/
baez/quantum/ruberman.html.

[117] J. E. Roberts S. Doplicher, R. Haag. Local Observables and Particle Statistics I. Ann. Math.,
23(1974):75–119, 1971.

[118] S. Salamon. Quaternionic Kähler manifolds. Invent. Math., 67:143, 1982.

[119] H. Saleur. Zeroes of chromatic polynomials: a new approach to the Beraha conjecture using
quantum groups. Comm. Math. Phys., 132, 1990.

[120] S. Sawin. Links, Quantum Groups, and TQFT’s. http://arxiv.org/abs/q-alg/9506002,
1995.

[121] J. Schray and C. A. Manogue. Octonionic representations of Clifford algebras and triality.
http://arxiv.org/abs/hep-th/9407179, 1994.

[122] L. Schwartz. Generalisation de la Notion de Fonction, de Derivation, de Transformation de
Fourier et Applications Mathematiques et Physiques. Publications de l’Institut de Mathematique
de l’Universite de Strasbourg, Vols 9-10, Paris: Hermann, 1945.

[123] T. Smith. D4-D5-E6 Physics. http://galaxy.cau.edu/tsmith/d4d5e6hist.html, 1997.

[124] Sorkin G. Solla S. and White S. Configuration space analysis for optimization problems. Springer
Verlag, Berlin, 1986.

[125] M. Spivak. Differential Geometry I,II,III,IV. Publish or Perish, Boston, 1970.

[126] A. Stern. Matrix Logic. North-Holland, 1988.

[127] H. Sugawara. A field theory of currents. Phys. Rev., 176, 1968.

[128] J. Hanson T. Eguchi, B. Gilkey. Phys. Rep., 66:1980, 1980.

[129] M. Takesaki. Tomita’s Theory of Modular Hilbert Algebras and Its Applications, volume 128.
Springer, Berlin, 1970.

[130] N. H. V. Temperley and E. H. Lieb. Relations between the percolation and colouring problem
and other graph-theoretical problems associated with regular planar lattices:some exact results
for the percolation problem. Proc. Roy. Soc. London, 322(1971), 1971.

http://arxiv.org/pdf/physics/9710038
http://arxiv.org/pdf/physics/9710038
http://arxiv.org/abs/gr-qc/9911076
http://math.ucr.edu/home/baez/quantum/ruberman.html
http://math.ucr.edu/home/baez/quantum/ruberman.html
http://arxiv.org/abs/q-alg/9506002
http://arxiv.org/abs/hep-th/9407179
http://galaxy.cau.edu/tsmith/d4d5e6hist.html


1154 MATHEMATICS

[131] R. Thom. Commentarii Math. Helvet., 28, 1954.

[132] J. von Neumann. Quantum Mechanics of Infinite Systems, 1937.

[133] Wallace. Differential Topology. W. A. Benjamin, New York, 1968.

[134] A. Wassermann. Operator algebras and conformal field theory. III. Fusion of positive energy
representations of LSU(N) using bounded operators. Invent. Math., 133(3), 1998.

[135] H. Wenzl. Hecke algebra of type An and subfactors. Invent. Math., 92, 1988.

[136] E. Witten. Quantum field theory and the Jones polynomial. Comm. Math. Phys., 121:351–399,
1989.

[137] J. Yngvason. The role of Type III Factors in Quantum Field Theory. http://arxiv.org/abs/
math-ph/0411058, 2004.

[138] E. C. Zeeman. Catastrophe Theory. Addison-Wessley Publishing Company, 1977.

http://arxiv.org/abs/math-ph/0411058
http://arxiv.org/abs/math-ph/0411058


Theoretical Physics

[1] Airy functions. http://en.wikipedia.org/wiki/Airy_function.

[2] Chern-Simons theory. http://en.wikipedia.org/wiki/ChernSimons_theory.

[3] CPT symmetry. http://en.wikipedia.org/wiki/CPT_symmetry.

[4] Global Scaling. http://www.dr-nawrocki.de/globalscalingengl2.html.

[5] Hyperdeterminant. http://en.wikipedia.org/wiki/Hyperdeterminant.

[6] K-theory (physics). http://en.wikipedia.org/wiki/K-theory_(physics).

[7] Monster group. http://en.wikipedia.org/wiki/Monster_group.

[8] Montonen Olive Duality. http://en.wikipedia.org/wiki/Montonen-Olive_duality.

[9] Not Even Wrong. http://www.math.columbia.edu/~woit/blog/.

[10] Self organization. http://en.wikipedia.org/wiki/Self_organization.

[11] Self-Organized Criticality. http://en.wikipedia.org/wiki/Self-organized_criticality.

[12] Super symmetry. http://en.wikipedia.org/wiki/SUSY.

[13] L. Alvarez-Gaume and Z. Freedman, D. Geometrical Structure and Ultraviolet Finiteness in the
Super-symmetric σ-Model. Comm. Math. Phys., 80, 1981.

[14] J. Björken and S. Drell. Relativistic Quantum Fields. Mc Graw-Hill, New York, 1965.

[15] R. Boels. On BCFW shifts of integrands and integrals. http://arxiv.org/abs/1008.3101,
2010.

[16] O. I Bogoyavlenskij. Exact unsteady solutions to the Navier-Stokes equations and viscous MHD
equations. Phys. Lett. A, pages 281–286, 2003.

[17] H. J. Borchers. On Revolutionizing QFT with Tomita’s Modular Theory. J. Math. Phys., 41:3604–
3673, 2000.

[18] M. M. Bowick and S. G. Rajeev. The holomorphic geometry of closed bosonic string theory and
Diff(S1)/S1. Nucl. Phys. B, 293, 1987.

[19] D. Chowdbury. Spin Glasses and other Frustrated Systems. World Scientific, 1986.

[20] R. E. Cutkosky. J. Math. Phys., (1):429–433, 1960.

[21] E. Witten D.-E. Diaconescu, G. Moore. E8 Gauge Theory, and a Derivation of K-Theory from
M-Theory). http://arXiv.org/abs/hep-th/0005090v3, 2005.

[22] E. Witten D. S. Freed. Anomalies in string theory with D-branes. http://arXiv.org/abs/

hep-th/9907189v2, 1999.

[23] S. de Haro Olle. Quantum Gravity and the Holographic Principle. http://arxiv.org/abs/

hep-th/0107032, 2001.

1155

http://en.wikipedia.org/wiki/Airy_function
http://en.wikipedia.org/wiki/Chern–Simons_theory
http://en.wikipedia.org/wiki/CPT_symmetry
http://www.dr-nawrocki.de/globalscalingengl2.html
http://en.wikipedia.org/wiki/Hyperdeterminant
http://en.wikipedia.org/wiki/K-theory_(physics)
http://en.wikipedia.org/wiki/Monster_group
http://en.wikipedia.org/wiki/Montonen-Olive_duality
http://www.math.columbia.edu/~woit/blog/
http://en.wikipedia.org/wiki/Self_organization
http://en.wikipedia.org/wiki/Self-organized_criticality
http://en.wikipedia.org/wiki/SUSY
http://arxiv.org/abs/1008.3101
http://arXiv.org/abs/hep-th/0005090v3
http://arXiv.org/abs/hep-th/9907189v2
http://arXiv.org/abs/hep-th/9907189v2
http://arxiv.org/abs/hep-th/0107032
http://arxiv.org/abs/hep-th/0107032


1156 THEORETICAL PHYSICS

[24] P. Dorey. Exact S-matrices. http://arxiv.org/abs/hep-th/9810026, 1998.

[25] Nima Arkani-Hamed et al. The All-Loop Integrand For Scattering Amplitudes in Planar N=4
SYM. http://arxiv.org/find/hep-th/1/au:+Bourjaily_J/0/1/0/all/0/1, 2010.

[26] S. Ansoldi et al. p-Branes ElectricMagnetic Duality and Stueckelberg/Higgs Mechanism: a
PathIntegral Approach. http://arxiv.org/abs/hep-th/0004044v2, 2000.

[27] J. Etnyre and G. Ghrist. Generic hydrodynamic instability of curl eigen fields. http://arxiv.

org/abs/math/0306310, 2003.

[28] H. Evslin. What doesn’t K-theory classify? http://arxiv.org/abs/hep-th/0610328, 2006.

[29] P. Svrcek F. Cachazo and E. Witten. MHV Vertices and Tree Amplitudes In Gauge Theory.
http://arxiv.org/abs/hep-th/0403047, 2004.

[30] M. H. Freedman. P/NP, and the quantum field computer. Proc. Natl. Acad. Sci. USA, 95(1),
1998.

[31] M. H. Freedman. Quantum Computation and the localization of Modular Functors. Found.
Comput. Math., 1(2), 2001.

[32] B. Schwartz J. H. Green, M. and E. Witten. Superstring Theory. Cambridge University Press,
Cambridge, 1987.

[33] M. B. Green and J. H. Schwarz. Nucl. Phys. B, 117(1985):54, 1984.

[34] R. Haag and D. Kastler. An Algebraic Approach to Quantum Field Theory. Journal of Mathe-
matical Physics, 5:, 1964.

[35] H. Haken. Information and Self-Organization. Springer Verlag, Berlin, 1988.

[36] L.P. Horwitz. Hypercomplex quantum mechanics. http://arxiv.org/abs/quant-ph/9602001,
1996.

[37] K. Huang. Quarks,Leptons & Gauge Fields. World Scientific, 1982.

[38] Y. Ito and I. Nakamura. Hilbert schemes and simple singularities. http://www.math.sci.

hokudai.ac.jp/~nakamura/ADEHilb.pdf, 1996.

[39] J. Plefka J. Drummond, J. Henn. Yangian symmetry of scattering amplitudes in N = 4 su-
per Yang-Mills theory. http://cdsweb.cern.ch/record/1162372/files/jhep052009046.pdf,
2009.

[40] N. Seiberg J. Maldacena, G. Moore. D-Brane Instantons and K-Theory Charges). http://arxiv.
org/abs/hep-th/010810, 2001.

[41] Lindström U. Rocek M. Karlhede, A. Hyper Kähler Metrics and Super Symmmetry. Comm.
Math. Phys., 108(4), 1987.

[42] A. Kitaev. Fault tolerant quantum computation by anyons. http://arxiv.org/abs/quant-ph/
9707021, 1997.

[43] A. Kitaev. Quantum computations: algorithms and error correction. Russian Math. Survey,
pages 52–61, 1997.

[44] I. R. Klebanov. TASI Lectures: Introduction to the AdS/CFT Correspondence. http://arxiv.
org/abs/hep-th/0009139, 2000.

[45] P. Ginsparg L. Dixon and J. Harvey. Beauty and the Beast; Superconformal Symmetry in a
Monster Module. http://ccdb4fs.kek.jp/cgi-bin/img_index?8806247, 1988.

[46] E. Witten L. Dolan, C. R. Nappi. Yangian Symmetry in D = 4 superconformal Yang-Mills
theory. http://arxiv.org/abs/hep-th/0401243, 2004.

http://arxiv.org/abs/hep-th/9810026
http://arxiv.org/find/hep-th/1/au:+Bourjaily_J/0/1/0/all/0/1
http://arxiv.org/abs/hep-th/0004044v2
http://arxiv.org/abs/math/0306310
http://arxiv.org/abs/math/0306310
http://arxiv.org/abs/hep-th/0610328
http://arxiv.org/abs/hep-th/0403047
http://arxiv.org/abs/quant-ph/9602001
http://www.math.sci.hokudai.ac.jp/~nakamura/ADEHilb.pdf
http://www.math.sci.hokudai.ac.jp/~nakamura/ADEHilb.pdf
http://cdsweb.cern.ch/record/1162372/files/jhep052009046.pdf
http://arxiv.org/abs/hep-th/010810
http://arxiv.org/abs/hep-th/010810
http://arxiv.org/abs/quant-ph/9707021
http://arxiv.org/abs/quant-ph/9707021
http://arxiv.org/abs/hep-th/0009139
http://arxiv.org/abs/hep-th/0009139
http://ccdb4fs.kek.jp/cgi-bin/img_index?8806247
http://arxiv.org/abs/hep-th/0401243


THEORETICAL PHYSICS 1157

[47] A. Lakthakia. Beltrami Fields in Chiral Media, volume 2. World Scientific, Singapore, 1994.

[48] G. Lechner. Towards the construction of quantum field theories from a factorizing S-matrix.
http://arxiv.org/abs/hep-th/0502184, 2005.

[49] J. H. Schartz M. B. Green and E. Witten. Cambridge University Press, Cambridge, 1987.

[50] H. Larsen M. Freedman and Z. Wang. A modular functor which is universal for quantum com-
putation. Comm. Math. Phys., 1(2):605–622, 2002.

[51] H. Larsen M. Freedman and Z. Wang. A modular functor which is universal for quantum com-
putation. Comm. Math. Phys., 1(2):605–622, 2002.

[52] M. Larson Z. Wang M. Freedman, A. Kitaev. http://www.arxiv.org/quant-ph/0101025, 2001.

[53] R. Minasian M. J. Duff, J. T. Liu. Eleven-Dimensional Origin of String/String Duality: A
One-Loop Test. Nucl. Phys. B, 452:261, 1995.

[54] J. M. Maldacena. The Large N Limit of Superconformal Field Theories and Supergravity. http:
//arxiv.org/abs/hep-th/9711200, 1997.

[55] G. E. Marsh. Helicity and Electromagnetic Field Topology. World Scientific, 1995.

[56] L. Mason and D. Skinner. Dual Superconformal Invariance, Momentum Twistors and Grassman-
nians. http://arxiv.org/pdf/0909.0250v2.

[57] C. Montonen and D. Olive. Phys. Lett. B, 117, 1977.

[58] L. Motl. Monstrous symmetry of black holes. http://motls.blogspot.com/2007/05/

monstrous-symmetry-of-black-holes.html, 2007.

[59] C. Cheung J. Kaplan N. Arkani-Hamed, F. Cachazo. A duality for the S-matrix. http://arxiv.
org/abs/0907.5418, 2009.

[60] X. Wang X. Zhang N. Li, Yi-Fu Cai. CPT Violating Electrodynamics and Chern-Simons Modified
Gravity. http://arxiv.org/abs/0907.5159, 2009.

[61] N. Ohta. Introduction to branes and M-theory for relativists and cosmologists. http://arxiv.

org/abs/gr-qc/0205036, 2002.

[62] B. R. Greene P. S. Aspinwall and D. R. Morrison. Calabi-Yau Moduli Space, Mirror Manifolds,
and Space-time Topology Change in String Theory. http://arxiv.org/abs/hep-th/9309097,
1993.

[63] G. Parisi. Field Theory, Disorder and Simulations. World Scientific, 1992.

[64] S. Parke and T. Taylor. An Amplitude for N gluon Scattering. Phys. Rev., 56, 1986.

[65] R. Penrose. The Central Programme of Twistor Theory. Chaos, Solitons and Fractals, 10, 1999.

[66] R. Penrose. Fantasy, Fashion, and Faith in Theoretical Physics. http://www.princeton.edu/

WebMedia/lectures/, 2004.

[67] R. Penrose. Strings with a twist. New Scientist, 183(2458), 2004.

[68] J. Polchinski. Dirichlet-Branes and Ramond-Ramond Charges. http://arxiv.org/abs/hep-th/
9510017, 1995.

[69] B. Feng R. Britto, F. Cachazo and E. Witten. Direct Proof of Tree-level Recursion Relation in
Yang-Mills Theory. http://arxiv.org/PS_cache/hep-th/pdf/0501/0501052v2.pdf, 2005.

[70] P. Ramond. Nucl. Phys. B, 3(1971):31, 1971.

[71] J. Scherk and J. H. Schwarz. Nucl. Phys. B, 81, 1974.

http://arxiv.org/abs/hep-th/0502184
http://www.arxiv.org/quant-ph/0101025
http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/pdf/0909.0250v2
http://motls.blogspot.com/2007/05/monstrous-symmetry-of-black-holes.html
http://motls.blogspot.com/2007/05/monstrous-symmetry-of-black-holes.html
http://arxiv.org/abs/0907.5418
http://arxiv.org/abs/0907.5418
http://arxiv.org/abs/0907.5159
http://arxiv.org/abs/gr-qc/0205036
http://arxiv.org/abs/gr-qc/0205036
http://arxiv.org/abs/hep-th/9309097
http://www.princeton.edu/WebMedia/lectures/
http://www.princeton.edu/WebMedia/lectures/
http://arxiv.org/abs/hep-th/9510017
http://arxiv.org/abs/hep-th/9510017
http://arxiv.org/PS_cache/hep-th/pdf/0501/0501052v2.pdf


1158 THEORETICAL PHYSICS

[72] B. Schroer. Lectures on Algebraic Quantum Field Theory and Operator Algebras. http://

arxiv.org/abs/math-ph/0102018, 2001.

[73] J. H. Schwartz. Super strings. The first 15 years of Superstring Theory. World Scientific, 1985.

[74] A. Sen. Tachyon Condensation on the Brane Antibrane system). http://arxiv.org/abs/

hep-th/9805170, 1998.

[75] L. Smolin. Scientific alternatives to the anthropic principle. http://arxiv.org/abs/hep-th/

0407213, 2004.

[76] A. Strominger and C. Vafa. Nucl. Phys. B, 99, 1996.

[77] L. Susskind. The Anthropic Landscape of String Theory. http://arxiv.org/abs/hep-th/

0302219, 2003.

[78] S. H. Shenker L. Susskind T. Banks, F. Fischler. M-Theory as a Matrix Model: A Conjecture.
Phys. Rev. D, 55:5112–5128, 1997.

[79] P. Townsend. p-Brane democracy). http://xxx.lanl.gov/abs/hep-th/9507048, 1995.

[80] E. Verlinde. Global Aspects of Electric-Magnetic Duality). http://arxiv.org/abs/hep-th/

9506011v3, 1995.

[81] E. Witten. Coadjoint orbits of the Virasoro Group. PUPT-1061 preprint, 1987.

[82] E. Witten. Perturbative Gauge Theory As a String Theory In Twistor Space. http://arxiv.

org/abs/hep-th/0312171, 2003.

[83] P. Woit. String Theory: Evaluation. http://arxiv.org/abs/hep-th/0102051, 2001.

[84] A. Zee. The Unity of Forces in the Universe. World Science Press, Singapore, 1982.

http://arxiv.org/abs/math-ph/0102018
http://arxiv.org/abs/math-ph/0102018
http://arxiv.org/abs/hep-th/9805170
http://arxiv.org/abs/hep-th/9805170
http://arxiv.org/abs/hep-th/0407213
http://arxiv.org/abs/hep-th/0407213
http://arxiv.org/abs/hep-th/0302219
http://arxiv.org/abs/hep-th/0302219
http://xxx.lanl.gov/abs/hep-th/9507048
http://arxiv.org/abs/hep-th/9506011v3
http://arxiv.org/abs/hep-th/9506011v3
http://arxiv.org/abs/hep-th/0312171
http://arxiv.org/abs/hep-th/0312171
http://arxiv.org/abs/hep-th/0102051


Particle and Nuclear Physics

[1] Are Centauros Exotic Signals of Quark-Gluon Plasma. http://www1.jinr.ru/Archive/Pepan/
v-34-3/v-34-3-3.pdf.

[2] CMS observes a potentially new and interesting effect. http://user.web.cern.ch/user/news/
2010/100921.html.

[3] Invariant Mass Distribution of Jet Pairs Produced in Association with a W boson in ppbar
Collisions at

√
s = 1.96 TeV. http://arxiv.org/abs/1104.0699.

[4] Lamb shift. http://en.wikipedia.org/wiki/Lamb_shift.

[5] Minos for Scientists. http://www-numi.fnal.gov/PublicInfo/forscientists.html.

[6] Neutrino oscillation, howpublished=http://en.wikipedia.org/wiki/neutrino_oscillation.

[7] Quark. http://en.wikipedia.org/wiki/Current_quark_mass.

[8] D0: 2.5-sigma evidence for a 325 GeV top prime quark. http://motls.blogspot.com/2011/

04/d0-3-sigma-evidence-for-325-gev-top.html, 2011.

[9] If That Were A Higgs At 200 GeV... http://www.science20.com/quantum_diaries_survivor/
if_were_higgs_200_gev, 2011.

[10] A. S. Antognini. The Lamb shift Experiment in Muonic Hydrogen. http://edoc.ub.

uni-muenchen.de/5044/1/Antognini_Aldo.pdf, 2005.

[11] S. Barshay. Mod. Phys. Lett. A, 7(20):1843, 1992.

[12] J. D. Bjorken. Acta Phys. Polonica B, 28:2773, 1997.

[13] J. M. Bonnet-Bidaud and G. Chardin. Cygnus X-3. a critical review. Phys. Rep., (6), 1988.

[14] R. S. Gidley R. S Conti C. I. Westbrook, D. W Kidley and A. Rich. Phys. Rev., 58:1328, 1987.

[15] M. Chown. Quantum Rebel. New Scientist, 2004.

[16] Alice Collaboration. Charged-particle multiplicity density at mid-rapidity in central Pb-Pb col-
lisions at

√
sNN= 2.76 TeV. http://arxiv.org/abs/1011.3916, 2010.

[17] CDF Collaboration. Study of multi-muon events produced in p-pbar collisions at sqrt(s)=1.96
TeV. http://arxiv.org/PS_cache/arxiv/pdf/0810/0810.0714v1.pdf, 2008.

[18] CDF collaboration. Evidence for a Mass Dependent Forward-Backward Asymmetry in Top Quark
Pair Production. http://arxiv.org/abs/1101.0034, 2011.

[19] CMS Collaboration. Observation of Long-Range, Near-Side Angular Correlations in Proton-
Proton Collisions at the LHC. http://cms.web.cern.ch/cms/News/2010/QCD-10-002/

QCD-10-002.pdf, 2010.

[20] D0 collaboration. Observation of the doubly strange b baryon Ω−b . http://arxiv.org/abs/

0808.4142, 2008.

1159

http://www1.jinr.ru/Archive/Pepan/v-34-3/v-34-3-3.pdf
http://www1.jinr.ru/Archive/Pepan/v-34-3/v-34-3-3.pdf
http://user.web.cern.ch/user/news/2010/100921.html
http://user.web.cern.ch/user/news/2010/100921.html
http://arxiv.org/abs/1104.0699
http://en.wikipedia.org/wiki/Lamb_shift
http://www-numi.fnal.gov/PublicInfo/forscientists.html
http://en.wikipedia.org/wiki/neutrino_oscillation
http://en.wikipedia.org/wiki/Current_quark_mass
http://motls.blogspot.com/2011/04/d0-3-sigma-evidence-for-325-gev-top.html
http://motls.blogspot.com/2011/04/d0-3-sigma-evidence-for-325-gev-top.html
http://www.science20.com/quantum_diaries_survivor/if_were_higgs_200_gev
http://www.science20.com/quantum_diaries_survivor/if_were_higgs_200_gev
http://edoc.ub.uni-muenchen.de/5044/1/Antognini_Aldo.pdf
http://edoc.ub.uni-muenchen.de/5044/1/Antognini_Aldo.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0810/0810.0714v1.pdf
http://arxiv.org/abs/1101.0034
http://cms.web.cern.ch/cms/News/2010/QCD-10-002/QCD-10-002.pdf
http://cms.web.cern.ch/cms/News/2010/QCD-10-002/QCD-10-002.pdf
http://arxiv.org/abs/0808.4142
http://arxiv.org/abs/0808.4142


1160 PARTICLE AND NUCLEAR PHYSICS

[21] D0 collaboration. Study of the dijet invariant mass distribution in pp→W (→ lν)+jj final states
at
√
s = 1.96 TeV. http://www-d0.fnal.gov/Run2Physics/WWW/results/final/HIGGS/H11B,

2011.

[22] LSND Collaboration. Evidence for νµ − νe oscillations from LSND. http://arxiv.org/

absnucl-ex/9709006, 1997.

[23] Pamir Collaboration. In Proc. 16:th Intern. Cosmic Ray Conf., volume 7, page 279, 1979.

[24] A. E. Nelson D. B. Kaplan and N. Weiner. Neutrino Oscillations as a Probe of Dark Energy.
http://arxiv.org/abs/hep-ph/0401099, 2004.

[25] R. Van de Water. Updated Anti-neutrino Oscillation Results from MiniBooNE.
http://indico.cern.ch/getFile.py/access?contribId=208&sessionId=3&resId=

0&materialId=slides&confId=73981, 2010.

[26] A. D. Dolgov and I. Z. Rothstein. Phys. Rev. Lett., 71(4), 1993.

[27] T. Dorigo. Rumsfeld hadrons. http://dorigo.wordpress.com/2007/06/20/

rumsfeld-hadrons/, 2007.

[28] T. Dorigo. The top quark mass measured from its production rate. http://dorigo.wordpress.
com/2007/06/26/a-particle-mass-from-its-production-rate/#more-910, 2007.

[29] T. Dorigo. Top quark mass measured with neutrino phi weighting. http://dorigo.wordpress.
com/2008/12/08/top-quark-mass-measured-with-neutrino-phi-weighting/, 2008.

[30] T. Dorigo. Nitpicking Ωb discovery:part I. http://www.scientificblogging.com/quantum_

diaries_survivor/nitpicking_omega_b_discovery, 2009.

[31] U. Egede. A theoretical limit on Higgs mass. http://www.hep.lu.se/atlas//thesis/egede/

thesis-node20.html, 1998.

[32] A.T. Goshaw et al. Phys. Rev., 43, 1979.

[33] B. B. Back et al. Phys. Rev. Lett., 89(22), November 2002.

[34] B. R. Barber et al. Phys. Rev., 72(9):1380, 1994.

[35] C. Athanassopoulos et al. Evidence for Neutrino Oscillations from Muon Decay at Rest. http:

//arxiv.org/abs/nucl-ex/9605001, 1996.

[36] D. T. H. Davies et al. Precise Charm to Strange Mass Ratio and Light Quark Masses from Full
Lattice QCD. Phys. Rev., 104, 2010.

[37] Decamp et al. The number of neutrino species. Aleph Collaboration,CERN-EP/89-141, 1989.

[38] J. A. Chinellato et al. In Proton-Antiproton Collider Physics, 1981, New York, 1981. Madison,
Wis.

[39] L. Borodovsky et al. Phys. Rev. Lett., 68:274, 1992.

[40] M. Derrick et al. Phys. Lett B, 315:481, 1993.

[41] P.V. Chliapnikov et al. Phys. Lett. B, 141, 1984.

[42] R. Pohl et al. The size of proton. Nature, 466, 2010.

[43] S. Ambrosanio et al. Supersymmetric analysis and predictions based on the CDF eeγγ + /ET
event. http://arxiv.org/abs/hep-ph/9602239, 1996.

[44] SNO: Q. R Ahmad et al. Phys. Rev. Lett., 89:11301, 2002.

[45] T. Akesson et al. Phys. Lett. B, 463:36, 1987.

[46] T. K. Gaiser et al. Cosmic ray composition around 1018 eV . Phys. Rev. D, (5), 1993.

http://www-d0.fnal.gov/Run2Physics/WWW/results/final/HIGGS/H11B
http://arxiv.org/absnucl-ex/9709006
http://arxiv.org/absnucl-ex/9709006
http://arxiv.org/abs/hep-ph/0401099
http://indico.cern.ch/getFile.py/access?contribId=208&sessionId=3&resId=0&materialId=slides&confId=73981
http://indico.cern.ch/getFile.py/access?contribId=208&sessionId=3&resId=0&materialId=slides&confId=73981
http://dorigo.wordpress.com/2007/06/20/rumsfeld-hadrons/
http://dorigo.wordpress.com/2007/06/20/rumsfeld-hadrons/
http://dorigo.wordpress.com/2007/06/26/a-particle-mass-from-its-production-rate/#more-910
http://dorigo.wordpress.com/2007/06/26/a-particle-mass-from-its-production-rate/#more-910
http://dorigo.wordpress.com/2008/12/08/top-quark-mass-measured-with-neutrino-phi-weighting/
http://dorigo.wordpress.com/2008/12/08/top-quark-mass-measured-with-neutrino-phi-weighting/
http://www.scientificblogging.com/quantum_diaries_survivor/nitpicking_omega_b_discovery
http://www.scientificblogging.com/quantum_diaries_survivor/nitpicking_omega_b_discovery
http://www.hep.lu.se/atlas//thesis/egede/thesis-node20.html
http://www.hep.lu.se/atlas//thesis/egede/thesis-node20.html
http://arxiv.org/abs/nucl-ex/9605001
http://arxiv.org/abs/nucl-ex/9605001
http://arxiv.org/abs/hep-ph/9602239


PARTICLE AND NUCLEAR PHYSICS 1161

[47] Y. Fukuda et al. Phys. Lett. B, 335:237, 1994.

[48] Y.Takeuchi et al. Measurement of the Forward Backward Asymmetry in Top Pair Production
in the Dilepton Decay Channel using 5.1 fb−1. http://www-cdf.fnal.gov/physics/new/top/

2011/DilAfb/, 2011.

[49] K. Eguchi et al (KamLAND). Phys. Rev. Lett., 90:21802, 2003.

[50] J. Flowers. Quantum electrodynamics: A chink in the armour? Nature, 466, 2010.

[51] C. M. G. Lattes. Y. Fujimoto and S. Hasegava. Phys. Rep., 65(3), 1980.

[52] K. Greisen. Phys. Rev., 16, 1966.

[53] R. J. Wilkes (K2K). http://arxiv.org/abs/hep-ex/0212035, 2002.

[54] G. Karagiorgi. Towards Solution of MiniBoone-LSND anomalies. http://indico.cern.ch/

contributionDisplay.py?contribId=209&sessionId=3&confId=73981, 2010.

[55] B. Armbruster et al KARMEN Collaboration. Phys. Lett. B, 348, 1995.

[56] C. L. Kervran. Biological transmutations, and their applications in chemistry, physics, biology,
ecology, medicine, nutrition, agriculture, geology. Swan House Publishing Co., 1972.

[57] J. Linsley and A. A. Watson. Phys. Rev., 436, 1981.

[58] W. C. Louis. In Proceedings of the XVI Conference on Neutrino Physics and Astrophysics. Eilat,
Israel, 1994.

[59] T. Ludham and L. McLerran. What Have We Learned From the Relativistic Heavy Ion Collider?
Physics Today, October 2003.

[60] J. H. MacGibbon and R. H. Brandenberger. Gamma-ray signatures for ordinary cosmic strings.
Phys. Rev. D, (6):2883, 1993.

[61] K. McAlpine. Incredible shrinking proton raises eyebrows. http://www.newscientist.com/

article/dn19141-incredible-shrinking-proton-raises-eyebrows.html, 2010.

[62] L. Motl. CMS SUSY group working hard. http://motls.blogspot.com/2010/10/

cms-susy-group-working-hard.html, 2010.

[63] L. Motl. LHC probably sees new shocking physics. http://motls.blogspot.com/2010/09/

lhc-probably-sees-new-shocking-physics.html, 2010.

[64] W. A. Rodriguez Jr. P. Ammiraju, E. Recami. Chirons, Geminions, Centauros, Decays into
Pions:a Phenomenological and Theoretical Analysis. Il Nuovo Cimento, 78(2):173, 1983.

[65] P. Sommers P. Sokolsky and B. R. Dawson. Extremely High Energy Cosmic Rays. Phys. Rep.,
217(5), 1992.

[66] Seongwan Park. Search for New Phenomena in CDF-I: Z, W, and leptoquarks. http://lss.

fnal.gov/archive/1995/conf/Conf-95-155-E.pdf, 1995.

[67] Q. Z. Qian and G. M. Fuller. Phys. Rev. D, 51:1479, 1995.

[68] E. S. Reich. Black hole like phenomenon created by collider. New Scientist, 19(2491), 2005.

[69] E. Samuel. Ghost in the Atom. New Scientist, (2366):30, October 2002.

[70] T. Smith. Truth Quark, Higgs, and Vacua. http://www.innerx.net/personal/tsmith/

TQvacua.html, 2003.

[71] M. B. Smy (Super-Kamiokande). Nucl. Phys. Proc. Suppl., 118:25, 2003.

[72] P. Tompkins and C. Bird. The secret life of plants. Harper & Row, New York, 1973.

http://www-cdf.fnal.gov/physics/new/top/2011/DilAfb/
http://www-cdf.fnal.gov/physics/new/top/2011/DilAfb/
http://arxiv.org/abs/hep-ex/0212035
http://indico.cern.ch/contributionDisplay.py?contribId=209&sessionId=3&confId=73981
http://indico.cern.ch/contributionDisplay.py?contribId=209&sessionId=3&confId=73981
http://www.newscientist.com/article/dn19141-incredible-shrinking-proton-raises-eyebrows.html
http://www.newscientist.com/article/dn19141-incredible-shrinking-proton-raises-eyebrows.html
http://motls.blogspot.com/2010/10/cms-susy-group-working-hard.html
http://motls.blogspot.com/2010/10/cms-susy-group-working-hard.html
http://motls.blogspot.com/2010/09/lhc-probably-sees-new-shocking-physics.html
http://motls.blogspot.com/2010/09/lhc-probably-sees-new-shocking-physics.html
http://lss.fnal.gov/archive/1995/conf/Conf-95-155-E.pdf
http://lss.fnal.gov/archive/1995/conf/Conf-95-155-E.pdf
http://www.innerx.net/personal/tsmith/TQvacua.html
http://www.innerx.net/personal/tsmith/TQvacua.html


1162 PARTICLE AND NUCLEAR PHYSICS

[73] S. Sarkar V. Barger, R. J. N. Phillips. Phys. Lett. B, 352:365–371, 1995.

[74] H. Waschmuth. Results from e+e− collisions at 130, 136 and 140 GeV center of mass energies in
the ALEPH Experiment. http://alephwww.cern.ch/ALPUB/pub/pub_96.html, 1996.

[75] J. Wdowczyk. In Proc. 9th Int. Conf. Cosmic Rays, volume 2, page 691, 1965.

[76] Peter Woit. A new long-lived particle by CDF experiment. http://www.math.columbia.edu/

~woit/wordpress/?p=1045, 2008.

[77] J. Wdowczyk A. W. Wolfendale X. Chi, C. Dahanayake. Cosmic rays and cosmic strings. Gamma,
1:129–131, 1993.

[78] G. Valencia X.-G. He, J. Tandean. Has HyperCP Observed a Light Higgs Boson? Phys. Rev. D,
74, 2007.

http://alephwww.cern.ch/ALPUB/pub/pub_96.html
http://www.math.columbia.edu/~woit/wordpress/?p=1045
http://www.math.columbia.edu/~woit/wordpress/?p=1045


Condensed Matter Physics

[1] Burning salt water. http://www.youtube.com/watch?v=aGg0ATfoBgo.

[2] Fractional quantum Hall Effect. http://en.wikipedia.org/wiki/Fractional_quantum_Hall_
effect.

[3] Phase conjugation. http://www.usc.edu/dept/ee/People/Faculty/feinberg.html.

[4] Viscosity. http://en.wikipedia.org/wiki/Viscosity.

[5] J. K. Borchardt. The chemical formula H2O - a misnomer. The Alchemist, August 2003.

[6] M. Chaplin. Water Structure and Behavior. http://www.lsbu.ac.uk/water/index.html, 2005.

[7] M. Chaplin. Water as a Network of Icosahedral Water Clusters. http://www.lsbu.ac.uk/

water/clusters.html, 2006.

[8] M. Chown. Quantum Rebel. New Scientist, (2457), 2004.

[9] R. A. Cowley. Neutron-scattering experiments and quantum entanglement. Physica B, 350:243–
245, 2004.

[10] B. R. Barber et al. Phys. Rev., 72(9):1380, 1994.

[11] C. Cao et al. Universal Quantum Viscosity in a Unitary Fermi Gas. http://www.sciencemag.

org/content/early/2010/12/08/science.1195219, 2010.

[12] D. J. P. Morris et al. Dirac Strings and Magnetic Monopoles in Spin Ice Dy2Ti2O7. Physics
World, 326(5951):411–414, 2009.

[13] J. B. Miller et al. Fractional Quantum Hall effect in a quantum point contact at filling fraction
5/2. http://arxiv.org/abs/cond-mat/0703161v2, 2007.

[14] P. K. Kotvun et al. Viscosity in Strongly Interacting Quantum Field Theories from Black Hole
Physics. http://arxiv.org/abs/hep-th/0405231, 2010.

[15] R. Mills et al. Spectroscopic and NMR identification of novel hybrid ions in fractional quantum
energy states formed by an exothermic reaction of atomic hydrogen with certain catalysts. http:
//www.blacklightpower.com/techpapers.html, 2003.

[16] S. M. Girvin. Quantum Hall Effect, Novel Excitations and Broken Symmetries. http://arxiv.
org/abs/cond-mat/9907002, 1999.

[17] S. L. Glashow. Can Science Save the World? http://www.hypothesis.it/nobel/nobel99/

eng/pro/pro_2.htm, 1999.

[18] J.K. Jain. Phys. Rev., 63, 1989.

[19] Novoselov et al K. S. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438,
November 2005.

[20] P. Kanarev and T. Mizuno. Cold fusion by plasma electrolysis of water. http://www.guns.

connect.fi/innoplaza/energy/story/Kanarev/codlfusion/, 2002.

1163

http://www.youtube.com/watch?v=aGg0ATfoBgo
http://en.wikipedia.org/wiki/Fractional_quantum_Hall_effect
http://en.wikipedia.org/wiki/Fractional_quantum_Hall_effect
http://www.usc.edu/dept/ee/People/Faculty/feinberg.html
http://en.wikipedia.org/wiki/Viscosity
http://www.lsbu.ac.uk/water/index.html
http://www.lsbu.ac.uk/water/clusters.html
http://www.lsbu.ac.uk/water/clusters.html
http://www.sciencemag.org/content/early/2010/12/08/science.1195219
http://www.sciencemag.org/content/early/2010/12/08/science.1195219
http://arxiv.org/abs/cond-mat/0703161v2
http://arxiv.org/abs/hep-th/0405231
http://www.blacklightpower.com/techpapers.html
http://www.blacklightpower.com/techpapers.html
http://arxiv.org/abs/cond-mat/9907002
http://arxiv.org/abs/cond-mat/9907002
http://www.hypothesis.it/nobel/nobel99/eng/pro/pro_2.htm
http://www.hypothesis.it/nobel/nobel99/eng/pro/pro_2.htm
http://www.guns.connect.fi/innoplaza/energy/story/Kanarev/codlfusion/
http://www.guns.connect.fi/innoplaza/energy/story/Kanarev/codlfusion/


1164 CONDENSED MATTER PHYSICS

[21] R. B. Laughlin. Phys. Rev., 50, 1990.

[22] V. Umansky Ady Stern M. Dolev, M. Heiblum and D. Mahalu. Observation of a quarter of an
electron charge at the = 5/2 quantum Hall state. Nature, page 829, 2008.

[23] R. Mackenzie and F. Wilczek. Rev. Mod. Phys. A, 3:2827, 1988.

[24] D. Monroe. Know Your Anyons. New Scientist, (2676), 2008.

[25] G. Moore and N. Read. Non-Abelians in the fractional quantum Hall effect. Nucl. Phys. B, pages
362–396, 1991.

[26] C. Nayak and F. Wilczek. 2n-quasihole states realize 2n−1-dimensional spinor braiding statistics
in paired quantum Hall states. Nucl. Phys. B, 479, 1996.

[27] D. M. Pepper. Nonlinear Optical Phase Conjugation. Optical Engineering, 21(2), March 1982.

[28] Y. Danon R. Moreh, R. C. Block and M. Neumann. Search for anomalous scattering of keV
neutrons from H2O-D2O mixtures. Phys. Rev., 94, 2005.

[29] S. A. Kivelson V. J. Emery and J. M. Tranquada. Stripe phases in high-temperature supercon-
ductors. Perspective, 96(16), August 1999.

[30] J. Zaanen. Superconductivity: Quantum Stripe Search. Nature, April 2006.



Cosmology and Astro-Physics

[1] Allais effect. http://en.wikipedia.org/wiki/Allais_effect.

[2] Cosmic Microwave Background. http://en.wikipedia.org/wiki/Microwave_background.

[3] Dark flow. http://en.wikipedia.org/wiki/Dark_flow.

[4] Gamma ray burst. http://en.wikipedia.org/wiki/Gamma-ray_burst.

[5] Λ-CDM model. http://en.wikipedia.org/wiki/Lambda-CDM_model.

[6] Mars. http://en.wikipedia.org/wiki/Mars.

[7] Quintessence. http://en.wikipedia.org/wiki/Quintessence.

[8] Relativistic jet. http://en.wikipedia.org/wiki/http://en.wikipedia.org/wiki/

Relativistic_jet.

[9] Solar data. http://hyperphysics.phy-astr.gsu.edu/hbase/solar/soldata2.html.

[10] Dark energy. Physics World, May 2004.

[11] M. Allais. Should the Laws of Gravitation Be Reconsidered: Part I,II,III? http://home.t01.

itscom.net/allais/blackprior/allais/lawgravit/lawgrav-one.pdf, 1959.

[12] R. Bouchet, F. and P. Bennet, D. Preprint PUPT-89-1128, 1989.

[13] C. Charbonnel and F. Primas. The lithium content of the Galactic Halo stars. http://arxiv.

org/abs/astro-ph/0505247, 2005.

[14] The Pierre Auger Collaboration. Correlation of Highest Energy Cosmic Rays with Nearby Galac-
tic Objects. Science, 9, November 2007.

[15] A. G. Riess et al. Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope:
Evidence for Past Deceleration and Constraints on Dark Energy Evolution. http://arxiv.org/
abs/astro-ph/0402512, 2004.

[16] A. G. Riess et al. Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope:
Evidence for Past Deceleration and Constraints on Dark Energy Evolution. http://arxiv.org/
abs/astro-ph/0402512, 2004.

[17] S. Perlmutter et al. Ap. J., 483, 1997.

[18] D. A. Frail. Gamma-Ray Bursts: Jets and Energetics. http://arxiv.org/abs/astro-ph/

0311301, 2003.

[19] G. I. Rusu G. T. Jeverdan and V. Antonescu. Experiments using the Foucault pendulum during
the solar eclipse of 15 February, 1961. Biblical Astronomer, 1(55), 1981.

[20] M. Grusenick. Extended Michelson-Morley interferometer experiment. http://www.youtube.

com/watch?v=7T0d7o8X2-E, 2009.

[21] M. R. S. Hawkins. On time dilation in quasar light curves. Monthly Notices of the Royal Astro-
nomical Society, 2010.

1165

http://en.wikipedia.org/wiki/Allais_effect
http://en.wikipedia.org/wiki/Microwave_background
http://en.wikipedia.org/wiki/Dark_flow
http://en.wikipedia.org/wiki/Gamma-ray_burst
http://en.wikipedia.org/wiki/Lambda-CDM_model
http://en.wikipedia.org/wiki/Mars
http://en.wikipedia.org/wiki/Quintessence
http://en.wikipedia.org/wiki/http://en.wikipedia.org/wiki/Relativistic_jet
http://en.wikipedia.org/wiki/http://en.wikipedia.org/wiki/Relativistic_jet
http://hyperphysics.phy-astr.gsu.edu/hbase/solar/soldata2.html
http://home.t01.itscom.net/allais/blackprior/allais/lawgravit/lawgrav-one.pdf
http://home.t01.itscom.net/allais/blackprior/allais/lawgravit/lawgrav-one.pdf
http://arxiv.org/abs/astro-ph/0505247
http://arxiv.org/abs/astro-ph/0505247
http://arxiv.org/abs/astro-ph/0402512
http://arxiv.org/abs/astro-ph/0402512
http://arxiv.org/abs/astro-ph/0402512
http://arxiv.org/abs/astro-ph/0402512
http://arxiv.org/abs/astro-ph/0311301
http://arxiv.org/abs/astro-ph/0311301
http://www.youtube.com/watch?v=7T0d7o8X2-E
http://www.youtube.com/watch?v=7T0d7o8X2-E


1166 COSMOLOGY AND ASTRO-PHYSICS

[22] A. Helmi. Halo streams as relicts from the formation of the Milky Way. http://arxiv.org/

abs/astro-ph/008086, 2000.

[23] T. W. B. Kibble. Cosmic strings reborn? http://arxiv.org/abs/astro-ph/0410073, 2004.

[24] W. B. Kibble, T. Nucl. Phys. B, 252, 1985.

[25] M. Milgrom. A modification of the Newtonian dynamics as a possible alternative to the hidden
mass hypothesis. http://www.astro.umd.edu/~ssm/mond/astronow.html, 1983.

[26] A. G. Riess. PASP, 112, 2000.

[27] D. Da Roacha and L. Nottale. Gravitational Structure Formation in Scale Relativity. http:

//arxiv.org/abs/astro-ph/0310036, 2003.

[28] A. Rubric and J. Rubric. The Quantization of the Solar-like Gravitational Systems. Fizika B,
7:1–13, 1998.

[29] C. Saslaw, W. Gravitational Physics of Stellar and Galactic Systems. Cambridge University
Press, Cambridge, 1985.

[30] B. Schaefer. The hubble diagram to z = 6.3 with swift gamma ray bursts. http://www.phys.

lsu.edu/GRBHD/, January 2006.

[31] William G. Tifft. Discrete States Of Redshift And Galaxy Dynamics I. Astrophysical Journal,
206:38–56, May 1976.

[32] D. Olenici V. A. Popescu. A confirmation of the Allais and Jeverdan-Rusu-Antonescu effects
during the solar eclipse from 22 September 2006, and the quantization behavior of pendulum.
http://www.hessdalen.org/sse/program/Articol.pdf, 2007.

[33] A. Vilenkin. Cosmic Strings and Domain Walls, volume 121. North-Holland, Amsterdam, 1985.

[34] Y. Wang and M. Tegmark. New Light on Dark Energy. Physics Web, 2005.

[35] S. Weinberg. Gravitation and Cosmology. Wiley, New York, 1967.

[36] C. Allen X. Hernandez, M. A. Jimenez. The Breakdown of Classical Gravity? http://arxiv.

org/abs/1105.1873, 2011.

[37] B. Einasto J. Zeldovich, Ya. and F. Shandarin, S. Giant Voids in the Universe. Nature, 300, 1982.

http://arxiv.org/abs/astro-ph/008086
http://arxiv.org/abs/astro-ph/008086
http://arxiv.org/abs/astro-ph/0410073
http://www.astro.umd.edu/~ssm/mond/astronow.html
http://arxiv.org/abs/astro-ph/0310036
http://arxiv.org/abs/astro-ph/0310036
http://www.phys.lsu.edu/GRBHD/
http://www.phys.lsu.edu/GRBHD/
http://www.hessdalen.org/sse/program/Articol.pdf
http://arxiv.org/abs/1105.1873
http://arxiv.org/abs/1105.1873


Part IV

APPLICATIONS

1167





Chapter 14

Cosmology and Astrophysics in
Many-Sheeted Space-Time

14.1 Introduction

This chapter is devoted to the applications of TGD to astrophysics and cosmology are discussed. It
must be admitted that the development of the proper interpretation of the theory has been rather
slow and involved rather weird twists motivated by conformist attitudes. Typically these attempts
have brought into theory ad hoc identifications of say gravitational four-momentum although theory
itself has from very beginning provided completely general formulas.

Perhaps the real problem has been that radically new views about ontology were necessary before
it was possible to see what had been there all the time. Zero energy ontology states that all physical
states have vanishing net quantum numbers. The hierarchy of dark matter identified as macroscopic
quantum phases labeled by arbitrarily large values of Planck constant is second aspect of the new
ontology.

14.1.1 Does Equivalence Principle hold true in TGD Universe?

The motivation for TGD as a Poincare invariant theory of gravitation was that the notion of four-
momentum is poorly defined in curved space-time since corresponding Noether currents do not exist.
There however seems to be a fundamental obstacle against the existence of a Poincare invariant theory
of gravitation related to the notions of inertial and gravitational energy.

1. The conservation laws of inertial energy and momentum assigned to the fundamental action
would be exact in this kind of a theory. Gravitational four-momentum can be assigned to
the curvature scalar as Noether currents and is thus completely well-defined unlike in GRT.
Equivalence Principle requires that inertial and gravitational four-momenta are identical. This
is satisfied if curvature scalar defines the fundamental action principle crucial for the definition
of quantum TGD. Curvature scalar as a fundamental action is however non-physical and had to
be replaced with so called Kähler action.

2. One can question Equivalence Principle because the conservation of gravitational four-momentum
seems to fail in cosmological scales.

3. For the extremals of Kähler action the Noether currents associated with curvature scalar are
well-defined but non-conserved. Also for vacuum extremals satisfying Einstein’s equations grav-
itational four-momentum fails to be conserved and non-conservation becomes large for small
values of cosmic time. This looks fine but the problem is whether the possible failure of Equiv-
alence Principle is so serious that it leads to conflict with experimental facts.

The failure of Equivalence Principle was something which I could not take seriously and I ended
up with a long series of ad hoc constructs trying to save Equivalence Principle. Eventually I decided
to take the possible failure seriously and to find out whether it has catastrophic consequences, and
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to look also for possible positive consequences by trying to relate the failure to the recent problems
of cosmology, in particular the necessity to postulate somewhat mysterious dark energy characterized
by cosmological constant.

My basic mistake looks now obvious. I tried to deduce the formulation of Equivalence Principle in
the framework provided by General Relativity framework rather than in string model context. There
were several steps in the enlightment process.

1. First came the conviction that coset representation for super-symplectic and super Kac-Moody
algebras provides extremely general formulation of Equivalence Principle in which inertial and
gravitational four-momenta are replaced with Super Virasoro generators of two algebras whose
differences annihilate physical states. This idea came for years before becoming aware of its
importance and I simply forgot it.

2. Next came the realization of the fundamental role of number theoretical compactification provid-
ing a number theoretical interpretation of M4 ×CP2 and thus also of standard model quantum
numbers. This lead to the identification of the preferred extremals of Kähler action and to
the formulation of quantum TGD in terms of second quantized induced spinors fields. One of
conclusion was that dimensional reduction for preferred extremals of Kähler action- if they have
the properties required by theoretic compactification- leads to string model with string tension
which is however not proportional to the inverse of Newton’s constant but to L2

p, p-adic length
scale squared and thus gigantic. The connection between gravitational constant and L2

p comes
from an old argument that I discovered about two decades ago and which allowed to predict the
value of Kähler coupling strength by using as input electron mass and p-adic mass calculations.
In this framework the role of Planck length as a fundamental length scale is taken by CP2 size
so that Planck length scale loses its magic role as a length scale in which usual views about
space-time geometry cease to hold true.

3. The next step was the realization that zero energy ontology allows to avoid the paradox implied
in positive energy ontology by the fact that gravitational energy is not conserved but inertial
energy identified as Noether charge is. Energy conservation is always in some length scale in
zero energy ontology.

4. As a matter fact, there was still one step. I had to become fully aware that the identification of
gravitational four-momentum in terms of Einstein tensor makes sense only in long length scales.
This is of course trivial but for some reason I did not realize that this fact resolves the paradoxes
associated with objects like cosmic strings.

To sum up, the understanding of Equivalence Principle in TGD context required quite many
discoveries of mostly mathematical character: the understanding of the super-conformal symmetries
of quantum TGD, the discovery of zero energy ontology, the identification of preferred extremals of
Kähler action by requiring number theoretical compactification, and the discovery that dimensional
reduction allows to formulate quantum in terms of slicing of space-time surface by stringy word sheets.

14.1.2 Zero energy ontology

In zero energy ontology one replaces positive energy states with zero energy states with positive and
negative energy parts of the state at the boundaries of future and past direct light-cones forming a
causal diamond. All conserved quantum numbers of the positive and negative energy states are of
opposite sign so that these states can be created from vacuum. ”Any physical state is creatable from
vacuum” becomes thus a basic principle of quantum TGD and together with the notion of quantum
jump resolves several philosophical problems (What was the initial state of universe?, What are the
values of conserved quantities for Universe, Is theory building completely useless if only single solution
of field equations is realized?).

At the level of elementary particle physics positive and negative energy parts of zero energy state
are interpreted as initial and final states of a particle reaction so that quantum states become physical
events. Equivalence Principle would hold true in the sense that the classical gravitational four-
momentum of the vacuum extremal whose small deformations appear as the argument of configuration
space spinor field is equal to the positive energy of the positive energy part of the zero energy quantum
state.
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Robertson-Walker cosmologies correspond to vacua with respect to inertial energy and in fact with
respect to all quantum numbers. They are not vacua with respect to gravitational charges defined
as Noether charges associated with the curvature scalar. Also more general imbeddings of Einstein’s
equations are typically vacuum extremals with respect to Noether charges assignable to Kähler action
since otherwise one ends up with conflict between imbeddability and dynamics. This suggests that
physical states have vanishing net quantum numbers quite generally. The construction of quantum
theory [36, 24] indeed leads naturally to zero energy ontology stating that everything is creatable from
vacuum.

Zero energy states decompose into positive and negative energy parts having identification as initial
and final states of particle reaction in time scales of perception longer than the geometro-temporal
separation T of positive and negative energy parts of the state. If the time scale of perception is
smaller than T , the usual positive energy ontology applies.

In zero energy ontology inertial four-momentum is a quantity depending on the temporal time
scale T used and in time scales longer than T the contribution of zero energy states with parameter
T1 < T to four-momentum vanishes. This scale dependence alone implies that it does not make sense
to speak about conservation of inertial four-momentum in cosmological scales. Hence it would be
in principle possible to identify inertial and gravitational four-momenta and achieve strong form of
Equivalence Principle. It however seems that this is not the correct approach to follow.

The concept of negative potential energy is completely standard notion in physics. Perhaps so
standard that physicists have begun to regard it as understood. The precise physical origin of the
negative potential energy is however complete mystery, and one is forced to take the potential energy
as a purely phenomenological concept deriving from quantum theory as an effective description.

In TGD framework topological field quantization leads to the hypothesis that quantum concepts
should have geometric counterparts and also potential energy should have precise correlate at the
level of description based on topological field quanta. This indeed seems to be the case. As already
explained, TGD allows space-time sheets to have both positive and negative time orientations. This
in turn implies that also the sign of energy can be also negative. This suggests that the generation
of negative energy space-time sheets representing virtual gravitons together with energy conservation
makes possible the generation of huge gravitationally induced kinetic energies and gravitational col-
lapse. In this process inertial energy would be conserved since instead, of positive energy gravitons,
the inertial energy would go to the energy of matter.

This picture has a direct correlate in quantum field theory where the exchange negative energy
virtual bosons gives rise to the interaction potential. The gravitational red-shift of microwave back-
ground photons is the strongest support for the non-conservation of energy in General Relativity. In
TGD it could have concrete explanation in terms of absorption of negative energy virtual gravitons
by photons leading to gradual reduction of their energies. This explanation is consistent with the
classical geometry based explanation of the red-shift based on the stretching of electromagnetic wave
lengths. This explanation is also consistent with the intuition based on Feynman diagram description
of gravitational acceleration in terms of graviton exchanges.

14.1.3 Dark matter hierarchy and hierarchy of Planck constants

The idea about hierarchy of Planck constants relying on generalization of the imbedding space was
inspired both by empirical input (Bohr quantization of planetary orbits and anomalies of biology)
and by the mathematics of hyper-finite factors of type II1 combined with the quantum classical
correspondence. Consider first the mathematical structure in question.

1. The Clifford algebra of World of Classical Worlds (WCW) creating many fermion states is a
standard example of an algebra expressible as a direct integral of copies of von Neumann algebras
known as hyper-finite factor of type II1 (HFFs). The inclusions of HFFs relate very intimately to
the notion of finite measurement resolution. There is a canonical hierarchy of Jones inclusions [5]
labeled by finite subgroups of SU(2) [97] . Quantum classical correspondence suggests that these
inclusions have space-time correlates [97, 30] and the generalization of imbedding space would
provide these correlates.

2. The space CD×CP2, where CD ⊂M4 is so called causal diamond identified as the intersection
of future and past directed light-cones defines the basic geometric structure in zero energy



1172 Chapter 14. Cosmology and Astrophysics in Many-Sheeted Space-Time

ontology. The positive (negative) energy part of the zero energy state is located to the lower
(upper) light-like boundaries of CD×CP2 and has interpretation as the initial (final) state of the
physical event in standard positive energy ontology. p-Adic length scale hypothesis follows if one
assumes that the temporal distance between the tips of CD comes as an octave of fundamental
time scale defined by the size of CP2. The ”world of classical worlds” (WCW ) is union of
sub-WCWs associated with spaces CD × CP2 with different locations in M4 × CP2.

3. One can say that causal diamond CD and the space CP2 appearing as factors in CD × CP2

forms the basic geometric structure in zero energy ontology, is replaced with a book like structure
obtained by gluing together infinite number of singular coverings and factor spaces of CD resp.
CP2 together. The copies are glued together along a common ”back” M2 ⊂M2 of the book in
the case of CD. In the case of CP2 the most general option allows two backs corresponding to

the two non-isometric geodesic spheres S2
i , i = I, II, represented as sub-manifolds ξ1 = ξ

2
and

ξ1 = ξ2 in complex coordinates transforming linearly under U(2) ⊂ SU(3). Color rotations in
CP2 produce different choices of this pair.

4. The selection of geodesic spheres S2 and M2 is an imbedding space correlate for the fixing
of quantization axes and means symmetry breaking at the level of imbedding space geometry.
WCW is union over all possible choices of CD and pairs of geodesic spheres so that at the level
no symmetry breaking takes place. The points of M2 and S2 have a physical interpretation
in terms of quantum criticality with respect to the phase transition changing Planck constant
(leakage to another page of the book through the back of the book).

5. The pages of the singular coverings are characterized by finite subgroups Ga and Gb of SU(2)
and these groups act in covering or leave the points of factor space invariant. The pages are
labeled by Planck constants ~(CD) = na~0 and ~(CP2) = nb~0, where na and nb are integers
characterizing the orders of maximal cyclic subgroups of Ga and Gb. For singular factor spaces
one has ~(CD) = ~0/na and ~(CP2) = ~0/nb. The observed Planck constant corresponds to
~ = (~(CD)/~(CP2)) × ~0. What is also important is that (~/~0)2 appears as a scaling factor
of M4 covariant metric so that Kähler action via its dependence on induced metric codes for
radiative corrections coming in powers of ordinary Planck constant: therefore quantum criticality
and vanishing of radiative corrections to functional integral over WCW does not mean vanishing
of radiative corrections.

The interpretation in terms of dark matter comes as follows.

1. Large values of ~ make possible macroscopic quantum phase since all quantum scales are scaled
upwards by ~/~0. Anyonic and charge fractionization effects allow to ”measure” ~(CD) and
~(CP2) rather than only their ratio. ~(CD) = ~(CP2) = ~0 corresponds to what might be
called standard physics without any anyonic effects and visible matter is identified as this phase.

2. Particle states belonging to different pages of the book can interact via classical fields and by
exchanging particles, such as photons, which leak between the pages of the book. This leakage
means a scaling of frequency and wavelength in such a manner that energy and momentum of
photon are conserved. Direct interactions in which particles from different pages appear in the
same vertex of generalized Feynman diagram are impossible. This seems to be enough to explain
what is known about dark matter. This picture differs in many respects from more conventional
models of dark matter making much stronger assumptions and has far reaching implications for
quantum biology, which also provides support for this view about dark matter.

This is the basic picture. One can imagine large number of speculative applications.

1. The number theoretically simple ruler-and-compass integers n having as factors only first powers
of Fermat primes and power of 2 would define a physically preferred values of na and nb and
thus a sub-hierarchy of quantum criticality for which subsequent levels would correspond to
powers of 2: a connection with p-adic length scale hypothesis suggests itself. Ruler and compass
hypothesis implies that besides p-adic length scales also their 3- and 5- multiples should be
important.
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2. Ga could correspond directly to the observed symmetries of visible matter induced by the un-
derlying dark matter if singular factor space is in question [30] . For instance, in living matter
molecules with 5- and 6-cycles could directly reflect the fact that free electron pairs associated
with these cycles correspond to na = 5 and na = 6 dark matter possibly responsible for anoma-
lous conductivity of DNA [30, 16] and recently reported strange properties of graphene [19] .
Also the tedrahedral and icosahedral symmetries of water molecule clusters could have similar
interpretation [28] , [17] .

3. A further fascinating possibility is that the evidence for Bohr orbit quantization of planetary
orbits [27] could have interpretation in terms of gigantic Planck constant for underlying dark mat-
ter [77] so that macroscopic and -temporal quantum coherence would be possible in astrophysical
length scales manifesting itself in many manners: say as preferred directions of quantization axis
(perhaps related to the CMB anomaly) or as anomalously low dissipation rates.

4. Since the gravitational Planck constant ~gr = GM1m/v0, v0 = 2−11 for the inner planets,
is proportional to the product of the gravitational masses of interacting systems, it must be
assigned to the field body of the two systems and characterizes the interaction between systems
rather than systems themselves. This observation applies quite generally and each field body of
the system (em, weak, color, gravitational) is characterized by its own Planck constant.

14.1.4 Many-sheeted cosmology

The many-sheeted space-time concept, the new view about the relationship between inertial and
gravitational four-momenta, the basic properties of the paired cosmic strings, the existence of the
limiting temperature, the assumption about the existence of the vapor phase dominated by cosmic
strings, and quantum criticality imply a rather detailed picture of the cosmic evolution, which differs
from that provided by the standard cosmology in several respects but has also strong resemblances
with inflationary scenario.

The most important differences are following.

1. Many-sheetedness implies cosmologies inside cosmologies Russian doll like structure with a spec-
trum of Hubble constants.

2. TGD cosmology is also genuinely quantal: each quantum jump in principle recreates each sub-
cosmology in 4-dimensional sense: this makes possible a genuine evolution in cosmological length
scales so that the use of anthropic principle to explain why fundamental constants are tuned for
life is not necessary.

3. The new view about energy means that inertial energy is negative for space-time sheets with
negative time orientation and that the density of inertial energy vanishes in cosmological length
scales. Therefore any cosmology is in principle creatable from vacuum and the problem of initial
values of cosmology disappears. The density of matter near the initial moment is dominated by
cosmic strings approaches to zero so that big bang is transformed to a silent whisper amplified
to a relatively big bang.

4. Dark matter hierarchy with dynamical quantized Planck constant implies the presence of dark
space-time sheets which differ from non-dark ones in that they define multiple coverings of M4.
Quantum coherence of dark matter in the length scale of space-time sheet involved implies that
even in cosmological length scales Universe is more like a living organism than a thermal soup
of particles.

5. Sub-critical and over-critical Robertson-Walker cosmologies are fixed completely from the imbed-
dability requirement apart from a single parameter characterizing the duration of the period after
which transition to sub-critical cosmology necessarily occurs. The fluctuations of the microwave
background reflect the quantum criticality of the critical period rather than amplification of
primordial fluctuations by exponential expansion. This and also the finite size of the space-time
sheets predicts deviations from the standard cosmology.
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14.1.5 Cosmic strings

Cosmic strings belong to the basic extremals of the Kähler action. The string tension of the cosmic
strings is T ' .2 × 10−6/G and slightly smaller than the string tension of the GUT strings and this
makes them very interesting cosmologically.

TGD predicts two basic types of strings.

1. The analogs of hadronic strings correspond to deformations of vacuum extremals carrying non-
vanishing induced Kähler fields. p-Adic thermodynamics for super-symplectic quanta condensed
on them with additivity of mass squared yields without further assumptions stringy mass for-
mula. These strings are associated with various fractally scaled up variants of hadron physics.

2. Cosmic strings correspond to homologically non-trivial geodesic sphere of CP2 (more generally
to complex sub-manifolds of CP2) and have a huge string tension. These strings are expected
to have deformations with smaller string tension which look like magnetic flux tubes with finite
thickness in M4 degrees of freedom. The signature of these strings would be the homological
non-triviality of the CP2 projection of the transverse section of the string.

p-Adic fractality and simple quantitative observations lead to the hypothesis that pairs of cosmic
strings are responsible for the evolution of astrophysical structures in a very wide length scale range.
Large voids with size of order 108 light years can be seen as structures containing knotted and linked
cosmic string pairs wound around the boundaries of the void. Galaxies correspond to same structure
with smaller size and linked around the supra-galactic strings. This conforms with the finding that
galaxies tend to be grouped along linear structures. Simple quantitative estimates show that even
stars and planets could be seen as structures formed around cosmic strings of appropriate size. Thus
Universe could be seen as fractal cosmic necklace consisting of cosmic strings linked like pearls around
longer cosmic strings linked like...

14.2 Basic principles of General Relativity from TGD point
of view

General Coordinate Invariance, Equivalence Principle, and Machian Principle are the basic principles
underlying General Relativity. One can say that TGD shares all of these basic principles albeit in
different form.

14.2.1 General Coordinate Invariance

General Coordinate Invariance plays in the formulation of quantum TGD even deeper role than in
that of GRT. Since the fundamental objects are 3-D surfaces, the construction of the geometry of the
configuration space of 3-surfaces (the world of classical worlds, WCW) requires that the definition of
the geometry assigns to a given 3-surface X3 a unique space-time surface X4(X3). This space-time
surface is completely analogous to Bohr orbit, which means a completely unexpected connection with
quantum theory.

General Coordinate Invariance is a gauge symmetry and requires gauge fixing. The definition
assigning X4(X3) to given X3 must be such that the outcome is same for all 4-diffeomorphs of
X3. This condition is highly non-trivial since X4(X3) = X4(Y 3) must hold true if X3 and Y 3

are 4-diffeomorphs. One manner to satisfy this condition is by assuming quantum holography and
weakened form of General Coordinate Invariance: there exists physically preferred 3-surfaces X3

defining X4(X3), and the 4-diffeomorphs Y 3 of X3 at X4(X3) provide classical holograms of X3:
X4(Y 3) = X4(X3) is trivially true. Zero energy ontology allows to realize this form of General
Coordinate Invariance.

1. In zero energy ontology configuration space decomposes into a union of sub-configuration spaces
associated with causal diamonds CD × CP2 (CD denotes the intersection of future and past
directed light-cones of M4), and the intersections of space-time surface with the light-light
boundaries of CD × CP2 are excellent candidates for preferred space-like 3-surfaces X3. The
3-surfaces at δCD × CP2 are indeed physically special since they carry the quantum numbers
of positive and negative energy parts of the zero energy state.
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2. Preferred 3-surfaces could be also identified as light-like 3-surfaces X3
l at which the Euclidian

signature of the induced space-time metric changes to Minkowskian. Also light-like boundaries
of X4 can be considered. These 3-surfaces are assumed to carry elementary particle quantum
numbers and their intersections with the space-like 3-surfaces X3 are 2-dimensional partonic sur-
faces so that effective 2-dimensionality consistent with the conformal symmetries of X3

l results
if the identifications of 3-surfaces are physically equivalent. Light-like 3-surfaces are identified
as generalized Feynman diagrams and due to the presence of 2-D partonic 2-surfaces represent-
ing vertices fail to be 3-manifolds. Generalized Feynman diagrams could be also identified as
Euclidian regions of space-time surface.

3. General Coordinate Invariance in minimal form requires that the slicing of X4(X3
l ) by light

light 3-surfaces Y 3
l ”parallel” to X3

l predicted by number theoretic compactification gives rise
to quantum holography in the sense that the data associated with any Y 3

l allows an equivalent
formulation of quantum TGD. This poses a strong condition on the spectra of the modified Dirac
operator at Y 3

l and thus to the preferred extremals of Kähler action since the configuration space
Kähler functions defined by various choices of Y 3

l can differ only by a sum of a holomorphic
function and its conjugate [20, 24] .

14.2.2 Equivalence Principle

Coset construction for super-symplectic and super Kac-Moody algebras discussed in [20, 24, 49] allows
to generalize Equivalence Principle and understand it at quantum level. This is however not quite
enough: a precise understanding of Equivalence Principle is required also at the classical level. In the
following the notion of gravitational mass and its equivalence with inertial mass is discussed first. The
strategy is to deduce connection with string model type description rather than trying to show that
General Relativity emerges from TGD. This connection emerges trough dimensional reduction of the
dynamics defined by Kähler action to stringy dynamics. If one believes that string model description
implies General Relativity in long scales, the situation is settled. The determination of gravitational
mass as flux does not apply generally so that one cannot identify GM as a gravitational flux assignable
to a wormhole throat. Hence one cannot formulate the evolution of G at space-time level as evolution
of gravitational fluxes and it seems that only p-adic coupling constant evolution makes sense for G.

Is stringy action principle coded by the geometry of preferred extremals?

It seems very difficult to deduce Equivalence Principle as an identity of gravitational and inertial
masses identified as Noether charges associated with corresponding action principles. Since string
model is an excellent theory of quantum gravitation, one can consider a less direct approach in which
one tries to deduce a connection between classical TGD and string model and hope that the bridge
from string model to General Relativity is easier to build. Number theoretical compactification gives
good hopes that this kind of connection exists.

1. Number theoretic compactification implies that the preferred extremals of Kähler action have
the property that one can assign to each point of M4 projection PM4(X4(X3

l )) of the preferred
extremal M2(x) identified as the plane of non-physical polarizations and also as the plane in
which local massless four-momentum lies.

2. If the distribution of the planes M2(x) is integrable, one can slice PM4(X4(X3
l )) to string world-

sheets. The intersection of string world sheets with X3 ⊂ δM4
±×CP2 corresponds to a light-like

curve having tangent in local tangent space M2(x) at light-cone boundary. This is the first
candidate for the definition of number theoretic braid. Second definition assumes M2 to be
fixed at δCD: in this case the slicing is parameterized by the sphere S2 defined by the light rays
of δM4

±.

3. One can assign to the string world sheet -call it Y 2 - the standard area action

SG(Y 2) =

∫
Y 2

T
√
g2d

2y , (14.2.1)
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where g2 is either the induced metric or only its M4 part. The latter option looks more natural
since M4 projection is considered. T is string tension.

4. The naivest guess would be T = 1/~G apart from some numerical constant but one must be
very cautious here since T = 1/L2

p apart from a numerical constant is also a good candidate if
one accepts the basic argument identifying G in terms of p-adic length Lp and Kähler action
for two pieces of CP2 type vacuum extremals representing propagating graviton. The formula
reads G = L2

pexp(−2aSK(CP2)), a ≤ 1. The interaction strength which would be L2
p without

the presence of CP2 type vacuum extremals is reduced by the exponential factor coming from
the exponent of Kähler function of configuration space.

5. One would have string model in either CD×CP2 or CD ⊂M4 with the constraint that stringy
world sheet belongs to X4(X3

l ). For the extremals of SG(Y 2) gravitational four-momentum
defined as Noether charge is conserved. The extremal property of string world sheet need
not however be consistent with the preferred extremal property. This constraint might bring
in coupling of gravitons to matter. The natural guess is that graviton corresponds to a string
connecting wormhole contacts. The strings could also represent formation of gravitational bound
states when they connect wormhole contacts separated by a large distance. The energy of the
string is roughly E ∼ ~TL and for T = 1/~G gives E ∼ L/G. Macroscopic strings are not
allowed except as models of black holes. The identification T ∼ 1/L2

p gives E ∼ ~L/L2
p, which

does not favor long strings for large values of ~. The identification Gp = L2
p/~0 gives T = 1/~Gp

and E ∼ ~0L/L
2
p, which makes sense and allows strings with length not much longer than p-

adic length scale. Quantization - that is the presence of configuration space degrees of freedom-
would bring in massless gravitons as deformations of string whereas strings would carry the
gravitational mass.

6. The exponent exp(iSG) can appear as a phase factor in the definition of quantum states for
preferred extremals. SG is not however enough. One can assign also to the points of number
theoretic braid action describing the interaction of a point like current Qdxµ/ds with induced
gauge potentials Aµ. The corresponding contribution to the action is

Sbraid =

∫
braid

iT r(Q
dxµ

ds
Aµ)dx . (14.2.2)

In stationary phase approximation subject to the additional constraint that a preferred extremal
of Kähler action is in question one obtains the desired correlation between the geometry of
preferred extremal and the quantum numbers of elementary particle. This interaction term
carries information only about the charges of elementary particle. It is quite possible that the
interaction term is more complex: for instance, it could contain spin dependent terms (Stern-
Gerlach experiment).

7. The constraint coming from preferred extremal property of Kähler action can be expressed in
terms of Lagrange multipliers

Sc =

∫
Y 2

λkDα(
∂LK
∂αhk

)
√
g2d

2y . (14.2.3)

8. The action exponential reads as

exp(iSG + Sbraid + Sc) . (14.2.4)

The resulting field equations couple stringy M4 degrees of freedom to the second variation of
Kähler action with respect to M4 coordinates and involve third derivatives of M4 coordinates
at the right hand side. If the second variation of Kähler action with respect to M4 coordinates
vanishes, free string results. This is trivially the case if a vacuum extremal of Kähler action is
in question.
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9. An interesting question is whether the preferred extremal property boils down to the condition
that the second variation of Kähler action with respect to M4 coordinates vanishes so that
gravitonic string is free. The physical interpretation would be in terms of quantum criticality
which is the basic conjecture about the dynamics of quantum TGD. This is clear from the fact
that in 1-D system criticality means that the potential V (x) = ax+ bx2 + .. has b = 0. In field
theory criticality corresponds to the vanishing of the term m2φ2/2 so that massless situation
corresponds to massless theory and criticality and long range correlations.

What does the equality of gravitational and inertial masses mean?

Consider next the question in what form Equivalence Principle could be realized in this framework.

1. Coset construction inspires the conjecture that gravitational and inertial four-momenta are iden-
tical. Also some milder form of it would make sense. What is clear is that the construction of
preferred extremal involving the distribution of M2(x) implies that conserved four-momentum
associated with Kähler action can be expressed formally as stringy four-momentum. The integral
of the conserved inertial momentum current over X3 indeed reduces to an integral over the curve
defining string as one integrates over other two degrees of freedom. It would not be surprising
if a stringy expression for four-momentum would result but with string tension depending on
the point of string and possibly also on the component of four-momentum. If the dependence
of string tension on the point of string and on the choice of the stringy world sheet is slow,
the interpretation could be in terms of coupling constant evolution associated with the stringy
coordinates. An alternative interpretation is that string tension corresponds to a scalar field.
A quite reasonable option is that for given X3

l T defines a scalar field and that the observed T
corresponds to the average value of T over deformations of X3

l .

2. The minimum option is that Kähler mass is equal to the sum gravitational masses assignable to
strings connecting points of wormhole throat or two different wormhole throats. This hypothesis
makes sense even for wormhole contacts having size of order Planck length.

3. The condition that gravitational mass equals to the inertial mass (rest energy) assigned to
Kähler action is the most obvious condition that one can imagine. The breaking of Poincare
invariance to Lorentz invariance with respect to the tip of CD supports this form of Equivalence
Principle. This would predict the value of the ratio of the parameter R2T and p-adic length
scale hypothesis would allow only discrete values for this parameter. p ' 2k following from the
quantization of the temporal distance T (n) between the tips of CD as T (n) = 2nT0 (a weaker
condition would be Tp = pT0, p prime) would suggest string tension Tn = 2nR2 apart from a
numerical factor. Gp ∝ 2nR2/~0 would emerge as a prediction of the theory. G could be seen
as a prediction or RG invariant input parameter fixed by quantum criticality. The arguments
related to p-adic coupling constant evolution suggest R2/~0G = 3× 223 [30] .

4. The scalar field property of string tension should be consistent with the vacuum degeneracy of
Kähler action. For instance, for the vacuum extremals of Kähler action stringy action is non-
vanishing. The simplest possibility is that one includes the integral of the scalar JµνJµν over
the degrees transversal to M2 to the stringy action so that string tension vanishes for vacuum
extremals. This would be nothing but dimensional reduction of 4-D theory to a 2-D theory
using the slicing of X4(X3

l ) to partonic 2-surfaces and stringy word sheets. For cosmic strings
Kähler action reduces to stringy action with string tension T ∝ 1/g2

KR
2 apart from a numerical

constant. If one wants consistency with T ∝ 1/L2
p, one must have T ∝ 1/g2

K2nR2 for the cosmic
strings deformed to Kähler magnetic flux tubes. This looks rather plausible if the thickness of
deformed string in M4 degrees of freedom is given by p-adic length scale.

Should one introduce induced spinor fields at string world sheets?

In the previous section it was found that TGD should allow also dimensionally reduced descriptions
in terms of either string world sheets or partonic 2-surfaces. This raises the question whether it makes
sense to introduce induced spinor fields at string world sheets. This is indeed the case. The modified
Dirac action would in this case correspond to the Dirac operator for the dimensionally reduced Kähler
action. The effective minimal surface property of Y 2 would guarantee the conservation of the super
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current. The realization of the effective 3-dimensionality in turn means that the stringy coordinate
u corresponds to a gauge degree of freedom or to the condition DuΨ = 0. There would no spinor
waves propagating along this direction of string and only the deformations of string represented by
symplectic and Kac-Moody algebras present also in the dynamics of Kähler action responsible for
the p-adic thermodynamics would be present. Besides this there would be the fermionic excitations
associated with the ends of the string and correspond to the eigenmodes of DK(X2) or equivalently
with DK(Y 1) so that the Dirac determinant would be the same as obtained for DK . For the description
in terms of partonic 2-surfaces the Dirac operator would be just DK(X2) and also now the equivalence
with the 4-D description follows trivially.

What is the connection with General Relativity?

The connection with the stringy description makes it easier to believe that General Relativity gives
a reasonable approximate description of gravitational interactions in long length scales also in TGD
framework. In short length scales paradoxes are obtained if the description in terms of curvature
scalar is assumed.

The vacuum degeneracy of Kähler action is in key role. The topological condensation of CP2

type vacuum extremals representing fermions and pieces of CP2 type extremals (wormhole contacts)
identified as gauge bosons deforms the vacuum extremals to non-vacuum extremals, and the resulting
density of inertial momentum equals to the density of gravitational momentum in stringy sense. If
stringy gravitational energy momentum density is proportional to 1/L2

p and if G relates to L2
p in

the proposed manner, the natural hypothesis is that Einstein tensor provides a good approximation
for the density of gravitational four-momentum as non-conserved Noether currents for the curvature
scalar action associated with the induced metric. In zero energy ontology the non-conservation of
the density of gravitational momentum does not lead to a contradiction with the conservation of
inertial four-momentum since inertial four-momentum is defined only for CD in given scale so that
conservation laws hold also only in this scale and in finite measurement resolution.

What does one mean with the evolution of gravitational constant?

From above it is clear that although it is possible to speak about the evolution of string tension T (x)
for string space-time sheets inside given CD, it does not makes sense to speak about evolution of G
inside CDs because the relationship between T and G is not so simple as one might naively expect.
One can of course consider the possibility that T (x) is RG invariant and thus constant for the preferred
extremals of Kähler action. This could hold module finite measurement resolution for M4 coordinates
defined by the size of the sub-CDs of a given CD. Hence string model description would be exact
under quantum criticality assumption in the sense that the second variation of Kähler action with
respect to M4 coordinates vanishes.

As found, gravitational constant can be understood as a product of L2
p with the exponential

of Kähler action for the two pieces of CP2 type vacuum extremals representing wormhole contacts
assignable to graviton connected by string world sheet. The volume of the typical CP2 type extremals
associated with the graviton increases with Lp so that the exponential factor decreases reducing the
growth due to the increase of Lp. Hence G could be RG invariant in p-adic coupling constant evolution:
this requires that volume depends on logarithmically on Lp. This point will be discussed in more detail
later.

Can one predict the value of gravitational constant?

A lot remains to be understood. The value of gravitational constant is one important example in
this respect. For a given space-time sheet defined as a preferred extremal of Kähler action one can
in principle calculate the value of Gclass. Physical gravitational constant G is however expected to
quantum average of Gclass for a given quantum state.

For years ago I found a nice formula relating G to CP2 length scale, the p-adic prime p characteriz-
ing gravitons and equal to M127 in the case of ordinary graviton, and Kähler coupling strength [36, 5]
. Quantum formula is in question since the exponent for the Kähler action for CP2 type vacuum ex-
tremals appears in it. The task would be to calculate explicitly the Gclass and its quantum expectation
value.
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What seems clear is that G is state dependent. For instance, for quantum states concentrated
around almost vacuum extremals (such as hadronic strings) G should be large since they are almost
Kähler vacua and the model for hadrons indeed leads to the identification of strong gravitons with
Gstrong characterized by corresponding p-adic length scale.

One can write the basic hypothesis for the relationship between Kähler coupling strength, CP2

size R and gravitational constant G [36, 5] as

exp(−2SK(CP2))

G(p)
=

1

pR2
. (14.2.5)

SK(CP2) is Kähler action for CP2 type vacuum extremals with small renormalization reflecting the
fact that entire free CP2 type extremal is not in question topological condensation. The two sides
of this equation suggest an interpretation in terms of two thermodynamics. The vacuum functional
defined by Kähler function would define the thermodynamics of the left hand side and Planck mass
MPl(p) = 1/

√
G(p) defining the fundamental mass equal to Planck mass for p = M127 but depending

on p as 1/
√
p. Right hand side would correspond to p-adic thermodynamics with CP2 mass MCP2

=
1/R defining the fundamental mass in this case. Thus the formula could be interpreted as stating as
equivalence of two different approaches to the calculation of particle masses.

Equivalence Principle and zero energy ontology

In TGD framework Equivalence Principle has several formulations.

1. The fundamental quantum formulation is in terms of coset representation for super-symplectic
and super Kac-Moody algebras and identifies the four-momenta associated with these represen-
tations.

2. Second formulation is at space-time level and is based on the dimensional reduction of Kähler
action to stringy action if preferred extremals possess the properties required by number theo-
retical compactification. It is essential that the information about preferred extremal is feeded
into the eigenvalues spectrum of the modified Dirac action.

3. String tension is not however equal to gravitational constant which is identified as gravitational
coupling and is equal to inverse of string tension multiplied by a factor corresponding to exponent
of Kähler action for CP2 type vacuum extremals representing graviton. The third formulation
corresponds to long length scale limit at which it is possible to identify the density of gravitational
four-momentum in terms of Einstein tensor. This formulation predicts that gravitational mass
defined by Einstein tensor is identical with inertial mass defined by Kähler action but in some
average sense since length scale resolution is not ideal.

To make this picture more concrete, it is good to list some examples about paradoxes implied by
the naive application of Equivalence Principle identifying the four-momenta defined by the curvature
scalar and Kähler action.

1. For the imbeddings of Robertson-Walker cosmologies inertial four-momentum density associated
with Kähler action vanishes unlike gravitational four-momentum density, which for a long time
remained quite a mystery. The solution of the paradox is that real space-time surface is a de-
formation of the vacuum extremal representing Robertson-Walker cosmology. The deformation
obtained by glueing fermions as CP2 type vacuum extremals. Also gauge bosons represented
as wormhole contacts connecting the space-time surface to a space-time sheet with opposite
arrow of geometric time (negative energy state) are present. The gravitational and inertial four-
momenta of these particles are equal to the four-momentum density characterized by Einstein
tensor. The density of Kähler four-momentum is not visible since it resides in the details which
are smoothed out.

2. The empirical fact is that inertial 4-momentum as measurement in laboratory time scales is
conserved whereas gravitational momentum is not. Zero energy ontology resolves this paradox.
One can speak of positive energy states only in a given length scale characterizing the size of
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causal diamond (CD). Improved measurement resolution brings visible new zero energy states
in shorter time scales. In principle zero energy ontology allows generation of entire galaxies from
vacuum so that energy conservation holds true only inside given CD and within measurement
resolution associated with it. Hence Robertson-Walker cosmologies in which gravitational four-
momentum is not conserved provides a statistical description for how the energy of positive
energy state changes. As a matter fact, TGD strongly suggests a hierarchy of Robertson-Walker
cosmologies corresponding to p-adic length scale hierarchy and dark matter hierarchy.

3. For cosmic strings of form X2× Y 2 ⊂M4×CP2 Einstein’s equations hold true but with wrong
value of gravitational constant. TGD predicts also a huge variety of string like vacuum extremals
of form X2×Y 2 metrically. The dimension of M4 projection is smaller than 4. The gravitational
mass of the object -if given by Einstein tensor- depends on the genus of Y 2 and is negative if
the genus is larger than 1. Einstein’s equations do not make sense in these cases and there is no
reason to expect this since the length scale associated with this objects is of order CP2 length
since M4 projection is not 4-dimensional.

Equivalence Principle at elementary particle level

The following concrete example about interpretation of Equivalence Principle at elementary particle
level is included to illustrate how ideas have gradually evolved and also to show that one must still
keep mind open.

Topologically condensed CP2 type vacuum extremals define a model for elementary particle. Their
gravitational four-momentum -if defined by Noether current associated with curvature scalar- is non-
vanishing, light-like, and non-conserved. For free CP2 type extremal the inertial four-momentum
vanishes since Kähler currents vanish in M4 degrees of freedom. In topological condensation CP2

type vacuum extremal is necessarily deformed to a non-vacuum extremal. The induced four-metric
becomes degenerate at the light-like wormhole throat(s) in the case of fermions (gauge bosons) since
the Euclidian signature of metric is changed to Minkowskian one.

The natural expectation is that the inertial four-momentum associated with topologically con-
densed CP2 type vacuum extremal equals to the gravitational four-momentum assignable to CP2

type extremal. The question was what this gravitational four-momentum means.

1. The Einstein tensor associated with CP2 type extremal gives rise to a non-conserved light-like
four-momentum in the direction of the tangent light-like curve. The identification of gravi-
tational four-momentum in terms of Einstein tensor however leads to difficulties with cosmic
strings. For instance, gravitational mass can be negative.

2. The attempt to realize gravitational four-momentum as Noether current in the framework of
almost-topological QFT based on Chern-Simons action led also to a difficulty since the four-
momentum Noether current associated with C − S action vanishes identically. Same is true for
the Noether current associated with the modified Dirac action associated with C − S action.
The proposed solution of the problem was the addition of pure gauge part Aa = constant to
the Kähler gauge potential of CP2, where a refers to the light-cone proper time assignable to
CD [20] . This gives under some conditions constant mass squared but the four-momentum
given by Noether current is of course non-conserved and the conserved four-momentum should
correspond to average of this four-momentum (option I) or simply the integral over these four-
momenta over 2-D sections ofX3

l (option II). This approach led to a difficulty with the realization
of the hierarchy of Planck constants in the most general sense.

3. After the realization that number theoretical compactification implies the slicing of preferred
extremal X4(X3

l ) to light-like 3-surfaces Y 3
l parallel to X3

l and also dual slicings to string
worlds sheets Y 2 and partonic 2-surfaces X2, it became clear that preferred extremals have
the property that the slices Y 3

l behave like independent dynamical units so that 3-dimensional
dynamical objects become effectively 2-dimensional [20, 36] . This made it also clear how to
code information about the preferred extremal of Kähler action to the eigenvalue spectrum
associated with the modified Dirac operator DK associated with the Kähler action for the
preferred extremal. This spectrum codes also for the conserved charges associated with the
preferred extremal so that there is not need to assign the four-momentum to C −S action. One
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can also assign conserved charges to the modified Dirac action if the first variation of DK with
respect to the imbedding space coordinates vanishes which means that the second variation of
Kähler action vanishes. It is actually enough that the second variations representing symmetries
giving rise to the conserved charges vanish. This gives a rather precise content for the notion of
quantum criticality and for the notion of preferred extremal.

4. In this framework C −S action is replaced with the imaginary part of Kähler action expressible
as instanton density proportional to J ∧ J . This contribution does not affect Kähler function
but gives rise to C − S term at surfaces X3

l . Modified Dirac operator receives an imaginary
contribution from J ∧ J , and its spectrum becomes complex so that Dirac determinant can be
equal to the exponent of Kähler action multiplied by the exponent imaginary instanton term.
This provides a first principle explanation for CP breaking behind matter antimatter asymmetry
and CKM mixing as well as anyonization and quantum Hall effect [66] .

5. The discovery of dual slicings of X4(X3
l ) by stringy world sheets and partonic two-surfaces lead

also to the realization that dimensional reduction allows to assign to Kähler action stringy action
and Equivalence Principle naturally follows at elementary particle level. In this framework both
Kähler coupling strength and gravitational constant emerge as predictions of the theory.

The random light-like motion of partonic 2-surface provides justification for p-adic thermodynam-
ics. The original interpretation was however partially wrong.

1. The random zitterwebegung of CP2 type vacuum extremal with light velocity allows to under-
stand heuristically the massivation of fermions in terms of p-adic thermodynamics. The first
guess was that four-momentum would be simply the average of or sum over the non-conserved
four-momenta associated with partonic 2-surface and led to the vision about the role of C − S
action. This vision must be given up.

2. p-Adic thermodynamics corresponds to thermodynamics for conformal weight. The basic dy-
namical object must be therefore 2-dimensional partonic surface. Also Lorentz invariance re-
quires that it is thermal conformal weight which is generated by p-adic thermodynamics and
mass squared is proportional to this. Light-like randomness implies the thermalization of con-
formal weight. Conformal symmetry indeed allows to identify conformal weight as quantum
number and the squares of generalized eigenvalues of DC−S have identification as conformal
weights. One must of course remember also that it is not at all clear whether the masses as
predicted by p-adic thermodynamics are identical with classical masses.

3. The equivalence of mass squared identified as thermal conformal weight with the square of
inertial or gravitational momentum remains to be proven rigorously. The understanding of this
connection might lead to unexpected progress.

14.2.3 Various interpretations of Machian Principle in TGD framework

TGD allows several interpretations of Machian Principle and leads also to a generalization of the
Principle.

1. Machian Principle is true in the sense that the notion of completely free particle is non-sensible.
Free CP2 type extremal (having random light-like curve as M4 projection) is a pure vacuum
extremal and only its topological condensation creates a wormhole throat (two of them) in the
case of fermion (boson). Topological condensation to space-time sheet(s) generates all quan-
tum numbers, not only mass. Both thermal massivation and massivation via the generation of
coherent state of Higgs type wormhole contacts are due to topological condensation.

2. Machian Principle has also interpretation in terms of p-adic physics [85] . Most points of p-adic
space-time sheets have infinite distance from the tip light-cone in the real sense. The discrete
algebraic intersection of the p-adic space-time sheet with the real space-time sheet gives rise to
effective p-adicity of the topology of the real space-time sheet if the number of these points is
large enough. Hence p-adic thermodynamics with given p also assigned to the partonic 3-surface
by the modified Dirac operator makes sense. The continuity and smoothness of the dynamics
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corresponds to the p-adic fractality and long range correlations for the real dynamics and allows
to apply p-adic thermodynamics in the real context. p-Adic variant of Machian Principle says
that p-adic dynamics of cognition and intentionality in literally infinite scale in the real sense
dictates the values of masses among other things.

3. A further interpretation of Machian Principle is in terms of number theoretic Brahman=Atman
identity or equivalently, Algebraic Holography [84] . This principle states that the number
theoretic structure of the space-time point is so rich due to the presence of infinite hierarchy
of real units obtained as ratios of infinite integers that single space-time point can represent
the entire world of classical worlds. This could be generalized also to a criterion for a good
mathematics: only those mathematical structures which are representable in the set of real
units associated with the coordinates of single space-time point are really fundamental.

14.3 TGD inspired cosmology

TGD Universe is quantum counterpart of a statistical system at critical temperature. As a conse-
quence, topological condensate is expected to possess hierarchical, fractal like structure containing
topologically condensed 3-surfaces with all possible sizes. Both Kähler magnetized and Kähler elec-
tric 3-surfaces ought to be important and string like objects indeed provide a good example of Kähler
magnetic structures important in TGD inspired cosmology. In particular space-time is expected to
be many-sheeted even at cosmological scales and ordinary cosmology must be replaced with many-
sheeted cosmology. The presence of vapor phase consisting of free cosmic strings and possibly also
elementary particles is second crucial aspects of TGD inspired cosmology.

Quantum criticality of TGD Universe (Kähler coupling strength is analogous to critical temper-
ature) supports the view that many-sheeted cosmology is in some sense critical. Criticality in turn
suggests fractality. Phase transitions, in particular the topological phase transitions giving rise to
new space-time sheets, are (quantum) critical phenomena involving no scales. If the curvature of the
3-space does not vanish, it defines scale: hence the flatness of the cosmic time=constant section of the
cosmology implied by the criticality is consistent with the scale invariance of the critical phenomena.
This motivates the assumption that the new space-time sheets created in topological phase transitions
are in good approximation modellable as critical Robertson-Walker cosmologies for some period of
time at least.

Any one-dimensional sub-manifold allows global imbeddings of subcritical cosmologies whereas
for a given 2-dimensional Lagrange manifold of CP2 critical and overcritical cosmologies allow only
one-parameter family of partial imbeddings. The infinite size of the horizon for the imbeddable
critical cosmologies is in accordance with the presence of arbitrarily long range quantum fluctuations
at criticality and guarantees the average isotropy of the cosmology. Imbedding is possible for some
critical duration of time. The parameter labelling these cosmologies is a scale factor characterizing
the duration of the critical period. These cosmologies have the same optical properties as inflationary
cosmologies but exponential expansion is replaced with logarithmic one. Critical cosmology can be
regarded as a ’Silent Whisper amplified to Bang’ rather than ’Big Bang’ and transformed to hyperbolic
cosmology before its imbedding fails. Split strings decay to elementary particles in this transition and
give rise to seeds of galaxies. In some later stage the hyperbolic cosmology can decompose to disjoint
3-surfaces. Thus each sub-cosmology is analogous to biological growth process leading eventually to
death.

The critical cosmologies can be used as a building blocks of a fractal cosmology containing cos-
mologies containing ... cosmologies. p-Adic length scale hypothesis allows a quantitative formulation
of the fractality [77] . Fractal cosmology predicts cosmos to have essentially same optical properties
as inflationary scenario. Fractal cosmology explains the paradoxical result that the observed density
of the matter is much lower than the critical density associated with the largest space-time sheet of
the fractal cosmology. Also the observation that some astrophysical objects seem to be older than the
Universe, finds a nice explanation.

Absolutely essential element of the considerations (and longstanding puzzle of TGD inspired cos-
mology) is the conservation of energy implied by Poincare invariance which seems to be in conflict
with the non-conservation of gravitational energy. It took long time to discover the natural resolution
of the paradox. In TGD Universe matter and antimatter have opposite energies and gravitational
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four-momentum is identified as difference of the four momenta of matter and antimatter (or vice
versa, so that gravitational energy is positive). The assumption that the net inertial energy density
vanishes in cosmological length scales is the proper interpretation for the fact that Robertson-Walker
cosmologies correspond to vacuum extremals of Kähler action.

Tightly bound, possibly coiled pairs of cosmic strings are the basic building block of TGD inspired
cosmology and all al structures including large voids, galaxies, stars, and even planets can be seen
as pearls in a cosmic fractal necklace consisting of cosmic strings containing smaller cosmic strings
linked around them containing... During cosmological evolution the cosmic strings are transformed to
magnetic flux tubes and these structures are also key players in TGD inspired quantum biology.

Negative energy virtual gravitons represented by topological quanta having negative time orienta-
tion and hence also negative energy. The absorption of negative energy gravitons by photons could
explain gradual red-shifting of the microwave background radiation at particle level. Negative energy
virtual gravitons give also rise to a negative gravitational potential energy. Quite generally, negative
energy virtual bosons build up the negative interaction potential energy. An important constraint to
TGD inspired cosmology is the requirement that Hagedorn temperature TH ∼ 1/R, where R is CP2

size, is the limiting temperature of radiation dominated phase.

14.3.1 Robertson-Walker cosmologies

Robertson-Walker cosmologies are the basic building block of standard cosmologies and sub-critical
R-W cosmologies have a very natural place in TGD framework as Lorentz invariant cosmologies. Infla-
tionary cosmologies are replaced with critical cosmologies being parameterized by a single parameter
telling the duration of the critical cosmology. Over-critical cosmologies are not possible at all.

Why Robertson-Walker cosmologies?

Robertson Walker cosmology, which is a vacuum extremal of the Kähler action, is a reasonable ide-
alization only in the length scales, where the density of the Kähler charge vanishes. Since (visible)
matter and antimatter carry Kähler charges of opposite sign this means that Kähler charge den-
sity vanishes in length scales, where matter-antimatter asymmetry disappears on the average. This
length scale is certainly very large in present day cosmology: in the proposed model for cosmology
its present value is of the order of 108 light years: the size of the observed regions containing visible
matter predominantly on their boundaries [37] . That only matter is observed can be understood
from the fact that fermions reside dominantly at future oriented space-time sheets and anti-fermions
on past-oriented space-time sheets.

Robertson Walker cosmology is expected to apply in the description of the condensate locally at
each condensate level and it is assumed that the GRT based criteria for the formation of ”structures”
apply. In particular, the Jeans criterion stating that density fluctuations with size between Jeans
length and horizon size can lead to the development of the ”structures” will be applied.

Imbeddability requirement for RW cosmologies

Standard Robertson-Walker cosmology is characterized by the line element [35]

ds2 = f(a)da2 − a2(
dr2

1− kr2
+ r2dΩ2) , (14.3.1)

where the values k = 0,±1 of k are possible.
The line element of the light cone is given by the expression

ds2 = da2 − a2(
dr2

1 + r2
+ r2dΩ2) . (14.3.2)

Here the variables a and r are defined in terms of standard Minkowksi coordinates as

a =
√

(m0)2 − r2
M ,

rM = ar . (14.3.3)
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Light cone clearly corresponds to mass density zero cosmology with k = −1 and this makes the case
k = −1 is rather special as far imbeddings are considered since any Lorentz invariant map M4

+ → CP2

defines imbedding

sk = fk(a) . (14.3.4)

Here fk are arbitrary functions of a.
k = −1 requirement guarantees imbeddability if the matter density is positive as is easy to see.

The matter density is given by the expression

ρ =
3

8πGa2
(

1

gaa
+ k) . (14.3.5)

A typical imbedding of k = −1 cosmology is given by

φ = f(a) ,

gaa = 1− R2

4
(∂af)2 . (14.3.6)

where φ can be chosen to be the angular coordinate associated with a geodesic sphere of CP2 (any
one-dimensional sub-manifold of CP2 works equally well). The square root term is always positive by
the positivity of the mass density and the imbedding is indeed well defined. Since gaa is smaller than
one, the matter density is necessarily positive.

Critical and over-critical cosmologies

TGD allows the imbeddings of a one-parameter family of critical over-critical cosmologies. Critical
cosmologies are however not inflationary in the sense that they would involve the presence of scalar
fields. Exponential expansion is replaced with a logarithmic one so that the cosmologies are in this
sense exact opposites of each other. Critical cosmology has been used hitherto as a possible model for
the very early cosmology. What is remarkable that this cosmology becomes vacuum at the moment
of ’Big Bang’ since mass density behaves as 1/a2 as function of the light cone proper time. Instead of
’Big Bang’ one could talk about ’Small Whisper’ amplified to bang gradually. This is consistent with
the idea that space-time sheet begins as a vacuum space-time sheet for some moment of cosmic time.
As an imbedded 4-surface this cosmology would correspond to a deformed future light cone having
its tip inside the future light cone. The interpretation of the tip as a seed of a phase transition is
possible. The imbedding makes sense up to some moment of cosmic time after which the cosmology
becomes necessarily hyperbolic. At later time hyperbolic cosmology stops expanding and decomposes
to disjoint 3-surfaces behaving as particle like objects co-moving at larger cosmological space-time
sheet. These 3-surfaces topologically condense on larger space-time sheets representing new critical
cosmologies.

Consider now in more detail the imbeddings of the critical and overcritical cosmologies. For
k = 0, 1 the imbeddability requirement fixes the cosmology almost uniquely. To see this, consider as
an example of k = 0/1 imbedding the map from the light cone to S2, where S2 is a geodesic sphere
of CP2 with a vanishing Kähler form (any Lagrage manifold of CP2 would do instead of S2). In the
standard coordinates (Θ,Φ) for S2 and Robertson-Walker coordinates (a, r, θ, φ) for future light cone
(, which can be regarded as empty hyperbolic cosmology), the imbedding is given as

sin(Θ) =
a

a1
,

(∂rΦ)2 =
1

K0

[
1

1− kr2
− 1

1 + r2

]
,

K0 =
R2

4a2
1

, k = 0, 1 , (14.3.7)



14.3. TGD inspired cosmology 1185

when Robertson-Walker coordinates are used for both the future light cone and space-time surface.
The differential equation for Φ can be written as

∂rΦ = ±

√
1

K0

[
1

1− kr2
− 1

1 + r2

]
. (14.3.8)

For k = 0 case the solution exists for all values of r. For k = 1 the solution extends only to
r = 1, which corresponds to a 4-surface rM = m0/

√
2 identifiable as a ball expanding with the

velocity v = c/
√

2. For r → 1 Φ approaches constant Φ0 as Φ− Φ0 ∝
√

1− r. The space-time sheets
corresponding to the two signs in the previous equation can be glued together at r = 1 to obtain
sphere S3.

The expression of the induced metric follows from the line element of future light cone

ds2 = da2 − a2(
dr2

1− kr2
+ r2dΩ2) . (14.3.9)

The imbeddability requirement fixes almost uniquely the dependence of the S2 coordinates a and
r and the gaa component of the metric is given by the same expression for both k = 0 and k = 1.

gaa = 1−K ,

K ≡ K0
1

(1− u2)
,

u ≡ a

a1
. (14.3.10)

The imbedding fails for a ≥ a1. For a1 � R the cosmology is essentially flat up to immediate vicinity
of a = a1. Energy density and ”pressure” follow from the general equation of Einstein tensor and are
given by the expressions

ρ =
3

8πGa2
(

1

gaa
+ k) , k = 0, 1 ,

1

gaa
=

1

1−K
,

p = −(ρ+
a∂aρ

3
) = −ρ

3
+

2

3
K0u

2 1

(1−K)(1− u2)2
ρcr ,

u ≡ a

a1
. (14.3.11)

Here the subscript ’cr’ refers to k = 0 case. Since the time component gaa of the metric approaches
constant for very small values of the cosmic time, there are no horizons associated with this metric.
This is clear from the formula

r(a) =

∫ a

0

√
gaa

da

a

for the horizon radius.
The mass density associated with these cosmologies behaves as ρ ∝ 1/a2 for very small values of

the M4
+ proper time. The mass in a co-moving volume is proportional to a/(1−K) and goes to zero

at the limit a → 0. Thus, instead of Big Bang one has ’Silent Whisper’ gradually amplifying to Big
Bang. The imbedding fails at the limit a → a1. At this limit energy density becomes infinite. This
cosmology can be regarded as a cosmology for which co-moving strings (ρ ∝ 1/a2) dominate the mass
density as is clear also from the fact that the ”pressure” becomes negative at big bang (p → −ρ/3)
reflecting the presence of the string tension. The natural interpretation is that cosmic strings condense
on the space-time sheet which is originally empty.

The facts that the imbedding fails and gravitational energy density diverges for a = a1 necessitates
a transition to a hyperbolic cosmology. For instance, a transition to radiation or matter dominated
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hyperbolic cosmology can occur at the limit θ → π/2. At this limit φ(r) must transform to a function
φ(a). The fact, that vacuum extremals of Kähler action are in question, allows large flexibility for the
modelling of what happens in this transition. Quantum criticality and p-adic fractality suggest the
presence of an entire fractal hierarchy of space-time sheets representing critical cosmologies created
at certain values of cosmic time and having as their light cone projection sub-light cone with its tip
at some a=constant hyperboloid.

More general imbeddings of critical and over-critical cosmologies as vacuum extremals

In order to obtain imbeddings as more general vacuum extremals, one must pose the condition guaran-
teing the vanishing of corresponding the induced Kähler form (see the Appendix of this book). Using
coordinates (r, u = cos(Θ),Ψ,Φ) for CP2 the surfaces in question can be expressed as

r =

√
X

1−X
,

X = D|k + u| ,

u ≡ cos(Θ) , D =
r2
0

1 + r2
0

× 1

C
, C = |k + cos(Θ0)| . (14.3.12)

Here C and D are integration constants.

These imbeddings generalize to imbeddings to M4×Y 2, where Y 2 belongs to a family of Lagrange
manifolds described in the Appendix of this book with induced metric

ds2
eff =

R2

4
[seffΘΘdΘ2 + seffΦΦ dΦ2] ,

seffΘΘ = X ×
[

(1− u2)

(k + u)2
× 1

1−X
+ 1−X

]
,

seffΦΦ = X ×
[
(1−X)(k + u)2 + 1− u2

]
. (14.3.13)

For k 6= 1 u = ±1 corresponds in general to circle rather than single point as is clear from the fact that
seffΦΦ is non-vanishing at u = ±1 so that u and Φ parameterize a piece of cylinder. The generalization
of the previous imbedding is as

sin(Θ) = ka →
√
seffΦΦ = ka . (14.3.14)

For Φ the expression is as in the previous case and determined by the requirement that grr corresponds
to k = 0, 1.

The time component of the metric can be expressed as

gaa = 1− R2k2

4

seffΘΘ

d
√
seffΦΦ

dΘ

(14.3.15)

In this case the 1/(1− k2a2) singularity of the density of gravitational mass at Θ = π/2 is shifted to

the maximum of seffΦΦ as function of Θ defining the maximal value amax of a for which the imbedding
exists at all. Already for a0 < amax the vanishing of gaa implies the non-physicality of the imbedding
since gravitational mass density becomes infinite.

The geometric properties of critical cosmology change radically in the transition to the radiation
dominated cosmology: before the transition the CP2 projection of the critical cosmology is two-
dimensional. After the transition it is one-dimensional. Also the isometry group of the cosmology
changes from SO(3)×E3 to SO(3, 1) in the transition. One could say that critical cosmology represents
Galilean Universe whereas hyperbolic cosmology represents Lorentzian Universe.



14.3. TGD inspired cosmology 1187

String dominated cosmology

A particularly interesting cosmology is string dominated cosmology with very nearly critical mass
density. Assuming that strings are co-moving the mass density of this cosmology is proportional to
1/a2 instead of the 1/a3 behavior characteristic to the standard matter dominated cosmology. The
line element of this metric is very simple: the time component of the metric is simply constant smaller
than 1:

gaa = K < 1 . (14.3.16)

The Hubble constant for this cosmology is given by

H =
1√
Ka

, (14.3.17)

and the so called acceleration parameter [35] k0 proportional to the second derivative ä therefore
vanishes. Mass density and pressure are given by the expression

ρ =
3

8πGKa2
(1−K) = −3p . (14.3.18)

What makes this cosmology so interesting is the absence of the horizons. The comparison with the
critical cosmology shows that these two cosmologies resemble each other very closely and both could
be used as a model for the very early cosmology.

Stationary cosmology

An interesting candidate for the asymptotic cosmology is stationary cosmology for which gravita-
tional four-momentum currents (and also gravitational color currents) are conserved. This cosmology
extremizes the Einstein-Hilbert action with cosmological term given by

∫
(kR + λ)

√
gd4x + λ and is

obtained as a sub-manifold X4 ⊂M4
+×S1, where S1 is the geodesic circle of CP2 (note that imbedding

is now unique apart from isometries by variational principle).
For a vanishing cosmological constant, field equations reduce to the conservation law for the

isometry associated with S1 and read

∂a(Gaa∂aφ
√
g) = 0 , (14.3.19)

where φ denotes the angle coordinate associated with S1. From this one finds for the relevant com-
ponent of the metric the expression

gaa =
(1− 2x)

(1− x)
,

x = (
C

a
)2/3 . (14.3.20)

The mass density and ”pressure” of this cosmology are given by the expressions

ρ =
3

8πGa2

x

(1− 2x)
,

p = −(ρ+
a∂aρ

3
) = −ρ

9

[
3− 2

(1− 2x)

]
. (14.3.21)

The asymptotic behavior of the energy density is ρ ∝ a−8/3. ”Pressure” becomes negative indicat-
ing that this cosmology is dominated by the string like objects, whose string tension gives negative
contribution to to the ”pressure”. Also this cosmology is horizon free as are all string dominated
cosmologies: this is of crucial importance in TGD inspired cosmology.

It should be noticed that energy density for this cosmology becomes infinite for x = (C/a)2/3 = 1/2
implying that this cosmology doesn’t make sense at very early times so that the non-conservation of
gravitational energy is necessary during the early stages of the cosmology.
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Non-conservation of gravitational energy in RW cosmologies

In RW cosmology the gravitational energy in a given co-moving sphere of radius r in local light cone
coordinates (a, r, θ, φ) is given by

E =

∫
ρgaa∂am

0√gdV . (14.3.22)

The rate characterizing the non-conservation of gravitational energy is determined by the parameter
X defined as

X ≡ (dE/da)vap
E

=
(dE/da+

∫
|grr|p∂rm0√gdΩ)

E
, (14.3.23)

where p denotes the pressure and dΩ denotes angular integration over a sphere with radius r. The
latter term subtracts the energy flow through the boundary of the sphere.

The generation of the pairs of positive and negative (inertial) energy space-time sheets leads to
non-conservation of gravitational energy. The generation of pairs of positive and negative energy
cosmic strings would be involved with the generation of a critical sub-cosmology.

For RW cosmology with subcritical mass density the calculation gives

X =
∂a(ρa3/

√
gaa)

(ρa3/
√
gaa)

+
3pgaa
ρa

.

(14.3.24)

This formula applies to any infinitesimal volume. The rate doesn’t depend on the details of the
imbedding (recall that practically any one-dimensional sub-manifold of CP2 defines a huge family
of subcritical cosmologies). Apart from the numerical factors, the rate behaves as 1/a in the most
physically interesting RW cosmologies. In the radiation dominated and matter dominated cosmologies
one has X = −1/a and X = −1/2a respectively so that gravitational energy decreases in radiation
and matter dominated cosmologies. For the string dominated cosmology with k = −1 having gaa = K
one has X = 2/a so that gravitational energy increases: this might be due to the generation of dark
matter due to pairs of cosmic strings with vanishing net inertial energy.

For the cosmology with exactly critical mass density Lorentz invariance is broken and the contri-
bution of the rate from 3-volume depends on the position of the co-moving volume. Taking the limit
of infinitesimal volume one obtains for the parameter X the expression

X = X1 +X2 ,

X1 =
∂a(ρa3/

√
gaa)

(ρa3/
√
gaa)

,

X2 =
pgaa
ρa
× 3 + 2r2

(1 + r2)3/2
. (14.3.25)

Here r refers to the position of the infinitesimal volume. Simple calculation gives

X = X1 +X2 ,

X1 = 1
a

[
1 + 3K0u

2 1
1−K

]
,

X2 = − 1
3a

[
1−K − 2K0u

2

(1−u2)2

]
× 3+2r2

(1+r2)3/2 ,

K = K0

1−u2 , u = a
a0

, K0 = R2

4a2
0
. (14.3.26)
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The positive density term X1 corresponds to increase of gravitational energy which is gradually ampli-
fied whereas pressure term (p < 0) corresponds to a decrease of gravitational energy changing however
its sign at the limit a→ a0.

The interpretation is in terms of creation of pairs of positive and negative energy particles contribut-
ing nothing to the inertial energy. Also pairs of positive energy gravitons and negative anti-gravitons
are involved. The contributions of all particle species are determined by thermal arguments so that
gravitons should not play any special role as thought originally.

Pressure term is negligible at the limit r →∞ so that topological condensation occurs all the time
at this limit. For a → 0, r → 0 one has X > 0 → 0 so that condensation starts from zero at r = 0.
For a→ 0, r →∞ one has X = 1/a which means that topological condensation is present already at
the limit a→ 0.

Both the existence of the finite limiting temperature and of the critical mass density imply sep-
arately finite energy per co-moving volume for the condensate at the very early stages of the cosmic
evolution. In fact, the mere requirement that the energy per co-moving volume in the vapor phase re-
mains finite and non-vanishing at the limit a→ 0 implies string dominance as the following argument
shows.

Assuming that the mass density of the condensate behaves as ρ ∝ 1/a2(1+α) one finds from the
expression

ρ ∝
( 1
gaa
− 1)

a2
,

that the time component of the metric behaves as gaa ∝ aα. Unless the condition α < 1/3 is satisfied
or equivalently the condition

ρ <
k

a2+2/3
(14.3.27)

is satisfied, gravitational energy density is reduced. In fact, the limiting behavior corresponds to the
stationary cosmology, which is not imbeddable for the small values of the cosmic time. For stationary
cosmology gravitational energy density is conserved which suggests that the reduction of the density
of cosmic strings is solely due to the cosmic expansion.

14.3.2 Free cosmic strings

The free cosmic strings correspond to four-surfaces of type X2 × S2, where S2 is the homologically
nontrivial geodesic sphere of CP2 [5] , [5] and X2 is minimal surface in M4

+. As a matter fact, any
complex manifold Y 2 ⊂ CP2 is possible. In this section, a co-moving cosmic string solution inside the
light cone M4

+(m) associated with a given m point of M4
+ will be constructed.

Recall that the line element of the light cone in co-moving coordinates inside the light cone is given
by

ds2 = da2 − a2(
dr2

1 + r2
+ r2dΩ2) . (14.3.28)

Outside the light cone the line element is given

ds2 = −da2 − a2(− dr2

1− r2
+ r2dΩ2) , (14.3.29)

and is obtained from the line element inside the light cone by replacements a→ ia and r → −ir.

Simplest solutions

Using the coordinates (a =
√

(m0)2 − r2
M , ar = rM ) for X2 the orbit of the cosmic string is given by



1190 Chapter 14. Cosmology and Astrophysics in Many-Sheeted Space-Time

θ =
π

2
,

φ = f(r) . (14.3.30)

Inside the light cone the line element of the induced metric of X2 is given by

ds2 = da2 − a2(
1

1 + r2
+ r2f2

,r)dr
2 . (14.3.31)

The equations stating the minimal surface property of X2 can be expressed as a differential conser-
vation law for energy or equivalently for the component of the angular momentum in the direction
orthogonal to the plane of the string. The conservation of the energy current Tα gives

Tα,α = 0 ,

Tα = Tgαβm0
,β

√
g ,

T =
1

8αKR2
' .52× 10−6 1

G
. (14.3.32)

The numerical estimate TG ' .52 × 10−6 for the string tension is upper bound and corresponds to
a situation in which the entire area of S2 contributes to the tension. It has been obtained using
αK/104 and R2/G = 2.5 × 107G given by the most recent version of p-adic mass calculations (the
earlier estimate was roughly by a factor 1/2 too small due to error in the calculation [36, 5] ). The
string tension belongs to the range TG ∈ [10−6− 10−7] predicted for GUT strings [23] . WMAP data
give the upper bound TG ∈ [10−6 − 10−7], which does not however hold true in the recent case since
criticality predicts adiabatic spectrum of perturbations as in the inflationary scenarios.

The non-vanishing components of energy current are given by

T a = TUa ,

T r = −T r

U
,

U =
√

1 + r2(1 + r2)f2
,r . (14.3.33)

The equations of motion give

U =
r√

r2 − r2
0

, (14.3.34)

or equivalently

φ,r =
r0

r
√

(r2 − r2
0)(1 + r2)

, (14.3.35)

where r0 is an integration constant to be determined later. Outside the light cone the solution has
the form

φ,r =
r0√

r2 + r2
0r
√

1− r2
. (14.3.36)

In the region inside the light cone, where the conditions

r0 << r << 1 (14.3.37)
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hold, the solution has the form

φ(r) ' φ0 +
v

r
,

v =
r0√

1 + r2
0

, (14.3.38)

corresponding to the linearized equations of motion

f,rr +
2f,r
r

= 0 , (14.3.39)

obtained most nicely from the angular momentum conservation condition.

Cosmic string is stationary in comoving coordinates

In co-moving coordinates (in general the co-moving coordinates of sub-light-cone M4
+!) the string is

stationary. In Minkowski coordinates string rotates with an angular velocity inversely proportional to
the distance from the origin

ω ' v

rM
(14.3.40)

so that the orbital velocity of the string becomes essentially constant in this region. For very large
values of r the orbital velocity of the string vanishes as 1/r. Outside the light cone the variable r is
in the role of time and for a given value of the time variable r strings are straight and one can regard
the string as a rigidly rotating straight string in this region.

Inside the light cone, the solution becomes ill defined for the values of r smaller than the critical
value r0. Although the derivative φ,r becomes infinite at this limit, the limiting value of φ is finite
so that strings winds through a finite angle. The normal component T r of the energy momentum
current vanishes at r = r0 identically, which means that no energy flows out at the end of the string.
The coordinate variable r becomes however bad at r = r0 (string resembles a circle at r0) and this
conclusion must be checked using φ as coordinate instead of r. The result is that the normal component
of the energy current indeed vanishes.

Field equations are not however satisfied at the end of the string since the normal component of
the angular momentum current (in z- direction) is non-vanishing at the boundary and given by

Jr = Tr2a . (14.3.41)

This means that the string loses angular momentum through its ends although the angular momentum
density of the string is vanishing. The angular momentum lost at moment a is given by

J =
Tr2a2

2
=
Tr2

M

2
. (14.3.42)

This angular momentum is of the same order of magnitude as the angular momentum of a typical
galaxy [29] .

In M4 coordinates singularity corresponds to a disk in the plane of string growing with a constant
velocity, when the coordinate m0 is positive

rM = vm0 ,

v =
r0√

1 + r2
0

. (14.3.43)

From the expression of the energy density of the string
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T a = T
ar√
r2 − r2

0

,

T =
1

8αKR2
, (14.3.44)

it is clear that energy density diverges at the singularity.

Energy of the cosmic string

As already noticed, the string tension is by a factor of order 10−6 smaller than the critical string
tension Tcr = 1/4G implying angle deficit of 2π in GRT so that there seems to be no conflict with
General Relativity (unlike in the original scenario, in which the CP2 radius was of order Planck
length).

The energy of the string portion ranging from r0 to r1 is given by

E = T
√

(r2
1 − r2

0)a = T
√
δr2
M . (14.3.45)

It should be noticed that M4 time development of the string can be regarded as a scaling: each point
of the string moves to radial direction with a constant velocity v.

One can calculate the total change of the angle φ from the integral

∆φ =

√
r2
0

1 + r2
0

∫ ∞
r0

dr
1

r
√

(r2 − r2
0)(1 + r2)

. (14.3.46)

The upper bound of this quantity is obtained at the limit r0 → 0 and equals to ∆φ = π/2.

14.3.3 Cosmic strings and cosmology

The model for cosmic strings has forced to question all cherished assumptions including positive
energy ontology, Equivalence Principle, and positivity of gravitational mass. The final outcome turned
out to be rather conservative. Zero energy ontology is unavoidable, Equivalence Principle holds
true universally but its general relativistic formulation makes sense only in long length scales, and
gravitational mass has definite sign for positive/negative energy states. As a matter fact, all problems
were created by the failure to realize that the expression of gravitational energy in terms of Einstein’s
tensor does not hold true in short length scales and must be replaced with the stringy expression
resulting naturally by dimensional reduction of quantum TGD to string model like theory [20, 36, 5] .

Zero energy ontology and cosmic strings

There are two kinds of cosmic strings: free and topological condensed ones and both are important in
TGD inspired cosmology.

1. Free cosmic strings are not absolute minima of the Kähler action (the action has wrong sign).
In the original identification of preferred extremals as absolute minima of Kähler action this
was a problem. In the new formulation preferred extremals correspond to quantum criticality
identified as the vanishing of the second variation of Kähler action at least for the deformations
defining symmetries of Kähler action [20, 36] . Criticality guarantees the conservation of the
Noether charges assignable to the modified Dirac action. Ideal cosmic strings are excluded be-
cause they fail to satisfy the conditions characterizing the preferred extremal as a space-time
surface containing regions with both Euclidian and Minkowskian signature of the induced met-
ric with light-like 3-surface separating them identified as orbits of partonic 2-surfaces carrying
elementary particle quantum numbers. The topological condensation of CP2 type vacuum ex-
tremals representing fermons generates negative contribution to the action and reduces the string
tension and leaves cosmic strings still free.
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2. If the topologically condensate of fermions has net Kähler charges as the model for matter
antimatter asymmetry suggests, the repulsive interaction of the particles tends to thicken the
cosmic string by increasing the thickness of its infinitely thin M4 projection so that Kähler
magnetic flux tubes result. These flux tubes are ideal candidates for the carriers of dark matter
with a large value of Planck constant. The criterion for the phase transition increasing ~ is
indeed the presence of a sufficiently dense plasma implying that perturbation theory in terms of
Z2αem (Z is the effective number of charges with interacting with each other without screening
effects) fails for the standard value of Planck constant. The phase transition ~0 → ~ reduces
the value of αem = e2/4π~ so that perturbation theory works. This phase transition scales up
also the transversal size of the cosmic string. Similar criterion works also for other charges.
The resulting phase is anyonic if the resulting 2-surfaces containing almost spherical portions
connected by flux tubes to each other encloses the tip of the causal diamond (CD). The proposal
is that dark matter resides on complex anyonic 2-surfaces surrounding the tips of CDs.

3. The topological condensation of cosmic strings generates wormhole contacts represented as pieces
of CP2 type vacuum extremals identified as bosons composed of fermion-antifermion pairs. Also
this generates negative action and can make cosmic string a preferred extremal of Kähler action.
The earliest picture was based on dynamical cancelation mechanism involving generation of
strong Kähler electric fields in the condensation whose action compensated for Kähler magnetic
action [1] . Also this mechanism might be at work. Cosmic strings could also form bound states
by the formation graviton like flux tubes connecting them and having wormhole contacts at
their ends so that again action is reduced.

4. One can argue that in long enough length and time scales Kähler action per volume must vanish
so that the idealization of cosmology as a vacuum extremal becomes possible and there must
be some mechanism compensating the positive action of the free cosmic strings. The general
mechanism could be topological condensation of fermions and creation of bosons by topological
condensation of cosmic strings to space-time sheets.

In this framework zero energy states correspond to cosmologies leading from big bang to big crunch
separated by some time interval T of geometric time. Quantum jumps can gradually increase the value
T and TGD inspired theory of consciousness suggests that the increase of T might relate to the shift for
the contents of conscious experience towards geometric future. In particular, what is usually regarded
as cosmology could have started from zero energy state with a small value of T .

Topological condensation of cosmic strings

In the original vision about topological condensation of cosmic strings I assumed that large voids
represented by space-time sheets contain ”big” cosmic string in their interior and galactic strings near
their boundaries. The recent much simpler view is that there are just galactic strings which carry
net fermion numbers (matter antimatter asymmetry). If they have also net em charge they have a
repulsive interaction and tend to end up to the boundaries of the large void. Since this slows down
the expansive motion of strings, the repulsive interaction energy increases and a phase transition
increasing Planck constant and scaling up the size of the void occurs after which cosmic strings are
again driven towards the boundary of the resulting larger void.

One cannot assume that the exterior metric of the galactic strings is the one predicted by assuming
General Relativity in the exterior region. This would mean that metric decomposes as g = g2(X2) +
g2(Y 2). g(X2) would be flat as also g2(Y 2) expect at the position of string. The resulting angle defect
due to the replacement of plane Y 2 with cone would be large and give rise to lense effect of same
magnitude as in the case of GUT cosmic strings. Lense effect has not been observed.

This suggests that General Relativity fails in the length scale of large void as far as the description
of topologically condensed cosmic strings is considered. The constant velocity spectrum for distant
stars of galaxies and the fact that galaxies are organized along strings suggests that these string
generate in a good approximation Newtonian potential. This potential predicts constant velocity
spectrum with a correct value velocity.

In the stationary situation one expects that the exterior metric of galactic string corresponds to a
small deformation of vacuum extremal of Kähler action which is also extremal of the curvature scalar
in the induced metric. This allows a solution ansatz which conforms with Newtonian intuitions and
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for which metric decomposes as g = g1 + g3, where g1 corresponds to axis in the direction of string
and g3 remaining 1 + 2 directions.

Dark energy is replaced with dark matter in TGD framework

The observed accelerating expansion of the Universe has forced to introduce the notion of cosmological
constant in the GRT based cosmology. In TGD framework the situation is different.

1. The gigantic value of gravitational Planck constant implies that dark matter makes TGD Uni-
verse a macroscopic quantum system even in cosmological length scales. Astrophysical systems
become stationary quantum systems which participate in cosmic expansion only via quantum
phase transitions increasing the value of gravitational Planck constant.

2. Critical cosmologies, which are determined apart from a single parameter in TGD Universe,
are natural during all quantum phase transitions, in particular the phase transition periods
increasing the size of large voids and having interpretation in terms of an increase of gravitational
Planck constant. Cosmic expansion is predicted to be accelerating during these periods. The
mere criticality requires that besides ordinary matter there is a contribution ΩΛ ' .74 to the
mass density besides visible matter and dark matter. In fact, also for the over-critical cosmologies
expansion is accelerating.

3. In GRT framework the essential characteristic of dark energy is its negative pressure. In TGD
framework critical and over-critical cosmologies have automatically effective negative pressure.
This is essentially due to the constraint that Lorentz invariant vacuum extremal of Kähler action
is in question. The mysterious negative pressure would be thus a signal about the representability
of space-time as 4-surface in H and there is no need for any microscopic description in terms of
exotic thermodynamics.

The values for the TGD counterpart of cosmological constant

One can introduce a parameter characterizing the contribution of dark mass to the mass density
during critical periods and call it cosmological constant recalling however that the contribution does
not correspond to dark energy. The value of this parameter is same as in the standard cosmology
from mere criticality assumption.

What is new that p-adic fractality predicts that Λ scales as 1/L2(k) as a function of the p-adic
scale characterizing the space-time sheet implying a series of phase transitions reducing Λ. The order
of magnitude for the recent value of the cosmological constant comes out correctly. The gravitational
energy density assignable to the cosmological constant is identifiable as that associated with topo-
logically condensed cosmic strings and magnetic flux tubes to which they are gradually transformed
during cosmological evolution.

The naive expectation would be the density of cosmic strings would behave as 1/a2 as function of
M4

+ proper time. The vision about dark matter as a phase characterized by gigantic Planck constant
however implies that large voids do not expand in continuous manner during cosmic evolution but in
discrete quantum jumps increasing the value of the gravitational Planck constant and thus increasing
the size of the large void as a quantum state. Since the set of preferred values of Planck constant is
closed under multiplication by powers of 2, p-adic length scales Lp, p ' 2k form a preferred set of
sizes scales for the large voids.

TGD cosmic strings are consistent with the fluctuations of CMB

GUT cosmic strings were excluded by the fluctuation spectrum of the CMB background [2] . In
GRT framework these fluctuations can be classified to adiabatic density perturbations and isocurva-
ture density perturbations. Adiabatic density perturbations correspond to overall scaling of various
densities and do not affect the vanishing curvature scalar. For isocurvature density fluctuations the
net energy density remains invariant. GUT cosmic strings predict isocurvature density perturbations
while inflationary scenario predicts adiabatic density fluctuations.

In TGD framework inflation is replaced with quantum criticality of the phase transition period
leading from the cosmic string dominated phase to matter dominated phase. Since curvature scalar
vanishes during this period, the density perturbations are indeed adiabatic.
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Matter-antimatter asymmetry and cosmic strings

Despite huge amount of work done during last decades (during the GUT era the problem was regarded
as being solved!) matter-antimatter asymmetry remains still an unresolved problem of cosmology. A
possible resolution of the problem is matter-antimatter asymmetry in the sense that cosmic strings
contain antimatter and their exteriors matter. The challenge would be to understand the mechanism
generating this asymmetry. The vanishing of the net gauge charges of cosmic string allows this
symmetry since electro-weak charges of quarks and leptons can cancel each other.

The challenge is to identify the mechanism inducing the CP breaking necessary for the matter-
antimatter asymmetry. Quite a small CP breaking inside cosmic strings would be enough.

1. The key observation is that vacuum extremals as such are not physically acceptable: small
deformations of vacuum extremals to non-vacua are required. This applies also to cosmic strings
since as such they do note present preferred extremals. The reason is that the preferred extremals
involve necessary regions with Euclidian signature providing four-dimensional representations of
generalized Feynman diagrams with particle quantum numbers at the light-like 3-surfaces at
which the induced metric is degenerate.

2. The simplest deformation of vacuum extremals and cosmic strings would be induced by the
topological condensation of CP2 type vacuum extremals representing fermions. The topological
condensation at larger space-time surface in turn creates bosons as wormhole contacts.

3. This process induces a Kähler electric fields and could induce a small Kähler electric charge
inside cosmic string. This in turn would induce CP breaking inside cosmic string inducing
matter antimatter asymmetry by the minimization of the ground state energy. Conservation of
Kähler charge in turn would induce asymmetry outside cosmic string and the annihilation of
matter and antimatter would then lead to a situation in which there is only matter.

4. Either galactic cosmic strings or big cosmic strings (in the sense of having large string tension) at
the centers of galactic voids or both could generate the asymmetry and in the recent scenario big
strings are not necessary. One might argue that the photon to baryon ratio r ∼ 10−9 characteriz-
ing matter asymmetry quantitatively must be expressible in terms of some fundamental constant
possibly characterizing cosmic strings. The ratio ε = G/~R2 ' 4×10−8 is certainly a fundamen-
tal constant in TGD Universe. By replacing R with 2πR would give ε = G/(2πR)2 ' 1.0×10−9.
It would not be surprising if this parameter would determine the value of r.

The model can be criticized.

1. The model suggest only a mechanism and one can argue that the Kähler electric fields cre-
ated by topological condensates could be random and would not generate any Kähler electric
charge. Also the sign of the asymmetry could depend on cosmic string. A CP breaking at the
fundamental level might be necessary to fix the sign of the breaking locally.

2. The model is not the only one that one can imagine. It is only required that antimatter is
somewhere else. Antimatter could reside also at other p-adic space-time sheets and at the dark
space-time sheets with different values of Planck constant.

The needed CP breaking is indeed predicted by the fundamental formulation of quantum TGD
in terms of the modified Dirac action associated with Kähler action and its generalization allowing
include instanton term as imaginary part of Kähler action inducing CP breaking [20, 66] .

1. The key idea in the formulation of quantum TGD in terms of modified Dirac equation associ-
ated with Kähler action is that the Dirac determinant defined by the generalized eigenvalues
assignable to the Dirac operator DK equals to the vacuum functional defined as the exponent
of Kähler function in turn identifiable as Kähler action for a preferred extremal for which the
second variation of Kähler action vanishes at least for the variations responsible for dynamical
symmetries. The interpretation is in terms of quantum criticality with the hierarchy of symme-
tries defining a hierarchy of criticalities analogous to the hierarchy defined by the rank of the
matrix defined by the second derivatives of potential function in Thom’s catastrophe theory.
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2. This representation generalizes. One can add an imaginary instanton term to the Kähler function
and corresponding modified Dirac operator DK so that the generalized eigenvalues assignable to
DK (analogous to Higgs vacuum expectation) become complex. The natural conjecture is that
the resulting Dirac determinant equals to the exponent of Kähler action and imaginary instanton
term for the preferred extremal. The instanton term does not contribute to the configuration
space metric but provides a first principle description for CP breaking and anyonic effects. It
also predicts the dependence of these effects on the page of the book like structure defined by
the generalized imbedding space realizing the dark matter hierarchy with levels labeled by the
value of Planck constant.

3. In the case of cosmic strings CP breaking could be especially significant and force the generation
of Kähler electric charge. Instanton term is proportional to 1/~ so that CP breaking would be
small for the gigantic values of ~ characterizing dark matter. For small values of ~ the breaking
is large provided that the topological condensation is able to make the CP2 projection of cosmic
string four-dimensional so that the instanton contribution to the complexified Kähler action is
non-vanishing and large enough. Since instanton contribution as a local divergence reduces to
the contributions assignable to the light-like 3-surfaces X3

l representing topologically condensed
particles, CP breaking is large if the density of topologically condensed fermions and wormhole
contacts generated by the condensation of cosmic strings is high enough.

CP breaking at the level of CKM matrix

The CKM matrix for quarks contains CP breaking phase factors and this could lead to different
evaporation rates for baryons and anti-baryons are different (quark cannot appear as vapor phase
particle since vapor phase particle must have vanishing color gauge charges and in the recent vision
about quantum TGD CP2 type vacuum extremal which has not suffered topological condensation
represents vacuum). The CP breaking at the level of CKM matrix would be implied by the instanton
term present in the complexified Kähler action and modified Dirac operator. The mechanism might
rely on hadronic Kähler electric fields which are accompanied by color electric gauge fields proportional
to induced Kähler form.

The topological condensation of quarks on hadronic strings containing weak color electric fields
proportional to Kähler electric fields should be responsible for its string tension and this should in
turn generate CP breaking. At the parton level the presence of CP breaking phase factor exp(ikSCS),
where SCS =

∫
X4 J ∧ J + boundary term is purely topological Chern Simons term and naturally

associated with the boundaries of space-time sheets with at most D = 3-dimensional CP2 projection,
could have something to do with the matter antimatter asymmetry. Note however that TGD predicts
no strong CP breaking as QCD does [5] .

Development of strings in the string dominated cosmology

The development of the string perturbations in the Robertson Walker cosmology has been studied [33]
and the general conclusion seems to be that that all the details smaller than horizon are rapidly
smoothed out. One must of course take very cautiously the application of these result in TGD
framework.

In present case, the horizon has an infinite size so that details in all scales should die away. To
see what actually happens consider small perturbations of a static string along z-axis. Restrict the
consideration to a perturbation in the y-direction. Using instead of the proper time coordinate t the
”conformal time coordinate” τ defined by dτ = dt/a the equations of motion read [33]

(∂τ +
2ȧ

a
)(ẏU) = ∂z(y

′U) ,

U =
1√

1 + (y′)2 − ẏ2
. (14.3.47)

Restrict the consideration to small perturbations for which the condition U ' 1 holds. For the string
dominated cosmology the quantity ȧ/a = 1/

√
K is constant and the equations of motion reduce to a

very simple approximate form
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ÿ +
2√
K
ẏ − y′′ = 0 . (14.3.48)

The separable solutions of this equation are of type

y = g(a)(C sin (kz) +D cos (kz)) ,

g(a) = (
a

a0
)r . (14.3.49)

where r is a solution of the characteristic equation r2 + 2r/
√
K + k2 = 0:

r = − 1√
K

(1±
√

1− k2K) . (14.3.50)

For perturbations of small wavelength k > 1/
√
K, an extremely rapid attenuation occurs; 1/

√
K '

1027! For the long wavelength perturbations with k << 1/
√
K (physical wavelength is larger than t)

the attenuation is milder for the second root of above equation: attenuation takes place as (a/a0)
√
Kk2/2.

The conclusion is that irregularities in all scales are smoothed away but that attenuation is much slower
for the long wave length perturbations.

The absence of horizons in the string dominated phase has a rather interesting consequence. Ac-
cording to the well known Jeans criterion the size L of density fluctuations leading to the formation
of structures [33] must satisfy the following conditions

lJ < L < lH , (14.3.51)

where lH denotes the size of horizon and lJ denotes the Jeans length related to the sound velocity vs
and cosmic proper time as [33]

lJ ' 10vst . (14.3.52)

For a string dominated cosmology the size of the horizon is infinite so that no upper bound for the
size of the possible structures results. These structures of course, correspond to string like objects
of various sizes in the microscopic description. This suggests that primordial fluctuations create
structures of arbitrary large size, which become visible at much later time, when cosmology becomes
string dominated again.

Limiting temperature

Since particles are extended objects in TGD, one expects the existence of the limiting temperature
TH (Hagedorn temperature as it is called in string models) so that the primordial cosmology is in
Hagedorn temperature. A special consequence is that the contribution of the light particles to the
energy density becomes negligible: this is in accordance with the string dominance of the critical mass
cosmology. The value of TH is of order TH ∼ ~/R, where R is CP2 radius of order R ∼ 103.5

√
G and

thus considerably smaller than Planck temperature. Note that TH increases with Planck constant
and one can wonder whether this increase continues only up to TH = ~cr/R =

√
~cr/G, which

corresponds to the critical value ~cr = R2/G. The value R2/G = 3× 2023~0 is consistent with p-adic
mass calculations and is favored by by number theoretical arguments [36, 5] .

The existence of limiting temperature gives strong constraint to the value of the light cone proper
time aF when radiation dominance must have established itself in the critical cosmology which gave
rise to our sub-cosmology. Before the moment of transition to hyperbolic cosmology critical cosmology
is string dominated and the generation of negative energy virtual gravitons builds up gradually the
huge energy density density, which can lead to gravitational collapse, splitting of the strings and
establishment of thermal equilibrium with gradually rising temperature. This temperature cannot
however become higher than Hagedorn temperature TH , which serves thus as the highest possible
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temperature of the effectively radiation dominated cosmology following the critical period. The decay
of the split strings generates elementary particles providing the seeds of galaxies.

If most strings decay to light particles then energy density is certainly of the form 1/a4 of radiation
dominated cosmology. This is not the only manner to obtain effective radiation dominance. Part of
the thermal energy goes to the kinetic energy of the vibrational motion of strings and energy density
ρ ∝ 1/a2 cannot hold anymore. The strings of the condensate is expected to obey the scaling law
ρ ∝ 1/a4, p = ρ/3 [33] . The simulations with string networks suggest that the energy density of the

string network behaves as ρ ∝ 1/a2(1+v2), where v2 is the mean square velocity of the point of the
string [12] . Therefore, if the value of the mean square velocity approaches light velocity, effective
radiation dominance results even when strings dominate [24] . In radiation dominated cosmology the
velocity of sound is v = 1/

√
3. When v lowers to sound velocity one obtains stationary cosmology

which is string dominated.
An estimate for aF is obtained from the requirement that the temperature of the radiation domi-

nated cosmology, when extrapolated from its value TR ' .3eV at the time about aR ∼ 3× 107 years
for the decoupling of radiation and matter to a = aF using the scaling law T ∝ 1/a, corresponds to
Hagedorn temperature. This gives

aF = aR
TR
TH

,

TH = n
R , aR ∼ 3× 107 y , TR = .27 eV .

(14.3.53)

This gives a rough estimate aF ∼ 3 × 10−10 seconds, which corresponds to length scale of order
7.7× 10−2 meters. The value of aF is quite large.

The result does not mean that radiation dominated sub-cosmologies might have not developed
before a = aF . In fact, entire series of critical sub-cosmologies could have developed to radiation dom-
inated phase before the final one leading to our sub-cosmology is actually possible. The contribution
of sub-cosmology i to the total energy density of recent cosmology is in the first approximation equal
to the fraction (aF (i)/aF )4. This ratio is multiplied by a ratio of numerical factors telling the number
of effectively massless particle species present in the condensate if elementary particles dominate the
mass density. If strings dominate the mass density (as expected) the numerical factor is absent.

For some reason the later critical cosmologies have not evolved to the radiation dominated phase.
This might be due to the reduced density of cosmic strings in the vapor phase caused by the formation
of the earlier cosmologies which does not allow sufficiently strong gravitational collapse to develop and
implies that critical cosmology transforms directly to stationary cosmology without the intervening
effectively radiation dominated phase. Indeed, condensed cosmic strings develop Kähler electric field
compensating the huge positive Kähler action of free string and can survive the decay to light particles
if they are not split. The density of split strings yielding light particles is presumably the proper
parameter in this respect.

p-Adic length scale hypothesis allows rather predictive quantitative model for the series of sub-
cosmologies [77] predicting the number of them and allowing to estimate the moments of their birth,
the durations of the critical periods and also the durations of radiation dominated phases. p-Adic
length scale hypothesis allows also to estimate the maximum temperature achieved during the critical
period: this temperature depends on the duration of the critical period a1 as T ∼ n/a1, where n turns
out to be of order 1030. This means that if the duration of the critical period is long enough, transition
to string dominated asymptotic cosmology occurs with the intervening decay of cosmic strings leading
to the radiation dominated phase.

The existence of the limiting temperature has radical consequences concerning the properties of
the very early cosmology. The contribution of a given massless particle to the energy density becomes
constant. So, unless the number of the effectively massless particle families N(a) increases too fast
the contribution of the effectively massless particles to the energy density becomes negligible. The
massive excitations of large size (string like objects) are indeed expected to become dominant in the
mass density.

What about thermodynamical implications of dark matter hierarchy?

The previous discussion has not mentioned dark matter hierarchy labeled by increasing values of
Planck constants and predicted macroscopic quantum coherence in arbitrarily long scales. In TGD
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Universe dark matter hierarchy means also a hierarchy of conscious entities with increasingly long
span of memory and higher intelligence [87, 27] .

This forces to ask whether the second law is really a fundamental law and whether it could reflect
a wrong view about existence resulting resulting when all these dark matter levels and information
associated with conscious experiences at these levels is neglected. For instance, biological evolution
difficult to understand in a universe obeying second law relies crucially on evolution as gradual progress
in which sudden leaps occur as new dark matter levels emerge.

TGD inspired consciousness suggests that Second Law holds true only for the mental images of a
given self (a system able to avoid bound state entanglement with environment [87] ) rather than being
a universal physical law. Besides these mental images there is irreducible basic awareness of self and
second law does not apply to it. Also the hierarchy of higher level conscious entities is there. In this
framework second law would basically reflect the exclusion of conscious observers from the physical
model of the Universe.

14.3.4 Mechanism of accelerated expansion in TGD Universe

In TGD framework the most plausible identification for the accelerated periods of cosmic expansion
is in terms of phase transitions increasing gravitational Planck constant. These phase transitions
would in average sense provide quantum counterpart for smooth cosmic expansion. These phase
transitions might be initiated by the repulsive Coulomb interaction between cosmic strings driven to
the boundaries of the large voids. It is interesting to see how this view relates with the assumption of
positive cosmological constant.

How accelerated expansion results in standard cosmology?

The accelerated of cosmic expansion means that the deceleration parameter

q = −(ad2a/ds2)/(da/ds)2

is negative. For Robertson-Walker cosmologies one has

H2 ≡ (
da/ds

a
)2 =

8πGρ+ Λ

3
−K/a2, K = 0,±1 ,

3
d2a/ds2

a
= Λ− 4πG(ρ+ 3p) ≡ −4πG(1 + 3w)ρ . (14.3.54)

It is clear that the accelerated expansion requires positive value of Λ.
The deceleration parameter can be expressed as q = 1

2 (1 + 3w)(1 +K/(aH)2). K =, 0, 1,−1 tells
whether the cosmology is flat, hyper-spherical, or hyperbolic. The rate for the change of Hubble
constant can be expressed as (dH/ds)/H2 = (1 + q) and the acceleration of cosmic expansion means
q < −1. All particle models predict q ≥ −1.

On basis of modified Einstein’s equations written for the recent metric convention (+,-,-.-) (note
that opposite signature changes the sign of the left hand side)

−Gαβ − Λgαβ = 8πGTαβ (14.3.55)

it is clear that the introduction of a positive cosmological constant could be interpreted by saying that
for gravitational vacuum carries energy density equal to Λ/8π and negative pressure. The negative
gravitational pressure would induce the acceleration.

Cosmological term at the level of field equations could be also interpreted by saying that Einstein’s
equations hold true in the original sense but that energy momentum tensor contains besides the density
of inertial mass also a positive density of purely gravitational mass: T → T + Λg so that Equivalence
Principle fails. Since cosmological constant means effectively negative pressure p = −Λ/8π the intro-
duction of the cosmological constant means the effective replacement ρ + 3p → ρ + 3p − 2Λ/8π). In
the so called Λ−CDM model [5] the densities of dark energy, ordinary matter, and dark matter are
assumed to sum up to critical mass density ρcr = 3/(8πgaaGa

2). The fraction of dark matter density
is deduced to be ΩΛ = .74 from mere criticality.
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Critical cosmology predicts accelerated expansion

In order to get clue about the mechanism of accelerated cosmic expansion in TGD framework it is
useful to study the deceleration parameter for various cosmologies in TGD framework.

In standard Friedmann cosmology with non-vanishing cosmological constant one has

3
d2a/ds2

a
= Λ− 4πG(ρ+ 3p) . (14.3.56)

From this form it is obvious why Λ > 0 is required in order to obtain accelerating expansion.
Deceleration parameter is a purely geometric property of cosmology and defined as

q ≡ −a d
2a/ds2

(da/ds)2
. (14.3.57)

During radiation and matter dominated phases the value of q is positive. In TGD framework there
are several metrics which are independent of details of dynamics.

1. String dominated cosmology

String dominated cosmology is hyperbolic cosmology and might serve as a model for very early
cosmology corresponds to the metric

gaa ≡ (ds/da)2 = 1−K0 . (14.3.58)

In this case one has q = 0.

2. Critical cosmology

Critical cosmology with flat 3-space corresponds to

gaa = 1−K ,

K ≡ K0

1− u2
,

u ≡ a

a1
. (14.3.59)

gaa has the same form also for over-critical cosmologies. Both cosmologies have finite duration. In
this case q is given by

q = −K0
K0u

2

1− u2 −K0
< 0 , (14.3.60)

and is negative. The rate of change for Hubble constant is

dH/ds

H2
= −(1 + q) , (14.3.61)

so that one must have q < −1 in order to have acceleration. This holds true for a >
√

(1−K0)/(1 +K0)a1.
Quantum critical cosmology could be seen as a universal characteristic of quantum critical phases

associated with phase transition like phenomena. No assumptions about the mechanism behind the
transition are made. There is great temptation to assign this cosmology to the phase transitions
increasing the size of large voids occurring during late cosmology. The observed jerk assumed to lead
from de-accelerated to accelerated expansion for about 13 billion years ago might have interpretation
as a transition of this kind.

3. Stationary cosmology
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TGD predicts a one-parameter family of stationary cosmologies from the requirement that the
density of gravitational 4-momentum is conserved. This is guaranteed if curvature scalar is extremized.
These cosmologies are expected to define asymptotic cosmologies or at least characterize the stationary
phases between quantum phase transitions. The metric is given by

gaa =
1− 2x

1− x
,

x = (
a0

a
)2/3 . (14.3.62)

The deceleration parameter

q =
1

3

x

(1− 2x)(1− x)
. (14.3.63)

is positive so that it seems that TGD does not lead to a continual acceleration which might be regarded
as tearing galaxies into pieces.

If quantum critical phases correspond to the expansion of large voids induced by the accelerated
radial motion of galactic strings as they reach the boundaries of the voids, one can consider a series of
phase transitions between stationary cosmologies in which the value of gravitational Planck constant
and the parameter a0 characterizing the stationary cosmology increase by some even power of two as
the ruler-and-compass integer hypothesis [36, 30] and p-adic length scale hypothesis suggests.

4. Summary

One can safely conclude that TGD predict accelerated cosmic expansion during critical periods
and that dark energy is replaced with dark matter in TGD framework. There is also a rather clear
view about detailed mechanism leading to the accelerated expansion at ”microscopic” level. Some
summarizing remarks are in order.

1. Accelerated expansion is predicted only during periods of over-critical and critical cosmologies
parameterized essentially by their duration. The microscopic description would be in terms of
phase transitions increasing the size scale of large void. This phase transition is basically a
quantum jump increasing gravitational Planck constant and thus the size of the large void. p-
Adic length scales are favored sizes of the large voids. A large piece of 4-D cosmological history
would be replaced by a new one in this transition so that quite a dramatic event would be in
question.

2. p-Adic fractality forces to ask whether there is a fractal hierarchy of time scales in which Equiv-
alence Principle in the formulation provided by General Relativity sense fails locally (no failure
in stringy sense). This would predict a fractal hierarchy of large voids and phase transitions
during which accelerated expansion occurs.

3. Cosmological constant can be said to be vanishing in TGD framework and the description of
accelerated expansion in terms of a positive cosmological constant is not equivalent with TGD
description since only effective pressure is negative. TGD description has some resemblance to
the description in terms of quintessence [7] , a hypothetical form of matter for which equation
of state is of form p = −wρ, w < −1/3, so that one has ρ + 3p = 1 − w < 0 and deceleration
parameter can be negative. The energy density of quintessence is however positive. TGD does
not predict endlessly accelerated acceleration tearing galaxies into pieces if the total purely
gravitational energy of large voids is assumed to vanish so that Equivalence Principle holds
above this length scale.

TGD counterpart of Λ as a density of dark matter rather than dark energy

The value of Λ is expressed usually as a fraction of vacuum energy density from the critical mass
density. Combining the data about acceleration of cosmic expansion with the data about cosmic
microwave background gives ΩΛ ' .74.
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1. Critical mass density requires also in TGD framework the presence of dark contribution since
visible matter contribute only a few percent of the total mass density and ΩΛ ' .− 74 charac-
terizes this contribution. Since the acceleration mechanism has nothing to do with dark energy,
dark energy can be replaced with dark matter in TGD framework.

2. The dark matter hierarchy labeled by the values of Planck constant suggests itself. The 1/a2

behavior of dark matter density suggests an interpretation as dark matter topologically con-
densed on cosmic strings. Besides ordinary particles also super-symplectic bosons and their
super partners playing a key role in the model of hadrons and black holes suggest themselves.

3. Stationary cosmology predicts that the density of stringy matter and thus dark matter decreases
like 1/a2 as a function of M4

+ proper time. This behavior is very natural in cosmic string
dominated cosmology and one expects that the TGD counterpart of cosmological constant should
behave as Λ ∝ 1/a2 in average sense. At primordial period cosmological constant would be
gigantic but its recent value would be extremely small and naturally of correct order of magnitude
if the fraction of positive gravitational energy is few per cent about negative gravitational energy.
Hence the basic problem of the standard cosmology would find an elegant solution.

Piecewise constancy of TGD counterpart of Λ and p-adic length scale hypothesis

There are good reasons to believe that TGD counterpart of Λ is piecewise constant. Classical picture
suggests that the sizes of large voids increase in discrete jumps. The transitions increasing the size
of the void would occur when the galactic strings end up to the boundary of the large void and large
repulsive Coulomb energy forces the phase transition increasing Planck constant.

Also the quantum astrophysics based on the notion of gravitational Planck constant strongly
suggests that astrophysical systems are analogous to stationary states of atoms so that the sizes of
astrophysical systems remain constant during the cosmological expansion, and can change only in
quantum jumps increasing the value of Planck constant and therefore increasing the radius of the
large void regarded as dark matter bound state.

Since the set of preferred values of Planck constant is closed under multiplication by powers of
2, p-adic length scales Lp, p ' 2k form a preferred set of sizes scales for the large voids with phase
transitions increasing k by even integer. What values of k are realized depends on the time scale of
the dynamics driving the galactic strings to the boundaries of expanded large void. Even if all values
of k are realized the transitions becomes very rare for large values of a.

p-Adic fractality predicts that the effective cosmological constant Λ scales as 1/L2(k) as a function
of the p-adic scale characterizing the space-time sheet implying a series of phase transitions reducing
the value of effective cosmological constant Λ. As noticed, the allowed values of k would be of form
k = k0 + 2n, where however all integer value need not be realized. By p-adic length scale hypothesis
primes are candidates for k. The recent value of the effective cosmological constant can be understood.
The gravitational energy density usually assigned to the cosmological constant is identifiable as that
associated with topologically condensed cosmic strings and magnetic flux tubes to which they are
gradually transformed during cosmological evolution.

p-Adic prediction is consistent with the recent study [34] according to which cosmological constant
has not changed during the last 8 billion years: the conclusion comes from the reshifts of supernovae
of type Ia. If p-adic length scales L(k) = p ' 2k, k any positive integer, are allowed, the finding gives
the lower bound TN >

√
(2)/(

√
2− 1))× 8 = 27.3 billion years for the recent age of the universe.

Brad Shaefer from Lousiana University has studied the red shifts of gamma ray bursters up to a
red shift z = 6.3, which corresponds to a distance of 13 billion light years [30] , and claims that the
fit to the data is not consistent with the time independence of the cosmological constant. In TGD
framework this would mean that a phase transition changing the value of the cosmological constant
must have occurred during last 13 billion years. In principle the phase transitions increasing the size
of large voids could be observed as sudden changes of sign for the deceleration parameter.

The reported cosmic jerk as an accelerated period of cosmic expansion

There is an objection against the hypothesis that cosmological constant has been gradually decreasing
during the cosmic evolution. Type Ia supernovae at red shift z ∼ .45 are fainter than expected, and
the interpretation is in terms of an accelerated cosmic expansion [26] . If a period of an accelerated
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expansion has been preceded by a decelerated one, one would naively expect that for older supernovae
from the period of decelerating expansion, say at redshifts about z > 1, the effect should be opposite.
The team led by Adam Riess [16] has identified 16 type Ia supernovae at redshifts z > 1.25 and
concluded that these supernovae are indeed brighter. The conclusion is that about about 5 billion
years ago corresponding to z ' .48, the expansion of the Universe has suffered a cosmic jerk and
transformed from a decelerated to an accelerated expansion.

The apparent dimming/brightening of supernovae at the period of accelerated/decelerated expan-
sion the follows from the luminosity distance relation

F =
L

4πd2
L

, (14.3.64)

where L is actual luminosity and F measured luminosity, and from the expression for the distance dL
in flat cosmology in terms of red shift z in a flat Universe

dL = (1 + z)

∫ z

0

du

H(u)

= (1 + z)H−1
0

∫ z

0

exp

[
−
∫ u

0

du [1 + q(u)] d(ln(1 + u)

]
du , (14.3.65)

where one has

H(z) =
dln(a)

ds
,

q ≡ −d
2a/ds2

aH2
=
dH−1

ds
− 1 . (14.3.66)

In TGD framework a corresponds to the light-cone proper time and s to the proper time of Robertson-
Walker cosmology. Depending on the sign of the deceleration parameter q, the distance dL is larger
or smaller and accordingly the object looks dimmer or brighter.

The natural interpretation for the jerk would be as a period of accelerated cosmic expansion due
to a phase transition increasing the value of gravitational Planck constant.

14.4 Microscopic description of black-holes in TGD Universe

In TGD framework the imbedding of the metric for the interior of Schwartshild black-hole fails below
some critical radius. This strongly suggests that only the exterior metric of black-hole makes sense
in TGD framework and that TGD must provide a microscopic description of black-holes. Somewhat
unexpectedly, I ended up with this description from a model of hadrons.

Super-symplectic algebra is a generalization of Kac-Moody algebra obtained by replacing the finite-
dimensional group G with the group of symplectic transformations of δM4

±×CP2. This algebra defines
the group of isometries for the ”world of classical worlds” and together with the Kac-Moody algebra
assignable to the deformations of light-like 3-surfaces representing orbits of 2-D partonic surfaces it
defines the mathematical backbone of quantum TGD as almost topological QFT.

From the point of view of experimentalist the basic question is how these super-symplectic degrees
of freedom reflect themselves in existing physics and the pleasant surprise was that super-symplectic
bosons explain what might be called the missing hadronic mass and spin. The point is that quarks
explain only about 170 MeV of proton mass. Also the spin puzzle of proton is known for years. Also
precise mass formulas for hadrons emerge.

Super-symplectic degrees of freedom represent dark matter in electro-weak sense and highly entan-
gled hadronic strings in Hagedorn temperature are very much analogous to black-holes. This indeed
generalizes to a microscopic model for black-holes created when hadronic strings fuse together in high
density.
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14.4.1 Super-symplectic bosons

TGD predicts also exotic bosons which are analogous to fermion in the sense that they correspond
to single wormhole throat associated with CP2 type vacuum extremal whereas ordinary gauge bosons
corresponds to a pair of wormhole contacts assignable to wormhole contact connecting positive and
negative energy space-time sheets. These bosons have super-conformal partners with quantum num-
bers of right handed neutrino and thus having no electro-weak couplings. The bosons are created
by the purely bosonic part of super-symplectic algebra [21, 20] , whose generators belong to the
representations of the color group and 3-D rotation group but have vanishing electro-weak quantum
numbers. Their spin is analogous to orbital angular momentum whereas the spin of ordinary gauge
bosons reduces to fermionic spin. Recall that super-symplectic algebra is crucial for the construction
of configuration space Kähler geometry. If one assumes that super-symplectic gluons suffer topological
mixing identical with that suffered by say U type quarks, the conformal weights would be (5,6,58)
for the three lowest generations. The application of super-symplectic bosons in TGD based model of
hadron masses is discussed in [58] and here only a brief summary is given.

As explained in [58] , the assignment of these bosons to hadronic space-time sheet is an attractive
idea.

1. Quarks explain only a small fraction of the baryon mass and that there is an additional con-
tribution which in a good approximation does not depend on baryon. This contribution should
correspond to the non-perturbative aspects of QCD. A possible identification of this contribution
is in terms of super-symplectic gluons. Baryonic space-time sheet with k = 107 would contain
a many-particle state of super-symplectic gluons with net conformal weight of 16 units. This
leads to a model of baryons masses in which masses are predicted with an accuracy better than
1 per cent.

2. Hadronic string model provides a phenomenological description of non-perturbative aspects of
QCD and a connection with the hadronic string model indeed emerges. Hadronic string tension
is predicted correctly from the additivity of mass squared for J = 2 bound states of super-
symplectic quanta. If the topological mixing for super-symplectic bosons is equal to that for U
type quarks then a 3-particle state formed by 2 super-symplectic quanta from the first generation
and 1 quantum from the second generation would define baryonic ground state with 16 units
of conformal weight. A very precise prediction for hadron masses results by assuming that the
spin of hadron correlates with its super-symplectic particle content.

3. Also the baryonic spin puzzle caused by the fact that quarks give only a small contribution to the
spin of baryons, could find a natural solution since these bosons could give to the spin of baryon
an angular momentum like contribution having nothing to do with the angular momentum of
quarks.

4. Super-symplectic bosons suggest a solution to several other anomalies related to hadron physics.
The events observed for a couple of years ago in RHIC [33] suggest a creation of a black-hole like
state in the collision of heavy nuclei and inspire the notion of color glass condensate of gluons,
whose natural identification in TGD framework would be in terms of a fusion of hadronic space-
time sheets containing super-symplectic matter materialized also from the collision energy. In
the collision, valence quarks connected together by color bonds to form separate units would
evaporate from their hadronic space-time sheets in the collision, and would define TGD counter-
part of Pomeron, which experienced a reincarnation for few years ago [40]. The strange features
of the events related to the collisions of high energy cosmic rays with hadrons of atmosphere
(the particles in question are hadron like but the penetration length is anomalously long and
the rate for the production of hadrons increases as one approaches surface of Earth) could be
also understood in terms of the same general mechanism.

14.4.2 Are ordinary black-holes replaced with super-symplectic black-holes
in TGD Universe?

Some variants of super string model predict the production of small black-holes at LHC. I have never
taken this idea seriously but in a well-defined sense TGD predicts black-hole like states associated with
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super-symplectic gravitons with strong gravitational constant defined by the hadronic string tension.
The proposal is that super-symplectic black-holes have been already seen in Hera, RHIC, and the
strange cosmic ray events.

Baryonic super-symplectic black-holes of the ordinary M107 hadron physics would have mass 934.2
MeV, very near to proton mass. The mass of their M89 counterparts would be 512 times higher, about
478 GeV. ”Ionization energy” for Pomeron, the structure formed by valence quarks connected by color
bonds separating from the space-time sheet of super-symplectic black-hole in the production process,
corresponds to the total quark mass and is about 170 MeV for ordinary proton and 87 GeV for M89

proton. This kind of picture about black-hole formation expected to occur in LHC differs from the
stringy picture since a fusion of the hadronic mini black-holes to a larger black-hole is in question.

An interesting question is whether the ultrahigh energy cosmic rays having energies larger than
the GZK cut-off of 5× 1010 GeV are baryons, which have lost their valence quarks in a collision with
hadron and therefore have no interactions with the microwave background so that they are able to
propagate through long distances.

In neutron stars the hadronic space-time sheets could form a gigantic super-symplectic black-
hole and ordinary black-holes would be naturally replaced with super-symplectic black-holes in TGD
framework (only a small part of black-hole interior metric is representable as an induced metric). This
obviously means a profound difference between TGD and string models.

1. Hawking-Bekenstein black-hole entropy would be replaced with its p-adic counterpart given by

Sp = (
M

m(CP2)
)2 × log(p) , (14.4.1)

where m(CP2) is CP2 mass, which is roughly 10−4 times Planck mass. M is the contribution
of p-adic thermodynamics to the mass. This contribution is extremely small for gauge bosons
but for fermions and super-symplectic particles it gives the entire mass.

2. If p-adic length scale hypothesis p ' 2k holds true, one obtains

Sp = klog(2)× (
M

m(CP2)
)2, (14.4.2)

m(CP2) = ~/R, R the ”radius” of CP2, corresponds to the standard value of ~0 for all values
of ~.

3. Hawking-Bekenstein area law gives in the case of Schwartschild black-hole

S =
A

4G
× ~ = πGM2 × ~ . (14.4.3)

For the p-adic variant of the law Planck mass is replaced with CP2 mass and klog(2) ' log(p)
appears as an additional factor. Area law is obtained in the case of elementary particles if k is
prime and wormhole throats have M4 radius given by p-adic length scale Lk =

√
kR which is

exponentially smaller than Lp. For macroscopic super-symplectic black-holes modified area law
results if the radius of the large wormhole throat equals to Schwartschild radius. Schwartschild
radius is indeed natural: a simple deformation of the Schwartschild exterior metric to a metric
representing rotating star transforms Schwartschild horizon to a light-like 3-surface at which the
signature of the induced metric is transformed from Minkowskian to Euclidian.

4. The formula for the gravitational Planck constant appearing in the Bohr quantization of plan-
etary orbits and characterizing the gravitational field body mediating gravitational interaction
between masses M and m [77] reads as
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~gr =
GMm

v0
~0 .

v0 = 2−11 is the preferred value of v0. One could argue that the value of gravitational Planck
constant is such that the Compton length ~gr/M of the black-hole equals to its Schwartshild
radius. This would give

~gr =
GM2

v0
~0 , v0 = 1/2 . (14.4.4)

The requirement that ~gr is a ratio of ruler-and-compass integers expressible as a product of
distinct Fermat primes (only four of them are known) and power of 2 would quantize the mass
spectrum of black hole [77] . Even without this constraint M2 is integer valued using p-adic
mass squared unit and if p-adic length scale hypothesis holds true this unit is in an excellent
approximation power of two.

5. The gravitational collapse of a star would correspond to a process in which the initial value of
v0 , say v0 = 2−11, increases in a stepwise manner to some value v0 ≤ 1/2. For a supernova with
solar mass with radius of 9 km the final value of v0 would be v0 = 1/6. The star could have an
onion like structure with largest values of v0 at the core as suggested by the model of planetary
system. Powers of two would be favored values of v0. If the formula holds true also for Sun one
obtains 1/v0 = 3× 17× 213 with 10 per cent error.

6. Black-hole evaporation could be seen as means for the super-symplectic black-hole to get rid
of its electro-weak charges and fermion numbers (except right handed neutrino number) as
the antiparticles of the emitted particles annihilate with the particles inside super-symplectic
black-hole. This kind of minimally interacting state is a natural final state of star. Ideal super-
symplectic black-hole would have only angular momentum and right handed neutrino number.

7. In TGD light-like partonic 3-surfaces are the fundamental objects and space-time interior defines
only the classical correlates of quantum physics. The space-time sheet containing the highly
entangled cosmic string might be separated from environment by a wormhole contact with size
of black-hole horizon.

This looks the most plausible option but one can of course ask whether the large partonic 3-surface
defining the horizon of the black-hole actually contains all super-symplectic particles so that super-
symplectic black-hole would be single gigantic super-symplectic parton. The interior of super-symplectic
black-hole would be a space-like region of space-time, perhaps resulting as a large deformation of CP2

type vacuum extremal. Black-hole sized wormhole contact would define a gauge boson like variant of
the black-hole connecting two space-time sheets and getting its mass through Higgs mechanism. A
good guess is that these states are extremely light.

14.4.3 Anyonic view about blackholes

A new element to the model of black hole comes from the vision that black hole horizon as a light-
like 3-surface corresponds to a light-like orbit of light-like partonic 2-surface. This allows two kinds
of black holes. Fermion like black hole would correspond to a deformed CP2 type extremal which
Euclidian signature of metric and topologically condensed at a space-time sheet with a Minkowskian
signature. Boson like black hole would correspond to a wormhole contact connecting two space-time
sheets with Minkowskian signature. Wormhole contact would be a piece deformed CP2 type extremal
possessing two light-like throats defining two black hole horizons very near to each other. It does not
seem absolutely necessary to assume that the interior metric of the black-hole is realized in another
space-time sheet with Minkowskian signature.

Second new element relates to the value of Planck constant. For ~gr = 4GM2 the Planck length

LP (~) =
√
~G equals to Schwartschild radius and Planck mass equals to MP (~) =

√
~/G = 2M . If
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the mass of the system is below the ordinary Planck mass: M ≤ mP (~0)/2 =
√

~0/4G, gravitational
Planck constant is smaller than the ordinary Planck constant.

Black hole surface contains ultra dense matter so that perturbation theory is not expected to
converge for the standard value of Planck constant but do so for gravitational Planck constant. If the
phase transition increasing Planck constant is a friendly gesture of Nature making perturbation theory
convergent, one expects that only the black holes for which Planck constant is such that GM2/4π~ < 1
holds true are formed. Black hole entropy -being proportional to 1/~- is of order unity so that TGD
black holes are not very entropic. ~ = GM2/v0, v0 = 1/4, would hold true for an ideal black hole
with Planck length (~G)1/2 equal to Schwartshild radius 2GM . Since black hole entropy is inversely
proportional to ~, this would predict black hole entropy to be of order single bit. This of course looks
totally non-sensible if one believes in standard thermodynamics. For the star with mass equal to 1040

Planck masses the entropy associated with the initial state of the star would be roughly the number
of atoms in star equal to about 1060. Black hole entropy proportional to GM2/~ would be of order
1080 provided the standard value of ~ is used as unit. This stimulates some questions.

1. Does second law pose an upper bound on the value of ~ of dark black hole from the requirement
that black hole has at least the entropy of the initial state. The maximum value of ~ would be
given by the ratio of black hole entropy to the entropy of the initial state and about 1020 in the
example consider to be compared with GM2/v0 ∼ 1080.

2. Or should one generalize thermodynamics in a manner suggested by zero energy ontology by
making explicit distinction between subjective time (sequence of quantum jumps) and geometric
time? The arrow of geometric time would correlate with that of subjective time. One can argue
that the geometric time has opposite direction for the positive and negative energy parts of
the zero energy state interpreted in standard ontology as initial and final states of quantum
event. If second law would hold true with respect to subjective time, the formation of ideal
dark black hole would destroy entropy only from the point of view of observer with standard
arrow of geometric time. The behavior of phase conjugate laser light would be a more mundane
example. Do self assembly processes serve as example of non-standard arrow of geometric time
in biological systems? In fact, zero energy state is geometrically analogous to a big bang followed
by big crunch. One can however criticize the basic assumption as ad hoc guess. One should
really understand the the arrow of geometric time. This is discussed in detail in [7] .

If the partonic 2-surface surrounds the tip of causal diamond CD, the matter at its surface is in
anyonic state with fractional charges. Anyonic black hole can be seen as single gigantic elementary
particle stabilized by fractional quantum numbers of the constituents preventing them from escaping
from the system and transforming to ordinary visible matter. A huge number of different black holes
are possible for given value of ~ since there is infinite variety of pairs (na, nb) of integers giving rise
to same value of ~.

One can imagine that the partonic surface is not exact sphere except for ideal black holes but
contains large number of magnetic flux tubes giving rise to handles. Also a pair of spheres with
different radii can be considered with surfaces of spheres connected by braided flux tubes. The
braiding of these handles can represent information and one can even consider the possibility that
black hole can act as a topological quantum computer. There would be no sharp difference between
the dark parts of black holes and those of ordinary stars. Only the volume containing the complex flux
tube structures associated with the orbits of planets and various objects around star would become
very small for black hole so that the black hole might code for the topological information of the
matter collapsed into it.

14.5 A quantum model for the formation of astrophysical struc-
tures and dark matter?

D. Da Rocha and Laurent Nottale, the developer of Scale Relativity, have ended up with an highly
interesting quantum theory like model for the evolution of astrophysical systems [27] (I am grateful for
Victor Christianito for informing me about the article). In particular, this model applies to planetary
orbits. I learned later that also A. Rubric and J. Rubric have proposed a Bohr model for planetary
orbits [28] already 1998.
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The model is simply Schrödinger equation with Planck constant ~ replaced with what might be
called gravitational Planck constant

~ → ~gr =
GmM

v0
. (14.5.1)

Here I have used units ~ = c = 1. v0 is a velocity parameter having the value v0 = 144.7 ± .7 km/s
giving v0/c = 4.6× 10−4. The peak orbital velocity of stars in galactic halos is 142± 2 km/s whereas
the average velocity is 156± 2 km/s. Also sub-harmonics and harmonics of v0 seem to appear.

The model makes fascinating predictions which hold true. For instance, the radii of planetary
orbits fit nicely with the prediction of the hydrogen atom like model. The inner solar system (planets
up to Mars) corresponds to v0 and outer solar system to v0/5.

The predictions for the distribution of major axis and eccentrities have been tested successfully
also for exoplanets. Also the periods of 3 planets around pulsar PSR B1257+12 fit with the predictions
with a relative accuracy of few hours/per several months. Also predictions for the distribution of stars
in the regions where morphogenesis occurs follow from the gravitational Schödinger equation.

What is important is that there are no free parameters besides v0. In [27] a wide variety of
astrophysical data is discussed and it seem that the model works and has already now made predictions
which have been later verified. In the following I shall discuss Nottale’s model from the point of view
of TGD.

14.5.1 TGD prediction for the parameter v0

One of the basic questions is the origin of the parameter v0, which according to a rich amount of
experimental data discussed in [27] seems to play a role of a constant of Nature. One of the first
applications of cosmic strings in TGD sense was an explanation of the velocity spectrum of stars in
the galactic halo in terms of dark matter which could consists of cosmic strings. Cosmic strings could
be orthogonal to the galactic plane going through the nucleus (jets) or they could be in galactic plane
in which case the strings and their decay products would explain dark matter assuming that the length
of cosmic string inside a sphere of radius R is or has been roughly R [25] . The predicted value of the
string tension is determined by the CP2 radius whose ratio to Planck length is fixed by electron mass
via p-adic mass calculations. The resulting prediction for the v0 is correct and provides a working
model for the constant orbital velocity of stars in the galactic halo.

The parameter v0 ' 2−11, which has actually the dimension of velocity unless on puts c = 1,
and also its harmonics and sub-harmonics appear in the scaling of ~. v0 corresponds to the velocity
of distant stars in the model of galactic dark matter. TGD allows to identify this parameter as the
parameter

v0 = 2
√
TG =

√
1

2αK

√
G

R2
,

T =
1

8αK

~0

R2
. (14.5.2)

Here T is the string tension of cosmic strings, R denotes the ”radius” of CP2 (2R is the radius of
geodesic sphere of CP2). αK is Kähler coupling strength, the basic coupling constant strength of TGD,
whose evolution as a function of p-adic length scale is fixed by quantum criticality. The condition that
G is invariant in the p-adic coupling constant evolution and number theoretical arguments predict

αK(p) = k
1

log(p) + log(K)
,

K =
R2

~0G
= 2× 3× 5× 7× 11× 13× 17× 19× 23 , k ' π/4 . (14.5.3)

The predicted value of v0 depends logarithmically on the p-adic length scale and for p ' 2127 − 1
(electron’s p-adic length scale) one has v0 ' 2−11.
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14.5.2 Model for planetary orbits without v0 → v0/5 scaling

Also harmonics and sub-harmonics of v0 appear in the model of Nottale and Da Rocha. For instance,
the outer planets (Jupiter, Saturn,...) correspond to v0/5 whereas inner planets correspond to v0.
Quite generally, it is found that the values seem to come as harmonics and sub-harmonics of v0:
vn = nv0 and v0/n, and the argument [27] is that the different values of n relate to fractality. This
scaling is not necessary for the planetary orbits in TGD based model.

Effectively a multiplication n → 5n of the principal quantum number is in question in the case
of outer planets. If one accepts the interpretation that visible matter has concentrated around dark
matter, which is in macroscopic quantum phase around Bohr orbits, this allows to consider also the
possibility that ~gr has the same value for all planets.

1. Some gravitational perturbation has kicked dark matter from the region of the asteroid belt to
n ' 5k, k = 2, .., 6, orbits. The best fit is obtained by using values of n deviating somewhat from
multiples of 5 which suggests that the scaling of v0 is not needed. Gravitational perturbations
might have caused the same for the visible matter. The fact that the tilt angles of Earth and
outer planets other than Pluto are nearly the same suggests that the orbits of these planets
might be an outcome of some violent quantum process for dark matter preserving the orbital
plane in a good approximation. Pluto might in turn have experienced some violent collision
changing its orbital plane.

2. There could exist at least small amounts of dark matter at all orbits but visible matter is
concentrated only around orbits containing some critical amount of dark matter.

Exp. T-B Bohr1 Bohr2

Planet R/RM R/RM [n,R/RM ] [n,R/RM ]

Mercury 1 1 [3, 1]
Venus 1.89 1.75 [4, 1.8]
Earth 2.6 2.5 [5, 2.8]
Mars 3.9 4 [6, 4]
Asteroids 6.1-8.7 7 [(7, 8, 9), (5.4, 7.1, 9)]
Jupiter 13.7 13 [11, 13.4] [2× 5,11.1]
Saturn 25.0 25 [3× 5, 25] [3× 5, 25]
Uranus 51.5 49 [22, 53.8] [4× 5,44.4]
Neptune 78.9 97 [27 , 81] [5× 5, 69.4]
Pluto 105.2 97 [31, 106.7] [6× 5,100]

Table 1. The table represents the experimental average orbital radii of planets, the predictions of
Titius-Bode law (note the failure for Neptune), and the predictions of Bohr orbit model assuming a)
that the principal quantum number n corresponds to best possible fit, b) the scaling v0 → v0/5 for
outer planets. Option a) gives the best fit with errors being considerably smaller than the maximal
error |∆R|/R ' 1/n except for Uranus. RM denotes the orbital radius of Mercury. T-B refers to
Titius-Bode law.

How to understand the harmonics and sub-harmonics of v0 in TGD framework?

Also harmonics and sub-harmonics of v0 appear in the model of Nottale and Da Rocha. In particular,
the outer planets (Jupiter, Saturn,...) correspond to v0/5 whereas inner planets correspond to v0 in
this model. As already found, TGD allows also an alternative explanation.

Quite generally, it is found that the values seem to come as harmonics and sub-harmonics of
v0: vn = nv0 and v0/n, and the argument [27] is that the different values of n relate to fractality.
This quantization is a challenge for TGD since v0 certainly defines a fundamental constant in TGD
Universe.

1. Consider first the harmonics of v0. Besides cosmic strings of type X2 × S2 ⊂ M4 × CP2 one
can consider also deformations of these strings defining their multiple coverings so that the
deformation is n-valued as a function of S2-coordinates (Θ,Φ) and the projection to S2 is thus
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an n → 1 map. The solutions are higher dimensional analogs of originally closed orbits which
after perturbation close only after n turns. This kind of surfaces emerge in the TGD inspired
model of quantum Hall effect naturally [95] and n → ∞ limit has an interpretation as an
approach to chaos [88] .

Using the coordinates (x, y, θ, φ) of X2 × S2 and coordinates mk for M4 of the unperturbed
solution the space-time surface the deformation can be expressed as

mk = mk(x, y, θ, φ) ,

(Θ,Φ) = (θ, nφ) . (14.5.4)

The value of the string tension would be indeed n2-fold in the first approximation since the
induced Kähler form defining the Kähler magnetic field would be Jθφ = nsin(Θ) and one would
have vn = nv0. At the limit mk = mk(x, y) different branches for these solutions collapse
together.

2. Consider next how sub-harmonics appear in TGD framework. Suppose that cosmic strings decay
to magnetic flux tube structures. This could the counterpart for cosmic expansion. The Kähler
magnetic flux Φ = BS is conserved in the process but the thickness of the M4 projection of
the cosmic string increases field strength is reduced. This means that string tension, which is
proportional to B2S, is reduced (so that also Kähler action is reduced). The fact that space-
time surface is Bohr orbit in generalized sense means that the reduced string tension (magnetic
energy per unit length) is quantized.

The task is to guess how the quantization occurs. There are two options.

1. The simplest explanation for the reduction of v0 is based on the decay of a flux tube resembling
a disk with a hole to n identical flux tubes so that v0 → v0/n results for the resulting flux tubes.
It turns out that this mechanism is favored and explains elegantly the value of ~gr for outer
planetary system. One can also consider small-p p-adicity so that n would be prime.

2. Second explanation is more intricate. Consider a magnetic flux tube. Since magnetic flux is
quantized, the magnetic field strengths are quantized in integer multiples of basic strength: B =
nB0 and would rather naturally correspond to the multiple coverings of the original magnetic
flux tube with magnetic energy quantized in multiples of n2. The idea is to require internal
consistency in the sense that the allowed reduced field strengths are such that the spectrum
associated with B0 is contained to the spectrum associated with the quantized field strengths
B1 > B0. This would allow only field strengths B = BS/n

2, where BS denotes the field strength
of the fundamental cosmic string and one would have vn = v0/n. Flux conservation requires
that the area of the flux tube scales as n2.

Sub-harmonics might appear in the outer planetary system and there are indications for the higher
harmonics below the inner planetary system [27] : for instance, solar radius corresponds to n = 1
orbital for v3 = 3v0. This would suggest that Sun and also planets have an onion like structure
with highest harmonics of v0 and strongest string tensions appearing in the solar core and highest
sub-harmonics appearing in the outer regions. If the matter results as decay remnants of cosmic
strings this means that the mass density inside Sun should correlate strongly with the local value of
n characterizing the multiple covering of cosmic strings.

One can ask whether the very process of the formation of the structures could have excited the
higher values of n just like closed orbits in a perturbed system become closed only after n turns.
The energy density of the cosmic string is about one Planck mass per ∼ 107 Planck lengths so that
n > 1 excitation increasing this density by a factor of n2 is obviously impossible except under the
primordial cosmic string dominated period of cosmology during which the net inertial energy density
must have vanished. The structure of the future solar system would have been dictated already during
the primordial phase of cosmology when negative energy cosmic string suffered a time reflection to
positive energy cosmic strings.
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Nottale equation is consistent with the TGD based model for dark matter

TGD allows two models of dark matter. The first one is spherically symmetric and the second one
cylindrically symmetric. The first thing to do is to check whether these models are consistent with
the gravitational Schödinger equation/Bohr quantization.

1. Spherically symmetric model for the dark matter

The following argument based on Bohr orbit quantization demonstrates that this is indeed the case
for the spherically symmetric model for dark matter. The argument generalizes in a trivial manner
to the cylindrically symmetric case.

1. The gravitational potential energy V (r) for a mass distribution M(r) = xTr (T denotes string
tension) is given by

V (r) = Gm

∫ R0

r

M(r)

r2
dr = GmxTlog(

r

R0
) . (14.5.5)

Here R0 corresponds to a large radius so that the potential is negative as it should in the region
where binding energy is negative.

2. The Newton equation mv2

r = GmxT
r for circular orbits gives

v = xGT . (14.5.6)

3. Bohr quantization condition for angular momentum by replacing ~ with ~gr reads as mvr = n~gr
and gives

rn =
n~gr
mv

= nr1 ,

r1 =
GM

vv0
. (14.5.7)

Here v is rather near to v0.

4. Bound state energies are given by

En =
mv2

2
− xT log(

r1

R0
) + xT log(n) . (14.5.8)

The energies depend only weakly on the radius of the orbit.

5. The centrifugal potential l(l + 1)/r2 in the Schrödinger equation is negligible as compared to
the potential term at large distances so that one expects that degeneracies of orbits with small
values of l do not depend on the radius. This would mean that each orbit is occupied with same
probability irrespective of value of its radius. If the mass distribution for the starts does not
depend on r, the number of stars rotating around galactic nucleus is simply the number of orbits
inside sphere of radius R and thus given by N(R) ∝ R/r0 so that one has M(R) ∝ R. Hence
the model is self consistent in the sense that one can regard the orbiting stars as remnants of
cosmic strings and thus obeying same mass distribution.
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2. Cylindrically symmetric model for the galactic dark matter

TGD allows also a model of the dark matter based on cylindrical symmetry. In this case the
dark matter would correspond to the mass of a cosmic string orthogonal to the galactic plane and
traversing through the galactic nucleus. The string tension would the one predicted by TGD. In
the directions orthogonal to the plane of galaxy the motion would be free motion so that the orbits
would be helical, and this should make it possible to test the model. The quantization of radii of the
orbits would be exactly the same as in the spherically symmetric model. Also the quantization of
inclinations predicted by the spherically symmetric model could serve as a sensitive test. In this kind
of situation general theory of relativity would predict only an angle deficit giving rise to a lens effect.
TGD predicts a Newtonian 1/ρ potential in a good approximation.

Spiral galaxies are accompanied by jets orthogonal to the galactic plane and a good guess is that
they are associated with the cosmic strings. The two models need not exclude each other. The vision
about astrophysical structures as pearls of a fractal necklace would suggest that the visible matter
has resulted in the decay of cosmic strings originally linked around the cosmic string going through
the galactic plane and creating M(R) ∝ R for the density of the visible matter in the galactic bulge.
The finding that galaxies are organized along linear structures [37] fits nicely with this picture.

MOND and TGD

TGD based model explains also the MOND (Modified Newton Dynamics) model of Milgrom [25] for
the dark matter. Instead of dark matter the model assumes a modification of Newton’s laws. The
model is based on the observation that the transition to a constant velocity spectrum seems in the
galactic halos seems to occur at a constant value of the stellar acceleration equal to a0 ' 10−11g,
where g is the gravitational acceleration at the Earth. MOND theory assumes that Newtonian laws
are modified below a0.

The explanation relies on Bohr quantization. Since the stellar radii in the halo are quantized in
integer multiples of a basic radius and since also rotation velocity v0 is constant, the values of the
acceleration are quantized as a(n) = v2

0/r(n) and a0 correspond to the radius r(n) of the smallest Bohr
orbit for which the velocity is still constant. For larger orbital radii the acceleration would indeed be
below a0. a0 would correspond to the distance above which the density of the visible matter does
not appreciably perturb the gravitational potential of the straight string. This of course requires that
gravitational potential is that given by Newton’s theory and is indeed allowed by TGD.

The MOND theory [25] and its variants predict that there is a critical acceleration below which
Newtonian gravity fails. This would mean that Newtonian gravitation is modified at large distances.
String models and also TGD predict just the opposite since in this regime General Relativity should
be a good approximation.

1. The 1/r2 force would transform to 1/r force at some critical acceleration of about a = 10−10

m/s2: this is a fraction of 10−11 about the gravitational acceleration at the Earth’s surface.

2. The recent empirical study [36] giving support for this kind of transition in the dynamics of
stars at large distances and therefore breakdown of Newtonian gravity in MOND like theories.

In TGD framework critical acceleration is predicted but the recent experiment does not force to
modify Newton’s laws. Since Big Science is like market economy in the sense that funding is more
important than truth, the attempts to communicate TGD based view about dark matter [30, 77, 63,
78, 25] have turned out to be hopeless. Serious Scientist does not read anything not written on silk
paper.

1. One manner to produce this spectrum is to assume density of dark matter such that the mass
inside sphere of radius R is proportional to R at last distances [25]. Decay products of and ideal
cosmic strings would predict this. The value of the string tension predicted correctly by TGD
using the constraint that p-adic mass calculations give electron mass correctly [49].

2. One could also assume that galaxies are distributed along cosmic string like pearls in necklace.
The mass of the cosmic string would predict correct value for the velocity of distant stars. In
the ideal case there would be no dark matter outside these cosmic strings.

http://en.wikipedia.org/wiki/MOND
http://arxiv.org/abs/1105.1873
http://tgd.wippiespace.com/public_html/tgdclass/tgdclass.html#cstrings
http://tgd.wippiespace.com/public_html/paddark/paddark.html#mless
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(a) The difference with respect to the first mechanism is that this case gravitational acceleration
would vanish along the direction of string and motion would be free motion. The prediction
is that this kind of motions take place along observed linear structures formed by galaxies
and also along larger structures.

(b) An attractive assumption is that dark matter corresponds to phases with large value of
Planck constant is concentrated on magnetic flux tubes. Holography would suggest that
the density of the magnetic energy is just the density of the matter condensed at wormhole
throats associated with the topologically condensed cosmic string.

(c) Cosmic evolution modifies the ideal cosmic strings and their Minkowski space projection
gets gradually thicker and thicker and their energy density - magnetic energy - characterized
by string tension could be affected

TGD option differs from MOND in some respects and it is possible to test empirically which option
is nearer to the truth.

1. The transition at same critical acceleration is predicted universally by this option for all systems-
now stars- with given mass scale if they are distributed along cosmic strings like like pearls in
necklace. The gravitational acceleration due the necklace simply wins the gravitational acceler-
ation due to the pearl. Fractality encourages to think like this.

2. The critical acceleration predicted by TGDr depends on the mass scale as a ∝ GT 2/M , where
M is the mass of the object- now star. Since the recent study considers only stars with solar
mass it does not allow to choose between MOND and TGD and Newton can continue to rest in
peace in TGD Universe. Only a study using stars with different masses would allow to compare
the predictions of MOND and TGD and kill either option or both. Second test distinguishing
between MOND and TGD is the prediction of large scale free motions by TGD option.

TGD option explains also other strange findings of cosmology.

1. The basic prediction is the large scale motions of dark matter along cosmic strings. The char-
acteristic length and time scale of dynamics is scaled up by the scaling factor of ~. This could
explain the observed large scale motion of galaxy clusters -dark flow [3]- assigned with dark
matter in conflict with the expectations of standard cosmology.

2. Cosmic strings could also relate to the strange relativistic jet like structures [8] meaning corre-
lations between very distant objects. Universe would be a spaghetti of cosmic strings around
which matter is concentrated.

3. The TGD based model for the final state of star [?] actually predicts the presence of string like
object defining preferred rotation axis. The beams of light emerging from supernovae would be
preferentially directed along this lines- actually magnetic flux tubes. Same would apply to the
gamma ray bursts [4] from quasars, which would not be distributed evenly in all directions but
would be like laser beams along cosmic strings.

14.5.3 The interpretation of ~gr and pre-planetary period

~gr could corresponds to a unit of angular momentum for quantum coherent states at magnetic flux
tubes or walls containing macroscopic quantum states. Quantitative estimate demonstrates that ~gr
for astrophysical objects cannot correspond to spin angular momentum. For Sun-Earth system one
would have ~gr ' 1077~. This amount of angular momentum realized as a mere spin would require
1077 particles! Hence the only possible interpretation is as a unit of orbital angular momentum. The
linear dependence of ~gr on m is consistent with the additivity of angular momenta in the fusion of
magnetic flux tubes to larger units if the angular momentum associated with the tubes is proportional
to both m and M .

Just as the gravitational acceleration is a more natural concept than gravitational force, also
~gr/m = GM/v0 could be more natural unit than ~gr. It would define a universal unit for the
circulation

∮
v · dl, which is apart from 1/m-factor equal to the phase integral

∮
pφdφ appearing in

Bohr rules for angular momentum. The circulation could be associated with the flow associated with

http://en.wikipedia.org/wiki/Dark_flow
http://en.wikipedia.org/wiki/Relativistic_jet
http://tgd.wippiespace.com/public_html/tgdclass/tgdclass.html#tgdgrt
http://en.wikipedia.org/wiki/Gamma-ray_burst


1214 Chapter 14. Cosmology and Astrophysics in Many-Sheeted Space-Time

outer boundaries of magnetic flux tubes surrounding the orbit of mass m around the central mass
M � m and defining light like 3-D CDs analogous to black hole horizons.

The expression of ~gr depends on masses M and m and can apply only in space-time regions
carrying information about the space-time sheets of M and and the orbit of m. Quantum gravitational
holography suggests that the formula applies at 3-D light like causal determinant (CD) X3

l defined by
the wormhole contacts gluing the space-time sheet X3

l of the planet to that of Sun. More generally, X3
l

could be the space-time sheet containing the planet, most naturally the magnetic flux tube surrounding
the orbit of the planet and possibly containing dark matter in super-conducting state. This would
give a precise meaning for ~gr and explain why ~gr does not depend on the masses of other planets.

The simplest option consistent with the quantization rules and with the explanatory role of mag-
netic flux structures is perhaps the following one.

1. X3
l is a torus like surface around the orbit of the planet containing delocalized dark matter.

The key role of magnetic flux quantization in understanding the values of v0 suggests the in-
terpretation of the torus as a magnetic or Z0 magnetic flux tube. At pre-planetary period the
dark matter formed a torus like quantum object. The conditions defining the radii of Bohr
orbits follow from the requirement that the torus-like object is in an eigen state of angular mo-
mentum in the center of mass rotational degrees of freedom. The requirement that rotations
do not leave the torus-like object invariant is obviously satisfied. Newton’s law required by the
quantum-classical correspondence stating that the orbit corresponds to a geodesic line in general
relativistic framework gives the additional condition implying Bohr quantization.

2. A simple mechanism leading to the localization of the matter would have been the pinching of
the torus causing kind of a traffic jam leading to the formation of the planet. This process could
quite well have involved a flow of matter to a smaller planet space-time sheet Y 3

l topologically
condensed at X3

l . Most of the angular momentum associated with torus like object would have
transformed to that of planet and situation would have become effectively classical.

3. The conservation of magnetic flux means that the splitting of the orbital torus would generate a
pair of Kähler magnetic charges. It is not clear whether this is possible dynamically and hence
the torus could still be there. In fact, TGD explanation for the tritium beta decay anomaly
citeTroitsk,Mainz in terms of classical Z0 force [82] requires the existence of this kind of torus
containing neutrino cloud whose density varies along the torus. This picture suggests that the
lacking n = 1 and n = 2 orbits in the region between Sun and Mercury are still in magnetic flux
tube state containing mostly dark matter.

4. The fact that ~gr is proportional to m means that it could have varied continuously during the
accumulation of the planetary mass without any effect in the planetary motion: this is of course
nothing but a manifestation of Equivalence Principle.

5. It is interesting to look for the scaled up versions of Planck mass mPl =
√
~gr/~ ×

√
~/G =√

M1M2/v0 and Planck length LPl =
√
~gr/~ ×

√
~/G = G

√
M1M2/v0. For M1 = M2 = M

this gives mPl = M/
√
v0 ' 45.6×M and LPl = rS/2

√
v0 ' 22.8× rS , where rS is Schwartshild

radius. For Sun rS is about 2.9 km so that one has LPl ' 66 km. For a few years ago it
was found that Sun contains ”inner-inner” core of radius about R = 300 km [7] which is about
4.5× LPl.

14.5.4 Inclinations for the planetary orbits and the quantum evolution of
the planetary system

The inclinations of planetary orbits provide a test bed for the theory. The semiclassical quantization
of angular momentum gives the directions of angular momentum from the formula

cos(θ) =
m√

j(j + 1)
, |m| ≤ j . (14.5.9)

where θ is the angle between angular momentum and quantization axis and thus also that between
orbital plane and (x,y)-plane. This angle defines the angle of tilt between the orbital plane and
(x,y)-plane.
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m = j = n gives minimal value of angle of tilt for a given value of n of the principal quantum
number as

cos(θ) =
n√

n(n+ 1)
. (14.5.10)

For n = 3, 4, 5 (Mercury, Venus, Earth) this gives θ = 30.0, 26.6, and 24.0 degrees respectively.
Only the relative tilt angles can be compared with the experimental data. Taking as usual the

Earth’s orbital plane as the reference the relative tilt angles give what are known as inclinations. The
predicted inclinations are 6 degrees for Mercury and 2.6 degrees for Venus. The observed values [9]
are 7.0 and 3.4 degrees so that the agreement is satisfactory. If one allows half-odd integer spin the
fit is improved. For j = m = n− 1/2 the predictions are 7.1 and 2.9 degrees for Mercury and Venus
respectively. For Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto the inclinations are 1.9, 1.3, 2.5,
0.8, 1.8, 17.1 degrees. For Mars and outer planets the tilt angles are predicted to have wrong sign for
m = j. In a good approximation the inclinations vanish for outer planets except Pluto and this would
allow to determine m as m '

√
5n(n+ 1)/6: the fit is not good.

The assumption that matter has condensed from a matter rotating in (x,y)-plane orthogonal to
the quantization axis suggests that the directions of the planetary rotation axes are more or less the
same and by angular momentum conservation have not changed appreciably. The prediction for the
tilt of the rotation axis of the Earth is 24 degrees of freedom in the limit that the Earth’s spin can
be treated completely classically, that is for m = j >> 1 in the units used for the quantization of
the Earth’s angular momentum. What is the value of ~gr for Earth is not obvious (using the unit
~gr = GM2/v0 the Earth’s angular momentum would be much smaller than one). The tilt of the
rotation axis of Earth with respect to the orbit plane is 23.5 degrees so that the agreement is again
satisfactory. This prediction is essentially quantal: in purely classical theory the most natural guess
for the tilt angle for planetary spins is 0 degrees.

The observation that the inner planets Mercury, Venus, and Earth have in a reasonable approxi-
mation the predicted inclinations suggest that they originate from a primordial period during which
they formed spherical cells of dark matter and had thus full rotational degrees of freedom and were
in eigen states of angular momentum corresponding to a full rotational symmetry. The subsequent
SO(3) → SO(2) symmetry breaking leading to the formation of torus like configurations did not
destroy the information about this period since the information about the value of j and m was coded
by the inclination of the planetary orbit.

In contrast to this, the dark matter associated with Earth and outer planets up to Neptune formed
a flattened magnetic or Z0 magnetic flux tube resembling a disk with a hole and the subsequent
symmetry breaking broke it to separate flux tubes. Earth’s spherical disk was joined to the disk
formed by the outer planets. The spherical disk could be still present and contain super-conducting
dark matter. The presence of this ”heavenly sphere” might closely relate to the fact that Earth is a
living planet. The time scale T = 2πR/c is very nearly equal to 5 minutes and defines a candidate for
a bio-rhythm.

If this flux tube carried the same magnetic flux as the flux tubes associated with the inner planets,
the decomposition of the disk with a hole to 5 flux tubes corresponding to Earth and to the outer
planets Mars, Jupiter, Saturn and Neptune, would explain the value of v0 correctly and also the small
inclinations of outer planets. That Pluto would not originate from this structure, is consistent with
its anomalously large values of inclination i = 17.1 degrees, small value of eccentricity e = .248, and
anomalously large value of inclination of equator to orbit about 122 degrees as compared to 23.5
degrees in the case of Earth [9] .

14.5.5 Eccentricities and comets

Bohr-Sommerfeld quantization allows also to deduce the eccentricities of the planetary and comet
orbits. One can write the quantization of energy as

p2
r

2m1
+

p2
θ

2m1r2
+

p2
φ

2m1r2sin2(θ)
− k

r
= −E1

n2
,

E1 =
k2

2~2
gr

×m1 =
v2

0

2
×m1 . (14.5.11)
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Here one has k = GMm1. E1 is the binding energy of n = 1 state. In the orbital plane (θ = π/2, pθ =
0) the conditions are simplified. Bohr quantization gives pφ = m~gr implying

p2
r

2m1
+
k2~2

gr

2m1r2
− k

r
= −E1

n2
. (14.5.12)

For pr = 0 the formula gives maximum and minimum radii r± and eccentricity is given by

e2 =
r+ − r−
r+

=
2
√

1− m2

n2

1 +
√

1− m2

n2

. (14.5.13)

For small values of n the eccentricities are very large except for m = n. For instance, for (m = n−1, n)
for n = 3, 4, 5 gives e = (.93, .89, .86) to be compared with the experimental values (.206, .007, .0167).
Thus the planetary eccentricities with Pluto included (e = .248) must vanish in the lowest order
approximation and must result as a perturbation of the magnetic flux tube.

The large eccentricities of comet orbits might however have an interpretation in terms of m < n
states. The prediction is that comets with small eccentricities have very large orbital radius. Oort’s
cloud is a system weakly bound to a solar system extending up to 3 light years. This gives the upper
bound n ≤ 700 if the comets of the cloud belong to the same family as Mercury, otherwise the bound
is smaller. This gives a lower bound to the eccentricity of not nearly circular orbits in the Oort cloud
as e > .32.

14.5.6 Why the quantum coherent dark matter is not visible?

The obvious objection against quantal astrophysics is that astrophysical systems look extremely clas-
sical. Quantal dark matter in many-sheeted space-time resolves this counter argument. As already
explained, the sequence of symmetry breakings of the rotational symmetry would explain nicely why
astral Bohr rules work. The prediction is however that delocalized quantal dark matter is probably
still present at (the boundaries of) magnetic flux tubes and spherical shells. It is however the entire
structure defined by the orbit which behaves like a single extended particle so that the localization in
quantum measurement does not mean a localization to a point of the orbit. Planet itself corresponds
to a smaller localized space-time sheet condensed at the flux tube.

One should however understand why this dark matter with a gigantic Planck constant is not visible.
The simplest explanation is that there cannot be any direct quantum interactions between ordinary
and dark matter in the sense that particles with different values of Planck constant could appear in
the same particle vertex. This would allow also a fractal hierarchy copies of standard model physics
to exist with different p-adic mass scales.

There is also second argument. The inability to observe dark matter could mean inability to
perform state function reduction localizing the dark matter. The probability for this should be pro-
portional to the strength of the measurement interaction. For photons the strength of the interaction
is characterized by the fine structure constant. In the case of dark matter the fine structure constant
is replaced with

αem,gr = αem ×
~
~gr

= αem ×
v0

GMm
. (14.5.14)

For M = m = mPl ' 10−8 kg the value of the fine structure constant is smaller than αemv0 and
completely negligible for astrophysical masses. However, for processes for which the lowest order
classical rates are non-vanishing, rates are not affected in the lowest order since the increase of the
Compton length compensates the reduction of α. Higher order corrections become however small.
What makes dark matter invisible is not the smallness of αem but the fact that the binding energies
of say hydrogen atom proportional to α2me are scaled as 1/~2 so that the spectrum is scaled down.
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14.5.7 Quantum interpretation of gravitational Schrödinger equation

Schrödinger equation in astrophysical length scales with a gigantic value of Planck constant looks
sheer madness idea from the standard physics point of view. In TGD Universe situation might be
different.

1. In TGD inertial four-momentum (or conserved four-momentum) is not positive definite and the
net four-momentum of the Universe vanishes. Already in cosmological length scales the density
of inertial mass vanishes. Gravitational masses and inertial masses can be identified only at the
limit when one can neglect the interaction between positive and negative energy matter. The
masses appearing in the gravitational Schrödinger equation are gravitational masses and one
can ask whether inertial and gravitational Planck constants are different.

2. The fractality of the many-sheeted space-time predicts that quantum effects appear in all length
and time scales. In particular, dark matter is at larger space-time sheets and hence almost
invisible.

3. An even more weirder looks the idea that Planck constant could have a gigantic value in astro-
physical length scales being of order of magnitude of product of masses using Planck mass as a
unit for ~ = c = 1. This would mean that gravitation at space-time sheets of astrophysical size
would have super quantal character! But even the gigantic value of Planck constant might be
understood in TGD framework.

Jones inclusions and quantization of Planck constants

Quantum TGD emerges from infinite-dimensional Clifford algebra defined as infinite power of 8-
dimensional Clifford algebra C(8) generalized to a local algebra by constructing power series of quan-
tum octonionic variable having the elements of this Clifford algebra as coefficients. The eigenstates
for the commuting hermitian coordinates assignable to this octonionic variable have M8 as spectrum
and extremely general arguments imply both classical and quantum TGD. The construction works
only for D = 8 (by non-associativity of the octonionic units) since for other dimensions the local field
defined by algebra could not be distinguished from algebra itself.

Perhaps the most important outcome is a general master formula for S-matrix with interactions
described as a deformation of ordinary tensor product to Connes tensor products and new view
theory of quantum measurement. Further outcomes are prediction the spectra of the quantized values
of M4 and CP2 Planck constants as characterizers of Jones inclusions associated with quantum phases
q = exp(iπ/n).

1. Some background

It has been for few years clear that TGD could emerge from the mere infinite-dimensionality of
the Clifford algebra of infinite-dimensional ”world of classical worlds” and from number theoretical
vision in which classical number fields play a key role and determine imbedding space and space-time
dimensions. This would fix completely the ”world of classical worlds”.

Infinite-dimensional Clifford algebra is a standard representation for von Neumann algebra known
as a hyper-finite factor of type II1. In TGD framework the infinite tensor power of C(8), Clifford
algebra of 8-D space would be the natural representation of this algebra.

2. How to localize infinite-dimensional Clifford algebra?

The basic new idea is to make this algebra local: local Clifford algebra as a generalization of gamma
field of string models.

1. Represent Minkowski coordinate ofMd as linear combination of gamma matrices of D-dimensional
space. This is the first guess. One fascinating finding is that this notion can be quantized and
classical Md is genuine quantum Md with coordinate values eigenvalues of quantal commuting
Hermitian operators built from matrix elements. Euclidian space is not obtained in this manner.
Minkowski signature is something quantal and the standard quantum group Gl(2, q)(C) with
(non-Hermitian matrix elements) gives M4.
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2. Form power series of the Md coordinate represented as linear combination of gamma matrices
with coefficients in corresponding infinite-D Clifford algebra. One would get tensor product of
two algebra.

3. There is however a problem: one cannot distinguish the tensor product from the original infinite-
D Clifford algebra. D = 8 is however an exception! One can replace gammas in the expansion
of M8 coordinate by hyper-octonionic units which are non-associative (or octonionic units in
quantum complexified-octonionic case). Now one cannot anymore absorb the tensor factor to the
Clifford algebra and one gets a genuine M8-localized factor of type II1. Everything is determined
by infinite-dimensional gamma matrix fields analogous to conformal super fields with z replaced
by hyperoctonion.

4. Octonionic non-associativity actually reproduces whole classical and quantum TGD: space-time
surface must be associative sub-manifolds hence hyper-quaternionic surfaces of M8. Repre-
sentability as surfaces in M4 × CP2 follows naturally, the notion of configuration space of 3-
surfaces, etc....

3. Connes tensor product for free fields as a universal definition of interaction quantum field theory

This picture has profound implications. Consider first the construction of S-matrix.

1. A non-perturbative construction of S-matrix emerges. The deep principle is simple. The canon-
ical outer automorphism for von Neumann algebras defines a natural candidate unitary trans-
formation giving rise to propagator. This outer automorphism is trivial for II1 factors meaning
that all lines appearing in Feynman diagrams must be on mass shell states satisfying Super
Virasoro conditions. One can allow all possible diagrams: all on mass shell loop corrections
vanish by unitarity and what remains are diagrams with single N-vertex.

2. At 2-surface representing N-vertex space-time sheets representing generalized Bohr orbits of
incoming and outgoing particles meet. This vertex involves von Neumann trace (finite!) of
localized gamma matrices expressible in terms of fermionic oscillator operators and defining free
fields satisfying Super Virasoro conditions.

3. For free fields ordinary tensor product would not give interacting theory. What makes S-matrix
non-trivial is that Connes tensor product is used instead of the ordinary one. This tensor product
is a universal description for interactions and we can forget perturbation theory! Interactions
result as a deformation of tensor product. Unitarity of resulting S-matrix is unproven but I dare
believe that it holds true.

4. The subfactorN defining the Connes tensor product has interpretation in terms of the interaction
between experimenter and measured system and each interaction type defines its own Connes
tensor product. Basically N represents the limitations of the experimenter. For instance, IR
and UV cutoffs could be seen as primitive manners to describe what N describes much more
elegantly. At the limit when N contains only single element, theory would become free field
theory but this is ideal situation never achievable.

4. The quantization of Planck constant and ADE hierarchies

The quantization of Planck constant has been the basic them of TGD for more than one and half
years and leads also the understanding of ADE correspondences (index β ≤ 4 and β = 4) from the
point of view of Jones inclusions.

1. The new view allows to understand how and why Planck constant is quantized and gives an
amazingly simple formula for the separate Planck constants assignable to M4 and CP2 and
appearing as scaling constants of their metrics. This in terms of a mild generalizations of
standard Jones inclusions. The emergence of imbedding space means only that the scaling of
these metrics have spectrum: no landscape.
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2. In ordinary phase Planck constants ~(M4) and ~(CP2) are same and have their standard values.
Large Planck constant phases correspond to situations in which a transition to a phase in which
quantum groups occurs. These situations correspond to standard Jones inclusions in which
Clifford algebra is replaced with a sub-algebra of its G-invariant elements. G is product Ga×Gb
of subgroups of SL(2, C) and SU(2)L ××U(1) which also acts as a subgroup of SU(3). Space-
time sheets are n(Gb)-fold coverings of M4 and n(Ga)-fold coverings of CP2 generalizing the
picture which has emerged already. An elementary study of these coverings fixes the values of
scaling factors of M4 and CP2 Planck constants to orders of the maximal cyclic sub-groups. Mass
spectrum is invariant under these scalings. The values of Planck constants are ~(M4) = na~0

and ~(CP2) = nb~0 and scaling factor of M4 covariant metric is nb and that of CP2 metric
na. In Kähler action only the ratio na/nb occurs and the Planck constant ~eff occurring in
Schrödinger equation is by quantum classical correspondence ~eff/~0 = na/nb.

3. This predicts automatically arbitrarily large and also small values of Planck constant depending
in the value of the ratio na/nb and assigns the preferred values of Planck constant to quantum
phases q = exp(iπ/ni), i = a, b expressible in terms of iterated square roots of rationals: these
correspond to polygons obtainable by compass and ruler construction. In particular, experimen-
tally favored values of ~ in living matter correspond to these special values of Planck constant.
This model reproduces also the other aspects of the general vision. The subgroups of SL(2, C)
in turn can give rise to re-scaling of SU(3) Planck constant. The most general situation can be
described in terms of Jones inclusions for fixed point subalgebras of number theoretic Clifford
algebras defined by Ga ×Gb ⊂ SL(2, C)× SU(2).

4. These inclusions (apart from those for which Ga contains infinite number of elements) are repre-
sented by ADE or extended ADE diagrams depending on the value of index. The group algebras
of these groups give rise to additional degrees of freedom which make possible to construct the
multiplets of the corresponding gauge groups. For β ≤ 4 the gauge groups An, D2n, E6, E8

are possible so that TGD seems to be able to mimick these gauge theories. For β = 4 all
ADE Kac Moody groups are possible and again mimicry becomes possible: TGD would be kind
of universal physics emulator but it would be anyonic dark matter which would perform this
emulation.

Bohr quantization of planetary orbits and prediction for Planck constant

The predictions of the generalization of the p-adic length scale hypothesis are consistent with the
TGD based model for the Bohr quantization of planetary orbits and some new non-trivial predictions
follow.

1. Generalization of the p-adic length scale hypothesis
The evolution in phase resolution in p-adic degrees of freedom corresponds to emergence of alge-

braic extensions allowing increasing variety of phases exp(iπ/n) expressible p-adically. This evolution
can be assigned to the emergence of increasingly complex quantum phases and the increase of Planck
constant.

One expects that quantum phases q = exp(iπ/n) which are expressible using only square roots of
rationals are number theoretically very special since they correspond to algebraic extensions of p-adic
numbers involving only square roots which should emerge first and therefore systems involving these
values of q should be especially abundant in Nature.

These polygons are obtained by ruler and compass construction and Gauss showed that these
polygons, which could be called Fermat polygons, have nF = 2k

∏
s Fns sides/vertices: all Fermat

primes Fns in this expression must be different. The analog of the p-adic length scale hypothesis
emerges since larger Fermat primes are near a power of 2. The known Fermat primes Fn = 22n + 1
correspond to n = 0, 1, 2, 3, 4 with F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537. It is not
known whether there are higher Fermat primes. n = 3, 5, 15-multiples of p-adic length scales clearly
distinguishable from them are also predicted and this prediction is testable in living matter. I have
already earlier considered the possibility that Fermat polygons could be of special importance for
cognition and for biological information processing [59] .

This condition could be interpreted as a kind of resonance condition guaranteing that scaled up
sizes for space-time sheets have sizes given by p-adic length scales. The numbers nF could take the
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same role in the evolution of Planck constants assignable with the phase resolution as Mersenne primes
have in the evolution assignable to the p-adic length scale resolution.

2. Do the values of gravitational Planck constant correspond to polygons obtained by ruler and
compass construction?

Since the macroscopic quantum phases with minimum dimension of algebraic extension should be
especially abundant in the universe, the natural guess is that the values of the gravitational Planck
constant correspond to nF -multiples of ordinary Planck constant.

1. The model can explain the enormous values of gravitational Planck constant ~gr/~0 =' GMm/v0) =
na/nb. The favored values of this parameter should correspond to nFa/nFb so that the mass
ratios m1/m2 = nFa,1nFb,2/nFb,1nFa,2 for planetary masses should be preferred. The general
prediction GMm/v0 = na/nb is of course not testable.

2. Nottale [27] has suggested that also the harmonics and subharmonics of λ are possible and in
fact required by the model for planetary Bohr orbits (in TGD framework this is not absolutely
necessary). The prediction is that favored values of n should be of form nF = 2k

∏
Fi such that

Fi appears at most once. In Nottale’s model for planetary orbits as Bohr orbits in solar system
n = 5 harmonics appear and are consistent with either nF,a → F1nFa or with nF,b → nFb/F1 if
possible.

The prediction for the ratios of planetary masses can be tested. In the table below are the
experimental mass ratios rexp = m(pl)/m(E), the best choice of rR = [nF,a/nF,b] ∗ X, X common
factor for all planets, and the ratios rpred/rexp = nF,a(planet)nF,b(Earth)/nF,a(Earth)nF,b(planet).
The deviations are at most 2 per cent.

planet Me V E M J

y 213×5
17 211 × 17 29 × 5× 17 28 × 17 223×5

7

y/x 1.01 .98 1.00 .98 1.01
planet S U N P

y 214 × 3× 5× 17 221×5
17

217×17
3

24×17
3

y/x 1.01 .98 .99 .99

Table 1. The table compares the ratios x = m(pl)/(m(E) of planetary mass to the mass of Earth
to prediction for these ratios in terms of integers nF associated with Fermat polygons. y gives the best
fit for the allowed factors of the known part y of the rational nF,a/nF,b = yX characterizing planet,
and the ratios y/x. Errors are at most 2 per cent.

A stronger prediction comes from the requirement that GMm/v0 equals to n = nFa/nF,b nF =

2k
∏
k Fnk , where Fi = 22i + 1, i = 0, 1, 2, 3, 4 is Fibonacci prime. The fit using solar mass and Earth

mass gives nF = 2254 × 5× 17 for 1/v0 = 2044, which within the experimental accuracy equals to the
value 211 = 2048 whose powers appear as scaling factors of Planck constant in the model for living
matter [27] . For v0 = 4.6× 10−4 reported by Nottale the prediction is by a factor 16/17.01 too small
(6 per cent discrepancy).

A possible solution of the discrepancy is that the empirical estimate for the factor GMm/v0 is too
large since m contains also the the visible mass not actually contributing to the gravitational force
between dark matter objects whereas M is known correctly. The assumption that the dark mass is a
fraction 1/(1 + ε) of the total mass for Earth gives

1 + ε =
17

16
(14.5.15)

in an excellent approximation. This gives for the fraction of the visible matter the estimate ε =
1/16 ' 6 per cent. The estimate for the fraction of visible matter in cosmos is about 4 per cent so
that estimate is reasonable and would mean that most of planetary and solar mass would be also dark
(as a matter dark energy would be in question).
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That v0(eff) = v0/(1− ε) ' 4.6× 10−4 equals with v0(eff) = 1/(27×F2) = 4.5956× 10−4 within
the experimental accuracy suggests a number theoretical explanation for the visible-to-dark fraction.

3. Can one really identify gravitational and inertial Planck constants?

The original unconsciously performed identification of the gravitational and inertial Planck con-
stants leads to some confusing conclusions but it seems that the new view about the quantization of
Planck constants resolves these problems and allows to see ~gr as a special case of ~I .

1. ~gr is proportional to the product of masses of interacting systems and not a universal constant
like ~. One can however express the gravitational Bohr conditions as a quantization of circulation∮
v · dl = n(GM/v0)~0 so that the dependence on the planet mass disappears as required by

Equivalence Principle. This suggests that gravitational Bohr rules relate to velocity rather than
inertial momentum as is indeed natural. The quantization of circulation is consistent with the
basic prediction that space-time surfaces are analogous to Bohr orbits.

2. ~gr seems to characterize a relationship between planet and central mass and quite generally
between two systems with the property that smaller system is topologically condensed at the
space-time sheet of the larger system. Thus it would seem that ~gr is not a universal constant
and cannot correspond to a special value of ordinary Planck constant. Certainly this would be
the case if ~I is quantized as λk-multiplet of ordinary Planck constant with λ ' 211.

The recent view about the quantization of Planck constant in terms of coverings of M4 seems to
resolve these problems.

1. The integer quantization of Planck constants is consistent with the huge values of gravitational
Planck constant within experimental resolution and the killer test for ~ = ~gr emerges if one
takes seriously the stronger prediction ~gr = nF,a/nF,b.

2. One can also regard ~gr as ordinary Planck constant ~eff associated with the space-time sheet
along which the masses interact provided each pair (M,mi) of masses is characterized by its own
sheets. These sheets could correspond to flux tube like structures carrying the gravitational flux
of dark matter. If these sheets corresponds to nFa -fold covering of M4, one can understand ~gr
as a particular instance of the ~eff .

Quantization as a means of avoiding gravitational collapse

Schrödinger equation provided a solution to the infrared catastrophe of the classical model of atom:
the classical prediction was that electron would radiate its energy as brehmstrahlung and would be
captured by the nucleus. The gravitational variant of this process would be the capture of the planet
by a black hole, and more generally, a collapse of the star to a black hole. Gravitational Schrödinger
equation could obviously prevent the catastrophe.

For 1/r gravitation potential the Bohr radius is given by agr = GM/v2
0 = rS/2v

2
0 , where rS = 2GM

is the Schwartchild radius of the mass creating the gravitational potential: obviously Bohr radius is
much larger than the Schwartschild radius. That the gravitational Bohr radius does not depend on
m conforms with Equivalence Principle, and the proportionality ~gr ∝ Mm can be deduced from it.
Gravitational Bohr radius is by a factor 1/2v2

0 larger than black hole radius so that black hole can
swallow the piece of matter with a considerable rate only if it is in the ground state and also in this
state the rate is proportional to the black hole volume to the volume defined by the black hole radius
given by 23v6

0 ∼ 10−20.
The ~gr →∞ limit for 1/r gravitational potential means that the exponential factor exp(−r/a0)

of the wave function becomes constant: on the other hand, also Schwartshild and Bohr radii become
infinite at this limit. The gravitational Compton length associated with mass m does not depend on
m and is given by GM/v0 and the time T = Egr/~gr defined by the gravitational binding energy is
twice the time taken to travel a distance defined by the radius of the orbit with velocity v0 which
suggests that signals travelling with a maximal velocity v0 are involved with the quantum dynamics.

In the case of planetary system the proportionality ~gr ∝ mM creates problems of principle since
the influence of the other planets is not taken account. One might argue that the generalization of the
formula should be such that M is determined by the gravitational field experienced by mass m and
thus contains also the effect of other planets. The problem is that this field depends on the position
of m which would mean that ~gr itself would become kind of field quantity.
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Does the transition to non-perturbative phase correspond to a change in the value of ~?

Nature is populated by systems for which perturbative quantum theory does not work. Examples
are atoms with Z1Z2e

2/4π~ > 1 for which the binding energy becomes larger than rest mass, non-
perturbative QCD resulting forQs,1Qs,2g

2
s/4π~ > 1, and gravitational systems satisfyingGM1M2/4π~ >

1. Quite generally, the condition guaranteing troubles is of the form Q1Q2g
2/4π~ > 1. There is no

general mathematical approach for solving the quantum physics of these systems but it is believed
that a phase transition to a new phase of some kind occurs.

The gravitational Schrödinger equation forces to ask whether Nature herself takes care of the
problem so that this phase transition would involve a change of the value of the Planck constant to
guarantee that the perturbative approach works. The values of ~ would vary in a stepwise manner
from ~(∞) to ~(3) = ~(∞)/4. The non-perturbative phase transition would correspond to transition
to the value of

~
~0

→
[
Q1Q2g

2

v

]
(14.5.16)

where [x] is the integer nearest to x, inducing

Q1Q2g
2

4π~
→ v

4π
. (14.5.17)

The simplest (and of course ad hoc) assumption making sense in TGD Universe is that v is a harmonic
or subharmonic of v0 appearing in the gravitational Schrödinger equation. For instance, for the Kepler
problem the spectrum of binding energies would be universal (independent of the values of charges)
and given by En = v2m/2n2 with v playing the role of small coupling. Bohr radius would be g2Q2/v

2

for Q2 � Q1.

This provides a new insight to the problems encountered in quantizing gravity. QED started from
the model of atom solving the infrared catastrophe. In quantum gravity theories one has started
directly from the quantum field theory level and the recent decline of the M-theory shows that we are
still practically where we started. If the gravitational Schrödinger equation indeed allows quantum
interpretation, one could be more modest and start from the solution of the gravitational IR catastro-
phe by assuming a dynamical spectrum of ~ determined by Beraha numbers. The implications would
be profound: the whole program of quantum gravity would have been misled as far as the quantization
of systems with GM1M2/~ > 1 is considered. In practice, these systems are the most interesting ones
and the prejudice that their quantization is a mere academic exercise would have been completely
wrong.

An alternative formulation for the occurrence of a transition increasing the value of ~ could rely
on the requirement that classical bound states have reasonable quantum counterparts. In the gravi-
tational case one would have rn = n2~2

gr/GM
2
1M , for M1 �M , which is extremely small distance for

~gr = ~ and reasonable values of n. Hence, either n is so large that the system is classical or ~gr/~ is
very large. Equivalence Principle requires the independence of rn on M1, which gives ~ = kGM1M2

giving rn = n2kGM . The requirement that the radius is above Schwartshild radius gives k ≥ 2. In
the case of Dirac equation the solutions cease to exist for Z ≥ 137 and which suggests that ~ is large
for hypothetical atoms having Z ≥ 137.

14.5.8 How do the magnetic flux tube structures and quantum gravita-
tional bound states relate?

In the case of stars in galactic halo the appearance of the parameter v0 characterizing cosmic strings
as orbital rotation velocity can be understood classically. That v0 appears also in the gravitational
dynamics of planetary orbits could relate to the dark matter at magnetic flux tubes. The argument
explaining the harmonics and sub-harmonics of v0 in terms of properties of cosmic strings and magnetic
flux tubes identifiable as their descendants strengthens this expectation.
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The notion of magnetic body

In TGD inspired theory of consciousness the notion of magnetic body plays a key role: magnetic body
is the ultimate intentional agent, experiencer, and performer of bio-control and can have astrophysical
size: this does not sound so counter-intuitive if one takes seriously the idea that cognition has p-adic
space-time sheets as space-time correlates and that rational points are common to real and p-adic
number fields. The point is that infinitesimal in p-adic topology corresponds to infinite in real sense
so that cognitive and intentional structures would have literally infinite size.

The magnetic flux tubes carrying various supra phases can be interpreted as special instance of
dark energy and dark matter. This suggests a correlation between gravitational self-organization and
quantum phases at the magnetic flux tubes and that the gravitational Schrödinger equation somehow
relates to the ordinary Schrödinger equation satisfied by the macroscopic quantum phases at magnetic
flux tubes. Interestingly, the transition to large Planck constant phase should occur when the masses
of interacting is above Planck mass since gravitational self-interaction energy is V ∼ GM2/R. For the
density of water about 103 kg/m3 the volume carrying a Planck mass correspond to a cube with side
2.8 × 10−4 meters. This corresponds to a volume of a large neuron, which suggests that this phase
transition might play an important role in neuronal dynamics.

Could gravitational Schrödinger equation relate to a quantum control at magnetic flux
tubes?

An infinite self hierarchy is the basic prediction of TGD inspired theory of consciousness (”everything
is conscious and consciousness can be only lost”). Topological quantization allows to assign to any
material system a field body as the topologically quantized field pattern created by the system [93, 33] .
This field body can have an astrophysical size and would utilize the material body as a sensory receptor
and motor instrument.

Magnetic flux tube and flux wall structures are natural candidates for the field bodies. Various
empirical inputs have led to the hypothesis that the magnetic flux tube structures define a hierarchy of
magnetic bodies, and that even Earth and larger astrophysical systems possess magnetic body which
makes them conscious self-organizing living systems. In particular, life at Earth would have developed
first as a self-organization of the super-conducting dark matter at magnetic flux tubes [33] .

For instance, EEG frequencies corresponds to wavelengths of order Earth size scale and the strange
findings of Libet about time delays of conscious experience [12, 6] find an elegant explanation in terms
of time taken for signals propagate from brain to the magnetic body [93] . Cyclotron frequencies,
various cavity frequencies, and the frequencies associated with various p-adic frequency scales are in
a key role in the model of bio-control performed by the magnetic body. The cyclotron frequency scale
is given by f = eB/m and rather low as are also cavity frequencies such as Schumann frequencies:
the lowest Schumann frequency is in a good approximation given by f = 1/2πR for Earth and equals
to 7.8 Hz.

1. Quantum time scales as ”bio-rhythms” in solar system?

To get some idea about the possible connection of the quantum control possibly performed by the
dark matter with gravitational Schrödinger equation, it is useful to look for the values of the periods
defined by the gravitational binding energies of test particles in the fields of Sun and Earth and look
whether they correspond to some natural time scales. For instance, the period T = 2GMSn

2/v3
0

defined by the energy of nth planetary orbit depends only on the mass of Sun and defines thus an
ideal candidate for a universal ”bio-rhytm”.

For Sun black hole radius is about 2.9 km. The period defined by the binding energy of lowest
state in the gravitational field of Sun is given TS = 2GMS/v

3
0 and equals to 23.979 hours for v0/c =

4.8233 × 10−4. Within experimental limits for v0/c the prediction is consistent with 24 hours! The
value of v0 corresponding to exactly 24 hours would be v0 = 144.6578 km/s (as a matter fact, the
rotational period of Earth is 23.9345 hours). As if as the frequency defined by the lowest energy state
would define a ”biological” clock at Earth! Mars is now a strong candidate for a seat of life and
the day in Mars lasts 24hr 37m 23s! n = 1 and n = 2 are orbitals are not realized in solar system
as planets but there is evidence for the n = 1 orbital as being realized as a peak in the density of
IR-dust [27] . One can of course consider the possibility that these levels are populated by small dark
matter planets with matter at larger space-time sheets. Bet as it may, the result supports the notion
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of quantum gravitational entrainment in the solar system.
The slower rhythms would become as n2 sub-harmonics of this time scale. Earth itself corresponds

to n = 5 state and to a rhythm of .96 hours: perhaps the choice of 1 hour to serve as a fundamental
time unit is not merely accidental. The magnetic field with a typical ionic cyclotron frequency around
24 hours would be very weak: for 10 Hz cyclotron frequency in Earth’s magnetic field the field strength
would about 10−11 T. However, T = 24 hours corresponds with 6 per cent accuracy to the p-adic
time scale T (k = 280) = 213T (2, 127), where T (2, 127) corresponds to the secondary p-adic time scale
of .1 s associated with the Mersenne prime M127 = 2127 − 1 characterizing electron and defining a
fundamental bio-rhytm and the duration of memetic codon [38] .

Comorosan effect [98] , [4, 13] demonstrates rather peculiar looking facts about the interaction
of organic molecules with visible laser light at wavelength λ = 546 nm. As a result of irradiation
molecules seem to undergo a transition S → S∗. S∗ state has anomalously long lifetime and stability
in solution. S → S∗ transition has been detected through the interaction of S∗ molecules with
different biological macromolecules, like enzymes and cellular receptors. Later Comorosan found that
the effect occurs also in non-living matter. The basic time scale is τ = 5 seconds. p-Adic length scale
hypothesis does not explain τ , and it does not correspond to any obvious astrophysical time scale and
has remained a mystery.

The idea about astro-quantal dark matter as a fundamental bio-controller inspires the guess that
τ could correspond to some Bohr radius R for a solar system via the correspondence τ = R/c. As
observed by Nottale, n = 1 orbit for v0 → 3v0 corresponds in a good approximation to the solar radius
and to τ = 2.18 seconds. For v0 → 2v0 n = 1 orbit corresponds to τ = AU/(4× 25) = 4.992 seconds:
here R = AU is the astronomical unit equal to the average distance of Earth from Sun. The deviation
from τC is only one per cent and of the same order of magnitude as the variation of the radius for the
orbit due to orbital eccentricity (a− b)/a = .0167 [9] .

2. Earth-Moon system

For Earth serving as the central mass the Bohr radius is about 18.7 km, much smaller than Earth
radius so that Moon would correspond to n = 147.47 for v0 and n = 1.02 for the sub-harmonic v0/12
of v0. For an afficionado of cosmic jokes or a numerologist the presence of the number of months in
this formula might be of some interest. Those knowing that the Mayan calendar had 11 months and
that Moon is receding from Earth might rush to check whether a transition from v/11 to v/12 state
has occurred after the Mayan culture ceased to exist: the increase of the orbital radius by about 3
per cent would be required! Returning to a more serious mode, an interesting question is whether
light satellites of Earth consisting of dark matter at larger space-time sheets could be present. For
instance, in [33] I have discussed the possibility that the larger space-time sheets of Earth could carry
some kind of intelligent life crucial for the bio-control in the Earth’s length scale.

The period corresponding to the lowest energy state is from the ratio of the masses of Earth and Sun
given by ME/MS = (5.974/1.989)×10−6 given by TE = (ME/MS)×TS = .2595 s. The corresponding
frequency fE = 3.8535 Hz frequency is at the lower end of the theta band in EEG and is by 10 per
cent higher than the p-adic frequency f(251) = 3.5355 Hz associated with the p-adic prime p ' 2k,
k = 251. The corresponding wavelength is 2.02 times Earth’s circumference. Note that the cyclotron
frequencies of Nn, Fe, Co, Ni, and Cu are 5.5, 5.0, 5.2, 4.8 Hz in the magnetic field of .5× 10−4 Tesla,
which is the nominal value of the Earth’s magnetic field. In [70] I have proposed that the cyclotron
frequencies of Fe and Co could define biological rhythms important for brain functioning. For v0/12
associated with Moon orbit the period would be 7.47 s: I do not know whether this corresponds to
some bio-rhytm.

It is better to leave for the reader to decide whether these findings support the idea that the super
conducting cold dark matter at the magnetic flux tubes could perform bio-control and whether the
gravitational quantum states and ordinary quantum states associated with the magnetic flux tubes
couple to each other and are synchronized.

14.5.9 p-Adic length scale hypothesis and v0 → v0/5 transition at inner-
outer border for planetary system

v0 → v0/5 transition would allow to interpret the orbits of outer planets as n ≥ 1 orbits. The obvious
question is whether inner to outer zone as v0 → v0/5 transition could be interpreted in terms of the
p-adic length scale hierarchy.
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1. The most important p-adic length scale are given by primary p-adic length scales L(k) =
2(k−151)/2 × 10 nm and secondary p-adic length scales L(2, k) = 2k−151 × 10 nm, k prime.

2. The p-adic scale L(2, 139) = 114 Mkm is slightly above the orbital radius 109.4 Mkm of Venus.
The p-adic length scale L(2, 137) ' 28.5 Mkm is roughly one half of Mercury’s orbital radius
57.9 Mkm. Thus strong form of p-adic length scale hypothesis could explain why the transition
v0 → v0/5 occurs in the region between Venus and Earth (n = 5 orbit for v0 layer and n = 1
orbit for v0/5 layer).

3. Interestingly, the primary p-adic length scales L(137) and L(139) correspond to fundamental
atomic length scales which suggests that solar system be seen as a fractally scaled up ”secondary”
version of atomic system.

4. Planetary radii have been fitted also using Titius-Bode law predicting r(n) = r0 + r1 × 2n.
Hence on can ask whether planets are in one-one correspondence with primary and secondary
p-adic length scales L(k). For the orbital radii 58, 110, 150, 228 Mkm of Mercury, Venus, Earth,
and Mars indeed correspond approximately to k= 276, 278, 279, 281: note the special position
of Earth with respect to its predecessor. For Jupiter, Saturn, Uranus, Neptune, and Pluto the
radii are 52,95,191,301,395 Mkm and would correspond to p-adic length scales L(280 + 2n)),
n = 0, ..., 3. Obviously the transition v0 → v0/5 could occur in order to make the planet–p-adic
length scale one-one correspondence possible.

5. It is interesting to look whether the p-adic length scale hierarchy applies also to the solar
structure. In a good approximation solar radius .696 Mkm corresponds to L(270), the lower
radius .496 Mkm of the convective zone corresponds to L(269), and the lower radius .174 Mkm
of the radiative zone (radius of the solar core) corresponds to L(266). This encourages the
hypothesis that solar core has an onion like sub-structure corresponding to various p-adic length
scales. In particular, L(2, 127) (L(127) corresponds to electron) would correspond to 28 Mm.
The core is believed to contain a structure with radius of about 10 km: this would correspond to
L(231). This picture would suggest universality of star structure in the sense that stars would
differ basically by the number of the onion like shells having standard sizes.

Quite generally, in TGD Universe the formation of join along boundaries bonds is the space-time
correlate for the formation of bound states. This encourages to think that (Z0) magnetic flux tubes
are involved with the formation of gravitational bound states and that for v0 → v0/k corresponds
either to a splitting of a flux tube resembling a disk with a whole to k pieces, or to the scaling down
B → B/k2 so that the magnetic energy for the flux tube thickened and stretched by the same factor
k2 would not change.

14.5.10 About the interpretation of the parameter v0

The formula for the gravitational Planck constant contains the parameter v0/c = 2−11. This velocity
defines the rotation velocities of distant stars around galaxies. The presence of a parameter with
dimensions of velocity should carry some important information about the geometry of dark matter
space-time sheets.

Velocity like parameters appear also in other contexts. There is evidence for the Tifft’s quantization
of cosmic redshifts in multiples of v0/c = 2.68 × 10−5/3: also other units of quantization have been
proposed but they are multiples of v0 [31] .

The strange behavior of graphene includes high conductivity with conduction electrons behaving
like massless particles with light velocity replaced with v0/c = 1/300. The TGD inspired model [16]
explains the high conductivity as being due to the Planck constant ~(M4) = 6~0 increasing the
delocalization length scale of electron pairs associated with hexagonal rings of mono-atomic graphene
layer by a factor 6 and thus making possible overlap of electron orbitals. This explains also the
anomalous conductivity of DNA containing 5- and 6-cycles [16] .

Is dark matter warped?

The reduced light velocity could be due to the warping of the space-time sheet associated with dark
electrons. TGD predicts besides gravitational red-shift a non-gravitational red-shift due to the warping
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of space-time sheets possible because space-time is 4-surface rather than abstract 4-manifold. A simple
example of everyday life is the warping of a paper sheet: it bends but is not stretched, which means
that the induced metric remains flat although one of its component scales (distance becomes longer
along direction of bending). For instance, empty Minkowski space represented canonically as a surface
of M4×CP2 with constant CP2 coordinates can become periodically warped in time direction because
of the bending in CP2 direction. As a consequence, the distance in time direction shortens and effective
light-velocity decreases when determined from the comparison of the time taken for signal to propagate
from A to B along warped space-time sheet with propagation time along a non-warped space-time
sheet.

The simplest warped imbedding defined by the map M4 → S1, S1 a geodesic circle of CP2. Let the
angle coordinate of S1 depend linearly on time: Φ = ωt. gtt component of metric becomes 1− R2ω2

so that the light velocity is reduced to v0/c =
√

1−R2ω2. No gravitational field is present.
The fact that M4 Planck constant na~0 defines the scaling factor n2

a of CP2 metric could explain
why dark matter resides around strongly warped imbeddings of M4. The quantization of the scaling
factor of CP2 by R2 → n2

aR
2 implies that the initial small warping in the time direction given by

gtt = 1− ε, ε = R2ω2, will be amplified to gtt = 1− n2
aε if ω is not affected in the transition to dark

matter phase. na = 6 in the case of graphene would give 1− x ' 1− 1/36 so that only a one per cent
reduction of light velocity is enough to explain the strong reduction of light velocity for dark matter.

Is c/v0 quantized in terms of ruler and compass rationals?

The known cases suggests that c/v0 is always a rational number expressible as a ratio of integers
associated with n-polygons constructible using only ruler and compass.

1. c/v0 = 300 would explain graphene. The nearest rational satisfying the ruler and compass
constraint would be q = 5× 210/17 ' 301.18.

2. If dark matter space-time sheets are warped with c0/v = 211 one can understand Nottale’s
quantization for the radii of the inner planets. For dark matter space-time sheets associated
with outer planets one would have c/v0 = 5× 211.

3. If Tifft’s red-shifts relate to the warping of dark matter space-time sheets, warping would cor-
respond to v0/c = 2.68× 10−5/3. c/v0 = 25 × 17× 257/5 holds true with an error smaller than
.1 per cent.

Tifft’s quantization and cosmic quantum coherence

An explanation for Tifft’s quantization in terms of Jones inclusions could be that the subgroup G of
Lorentz group defining the inclusion consists of boosts defined by multiples η = nη0 of the hyperbolic
angle η0 ' v0/c. This would give v/c = sinh(nη0) ' nv0/c. Thus the dark matter systems around
which visible matter is condensed would be exact copies of each other in cosmic length scales since G
would be an exact symmetry. The property of being an exact copy applies of course only in single level
in the dark matter hierarchy. This would mean a delocalization of elementary particles in cosmological
length scales made possible by the huge values of Planck constant. A precise cosmic analog for the
delocalization of electron pairs in benzene ring would be in question.

Why then η0 should be quantized as ruler and compass rationals? In the case of Planck constants
the quantum phases q = exp(imπ/nF ) are number theoretically simple for nF a ruler and compass
integer. If the boost exp(η) is represented as a unitary phase exp(imη) at the level of discretely
delocalized dark matter wave functions, the quantization η0 = n/nF would give rise to number
theoretically simple phases. Note that this quantization is more general than η0 = nF,1/nF,2.
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Chapter 15

Overall View About TGD from
Particle Physics Perspective

15.1 Introduction

Topological Geometrodynamics is able to make rather precise and often testable predictions. In this
and two other articles I want to describe the recent over all view about the aspects of quantum TGD
relevant for particle physics.

During these 32 years TGD has become quite an extensive theory involving also applications to
quantum biology and quantum consciousness theory. Therefore it is difficult to decide in which order
to proceed. Should one represent first the purely mathematical theory as done in the articles in
Prespacetime Journal [11, 12, 17, 18, 15, 10, 16, 19]? Or should one start from the TGD inspired
heuristic view about space-time and particle physics and represent the vision about construction of
quantum TGD briefly after that? In this and other two chapters I have chosen the latter approach
since the emphasis is on the applications on particle physics.

Second problem is to decide about how much material one should cover. If the representation is
too brief no-one understands and if it is too detailed no-one bothers to read. I do not know whether
the outcome was a success or whether there is any way to success but in any case I have been sweating
a lot in trying to decide what would be the optimum dose of details.

In the first chapter I concentrate the heuristic picture about TGD with emphasis on particle
physics.

• First I represent briefly the basic ontology: the motivations for TGD and the notion of many-
sheeted space-time, the concept of zero energy ontology, the identification of dark matter in terms
of hierarchy of Planck constant which now seems to follow as a prediction of quantum TGD, the
motivations for p-adic physics and its basic implications, and the identification of space-time
surfaces as generalized Feynman diagrams and the basic implications of this identification.

• Symmetries of quantum TGD are discussed. Besides the basic symmetries of the imbedding space
geometry allowing to geometrize standard model quantum numbers and classical fields there are
many other symmetries. General Coordinate Invariance is especially powerful in TGD framework
allowing to realize quantum classical correspondence and implies effective 2-dimensionality real-
izing strong form of holography. Super-conformal symmetries of super string models generalize
to conformal symmetries of 3-D light-like 3-surfaces and one can understand the generalization
of Equivalence Principle in terms of coset representations for the two super Virasoro algebras as-
sociated with lightlike boundaries of so called causal diamonds defined as intersections of future
and past directed lightcones (CDs) and with light-like 3-surfaces. Super-conformal symmetries
imply generalization of the space-time supersymmetry in TGD framework consistent with the
supersymmetries of minimal supersymmetric variant of the standard model. Twistorial approach
to gauge theories has gradually become part of quantum TGD and the natural generalization of
the Yangian symmetry identified originally as symmetry of N = 4 SYMs is postulated as basic
symmetry of quantum TGD.
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• The so called weak form of electric-magnetic duality has turned out to have extremely far
reaching consequences and is responsible for the recent progress in the understanding of the
physics predicted by TGD. The duality leads to a detailed identification of elementary particles as
composite objects of massless particles and predicts new electro-weak physics at LHC. Together
with a simple postulate about the properties of preferred extremals of Kähler action the duality
allows also to realized quantum TGD as almost topological quantum field theory giving excellent
hopes about integrability of quantum TGD.

• There are two basic visions about the construction of quantum TGD. Physics as infinite-
dimensional Kähler geometry of world of classical worlds (WCW) endowed with spinor structure
and physics as generalized number theory. These visions are briefly summarized as also the prac-
tical constructing involving the concept of Dirac operator. As a matter fact, the construction
of TGD involves three Dirac operators. The Kähler Dirac equation holds true in the interior
of space-time surface and its solutions have a natural interpretation in terms of description of
matter, in particular condensed matter. Chern-Simons Dirac action is associated with the light-
like 3-surfaces and space-like 3-surfaces at ends of space-time surface at light-like boundaries
of CD. One can assign to it a generalized eigenvalue equation and the matrix valued eigen-
values correspond to the the action of Dirac operator on momentum eigenstates. Momenta are
however not usual momenta but pseudo-momenta very much analogous to region momenta of
twistor approach. The third Dirac operator is associated with super Virasoro generators and
super Virasoro conditions define Dirac equation in WCW. These conditions characterize zero
energy states as modes of WCW spinor fields and code for the generalization of S-matrix to
a collection of what I call M -matrices defining the rows of unitary U -matrix defining unitary
process.

• Twistor approach has inspired several ideas in quantum TGD during the last years and it
seems that the Yangian symmetry and the construction of scattering amplitudes in terms of
Grassmannian integrals generalizes to TGD framework. This is due to ZEO allowing to assume
that all particles have massless fermions as basic building blocks. ZEO inspires the hypothesis
that incoming and outgoing particles are bound states of fundamental fermions associated with
wormhole throats. Virtual particles would also consist of on mass shell massless particles but
without bound state constraint. This implies very powerful constraints on loop diagrams and
there are excellent hopes about their finiteness. Twistor approach also inspires the conjecture
that quantum TGD allows also formulation in terms of 6-dimensional holomorphic surfaces in
the product CP3×CP3 of two twistor spaces and general arguments allow to identify the partial
different equations satisfied by these surfaces.

The discussion of this chapter is rather sketchy and the reader interesting in details can consult
the books about TGD [94, 72, 61, 55, 73, 83, 88] .

15.2 Some aspects of quantum TGD

In the following I summarize very briefly those basic notions of TGD which are especially relevant for
the applications to particle physics. The representation will be practically formula free. The article
series published in Prespacetime Journal [11, 12, 17, 18, 15, 10, 16, 19] describes the mathematical
theory behind TGD. The seven books about TGD [94, 72, 61, 73, 80] provide a detailed summary
about the recent state of TGD.

15.2.1 New space-time concept

The physical motivation for TGD was what I have christened the energy problem of General Relativity.
The notion of energy is ill-defined because the basic symmetries of empty space-time are lost in the
presence of gravity. The way out is based on assumption that space-times are imbeddable as 4-
surfaces to certain 8-dimensional space by replacing the points of 4-D empty Minkowski space with
4-D very small internal space. This space -call it S- is unique from the requirement that the theory
has the symmetries of standard model: S = CP2, where CP2 is complex projective space with 4 real
dimensions [19] , is the unique choice.
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The replacement of the abstract manifold geometry of general relativity with the geometry of sur-
faces brings the shape of surface as seen from the perspective of 8-D space-time and this means addi-
tional degrees of freedom giving excellent hopes of realizng the dream of Einstein about geometrization
of fundamental interactions.

The work with the generic solutions of the field equations assignable to almost any general coordi-
nate invariant variational principle led soon to the realization that the space-time in this framework
is much more richer than in general relativity.

1. Space-time decomposes into space-time sheets with finite size: this lead to the identification
of physical objects that we perceive around us as space-time sheets. For instance, the outer
boundary of the table is where that particular space-time sheet ends. Besides sheets also string
like objects and elementary particle like objects appear so that TGD can be regarded also as a
generalization of string models obtained by replacing strings with 3-D surfaces.

2. Elementary particles are identified as topological inhomogenities glued to these space-time
sheets. In this conceptual framework material structures and shapes are not due to some myste-
rious substance in slightly curved space-time but reduce to space-time topology just as energy-
momentum currents reduce to space-time curvature in general relativity.

3. Also the view about classical fields changes. One can assign to each material system a field
identity since electromagnetic and other fields decompose to topological field quanta. Examples
are magnetic and electric flux tubes and flux sheets and topological light rays representing light
propagating along tube like structure without dispersion and dissipation making em ideal tool
for communications [62] . One can speak about field body or magnetic body of the system.

Field body indeed becomes the key notion distinguishing TGD inspired model of quantum biology
from competitors but having applications also in particle physics since also leptons and quarks possess
field bodies. The is evidence for the Lamb shift anomaly of muonic hydrogen [4] and the color magnetic
body of u quark whose size is somethat larger than the Bohr radius could explain the anomaly [53] .

15.2.2 Zero energy ontology

In standard ontology of quantum physics physical states are assumed to have positive energy. In zero
energy ontology physical states decompose to pairs of positive and negative energy states such that all
net values of the conserved quantum numbers vanish. The interpretation of these states in ordinary
ontology would be as transitions between initial and final states, physical events. By quantum classical
correspondences zero energy states must have space-time and imbedding space correlates.

1. Positive and negative energy parts reside at future and past light-like boundaries of causal
diamond (CD) defined as intersection of future and past directed light-cones and visualizable
as double cone. The analog of CD in cosmology is big bang followed by big crunch. CDs for
a fractal hierarchy containing CDs within CDs. Disjoint CDs are possible and CDs can also
intersect.

2. p-Adic length scale hypothesis [56] motivates the hypothesis that the temporal distances between
the tips of the intersecting light-cones come as octaves T = 2nT0 of a fundamental time scale
T0 defined by CP2 size R as T0 = R/c. One prediction is that in the case of electron this time
scale is .1 seconds defining the fundamental biorhythm. Also in the case u and d quarks the
time scales correspond to biologically important time scales given by 10 ms for u quark and by
and 2.5 ms for d quark [7] . This means a direct coupling between microscopic and macroscopic
scales.

Zero energy ontology conforms with the crossing symmetry of quantum field theories meaning
that the final states of the quantum scattering event are effectively negative energy states. As long
as one can restrict the consideration to either positive or negative energy part of the state ZEO
is consistent with positive energy ontology. This is the case when the observer characterized by a
particular CD studies the physics in the time scale of much larger CD containing observer’s CD as
a sub-CD. When the time scale sub-CD of the studied system is much shorter that the time scale of
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sub-CD characterizing the observer, the interpretation of states associated with sub-CD is in terms
of quantum fluctuations.

ZEO solves the problem which results in any theory assuming symmetries giving rise to to conser-
vation laws. The problem is that the theory itself is not able to characterize the values of conserved
quantum numbers of the initial state. In ZEO this problem disappears since in principle any zero
energy state is obtained from any other state by a sequence of quantum jumps without breaking of
conservation laws. The fact that energy is not conserved in general relativity based cosmologies can
be also understood since each CD is characterized by its own conserved quantities. As a matter
fact, one must be speak about average values of conserved quantities since one can have a quantum
superposition of zero energy states with the quantum numbers of the positive energy part varying
over some range.

For thermodynamical states this is indeed the case and this leads to the idea that quantum theory in
ZEO can be regarded as a ”complex square root” of thermodynamics obtained as a product of positive
diagonal square root of density matrix and unitary S-matrix. M -matrix defines time-like entanglement
coefficients between positive and negative energy parts of the zero energy state and replaces S-matrix
as the fundamental observable. In standard quantum measurement theory this time-like entanglement
would be reduced in quantum measurement and regenerated in the next quantum jump if one accepts
Negentropy Maximization Principle (NMP) [52] as the fundamental variational principle. Various M -
matrices define the rows of the unitary U matrix characterizing the unitary process part of quantum
jump. From the point of view of consciousness theory the importance of ZEO is that conservation laws
in principle pose no restrictions for the new realities created in quantum jumps: free will is maximal.

15.2.3 The hierarchy of Planck constants

The motivations for the hierarchy of Planck constants come from both astrophysics and biology
[69, 27] . In astrophysics the observation of Nottale [27] that planetary orbits in solar system seem to
correspond to Bohr orbits with a gigantic gravitational Planck constant motivated the proposal that
Planck constant might not be constant after all [77, 63] .

This led to the introduction of the quantization of Planck constant as an independent postulate.
It has however turned that quantized Planck constant in effective sense could emerge from the basic
structure of TGD alone. Canonical momentum densities and time derivatives of the imbedding space
coordinates are the field theory analogs of momenta and velocities in classical mechanics. The ex-
treme non-linearity and vacuum degeneracy of Kähler action imply that the correspondence between
canonical momentum densities and time derivatives of the imbedding space coordinates is 1-to-many:
for vacuum extremals themselves 1-to-infinite.

A convenient technical manner to treat the situation is to replace imbedding space with its n-
fold singular covering. Canonical momentum densities to which conserved quantities are proportional
would be same at the sheets corresponding to different values of the time derivatives. At each sheet
of the covering Planck constant is effectively ~ = n~0. This splitting to multisheeted structure can be
seen as a phase transition reducing the densities of various charges by factor 1/n and making it possible
to have perturbative phase at each sheet (gauge coupling strengths are proportional to 1/~ and scaled
down by 1/n). The connection with fractional quantum Hall effect [2] is almost obvious. At the more
detailed level one finds that the spectrum of Planck constants would be given by ~ = nanb~0 [30] .

This has many profound implications, which are wellcome from the point of view of quantum
biology but the implications would be profound also from particle physics perspective and one could
say that living matter represents zoome up version of quantum world at elementary particle length
scales.

1. Quantum coherence and quantum superposition become possible in arbitrary long length scales.
One can speak about zoomed up variants of elementary particles and zoomed up sizes make it
possible to satisfy the overlap condition for quantum length parameters used as a criterion for
the presence of macroscopic quantum phases. In the case of quantum gravitation the length scale
involved are astrophysical. This would conform with Penrose’s intuition that quantum gravity
is fundamental for the understanding of consciousness and also with the idea that consciousness
cannot be localized to brain.

2. Photons with given frequency can in principle have arbitrarily high energies by E = hf formula,
and this would explain the strange anomalies associated with the interaction of ELF em fields
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with living matter [3] . Quite generally the cyclotron frequencies which correspond to ener-
gies much below the thermal energy for ordinary value of Planck constant could correspond to
energies above thermal threshold.

3. The value of Planck constant is a natural characterizer of the evolutionary level and biolog-
ical evolution would mean a gradual increase of the largest Planck constant in the hierarchy
characterizing given quantum system. Evolutionary leaps would have interpretation as phase
transitions increasing the maximal value of Planck constant for evolving species. The space-time
correlate would be the increase of both the number and the size of the sheets of the covering
associated with the system so that its complexity would increase.

4. The phase transitions changing Planck constant change also the length of the magnetic flux
tubes. The natural conjecture is that biomolecules form a kind of Indra’s net connected by the
flux tubes and ~ changing phase transitions are at the core of the quantum bio-dynamics. The
contraction of the magnetic flux tube connecting distant biomolecules would force them near to
each other making possible for the bio-catalysis to proceed. This mechanism could be central
for DNA replication and other basic biological processes. Magnetic Indra’s net could be also
responsible for the coherence of gel phase and the phase transitions affecting flux tube lengths
could induce the contractions and expansions of the intracellular gel phase. The reconnection of
flux tubes would allow the restructing of the signal pathways between biomolecules and other
subsystems and would be also involved with ADP-ATP transformation inducing a transfer of
negentropic entanglement [33] . The braiding of the magnetic flux tubes could make possible
topological quantum computation like processes and analog of computer memory realized in
terms of braiding patterns [29] .

5. p-Adic length scale hypothesis and hierarchy of Planck constants suggest entire hierarchy of
zoomed up copies of standard model physics with range of weak interactions and color forces
scaling like ~. This is not conflict with the known physics for the simple reason that we know
very little about dark matter (partly because we might be making misleading assumptions about
its nature). One implication is that it might be someday to study zoomed up variants particle
physics at low energies using dark matter.

Dark matter would make possible the large parity breaking effects manifested as chiral selection
of bio-molecules [12] . What is required is that classical Z0 and W fields responsible for parity
breaking effects are present in cellular length scale. If the value of Planck constant is so large
that weak scale is some biological length scale, weak fields are effectively massless below this
scale and large parity breaking effects become possible.

For the solutions of field equations which are almost vacuum extremals Z0 field is non-vanishing
and proportional to electromagnetic field. The hypothesis that cell membrane corresponds to
a space-time sheet near a vacuum extremal (this corresponds to criticality very natural if the
cell membrane is to serve as an ideal sensory receptor) leads to a rather successful model for
cell membrane as sensory receptor with lipids representing the pixels of sensory qualia chart.
The surprising prediction is that bio-photons [5] and bundles of EEG photons can be identified
as different decay products of dark photons with energies of visible photons. Also the peak
frequencies of sensitivity for photoreceptors are predicted correctly [69] .

15.2.4 p-Adic physics and number theoretic universality

p-Adic physics [55, 86] has become gradually a key piece of TGD inspired biophysics. Basic quantita-
tive predictions relate to p-adic length scale hypothesis and to the notion of number theoretic entropy.
Basic ontological ideas are that life resides in the intersection of real and p-adic worlds and that p-adic
space-time sheets serve as correlates for cognition and intentionality. Number theoretical universality
requires the fusion of real physics and various p-adic physics to single coherent whole. On implication
is the generalization of the notion of number obtained by fusing real and p-adic numbers to a larger
structure.
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p-Adic number fields

p-Adic number fields Qp [59] -one for each prime p- are analogous to reals in the sense that one can
speak about p-adic continuum and that also p-adic numbers are obtained as completions of the field
of rational numbers. One can say that rational numbers belong to the intersection of real and p-adic
numbers. p-Adic number field Qp allows also an infinite number of its algebraic extensions. Also
transcendental extensions are possible. For reals the only extension is complex numbers.

p-Adic topology defining the notions of nearness and continuity differs dramatically from the real
topology. An integer which is infinite as a real number can be completely well defined and finite as a
p-adic number. In particular, powers pn of prime p have p-adic norm (magnitude) equal to p−n in Qp
so that at the limit of very large n real magnitude becomes infinite and p-adic magnitude vanishes.

p-Adic topology is rough since p-adic distance d(x, y) = d(x − y) depends on the lowest pinary
digit of x− y only and is analogous to the distance between real points when approximated by taking
into account only the lowest digit in the decimal expansion of x − y. A possible interpretation is
in terms of a finite measurement resolution and resolution of sensory perception. p-Adic topology
looks somewhat strange. For instance, p-adic spherical surface is not infinitely thin but has a finite
thickness and p-adic surfaces possess no boundary in the topological sense. Ultrametricity is the
technical term characterizing the basic properties of p-adic topology and is coded by the inequality
d(x− y) ≤Min{d(x), d(y)}. p-Adic topology brings in mind the decomposition of perceptive field to
objects.

Motivations for p-adic number fields

The physical motivations for p-adic physics came from the observation that p-adic thermodynamics
-not for energy but infinitesimal scaling generator of so called super-conformal algebra [36] acting as
symmetries of quantum TGD [72] - predicts elementary particle mass scales and also masses correctly
under very general assumptions [55] . The calculations are discussed in more detail in the second
article of the series. In particular, the ratio of proton mass to Planck mass, the basic mystery number
of physics, is predicted correctly. The basic assumption is that the preferred primes characterizing
the p-adic number fields involved are near powers of two: p ' 2k, k positive integer. Those nearest
to power of two correspond to Mersenne primes Mn = 2n − 1. One can also consider complex primes
known as Gaussian primes, in particular Gaussian Mersennes MG,n = (1 + i)n − 1.

It turns out that Mersennes and Gaussian Mersennes are in a preferred position physically in TGD
based world order. What is especially interesting that the length scale range 10 nm-2.5 µ assignable
to DNA contains as many as 4 Gaussian Mersennes corresponding to n = 151, 157, 163, 167 [69] .
This number theoretical miracle supports the view that p-adic physics is especially important for the
understanding of living matter.

The philosophical for p-adic numbers fields come from the question about the possible physical
correlates of cognition and intention [59] . Cognition forms representations of the external world which
have finite cognitive resolution and the decomposition of the perceptive field to objects is an essential
element of these representations. Therefore p-adic space-time sheets could be seen as candidates
of thought bubbles, the mind stuff of Descartes. One can also consider p-adic space-time sheets as
correlates of intentions. The quantum jump in which p-adic space-time sheet is replaced with a real one
could serve as a quantum correlate of intentional action. This process is forbidden by conservation laws
in standard ontology: one cannot even compare real and p-adic variants of the conserved quantities
like energy in the general case. In zero energy ontology the net values of conserved quantities for zero
energy states vanish so that conservation laws allow these transitions.

Rational numbers belong to the intersection of real and p-adic continua. An obvious generalization
of this statement applies to real manifolds and their p-adic variants. When extensions of p-adic
numbers are allowed, also some algebraic numbers can belong to the intersection of p-adic and real
worlds. The notion of intersection of real and p-adic worlds has actually two meanings.

1. The intersection could consist of the rational and possibly some algebraic points in the inter-
section of real and p-adic partonic 2-surfaces at the ends of CD. This set is in general discrete.
The interpretation could be as discrete cognitive representations.

2. The intersection could also have a more abstract meaning. For instance, the surfaces defined by
rational functions with rational coefficients have a well-defined meaning in both real and p-adic
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context and could be interpreted as belonging to this intersection. There is strong temptation
to assume that intentions are transformed to actions only in this intersection. One could say
that life resides in the intersection of real and p-adic worlds in this abstract sense.

Additional support for the idea comes from the observation that Shannon entropy S = −
∑
pnlog(pn)

allows a p-adic generalization if the probabilities are rational numbers by replacing log(pn) with
−log(|pn|p), where |x|p is p-adic norm. Also algebraic numbers in some extension of p-adic numbers
can be allowed. The unexpected property of the number theoretic Shannon entropy is that it can
be negative and its unique minimum value as a function of the p-adic prime p it is always negative.
Entropy transforms to information!

In the case of number theoretic entanglement entropy there is a natural interpretation for this.
Number theoretic entanglement entropy would measure the information carried by the entanglement
whereas ordinary entanglement entropy would characterize the uncertainty about the state of either
entangled system. For instance, for p maximally entangled states both ordinary entanglement entropy
and number theoretic entanglement negentropy are maximal with respect to Rp norm. Entanglement
carries maximal information. The information would be about the relationship between the systems, a
rule. Schrödinger cat would be dead enough to know that it is better to not open the bottle completely.

Negentropy Maximization Principle [52] coding the basic rules of quantum measurement theory
implies that negentropic entanglement can be stable against the effects of quantum jumps unlike
entropic entanglement. Therefore living matter could be distinguished from inanimate matter also
by negentropic entanglement possible in the intersection of real and p-adic worlds. In consciousness
theory negentropic entanglement could be seen as a correlate for the experience of understanding or
any other positively colored experience, say love.

Negentropically entangled states are stable but binding energy and effective loss of relative trans-
lational degrees of freedom is not responsible for the stability. Therefore bound states are not in
question. The distinction between negentropic and bound state entanglement could be compared to
the difference between unhappy and happy marriage. The first one is a social jail but in the latter
case both parties are free to leave but do not want to. The special characterics of negentropic entan-
glement raise the question whether the problematic notion of high energy phosphate bond [3] central
for metabolism could be understood in terms of negentropic entanglement. This would also allow an
information theoretic interpretation of metabolism since the transfer of metabolic energy would mean
a transfer of negentropy [33] .

15.3 Symmetries of quantum TGD

Symmetry principles play key role in the construction of WCW geometry have become and deserve a
separate explicit treament even at the risk of repetitions.

15.3.1 General Coordinate Invariance

General coordinate invariance is certainly of the most important guidelines and is much more powerful
in TGD framework thanin GRT context.

1. General coordinate transformations as a gauge symmetry so that the diffeomorphic slices of
space-time surface equivalent physically. 3-D light-like 3-surfaces defined by wormhole throats
define preferred slices and allows to fix the gauge partially apart from the remaining 3-D variant
of general coordinate invariance and possible gauge degeneracy related to the choice of the light-
like 3-surface due to the Kac-Moody invariance. This would mean that the random light-likeness
represents gauge degree of freedome except at the ends of the light-like 3-surfaces.

2. GCI can be strengthed so that the pairs of space-like ends of space-like 3-surfaces at CDs are
equivalent with light-like 3-surfaces connecting them. The outcome is effective 2-dimensionality
because their intersections at the boundaries of CDs must carry the physically relevant infor-
mation.
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15.3.2 Generalized conformal symmetries

One can assign Kac-Moody type conformal symmetries to light-like 3-surfaces as isometries of H
localized with respect to light-like 3-surfaces. Kac Moody algebra essentially the Lie algebra of gauge
group with central extension meaning that projective representation in which representation matrices
are defined only modulo a phase factor. Kac-Moody symmetry is not quite a pure gauge symmetry.

One can assign a generalization of Kac-Moody symmetries to the boundaries of CD by replacing
Lie-group of Kac Moody algebra with the group of symplectic (contact-) tranformations [72, 39, 38]
of H+ provided with a degenerate Kähler structure made possible by the effective 2-dimensionality of
δM4

+. The light-like radial coordinate of δM4
+ plays the role of the complex coordinate of conformal

transformations or their hyper-complex analogs. These symmetries are also localized with respect to
the internal coordinates of the partonic 2-surface so that rather huge symmetry group is in question.
The basic hypothesis is that these transformations with possible some restrictions on the depedence
on the coordinates of X2 define the isometries of WCW.

A further physically well-motivated hypothesis inspired by holography and extended GCI is that
these symmetries extend so that they apply at the entire space-time sheet. This requires the slicing of
space-time surface by partonic 2- surfaces and by stringy world sheets such that each point of stringy
world sheet defines a partonic 2-surface and vice versa. This slicing has deep physical motivations since
it realizes geometrically standard facts about gauge invariance (partonic 2-surface defines the space of
physical polarizations and stringy space-time sheet corresponds to non-physical polarizations) and its
existence is a hypothesis about the properties of the preferred extremals of Kähler action. There is a
similar decomposition also at the level of CD and so called Hamilton-Jacobi coordinates for M4

+ [12]
define this kind of slicings. This slicing can induced the slicing of the space-time sheet. The number
theoretic vision gives a further justification for this hypothesis and also strengthens it by postulating
the presence of the preferred time direction having interpretation in terms of real unit of octonions.
In ZEO this time direction corresponds to the time-like vector connecting the tips of CD.

Conformal symmetries would provide the realization of WCW as a union of symmetric spaces.
Symmetric spaces are coset spaces of form G/H. The natural identification of G and H is as groups of
X2-local symplectic transformations and local Kac-Moody group of X2-local H isometries. Quantum
fluctuating (metrically non-trivial) degrees of freedom would correspond to symplectic transformations
of H+ and induced Kähler form at X2 would define a local representation for zero modes: not
necessarily all of them.

15.3.3 Equivalence Principle and super-conformal symmetries

Equivalence Principle (EP) is a second corner stone of General Relativity and together with GCI leads
to Einstein’s equations. What EP states is that inertial and gravitational masses are identical. In this
form it is not well-defined even in GRT since the definition of gravitational and inertial four-momenta
is highly problematic because Noether theorem is not avaible. The realization is in terms of local
equations identifying energy momentum tensor with Einstein tensor.

Whether EP is realized in TGD has been a longstanding open question [91] . The problem has been
that at the classical level EP in its GRT form can hold true only in long enough length scales and it
took long to time to realize that only the stringy form of this principle is required. The first question is
how to identify the gravitational and inertial four-momenta. This is indeed possible. One can assign to
the two types super-conformal symmetries assigned with light-like 3-surfaces and space-like 3-surfaces
four-momenta to both. EP states that these four momenta are identical and is equivalent with the
generalization of GCI and effective 2-dimensionality. The condition generalizes so that it applies to
the generators of super-conformal algebras associated with the two super-conformal symmetries. This
leads to a generalization of a standard mathematical construction of super-conformal theories known
as coset representation [110] . What the construction states is that the differences of super-conformal
generators defined by super-symmetric algebra and Kac-Moody algebra annihilate physical states.

15.3.4 Extension to super-conformal symmetries

The original idea behind the extension of conformal symmetries to super-conformal symmetries was
the observation that isometry currents defining infinitesimal isometries of WCW have natural super-
counterparts obtained by contracting the Killing vector fields with the complexified gamma matrices
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of the imbedding space.
This vision has generalized considerably as the construction of WCW spinor structure in terms

of modified Dirac action has developed. The basic philosophy behind this idea is that configuration
space spinor structure must relate directly to the fermionic sector of quantum physics. In particular,
modified gamma matrices should be expressible in terms of the fermionic oscillator operators associated
with the second quantized induced spinor fields. The explicit realization of this program leads to an
identification of rich spectrum of super-conformal symmetries and generalization of the ordinary notion
of space-time supersymmetry. What happens that all fermionic oscillator operator generate broken
super-symmetries whereas in SUSYs there is only finite number of them. One can however identify
sub-algebra of super-conformal symmetries associated with right handed neutrino and this givesN = 1
super-symmetry [12] of SUSYs [32] .

15.3.5 Space-time supersymmetry in TGD Universe

It has been clear from the beginning that the notion of super-conformal symmetry crucial for the
successes of super-string models generalizes in TGD framework. The answer to the question whether
space-time SUSY makes sense in TGD framework has not been obvious at all but it seems now that
the answer is affirmative. The evolution of the ideas relevant for the formulation of SUSY in TGD
framework is summarized in the chapters of [73] . The chapters devoted to the notion of bosonic
emergence [65] , to the SUSY QFT limit of TGD [32] , to twistor approach to TGD [96] , and to the
generalization of Yangian symmetry of N = 4 SYM manifest in the Grassmannian twistor approach
[25] to a multi-local variant of super-conformal symmetries [99] represent a gradual development of the
ideas about how super-symmetric M -matrix could be constructed in TGD framework. A warning to
the reader is in order. In their recent form these chapters do not represent the final outcome but just
an evolution of ideas proceeding by trial and error. There are however good reasons to believe that the
chapter about Yangian symmetry is nearest to the correct physical interpretation and mathematical
formulation.

Contrary to the original expectations, TGD seems to allow a generalization of the space-time super-
symmetry. This became clear with the increased understanding of the modified Dirac action [20, 31, 24]
. The appearance of the momentum and color quantum numbers in the measurement interaction part
of the modified Dirac action associated with the light-like wormhole throats [31] couples space-time
degrees of freedom to quantum numbers and allows also to define SUSY algebra at fundamental level
as anti-commutation relations of fermionic oscillator operators. Depending on the situation N = 2N
SUSY algebra (an inherent cutoff on the number of fermionic modes at light-like wormhole throat)
or fermionic part of super-conformal algebra with infinite number of oscillator operators results. The
addition of fermion in particular mode would define particular super-symmetry. This super-symmetry
is badly broken due to the dynamics of the modified Dirac operator which also mixes M4 chiralities
inducing massivation. Since right-handed neutrino has no electro-weak couplings the breaking of the
corresponding super-symmetry should be weakest.

Zero energy ontology combined with the analog of the twistor approach to N = 4 SYMs and weak
form of electric-magnetic duality has actually led to this kind of formulation [99] . What is new that
also virtual particles have massless fermions as their building blocks. This implies manifest finiteness
of loop integrals so that the situation simplifies dramatically. What is also new element that physical
particles and also string like objects correspond to bound states of massless fermions.

The question is whether this SUSY has a realization as a SUSY algebra at space-time level and
whether the QFT limit of TGD could be formulated as a generalization of SUSY QFT. There are
several problems involved.

1. In TGD framework super-symmetry means addition of fermion to the state and since the number
of spinor modes is larger states with large spin and fermion numbers are obtained. This picture
does not fit to the standard view about super-symmetry. In particular, the identification of
theta parameters as Majorana spinors and super-charges as Hermitian operators is not possible.

2. The belief that Majorana spinors are somehow an intrinsic aspect of super-symmetry is however
only a belief. Weyl spinors meaning complex theta parameters are also possible. Theta param-
eters can also carry fermion number meaning only the supercharges carry fermion number and
are non-hermitian. The general classification of super-symmetric theories indeed demonstrates
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that for D = 8 Weyl spinors and complex and non-hermitian super-charges are possible. The
original motivation for Majorana spinors might come from MSSM assuming that right handed
neutrino does not exist. This belief might have also led to string theories in D = 10 and D = 11
as the only possible candidates for TOE after it turned out that chiral anomalies cancel. It
indeed turns out that TGD view about space-time SUSY is internally consistent. Even more,
the separate conservation of quark and lepton number is essential for the internal consistency of
this view [32] .

3. The massivation of particles is the basic problem of both SUSYs and twistor approach. I have
discussed several solutions to this problem [96, 99] . The simplest and most convincing solution
of the problem is following and inspired by twistor Grassmannian approach to N = 4 SYM and
the generalization of the Yangian symmetry of this theory. In zero energy ontology one can
construct physical particles as bound states of massless particles associated with the opposite
wormhole throats. If the particles have opposite 3-momenta the resulting state is automatically
massive. In fact, this forces massivation of also spin one bosons since the fermion and antifermion
must move in opposite directions for their spins to be parallel so that the net mass is non-
vanishing: note that this means that even photon, gluons, and graviton have small mass. This
mechanism makes topologically condensed fermions massive and padic thermodynamics allows
to describe the massivation in terms of zero energy states and M -matrix. Bosons receive to
their mass besides the small mass coming from thermodynamics also a contribution which is
counterpart of the contribution coming from Higgs vacuum expectation value and Higgs gives
rise to longitudinal polarizations. No Higgs potential is however needed. The cancellation of
infrared divergences necessary for exact Yangian symmetry and the observation that even photon
receives small mass suggest that scalar Higgs would disappear completely from the spectrum.

Basic data bits

Let us first summarize the data bits about possible relevance of super-symmetry for TGD before the
addition of the 3-D measurement interaction term to the modified Dirac action [20, 31] .

1. Right-handed covariantly constant neutrino spinor νR defines a super-symmetry in CP2 degrees
of freedom in the sense that Dirac equation is satisfied by covariant constancy and there is no
need for the usual ansatz Ψ = DΨ0 giving D2Ψ = 0. This super-symmetry allows to construct
solutions of Dirac equation in CP2 [128, 92, 111, 86] .

2. In M4 × CP2 this means the existence of massless modes Ψ = /pΨ0, where Ψ0 is the tensor
product of M4 and CP2 spinors. For these solutions M4 chiralities are not mixed unlike for
all other modes which are massive and carry color quantum numbers depending on the CP2

chirality and charge. As matter fact, covariantly constant right-handed neutrino spinor mode
is the only color singlet. The mechanism leading to non-colored states for fermions is based
on super-conformal representations for which the color is neutralized [49, 57] . The negative
conformal weight of the vacuum also cancels the enormous contribution to mass squared coming
from mass in CP2 degrees of freedom.

3. Right-handed covariantly constant neutrino allows to construct the gamma matrices of the world
of classical worlds (WCW) as fermionic counterparts of Hamiltonians of WCW. This gives rise
super-symplectic symmetry algebra having interpretation also as a conformal algebra. Also more
general super-conformal symmetries exist.

4. Space-time (in the sense of Minkowski space M4) super-symmetry in the conventional sense of
the word is impossible in TGD framework since it would require require Majorana spinors. In
8-D space-time with Minkowski signature of metric Majorana spinors are definitely ruled out
by the standard argument leading to super string model. Majorana spinors would also break
separate conservation of lepton and baryon numbers in TGD framework.

Could one generalize super-symmetry?

Could one then consider a more general space-time super-symmetry with ”space-time” identified as
space-time surface rather than Minkowski space?
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1. The TGD variant of the super-symmetry could correspond quite concretely to the addition to
fermion and boson states right-handed neutrinos. Since right-handed neutrinos do not have
electro-weak interactions, the addition might not appreciably affect the mass formula although
it could affect the p-adic prime defining the mass scale.

2. The problem is to understand what this addition of the right-handed neutrino means. To begin
with, notice that in TGD Universe fermions reside at light-like 3-surfaces at which the signature
of induced metric changes. Bosons correspond to pairs of light-like wormhole throats with
wormhole contact having Euclidian signature of the induced metric. The long standing problem
has been that for bosons with parallel light-like four-momenta with same sign of energy the spins
of fermion and antifermion are opposite so that one would obtain only scalar bosons!

I have considered several solutions to the problem but the final solution came from the basic
problem of twistor approach to N = 4 SUSY. This theory is believed to be UV finite but has
IR divergences spoiling the Yangian SUSY. These infinities cancel if the physical particles are
bound states of pairs of wormhole throats with light-like momenta. Just the requirement that
spin is equal to one forces massivation. This is true for all spin 1 particles, also those regarded
as massless. Massivation of the photon is not a problem if the mass corresponds to the IR
cutoff determined by the largest causal diamond (CD) defining the measurement resolution.
For electron the size of CD corresponds to the size scale of Earth. The basic prediction is that
Higgs disappears completely from the spectrum so that this mechanism is testable at LHC.

The first proposal to the solution of problem was that either fermion or antifermion in the
boson state carries what might be called un-physical polarization in the standard conceptual
framework. This means that it has negative energy but three-momentum parallel to that of
the second wormhole throat. The assumption that the bosonic wormhole throats correspond
to positive and negative energy space-time sheets realizes this constraint in the framework of
zero energy ontology. It however turned out that for light-like momenta these states have more
natural interpretation in terms of virtual bosons able to have space-like momenta. This means
that one can realize virtual particles as pairs of on mass shell wormhole throats with either
sign of energy and 3-momentum so that the basic condition of twistorial approach is satisfied.
The conservation of 4-momentum at vertices gives extremely powerful kinematical constraints
so that there are excellent hopes about cancellation of UV divergences of loop integrals.

3. The super-symmetry as an addition to the fermion state a second wormhole throats carrying
right handed neutrino quantum numbers does not make sense since the resulting state cannot
be distinguished from gauge boson or Higgs type particle. The light-like 3-surfaces can however
carry fermion numbers up to the number of modes of the induced spinor field, which is expected
to be infinite inside string like objects having wormhole throats at ends and finite when one has
space time sheets containing the throats [31] . In very general sense one could say that each
mode defines a very large broken N -super-symmetry with the value of N depending on state
and light-like 3-surface. The breaking of this super-symmetry would come from electro-weak -
, color - , and gravitational interactions. Right-handed neutrino would by its electro-weak and
color inertness define a minimally broken super-symmetry.

4. What this addition of the right handed neutrinos or more general fermion modes could precisely
mean? One cannot assign fermionic oscillator operators to right handed neutrinos which are
covariantly constant in both M4 and CP2 degrees of freedom since the modes with vanishing
energy (frequency) cannot correspond to fermionic oscillator operator creating a physical state
since one would have a = a†. The intuitive view is that all the spinor modes move in an exactly
collinear manner -somewhat like quarks inside hadron do approximately.

Modified Dirac equation briefly

The answer to the question what ”collinear motion” means mathematically emerged from the recent
progress in the understanding of the modified Dirac equation.

1. The modified Dirac action involves two terms. Besides the original 4-D modified Dirac action
there is measurement interaction which can be localized to wormhole throat or to any light-like
3-surfaces ”parallel” to it in the slicing of space-time sheet by light-like 3-surfaces. This term
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correlates space-time geometry with quantum numbers assignable to super-conformal represen-
tations and is also necessary to obtain almost-stringy propagator.

2. The modified Dirac equation with measurement action added reads as

DKΨ = 0 ,

D3Ψ = (DC−S +Q×O)Ψ = 0 ,

[D3, DK ] Ψ = 0 . (15.3.1)

(a) DK corresponds formally to 4-D massless Dirac equation in X4. D3 realizes measurement
interaction. DC−S is the 3-D modified Dirac action defined by Chern-Simons action.

(b) Q is linear in Cartan algebra generators of the isometry algebra of imbedding space (color
isospin and hypercharge plus four-momentum or two components of four momentum and
spin and boost in direction of 3-momentum). Q is expressible as

Q = QA∂αh
kgABjBkΓ̂αCS . (15.3.2)

Here QA is Cartan algebra generator acting on physical states. Physical states must be
eigen states of QA since otherwise the equations do not make sense. gAB is the inverse of
the matrix defined by the imbedding space inner product of Killing vector fields jkA and

jlB : its existence allows only Cartan algebra charges. Γ̂αCS is the modified gamma matrix
associated with the Chern-Simons action.

(c) In general case the modified gamma matrices are defined in terms of action density L as

Γ̂α =
∂L

∂αhk
γk . (15.3.3)

γk denotes imbedding space gamma matrices.

(d) The operator O characterizes the conserved fermionic current to which Cartan algebra
generators of isometries couple. The simplest conserved currents correspond to quark or
lepton currents and corresponding vectorial isospin- and spin currents [31] . Besides this
there is an infinite hierarchy of conserved currents relating to quantum criticality and in
one-one correspondence with vanishing second variations of Kähler action for preferred
extremal. These couplings allow to represent measurement interaction for any observable.

3. The equation D3νR = 0 would reduce for vanishing color charges and covariantly constant spinor
to the analog of algebraic fermionic on mass shell condition pAγ

AνR = 0 since Q is obtained
by projecting the total four-momentum of the parton state interpreted as a vector-field of H
to the space-time surface and by replacing ordinary gamma matrices with the modified ones.
This equation cannot be exact since Q depends on the point of the light-like 3-surface so that
covariant constancy fails and DC−S cannot annihilate the state. This is the space-time correlate
for the breaking of super-symmetry. The action of the Cartan algebra generators is purely
algebraic and on the state of super-conformal representations rather than that of a differential
operator on spinor field. The modified equation implies that all spinor modes represent fermions
moving collinearly in the sense an equation with the same total four-momentum and total color
quantum numbers is satisfied by all of them. Note that pA represents the total four-momentum
of the state rather than individual four-momenta of fermions.

TGD counterpart of space-time super-symmetry

This picture allows to define more precisely what one means with the approximate super-symmetries
in TGD framework.
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1. One can in principle construct many-fermion states containing both fermions and anti-fermions
at given light-like 3-surface. The four-momenta of states related by super-symmetry need not
be same. Super-symmetry breaking is present and has as the space-time correlate the deviation
of the modified gamma matrices from the ordinary M4 gamma matrices. In particular, the
fact that Γ̂α possesses CP2 part in general means that different M4 chiralities are mixed: a
space-time correlate for the massivation of the elementary particles.

2. For right-handed neutrino super-symmetry breaking is expected to be smallest but also in the
case of the right-handed neutrino mode mixing of M4 chiralities takes place and breaks the TGD
counterpart of super-symmetry.

3. The fact that all helicities in the state are physical for a given light-like 3-surface has important
implications. For instance, the addition of a right-handed antineutrino to right-handed (left-
handed) electron state gives scalar (spin 1) state. Also states with fermion number two are ob-
tained from fermions. For instance, for eR one obtains the states {eR, eRνRνR, eRνR, eRνR} with
lepton numbers (1, 1, 0, 2) and spins (1/2, 1/2, 0, 1). For eL one obtains the states {eL, eLνRνR, eLνR, eLνR}
with lepton numbers (1, 1, 0, 2) and spins (1/2, 1/2, 1, 0). In the case of gauge boson and Higgs
type particles -allowed by TGD but not required by p-adic mass calculations- gauge boson has
15 super partners with fermion numbers [2, 1, 0,−1,−2].

The cautious conclusion is that the recent view about quantum TGD allows the analog of super-
symmetry which is necessary broken and for which the multiplets are much more general than for
the ordinary super-symmetry. Right-handed neutrinos might however define something resembling
ordinary super-symmetry to a high extent. The question is how strong prediction one can deduce
using quantum TGD and proposed super-symmetry.

1. For a minimal breaking of super-symmetry only the p-adic length scale characterizing the super-
partner differs from that for partner but the mass of the state is same. This would allow only
a discrete set of masses for various super-partners coming as half octaves of the mass of the
particle in question. A highly predictive model results.

2. The quantum field theoretic description should be based on QFT limit of TGD formulated in
terms of bosonic emergence [65] . This formulation should allow to calculate the propagators of
the super-partners in terms of fermionic loops.

3. This TGD variant of space-time super-symmetry resembles ordinary super-symmetry in the sense
that selection rules due to the right-handed neutrino number conservation and analogous to the
conservation of R-parity hold true. The states inside super-multiplets have identical electro-weak
and color quantum numbers but their p-adic mass scales can be different. It should be possible
to estimate reaction reaction rates using rules very similar to those of super-symmetric gauge
theories.

4. It might be even possible to find some simple generalization of standard super-symmetric gauge
theory to get rough estimates for the reaction rates. There are however problems. The fact that
spins J = 0, 1, 2, 3/2, 2 are possible for super-partners of gauge bosons forces to ask whether
these additional states define an analog of non-stringy strong gravitation. Note that graviton in
TGD framework corresponds to a pair of wormhole throats connected by flux tube (counterpart
of string) and for gravitons one obtains 28-fold degeneracy.

15.3.6 Twistorial approach, Yangian symmetry, and generalized Feynman
diagrams

There has been impressive steps in the understanding of N = 4 maximally sypersymmetric YM
theory possessing 4-D super-conformal symmetry. This theory is related by AdS/CFT duality to
certain string theory in AdS5 × S5 background. Second stringy representation was discovered by
Witten and is based on 6-D Calabi-Yau manifold defined by twistors. The unifying proposal is that
so called Yangian symmetry is behind the mathematical miracles involved.

The notion of Yangian symmetry would have a generalization in TGD framework obtained by
replacing conformal algebra with appropriate super-conformal algebras. Also a possible realization
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of twistor approach and the construction of scattering amplitudes in terms of Yangian invariants
defined by Grassmannian integrals is considered in TGD framework and based on the idea that in
zero energy ontology one can represent massive states as bound states of massless particles. There
is also a proposal for a physical interpretation of the Cartan algebra of Yangian algebra allowing
to understand at the fundamental level how the mass spectrum of n-particle bound states could be
understood in terms of the n-local charges of the Yangian algebra.

Twistors were originally introduced by Penrose to characterize the solutions of Maxwell’s equa-
tions. Kähler action is Maxwell action for the induced Kähler form of CP2. The preferred extremals
allow a very concrete interpretation in terms of modes of massless non-linear field. Both conformally
compactified Minkowski space identifiable as so called causal diamond and CP2 allow a description in
terms of twistors. These observations inspire the proposal that a generalization of Witten’s twistor
string theory relying on the identification of twistor string world sheets with certain holomorphic
surfaces assigned with Feynman diagrams could allow a formulation of quantum TGD in terms of
3-dimensional holomorphic surfaces of CP3 × CP3 mapped to 6-surfaces dual CP3 × CP3, which are
sphere bundles so that they are projected in a natural manner to 4-D space-time surfaces. Very general
physical and mathematical arguments lead to a highly unique proposal for the holomorphic differen-
tial equations defining the complex 3-surfaces conjectured to correspond to the preferred extremals of
Kähler action.

Background

I am outsider as far as concrete calculations inN = 4 SUSY are considered and the following discussion
of the background probably makes this obvious. My hope is that the reader had patience to not care
about this and try to see the big pattern.

The developments began from the observation of Parke and Taylor [64] that n-gluon tree amplitudes
with less than two negative helicities vanish and those with two negative helicities have unexpectedly
simple form when expressed in terms of spinor variables used to represent light-like momentum. In
fact, in the formalism based on Grassmanian integrals the reduced tree amplitude for two negative
helicities is just ”1” and defines Yangian invariant. The article Perturbative Gauge Theory As a
String Theory In Twistor Space [82] by Witten led to so called Britto-Cachazo-Feng-Witten (BCFW)
recursion relations for tree level amplitudes [69, 29, 69] allowing to construct tree amplitudes using the
analogs of Feynman rules in which vertices correspond to maximally helicity violating tree amplitudes
(2 negative helicity gluons) and propagator is massless Feynman propagator for boson. The progress
inspired the idea that the theory might be completely integrable meaning the existence of infinite-
dimensional un-usual symmetry. This symmetry would be so called Yangian symmetry [99] assigned
to the super counterpart of the conformal group of 4-D Minkowski space.

Drumond, Henn, and Plefka represent in the article Yangian symmetry of scattering amplitudes
in N = 4 super Yang-Mills theory [39] an argument suggesting that the Yangian invariance of the
scattering amplitudes ins an intrinsic property of planar N = 4 super Yang Mills at least at tree level.

The latest step in the progress was taken by Arkani-Hamed, Bourjaily, Cachazo, Carot-Huot, and
Trnka and represented in the article Yangian symmetry of scattering amplitudes in N = 4 super Yang-
Mills theory [25] . At the same day there was also the article of Rutger Boels entitled On BCFW
shifts of integrands and integrals [15] in the archive. Arkani-Hamed et al argue that a full Yangian
symmetry of the theory allows to generalize the BCFW recursion relation for tree amplitudes to all
loop orders at planar limit (planar means that Feynman diagram allows imbedding to plane without
intersecting lines). On mass shell scattering amplitudes are in question.

Yangian symmetry

The notion equivalent to that of Yangian was originally introduced by Faddeev and his group in the
study of integrable systems. Yangians are Hopf algebras which can be assigned with Lie algebras as the
deformations of their universal enveloping algebras. The elegant but rather cryptic looking definition
is in terms of the modification of the relations for generating elements [99] . Besides ordinary product
in the enveloping algebra there is co-product ∆ which maps the elements of the enveloping algebra
to its tensor product with itself. One can visualize product and co-product is in terms of particle
reactions. Particle annihilation is analogous to annihilation of two particle so single one and co-
product is analogous to the decay of particle to two. ∆ allows to construct higher generators of the
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algebra.

Lie-algebra can mean here ordinary finite-dimensional simple Lie algebra, Kac-Moody algebra or
Virasoro algebra. In the case of SUSY it means conformal algebra of M4- or rather its super coun-
terpart. Witten, Nappi and Dolan have described the notion of Yangian for super-conformal algebra
in very elegant and and concrete manner in the article Yangian Symmetry in D=4 superconformal
Yang-Mills theory [46] . Also Yangians for gauge groups are discussed.

In the general case Yangian resembles Kac-Moody algebra with discrete index n replaced with
a continuous one. Discrete index poses conditions on the Lie group and its representation (adjoint
representation in the case of N = 4 SUSY). One of the conditions conditions is that the tensor product
R⊗R∗ for representations involved contains adjoint representation only once. This condition is non-
trivial. For SU(n) these conditions are satisfied for any representation. In the case of SU(2) the basic
branching rule for the tensor product of representations implies that the condition is satisfied for the
product of any representations.

Yangian algebra with a discrete basis is in many respects analogous to Kac-Moody algebra. Now
however the generators are labelled by non-negative integers labeling the light-like incoming and
outgoing momenta of scattering amplitude whereas in in the case of Kac-Moody algebra also negative
values are allowed. Note that only the generators with non-negative conformal weight appear in the
construction of states of Kac-Moody and Virasoro representations so that the extension to Yangian
makes sense.

The generating elements are labelled by the generators of ordinary conformal transformations
acting in M4 and their duals acting in momentum space. These two sets of elements can be labelled
by conformal weights n = 0 and n = 1 and and their mutual commutation relations are same as for
Kac-Moody algebra. The commutators of n = 1 generators with themselves are however something
different for a non-vanishing deformation parameter h. Serre’s relations characterize the difference
and involve the deformation parameter h. Under repeated commutations the generating elements
generate infinite-dimensional symmetric algebra, the Yangian. For h = 0 one obtains just one half of
the Virasoro algebra or Kac-Moody algebra. The generators with n > 0 are n + 1-local in the sense
that they involve n+ 1-forms of local generators assignable to the ordered set of incoming particles of
the scattering amplitude. This non-locality generalizes the notion of local symmetry and is claimed
to be powerful enough to fix the scattering amplitudes completely.

How to generalize Yangian symmetry in TGD framework?

As far as concrete calculations are considered, I have nothing to say. I am just perplexed. It is however
possible to keep discussion at general level and still say something interesting (as I hope!). The key
question is whether it could be possible to generalize the proposed Yangian symmetry and geometric
picture behind it to TGD framework.

1. The first thing to notice is that the Yangian symmetry of N = 4 SUSY in question is quite
too limited since it allows only single representation of the gauge group and requires massless
particles. One must allow all representations and massive particles so that the representation
of symmetry algebra must involve states with different masses, in principle arbitrary spin and
arbitrary internal quantum numbers. The candidates are obvious: Kac-Moody algebras [16] and
Virasoro algebras [36] and their super counterparts. Yangians indeed exist for arbitrary super
Lie algebras. In TGD framework conformal algebra of Minkowski space reduces to Poincare
algebra and its extension to Kac-Moody allows to have also massive states.

2. The formal generalization looks surprisingly straightforward at the formal level. In zero energy
ontology one replaces point like particles with partonic two-surfaces appearing at the ends of
light-like orbits of wormhole throats located to the future and past light-like boundaries of
causal diamond (CD × CP2 or briefly CD). Here CD is defined as the intersection of future
and past directed light-cones. The polygon with light-like momenta is naturally replaced with
a polygon with more general momenta in zero energy ontology and having partonic surfaces as
its vertices. Non-point-likeness forces to replace the finite-dimensional super Lie-algebra with
infinite-dimensional Kac-Moody algebras and corresponding super-Virasoro algebras assignable
to partonic 2-surfaces.
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3. This description replaces disjoint holomorphic surfaces in twistor space with partonic 2-surfaces
at the boundaries of CD×CP2 so that there seems to be a close analogy with Cachazo-Svrcek-
Witten picture. These surfaces are connected by either light-like orbits of partonic 2-surface or
space-like 3-surfaces at the ends of CD so that one indeed obtains the analog of polygon.

What does this then mean concretely (if this word can be used in this kind of context;-)?

1. At least it means that ordinary Super Kac-Moody and Super Virasoro algebras associated with
isometries of M4×CP2 annihilating the scattering amplitudes must be extended to a co-algebras
with a non-trivial deformation parameter. Kac-Moody group is thus the product of Poincare
and color groups. This algebra acts as deformations of the light-like 3-surfaces representing the
light-like orbits of particles which are extremals of Chern-Simon action with the constraint that
weak form of electric-magnetic duality holds true. I know so little about the mathematical side
that I cannot tell whether the condition that the product of the representations of Super-Kac-
Moody and Super-Virasoro algedbras ontains adjoint representation only once, holds true in this
case. In any case, it would allow all representations of finite-dimensional Lie group in vertices
whereas N = 4 SUSY would allow only the adjoint.

2. Besides this ordinary kind of Kac-Moody algebra there is the analog of Super-Kac-Moody al-
gebra associated with the light-cone boundary which is metrically 3-dimensional. The finite-
dimensional Lie group is in this case replaced with infinite-dimensional group of symplecto-
morphisms of δM4

+/− made local with respect to the internal coordinates of partonic 2-surface.
A coset construction is applied to these two Virasoro algebras so that the differences of the
corresponding Super-Virasoro generators and Kac-Moody generators annihilate physical states.
This implies that the corresponding four-momenta are same: this expresses the equivalence of
gravitational and inertial masses. A generalization of the Equivalence Principle is in question.
This picture also justifies p-adic thermodynamics applied to either symplectic or isometry Super-
Virasoro and giving thermal contribution to the vacuum conformal and thus to mass squared.

3. The construction of TGD leads also to other super-conformal algebras and the natural guess is
that the Yangians of all these algebras annihilate the scattering amplitudes.

4. Obviously, already the starting point symmetries look formidable but they still act on single
partonic surface only. The discrete Yangian associated with this algebra associated with the
closed polygon defined by the incoming momenta and the negatives of the outgoing momenta acts
in multi-local manner on scattering amplitudes. It might make sense to speak about polygons
defined also by other conserved quantum numbers so that one would have generalized light-like
curves in the sense that state are massless in 8-D sense.

Is there any hope about description in terms of Grassmannians?

At technical level the successes of the twistor approach rely on the observation that the amplitudes
can be expressed in terms of very simple integrals over sub-manifolds of the space consisting of k-
dimensional planes of n-dimensional space defined by delta function appearing in the integrand. These
integrals define super-conformal Yangian invariants appearing in twistorial amplitudes and the belief
is that by a proper choice of the surfaces of the twistor space one can construct all invariants. One can
construct also the counterparts of loop corrections by starting from tree diagrams and annihilating
pair of particles by connecting the lines and quantum entangling the states at the ends in the manner
dictated by the integration over loop momentum. These operations can be defined as operations for
Grassmannian integrals in general changing the values of n and k. This description looks extremely
powerful and elegant and nosta importantly involves only the external momenta.

The obvious question is whether one could use similar invariants in TGD framework to construct
the momentum dependence of amplitudes.

1. The first thing to notice is that the super algebras in question act on infinite-dimensional rep-
resentations and basically in the world of classical worlds assigned to the partonic 2-surfaces
correlated by the fact that they are associated with the same space-time surface. This does not
promise anything very practical. On the other hand, one can hope that everything related to
other than M4 degrees of freedom could be treated like color degrees of freedom in N = 4 SYM
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and would boil down to indices labeling the quantum states. The Yangian conditions coming
from isometry quantum numbers, color quantum numbers, and electroweak quantum numbers
are of course expected to be highly non-trivial and could fix the coefficients of various singlets
resulting in the tensor product of incoming and outgoing states.

2. The fact that incoming particles can be also massive seems to exclude the use of the twistor
space. The following observation however raises hopes. The Dirac propagator for wormhole
throat is massless propagator but for what I call pseudo momentum. It is still unclear how this
momentum relates to the actual four-momentum. Could it be actually equal to it? The recent
view about pseudo-momentum does not support this view but it is better to keep mind open.
In any case this finding suggests that twistorial approach could work in in more or less standard
form. What would be needed is a representation for massive incoming particles as bound states
of massless partons. In particular, the massive states of super-conformal representations should
allow this kind of description.

Could zero energy ontology allow to achieve this dream?

1. As far as divergence cancellation is considered, zero energy ontology suggests a totally new
approach producing the basic nice aspects of QFT approach, in particular unitarity and coupling
constant evolution. The big idea related to zero energy ontology is that all virtual particle
particles correspond to wormhole throats, which are pairs of on mass shell particles. If their
momentum directions are different, one obtains time-like continuum of virtual momenta and if
the signs of energy are opposite one obtains also space-like virtual momenta. The on mass shell
property for virtual partons (massive in general) implies extremely strong constraints on loops
and one expect that only very few loops remain and that they are finite since loop integration
reduces to integration over much lower-dimensional space than in the QFT approach. There are
also excellent hopes about Cutkoski rules.

2. Could zero energy ontology make also possible to construct massive incoming particles from
massless ones? Could one construct the representations of the super conformal algebras using
only massless states so that at the fundamental level incoming particles would be massless and
one could apply twistor formalism and build the momentum dependence of amplitudes using
Grassmannian integrals.

One could indeed construct on mass shell massive states from massless states with momenta
along the same line but with three-momenta at opposite directions. Mass squared is given by
M2 = 4E2 in the coordinate frame, where the momenta are opposite and of same magnitude.
One could also argue that partonic 2-surfaces carrying quantum numbers of fermions and their
superpartners serve as the analogs of point like massless particles and that topologically con-
densed fermions and gauge bosons plus their superpartners correspond to pairs of wormhole
throats. Stringy objects would correspond to pairs of wormhole throats at the same space-time
sheet in accordance with the fact that space-time sheet allows a slicing by string worlds sheets
with ends at different wormhole throats and definining time like braiding.

The weak form of electric magnetic duality indeed supports this picture. To understand how, one
must explain a little bit what the weak form of electric magnetic duality means.

1. Elementary particles correspond to light-like orbits of partonic 2-surfaces identified as 3-D sur-
faces at which the signature of the induced metric of space-time surface changes from Euclidian
to Minkowskian and 4-D metric is therefore degenerate. The analogy with black hole horizon is
obvious but only partial. Weak form of electric-magnetic duality states that the Kähler electric
field at the wormhole throat and also at space-like 3-surfaces defining the ends of the space-time
surface at the upper and lower light-like boundaries of the causal diamond is proportonial to
Kähler magnetic field so that Kähler electric flux is proportional Kähler magnetic flux. This
implies classical quantization of Kähler electric charge and fixes the value of the proportionality
constant.

2. There are also much more profound implications. The vision about TGD as almost topological
QFT suggests that Kähler function defining the Kähler geometry of the ”world of classical
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worlds” (WCW) and identified as Kähler action for its preferred extremal reduces to the 3-D
Chern-Simons action evaluted at wormhole throats and possible boundary components. Chern-
Simons action would be subject to constraints. Wormhole throats and space-like 3-surfaces
would represent extremals of Chern-Simons action restricted by the constraint force stating
electric-magnetic duality (and realized in terms of Lagrange multipliers as usual).

If one assumes that Kähler current and other conserved currents are proportional to current
defining Beltrami flow whose flow lines by definition define coordinate curves of a globally defined
coordinate, the Coulombic term of Kähler action vanishes and it reduces to Chern-Simons action
if the weak form of electric-magnetic duality holds true. One obtains almost topological QFT.
The absolutely essential attribute ”almost” comes from the fact that Chern-Simons action is
subject to constraints. As a consequence, one obtains non-vanishing four-momenta and WCW
geometry is non-trivial in M4 degrees of freedom. Otherwise one would have only topological
QFT not terribly interesting physically.

Consider now the question how one could understand stringy objects as bound states of massless
particles.

1. The observed elementary particles are not Kähler monopoles and there much exist a mechanism
neutralizing the monopole charge. The only possibility seems to be that there is opposite
Kähler magnetic charge at second wormhole throat. The assumption is that in the case of color
neutral particles this throat is at a distance of order intermediate gauge boson Compton length.
This throat would carry weak isospin neutralizing that of the fermion and only electromagnetic
charge would be visible at longer length scales. One could speak of electro-weak confinement.
Also color confinement could be realized in analogous manner by requiring the cancellation of
monopole charge for many-parton states only. What comes out are string like objects defined
by Kähler magnetic fluxes and having magnetic monopoles at ends. Also more general objects
with three strings branching from the vertex appear in the case of baryons. The natural guess
is that the partons at the ends of strings and more general objects are massless for incoming
particles but that the 3-momenta are in opposite directions so that stringy mass spectrum and
representations of relevant super-conformal algebras are obtained. This description brings in
mind the description of hadrons in terms of partons moving in parallel apart from transversal
momentum about which only momentum squared is taken as observable.

2. Quite generally, one expects for the preferred extremals of Kähler action the slicing of space-time
surface with string world sheets with stringy curves connecting wormhole throats. The ends of
the stringy curves can be identified as light-like braid strands. Note that the strings themselves
define a space-like braiding and the two braidings are in some sense dual. This has a con-
crete application in TGD inspired quantum biology, where time-like braiding defines topological
quantum computer programs and the space-like braidings induced by it its storage into memory.
Stringlike objects defining representations of super-conformal algebras must correspond to states
involving at least two wormhole throats. Magnetic flux tubes connecting the ends of magneti-
cally charged throats provide a particular realization of stringy on mass shell states. This would
give rise to massless propagation at the parton level. The stringy quantization condition for
mass squared would read as 4E2 = n in suitable units for the representations of super-conformal
algebra associated with the isometries. For pairs of throats of the same wormhole contact stringy
spectrum does not seem plausible since the wormhole contact is in the direction of CP2. One
can however expect generation of small mass as deviation of vacuum conformal weight from half
integer in the case of gauge bosons.

If this picture is correct, one might be able to determine the momentum dependence of the scat-
tering amplitudes by replacing free fermions with pairs of monopoles at the ends of string and topo-
logically condensed fermions gauge bosons with pairs of this kind of objects with wormhole throat
replaced by a pair of wormhole throats. This would mean suitable number of doublings of the Grass-
mannian integrations with additional constraints on the incoming momenta posed by the mass shell
conditions for massive states.
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Could zero energy ontology make possible full Yangian symmetry?

The partons in the loops are on mass shell particles have a discrete mass spectrum but both signs
of energy are possible for opposite wormhole throats. This implies that in the rules for constructing
loop amplitudes from tree amplitudes, propagator entanglement is restricted to that corresponding
to pairs of partonic on mass shell states with both signs of energy. As emphasized in [25] , it is
the Grassmannian integrands and leading order singularities of N = 4 SYM, which possess the full
Yangian symmetry. The full integral over the loop momenta breaks the Yangian symmetry and brings
in IR singularities. Zero energy ontologist finds it natural to ask whether QFT approach shows its
inadequacy both via the UV divergences and via the loss of full Yangian symmetry. The restriction
of virtual partons to discrete mass shells with positive or negative sign of energy imposes extremely
powerful restrictions on loop integrals and resembles the restriction to leading order singularities.
Could this restriction guarantee full Yangian symmetry and remove also IR singularities?

Could Yangian symmetry provide a new view about conserved quantum numbers?

The Yangian algebra has some properties which suggest a new kind of description for bound states.
The Cartan algebra generators of n = 0 and n = 1 levels of Yangian algebra commute. Since the
co-product ∆ maps n = 0 generators to n = 1 generators and these in turn to generators with high
value of n, it seems that they commute also with n ≥ 1 generators. This applies to four-momentum,
color isospin and color hyper charge, and also to the Virasoro generator L0 acting on Kac-Moody
algebra of isometries and defining mass squared operator.

Could one identify total four momentum and Cartan algebra quantum numbers as sum of contri-
butions from various levels? If so, the four momentum and mass squared would involve besides the
local term assignable to wormhole throats also n-local contributions. The interpretation in terms of
n-parton bound states would be extremely attractive. n-local contribution would involve interaction
energy. For instance, string like object would correspond to n = 1 level and give n = 2-local contribu-
tion to the momentum. For baryonic valence quarks one would have 3-local contribution corresponding
to n = 2 level. The Yangian view about quantum numbers could give a rigorous formulation for the
idea that massive particles are bound states of massless particles.

15.4 Weak form electric-magnetic duality and color and weak
forces

The notion of electric-magnetic duality [8] was proposed first by Olive and Montonen and is central
in N = 4 supersymmetric gauge theories. It states that magnetic monopoles and ordinary particles
are two different phases of theory and that the description in terms of monopoles can be applied
at the limit when the running gauge coupling constant becomes very large and perturbation theory
fails to converge. The notion of electric-magnetic self-duality is more natural since for CP2 geometry
Kähler form is self-dual and Kähler magnetic monopoles are also Kähler electric monopoles and
Kähler coupling strength is by quantum criticality renormalization group invariant rather than running
coupling constant. The notion of electric-magnetic (self-)duality emerged already two decades ago
in the attempts to formulate the Kähler geometric of world of classical worlds. Quite recently a
considerable step of progress took place in the understanding of this notion [21] . What seems to be
essential is that one adopts a weaker form of the self-duality applying at partonic 2-surfaces. What
this means will be discussed in the sequel.

Every new idea must be of course taken with a grain of salt but the good sign is that this concept
leads to precise predictions. The point is that elementary particles do not generate monopole fields in
macroscopic length scales: at least when one considers visible matter. The first question is whether
elementary particles could have vanishing magnetic charges: this turns out to be impossible. The next
question is how the screening of the magnetic charges could take place and leads to an identification
of the physical particles as string like objects identified as pairs magnetic charged wormhole throats
connected by magnetic flux tubes.

1. The first implication is a new view about electro-weak massivation reducing it to weak confine-
ment in TGD framework. The second end of the string contains particle having electroweak
isospin neutralizing that of elementary fermion and the size scale of the string is electro-weak
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scale would be in question. Hence the screening of electro-weak force takes place via weak
confinement realized in terms of magnetic confinement.

2. This picture generalizes to the case of color confinement. Also quarks correspond to pairs of
magnetic monopoles but the charges need not vanish now. Rather, valence quarks would be
connected by flux tubes of length of order hadron size such that magnetic charges sum up to
zero. For instance, for baryonic valence quarks these charges could be (2,−1,−1) and could be
proportional to color hyper charge.

3. The highly non-trivial prediction making more precise the earlier stringy vision is that elementary
particles are string like objects in electro-weak scale: this should become manifest at LHC
energies.

4. The weak form electric-magnetic duality together with Beltrami flow property of Kähler leads to
the reduction of Kähler action to Chern-Simons action so that TGD reduces to almost topological
QFT and that Kähler function is explicitly calculable. This has enormous impact concerning
practical calculability of the theory.

5. One ends up also to a general solution ansatz for field equations from the condition that the
theory reduces to almost topological QFT. The solution ansatz is inspired by the idea that all
isometry currents are proportional to Kähler current which is integrable in the sense that the flow
parameter associated with its flow lines defines a global coordinate. The proposed solution ansatz
would describe a hydrodynamical flow with the property that isometry charges are conserved
along the flow lines (Beltrami flow). A general ansatz satisfying the integrability conditions
is found. The solution ansatz applies also to the extremals of Chern-Simons action and and
to the conserved currents associated with the modified Dirac equation defined as contractions
of the modified gamma matrices between the solutions of the modified Dirac equation. The
strongest form of the solution ansatz states that various classical and quantum currents flow
along flow lines of the Beltrami flow defined by Kähler current (Kähler magnetic field associated
with Chern-Simons action). Intuitively this picture is attractive. A more general ansatz would
allow several Beltrami flows meaning multi-hydrodynamics. The integrability conditions boil
down to two scalar functions: the first one satisfies massless d’Alembert equation in the induced
metric and the the gradients of the scalar functions are orthogonal. The interpretation in terms
of momentum and polarization directions is natural.

6. The general solution ansatz works for induced Kähler Dirac equation and Chern-Simons Dirac
equation and reduces them to ordinary differential equations along flow lines. The induced spinor
fields are simply constant along flow lines of indued spinor field for Dirac equation in suitable
gauge. Also the generalized eigen modes of the modified Chern-Simons Dirac operator can be
deduced explicitly if the throats and the ends of space-time surface at the boundaries of CD are
extremals of Chern-Simons action. Chern-Simons Dirac equation reduces to ordinary differential
equations along flow lines and one can deduce the general form of the spectrum and the explicit
representation of the Dirac determinant in terms of geometric quantities characterizing the 3-
surface (eigenvalues are inversely proportional to the lengths of strands of the flow lines in the
effective metric defined by the modified gamma matrices).

15.4.1 Could a weak form of electric-magnetic duality hold true?

Holography means that the initial data at the partonic 2-surfaces should fix the configuration space
metric. A weak form of this condition allows only the partonic 2-surfaces defined by the wormhole
throats at which the signature of the induced metric changes. A stronger condition allows all partonic
2-surfaces in the slicing of space-time sheet to partonic 2-surfaces and string world sheets. Number
theoretical vision suggests that hyper-quaternionicity resp. co-hyperquaternionicity constraint could
be enough to fix the initial values of time derivatives of the imbedding space coordinates in the space-
time regions with Minkowskian resp. Euclidian signature of the induced metric. This is a condition
on modified gamma matrices and hyper-quaternionicity states that they span a hyper-quaternionic
sub-space.



15.4. Weak form electric-magnetic duality and color and weak forces 1275

Definition of the weak form of electric-magnetic duality

One can also consider alternative conditions possibly equivalent with this condition. The argument
goes as follows.

1. The expression of the matrix elements of the metric and Kähler form of WCW in terms of
the Kähler fluxes weighted by Hamiltonians of δM4

± at the partonic 2-surface X2 looks very
attractive. These expressions however carry no information about the 4-D tangent space of the
partonic 2-surfaces so that the theory would reduce to a genuinely 2-dimensional theory, which
cannot hold true. One would like to code to the WCW metric also information about the electric
part of the induced Kähler form assignable to the complement of the tangent space of X2 ⊂ X4.

2. Electric-magnetic duality of the theory looks a highly attractive symmetry. The trivial manner
to get electric magnetic duality at the level of the full theory would be via the identification of
the flux Hamiltonians as sums of of the magnetic and electric fluxes. The presence of the induced
metric is however troublesome since the presence of the induced metric means that the simple
transformation properties of flux Hamiltonians under symplectic transformations -in particular
color rotations- are lost.

3. A less trivial formulation of electric-magnetic duality would be as an initial condition which
eliminates the induced metric from the electric flux. In the Euclidian version of 4-D YM theory
this duality allows to solve field equations exactly in terms of instantons. This approach involves
also quaternions. These arguments suggest that the duality in some form might work. The full
electric magnetic duality is certainly too strong and implies that space-time surface at the
partonic 2-surface corresponds to piece of CP2 type vacuum extremal and can hold only in the
deep interior of the region with Euclidian signature. In the region surrounding wormhole throat
at both sides the condition must be replaced with a weaker condition.

4. To formulate a weaker form of the condition let us introduce coordinates (x0, x3, x1, x2) such
(x1, x2) define coordinates for the partonic 2-surface and (x0, x3) define coordinates labeling
partonic 2-surfaces in the slicing of the space-time surface by partonic 2-surfaces and string
world sheets making sense in the regions of space-time sheet with Minkowskian signature. The
assumption about the slicing allows to preserve general coordinate invariance. The weakest
condition is that the generalized Kähler electric fluxes are apart from constant proportional to
Kähler magnetic fluxes. This requires the condition

J03√g4 = KJ12 . (15.4.1)

A more general form of this duality is suggested by the considerations of [41] reducing the hierar-
chy of Planck constants to basic quantum TGD and also reducing Kähler function for preferred
extremals to Chern-Simons terms [2] at the boundaries of CD and at light-like wormhole throats.
This form is following

Jnβ
√
g4 = Kε× εnβγδJγδ

√
g4 . (15.4.2)

Here the index n refers to a normal coordinate for the space-like 3-surface at either boundary of
CD or for light-like wormhole throat. ε is a sign factor which is opposite for the two ends of CD.
It could be also opposite of opposite at the opposite sides of the wormhole throat. Note that the
dependence on induced metric disappears at the right hand side and this condition eliminates
the potentials singularity due to the reduction of the rank of the induced metric at wormhole
throat.

5. Information about the tangent space of the space-time surface can be coded to the configuration
space metric with loosing the nice transformation properties of the magnetic flux Hamiltonians
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if Kähler electric fluxes or sum of magnetic flux and electric flux satisfying this condition are
used and K is symplectic invariant. Using the sum

Je + Jm = (1 +K)J , (15.4.3)

where J can denotes the Kähler magnetic flux, makes it possible to have a non-trivial configu-
ration space metric even for K = 0, which could correspond to the ends of a cosmic string like
solution carrying only Kähler magnetic fields. This condition suggests that it can depend only
on Kähler magnetic flux and other symplectic invariants. Whether local symplectic coordinate
invariants are possible at all is far from obvious, If the slicing itself is symplectic invariant then
K could be a non-constant function of X2 depending on string world sheet coordinates. The
light-like radial coordinate of the light-cone boundary indeed defines a symplectically invariant
slicing and this slicing could be shifted along the time axis defined by the tips of CD.

Electric-magnetic duality physically

What could the weak duality condition mean physically? For instance, what constraints are obtained
if one assumes that the quantization of electro-weak charges reduces to this condition at classical
level?

1. The first thing to notice is that the flux of J over the partonic 2-surface is analogous to magnetic
flux

Qm =
e

~

∮
BdS = n .

n is non-vanishing only if the surface is homologically non-trivial and gives the homology charge
of the partonic 2-surface.

2. The expressions of classical electromagnetic and Z0 fields in terms of Kähler form [5] , [5] read
as

γ =
eFem
~

= 3J − sin2(θW )R03 ,

Z0 =
gZFZ
~

= 2R03 . (15.4.4)

Here R03 is one of the components of the curvature tensor in vielbein representation and Fem
and FZ correspond to the standard field tensors. From this expression one can deduce

J =
e

3~
Fem + sin2(θW )

gZ
6~
FZ . (15.4.5)

3. The weak duality condition when integrated over X2 implies

e2

3~
Qem +

g2
Zp

6
QZ,V = K

∮
J = Kn ,

QZ,V =
I3
V

2
−Qem , p = sin2(θW ) . (15.4.6)

Here the vectorial part of the Z0 charge rather than as full Z0 charge QZ = I3
L + sin2(θW )Qem

appears. The reason is that only the vectorial isospin is same for left and right handed compo-
nents of fermion which are in general mixed for the massive states.
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The coefficients are dimensionless and expressible in terms of the gauge coupling strengths and
using ~ = r~0 one can write

αemQem + p
αZ
2
QZ,V =

3

4π
× rnK ,

αem =
e2

4π~0
, αZ =

g2
Z

4π~0
=

αem
p(1− p)

. (15.4.7)

4. There is a great temptation to assume that the values of Qem and QZ correspond to their
quantized values and therefore depend on the quantum state assigned to the partonic 2-surface.
The linear coupling of the modified Dirac operator to conserved charges implies correlation
between the geometry of space-time sheet and quantum numbers assigned to the partonic 2-
surface. The assumption of standard quantized values for Qem and QZ would be also seen as
the identification of the fine structure constants αem and αZ . This however requires weak isospin
invariance.

The value of K from classical quantization of Kähler electric charge

The value of K can be deduced by requiring classical quantization of Kähler electric charge.

1. The condition that the flux of F 03 = (~/gK)J03 defining the counterpart of Kähler electric field
equals to the Kähler charge gK would give the condition K = g2

K/~, where gK is Kähler cou-
pling constant which should invariant under coupling constant evolution by quantum criticality.
Within experimental uncertainties one has αK = g2

K/4π~0 = αem ' 1/137, where αem is finite
structure constant in electron length scale and ~0 is the standard value of Planck constant.

2. The quantization of Planck constants makes the condition highly non-trivial. The most general
quantization of r is as rationals but there are good arguments favoring the quantization as
integers corresponding to the allowance of only singular coverings of CD andn CP2. The point
is that in this case a given value of Planck constant corresponds to a finite number pages of
the ”Big Book”. The quantization of the Planck constant implies a further quantization of K
and would suggest that K scales as 1/r unless the spectrum of values of Qem and QZ allowed
by the quantization condition scales as r. This is quite possible and the interpretation would
be that each of the r sheets of the covering carries (possibly same) elementary charge. Kind
of discrete variant of a full Fermi sphere would be in question. The interpretation in terms of
anyonic phases [66] supports this interpretation.

3. The identification of J as a counterpart of eB/~ means that Kähler action and thus also Kähler
function is proportional to 1/αK and therefore to ~. This implies that for large values of ~
Kähler coupling strength g2

K/4π becomes very small and large fluctuations are suppressed in
the functional integral. The basic motivation for introducing the hierarchy of Planck constants
was indeed that the scaling α→ α/r allows to achieve the convergence of perturbation theory:
Nature itself would solve the problems of the theoretician. This of course does not mean that
the physical states would remain as such and the replacement of single particles with anyonic
states in order to satisfy the condition for K would realize this concretely.

4. The condition K = g2
K/~ implies that the Kähler magnetic charge is always accompanied by

Kähler electric charge. A more general condition would read as

K = n× g2
K

~
, n ∈ Z . (15.4.8)

This would apply in the case of cosmic strings and would allow vanishing Kähler charge possible
when the partonic 2-surface has opposite fermion and antifermion numbers (for both leptons and
quarks) so that Kähler electric charge should vanish. For instance, for neutrinos the vanishing
of electric charge strongly suggests n = 0 besides the condition that abelian Z0 flux contributing
to em charge vanishes.
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It took a year to realize that this value of K is natural at the Minkowskian side of the wormhole
throat. At the Euclidian side much more natural condition is

K =
1

hbar
. (15.4.9)

In fact, the self-duality of CP2 Kähler form favours this boundary condition at the Euclidian side of
the wormhole throat. Also the fact that one cannot distinguish between electric and magnetic charges
in Euclidian region since all charges are magnetic can be used to argue in favor of this form. The
same constraint arises from the condition that the action for CP2 type vacuum extremal has the value
required by the argument leading to a prediction for gravitational constant in terms of the square of
CP2 radius and αK the effective replacement g2

K → 1 would spoil the argument.
The boundary condition JE = JB for the electric and magnetic parts of Kählwer form at the

Euclidian side of the wormhole throat inspires the question whether all Euclidian regions could be
self-dual so that the density of Kähler action would be just the instanton density. Self-duality follows if
the deformation of the metric induced by the deformation of the canonically imbedded CP2 is such that
in CP2 coordinates for the Euclidian region the tensor (gαβgµν −gανgµβ)/

√
g remains invariant. This

is certainly the case for CP2 type vacuum extremals since by the light-likeness of M4 projection the
metric remains invariant. Also conformal scalings of the induced metric would satisfy this condition.
Conformal scaling is not consistent with the degeneracy of the 4-metric at the wormhole throat. Full
self-duality is indeed an un-necessarily strong condition.

Reduction of the quantization of Kähler electric charge to that of electromagnetic charge

The best manner to learn more is to challenge the form of the weak electric-magnetic duality based
on the induced Kähler form.

1. Physically it would seem more sensible to pose the duality on electromagnetic charge rather
than Kähler charge. This would replace induced Kähler form with electromagnetic field, which
is a linear combination of induced K”ahler field and classical Z0 field

γ = 3J − sin2θWR03 ,

Z0 = 2R03 . (15.4.10)

Here Z0 = 2R03 is the appropriate component of CP2 curvature form [5]. For a vanishing
Weinberg angle the condition reduces to that for Kähler form.

2. For the Euclidian space-time regions having interpretation as lines of generalized Feynman dia-
grams Weinberg angle should be non-vanishing. In Minkowskian regions Weinberg angle could
however vanish. If so, the condition guaranteing that electromagnetic charge of the partonic
2-surfaces equals to the above condition stating that the em charge assignable to the fermion
content of the partonic 2-surfaces reduces to the classical Kähler electric flux at the Minkowskian
side of the wormhole throat. One can argue that Weinberg angle must increase smoothly from a
vanishing value at both sides of wormhole throat to its value in the deep interior of the Euclidian
region.

3. The vanishing of the Weinberg angle in Minkowskian regions conforms with the physical intu-
ition. Above elementary particle length scales one sees only the classical electric field reducing
to the induced Kähler form and classical Z0 fields and color gauge fields are effectively ab-
sent. Only in phases with a large value of Planck constant classical Z0 field and other classical
weak fields and color gauge field could make themselves visible. Cell membrane could be one
such system [69]. This conforms with the general picture about color confinement and weak
massivation.

The GRT limit of TGD suggests a further reason for why Weinberg angle should vanish in
Minkowskian regions.
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1. The value of the Kähler coupling strength mut be very near to the value of the fine structure
constant in electron length scale and these constants can be assumed to be equal.

2. GRT limit of TGD with space-time surfaces replaced with abstract 4-geometries would naturally
correspond to Einstein-Maxwell theory with cosmological constant which is non-vanishing only
in Euclidian regions of space-time so that both Reissner-Nordström metric and CP2 are allowed
as simplest possible solutions of field equations [91]. The extremely small value of the observed
cosmological constant needed in GRT type cosmology could be equal to the large cosmological
constant associated with CP2 metric multiplied with the 3-volume fraction of Euclidian regions.

3. Also at GRT limit quantum theory would reduce to almost topological QFT since Einstein-
Maxwell action reduces to 3-D term by field equations implying the vanishing of the Maxwell
current and of the curvature scalar in Minkowskian regions and curvature scalar + cosmological
constant term in Euclidian regions. The weak form of electric-magnetic duality would guarantee
also now the preferred extremal property and prevent the reduction to a mere topological QFT.

4. GRT limit would make sense only for a vanishing Weinberg angle in Minkowskian regions. A
non-vanishing Weinberg angle would make sense in the deep interior of the Euclidian regions
where the approximation as a small deformation of CP2 makes sense.

The weak form of electric-magnetic duality has surprisingly strong implications for the basic view
about quantum TGD as following considerations show.

15.4.2 Magnetic confinement, the short range of weak forces, and color
confinement

The weak form of electric-magnetic duality has surprisingly strong implications if one combines it with
some very general empirical facts such as the non-existence of magnetic monopole fields in macroscopic
length scales.

How can one avoid macroscopic magnetic monopole fields?

Monopole fields are experimentally absent in length scales above order weak boson length scale and one
should have a mechanism neutralizing the monopole charge. How electroweak interactions become
short ranged in TGD framework is still a poorly understood problem. What suggests itself is the
neutralization of the weak isospin above the intermediate gauge boson Compton length by neutral
Higgs bosons. Could the two neutralization mechanisms be combined to single one?

1. In the case of fermions and their super partners the opposite magnetic monopole would be a
wormhole throat. If the magnetically charged wormhole contact is electromagnetically neutral
but has vectorial weak isospin neutralizing the weak vectorial isospin of the fermion only the
electromagnetic charge of the fermion is visible on longer length scales. The distance of this
wormhole throat from the fermionic one should be of the order weak boson Compton length.
An interpretation as a bound state of fermion and a wormhole throat state with the quantum
numbers of a neutral Higgs boson would therefore make sense. The neutralizing throat would
have quantum numbers of X−1/2 = νLνR or X1/2 = νLνR. νLνR would not be neutral Higgs
boson (which should correspond to a wormhole contact) but a super-partner of left-handed
neutrino obtained by adding a right handed neutrino. This mechanism would apply separately
to the fermionic and anti-fermionic throats of the gauge bosons and corresponding space-time
sheets and leave only electromagnetic interaction as a long ranged interaction.

2. One can of course wonder what is the situation situation for the bosonic wormhole throats feeding
gauge fluxes between space-time sheets. It would seem that these wormhole throats must always
appear as pairs such that for the second member of the pair monopole charges and I3

V cancel
each other at both space-time sheets involved so that one obtains at both space-time sheets
magnetic dipoles of size of weak boson Compton length. The proposed magnetic character of
fundamental particles should become visible at TeV energies so that LHC might have surprises
in store!
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Magnetic confinement and color confinement

Magnetic confinement generalizes also to the case of color interactions. One can consider also the
situation in which the magnetic charges of quarks (more generally, of color excited leptons and quarks)
do not vanish and they form color and magnetic singles in the hadronic length scale. This would mean
that magnetic charges of the state q±1/2−X∓1/2 representing the physical quark would not vanish and
magnetic confinement would accompany also color confinement. This would explain why free quarks
are not observed. To how degree then quark confinement corresponds to magnetic confinement is an
interesting question.

For quark and antiquark of meson the magnetic charges of quark and antiquark would be opposite
and meson would correspond to a Kähler magnetic flux so that a stringy view about meson emerges.
For valence quarks of baryon the vanishing of the net magnetic charge takes place provided that the
magnetic net charges are (±2,∓1,∓1). This brings in mind the spectrum of color hyper charges
coming as (±2,∓1,∓1)/3 and one can indeed ask whether color hyper-charge correlates with the
Kähler magnetic charge. The geometric picture would be three strings connected to single vertex.
Amusingly, the idea that color hypercharge could be proportional to color hyper charge popped up
during the first year of TGD when I had not yet discovered CP2 and believed on M4 × S2.

p-Adic length scale hypothesis and hierarchy of Planck constants defining a hierarchy of dark
variants of particles suggest the existence of scaled up copies of QCD type physics and weak physics.
For p-adically scaled up variants the mass scales would be scaled by a power of

√
2 in the most general

case. The dark variants of the particle would have the same mass as the original one. In particular,
Mersenne primes Mk = 2k − 1 and Gaussian Mersennes MG,k = (1 + i)k − 1 has been proposed to
define zoomed copies of these physics. At the level of magnetic confinement this would mean hierarchy
of length scales for the magnetic confinement.

One particular proposal is that the Mersenne prime M89 should define a scaled up variant of the
ordinary hadron physics with mass scaled up roughly by a factor 2(107−89)/2 = 512. The size scale
of color confinement for this physics would be same as the weal length scale. It would look more
natural that the weak confinement for the quarks of M89 physics takes place in some shorter scale
and M61 is the first Mersenne prime to be considered. The mass scale of M61 weak bosons would
be by a factor 2(89−61)/2 = 214 higher and about 1.6× 104 TeV. M89 quarks would have virtually no
weak interactions but would possess color interactions with weak confinement length scale reflecting
themselves as new kind of jets at collisions above TeV energies.

In the biologically especially important length scale range 10 nm -2500 nm there are as many as
four Gaussian Mersennes corresponding to MG,k, k = 151, 157, 163, 167. This would suggest that the
existence of scaled up scales of magnetic-, weak- and color confinement. An especially interesting
possibly testable prediction is the existence of magnetic monopole pairs with the size scale in this
range. There are recent claims about experimental evidence for magnetic monopole pairs [12] .

Magnetic confinement and stringy picture in TGD sense

The connection between magnetic confinement and weak confinement is rather natural if one recalls
that electric-magnetic duality in super-symmetric quantum field theories means that the descriptions
in terms of particles and monopoles are in some sense dual descriptions. Fermions would be replaced
by string like objects defined by the magnetic flux tubes and bosons as pairs of wormhole contacts
would correspond to pairs of the flux tubes. Therefore the sharp distinction between gravitons and
physical particles would disappear.

The reason why gravitons are necessarily stringy objects formed by a pair of wormhole contacts
is that one cannot construct spin two objects using only single fermion states at wormhole throats.
Of course, also super partners of these states with higher spin obtained by adding fermions and anti-
fermions at the wormhole throat but these do not give rise to graviton like states [32] . The upper and
lower wormhole throat pairs would be quantum superpositions of fermion anti-fermion pairs with sum
over all fermions. The reason is that otherwise one cannot realize graviton emission in terms of joining
of the ends of light-like 3-surfaces together. Also now magnetic monopole charges are necessary but
now there is no need to assign the entities X± with gravitons.

Graviton string is characterized by some p-adic length scale and one can argue that below this
length scale the charges of the fermions become visible. Mersenne hypothesis suggests that some
Mersenne prime is in question. One proposal is that gravitonic size scale is given by electronic
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Mersenne prime M127. It is however difficult to test whether graviton has a structure visible below
this length scale.

What happens to the generalized Feynman diagrams is an interesting question. It is not at all
clear how closely they relate to ordinary Feynman diagrams. All depends on what one is ready to
assume about what happens in the vertices. One could of course hope that zero energy ontology could
allow some very simple description allowing perhaps to get rid of the problematic aspects of Feynman
diagrams.

1. Consider first the recent view about generalized Feynman diagrams which relies zero energy
ontology. A highly attractive assumption is that the particles appearing at wormhole throats
are on mass shell particles. For incoming and outgoing elementary bosons and their super
partners they would be positive it resp. negative energy states with parallel on mass shell
momenta. For virtual bosons they the wormhole throats would have opposite sign of energy
and the sum of on mass shell states would give virtual net momenta. This would make possible
twistor description of virtual particles allowing only massless particles (in 4-D sense usually and
in 8-D sense in TGD framework). The notion of virtual fermion makes sense only if one assumes
in the interaction region a topological condensation creating another wormhole throat having
no fermionic quantum numbers.

2. The addition of the particles X± replaces generalized Feynman diagrams with the analogs of
stringy diagrams with lines replaced by pairs of lines corresponding to fermion and X±1/2. The
members of these pairs would correspond to 3-D light-like surfaces glued together at the vertices
of generalized Feynman diagrams. The analog of 3-vertex would not be splitting of the string to
form shorter strings but the replication of the entire string to form two strings with same length
or fusion of two strings to single string along all their points rather than along ends to form a
longer string. It is not clear whether the duality symmetry of stringy diagrams can hold true
for the TGD variants of stringy diagrams.

3. How should one describe the bound state formed by the fermion and X±? Should one describe
the state as superposition of non-parallel on mass shell states so that the composite state would
be automatically massive? The description as superposition of on mass shell states does not
conform with the idea that bound state formation requires binding energy. In TGD framework
the notion of negentropic entanglement has been suggested to make possible the analogs of
bound states consisting of on mass shell states so that the binding energy is zero [52] . If this
kind of states are in question the description of virtual states in terms of on mass shell states is
not lost. Of course, one cannot exclude the possibility that there is infinite number of this kind
of states serving as analogs for the excitations of string like object.

4. What happens to the states formed by fermions and X±1/2 in the internal lines of the Feynman
diagram? Twistor philosophy suggests that only the higher on mass shell excitations are possible.
If this picture is correct, the situation would not change in an essential manner from the earlier
one.

The highly non-trivial prediction of the magnetic confinement is that elementary particles should
have stringy character in electro-weak length scales and could behaving to become manifest at LHC
energies. This adds one further item to the list of non-trivial predictions of TGD about physics at
LHC energies [53] .

15.5 Quantum TGD very briefly

There are two basic approaches to the construction of quantum TGD. The first approach relies on
the vision of quantum physics as infinite-dimensional Kähler geometry [17] for the ”world of classical
worlds” (WCW) identified as the space of 3-surfaces in in certain 8-dimensional space. Essentially a
generalization of the Einstein’s geometrization of physics program is in question. The second vision
is the identification of physics as a generalized number theory involving p-adic number fields and the
fusion of real numbers and p-adic numbers to a larger structure, classical number fields, and the notion
of infinite prime.
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With a better resolution one can distinguish also other visions crucial for quantum TGD. Indeed,
the notion of finite measurement resolution realized in terms of hyper-finite factors, TGD as almost
topological quantum field theory, twistor approach, zero energy ontology, and weak form of electric-
magnetic duality play a decisive role in the actual construction and interpretation of the theory. One
can however argue that these visions are not so fundamental for the formulation of the theory than
the first two.

15.5.1 Physics as infinite-dimensional geometry

It is good to start with an attempt to give overall view about what the dream about physics as
infinite-dimensional geometry is. The basic vision is generalization of the Einstein’s program for the
geometrization of classical physics so that entire quantum physics would be geometrized. Finite-
dimensional geometry is certainly not enough for this purposed but physics as infinite-dimensional
geometry of what might be called world of classical worlds (WCW) -or more neutrally configuration
space of 3-surfaces of some higher-dimensional imbeddign space- might make sense. The requirement
that the Hermitian conjugation of quantum theories has a geometric realization forces Kähler geometry
for WCW. WCW defines the fixed arena of quantum physics and physical states are identified as spinor
fields in WCW. These spinor fields are classical and no second quantization is needed at this level.
The justification comes from the observation that infinite-dimensional Clifford algebra [7] generated
by gamma matrices allows a natural identification as fermionic oscillator algebra.

The basic challenges are following.

1. Identify WCW.

2. Provide WCW with Kähler metric and spinor structure

3. Define what spinors and spinor fields in WCW are.

There is huge variety of finite-dimensional geometries and one might think that in infinite-dimensional
case one might be drowned with the multitude of possibilities. The situation is however exactly op-
posite. The loop spaces associated with groups have a unique Kähler geometry due to the simple
condition that Riemann connection exists mathematically [85] . This condition requires that the met-
ric possesses maximal symmetries. Thus raises the vision that infinite-dimensional Kähler geometric
existence is unique once one poses the additional condition that the resulting geometry satisfies some
basic constraints forced by physical considerations.

The observation about the uniqueness of loop geometries leads also to a concrete vision about
what this geometry could be. Perhaps WCW could be refarded as a union of symmetric spaces [37] for
which every point is equivalent with any other. This would simplify the construction of the geometry
immensely and would mean a generalization of cosmological principle to infinite-D context [41] , [12] .

This still requires an answer to the question why M4×CP2 is so unique. Something in the structure
of this space must distinguish it in a unique manner from any other candidate. The uniqueness of
M4 factor can be understood from the miraculous conformal symmetries of the light-cone boundary
but in the case of CP2 there is no obvious mathematical argument of this kind although physically
CP2 is unique [19] . The observation that M4 × CP2 has dimension 8, the space-time surfaces have
dimension 4, and partonic 2-surfaces, which are the fundamental objects by holography have dimension
2, suggests that classical number fields [23, 11, 31] are involved and one can indeed end up to the
choice M4 × CP2 from physics as generalized number theory vision by simple arguments [86] , [15] .
In particular, the choices M8 -a subspace of complexified octonions (for octonions see [23] ), which
I have used to call hyper-octonions- and M4 × CP2 can be regarded as physically equivalent: this
”number theoretical compactification” is analogous to spontaneous compactification in M-theory. No
dynamical compactification takes place so that M8 −H duality is a more appropriate term.

15.5.2 Physics as generalized number theory

Physics as a generalized number theory (for an overview about number theory see [22] ) program
consists of three separate threads: various p-adic physics and their fusion together with real number
based physics to a larger structure [85] , [18] , the attempt to understand basic physics in terms
of classical number fields [86] , [15] (in particular, identifying associativity condition as the basic
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dynamical principle), and infinite primes [84] , [10] , whose construction is formally analogous to a
repeated second quantization of an arithmetic quantum field theory. In this article a summary of the
philosophical ideas behind this dream and a summary of the technical challenges and proposed means
to meet them are discussed.

The construction of p-adic physics and real physics poses formidable looking technical challenges:
p-adic physics should make sense both at the level of the imbedding space, the ”world of classical
worlds” (WCW), and space-time and these physics should allow a fusion to a larger coherent whole.
This forces to generalize the notion of number by fusing reals and p-adics along rationals and common
algebraic numbers. The basic problem that one encounters is definition of the definite integrals and
harmonic analysis [14] in the p-adic context [56] . It turns out that the representability of WCW
as a union of symmetric spaces [37] provides a universal group theoretic solution not only to the
construction of the Kähler geometry of WCW but also to this problem. The p-adic counterpart of a
symmetric space is obtained from its discrete invariant by replacing discrete points with p-adic variants
of the continuous symmetric space. Fourier analysis [14] reduces integration to summation. If one
wants to define also integrals at space-time level, one must pose additional strong constraints which
effectively reduce the partonic 2-surfaces and perhaps even space-time surfaces to finite geometries
and allow assign to a given partonic 2-surface a unique power of a unique p-adic prime characterizing
the measurement resolution in angle variables. These integrals might make sense in the intersection
of real and p-adic worlds defined by algebraic surfaces.

The dimensions of partonic 2-surface, space-time surface, and imbedding space suggest that clas-
sical number fields might be highly relevant for quantum TGD. The recent view about the connection
is based on hyper-octonionic representation of the imbedding space gamma matrices, and the notions
of associative and co-associative space-time regions defined as regions for which the modified gamma
matrices span quaternionic or co-quaternionic plane at each point of the region. A further condition
is that the tangent space at each point of space-time surface contains a preferred hyper-complex (and
thus commutative) plane identifiable as the plane of non-physical polarizations so that gauge invari-
ance has a purely number theoretic interpretation. WCW can be regarded as the space of sub-algebras
of the local octonionic Clifford algebra [7] of the imbedding space defined by space-time surfaces with
the property that the local sub-Clifford algebra spanned by Clifford algebra valued functions restricted
at them is associative or co-associative in a given region.

The recipe for constructing infinite primes is structurally equivalent with a repeated second quan-
tization of an arithmetic super-symmetric quantum field theory. At the lowest level one has fermionic
and bosonic states labeled by finite primes and infinite primes correspond to many particle states of
this theory. Also infinite primes analogous to bound states are predicted. This hierarchy of quan-
tizations can be continued indefinitely by taking the many particle states of the previous level as
elementary particles at the next level. Construction could make sense also for hyper-quaternionic
and hyper-octonionic primes although non-commutativity and non-associativity pose technical chal-
lenges. One can also construct infinite number of real units as ratios of infinite integers with a precise
number theoretic anatomy. The fascinating finding is that the quantum states labeled by standard
model quantum numbers allow a representation as wave fuctions in the discrete space of these units.
Space-time point becomes infinitely richly structured in the sense that one can associate to it a wave
function in the space of real (or octonionic) units allowing to represent the WCW spinor fields. One
can speak about algebraic holography or number theoretic Brahman=Atman identity and one can
also say that the points of imbedding space and space-time surface are subject to a number theoretic
evolution.

15.5.3 Questions

The experience has shown repeatedly that a correct question and identification of some weakness
of existing vision is what can only lead to a genuine progress. In the following I discuss the basic
questions, which have stimulated progress in the challenge of constructing WCW geometry.

What is WCW?

Concerning the identification of WCW I have made several guesses and the progress has been basically
due to the gradual realization of various physical constraints and the fact that standard physics
ontology is not enough in TGD framework.
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1. The first guess was that WCW corresponds to all possible space-like 3-surfaces in H = M4 ×
CP2, where M4 denotes Minkowski space and CP2 denotes complex projective space of two
complex dimensions having also representation as coset space SU(3)/U(2) (see the separate
article summarizing the basic facts about CP2 and how it codes for standard model symmetries
[5] , [16, 5] ). What led to the this particular choice H was the observation that the geometry
of H codes for standard model quantum numbers and that the generalization of particle from
point like particle to 3-surface allows to understand also remaining quantum numbers having
no obvious explanation in standard model (family replication phenomenon). What is important
to notice is that Poincare symmetries act as exact symmetries of M4 rather than space-time
surface itself: this realizes the basic vision about Poincare invariant theory of gravitation. This
lifting of symmetries to the level of imbedding space and the new dynamical degrees of freedom
brought by the sub-manifold geometry of space-time surface are absolutely essential for entire
quantum TGD and distinguish it from general relativity and string models. There is however a
problem: it is not obvious how to get cosmology.

2. The second guess was that WCW consists of space-like 3-surfaces in H+ = M4
+×CP2, where M4

+

future light-cone having interpretation as Big Bang cosmology at the limit of vanishing mass
density with light-cone property time identified as the cosmic time. One obtains cosmology
but loses exact Poincare invariance in cosmological scales since translations lead out of future
light-cone. This as such has no practical significance but due to the metric 2-dimensionality
of light-cone boundary δM4

+ the conformal symmetries of string model assignable to finite-
dimensional Lie group generalize to conformal symmetries assignable to an infinite-dimensional
symplectic group of S2 × CP2 and also localized with respect to the coordinates of 3-surface.
These symmetries are simply too beautiful to be important only at the moment of Big Bang
and must be present also in elementary particle length scales. Note that these symmetries are
present only for 4-D Minkowski space so that a partial resolution of the old conundrum about
why space-time dimension is just four emerges.

3. The third guess was that the light-like 3-surfaces in H or H+ are more attractive than space-like
3-surfaces. The reason is that the infinite-D conformal symmetries characterize also light-like
3-surfaces because they are metrically 2-dimensional. This leads to a generalization of Kac-
Moody symmetries [16] of super string models with finite-dimensional Lie group replaced with
the group of isometries of H. The natural identification of light-like 3-surfaces is as 3-D surfaces
defining the regions at which the signature of the induced metric changes from Minkowskian
(1,−1,−1,−1) to Euclidian (−1− 1− 1− 1)- I will refer these surfaces as throats or wormhole
throats in the sequel. Light-like 3-surfaces are analogous to blackhole horizons and are static
because strong gravity makes them light-like. Therefore also the dimension 4 for the space-time
surface is unique.

This identification leads also to a rather unexpected physical interpretation. Single lightlike
wormhole throat carriers elementary particle quantum numbers. Fermions and their superpart-
ners are obtained by glueing Euclidian regions (deformations of so called CP2 type vacuum
extremals of Kähhler action) to the background with Minkowskian signature. Bosons are iden-
tified as wormhole contacts with two throats carrying fermion resp. antifermionic quantum
numbers. These can be identified as deformations of CP2 vacuum extremals between between
two parallel Minkowskian space-time sheets. One can say that bosons and their superpartners
emerge. This has dramatic implications for quantum TGD [23] and QFT limit of TGD [65] .

The question is whether one obtains also a generalization of Feynman diagrams. The answer is
affirmative. Light-like 3-surfaces or corresponding Euclidian regions of space-time are analogous
to the lines of Feynman diagram and vertices are replaced by 2-D surface at which these surfaces
glued together. One can speak about Feynman diagrams with lines thicknened to light-like
3-surfaces and vertices to 2-surfaces. The generalized Feynman diagrams are singular as 3-
manifolds but the vertices are non-singular as 2-manifolds. Same applies to the corresponding
space-time surfaces and space-like 3-surfaces. Therefore one can say that WCW consists of
generalized Feynman diagrams- something rather different from the original identification as
space-like 3-surfaces and one can wonder whether these identification could be equvalent.

4. The fourth guess was a generalization of the WCW combining the nice aspects of the identifi-
cations H = M4×CP2 (exact Poincare invariance) and H = M4

+×CP2 (Big Bang cosmology).
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The idea was to generalize WCW to a union of basic building bricks -causal diamonds (CDs) -
which themselves are analogous to Big Bang-Big Crunch cosmologies breaking Poincare invari-
ance, which is however regained by the allowance of union of Poincare trnsforms of the causal
diamonds.

The starting point is General Coordinate Invariance (GCI). It does not matter, which 3-D slice
of the space-time surface one choose to represent physical data as long as slices are related by a
diffeomorphism of the space-time surface. This condition implies holography in the sense that
3-D slices define holograms about 4-D reality.

The question is whether one could generalize GCI in the sense that the descriptions using
space-like and light-like 3-surfaces would be equivalent physically. This requires that finite-sized
space-like 3-surfaces are somehow equivalent with light-like 3-surfaces. This suggests that the
light-like 3-surfaces must have ends. Same must be true for the space-time surfaces and must
define preferred space-like 3-surfaces just like wormhole throats do. This makes sense only if
the 2-D intersections of these two kinds of 3-surfaces -call them partonic 2-surfaces- and their
4-D tangent spaces carry the information about quantum physics. A strenghening of holopraphy
principle would be the outcome. The challenge is to understand, where the intersections defining
the partonic 2-surfaces are located.

Zero energy ontology (ZEO) allows to meet this challenge.

(a) Assume that WCW is union of sub-WCWs identified as the space of light-like 3-surfaces
assignable to CD×CP2 with given CD defined as an intersection of future and past directed
lightcones of M4. The tips of CDs have localization in M4 and one can perform for CD
both translations and Lorentz boost for CDs. Space-time surfaces inside CD define the
basic building brick of WCW. Also unions of CDs allowed and the CDs belonging to the
union can intersect. One can of course consider the possibility of intersections and analogy
with the set theoretic realization of topology.

(b) ZEO property means that the light-like boundaries of these objects carry positive and
negative energy states, whose quantum numbers are opposite. Everything can be created
from vacuum and can be regarded as quantum fluctuations in the standard vocabulary of
quantum field theories.

(c) Space-time surfaces inside CDs begin from the lower boundary and end to the upper
boundary and in ZEO it is natural to identify space-like 3-surfaces as pairs of space-like
3-surfaces at these boundaries. Light-like 3-surfaces connect these boundaries.

(d) The generalization of GCI states that the descriptions based on space-like 3-surfaces must
be equivalent with that based on light-like 3-surfaces. Therefore only the 2-D intersections
of light-like and space-like 3-surfaces - partonic 2-surfaces- and their 4-D tangent spaces
(4-surface is there!) matter. Effective 2-dimensionality means a strengthened form of
holography but does not imply exact 2-dimensionality, which would reduce the theory to
a mere string model like theory. Once these data are given, the 4-D space-time surface is
fixed and is analogous to a generalization of Bohr orbit to infinite-D context. This is the
first guess. The situation is actually more delicate due to the non-determinism of Kähler
action motivating the interaction of the hierarchy of CDs within CDs.

In this framework one obtains cosmology: CDs represent a fractal hierarchy of big bang-big
crunch cosmologies. One obtains also Poincare invariance. One can also interpret the non-
conservation of gravitational energy in cosmology which is an empirical fact but in conflict with
exact Poincare invariance as it is realized in positive energy ontology [91, 78] . The reason
is that energy and four-momentum in zero energy ontology correspond to those assignable to
the positive energy part of the zero energy state of a particular CD. The density of energy as
cosmologist defines it is the statistical average for given CD: this includes the contibutions of
sub-CDs. This average density is expected to depend on the size scale of CD density is should
therefore change as quantum dispersion in the moduli space of CDs takes place and leads to
large time scale for any fixed sub-CD.

Even more, one obtains actually quantum cosmology! There is large variety of CDs since they
have position in M4 and Lorentz transformations change their shape. The first question is
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whether the M4 positions of both tips of CD can be free so that one could assign to both
tips of CD momentum eigenstates with opposite signs of four-momentum. The proposal, which
might look somewhat strange, is that this not the case and that the proper time distance
between the tips is quantized in octaves of a fundamental time scale T = R/c defined by CP2

size R. This would explains p-adic length scale hypothesis which is behind most quantitative
predictions of TGD. That the time scales assignable to the CD of elementary particles correspond
to biologically important time scales [27] forces to take this hypothesis very seriously.

The interpretation for T could be as a cosmic time quantized in powers of two. Even more general
quantization is proposed to take place. The relative position of the second tip with respect to
the first defines a point of the proper time constant hyperboloid of the future light cone. The
hypothesis is that one must replace this hyperboloid with a lattice like structure. This implies
very powerful cosmological predictions finding experimental support from the quantization of
redshifts for instance [78] . For quite recent further empirical support see [21] .

One should not take this argument without a grain of salt. Can one really realize zero energy
ontology in this framework? The geometric picture is that translations correspond to translations
of CDs. Translations should be done independently for the upper and lower tip of CD if one
wants to speak about zero energy states but this is not possible if the proper time distance is
quantized. If the relative M4

+ coordinate is discrete, this pessimistic conclusion is strengthened
further.

The manner to get rid of problem is to assume that translations are represented by quantum
operators acting on states at the light-like boundaries. This is just what standard quantum
theory assumes. An alternative- purely geometric- way out of difficulty is the Kac-Moody
symmetry associated with light-like 3-surfaces meaning that local M4 translations depending on
the point of partonic 2-surface are gauge symmetries. For a given translation leading out of CD
this gauge symmetry allows to make a compensating transformation which allows to satisfy the
constraint.

This picture is roughly the recent view about WCW . What deserves to be emphasized is that a
very concrete connection with basic structures of quantum field theory emerges already at the level of
basic objects of the theory and GCI implies a strong form of holography and almost stringy picture.

Some Why’s

In the following I try to summarize the basic motivations behind quantum TGD in form of various
Why’s.

1. Why WCW?

Einstein’s program has been extremely successful at the level of classical physics. Fusion of
general relativity and quantum theory has however failed. The generalization of Einstein’s ge-
ometrization program of physics from classical physics to quantum physics gives excellent hopes
about the success in this project. Infinite-dimensional geometries are highly unique and this
gives hopes about fixing the physics completetely from the uniqueness of the infinite-dimensional
Kähler geometric existence.

2. Why spinor structure in WCW?

Gamma matrices defining the Clifford algebra [7] of WCW are expressible in terms of fermionic
oscillator operators. This is obviously something new as compared to the view about gamma
matrices as bosonic objects. There is however no deep reason denying this kind of identification.
As a consequence, a geometrization of fermionic oscillator operator algebra and fermionic statis-
tics follows as also geometrization of super-conformal symmetries [36, 16] since gamma matrices
define super-generators of the algebra of WCW isometries extended to a super-algebra.

3. Why Kähler geometry?

Geometrization of the bosonic oscillator operators in terms of WCW vector fields and fermionic
oscillator operators in terms of gamma matrices spanning Clifford algebra. Gamma matrices
span hyper-finite factor of type II1 and the extremely beautiful properties of these von Neuman
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algebras [76] (one of the three von Neuman algebras that von Neumann suggests as possible
mathematical frameworks behind quantum theory) lead to a direct connection with the basic
structures of modern physics (quantum groups, non-commutative geometries,.. [99] ).

A further reason why is the finiteness of the theory.

(a) In standard QFTs there are two kinds of divergences. Action is a local functional of fields
in 4-D sense and one performs path integral over all 4-surfaces to construct S-matrix.
Mathematically path integration is a poorly defined procedure and one obtains diverging
Gaussian determinants and divergences due to the local interaction vertices. Regularization
provides the manner to get rid of the infinities but makes the theory very ugly.

(b) Kähler function defining the Kähler geometry is a expected to be non-local functional of the
partonic 2-surface (Kähler action for a preferred extremal having as its ends the positive
and negative energy 3-surfaces). Path integral is replaced with a functional integral which
is mathematically well-defined procedure and one perfoms functional integral only over
the partonic 2-surfaces rather than all 4-surfaces (holography). The exponent of Kähler
function defines a unique vacuum functional. The local divergences of local quantum field
theories of local quantum field theories since there are no local interaction vertices. Also the
divergences associated with the Gaussian determinant and metric determinant cancel since
these two determinants cancel each other in the integration over WCW. As a matter fact,
symmetric space property suggest a much more elegant manner to perform the functional
integral by reducing it to harmonic analysis in infinite-dimensional symmetric space [31] .

(c) One can imagine also the possibility of divergences in fermionic degrees of freedom but it
has turned out that the generalized Feynman diagrams in ZEO are manifestly finite. Even
more: it is quite possible that only finite number of these diagrams give non-vanishing
contributions to the scattering amplitude. This is essentially due to the new view about
virtual particles, which are identified as bound states of on mass shell states assigned with
the throats of wormhole contacts so that the integration over loop momenta of virtual
particles is extremely restricted [31] .

4. Why infinite-dimensional symmetries?

WCW must be a union of symmetric spaces in order that the Riemann connection exists (this
generalizes the finding of Freed for loop groups [85] ). Since the points of symmetric spaces are
metrically equivalent, the geometrization becomes tractable although the dimension is infinite.
A union of symmetric spaces is required because 3-surfaces with a size of galaxy and electron
cannot be metrically equivalent. Zero modes distinguish these surfaces and can be regarded as
purely classical degrees of freedom whereas the degrees of freedom contributing to the WCW
line element are quantum fluctuating degrees of freedom.

One immediate implication of the symmetric space property is constant curvature space property
meaning that the Ricci tensor proportional to metric tensor. Infinite-dimensionality means that
Ricci scalar either vanishes or is infinite. This implies vanishing of Ricci tensor and vacuum
Einstein equations for WCW.

5. Why M4 × CP2?

This choice provides an explanation for standard model quantum numbers. The conjecture is
that infinite-D geometry of 3-surfaces exists only for this choice. As noticed, the dimension of
space-time surfaces and M4 fixed by the requirement of generalized conformal invariance [32]
making possible to achieve symmetric space property. If M4×CP2 is so special, there must be a
good reason for this. Number theoretical vision [86] , [15] indeed leads to the identification of this
reason. One can assign the hierarchy of dimensions associated with partonic 2-surfaces, space-
time surfaces and imbedding space to classical number fields and can assign to imbedding space
what might be called hyper-octonionic structure. ”Hyper” comes from the fact that the tangent
space of H corresponds to the subspaces of complexified octonions with octonionic imaginary
units multiplied by a commuting imaginary unit. The space-time reions would be either hyper-
quaternionic or co-hyper-quaternionic so that associativity/co-associativity would become the
basic dynamical principle at the level of space-time dynamics. Whether this dynamical principle
is equivalent with the preferred extremal property of Kähler action remains an open conjecture.
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6. Why zero energy ontology and why causal diamonds?

The consistency between Poincare invariance and GRT requires ZEO. In positive energy ontology
only one of the infinite number of classical solutions is realized and partially fixed by the values
of conserved quantum numbers so that the theory becomes obsolote. Even in quantum theory
conservation laws mean that only those solutions of field equations with the quantum numbers
of the initial state of the Universe are interesting and one faces the problem of understanding
what the the initial state of the universe was. In ZEO these problems disappear. Everything
is creatable from vacuum: if the physical state is mathematically realizable it is in principle
reachable by a sequence of quantum jumps. There are no physically non-reachable entities
in the theory. Zero energy ontology leads also to a fusion of thermodynamics with quantum
theory. Zero energy states ae defined as entangled states of positive and negative energy states
and entanglement coefficients define what I call M -matrix identified as ”complex square root” of
density matrix expressible as a product of diagonal real and positive density matrix and unitary
S-matrix [23] .

There are several good reasons why for causal diamonds. ZEO requires CDs, the generalized
form of GCI and strong form of holography (light-like and space-like 3-surfaces are physically
equivalent representations) require CDs, and also the view about light-like 3-surfaces as general-
ized Feynman diagrams requires CDs. Also the classical non-determinism of Kähler action can
be understood using the hierarchy CDs and the addition of CDs inside CDs to obtain a fractal
hierarchy of them provides an elegant manner to undersand radiative corrections and coupling
constant evolution in TGD framework.

A strong physical argument in favor of CDs is the finding that the quantized proper time
distance between the tips of CD fixed to be an octave of a fundamental time scale defined by
CP2 happens to define fundamental biological time scale for electron, u quark and d quark [27] :
there would be a deep connection between elementary particle physics and living matter leading
to testable predictions.

15.5.4 Modified Dirac action

The construction of the spinor structure for the world of classical worlds (WCW) leads to the vision
that second quantized modified Dirac equation codes for the entire quantum TGD. Among other
things this would mean that Dirac determinant would define the vacuum functional of the theory
having interpretation as the exponent of Kähler function of WCW and Kähler function would reduce
to Kähler action for a preferred extremal of Kähler action. In this chapter the recent view about the
modified Dirac action are explained in more detail.

Identification of the modified Dirac action

The modified Dirac action action involves several terms. The first one is 4-dimensional assignable
to Kähler action. Second term is instanton term reducible to an expression restricted to wormhole
throats or any light-like 3-surfaces parallel to them in the slicing of space-time surface by light-like
3-surfaces. The third term is assignable to Chern-Simons term and has interpretation as a mea-
surement interaction term linear in Cartan algebra of the isometry group of the imbedding space in
order to obtain stringy propagators and also to realize coupling between the quantum numbers asso-
ciated with super-conformal representations and space-time geometry required by quantum classical
correspondence.

This means that 3-D light-like wormhole throats carry induced spinor field which can be regarded
as independent degrees of freedom having the spinor fields at partonic 2-surfaces as sources and acting
as 3-D sources for the 4-D induced spinor field. The most general measurement interaction would
involve the corresponding coupling also for Kähler action but is not physically motivated. There are
good arguments in favor of Chern-Simons Dirac action and corresponding measurement interaction.

1. A correlation between 4-D geometry of space-time sheet and quantum numbers is achieved
by the identification of exponent of Kähler function as Dirac determinant making possible the
entanglement of classical degrees of freedom in the interior of space-time sheet with quantum
numbers.
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2. Cartan algebra plays a key role not only at quantum level but also at the level of space-time
geometry since quantum critical conserved currents vanish for Cartan algebra of isometries
and the measurement interaction terms giving rise to conserved currents are possible only for
Cartan algebras. Furthermore, modified Dirac equation makes sense only for eigen states of
Cartan algebra generators. The hierarchy of Planck constants realized in terms of the book like
structure of the generalized imbedding space assigns to each CD (causal diamond) preferred
Cartan algebra: in case of Poincare algebra there are two of them corresponding to linear and
cylindrical M4 coordinates.

3. Quantum holography and dimensional reduction hierarchy in which partonic 2-surface defined
fermionic sources for 3-D fermionic fields at light-like 3-surfaces Y 3

l in turn defining fermionic
sources for 4-D spinors find an elegant realization. Effective 2-dimensionality is achieved if the
replacement of light-like wormhole throat X3

l with light-like 3-surface Y 3
l ”parallel” with it in the

definition of Dirac determinant corresponds to the U(1) gauge transformation K → K + f + f
for Kähler function of WCW so that WCW Kähler metric is not affected. Here f is holomorphic
function of WCW (”world of classical worlds”) complex coordinates and arbitrary function of
zero mode coordinates.

4. An elegant description of the interaction between super-conformal representations realized at
partonic 2-surfaces and dynamics of space-time surfaces is achieved since the values of Cartan
charges are feeded to the 3-D Dirac equation which also receives mass term at the same time.
Almost topological QFT at wormhole throats results at the limit when four-momenta vanish:
this is in accordance with the original vision about TGD as almost topological QFT.

5. A detailed view about the physical role of quantum criticality results. Quantum criticality
fixes the values of Kähler coupling strength as the analog of critical temperature. Quantum
criticality implies that second variation of Kähler action vanishes for critical deformations and
the existence of conserved current except in the case of Cartan algebra of isometries. Quantum
criticality allows to fix the values of couplings appearing in the measurement interaction by using
the condition K → K + f + f . p-Adic coupling constant evolution can be understood also and
corresponds to scale hierarchy for the sizes of causal diamonds (CDs).

6. The inclusion of imaginary instanton term to the definition of the modified gamma matrices is
not consistent with the conjugation of the induced spinor fields. Measurement interaction can
be however assigned to both Kähler action and its instanton term. CP breaking, irreversibility
and the space-time description of dissipation are closely related and the CP and T oddness of
the instanton part of the measurement interaction term could provide first level description for
dissipative effects. It must be however emphasized that the mere addition of instanton term to
Kähler function could be enough.

7. A radically new view about matter antimatter asymmetry based on zero energy ontology emerges
and one could understand the experimental absence of antimatter as being due to the fact
antimatter corresponds to negative energy states. The identification of bosons as wormhole
contacts is the only possible option in this framework.

8. Almost stringy propagators and a consistency with the identification of wormhole throats as
lines of generalized Feynman diagrams is achieved. The notion of bosonic emergence leads to a
long sought general master formula for the M -matrix elements. The counterpart for fermionic
loop defining bosonic inverse propagator at QFT limit is wormhole contact with fermion and
cutoffs in mass squared and hyperbolic angle for loop momenta of fermion and antifermion in
the rest system of emitting boson have precise geometric counterpart.

Hyper-quaternionicity and quantum criticality

The conjecture that quantum critical space-time surfaces are hyper-quaternionic in the sense that the
modified gamma matrices span a quaternionic subspace of complexified octonions at each point of
the space-time surface is consistent with what is known about preferred extremals. The condition
that both the modified gamma matrices and spinors are quaternionic at each point of the space-time
surface leads to a precise ansatz for the general solution of the modified Dirac equation making sense
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also in the real context. The octonionic version of the modified Dirac equation is very simple since
SO(7, 1) as vielbein group is replaced with G2 acting as automorphisms of octonions so that only the
neutral Abelian part of the classical electro-weak gauge fields survives the map.

Octonionic gamma matrices provide also a non-associative representation for the 8-D version of
Pauli sigma matrices and encourage the identification of 8-D twistors as pairs of octonionic spinors
conjectured to be highly relevant also for quantum TGD. Quaternionicity condition implies that octo-
twistors reduce to something closely related to ordinary twistors.

The exponent of Kähler function as Dirac determinant for the modified Dirac action

Although quantum criticality in principle predicts the possible values of Kähler coupling strength, one
might hope that there exists even more fundamental approach involving no coupling constants and
predicting even quantum criticality and realizing quantum gravitational holography.

1. The Dirac determinant defined by the product of Dirac determinants associated with the light-
like partonic 3-surfaces X3

l associated with a given space-time sheet X4 is the simplest candidate
for vacuum functional identifiable as the exponent of the Kähler function. Individual Dirac de-
terminant is defined as the product of eigenvalues of the dimensionally reduced modified Dirac
operator DK,3 and there are good arguments suggesting that the number of eigenvalues is finite.
p-Adicization requires that the eigenvalues belong to a given algebraic extension of rationals.
This restriction would imply a hierarchy of physics corresponding to different extensions and
could automatically imply the finiteness and algebraic number property of the Dirac deter-
minants if only finite number of eigenvalues would contribute. The regularization would be
performed by physics itself if this were the case.

2. It remains to be proven that the product of eigenvalues gives rise to the exponent of Kähler
action for the preferred extremal of Kähler action. At this moment the only justification for the
conjecture is that this the only thing that one can imagine.

3. A long-standing conjecture has been that the zeros of Riemann Zeta are somehow relevant for
quantum TGD. Rieman zeta is however naturally replaced Dirac zeta defined by the eigenvalues
of DK,3 and closely related to Riemann Zeta since the spectrum consists essentially for the
cyclotron energy spectra for localized solutions region of non-vanishing induced Kähler magnetic
field and hence is in good approximation integer valued up to some cutoff integer. In zero
energy ontology the Dirac zeta function associated with these eigenvalues defines ”square root”
of thermodynamics assuming that the energy levels of the system in question are expressible
as logarithms of the eigenvalues of the modified Dirac operator defining kind of fundamental
constants. Critical points correspond to approximate zeros of Dirac zeta and if Kähler function
vanishes at criticality as it indeed should, the thermal energies at critical points are in first
order approximation proportional to zeros themselves so that a connection between quantum
criticality and approximate zeros of Dirac zeta emerges.

4. The discretization induced by the number theoretic braids reduces the world of classical worlds
to effectively finite-dimensional space and configuration space Clifford algebra reduces to a finite-
dimensional algebra. The interpretation is in terms of finite measurement resolution represented
in terms of Jones inclusion M ⊂ N of HFFs with M taking the role of complex numbers.
The finite-D quantum Clifford algebra spanned by fermionic oscillator operators is identified
as a representation for the coset space N/M describing physical states modulo measurement
resolution. In the sectors of generalized imbedding space corresponding to non-standard values
of Planck constant quantum version of Clifford algebra is in question.

15.5.5 Three Dirac operators and their interpretation

The physical interpretation of Kähler Dirac equation is not at all straightforward. The following
arguments inspired by effective 2-dimensionality suggest that the modified gamma matrices and cor-
responding effective metric could allow dual gravitational description of the physics associated with
wormhole throats. This applies in particular to condensed matter physics.
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Three Dirac equations

To begin with, Dirac equation appears in three forms in TGD.

1. The Dirac equation in world of classical worlds codes for the super Virasoro conditions for the
super Kac-Moody and similar representations formed by the states of wormhole contacts forming
the counterpart of string like objects (throats correspond to the ends of the string. This Dirac
generalizes the Dirac of 8-D imbedding space by bringing in vibrational degrees of freedom. This
Dirac equation should gives as its solutions zero energy states and corresponding M-matrices gen-
eralizing S-matrix and their collection defining the unitary U-matrix whose natural application
appears in consciousness theory as a coder of what Penrose calls U-process.

2. There is generalized eigenvalue equation for Chern-Simons Dirac operator at light-like wormhole
throats. The generalized eigenvalue is pkγk. The interpretation of pseudo-momentum pk has
been a problem but twistor Grassmannian approach suggests strongly that it can be interpreted
as the counterpart of equally mysterious region momentum appearing in momentum twistor
Grassmannian approach toN = 4 SYM. The pseudo-/region momentum p is quantized (this does
not spoil the basics of Grasssmannian residues integral approach) and 1/pkγk defines propagator
in lines of generalized Feynman diagrams. The Yangian symmetry discovered generalizes in
a very straightforward manner and leads alsoto the realization that TGD could allow also a
twistorial formulation in terms of product CP3 × CP3 of two twistor spaces [99] . General
arguments lead to a proposal for explicit form for the solutions of field equation represented
identified as holomorphic 6-surfaces in this space subject to additional partial different equations
for homogenenous functions of projective twistor coordinates suggesting strongly the quantal
interpretation as analogs of partial waves. Therefore quantum-classical correspondence would
be realize in beatiful manner.

3. There is Kähler Dirac equation in the interior of space-time. In this equation the gamma matrices
are replaced with modified gamma matrices defined by the contractions of canonical momentum
currents Tαk = ∂L/∂αh

k with imbedding space gamma matrices Γk. This replacement is required
by internal consistency and by super-conformal symmetries.

Could Kähler Dirac equation provide a first principle justification for the light-hearted use of
effective mass and the analog of Dirac equation in condensed manner physics? This would conform
with the holographic philosophy. Partonic 2-surfaces with tangent space data and their light-like orbits
would give hologram like representation of physics and the interior of space-time the 4-D representation
of physics. Holography would have in the recent situation interpretation also as quantum classical
correspondence between representations of physics in terms of quantized spinor fields at the light-like
3-surfaces on one hand and in terms of classical fields on the other hand.

The resulting dispersion relation for the square of the Kähler-Dirac operator assuming that in-
duced like metric, Kähler field, etc. are very slowly varying contains quadratic and linear terms in
momentum components plus a term corresponding to magnetic moment coupling. In general massive
dispersion relation is obtained as is also clear from the fact that Kähler Dirac gamma matrices are
combinations of M4 and CP2 gammas so that modified Dirac mixes different M4 chiralities (basic
signal for massivation). If one takes into account the dependence of the induced geometric quantities
on space-time point dispersion relations become non-local.

Does energy metric provide the gravitational dual for condensed matter systems?

The modified gamma matrices define an effective metric via their anticommutators which are quadratic
in components of energy momentum tensor (canonical momentum densities). This effective metric
vanishes for vacuum extremals. Note that the use of modified gamma matrices guarantees among other
things internal consistency and super-conformal symmetries of the theory. The physical interpretation
has remained obscure hitherto although corresponding effective metric for Chern-Simons Dirac action
has now a clear physical interpretation.

If the above argument is on the right track, this effective metric should have applications in con-
densed matter theory. In fact, energy metric has a natural interpretation in terms of effective light
velocities which depend on direction of propagation. One can diagonalize the energy metric gαβe (con-
travariant form results from the anticommutators) and one can denote its eigenvalues by (v0, vi) in
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the case that the signature of the effective metric is (1,−1,−1,−1). The 3-vector vi/v0has inter-
pretation as components of effective light velocity in various directions as becomes clear by thinking
the d’Alembert equation for the energy metric. This velocity field could be interpreted as that of
hydrodynamic flow. The study of the extremals of Kähler action shows that if this flow is actually
Beltrami flow so that the flow parameter associated with the flow lines extends to global coordinate,
Kähler action reduces to a 3-D Chern-Simons action and one obtains effective topological QFT. The
conserved fermion current ΨΓαeΨ has interpretation as incompressible hydrodynamical flow.

This would give also a nice analogy with AdS/CFT correspondence allowing to describe various
kinds of physical systems in terms of higher-dimensional gravitation and black holes are introduced
quite routinely to describe condensed matter systems. In TGD framework one would have an analogous
situation but with 10-D space-time replaced with the interior of 4-D space-time and the boundary
of AdS representing Minkowski space with the light-like 3-surfaces carrying matter. The effective
gravitation would correspond to the ”energy metric”. One can associate with it curvature tensor, Ricci
tensor and Einstein tensor using standard formulas and identify effective energy momentum tensor
associated as Einstein tensor with effective Newton’s constant appearing as constant of proportionality.
Note however that the besides ordinary metric and ”energy” metric one would have also the induced
classical gauge fields having purely geometric interpretation and action would be Kähler action. This 4-
D holography would provide a precise, dramatically simpler, and also a very concrete dual description.
This cannot be said about model of graphene based on the introduction of 10-dimensional black holes,
branes, and strings chosen in more or less ad hoc manner.

This raises questions. Does this give a general dual gravitational description of dissipative effects
in terms of the ”energy” metric and induced gauge fields? Does one obtain the counterparts of black
holes? Do the general theorems of general relativity about the irreversible evolution leading to black
holes generalize to describe analogous fate of condensed matter systems caused by dissipation? Can
one describe non-equilibrium thermodynamics and self-organization in this manner?

One might argue that the incompressible Beltrami flow defined by the dynamics of the preferred
extremals is dissipationless and viscosity must therefore vanish locally. The failure of complete non-
determinism of Kähler action however means generation of entropy since the knowledge about the
state decreases gradually. This in turn should have a phenomenological local description in terms of
viscosity which characterizes the transfer of energy to shorter scales and eventually to radiation. The
deeper description should be non-local and basically topological and might lead to quantization rules.
For instance, one can imagine the quantization of the ratio η/s of the viscosity to entropy density as
multiples of a basic unit defined by its lower bound (note that this would be analogous to Quantum
Hall effect). For the first M-theory inspired derivation of the lower bound of η/s [14] . The lower
bound for η/s is satisfied in good approximation by what should have been QCD plasma but found
to be something different (RHIC and the first evidence for new physics from LHC [53] ).

An encouraring sign comes from the observation that for so called massless extremals representing
classically arbitrarily shaped pulses of radiation propagating without dissipation and dispersion along
single direction the canonical momentum currents are light-like. The effective contravariant metric
vanishes identically so that fermions cannot propate in the interior of massless extremals! This is
of course the case also for vacuum extremals. Massless extremals are purely bosonic and represent
bosonic radiation. Many-sheeted space-time decomposes into matter containing regions and radiation
containing regions. Note that when wormhole contact (particle) is glued to a massless extremal, it is
deformed so that CP2 projection becomes 4-D guaranteing that the weak form of electric magnetic
duality can be satisfied. Therefore massless extremals can be seen as asymptotic regions. Perhaps one
could say that dissipation corresponds to a decoherence process creating space-time sheets consisting
of matter and radiation. Those containing matter might be even seen as analogs blackholes as far as
energy metric is considered.

Preferred extremals as perfect fluids

Almost perfect fluids seems to be abundant in Nature. For instance, QCD plasma was originally
thought to behave like gas and therefore have a rather high viscosity to entropy density ratio x = η/s.
Already RHIC found that it however behaves like almost perfect fluid with x near to the minimum
predicted by AdS/CFT. The findings from LHC gave additional conform the discovery [16]. Also Fermi
gas is predicted on basis of experimental observations to have at low temperatures a low viscosity
roughly 5-6 times the minimal value [11] . In the following the argument that the preferred extremals
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of Kähler action are perfect fluids apart from the symmetry breaking to space-time sheets is developed.
The argument requires some basic formulas summarized first.

The detailed definition of the viscous part of the stress energy tensor linear in velocity (oddness
in velocity relates directly to second law) can be found in [4] .

1. The symmetric part of the gradient of velocity gives the viscous part of the stress-energy tensor
as a tensor linear in velocity. Velocity gardient decomposes to a term traceless tensor term and
a term reducing to scalar.

∂ivj + ∂jvi =
2

3
∂kv

kgij + (∂ivj + ∂jvi −
2

3
∂kv

kgij) . (15.5.1)

The viscous contribution to stress tensor is given in terms of this decomposition as

σvisc;ij = ζ∂kv
kgij + η(∂ivj + ∂jvi −

2

3
∂kv

kgij) . (15.5.2)

From dF i = T ijSj it is clear that bulk viscosity ζ gives to energy momentum tensor a pressure
like contribution having interpretation in terms of friction opposing. Shear viscosity η corre-
sponds to the traceless part of the velocity gradient often called just viscosity. This contribution
to the stress tensor is non-diagonal and corresponds to momentum transfer in directions not
parallel to momentum and makes the flow rotational. This termm is essential for the thermal
conduction and thermal conductivity vanishes for ideal fluids.

2. The 3-D total stress tensor can be written as

σij = ρvivj − pgij + σvisc;ij . (15.5.3)

The generalization to a 4-D relativistic situation is simple. One just adds terms corresponding
to energy density and energy flow to obtain

Tαβ = (ρ− p)uαuβ + pgαβ − σαβvisc . (15.5.4)

Here uα denotes the local four-velocity satisfying uαuα = 1. The sign factors relate to the
concentions in the definition of Minkowski metric ((1,−1,−1,−1)).

3. If the flow is such that the flow parameters associated with the flow lines integrate to a global
flow parameter one can identify new time coordinate t as this flow parametger. This means a
transition to a coordinate system in which fluid is at rest everywhere (comoving coordinates in
cosmology) so that energy momentum tensor reduces to a diagonal term plus viscous term.

Tαβ = (ρ− p)gttδαt δ
β
t + pgαβ − σαβvisc . (15.5.5)

In this case the vanishing of the viscous term means that one has perfect fluid in strong sense.

The existence of a global flow parameter means that one has

vi = Ψ∂iΦ . (15.5.6)

Ψ and Φ depend on space-time point. The proportionality to a gradient of scalar Φ implies that
Φ can be taken as a global time coordinate. If this condition is not satisfied, the perfect fluid
property makes sense only locally.
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AdS/CFT correspondence allows to deduce a lower limit for the coefficient of shear viscosity as

x =
η

s
≥ ~

4π
. (15.5.7)

This formula holds true in units in which one has kB = 1 so that temperature has unit of energy.
What makes this interesting from TGD view is that in TGD framework perfect fluid property in

approriately generalized sense indeed characterizes locally the preferred extremals of Kähler action
defining space-time surface.

1. Kähler action is Maxwell action with U(1) gauge field replaced with the projection of CP2

Kähler form so that the four CP2 coordinates become the dynamical variables at QFT limit.
This means enormous reduction in the number of degrees of freedom as compared to the ordinary
unifications. The field equations for Kähler action define the dynamics of space-time surfaces
and this dynamics reduces to conservation laws for the currents assignable to isometries. This
means that the system has a hydrodynamic interpretation. This is a considerable difference to
ordinary Maxwell equations. Notice however that the ”topological” half of Maxwell’s equations
(Faraday’s induction law and the statement that no non-topological magnetic are possible) is
satisfied.

2. Even more, the resulting hydrodynamical system allows an interpretation in terms of a perfect
fluid. The general ansatz for the preferred extremals of field equations assumes that various
conserved currents are proportional to a vector field characterized by so called Beltrami property.
The coefficient of proportionality depends on space-time point and the conserved current in
question. Beltrami fields by definition is a vector field such that the time parameters assignable
to its flow lines integrate to single global coordinate. This is highly non-trivial and one of the
implications is almost topological QFT property due to the fact that Kähler action reduces to a
boundary term assignable to wormhole throats which are light-like 3-surfaces at the boundaries
of regions of space-time with Euclidian and Minkowskian signatures. The Euclidian regions
(or wormhole throats, depends on one’s tastes ) define what I identify as generalized Feynman
diagrams.

Beltrami property means that if the time coordinate for a space-time sheet is chosen to be this
global flow parameter, all conserved currents have only time component. In TGD framework
energy momentum tensor is replaced with a collection of conserved currents assignable to various
isometries and the analog of energy momentum tensor complex constructed in this manner has no
counterparts of non-diagonal components. Hence the preferred extremals allow an interpretation
in terms of perfect fluid without any viscosity.

This argument justifies the expectation that TGD Universe is characterized by the presence of
low-viscosity fluids. Real fluids of course have a non-vanishing albeit small value of x. What causes
the failure of the exact perfect fluid property?

1. Many-sheetedness of the space-time is the underlying reason. Space-time surface decomposes
into finite-sized space-time sheets containing topologically condensed smaller space-time sheets
containing.... Only within given sheet perfect fluid property holds true and fails at wormhole
contacts and because the sheet has a finite size. As a consequence, the global flow parameter
exists only in given length and time scale. At imbedding space level and in zero energy ontology
the phrasing of the same would be in terms of hierarchy of causal diamonds (CDs).

2. The so called eddy viscosity is caused by eddies (vortices) of the flow. The space-time sheets glued
to a larger one are indeed analogous to eddies so that the reduction of viscosity to eddy viscosity
could make sense quite generally. Also the phase slippage phenomenon of super-conductivity
meaning that the total phase increment of the super-conducting order parameter is reduced by
a multiple of 2π in phase slippage so that the average velocity proportional to the increment
of the phase along the channel divided by the length of the channel is reduced by a quantized
amount.

The standard arrangement for measuring viscosity involves a lipid layer flowing along plane.
The velocity of flow with respect to the surface increases from v = 0 at the lower boundary to
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vupper at the upper boundary of the layer: this situation can be regarded as outcome of the
dissipation process and prevails as long as energy is feeded into the system. The reduction of
the velocity in direction orthogonal to the layer means that the flow becomes rotational during
dissipation leading to this stationary situation.

This suggests that the elementary building block of dissipation process corresponds to a gener-
ation of vortex identifiable as cylindrical space-time sheets parallel to the plane of the flow and
orthogonal to the velocity of flow and carrying quantized angular momentum. One expects that
vortices have a spectrum labelled by quantum numbers like energy and angular momentum so
that dissipation takes in discrete steps by the generation of vortices which transfer the energy
and angular momentum to environment and in this manner generate the velocity gradient.

3. The quantization of the parameter x is suggestive in this framework. If entropy density and
viscosity are both proportional to the density n of the eddies, the value of x would equal to
the ratio of the quanta of entropy and kinematic viscosity η/n for single eddy if all eddies are
identical. The quantum would be ~/4π in the units used and the suggestive interpretation is in
terms of the quantization of angular momentum. One of course expects a spectrum of eddies
so that this simple prediction should hold true only at temperatures for which the excitation
energies of vortices are above the thermal energy. The increase of the temperature would sug-
gest that gradually more and more vortices come into play and that the ratio increases in a
stepwise manner bringing in mind quantum Hall effect. In TGD Universe the value of ~ can be
large in some situations so that the quantal character of dissipation could become visible even
macroscopically. Whether this a situation with large ~ is encountered even in the case of QCD
plasma is an interesting question.

The following poor man’s argument tries to make the idea about quantization a little bit more
concrete.

1. The vortices transfer momentum parallel to the plane from the flow. Therefore they must have
momentum parallel to the flow given by the total cm momentum of the vortex. Before continuing
some notations are needed. Let the densities of vortices and absorbed vortices be n and nabs
respectively. Denote by v‖ resp. v⊥ the components of cm momenta parallel to the main flow
resp. perpendicular to the plane boundary plane. Let m be the mass of the vortex. Denote by
S are parallel to the boundary plane.

2. The flow of momentum component parallel to the main flow due to the absorbed at S is

nabsmv‖v⊥S .

This momentum flow must be equal to the viscous force

Fvisc = η
v‖

d
× S .

From this one obtains

η = nabsmv⊥d .

If the entropy density is due to the vortices, it equals apart from possible numerical factors to

s = n

so that one has

η

s
= mv⊥d .

This quantity should have lower bound x = ~/4π and perhaps even quantized in multiples of x,
Angular momentum quantization suggests strongly itself as origin of the quantization.
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3. Local momentum conservation requires that the comoving vortices are created in pairs with
opposite momenta and thus propagating with opposite velocities v⊥. Only one half of vortices
is absorbed so that one has nabs = n/2. Vortex has quantized angular momentum associated
with its internal rotation. Angular momentum is generated to the flow since the vortices flowing
downwards are absorbed at the boundary surface.

Suppose that the distance of their center of mass lines parallel to plane is D = εd, ε a numerical
constant not too far from unity. The vortices of the pair moving in opposite direction have
same angular momentum mv D/2 relative to their center of mass line between them. Angular
momentum conservation requires that the sum these relative angular momenta cancels the sum
of the angular momenta associated with the vortices themselves. Quantization for the total
angular momentum for the pair of vortices gives

η

s
=
n~
ε

Quantization condition would give

ε = 4π .

One should understand why D = 4πd - four times the circumference for the largest circle
contained by the boundary layer- should define the minimal distance between the vortices of the
pair. This distance is larger than the distance d for maximally sized vortices of radius d/2 just
touching. This distance obviously increases as the thickness of the boundary layer increasess
suggesting that also the radius of the vortices scales like d.

4. One cannot of course take this detailed model too literally. What is however remarkable that
quantization of angular momentum and dissipation mechanism based on vortices identified as
space-time sheets indeed could explain why the lower bound for the ratio η/s is so small.

Is the effective metric one- or two-dimensional?

The following argument suggests that the effective metric defined by the anti-commutators of the
modified gamma matrices is effectively one- or two-dimensional. Effective one-dimensionality would
conform with the observation that the solutions of the modified Dirac equations can be localized
to one-dimensional world lines in accordance with the vision that finite measurement resolution im-
plies discretization reducing partonic many-particle states to quantum superpositions of braids. This
localization to 1-D curves occurs always at the 3-D orbits of the partonic 2-surfaces.

The argument is based on the following assumptions.

1. The modified gamma matrices for Kähler action are contractions of the canonical momentum
densities Tαk with the gamma matrices of H.

2. The strongest assumption is that the isometry currents

JAα = Tαk j
Ak

for the preferred extremals of Kähler action are of form

JAα = ΨA(∇Φ)α (15.5.8)

with a common function Φ guaranteeing that the flow lines of the currents integrate to coordinate
lines of single global coordinate variables (Beltrami property). Index raising is carried out by
using the ordinary induced metric.
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3. A weaker assumption is that one has two functions Φ1 and Φ2 assignable to the isometry currents
of M4 and CP2 respectively.:

JAα1 = ΨA
1 (∇Φ1)α ,

JAα2 = ΨA
2 (∇Φ2)α . (15.5.9)

The two functions Φ1 and Φ2 could define dual light-like curves spanning string world sheet. In
this case one would have effective 2-dimensionality and decomposition to string world sheets [42]
. Isometry invariance does not allow more that two independent scalar functions Φi.

Consider now the argument.

1. One can multiply both sides of this equation with jAk and sum over the index A labeling isometry
currents for translations of M4 and SU(3) currents for CP2. The tensor quantity

∑
A j

AkjAl is
invariant under isometries and must therefore satisfy

∑
A

ηABj
AkjAl = hkl , (15.5.10)

where ηAB denotes the flat tangent space metric of H. In M4 degrees of freedom this statement
becomes obvious by using linear Minkowski coordinates. In the case of CP2 one can first consider
the simpler case S2 = CP1 = SU(2)/U(1). The coset space property implies in standard complex
coordinate transforming linearly under U(1) that only the the isometry currents belonging to
the complement of U(1) in the sum contribute at the origin and the identity holds true at the
origin and by the symmetric space property everywhere. Identity can be verified also directly
in standard spherical coordinates. The argument generalizes to the case of CP2 = SU(3)/U(2)
in an obvious manner.

2. In the most general case one obtains

Tαk1 =
∑
A

ΨA
1 j

Ak × (∇Φ1)α ≡ fk1 (∇Φ1)α ,

Tαk2 =
∑
A

ΨA
1 j

Ak × (∇Φ2)α ≡ fk2 (∇Φ2)α . (15.5.11)

3. The effective metric given by the anti-commutator of the modified gamma matrices is in turn is
given by

Gαβ = mklf
k
1 f

l
1(∇Φ1)α(∇Φ1)β + sklf

k
2 f

l
2(∇Φ2)α(∇Φ2)β . (15.5.12)

The covariant form of the effective metric is effectively 1-dimensional for Φ1 = Φ2 in the sense
that the only non-vanishing component of the covariant metric Gαβ is diagonal component
along the coordinate line defined by Φ ≡ Φ1 = Φ2. Also the contravariant metric is effectively
1-dimensional since the index raising does not affect the rank of the tensor but depends on the
other space-time coordinates. This would correspond to an effective reduction to a dynamics
of point-like particles for given selection of braid points. For Φ1 6= Φ2 the metric is effectively
2-dimensional and would correspond to stringy dynamics.
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15.6 The role of twistors in quantum TGD

15.6.1 Could the Grassmannian program be realized in TGD framework?

In the following the TGD based modification of the approach based on zero energy ontology is discussed
in some detail. It is found that pseudo-momenta are very much analogous to region momenta and
the approach leading to discretization of pseudo-mass squared for virtual particles - and even the
discretization of pseudo-momenta - is consistent with the Grassmannian approach in the simple case
considered and allow to get rid of IR divergences. Also the possibility that the number of generalized
Feynman diagrams contributing to a given scattering amplitude is finite so that the recursion formula
for the scattering amplitudes would involve only a finite number of steps (maximum number of loops) is
considered. One especially promising feature of the residue integral approach with discretized pseudo-
momenta is that it makes sense also in the p-adic context in the simple special case discussed since
residue integral reduces to momentum integral (summation) and lower-dimensional residue integral.

What Yangian symmetry could mean in TGD framework?

The loss of the Yangian symmetry in the integrations over the region momenta xa (pa = xa+1 − xa)
assigned to virtual momenta seems to be responsible for many ugly features. It is basically the source
of IR divergences regulated by ”moving out on the Coulomb branch theory” so that IR singularities
remain the problem of the theory. This raises the question whether the loss of Yangian symmetry is the
signature for the failure of QFT approach and whether the restriction of loop momentum integrations
to avoid both kind of divergences might be a royal road beyond QFT. In TGD framework zero energy
ontology indeed leads to to a concrete proposal based on the vision that virtual particles are something
genuinely real.

The detailed picture is of course far from clear but to get an idea about what is involved one can
look what kind of assumptions are needed if one wants to realize the dream that only a finite number
of generalized Feynman diagrams contribute to a scattering amplitude which is Yangian invariant
allowing a description using a generalization of the Grassmannian integrals.

1. Assume the bosonic emergence and its super-symmetric generalization holds true. This means
that incoming and outgoing states are bound states of massless fermions assignable to wormhole
throats but the fermions can opposite directions of three-momenta making them massive. In-
coming and outgoing particles would consist of fermions associated with wormhole throats and
would be characterized by a pair of twistors in the general situation and in general massive. This
allows also string like mass squared spectrum for bound states having fermion and antifermion
at the ends of the string as well as more general n-particle bound states. Hence one can speak
also about the emergence of string like objects. For virtual particles the fermions would be mas-
sive and have discrete mass spectrum. Also super partners containing several collinear fermions
and antifermions at a given throat are possible. Collinearity is required by the generalization of
SUSY. The construction of these states bring strongly in mind the merge procedure involving
the replacement Zn+1 → Zn.

2. The basic question is how the momentum twistor diagrams and the ordinary Feynman diagrams
behind them are related to the generalized Feynman diagrams.

(a) It is good to start from a common problem. In momentum twistor approach the relationship
of region momenta to physical momenta remains somewhat mysterious. In TGD framework
in turn the relationship of pseudo-momenta identified as generalized eigenvalues of the
Chern-Simons Dirac operator at the lines of Feynman diagram (light-like wormhole throats)
to the physical momenta has remained unclear. The identification of the pseudo-momentum
as the TGD counterpart of the region momentum x looks therefore like a natural first guess.

(b) The identification xa+1 − xa = pa with pa representing light-like physical four-momentum
generalizes in obvious manner. Also the identification of the light-like momentum of the
external parton as pseudo-momentum looks natural. What is important is that this does
not require the identification of the pseudo-momenta propagating along internal lines of
generalized Feynman diagram as actual physical momenta since pseudo-momentum just
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like x is fixed only apart from an overall shift. The identification allows the physical four-
momenta associated with the wormhole throats to be always on mass shell and massless:
if the sign of the physical energy can be also negative space-like momentum exchanges
become possible.

(c) The pseudo-momenta and light-like physical massless momenta at the lines of generalized
Feynman diagrams on one hand, and region momenta and the light-like momenta associ-
ated with the collinear singularities on the other hand would be in very similar mutual
relationship. Partonic 2-surfaces can carry large number of collinear light-like fermions
and bosons since super-symmetry is extended. Generalized Feynman diagrams would be
analogous to momentum twistor diagrams if this picture is correct and one could hope that
the recursion relations of the momentum twistor approach generalize.

3. The discrete mass spectrum for pseudo-momentum would in the momentum twistor approach
mean the restriction of x to discrete mass shells, and the obvious reason for worry is that this
might spoil the Grassmannian approach relying heavily on residue integrals and making sense
also p-adically. It seems however that there is no need to worry. In [25] the M6,4,l=0(1234AB)
the integration over twistor variables zA and zB using ”entangled” integration contour leads to
1-loop MHV amplitude NpMHV , p = 1. The parametrization of the integration contour is zA =
(λA, xλA), zB = (λB , xλB), where x is the M4 coordinate representing the loop momentum.
This boils down to an integral over CP1×CP1×M4 [25] . The integrals over spheres CP1s are
contour integrals so that only an ordinary integral over M4 remains. The reduction to this kind
of sums occurs completely generally thanks to the recursion formula.

4. The obvious implication of the restriction of the pseudo-momenta x on massive mass shells is
the absence of IR divergences and one might hope that under suitable assumptions one achieves
Yangian invariance. The first question is of course whether the required restriction of x to mass
shells in zA and zB or possibly even algebraic discretization of momenta is consistent with the
Yangian invariance. This seems to be the case: the integration contour reduces to entangled
integration contour in CP1 × CP1 not affected by the discretization and the resulting loop
integral differs from the standard one by the discretization of masses and possibly also momenta
with massless states excluded. Whether Yangian invariance poses also conditions on mass and
momentum spectrum is an interesting question.

5. One can consider also the possibility that the incoming and outgoing particles - in general
massive and to be distinguished from massless fermions appearing as their building blocks- have
actually small masses presumably related to the IR cutoff defined by the size scale of the largest
causal diamond involved. p-Adic thermodynamics could be responsible for this mass. Also
the binding of the wormhole throats can give rise to a small contribution to vacuum conformal
weight possibly responsible for gauge boson masses. This would imply that a given n-particle
state can decay to N-particle states for which N is below some limit. The fermions inside loops
would be also massive. This allows to circumvent the IR singularities due to integration over
the phase space of the final states (say in Coulomb scattering).

6. The representation of the off mass shell particles as pairs of wormhole throats with non-parallel
four-momenta (in the simplest case only the three-momenta need be in opposite directions) makes
sense and that the particles in question are on mass shell with mass squared being proportional
to inverse of a prime number as the number theoretic vision applied to the modified Dirac
equation suggests. On mass shell property poses extremely powerful constraints on loops and
when the number of the incoming momenta in the loop increases, the number of constraints
becomes larger than the number of components of loop momentum for the generic values of the
external momenta. Therefore there are excellent hopes of getting rid of UV divergences.

A stronger assumption encouraged by the classical space-time picture about virtual particles is
that the 3-momenta associated with throats of the same wormhole contact are always in same
or opposite directions. Even this allows to have virtual momentum spectrum and non-trivial
mass spectrum for them assuming that the three momenta are opposite.

7. The best that one can hope is that only a finite number of generalized Feynman diagrams con-
tributes to a given reaction. This would guarantee that amplitudes belong to a finite-dimensional
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algebraic extension of rational functions with rational coefficients since finite sums do not lead
out from a finite algebraic extension of rationals. The first problem are self energy corrections.
The assumption tht the mass non-renormalization theorems of SUSYs generalize to TGD frame-
work would guarantee that the loops contributing to fermionic propagators (and their super-
counterparts) do not affect them. Also the iteration of more complex amplitudes as analogs of
ladder diagrams representing sequences of reactions M →M1 →M2 · · · .→ N such that at each
Mn in the sequence can appear as on mass shell state could give a non-vanishing contribution
to the scattering amplitude and would mean infinite number of Feynman diagrams unless these
amplitudes vanish. If N appears as a virtual state the fermions must be however massive on
mass shell fermions by the assumption about on-mass shell states and one can indeed imagine
a situation in which the decay M → N is possible when N consists of states made of massless
fermions is possible but not when the fermions have non-vanishing masses. This situation seems
to be consistent with unitarity. The implication would be that the recursion formula for the all
loop amplitudes for a given reaction would give vanishing result for some critical value of loops.

Already these assumptions give good hopes about a generalization of the momentum Grassmann
approach to TGD framework. Twistors are doubled as are also the Grassmann variables and there are
wave functions correlating the momenta of the the fermions associated with the opposite wormhole
throats of the virtual particles as well as incoming gauge bosons which have suffered massivation. Also
wave functions correlating the massless momenta at the ends of string like objects and more general
many parton states are involved but do not affect the basic twistor formalism. The basic question is
whether the hypothesis of unbroken Yangian symmetry could in fact imply something resembling this
picture. The possibility to discretize integration contours without losing the representation as residue
integral quite generally is basic prerequisite for this and should be shown to be true.

How to achieve Yangian invariance without trivial scattering amplitudes?

In N = 4 SYM the Yangian invariance implies that the MHV amplitudes are constant as demon-
strated in [25] . This would mean that the loop contributions to the scattering amplitudes are trivial.
Therefore the breaking of the dual super-conformal invariance by IR singularities of the integrand is
absolutely essential for the non-triviality of the theory. Could the situation be different in TGD frame-
work? Could it be possible to have non-trivial scattering amplitudes which are Yangian invariants.
Maybe! The following heuristic argument is formulated in the language of super-twistors.

1. The dual conformal super generators of the super-Lie algebra U(2, 2) acting as super vector fields
reducing effectively to the general form J = ηKa ∂/∂Z

J
a and the condition that they annihilate

scattering amplitudes implies that they are constant as functions of twistor variables. When
particles are replaced with pairs of wormhole throats the super generators are replaced by sums
J1 +J2 of these generators for the two wormhole throats and it might be possible to achieve the
condition

(J1 + J2)M = 0 (15.6.1)

with a non-trivial dependence on the momenta if the super-components of the twistors associated
with the wormhole throats are in a linear relationship. This should be the case for bound states.

2. This kind of condition indeed exists. The condition that the sum of the super-momenta expressed
in terms of super-spinors λ reduces to the sum of real momenta alone is not usually posed but
in the recent case it makes sense as an additional condition to the super-components of the
the spinors λ associated with the bound state. This quadratic condition is exactly of the same
general form as the one following from the requirement that the sum of all external momenta
vanishes for scattering amplitude and reads as

X = λ1η1 + λ2η2 = 0 . (15.6.2)
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The action of the generators η1∂λ1 +η2∂λ2 forming basic building blocks of the super generators
on p1 + p2 = λ1λ̃1 + λ2λ̃2 appearing as argument in the scattering amplitude in the case of
bound states gives just the quantity X, which vanishes so that one has super-symmetry. The
generalization of this condition to n-parton bound state is obvious.

3. The argument does not apply to free fermions which have not suffered topological condensation
and are therefore represented by CP2 type vacuum extremal with single wormhole throat. If one
accepts the weak form of electric-magnetic duality, one can circumvent this difficulty. The free
fermions carry Kähler magnetic charge whereas physical fermions are accompanied by a bosonic
wormhole throat carrying opposite Kähler magnetic charge and opposite electroweak isospin so
that a ground state of string like object with size of order electroweak length scale is in question.
In the case of quarks the Kähler magnetic charges need not be opposite since color confinement
could involve Kähler magnetic confinement: electro-weak confinement holds however true also
now. The above argument generalizes as such to the pairs formed by wormhole throats at the
ends of string like object. One can of course imagine also more complex hybrids of these basic
options but the general idea remains the same.

Note that the argument involves in an essential manner non-locality , which is indeed the defining
property of the Yangian algebra and also the fact that physical particles are bound states. The
massivation of the physical particles brings in the IR cutoff.

Number theoretical constraints on the pseudo-momenta

One can consider also further assumptions motivated by the recent view about the generalized eigen-
values of Chern-Simons Dirac operator having interpretation as pseudo-momentum. The details of
this view need not of course be final.

1. Assume that the pseudo-momentum assigned to fermion lines by the modified Dirac equation [31]
is the counterpart of region momentum as already explained and therefore does not directly cor-
respond to the actual light-like four-momentum associated with partonic line of the generalized
Feynman diagram. This assumption conforms with the assumption that incoming particles are
built out of massless partonic fermions. It also implies that the propagators are massless propa-
gators as required by twistorialization and Yangian generalization of super-conformal invariance.

2. Since (pseudo)-mass squared is number theoretically quantized as the length of a hyper-complex
prime in preferred plane M2 of pseudo-momentum space fermionic propagators are massless
propagators with pseudo-masses restricted on discrete mass shells. Lorentz invariance suggests
that M2 cannot be common to all particles but corresponds to preferred reference frame for the
virtual particle having interpretation as plane spanned by the quantization axes of energy and
spin.

3. Hyper-complex primeness means also the quantization of pseudo-momentum components so that
one has hyper-complex primes of form ±((p + 1)/2,±(p − 1)/1) corresponding to pseudo-mass
squared M2 = p and hypercomplex primes ±(p, 0) with pseudo-mass squared M2 = p2. Space-
like fermionic momenta are not needed since for opposite signs of energy wormhole throats can
have space-like net momenta. If space-like pseudo-momenta are allowed/needed for some reason,
they could correspond to space-like hyper-complex primes ±((p−1)/2,±(p+1)/1) and ±(0, p) so
that one would obtain also discretization of space-like mass shells also. The number theoretical
mass squared is proportional to p, whereas p-adic mass squared is proportional to 1/p. For
p-adic mass calculations canonical identification

∑
xnp

n maps p-adic mass squared to its real
counterpart. The simplest mapping consistent with this would be (p0, p1) → (p0, p1)/p. This
could be assumed from the beginning in real context and would mean that the mass squared
scale is proportional to 1/p.

4. Lorentz invariance requires that the preferred coordinate system in which this holds must be
analogous to the rest system of the virtual fermion and thus depends on the virtual particle.
In accordance with the general vision discussed in [31] Lorentz invariance could correspond to
a discrete algebraic subgroup of Lorentz group spanned by transformation matrices expressible
in terms of roots of unity. This would give a discrete version of mass shell and the preferred
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coordinate system would have a precise meaning also in the real context. Unless one allows
algebraic extension of p-adic numbers p-adic mass shell reduces to the set of above number-
theoretic momenta. For algebraic extensions of p-adic numbers the same algebraic mass shell
is obtained as in real correspondence and is essential for the number theoretic universality.
The interpretation for the algebraic discretization would be in terms of a finite measurement
resolution. In real context this would mean discretization inducing a decomposition of the
mass shell to cells. In the p-adic context each discrete point would be replaced with a p-adic
continuum. As far as loop integrals are considered, this vision means that they make sense
in both real and p-adic context and reduce to summations in p-adic context. This picture is
discussed in detail in [31] .

5. Concerning p-adicization the beautiful aspect of residue integral is that it makes sense also in
p-adic context provided one can circumvent the problems related to the identification of p-adic
counterpart of π requiring infinite-dimensional transcendental extension coming in powers of
π. Together with the discretization of both real and virtual four-momenta this would allow to
define also p-adic variants of the scattering amplitudes.

Could recursion formula allow interpretation in terms of zero energy ontology?

The identification of pseudo-momentum as a counterpart of region momentum suggests that general-
ized Feynman diagrams could be seen as a generalization of momentum twistor diagrams. Of course,
the generalization from N = 4 SYM to TGD is an enormous step in complexity and one must take all
proposals in the following with a big grain of salt. For instance, the replacement of point-like particles
with wormhole throats and the decomposition of gauge bosons to pairs of wormhole throats means
that naive generalizations are dangerous.

With this in firmly in mind one can ask whether the recursion formula could allow interpretation
in terms of zero energy states assigned to causal diamonds (CDs) containing CDs containing · · · . In
this framework loops could be assigned with sub-CDs.

The interpretation of the leading order singularities forming the basic building blocks of the twistor
approach in zero ontology is the basic source of questions. Before posing these questions recall the
basic proposal that partonic fermions are massless but opposite signs of energy are posssible for the
opposite throats of wormhole contacts. Partons would be on mass shell but besides physical states
identified as bound states formed from partons also more general intermediate states would be possible
but restricted by momentum conservation and mass shell conditions for partons at vertices. Consider
now the questions.

1. Suppose that the massivation of virtual fermions and their super partners allows only ladder
diagrams in which the intermediate states contain on mass shell massless states. Should one
allow this kind of ladder diagrams? Can one identify them in terms of leading order singu-
larities? Could one construct the generalized Feynman diagrams from Yangian invariant tree
diagrams associated with the hierarchy of sub-CDs and using BCFW bridges and entangled
pairs of massless states having interpretation as box diagrams with on mass shell momenta at
microscopic level? Could it make sense to say that scattering amplitudes are represented by tree
diagrams inside CDs in various scales and that the fermionic momenta associated with throats
and emerging from sub-CDs are always massless?

2. Could BCFW bridge generalizes as such and could the interpretation of BCFW bridge be in
terms of a scattering in which the four on mass shell massless partonic states (partonic throats
have arbitrary fermion number) are exchanged between four sub-CDs. This admittedly looks
somewhat artificial.

3. Could the addition of 2-particle zero energy state responsible for addition of loop in the recursion
relations and having interpretation in terms of the cutting of line carrying loop momentum
correspond to an addition of sub-CD such that the 2-particle zero energy state has its positive
and negative energy part on its past and future boundaries? Could this mean that one cuts a
propagator line by adding CD and leaves only the portion of the line within CD. Could the
reverse operation mean to the addition of zero energy ”thermally entangled” states in shorter
time and length scales and assignable as a zero energy state to a sub-CD. Could one interpret
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the Cutkosky rule for propagator line in terms of this cutting or its reversal. Why only pairs
would be needed in the recursion formula? Why not more general states? Does the recursion
formula imply that they are included? Does this relate to the fact that these zero energy states
have interpretation as single particle states in the positive energy ontology and that the basic
building block of Feynman diagrams is single particle state? Could one regard the unitarity as
an identity which states that the discontinuity of T-matrix characterizing zero energy state over
cut is expressible in terms of TT † and T matrix is the relevant quantity?

Maybe it is again dangerous to try to draw too detailed correspondences: after all, point like
particles are replaced by partonic two-surfaces in TGD framework.

4. If I have understood correctly the genuine l-loop term results from l − 1-loop term by the
addition of the zero energy pair and integration over GL(2) as a representative of loop integral
reducing n + 2 to n and calculating the added loop at the same time [25] . The integrations
over the two momentum twistor variables associated with a line in twistor space defining off
mass shell four-momentum and integration over the lines represent the integration over loop
momentum. The reduction to GL(2) integration should result from the delta functions relating
the additional momenta to GL(2) variables (note that GL(2) performs linear transformations in
the space spanned by the twistors ZA and ZB and means integral over the positions of ZA an
ZB). The resulting object is formally Yangian invariant but IR divergences along some contours
of integration breaks Yangian symmetry.

The question is what happens in TGD framework. The previous arguments suggests that the
reduction of the the loop momentum integral to integrals over discrete mass shells and possibly
to a sum over their discrete subsets does not spoil the reduction to contour integrals for loop
integrals in the example considered in [25] . Furthermore, the replacement of mass continuum
with a discrete set of mass shells should eliminate IR divergences and might allow to preserve
Yangian symmetry. One can however wonder whether the loop corrections with on mass shell
massless fermions are needed. If so, one would have at most finite number of loop diagrams with
on mass shell fermionic momenta and one of the TGD inspired dreams already forgotten would
be realized.

What about unitarity?

The approach of Arkani-Hamed and collaborators means that loop integral over four-momenta are
replaced with residue integrals around a small sphere p2 = ε. This is very much reminiscent of my
own proposal for a few years ago based on the idea that the condition of twistorialization forces to
accept only massless virtual states [96, 65] . I of course soon gave up this proposal as too childish.

This idea seems to however make a comeback in a modified form. At this time one would have
only massive and quantized pseudo-momenta located at discrete mass shells. Can this picture be
consistent with unitarity?

Before trying to answer this question one must make clear what one could assume in TGD frame-
work.

1. Physical particles are in the general case massive and consist of collinear fermions at wormhole
throats. External partons at wormhole throats must be massless to allow twistorial interpreta-
tion. Therefore massive states emerge. This applies also to stringy states.

2. The simplest assumption generalizing the childish idea is that on mass shell massless states for
partons appear as both virtual particles and external particles. Space-like virtual momentum
exchanges are possible if the virtual particles can consist of pairs of positive and negative energy
fermions at opposite wormhole throats. Hence also partons at internal lines should be massless
and this raises the question about the identification of propagators.

3. Generalized eigenvalue equation for Chern-Simons Dirac operator implies that virtual elementary
fermions have massive and quantized pseudo-momenta whereas external elementary fermions are
massless. The massive pseudo-momentum assigned with the Dirac propagator of a parton line
cannot be identified with the massless real momentum assigned with the fermionic propagator
line. The region momenta introduced in Grassmannian approach are something analogous.
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As already explained, this brings in mind is the identification of this pseudo momentum as
the counterpart of the region momentum of momentum twistor diagrams so that the external
massless fermionic momenta would be differences of the pseudo-momenta. Indeed, since region
momenta are determined apart from a common shift, they need not correspond to real mo-
menta. Same applies to pseudo-momenta and one could assume that both internal and external
fermion lines carry light-like pseudo-momenta and that external pseudo-momenta are equal to
real momenta.

4. This picture has natural correspondence with twistor diagrams. For instance, the region momen-
tum appearing in BCFW bridge defining effective propagator is in general massive although the
underlying Feynman diagram would contain online massless momenta. In TGD framework mass-
less lines of Feynman graphs associated with singularities would correspond to real momenta of
massless fermions at wormhole throats. Also other canonical operations for Yangian invariants
involve light-like momenta at the level of Feynman diagrams and would in TGD framework have
a natural identification in terms of partonic momenta. Hence partonic picture would provide a
microscopic description for the lines of twistor diagrams.

Let us assume being virtual particle means only that the discretized pseudo-momentum is on shell
but massive whereas all real momenta of partons are light-like, and that negative partonic energies are
possible. Can one formulate Cutkosky rules for unitarity in this framework? What could the unitarity
condition

iDisc(T − T †) = −TT †

mean now? In particular, are the cuts associated with mass shells of physical particles or with mass
shells of pseudo-momenta? Could these two assignments be equivalent?

1. The restriction of the partons to be massless but having both signs of energy means that the
spectrum of intermediate states contains more states than the external states identified as bound
states of partons with the same sign of energy. Therefore the summation over intermediate states
does not reduce to a mere summation over physical states but involves a summation over states
formed from massless partons with both signs of energy so that also space-like momentum
exchanges become possible.

2. The understanding of the unitarity conditions in terms of Cutkosky rules would require that
the cuts of the loop integrands correspond to mass shells for the virtual states which are also
physical states. Therefore real momenta have a definite sign and should be massless. Besides
this bound state conditions guaranteeing that the mass spectrum for physical states is discrete
must be assumed. With these assumptions the unitary cuts would not be assigned with the
partonic light-cones but with the mass shells associated of physical particles.

3. There is however a problem. The pseudo-momenta of partons associated with the external
partons are assumed to be light-like and equal to the physical momenta.

(a) If this holds true also for the intermediate physical states appearing in the unitarity con-
ditions, the pseudo-momenta at the cuts are light-like and cuts must be assigned with
pseudo-momentum light-cones. This could bring in IR singularities and spoil Yangian
symmetry. The formation of bound states could eliminate them and the size scale of the
largest CD involved would bring in a natural IR cutoff as the mass scale of the lightest
particle. This assumption would however force to give up the assumption that only massive
pseudo-momenta appear at the lines of the generalized Feynman diagrams.

(b) On the other hand, if pseudo-momenta are not regarded as a property of physical state and
are thus allowed to be massive for the real intermediate states in Cutkosky rules, the cuts
at parton level correspond to on mass shell hyperboloids and IR divergences are absent.

15.6.2 Could TGD alllow formulation in terms of twistors

There are many questions to be asked. There would be in-numerable questions upwelling from my
very incomplete understanding of the technical issues. In the following I restrict only to the questions
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which relate to the relationship of TGD approach to Witten’s twistor string approach [82] and M-
theory like frameworks. The arguments lead to an explicit proposal how the preferred extremals of
Kähler action could correspond to holomorphic 4-surfaces in CP3×CP3. The basic motivation for this
proposal comes from the observation that Kähler action is Maxwell action for the induced Kähler form
and metric. Hence Penrose’s original twistorial representation for the solutions of linear Maxwell’s
equations could have a generalization to TGD framework.

M4 × CP2 from twistor approach

The first question which comes to mind relates to the origin of the Grassmannians. Do they have
some deeper interpretation in TGD context. In twistor string theory Grassmannians relate to the
moduli spaces of holomorphic surfaces defined by string world sheets in twistor space. Could partonic
2-surfaces have analogous interpretation and could one assign Grassmannians to their moduli spaces?
If so, one could have rather direct connection with topological QFT defining twistor strings [82] and
the almost topological QFT defining TGD. There are some hints to this direction which could be of
course seen as figments of a too wild imagination.

1. The geometry of CD brings strongly in mind Penrose diagram for the conformally compactified
Minkowski space [26], which indeed becomes CD when its points are replaced with spheres. This
would suggest the information theoretic idea about interaction between observer and externals
as a map in which M4 is mapped to its conformal compactification represented by CD. Com-
pactification means that the light-like points at the light-like boundaries of CD are identified
and the physical counterpart for this in TGD framework is conformal invariance along light-rays
along the boundaries of CD. The world of conscious observer for which CD is identified as a
geometric correlate would be conformally compactified M4 (plus CP2 or course).

2. Since the points of the conformally compactified M4 correspond to twistor pairs [56], which
are unique only apart from opposite complex scalings, it would be natural to assign twistor
space to CD and represent its points as pairs of twistors. This suggest an interpretation for
the basic formulas of Grassmannian approach involving integration over twistors. The incoming
and outgoing massless particles could be assigned at point-like limit light-like points at the
lower and upper boundaries of CD and the lifting of the points of the light-cone boundary at
partonic surfaces would give rise to the description in terms of ordinary twistors. The assumption
that massless collinear fermions at partonic 2-surfaces are the basic building blocks of physical
particles at partonic 2-surfaces defined as many particles states involving several partonic 2-
surfaces would lead naturally to momentum twistor description in which massless momenta and
described by twistors and virtual momenta in terms of twistor pairs. It is important to notice
that in TGD framework string like objects would emerge from these massless fermions.

3. Partonic 2-surfaces are located at the upper and lower light-like boundaries of the causal diamond
(CD) and carry energies of opposite sign in zero energy ontology. Quite generally, one can assign
to the point of the conformally compactified Minkowski space a twistor pair using the standard
description. The pair of twistors is determined apart from Gl(2) rotation. At the light-cone
boundary M4 points are are light-like so that the two spinors of the two twistors differ from
each other only by a complex scaling and single twistor is enough to characterize the space-time
point this degenerate situation. The components of the twistor are related by the well known
twistor equation µa

′
= −ixaa′λa. One can therefore lift each point of the partonic 2-surface

to single twistor determined apart from opposite complex scalings of µ and λ so that the lift
of the point would be 2-sphere. In the general case one must lift the point of CD to a twistor
pair. The degeneracy of the points is given by Gl(2) and each point corresponds to a 2-sphere
in projective twistor space.

4. The new observation is that one can understand also CP2 factor in twistor framework. The
basic observation about which I learned in [56] (giving also a nice description of basics of twistor
geometry) is that a pair (X,Y ) of twistors defines a point of CD on one hand and complex
2-planes of the dual twistor space -which is nothing but CP2- by the equations

XαW
α = 0 , YαW

α = 0 .
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The intersection of these planes is the complex line CP1 = S2. The action of G(2) on the
twistor pair affects the pair of surfaces CP2 determined by these equations since it transforms
the equations to their linear combination but not the the point of conformal CD resulting as
projection of the sphere. Therefore twistor pair defines both a point of M4 and assigns with it
pair of CP2:s represented as holomorphic surfaces of the projective dual twistor space. Hence
the union over twistor pairs defines M4×CP2 via this assignment if it is possible to choose ”the
other” CP2 in a unique manner for all points of M4. The situation is similar to the assignment
of a twistor to a point in the Grassmannian diagrams forming closed polygons with light-like
edges. In this case one assigns to the the ”region momenta” associated with the edge the twistor
at the either end of the edge. One possible interpretation is that the two CP2:s correspond to
the opposite ends of the CD. My humble hunch is that this observation might be something
very deep.

Recall that the assignment of CP2 to M4 point works also in another direction. M8−H duality
associates with so called hyper-quaternionic 4-surface of M8 allowing preferred hyper-complex
plane at each point 4-surfaces of M4 × CP2. The basic observation behind this duality is that
the hyper-quaternionic planes (copies of M4) with preferred choices of hyper-complex plane M2

are parameterized by points of CP2. One can therefore assign to a point of CP2 a copy of M4.
Maybe these both assignments indeed belong to the core of quantum TGD. There is also an
interesting analogy with Uncertainty Principle: complete localization in M4 implies maximal
uncertainty of the point in CP2 and vice versa.

Does twistor string theory generalize to TGD?

With this background the key speculative questions seem to be the following ones.

1. Could one relate twistor string theory to TGD framework? Partonic 2-surfaces at the boundaries
of CD are lifted to 4-D sphere bundles in twistor space. Could they serve as a 4-D counterpart
for Witten’s holomorphic twistor strings assigned to point like particles? Could these surfaces be
actually lifts of the holomorphic curves of twistor space replaced with the product CP3×CP2 to
4-D sphere bundles? If I have understood correctly, the Grassmannians G(n, k) can be assigned
to the moduli spaces of these holomorphic curves characterized by the degree of the polynomial
expressible in terms of genus, number of negative helicity gluons, and the number of loops for
twistor diagram.

Could one interpret G(n, k) as a moduli space for the δCD projections of n partonic 2-surfaces
to which k negative helicity gluons and n− k positive helicity gluons are assigned (or something
more complex when one considers more general particle states)? Could quantum numbers be
mapped to integer valued algebraic invariants? IF so, there would be a correlation between the
geometry of the partonic 2-surface and quantum numbers in accordance with quantum classical
correspondence.

2. Could one understand light-like orbits of partonic 2-surfaces and space-time surfaces in terms
of twistors? To each point of the 2-surface one can assign a 2-sphere in twistor space CP3 and
CP2 in its dual. These CP2s can be identified. One should be able to assign to each sphere S2

at least one point of corresponding CP2s associated with its points in the dual twistor space and
identified as single CP2 union of CP2:s in the dual twistor space a point of CP2 or even several
of them. One should be also able to continue this correspondence so that it applies to the light-
like orbit of the partonic 2-surface and to the space-time surface defining a preferred extremal
of Kähler action. For space-time sheets representable as graph of a map M4 → CP2 locally
one should select from a CP2 assigned with a particular point of the space-time sheet a unique
point of corresponding CP2 in a manner consistent with field equations. For surfaces with lower
dimensional M4 projection one must assign a continuum of points of CP2 to a given point of M4.
What kind equations-could allow to realize this assignment? Holomorphy is strongly favored also
by the number theoretic considerations since in this case one has hopes of performing integrals
using residue calculus.

(a) Could two holomorphic equations in CP3 × CP2 defining 6-D surfaces as sphere bundles
over M4 × CP2 characterize the preferred extremals of Kähler action? Could partonic 2-
surfaces be obtained by posing an additional holomorphic equation reducing twistors to null
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twistors and thus projecting to the boundaries of CD? A philosophical justification for this
conjecture comes from effective 2-dimensionality stating that partonic 2-surfaces plus their
4-D tangent space data code for physics. That the dynamics would reduce to holomorphy
would be an extremely beautiful result. Of course this is only an additional item in the list
of general conjectures about the classical dynamics for the preferred extremals of Kähler
action.

(b) One could also work in CP3 × CP3. The first CP3 would represent twistors endowed with
a metric conformally equivalent to that of M2,4 and having the covering of SU(2, 2) of
SO(2, 4) as isometries. The second CP3 defining its dual would have a metric consistent
with the Calabi-Yau structure (having holonomy group SU(3)). Also the induced metric
for canonically imbedded CP2s should be the standard metric of CP2 having SU(3) as its
isometries. In this situation the linear equations assigning to M4 points twistor pairs and
CP2 ⊂ CP3 as a complex plane would hold always true. Besides this two holomorphic
equations coding for the dynamics would be needed.

(c) The issues related to the induced metric are important. The conformal equivalence class
of M4 metric emerges from the 5-D light-cone of M2,4 under projective identification. The
choice of a proper projective gauge would select M4 metric locally. Twistors inherit the
conformal metric with signature (2, 4) form the metric of 4+4 component spinors with
metric having (4, 4) signature. One should be able to assign a conformal equivalence class
of Minkowski metric with the orbits of pairs of twistors modulo GL(2). The metric of
conformally compactified M4 would be obtained from this metric by dropping from the
line element the contribution to the S2 fiber associated with M4 point.

(d) Witten related [82] the degree d of the algebraic curve describing twistor string, its genus
g, the number k of negative helicity gluons, and the number l of loops by the following
formula

d = k − 1 + l , g ≤ l . (15.6.3)

One should generalize the definition of the genus so that it applies to 6-D surfaces. For
projective complex varieties of complex dimension n this definition indeed makes sense.
Algebraic genus [3] is expressible in terms of the dimensions of the spaces of closed holo-
morphic forms known as Hodge numbers hp,q as

g =
∑

(−1)n−khk,0 . (15.6.4)

The first guess is that the formula of Witten generalizes by replacing genus with its algebraic
counterpart . This requires that the allowed holomorphic surfaces are projective curves of
twistori space, that is described in terms of homogenous polynomials of the 4+4 projective
coordinates of CP3 × CP3.

What is the relationship of TGD to M-theory and F-theory?

There are also questions relating to the possible relationship to M-theory and F-theory.

1. Calabi-Yau-manifolds [6, 57] are central for the compactification in super string theory and
emerge from the condition that the super-symmetry breaks down to N = 1 SUSY. The dual
twistor space CP3 with Euclidian signature of metric is a Calabi-Yau manifold [82] . Could one
have in some sense two Calabi-Yaus! Twistorial CP3 can be interpreted as a four-fold covering
and conformal compactification of M2,4. I do not know whether Calabi-Yau property has a
generalization to the situation when Euclidian metric is replaced with a conformal equivalence
class of flat metrics with Minkowskian signature and thus having a vanishing Ricci tensor. As
far as differential forms (no dependence on metric) are considered there should be no problems.
Whether the replacement of the maximal holonomy group SU(3) with its non-compact version
SU(1, 2) makes sense is not clear to me.



1308 Chapter 15. Overall View About TGD from Particle Physics Perspective

2. The lift of the CD to projective twistor space would replace CD × CP2 with 10-dimensional
space which inspires the familiar questions about connection between TGD and M-theory. If
Calabi-Yau with a Minkowskian signature of metric makes sense then the Calabi-Yau of the
standard M-theory would be replaced with its Minkowskian counterpart! Could it really be
that M-theory like theory based on CP3 × CP2 reduces to TGD in CD × CP2 if an additional
symmetry mapping 2-spheres of CP3 to points of CD is assumed? Could the formulation based
on 12-D CP3×CP3 correspond to F-theory which also has two time-like dimensions. Of course,
the additional conditions defined by the maps to M4 and CP2 would remove the second time-like
dimension which is very difficult to justify on purely physical grounds.

3. One can actually challenge the assumption that the first CP3 should have a conformal metric
with signature (2, 4). Metric appears nowhere in the definition holomorphic functions and once
the projections to M4 and CP2 are known, the metric of the space-time surface is obtained
from the metric of M4 × CP2. The previous argument for the necessity of the presence of the
information about metric in the second order differential equation however suggests that the
metric is needed.

4. The beginner might ask whether the 6-D 2-sphere bundles representing space-time sheets could
have interpretation as Calabi-Yau manifolds. In fact, the Calabi-Yau manifolds defined as com-
plete intersections in CP3×CP3 discovered by Tian and Yau are defined by three polynomials [57]
. Two of them have degree 3 and depend on the coordinates of single CP3 only whereas the third
is bilinear in the coordinates of the CP3:s. Obviously the number of these manifolds is quite too
small (taking into account scaling the space defined by the coefficients is 6-dimensional). All
these manifolds are deformation equivalent. These manifolds have Euler characteristic χ = ±18
and a non-trivial fundamental group. By dividing this manifold by Z3 one obtains χ = ±6,
which guarantees that the number of fermion generations is three in heterotic string theory.
This manifold was the first one proposed to give rise to three generations and N = 1 SUSY.

What could the field equations be in twistorial formulation?

The fascinating question is whether one can identify the equations determining the 3-D complex
surfaces of CP3 × CP3 in turn determining the space-time surfaces.

The first thing is to clarify in detail how space-time M4×CP2 results from CP3×CP3. Each point
CP3×CP3 define a line in third CP3 having interpretation as a point of conformally compactified M4

obtained by sphere bundle projection. Each point of either CP3 in turn defines CP2 in in fourth CP3

as a 2-plane. Therefore one has (CP3 × CP3) × (CP3 × CP3) but one can reduce the consideration
to CP3 ×CP3 fixing M4 ×CP2. In the generic situation 6-D surface in 12-D CP3 ×CP3 defines 4-D
surface in the dual CP3 × CP3 and its sphere bundle projection defines a 4-D surface in M4 × CP2.

1. The vanishing of three holomorphic functions f i would characterize 3-D holomorphic surfaces of
6-D CP3 × CP3. These are determined by three real functions of three real arguments just like
a holomorphic function of single variable is dictated by its values on a one-dimensional curve
of complex plane. This conforms with the idea that initial data are given at 3-D surface. Note
that either the first or second CP3 can determine the CP2 image of the holomorphic 3-surface
unless one assumes that the holomorphic functions are symmetric under the exchange of the
coordinates of the two CP3s. If symmetry is not assumed one has some kind of duality.

2. Effective 2-dimensionality means that 2-D partonic surfaces plus 4-D tangent space data are
enough. This suggests that the 2 holomorphic functions determining the dynamics satisfy some
second order differential equation with respect to their three complex arguments: the value of the
function and its derivative would correspond to the initial values of the imbedding space coor-
dinates and their normal derivatives at partonic 2-surface. Since the effective 2-dimensionality
brings in dependence on the induced metric of the space-time surface, this equation should
contain information about the induced metric.

3. The no-where vanishing holomorphic 3-form Ω, which can be regarded as a ”complex square root”
of volume form characterizes 6-D Calabi-Yau manifold [6, 57] , indeed contains this information
albeit in a rather implicit manner but in spirit with TGD as almost topological QFT philosophy.
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Both CP3:s are characterized by this kind of 3-form if Calabi-Yau with (2, 4) signature makes
sense.

4. The simplest second order- and one might hope holomorphic- differential equation that one can
imagine with these ingredients is of the form

Ωi1j1k1

1 Ωi2j2k2

2 ∂i1i2f
1∂j1j2f

2∂k1k2
f3 = 0 , ∂ij ≡ ∂i∂j . (15.6.5)

Since Ωi is by its antisymmetry equal to Ω123
i εijk, one can divide Ω123:s away from the equation

so that one indeed obtains holomorphic solutions. Note also that one can replace ordinary
derivatives in the equation with covariant derivatives without any effect so that the equations
are general coordinate invariant.

One can consider more complex equations obtained by taking instead of (f1, f2, f3) arbitrary
combinations (f i, f j , fk) which results uniquely if one assumes anti-symmetrization in the labels
(1, 2, 3). In the sequel only this equation is considered.

5. The metric disappears completely from the equations and skeptic could argue that this is incon-
sistent with the fact that it appears in the equations defining the weak form of electric-magnetic
duality as a Lagrange multiplier term in Chern-Simons action. Optimist would respond that
the representation of the 6-surfaces as intersections of three hyper-surfaces is different from the
representation as imbedding maps X4 → H used in the usual formulation so that the argument
does not bite, and continue by saying that the metric emerges in any case when one endows
space-time with the induced metric given by projection to M4.

6. These equations allow infinite families of obvious solutions. For instance, when some f i depends
on the coordinates of either CP3 only, the equations are identically satisfied. As a special case
one obtains solutions for which f1 = Z ·W and (f2, f3) = (f2(Z), f3(W )) This family contains
also the Calabi-Yau manifold found by Yau and Tian, whose factor space was proposed as the
first candidate for a compactification consistent with three fermion families.

7. One might hope that an infinite non-obvious solution family could be obtained from the ansatz
expressible as products of exponential functions of Z and W . Exponentials are not consistent
with the assumption that the functions fi are homogenous polynomials of finite degree in pro-
jective coordinates so that the following argument is only for the purpose for learning something
about the basic character of the equations.

f1 = Ea1,a2,a3
(Z)Eâ1,â2,â3

(W ) , f2 = Eb1,b2,b3(Z)Eb̂1,b̂2,b̂3(W ) ,

f3 = Ec1,c2,c3(Z)Eĉ1,ĉ2,ĉ3(W ) ,

Ea,b,c(Z) = exp(az1)exp(bz2)exp(cz3) .

(15.6.6)

The parameters a, b, c, and â, b̂, ĉ can be arbitrary real numbers in real context. By the basic
properties of exponential functions the field equations are algebraic. The conditions reduce to
the vanishing of the products of determinants det(a, b, c) and det(â, b̂, ĉ) so that the vanishing of
either determinant is enough. Therefore the dependence can be arbitrary either in Z coordinates
or in W coordinates. Linear superposition holds for the modes for which determinant vanishes
which means that the vectors (a, b, c) or (â, b̂, ĉ) are in the same plane.

Unfortunately, the vanishing conditions reduce to the conditions f i(W ) = 0 for case a) and to
f i(Z) = 0 for case b) so that the conditions are equivalent with those obtained by putting the
”wave vector” to zero and the solutions reduce to obvious ones. The lesson is that the equations
do not commute with the multiplication of the functions f i with nowhere vanishing functions
of W and Z. The equation selects a particular representation of the surfaces and one might
argue that this should not be the case unless the hyper-surfaces defined by f i contain some
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physically relevant information. One could consider the possibility that the vanishing conditions
are replaced with conditions f i = ci with f i(0) = 0 in which case the information would be
coded by a family of space-time surfaces obtained by varying ci.

One might criticize the above equations since they are formulated directly in the product CP3×CP3

of projective twistor by choosing a specific projective gauge by puttingz4 = 1, w4 = 1. The manifestly
projectively invariant formulation for the equations is in full twistor space so that 12-D space would
be replaced with 16-D space. In this case one would have 4-D complex permutation symbol giving for
these spaces Calabi-Yau structure with flat metric. The product of functions f = z4 = constant and
g = w4 = constant would define the fourth function f4 = fg fixing the projective gauge

εi1j1k1l1εi2j2k2l2∂i1i2f
1∂j1j2f

2∂k1k2
f3∂l1l2f

4 = 0 , ∂ij ≡ ∂i∂j . (15.6.7)

The functions f i are homogenous polynomials of their twistor arguments to guarantee projective
invariance. These equations are projectively invariant and reduce to the above form which means also
loss of homogenous polynomial property. The undesirable feature is the loss of manifest projective
invariance by the fixing of the projective gauge.

A more attractive ansatz is based on the idea that one must have one equation for each f i to
minimize the non-determinism of the equations obvious from the fact that there is single equation
in 3-D lattice for three dynamical variables. The quartets (f1, f2, f3, f i), i = 1, 2, 3 would define a
possible minimally non-linear generalization of the equation

εi1j1k1l1εi2j2k2l2∂i1i2f
1∂j1j2f

2∂k1k2
fm∂l1l2f

4 = 0 , ∂ij ≡ ∂i∂j , m = 1, 2, 3 . (15.6.8)

Note that the functions are homogenous polynomials of their arguments and analogous to spherical
harmonics suggesting that they can allow a nice interpretation in terms of quantum classical corre-
spondence.

The minimal non-linearity of the equations also conforms with the non-linearity of the field equa-
tions associated with Kähler action. Note that also in this case one can solve the equations by
diagonalizing the dynamical coefficient matrix associated with the quadratic term and by identifying
the eigen-vectors of zero eigen values. One could consider also more complicated strongly non-linear
ansätze such as (f i, f i, f i, f i), i = 1, 2, 3, but these do not seem plausible.

1. The explicit form of the equations using Taylor series expansion for multi-linear case

In this section the equations associated with (f1, f2, f3) ansatz are discussed in order to obtain a
perspective about the general structure of the equations by using simpler (multilinearity) albeit prob-
ably non-realistic case as starting point. This experience can be applied directly to the (f1, f2, f3, f i)
ansatz, which is quadratic in f i.

The explicit form of the equations is obtained as infinite number of conditions relating the co-
efficients of the Taylor series of f1 and f2. The treatment of the two variants for the equations
is essentially identical and in the following only the manifestly projectively invariant form will be
considered.

1. One can express the Taylor series as

f1(Z,W ) =
∑
m,n

Cm,nMm(Z)Mn(W ) ,

f2(Z,W ) =
∑
m,n

Dm,nMm(Z)Mn(W ) ,

f3(Z,W ) =
∑
m,n

Em,nMm(Z)Mn(W ) ,

Mm≡(m1,m2,m3)(Z) = zm1
1 zm2

2 zm3
3 . (15.6.9)
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2. The application of derivatives to the functions reduces to a simple algebraic operation

∂ij(Mm(Z)Mn(W )) = minjMm1−ei(Z)Mn−ej (W ) . (15.6.10)

Here ei denotes i:th unit vector.

3. Using the product rule MmMn = Mm+n one obtains

∂ij(Mm(Z)Mn(W ))∂rs(Mk(Z)Ml(W ))

= minjkrls ×Mm−ei(Z)Mn−ej (W )×Mk−er (Z)Mk−es(W )

= minjkrls ×Mm+k−ei−er (Z)×Mn+l−ej−el(W ) . (15.6.11)

4. The equations reduce to the trilinear form

∑
m,n,k,l,r,s

Cm,nDk,lEr,s(m, k, r)(n, l, s)Mm+k+r−E(Z)Mn+l+s−E(W ) = 0 ,

E = e1 + e2 + e3 , (a, b, c) = εijkaibjcc . (15.6.12)

Here (a, b, c) denotes the determinant defined by the three index vectors involved. By introducing
the summation indices

(M = m+ k + r − E, k, r) , (N = n+ l + s− E, l, s)

one obtains an infinite number of conditions, one for each pair (M,N). The condition for a
given pair (M,N) reads as

∑
k,l,r,s

CM−k−r+E,N−l−s+EDk,lEr,s × (M − k − r + E, k, r)(N − l − s+ E, l, s) = 0 .

(15.6.13)

These equations can be regarded as linear equations by regarding any matrix selected from
{C,D,E} as a vector of linear space. The existence solutions requires that the determinant
associated with the tensor product of other two matrices vanishes. This matrix is dynamical.
Same applies to the tensor product of any of the matrices.

5. Hyper-determinant [5] is the generalization of the notion of determinant whose vanishing tells
that multilinear equations have solutions. Now the vanishing of the hyper-determinant defined
for the tensor product of the three-fold tensor power of the vector space defined by the coefficients
of the Taylor expansion should provide the appropriate manner to characterize the conditions
for the existence of the solutions. As already seen, solutions indeed exist so that the hyper-
determinant must vanish. The elements of the hyper matrix are now products of determinants
for the exponents of the monomials involved. The non-locality of the Kähler function as a
functional of the partonic surface leads to the argument that the field equations of TGD for
vanishing n:th variations of Kähler action are multilinear and that a vanishing of a generalized
hyper-determinant characterizes this [31] .



1312 Chapter 15. Overall View About TGD from Particle Physics Perspective

6. Since the differential operators are homogenous polynomials of partial derivatives, the total
degrees of Mm(Z) and Mm(W ) defined as a sum D =

∑
mi is reduced by one unit by the action

of both operators ∂ij . For given value of M and N only the products

Mm(Z)Mn(W )Mk(Z)Mr(W )Ms(Z)Ml(W )

for which the vector valued degrees D1 = m + k + r and D2 = n + l + s have the same value
are coupled. Since the degree is reduced by the operators appearing in the equation, polynomial
solutions for which f i contain monomials labelled by vectors mi, ni, ri for which the components
vary in a finite range (0, nmax) look like a natural solution ansatz. All the degrees Di ≤ Di,max

appear in the solution ansatz so that quite a large number of conditions is obtained.

What is nice is that the equation can be interpreted as a difference equation in 3-D lattice with
”time direction” defined by the direction of the diagonal.

1. The counterparts of time=constant slices are the planes n1 +n2 +n3 = n defining outer surfaces
of simplices having E as a normal vector. The difference equation does not seem to say nothing
about the behavior in the transversal directions. M and N vary in the simplex planes satisfying∑
Mi = T1,

∑
Ni = T2. It seems natural to choose T1 = T2 = T so that Z and W dynamics

corresponds to the same ”time”. The number of points in the T = constant simplex plane
increases with T which is analogous to cosmic expansion.

2. The ”time evolution” with respect to T can be solved iteratively by increasing the value of∑
Mi = Ni = T by one unit at each step. Suppose that the values of coefficients are known

and satisfy the conditions for (m, k, r) and (n, l, s) up to the maximum value T for the sum of
the components of each of these six vectors. The region of known coefficients -”past”- obviously
corresponds to the interior of the simplex bounded by the plane

∑
Mi =

∑
Ni = T having E as

a normal. Let (mmin, nmin), (kmin, lmin) and (rmin, smin) correspond to the smallest values of
3-indices for which the coefficients are non-vanishing- this could be called the moment of ”Big
Bang”. The simplest but not necessary assumption is that these indices correspond zero vectors
(0, 0, 0) analogous to the tip of light-cone.

3. For given values of M and N corresponding to same value of ”cosmic time” T one can sep-
arate from the formula the terms which correspond to the un-known coefficients as the sum
CM+E,N+ED0,0E0,0 +DM+E,N+ED0,0C0,0 +EM+E,N+EC0,0D0,0. The remaining terms are by
assumption already known. One can fix the normalization by choosing C0,0 = D0,0 = E0,0 = 1.
With these assumptions the equation reduces at each point of the outer boundary of the simplex
to the form

CM+E,N+E +DM+E,N+E + EM+E,N+E = X

where X is something already known and contain only data about points in the plane m+k+r =
M and n+ r+ s = N . Note that these planes have one ”time like direction” unlike the simplex
plane so that one could speak about a discrete analog of string world sheet in 3+3+3-D lattice
space defined by a 2-plane with one time-like direction.

4. For each point of the simplex plane one has equation of the above form. The equation is non-
deterministic since only constrain only the sum CM+E,N+E +DM+E,N+E +EM+E,N+E at each
point of the simplex plane to a plane in the complex 3-D space defined by them. Hence the
number of solutions is very large. The condition that the solutions reduce to polynomials poses
conditions on the coefficients since the quantities X associated with the plane T = Tmax must
vanish for each point of the simplex plane in this case. In fact, projective invariance means that
the functions involved are homogenous functions in projective coordinates and thus polynomials
and therefore reduce to polynomials of finite degree in 3-D treatment. This obviously gives
additional condition to the equations.

2. The minimally non-linear option
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The simple equation just discussed should be taken with a caution since the non-determinism
seems to be too large if one takes seriously the analogy with classical dynamics. By the vacuum
degeneracy also the time evolution associated with Kähler action breaks determinism in the standard
sense of the word. The non-determinism is however not so strong and removed completely in local
sense for non-vacuum extremals. One could also try to see the non-determinism as the analog for
non-deterministic time evolution by quantum jumps.

One can however consider the already mentioned possibility of increasing the number of equations
so that one would have three equations corresponding to the three unknown functions f i so that the
determinism associated with each step would be reduced. The equations in question would be of the
same general form but with (f1, f2, f3) replaced with some some other combination.

1. In the genuinely projective situation where one can consider the (f1, f2, f3, f i), i = 1, 2, 3 as a
unique generalization of the equation. This would make the equations quadratic in fi and re-
duce the non-determinism at given step of the time evolution. The new element is that now only
monomials Mm(z) associated with the f i with same degree of homegenity defined by d =

∑
mi

are consistent with projective invariance. Therefore the solutions are characterized by six in-
tegers (di,1, di,2) having interpretation as analogs of conformal weights since they correspond
to eigenvalues of scaling operators. That homogenous polynomials are in question gives hopes
that a generalization of Witten’s approach might make sense. The indices m vary at the outer
surfaces of the six 3-simplices defined by (di,1, di,2) and looking like tedrahedrons in 3-D space.
The functions f i are highly analogous to the homogenous functions appearing in group repre-
sentations and quantum classical correspondence could be realized through the representation
of the space-time surfaces in this manner.

2. The 3-determinants (a, b, c) appearing in the equations would be replaced by 4-determinants and
the equations would have the same general form. One has

∑
k,l,r,s,t,u

CM−k−r−t+E,N−l−s−u+EDk,lEr,sCt,u ×

×(M − k − r − t+ E, k, r, t)(N − l − s− u+ E, l, s, u) = 0 ,

E = e1 + e2 + e3 + e4 , (a, b, c, d) = εijklaibjckdl . (15.6.14)

and its variants in which D and E appear quadratically. The values of M and N are restricted
to the tedrahedrons

∑
Mi =

∑
dk,1 + d1,i and

∑
Ni =

∑
di,2 + di,2, i = 1, 2, 3. Therefore

the dynamics in the index space is 3-dimensional. Since the index space is in a well-defined
sense dual to CP3 as is also the CP3 in which the solutions are represented as counterparts of
3-surfaces, one could say that the 3-dimensionality of the dynamics corresponds to the dynamics
of Chern-Simons action at space-like at the ends of CD and at light-like 3-surfaces.

3. The view based on 4-D time evolution is not useful since the solutions are restricted to time=constant
plane in 4-D sense. The elimination of one of the projective coordinates would lead however to
the analog of the above describe time evolution. In four-D context a more appropriate form of
the equations is

∑
m,n,k,l,r,s

Cm,nDk,lEr,sCt,u(m, k, r, t)(n, l, s, u)Mm+k+r−E(Z)Mn+l+s−E(W ) = 0

(15.6.15)

with similar equations for f2 and f3. If one assumes that the CP2 image of the holomorphic
3-surface is unique (it can correspond to either CP3) the homogenous polynomials f i must be
symmetric under the exchange of Z and W so that the matrices C,D, and E are symmetric.
This is equivalent to a replacement of the product of determinants with a sum of 16 products of
determinants obtained by permuting the indices of each index pair (m,n), (k, l),(r, s) and (t, u).
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4. The number Ncond of conditions is given by the product Ncond = N(dM )N(dN ) of numbers of
points in the two tedrahedrons defined by the total conformal weights

∑
Mr = dM =

∑
k dk,1 + di,1 and

∑
Nr = dN =

∑
k dk,2 + di,2 , i = 1, 2, 3.

The number Ncoeff of coefficients is

Ncoeff =
∑
k

n(dk,1) +
∑
k

n(dk,2) ,

where n(dk,i) is the number points associated with the tedrahedron with conformal weight dk,i.

Since one has n(d) ∝ d3, Ncond scales as

Ncond ∝ d3
Md

3
N = (

∑
k

dk,1 + d1,i)
3 × (

∑
k

dk,2 + di,2)3

whereas the number Ncoeff of coefficients scales as

Ncoeff ∝
∑
k

(d3
k,1 + d3

k,2) .

Ncond is clearly much larger than Ncoeff so the solutions are analogous to partial waves and that
the reduction of the rank for the matrices involved is an essential aspect of being a solution. The
reduction of the rank for the coefficient matrices should reduce the effective number of coefficients
so that solutions can be found. An interesting question is whether the coefficients are rationals
with a suitable normalization allowed by independent conformal scalings. An analogy for the
dynamics is quantum entanglement for 3+3 systems respecting the conservation of conformal
weights and quantum classical correspondence taken to extreme suggests something like this.

5. One can interpret these equations as linear equations for the coefficients of the either linear term
or as quadratic equations for the non-linear term. Also in the case of quadratic term one can
apply general linear methods to identify the vanishing eigen values of the matrix of the quadratic
form involved and to find the zero modes as solutions. The rank of the dynamically determined
multiplier matrix must be non-maximal for the solutions to exist. One can imagine that the
rank changes at critical surfaces in the space of Taylor coefficients meaning a multi-furcation in
the space determined by the coefficients of the polynomials. Also the degree of the polynomial
can change at the critical point.

Solutions for which either determinant vanishes for all terms present in the solution exist. This
is is achieved if either the index vectors (m, l, r, t) or (n, l, s, u) in their respective parallel 3-
planes are also in a 3-plane going through the origin. These solutions might seen as the analogs
of vacuum extremals of Chern-Simons action for which the CP2 projection is at most 2-D
Lagrangian manifold.

Quantum classical correspondence requires that the space-time surface carries also information
about the momenta of partons. This information is quasi-continuous. Also information about
zero modes should have representation in terms of the coefficients of the polynomials. Is this
really possible if only products of polynomials of fixed conformal weights with strong restrictions
on coefficients can be used? The counterpart for the vacuum degeneracy of Kähler action might
resolve the problem. The analog for the construction of space-time surfaces as deformations of
vacuum extremals would be starting from a trivial solution and adding to the building blocks of
f i some terms of same degree for which the wave vectors are not in the intersection of a 3-plane
and simplex planes. The still existing ”vacuum part” of the solution could carry the needed
information.

6. One can take ”obvious solutions” characterized by different common 3-planes for the ”wave
vectors” characterizing the 8 monomials Ma(Z) and Mb(W ), a ∈ {m, k, r, t} and b ∈ {n, l, s, u}.
The coefficient matrices C,D,E, F are completely free. For the sum of these solutions the
equations contain interaction terms for which at least two ”wave vectors” belong to different
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3-planes so that the corresponding 4-determinants are non-vanishing. The coefficients are not
anymore free. Could the ”obvious solutions” have interpretation in terms of different space-
time sheets interacting via wormhole contacts? Or can one equate ”obvious” with ”vacuum”
so that interaction between different vacuum space-time sheets via wormhole contact with 3-D
CP2 projection would deform vacuum extremals to non-vacuum extremals? Quantum classical
correspondence inspires the question whether the products for functions fi associated with an
obvious solution associated with a particular plane correspond to a tensor products for quantum
states associated with a particular partonic 2-surface or space-time sheet.

7. Effective 2-dimensionality realized in terms of the extremals of Chern-Simons actions with La-
grange multiplier term coming from the weak form of electric magnetic duality should also have
a concrete counterpart if one takes the analogy with the extremals of Kähler action seriously.
The equations can be transformed to 3-D ones by the elimination of the fourth coordinate but
the interpretation in terms of discrete time evolution seems to be impossible since all points are
coupled. The total conformal weights of the monomials vary in the range [0, d1,i] and [0, d2,i] so
that the non-vanishing coefficients are in the interior of 3-simplex. The information about the
fourth coordinate is preserved being visible via the four-determinants.

8. It should be possible to relate the hierarchy with respect to conformal weights would to the
geometrization of loop integrals if a generalization of twistor strings is in question. One could
hope that there exists a hierarchy of solutions with levels characterized by the rank of the
matrices appearing in the linear representation. There is a temptation to associate this hierarchy
with the hierarchy of deformations of vacuum extremals of Kähler action forming also a hierarchy.
If this is the case the obvious solutions would correspond to vacuum exremals. At each step when
the rank of the matrices involved decreases the solution becomes nearer to vacuum extremal and
there should exist vanishing second variation of Kähler action. This structural similarity gives
hopes that the proposed ansatz might work. Also the fact that a generalization of the Penrose’s
twistorial description for the solutions of Maxwell’s equations to the situation when Maxwell
field is induced from the Kähler form of CP2 raises hopes. One must however remember that
the consistency with other proposed solution ansätze and with what is believed to be known
about the preferred extremals is an enormously powerful constraint and a mathematical miracle
would be required.

15.7 Finiteness of generalized Feynman diagrams zero energy
ontology

By effective 2-dimensionality partonic 2-surfaces plus the 4-D tangent space data at them code for
quantum physics. The light-like orbits of partonic 2-surfaces in turn have interpretation as analogs of
Feynman diagrams which correspond to 3-surfaces defining the regions at which the signature of the in-
duced metric changes and 4-metric becomes degenerate. One could also identify the space-like regions
of the space-time surfaces (deformed CP2 type vacuum extremals, in particular wormhole throats)
as the counterparts of generalized Feynman diagrams. The regions with Minkowskian signature of
the induced metric would in turn correspond to the many-sheeted version of external space-time in
which the particles move. A very concrete connection between particle and space-time geometry and
topology is clearly in question.

Zero energy ontology has already led to the idea of interpreting the virtual particles as pairs of
positive and negative energy wormhole throats. Hitherto I have taken it as granted that ordinary
Feynman diagrammatics generalizes more or less as such. It is however far from clear what really
happens in the verties of the generalized Feynmann diagrams. The safest approach relies on the
requirement that unitarity realized in terms of Cutkosky rules in ordinary Feynman diagrammatics
allows a generalization. This requires loop diagrams. In particular, photon-photon scattering can
take place only via a fermionic square loop so that it seems that loops must be present at least in the
topological sense.

One must be however ready for the possibility that something unexpectedly simple might emerge.
For instance, the vision about algebraic physics allows naturally only finite sums for diagrams and
does not favor infinite perturbative expansions. Hence the true believer on algebraic physics might
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dream about finite number of diagrams for a given reaction type. For simplicity generalized Feyn-
man diagrams without the complications brought by the magnetic confinement since by the previous
arguments the generalization need not bring in anything essentially new.

The basic idea of duality in early hadronic models was that the lines of the dual diagram repre-
senting particles are only re-arranged in the vertices. This however does not allow to get rid of off
mass shell momenta. Zero energy ontology encourages to consider a stronger form of this principle in
the sense that the virtual momenta of particles could correspond to pairs of on mass shell momenta
of particles. If also interacting fermions are pairs of positive and negative energy throats in the in-
teraction region the idea about reducing the construction of Feynman diagrams to some kind of lego
rules might work.

15.7.1 Virtual particles as pairs of on mass shell particles in ZEO

The first thing is to try to define more precisely what generalized Feynman diagrams are. The direct
generalization of Feynman diagrams implies that both wormhole throats and wormhole contacts join
at vertices.

1. A simple intuitive picture about what happens is provided by diagrams obtained by replacing
the points of Feynman diagrams (wormhole contacts) with short lines and imagining that the
throats correspond to the ends of the line. At vertices where the lines meet the incoming on
mass shell quantum numbers would sum up to zero. This approach leads to a straightforward
generalization of Feynman diagrams with virtual particles replaced with pairs of on mass shell
throat states of type ++, −−, and +−. Incoming lines correspond to ++ type lines and outgoing
ones to −− type lines. The first two line pairs allow only time like net momenta whereas +−
line pairs allow also space-like virtual momenta. The sign assigned to a given throat is dictated
by the the sign of the on mass shell momentum on the line. The condition that Cutkosky
rules generalize as such requires ++ and −− type virtual lines since the cut of the diagram in
Cutkosky rules corresponds to on mass shell outgoing or incoming states and must therefore
correspond to ++ or −− type lines.

2. The basic difference as compared to the ordinary Feynman diagrammatics is that loop integrals
are integrals over mass shell momenta and that all throats carry on mass shell momenta. In
each vertex of the loop mass incoming on mass shell momenta must sum up to on mass shell
momentum. These constraints improve the behavior of loop integrals dramatically and give
excellent hopes about finiteness. It does not however seem that only a finite number of dia-
grams contribute to the scattering amplitude besides tree diagrams. The point is that if a the
reactions N1 → N2 and N2 → N3,, where Ni denote particle numbers, are possible in a common
kinematical region for N2-particle states then also the diagrams N1 → N2 → N2 → N3 are
possible. The virtual states N2 include all all states in the intersection of kinematically allow
regions for N1 → N2 and N2 → N3. Hence the dream about finite number possible diagrams is
not fulfilled if one allows massless particles. If all particles are massive then the particle number
N2 for given N1 is limited from above and the dream is realized.

3. For instance, loops are not possible in the massless case or are highly singular (bringing in mind
twistor diagrams) since the conservation laws at vertices imply that the momenta are parallel.
In the massive case and allowing mass spectrum the situation is not so simple. As a first example
one can consider a loop with three vertices and thus three internal lines. Three on mass shell
conditions are present so that the four-momentum can vary in 1-D subspace only. For a loop
involving four vertices there are four internal lines and four mass shell conditions so that loop
integrals would reduce to discrete sums. Loops involving more than four vertices are expected
to be impossible.

4. The proposed replacement of the elementary fermions with bound states of elementary fermions
and monopoles X± brings in the analog of stringy diagrammatics. The 2-particle wave functions
in the momentum degrees of freedom of fermiona and X± migh allow more flexibility and allow
more loops. Note however that there are excellent hopes about the finiteness of the theory also
in this case.
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15.7.2 Loop integrals are manifestly finite

One can make also more detailed observations about loops.

1. The simplest situation is obtained if only 3-vertices are allowed. In this case conservation of
momentum however allows only collinear momenta although the signs of energy need not be
the same. Particle creation and annihilation is possible and momentum exchange is possible
but is always light-like in the massless case. The scattering matrices of supersymmetric YM
theories would suggest something less trivial and this raises the question whether something is
missing. Magnetic monopoles are an essential element of also these theories as also massivation
and symmetry breaking and this encourages to think that the formation of massive states as
fermion X± pairs is needed. Of course, in TGD framework one has also high mass excitations
of the massless states making the scattering matrix non-trivial.

2. In YM theories on mass shell lines would be singular. In TGD framework this is not the case
since the propagator is defined as the inverse of the 3-D dimensional reduction of the modified
Dirac operator D containing also coupling to four-momentum (this is required by quantum
classical correspondence and guarantees stringy propagators),

D = iΓ̂αpα + Γ̂αDα ,

pα = pk∂αh
k . (15.7.1)

The propagator does not diverge for on mass shell massless momenta and the propagator lines
are well-defined. This is of course of essential importance also in general case. Only for the
incoming lines one can consider the possibility that 3-D Dirac operator annihilates the induced
spinor fields. All lines correspond to generalized eigenstates of the propagator in the sense
that one has D3Ψ = λγΨ, where γ is modified gamma matrix in the direction of the stringy
coordinate emanating from light-like surface and D3 is the 3-dimensional dimensional reduction
of the 4-D modified Dirac operator. The eigenvalue λ is analogous to energy. Note that the
eigenvalue spectrum depends on 4-momentum as a parameter.

3. Massless incoming momenta can decay to massless momenta with both signs of energy. The
integration measure d2k/2E reduces to dx/x where x ≥ 0 is the scaling factor of massless
momentum. Only light-like momentum exchanges are however possible and scattering matrix
is essentially trivial. The loop integrals are finite apart from the possible delicacies related to
poles since the loop integrands for given massless wormhole contact are proportional to dx/x3

for large values of x.

4. Irrrespective of whether the particles are massless or not, the divergences are obtained only if
one allows too high vertices as self energy loops for which the number of momentum degrees
of freedom is 3N − 4 for N -vertex. The construction of SUSY limit of TGD in [32] led to the
conclusion that the parallelly propagating N fermions for given wormhole throat correspond to a
product of N fermion propagators with same four-momentum so that for fermions and ordinary
bosons one has the standard behavior but for N > 2 non-standard so that these excitations are
not seen as ordinary particles. Higher vertices are finite only if the total number NF of fermions
propagating in the loop satisfies NF > 3N−4. For instance, a 4-vertex from which N = 2 states
emanate is finite.

15.7.3 Taking into account magnetic confinement

What has been said above is not quite enough. As shown in the accompanying article and in [31]
the weak form of electric-magnetic duality [8] leads to the picture about elementary particles as pairs
of magnetic monopoles inspiring the notions of weak confinement based on magnetic monopole force.
Also color confinement would have magnetic counterpart. This means that elementary particles would
behave like string like objects in weak boson length scale. Therefore one must also consider the stringy
case with wormhole throats replaced with fermion-X± pairs (X± is electromagnetically neutral and
± refers to the sign of the weak isospin opposite to that of fermion) and their super partners.
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1. The simplest assumption in the stringy case is that fermion-X± pairs behave as coherent objects,
that is scatter elastically. In more general case only their higher excitations identifiable in terms
of stringy degrees of freedom would be created in vertices. The massivation of these states
makes possible non-collinear vertices. An open question is how the massivation fermion-X±
pairs relates to the existing TGD based description of massivation in terms of Higgs mechanism
and modified Dirac operator.

2. Mass renormalization could come from self energy loops with negative energy lines as also vertex
normalization. By very general arguments supersymmetry implies the cancellation of the self
energy loops but would allow non-trivial vertex renormalization [32] .

3. If only 3-vertices are allowed, the loops containing only positive energy lines are possible if on
mass shell fermion-X± pair (or its superpartner) can decay to a pair of positive energy pair
particles of same kind. Whether this is possible depends on the masses involved. For ordinary
particles these decays are not kinematically possible below intermediate boson mass scale (the
decays F1 → F2 + γ are forbidden kinematically or by the absence of flavor changing neutral
currents whereas intermediate gauge bosons can decay to on mass shell fermion-antifermion
pair).

4. The introduction of IR cutoff for 3-momentum in the rest system associated with the largest
CD (causal diamond) looks natural as scale parameter of coupling constant evolution and p-adic
length scale hypothesis favors the inverse of the size scale of CD coming in powers of two. This
parameter would define the momentum resolution as a discrete parameter of the p-adic coupling
constant evolution. This scale does not have any counterpart in standard physics. For electron,
d quark, and u quark the proper time distance between the tips of CD corresponds to frequency
of 10 Hz, 1280 Hz, and 160 Hz: all these frequencies define fundamental bio-rhythms [27] .

These considerations have left completely untouched one important aspect of generalized Feynman
diagrams: the necessity to perform a functional integral over the deformations of the partonic 2-
surfaces at the ends of the lines- that is integration over WCW. Number theoretical universality
requires that WCW and these integrals make sense also p-adically and in the following these aspects
of generalized Feynman diagrams are discussed.
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Chapter 16

Particle Massivation in TGD
Universe

16.1 Introduction

This article represenst the most recent view about particle massivation in TGD framework. This topic
is necessarily quite extended since many several notions and new mathematics is involved. Therefore
the calculation of particle masses involves five chapters ( [22, 49, 58, 53] of [55] . In the following
my goal is to provide an up-to-date summary whereas the chapters are unavoidably a story about
evolution of ideas.

The identification of the spectrum of light particles reduces to two tasks: the construction of
massless states and the identification of the states which remain light in p-adic thermodynamics. The
latter task is relatively straightforward. The thorough understanding of the massless spectrum requires
however a real understanding of quantum TGD. It would be also highly desirable to understand why
p-adic thermodynamics combined with p-adic length scale hypothesis works. A lot of progress has
taken place in these respects during last years.

Zero energy ontology providing a detailed geometric view about bosons and fermions, the general-
ization of S-matrix to what I call M -matrix, the notion of finite measurement resolution characterized
in terms of inclusions of von Neumann algebras, the derivation of p-adic coupling constant evolution
and p-adic length scale hypothesis from the first principles, the realization that the counterpart of
Higgs mechanism involves generalized eigenvalues of the modified Dirac operator: these are represent
important steps of progress during last years with a direct relevance for the understanding of particle
spectrum and massivation although the predictions of p-adic thermodynamics are not affected.

During 2010 a further progress took place as I wrote articles about TGD to Prespacetime journal
[11, 12, 17, 18, 15, 10, 16, 19]. These steps of progress relate closely to zero energy ontology, bosonic
emergence, the realization of the importance of twistors in TGD, and to the discovery of the weak
form of electric-magnetic duality. Twistor approach and the understanding of the Chern-Simons Dirac
operator served as a midwife in the process giving rise to the birth of the idea that all particles at
fundamental level are massless and that both ordinary elementary particles and string like objects
emerge from them. Even more, one can interpret virtual particles as being composed of these massless
on mass shell particles assignable to wormhole throats so that four-momentum conservation poses
extremely powerful constraints on loop integrals and makes them manifestly finite.

The weak form of electric-magnetic duality led to the realization that elementary particles corre-
spond to bound states of two wormhole throats with opposite Kähler magnetic charges with second
throat carrying weak isospin compensating that of the fermion state at second wormhole throat. Both
fermions and bosons correspond to wormhole contacts: in the case of fermions topological condensa-
tion generates the second wormhole throat. This means that altogether four wormhole throats are
involved with both fermions, gauge bosons, and gravitons (for gravitons this is unavoidable in any
case). For p-adic thermodynamics the mathematical counterpart of string corresponds to a wormhole
contact with size of order CP2 size with the role of its ends played by wormhole throats at which
the signature of the induced 4-metric changes. The key observation is that for massless states the
throats of spin 1 particle must have opposite three-momenta so that gauge bosons are necessarily
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massive, even photon and other particles usually regarded as massless must have small mass which in
turn cancels infrared divergences and give hopes about exact Yangian symmetry generalizing that of
N = 4 SYM. Besides this there is weak ”stringy” contribution to the mass assignable to the magnetic
flux tubes connecting the two wormhole throats at the two space-time sheets.

16.1.1 Physical states as representations of super-symplectic and Super
Kac-Moody algebras

Physical states belong to the representation of super-symplectic algebra and Super Kac-Moody al-
gebra assignable SO(2) × SU(3) × SU(2)rot × U(2)ew associated with the 2-D surfaces X2 defined
by the intersections of 3-D light like causal determinants with δM4

± × CP2. These 2-surfaces have
interpretation as partons.

It has taken considerable effort to understand the relationship between super-symplectic and su-
per Kac-Moody algebras and there are still many uncertainties involved. What looks like the most
plausible option relies on the generalization of a coset construction proposed already for years ago but
given up because of the lacking understanding of how SKM and SC algebras could be lifted to the
level of imbedding space. The progress in the Physics as generalized number theory program provided
finally a justification for the coset construction.

1. Assume a generalization of the coset construction in the sense that the differences of super Kac-
Moody Virasoro generators (SKMV) and super-symplectic Virasoro generators (SSV) annihilate
the physical states. The interpretation is in terms of TGD counterpart for Einstein’s equations
realizing Equivalence Principle. Mass squared is identified as the p-adic thermal expectation
value of either SKMV or SSV conformal weight (gravitational or inertial mass) in a superpo-
sition of states with SKMV (SSV ) conformal weight n ≥ 0 annihilated by SKMV − SSV .

2. Construct first ground states with negative conformal weight annihilated by SKMV and SSV
generators Gn, Ln, n < 0. Apply to these states generators of tensor factors of Super Viraroso
algebras to obtain states with vanishing SSV and SKMV conformal weights. After this con-
struct thermal states as superpositions of states obtained by applying SKMV generators and
corresponding SSV generators Gn,Ln, n > 0. Assume that these states are annihilated by SSV
and SKMV generators Gn, Ln,n > 0 and by the differences of all SSV and SKMV generators.

3. Super-symplectic algebra represents a completely new element and in the case of hadrons the
non-perturbative contribution to the mass spectrum is easiest to understand in terms of super-
symplectic thermal excitations contributing roughly 70 per cent to the p-adic thermal mass of
the hadron. It must be however emphasized that by SKMV-SSV duality one can regard these
contributions equivalently as SKM or SC contributions.

Yangian algebras associated with the super-conformal algebras and motivated by twistorial ap-
proach generalize the super-conformal symmetry and make it multi-local in the sense that generators
can act on several partonic 2-surfaces simultaneously. These partonic 2-surfaces generalize the ver-
tices for the external massless particles in twistor Grassmann diagrams [99] . The implications of this
symmetry are yet to be deduced but one thing is clear: Yangians are tailor made for the description of
massive bound states formed from several partons identified as partonic 2-surfaces. The preliminary
discussion of what is involved can be found in [99] .

16.1.2 Particle massivation

Particle massivation can be regarded as a generation of thermal conformal weight identified as mass
squared and due to a thermal mixing of a state with vanishing conformal weight with those having
higher conformal weights. The observed mass squared is not p-adic thermal expectation of mass
squared but that of conformal weight so that there are no problems with Lorentz invariance.

One can imagine several microscopic mechanisms of massivation. The following proposal is the
winner in the fight for survival between several competing scenarios.

1. The original observation was that the pieces of CP2 type vacuum extremals representing ele-
mentary particles have random light-like curve as an M4 projection so that the average motion
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correspond to that of massive particle. Light-like randomness gives rise to classical Virasoro con-
ditions. This picture generalizes since the basic dynamical objects are light-like but otherwise
random 3-surfaces. The identification of elementary particles developed in three steps.

(a) Fermions are identified as light-like 3-surfaces at which the signature of induced metric of
deformed CP2 type extremals changes from Euclidian to the Minkowskian signature of the
background space-time sheet. Gauge bosons and Higgs correspond to wormhole contacts
with light-like throats carrying fermion and antifermion quantum numbers. Gravitons cor-
respond to pairs of wormhole contacts bound to string like object by the fluxes connecting
the wormhole contacts. The randomness of the light-like 3-surfaces and associated super-
conformal symmetries justify the use of thermodynamics and the question remains why this
thermodynamics can be taken to be p-adic. The proposed identification of bosons means
enormous simplification in thermodynamical description since all calculations reduced to
the calculations to fermion level. This picture generalizes to include super-symmetry. The
fermionic oscillator operators associated with the partonic 2-surfaces act as generators of
badly broken SUSY and right-handed neutrino gives to the not so badly broken N = 1
SUSY consistent with empirical facts.

(b) The next step was to realize that the topological condensation of fermion generates second
wormhole throat which carries momentum but no fermionic quantum numbers. This is also
needed to the massivation by p-adic thermodynamics applied to the analogs of string like
objects defined by wormhole throats with throats taking the role of string ends. p-Adic
thermodynamics did not however allow a satisfactory understanding of the gauge bosons
masses and it was clear that Higgsy contribution should be present and dominate for gauge
bosons. Gauge bosons should also somehow obtain their longitudinal polarizations and
here Higgs like particles indeed predicted by the basic picture suggests itself strongly.

(c) A further step was the discovery of the weak form of electric-magnetic duality, which led
to the realization that wormhole throats possess Kähler magnetic charge so that a wormole
throat with opposite magnetic charge is needed to compensate this charge. This wormhole
throat can also compensate the weak isospin of the second wormhole throat so that weak
confinement and massivation results. In the case of quarks magnetic confinement might
take place in hadronic rather than weak length scale. Second crucial observation was that
gauge bosons are necessarily massive since the light-like momenta at two throats must
correspond to opposite three-momenta so that no Higgs potential is needed. This leads
to a picture in which gauge bosons eat the Higgs scalars and also photon, gluons, and
gravitons develop small mass.

2. The fundamental parton level description of TGD is based on almost topological QFT for light-
like 3-surfaces. Dynamics is constrained by the requirement that CP2 projection is for extremals
of Chern-Simons action 2-dimensional and for off-shell states light-likeness is the only constraint.
As a matter fact, the basic theory relies on the modified Dirac action associated with Chern-
Simons action and Kähler action in the sense that the generalizes eigenmodes of Chern-Simons
Dirac operator correspond to the zero modes of Kähler action localized to the light-like 3-surfaces
representing partons. In this manner the data about the dynamics of Kähler action is feeded to
the eigenvalue spectrum. Eigenvalues are interpreted as square roots of ground state conformal
weights.

3. The symmetries respecting light-likeness property give rise to Kac-Moody type algebra and
super-symplectic symmetries emerge also naturally as well asN = 4 character of super-conformal
invariance. The coset construction for super-symplectic Virasoro algebra and Super Kac-Moody
algebra identified in physical sense as sub-algebra of former implies that the four-momenta
assignable to the two algebras are identical. The interpretation is in terms of the identity of
gravitational inertial masses and generalization of Equivalence Principle.

4. Instead of energy, the Super Kac-Moody Virasoro (or equivalently super-symplectic) generator
L0 (essentially mass squared) is thermalized in p-adic thermodynamics (and also in its real
version assuming it exists). The fact that mass squared is thermal expectation of conformal
weight guarantees Lorentz invariance. That mass squared, rather than energy, is a fundamental
quantity at CP2 length scale is also suggested by a simple dimensional argument (Planck mass
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squared is proportional to ~ so that it should correspond to a generator of some Lie-algebra
(Virasoro generator L0!)).

5. By Equivalence Principle the thermal average of mass squared can be calculated either in terms
of thermodynamics for either super-symplectic of Super Kac-Moody Virasoro algebra and p-adic
thermodynamics is consistent with conformal invariance.

6. There is also a modular contribution to the mass squared, which can be estimated using elemen-
tary particle vacuum functionals in the conformal modular degrees of freedom of the partonic
2-surface. It dominates for higher genus partonic 2-surfaces. For bosons both Virasoro and
modular contributions seem to be negligible and could be due to the smallness of the p-adic
temperature.

7. A long standing problem has been whether coupling to Higgs boson is needed to explain gauge
boson masses via a generation of Higgs vacuum expectation having possibly interpretation in
terms of a coherent state. Before the detailed model for elementary particles in terms of pairs
of wormhole contacts at the ends of flux tubes the picture about the sitution was as follows.
From the beginning it was clear that is that ground state conformal weight must be negative.
Then it became clear that the ground state conformal weight need not be a negative integer.
The deviation ∆h of the total ground state conformal weight from negative integer gives rise to
Higgs type contribution to the thermal mass squared and dominates in case of gauge bosons for
which p-adic temperature is small. In the case of fermions this contribution to the mass squared
is small. The possible Higgs vacuum expectation makes sense only at QFT limit and would be
naturally proportional to ∆h so that the coupling to Higgs would only apparently cause gauge
boson massivation. It is natural to relate ∆h to the generalized eigenvalues of Chern-Simons
Dirac operator.

8. A natural identification of the non-integer contribution to the conformal weight is as Higgsy
and stringy contributions to the vacuum conformal weight. In twistor approach the generalized
eigenvalues of Chern-Simons Dirac operator for external particles indeed correspond to light-like
momenta and when the three-momenta are opposite this gives rise to non-vanishing mass. Higgs
is necessary to give longitudinal polarizations for gauge bosons and also gauge bosons usually
regarded as exactly massless particles would naturally receive small mass in this manner so that
Higgs would disappear completely from the spectrum. The theoretetical motivation for small
mass would be exact Yangian symmetry. Higgs vacuum expectation assignable to coherent state
of Higgs bosons is not needed to explain the boson masses.

An important question concerns the justification of p-adic thermodynamics.

1. The underlying philosophy is that real number based TGD can be algebraically continued to var-
ious p-adic number fields. This gives justification for the use of p-adic thermodynamics although
the mapping of p-adic thermal expectations to real counterparts is not completely unique. The
physical justification for p-adic thermodynamics is effective p-adic topology characterizing the
3-surface: this is the case if real variant of light-like 3-surface has large number of common
algebraic points with its p-adic counterpart obeying same algebraic equations but in different
number field. In fact, there is a theorem stating that for rational surfaces the number of rational
points is finite and rational (more generally algebraic points) would naturally define the notion
of number theoretic braid essential for the realization of number theoretic universality.

2. The most natural option is that the descriptions in terms of both real and p-adic thermodynamics
make sense and are consistent. This option indeed makes if the number of generalized eigen
modes of modified Dirac operator is finite. This is indeed the case if one accepts periodic
boundary conditions for the Chern-Simons Dirac operator. In fact, the solutions are localized at
the strands of braids [31] . This makes sense because the theory has hydrodynamic interpretation
[31] . This reduces N = ∞ to finite SUSY and realizes finite measurement resolution as an
inherent property of dynamics.

The finite number of fermionic oscillator operators implies an effective cutoff in the number
conformal weights so that conformal algebras reduce to finite-dimensional algebras. The first
guess would be that integer label for oscillator operators becomes a number in finite field for
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some prime. This means that one can calculate mass squared also by using real thermodynamics
but the consistency with p-adic thermodynamics gives extremely strong number theoretical
constraints on mass scale. This consistency condition allows also to solve the problem how to
map a negative ground state conformal weight to its p-adic counterpart. Negative conformal
weight is divided into a negative half odd integer part plus positive part ∆h, and negative part
corresponds as such to p-adic integer whereas positive part is mapped to p-adic number by
canonical identification.

p-Adic thermodynamics is what gives to this approach its predictive power.

1. p-Adic temperature is quantized by purely number theoretical constraints (Boltzmann weight
exp(−E/kT ) is replaced with pL0/Tp , 1/Tp integer) and fermions correspond to Tp = 1 whereas
Tp = 1/n, n > 1, seems to be the only reasonable choice for gauge bosons.

2. p-Adic thermodynamics forces to conclude that CP2 radius is essentially the p-adic length scale
R ∼ L and thus of order R ' 103.5

√
~G and therefore roughly 103.5 times larger than the naive

guess. Hence p-adic thermodynamics describes the mixing of states with vanishing conformal
weights with their Super Kac-Moody Virasoro excitations having masses of order 10−3.5 Planck
mass.

16.1.3 What next?

The successes of p-adic mass calculations are basically due to the power of super-conformal symmetries
and of number theory. One cannot deny that the description of the Higgsy aspects of massivation
and of hadrons involves phenomenological elements. There are however excellent hopes that it might
be possible some day to calculate everything from first principles. The non-local Yangian symme-
try generalizing the super-conformal algebras suggests itself strongly as a fundamental symmetry of
quantum TGD. The generalized of the Yangian symmetry replaces points with partonic 2-surfaces
being multi-local with respect to them, and leads to general formulas for multi-local operators rep-
resenting four-momenta and other conserved charges of composite states. In TGD framework even
elementary particles involve two wormhole contacts having each two wormhole throats identified as the
fundamental partonic entities. Therefore Yangian approach would naturally define the first principle
approach to the understanding of masses of elementary particles and their bound states (say hadrons).
The power of this extended symmetry might be enough to deduce universal mass formulas. One of
the future challenges would therefore be the mathematical and physical understanding of Yangian
symmetry. This would however require the contributions of professional mathematicians.

16.2 Identification of elementary particles

16.2.1 Partons as wormhole throats and particles as bound states of worm-
hole contacts

The assumption that partonic 2-surfaces correspond to representations of Super Virasoro algebra has
been an unchallenged assumption of the p-adic mass calculations for a long time although one might
argue that these objects do not possess stringy characteristics, in particular they do not possess two
ends. The progress in the understanding of the modified Dirac equation and the introduction of the
weak form of electric magnetic duality [31] however forces to modify the picture about the origin of
the string mass spectrum.

1. The weak form of electric-magnetic duality, the basic facts about modified Dirac equation and the
proposed twistorialization of quantum TGD [99] force to conclude that both strings and bosons
and their super-counterparts emerge from massless fermions moving collinearly at partonic two-
surfaces. Stringy mass spectrum is consistent with this only if p-adic thermodynamics describes
wormhole contacts as analogs of stringy objects having quantum numbers at the throats playing
the role of string ends. For instance, the three-momenta of massless wormhole throats could be in
opposite direction so that wormhole contact would become massive. The fundamental string like
objects would therefore correspond to the wormhole contacts with size scale of order CP2 length.
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Already these objects must have a correct correlation between color and electroweak quantum
numbers. The colored super-generators taking care that anomalous color is compensated can
be assigned with purely bosonic quanta associated with the wormhole throats which carry no
fermion number.

2. Second modification comes from the necessity to assume weak confinement in the sense that each
wormhole throat carrying fermionic numbers is accompanied by a second wormhole throat car-
rying neutrino pair cancelling the net weak isospin so that only electromagnetic charge remains
unscreened. This screening must take place in weak length scale so that ordinary elementar
particles are predicted to be string like objects. This string tension has however nothing to do
with the fundamental string tension responsible for the mass spectrum. This picture is forced
also by the fact that fermionic wormhole throats necessarily carry Kähler magnetic charge [31]
so that in the case of leptons the second wormhole throat must carry a compensating Kähler
magnetic charge. In the case of quarks one can consider the possibility that magnetic charges
are not neutralized completely in weak scale and that the compensation occurs in QCD length
scale so that Kähler magnetic confinement would accompany color confinement. This means
color magnetic confinement since classical color gauge fields are proportional to induced Kähler
field.

These modifications do not seem to appreciably affect the results of calculations, which depend
only on the number of tensor factors in super Virasoro representation, they are not taken explicitly
into account in the calculations. The predictions of the general theory are consistent with the earliest
mass calculations, and the earlier ad hoc parameters disappear. In particular, optimal lowest order
predictions for the charged lepton masses are obtained and photon, gluon and graviton appear as
essentially massless particles. What is new is the possibility to describe the massivation of gauge
bosons by including the contribution from the string tension of weak string like objects: weak boson
masses have indeed been the trouble makers and have forced to conclude that Higgs expectation might
be needed unless some other mechanism contributes to the conformal vacuum weight of the ground
state.

16.2.2 Family replication phenomenon topologically

One of the basic ideas of TGD approach has been genus-generation correspondence: boundary com-
ponents of the 3-surface should be carriers of elementary particle numbers and the observed particle
families should correspond to various boundary topologies.

With the advent of zero energy ontology this picture changed somewhat. It is the wormhole
throats identified as light-like 3-surfaces at with the induced metric of the space-time surface changes
its signature from Minkowskian to Euclidian, which correspond to the light-like orbits of partonic
2-surfaces. One cannot of course exclude the possibility that also boundary components could allow
to satisfy boundary conditions without assuming vacuum extremal property of nearby space-time
surface. The intersections of the wormhole throats with the light-like boundaries of causal diamonds
(CDs) identified as intersections of future and past directed light cones (CD × CP2 is actually in
question but I will speak about CDs) define special partonic 2-surfaces and it is the moduli of these
partonic 2-surfaces which appear in the elementary particle vacuum functionals naturally.

The first modification of the original simple picture comes from the identification of physical
particles as bound states of pairs of wormhole contacts and from the assumption that for generalized
Feynman diagrams stringy trouser vertices are replaced with vertices at which the ends of light-like
wormhole throats meet. In this picture the interpretation of the analog of trouser vertex is in terms of
propagation of same particle along two different paths. This interpretation is mathematically natural
since vertices correspond to 2-manifolds rather than singular 2-manifolds which are just splitting to
two disjoint components. Second complication comes from the weak form of electric-magnetic duality
forcing to identify physical particles as weak strings with magnetic monopoles at their ends and one
should understand also the possible complications caused by this generalization.

These modifications force to consider several options concerning the identification of light fermions
and bosons and one can end up with a unique identification only by making some assumptions.
Masslessness of all wormhole throats- also those appearing in internal lines- and dynamical SU(3)
symmetry for particle generations are attractive general enough assumptions of this kind. This means
that bosons and their super-partners correspond to wormhole contacts with fermion and antifermion
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at the throats of the contact. Free fermions and their superpartners could correspond to CP2 type
vacuum extremals with single wormhole throat. It turns however that dynamical SU(3) symmetry
forces to identify massive (and possibly topologically condensed) fermions as (g, g) type wormhole
contacts.

Do free fermions correspond to single wormhole throat or (g, g) wormhole?

The original interpretation of genus-generation correspondence was that free fermions correspond to
wormhole throats characterized by genus. The idea of SU(3) as a dynamical symmetry suggested that
gauge bosons correspond to octet and singlet representations of SU(3). The further idea that all lines
of generalized Feynman diagrams are massless poses a strong additional constraint and it is not clear
whether this proposal as such survives.

1. Twistorial program assumes that fundamental objects are massless wormhole throats carry-
ing collinearly moving many-fermion states and also bosonic excitations generated by super-
symplectic algebra. In the following consideration only purely bosonic and single fermion throats
are considered since they are the basic building blocks of physical particles. The reason is that
propagators for high excitations behave like p−n, n the number of fermions associated with the
wormhole throat. Therefore single throat allows only spins 0,1/2,1 as elementary particles in
the usual sense of the word.

2. The identification of massive fermions (as opposed to free massless fermions) as wormhole con-
tacts follows if one requires that fundamental building blocks are massless since at least two
massless throats are required to have a massive state. Therefore the conformal excitations with
CP2 mass scale should be assignable to wormhole contacts also in the case of fermions. As
already noticed this is not the end of the story: weak strings are required by the weak form of
electric-magnetic duality.

3. If free fermions corresponding to single wormhole throat, topological condensation is an essential
element of the formation of stringy states. The topological condensation of fermions by topolog-
ical sum (fermionic CP2 type vacuum extremal touches another space-time sheet) suggest (g, 0)
wormhole contact. Note however that the identification of wormhole throat is as 3-surface at
which the signature of the induced metric changes so that this conclusion might be wrong. One
can indeed consider also the possibility of (g, g) pairs as an outcome of topological conensation.
This is suggested also by the idea that wormhole throats are analogous to string like objects
and only this option turns out to be consistent with the BFF vertex based on the require-
ment of dynamical SU(3) symmetry to be discussed later. The structure of reaction vertices
makes it possible to interpret (g, g) pairs as SU(3) triplet. If bosons are obtained as fusion of
fermionic and antifermionic throats (touching of corresponding CP2 type vacuum extremals)
they correspond naturally to (g1, g2) pairs.

4. p-Adic mass calculations distinguish between fermions and bosons and the identification of
fermions and bosons should be consistent with this difference. The maximal p-adic temperature
T = 1 for fermions could relate to the weakness of the interaction of the fermionic wormhole
throat with the wormhole throat resulting in topological condensation. This wormhole throat
would however carry momentum and 3-momentum would in general be non-parallel to that of
the fermion, most naturally in the opposite direction.

p-Adic mass calculations suggest strongly that for bosons p-adic temperature T = 1/n, n > 1, so
that thermodynamical contribution to the mass squared is negligible. The low p-adic tempera-
ture could be due to the strong interaction between fermionic and antifermionic wormhole throat
leading to the ”freezing” of the conformal degrees of freedom related to the relative motion of
wormhole throats.

5. The weak form of electric-magnetic duality forces second wormhole throat with opposite mag-
netic charge and the light-like momenta could sum up to massive momentum. In this case string
tension corresponds to electroweak length scale. Therefore p-adic thermodynamics must be as-
signed to wormhole contacts and these appear as basic units connected by Kähler magnetic flux
tube pairs at the two space-time sheets involved. Weak stringy degrees of freedom are however
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expected to give additional contribution to the mass, perhaps by modifying the ground state
conformal weight.

Dynamical SU(3) fixes the identification of fermions and bosons and fundamental inter-
action vertices

For 3 light fermion families SU(3) suggests itself as a dynamical symmetry with fermions in funda-
mental N = 3-dimensional representation and N × N = 9 bosons in the adjoint representation and
singlet representation. The known gauge bosons have same couplings to fermionic families so that
they must correspond to the singlet representation. The first challenge is to understand whether it is
possible to have dynamical SU(3) at the level of fundamental reaction vertices.

This is a highly non-trivial constraint. For instance, the vertices in which n wormhole throats
with same (g1, g2) glued along the ends of lines are not consistent with this symmetry. The splitting
of the fermionic worm-hole contacts before the proper vertices for throats might however allow the
realization of dynamical SU(3). The condition of SU(3) symmetry combined with the requirement
that virtual lines resulting also in the splitting of wormhole contacts are always massless, leads to the
conclusion that massive fermions correspond to (g, g) type wormhole contacts transforming naturally
like SU(3) triplet. This picture conformsl with the identification of free fermions as throats but not
with the naive expectation that their topological condensation gives rise to (g, 0) wormhole contact.

The argument leading to these conclusions runs as follows.

1. The question is what basic reaction vertices are allowed by dynamical SU(3) symmetry. FFB
vertices are in principle all that is needed and they should obey the dynamical symmetry. The
meeting of entire wormhole contacts along their ends is certainly not possible. The splitting
of fermionic wormhole contacts before the vertices might be however consistent with SU(3)
symmetry. This would give two a pair of 3-vertices at which three wormhole lines meet along
partonic 2-surfaces (rather than along 3-D wormhole contacts).

2. Note first that crossing gives all possible reaction vertices of this kind from F (g1)F (g2) →
B(g1, g2) annihilation vertex, which is relatively easy to visualize. In this reaction F (g1) and
F (g2) wormhole contacts split first. If one requires that all wormhole throats involved are
massless, the two wormhole throats resulting in splitting and carrying no fermion number must
carry light-like momentum so that they cannot just disappear. The ends of the wormhole
throats of the boson must glued together with the end of the fermionic wormhole throat and
its companion generated in the splitting of the wormhole. This means that fermionic wormhole
first splits and the resulting throats meet at the partonic 2-surface.

his requires that topologically condensed fermions correspond to (g, g) pairs rather than (g, 0)
pairs. The reaction mechanism allows the interpretation of (g, g) pairs as a triplet of dynamical
SU(3). The fundamental vertices would be just the splitting of wormhole contact and 3-vertices
for throats since SU(3) symmetry would exclude more complex reaction vertices such as n-
boson vertices corresponding the gluing of n wormhole contact lines along their 3-dimensional
ends. The couplings of singlet representation for bosons would have same coupling to all fermion
families so that the basic experimental constraint would be satisfied.

3. Both fermions and bosons cannot correspond to octet and singlet of SU(3). In this case re-
action vertices should correspond algebraically to the multiplication of matrix elements eij :
eijekl = δjkeil allowing for instance F (g1, g2) + F (g2, g3) → B(g1, g3). Neither the fusion of
entire wormhole contacts along their ends nor the splitting of wormhole throats before the fu-
sion of partonic 2-surfaces allows this kind of vertices so that BFF vertex is the only possible
one. Also the construction of QFT limit starting from bosonic emergence led to the formula-
tion of perturbation theory in terms of Dirac action allowing only BFF vertex as fundamental
vertex [32] .

4. Weak electric-magnetic duality brings in an additional complication. SU(3) symmetry poses
also now strong constraints and it would seem that the reactions must involve copies of basic
BFF vertices for the pairs of ends of weak strings. The string ends with the same Kähler
magnetic charge should meet at the vertex and give rise to BFF vertices. For instance, FFB
annihilation vertex would in this manner give rise to the analog of stringy diagram in which
strings join along ends since two string ends disappear in the process.
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If one accepts this picture the remaining question is why the number of genera is just three. Could
this relate to the fact that g ≤ 2 Riemann surfaces are always hyper-elliptic (have global Z2 conformal
symmetry) unlike g > 2 surfaces? Why the complete bosonic de-localization of the light families
should be restricted inside the hyper-elliptic sector? Does the Z2 conformal symmetry make these
states light and make possible delocalization and dynamical SU(3) symmetry? Could it be that for
g > 2 elementary particle vacuum functionals vanish for hyper-elliptic surfaces? If this the case and if
the time evolution for partonic 2-surfaces changing g commutes with Z2 symmetry then the vacuum
functionals localized to g ≤ 2 surfaces do not disperse to g > 2 sectors.

The notion of elementary particle vacuum functional

Obviously one must know something about the dependence of the elementary particle state functionals
on the geometric properties of the boundary component and in the sequel an attempt to construct
what might be called elementary particle vacuum functionals, is made.

The basic assumptions underlying the construction are the following ones:

1. Elementary particle vacuum functionals depend on the geometric properties of the two-surface
X2 representing elementary particle.

2. Vacuum functionals possess extended Diff invariance: all 2-surfaces on the orbit of the 2-surface
X2 correspond to the same value of the vacuum functional. This condition is satisfied if vacuum
functionals have as their argument, not X2 as such, but some 2- surface Y 2 belonging to the
unique orbit of X2 (determined by the principle selecting preferred extremal of the Kähler action
as a generalized Bohr orbit [41] ) and determined in Diff3 invariant manner.

3. Zero energy ontology allows to select uniquely the partonic two surface as the intersection of the
wormhole throat at which the signature of the induced 4-metric changes with either the upper
or lower boundary of CD×CP2. This is essential since otherwise one one could not specify the
vacuum functional uniquely.

4. Vacuum functionals possess conformal invariance and therefore for a given genus depend on a
finite number of variables specifying the conformal equivalence class of Y 2.

5. Vacuum functionals satisfy the cluster decomposition property: when the surface Y 2 degenerates
to a union of two disjoint surfaces (particle decay in string model inspired picture), vacuum
functional decomposes into a product of the vacuum functionals associated with disjoint surfaces.

6. Elementary particle vacuum functionals are stable against the decay g → g1 + g2 and one
particle decay g → g − 1. This process corresponds to genuine particle decay only for stringy
diagrams. For generalized Feynman diagrams the interpretation is in terms of propagation along
two different paths simultaneously.

In [22] the construction of elementary particle vacuum functionals is described in more detail.
This requires some basic concepts related to the description of the space of the conformal equivalence
classes of Riemann surfaces and the concept of hyper-ellipticity. Since theta functions will play a
central role in the construction of the vacuum functionals, also their basic properties are needed. Also
possible explanations for the experimental absence of the higher fermion families are considered.

16.2.3 Basic facts about Riemann surfaces

In the following some basic aspects about Riemann surfaces will be summarized. The basic topological
concepts, in particular the concept of the mapping class group, are introduced, and the Teichmueller
parameters are defined as conformal invariants of the Riemann surface, which in fact specify the
conformal equivalence class of the Riemann surface completely.

Mapping class group

The first homology group H1(X2) of a Riemann surface of genus g contains 2g generators [47, 83, 108]
: this is easy to understand geometrically since each handle contributes two homology generators.
The so called canonical homology basis can be identified as in Fig. 16.2.3.
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Figure 16.1: Definition of the canonical homology basis

One can define the so called intersection number J(a, b) for two elements a and b of the homology
group as the number of intersection points for the curves a and b counting the orientation. Since
J(a, b) depends on the homology classes of a and b only, it defines an antisymmetric quadratic form in
H1(X2). In the canonical homology basis the non-vanishing elements of the intersection matrix are:

J(ai, bj) = −J(bj , ai) = δi,j . (16.2.1)

J clearly defines symplectic structure in the homology group.
The dual to the canonical homology basis consists of the harmonic one-forms αi, βi, i = 1, .., g on

X2. These 1-forms satisfy the defining conditions

∫
ai
αj = δi,j

∫
bi
αj = 0 ,∫

ai
βj = 0

∫
bi
βj = δi,j .

(16.2.2)

The following identity helps to understand the basic properties of the Teichmueller parameters

∫
X2

θ ∧ η =
∑

i=1,..,g

[

∫
ai

θ

∫
bi

η −
∫
bi

θ

∫
ai

η] . (16.2.3)

The existence of topologically nontrivial diffeomorphisms, when X2 has genus g > 0, plays an
important role in the sequel. Denoting by Diff the group of the diffeomorphisms of X2 and by Diff0

the normal subgroup of the diffeomorphisms homotopic to identity, one can define the mapping class
group M as the coset group

M = Diff/Diff0 . (16.2.4)



16.2. Identification of elementary particles 1359

Figure 16.2: Definition of the Dehn twist

The generators of M are so called Dehn twists along closed curves a of X2. Dehn twist is defined by
excising a small tubular neighborhood of a, twisting one boundary of the resulting tube by 2π and
gluing the tube back into the surface: see Fig. 16.2.3.

It can be shown that a minimal set of generators is defined by the following curves

a1, b1, a
−1
1 a−1

2 , a2, b2, a
−1
2 a−11

3 , ..., ag, bg . (16.2.5)

The action of these transformations in the homology group can be regarded as a symplectic linear
transformation preserving the symplectic form defined by the intersection matrix. Therefore the
matrix representing the action of Diff on H1(X2) is 2g × 2g matrix M with integer entries leaving
J invariant: MJMT = J . Mapping class group is often referred also as a symplectic modular group
and denoted by Sp(2g, Z). The matrix representing the action of M in the canonical homology basis
decomposes into four g × g blocks A,B,C and D

M =

(
A B
C D

)
, (16.2.6)

where A and D operate in the subspaces spanned by the homology generators ai and bi respectively
and C and D map these spaces to each other. The notation D = [A,B;C,D] will be used in the
sequel: in this notation the representation of the symplectic form J is J = [0, 1;−1, 0].

Teichmueller parameters

The induced metric on the two-surface X2 defines a unique complex structure. Locally the metric can
always be written in the form

ds2 = e2φdzdz̄ . (16.2.7)

where z is local complex coordinate. When one covers X2 by coordinate patches, where the line
element has the above described form, the transition functions between coordinate patches are holo-
morphic and therefore define a complex structure.

The conformal transformations ξ of X2 are defined as the transformations leaving invariant the
angles between the vectors of X2 tangent space invariant: the angle between the vectors X and Y at
point x is same as the angle between the images of the vectors under Jacobian map at the image point
ξ(x). These transformations need not be globally defined and in each coordinate patch they correspond
to holomorphic (anti-holomorphic) mappings as is clear from the diagonal form of the metric in the
local complex coordinates. A distinction should be made between local conformal transformations
and globally defined conformal transformations, which will be referred to as conformal symmetries:
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for instance, for hyper-elliptic surfaces the group of the conformal symmetries contains two-element
group Z2.

Using the complex structure one can decompose one-forms to linear combinations of one-forms
of type (1, 0) (f(z, z̄)dz) and (0, 1) (f(z, z̄)dz̄). (1, 0) form ω is holomorphic if the function f is
holomorphic: ω = f(z)dz on each coordinate patch.

There are g independent holomorphic one forms ωi known also as Abelian differentials of the first
kind [47, 83, 108] and one can fix their normalization by the condition

∫
ai

ωj = δij . (16.2.8)

This condition completely specifies ωi.
Teichmueller parameters Ωij are defined as the values of the forms ωi for the homology generators

bj

Ωij =

∫
bj

ωi . (16.2.9)

The basic properties of Teichmueller parameters are the following:
i) The g × g matrix Ω is symmetric: this is seen by applying the formula (16.2.3) for θ = ωi and
η = ωj .
ii) The imaginary part of Ω is positive: Im(Ω) > 0. This is seen by the application of the same
formula for θ = η. The space of the matrices satisfying these conditions is known as Siegel upper half
plane.
iii) The space of Teichmueller parameters can be regarded as a coset space Sp(2g,R)/U(g) [108] : the
action of Sp(2g,R) is of the same form as the action of Sp(2g, Z) and U(g) ⊂ Sp(2g,R) is the isotropy
group of a given point of Teichmueller space.
iv) Teichmueller parameters are conformal invariants as is clear from the holomorphy of the defining
one-forms.
v) Teichmueller parameters specify completely the conformal structure of Riemann surface [83] .

Although Teichmueller parameters fix the conformal structure of the 2-surface completely, they
are not in one-to-one correspondence with the conformal equivalence classes of the two-surfaces:
i) The dimension for the space of the conformal equivalence classes is D = 3g − 3, when g > 1 and
smaller than the dimension of Teichmueller space given by d = (g × g + g)/2 for g > 3: all Teich-
mueller matrices do not correspond to a Riemann surface. In TGD approach this does not produce
any problems as will be found later.
ii) The action of the topologically nontrivial diffeomorphisms on Teichmueller parameters is nontriv-
ial and can be deduced from the action of the diffeomorphisms on the homology (Sp(2g, Z) trans-
formation) and from the defining condition

∫
ai
ωj = δi,j : diffeomorphisms correspond to elements

[A,B;C,D] of Sp(2g, Z) and act as generalized Möbius transformations

Ω→ (AΩ +B)(CΩ +D)−1 . (16.2.10)

All Teichmueller parameters related by Sp(2g, Z) transformations correspond to the same Riemann
surface.
iii) The definition of the Teichmueller parameters is not unique since the definition of the canonical
homology basis involves an arbitrary numbering of the homology basis. The permutation S of the
handles is represented by same g × g orthogonal matrix both in the basis {ai} and {bi} and induces
a similarity transformation in the space of the Teichmueller parameters

Ω→ SΩS−1 . (16.2.11)

Clearly, the Teichmueller matrices related by a similarity transformations correspond to the same con-
formal equivalence class. It is easy to show that handle permutations in fact correspond to Sp(2g, Z)
transformations.
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Hyper-ellipticity

The motivation for considering hyper-elliptic surfaces comes from the fact, that g > 2 elementary
particle vacuum functionals turn out to be vanishing for hyper-elliptic surfaces and this in turn will
be later used to provide a possible explanation the non-observability of g > 2 particles.

Hyper-elliptic surface X can be defined abstractly as two-fold branched cover of the sphere having
the group Z2 as the group of conformal symmetries (see [45, 83, 108] . Thus there exists a map
π : X → S2 so that the inverse image π−1(z) for a given point z of S2 contains two points except
at a finite number (say p) of points zi (branch points) for which the inverse image contains only one
point. Z2 acts as conformal symmetries permuting the two points in π−1(z) and branch points are
fixed points of the involution.

The concept can be generalized [45] : g-hyper-elliptic surface can be defined as a 2-fold covering of
genus g surface with a finite number of branch points. One can consider also p-fold coverings instead
of 2-fold coverings: a common feature of these Riemann surfaces is the existence of a discrete group
of conformal symmetries.

A concrete representation for the hyper-elliptic surfaces [108] is obtained by studying the surface
of C2 determined by the algebraic equation

w2 − Pn(z) = 0 , (16.2.12)

where w and z are complex variables and Pn(z) is a complex polynomial. One can solve w from the
above equation

w± = ±
√
Pn(z) , (16.2.13)

where the square root is determined so that it has a cut along the positive real axis. What happens
that w has in general two roots (two-fold covering property), which coincide at the roots zi of Pn(z)
and if n is odd, also at z =∞: these points correspond to branch points of the hyper-elliptic surface
and their number r is always even: r = 2k. w is discontinuous at the cuts associated with the square
root in general joining two roots of Pn(z) or if n is odd, also some root of Pn and the point z = ∞.
The representation of the hyper-elliptic surface is obtained by identifying the two branches of w along
the cuts. From the construction it is clear that the surface obtained in this manner has genus k − 1.
Also it is clear that Z2 permutes the different roots w± with each other and that r = 2k branch points
correspond to fixed points of the involution.

The following facts about the hyper-elliptic surfaces [83, 108] turn out to be important in the
sequel:
i) All g < 3 surfaces are hyper-elliptic.
ii) g ≥ 3 hyper-elliptic surfaces are not in general hyper-elliptic and form a set of codimension 2 in
the space of the conformal equivalence classes [108] .

Theta functions

An extensive and detailed account of the theta functions and their applications can be found in the
book of Mumford [108] . Theta functions appear also in the loop calculations of string [9] [47] . In the
following the so called Riemann theta function and theta functions with half integer characteristics
will be defined as sections (not strictly speaking functions) of the so called Jacobian variety.

For a given Teichmueller matrix Ω, Jacobian variety is defined as the 2g-dimensional torus obtained
by identifying the points z of Cg ( vectors with g complex components) under the equivalence

z ∼ z + Ωm+ n , (16.2.14)

where m and n are points of Zg (vectors with g integer valued components) and Ω acts in Zg by
matrix multiplication.

The definition of Riemann theta function reads as
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Θ(z|Ω) =
∑
n

exp(iπn · Ω · n+ i2πn · z) . (16.2.15)

Here · denotes standard inner product in Cg. Theta functions with half integer characteristics are
defined in the following manner. Let a and b denote vectors of Cg with half integer components
(component either vanishes or equals to 1/2). Theta function with characteristics [a, b] is defined
through the following formula

Θ[a, b](z|Ω) =
∑
n

exp [iπ(n+ a) · Ω · (n+ a) + i2π(n+ a) · (z + b)] .

(16.2.16)

A brief calculation shows that the following identity is satisfied

Θ[a, b](z|Ω) = exp(iπa · Ω · a+ i2πa · b)×Θ(z + Ωa+ b|Ω)

(16.2.17)

Theta functions are not strictly speaking functions in the Jacobian variety but rather sections in an
appropriate bundle as can be seen from the identities

Θ[a, b](z +m|Ω) = exp(i2πa ·m)Θ[a, b](zΩ) ,

Θ[a, b](z + Ωm|Ω) = exp(α)Θ[a, b](z|Ω) ,

exp(α) = exp(−i2πb ·m)exp(−iπm · Ω ·m− 2πm · z) .

(16.2.18)

The number of theta functions is 22g and same as the number of nonequivalent spinor structures
defined on two-surfaces. This is not an accident [47] : theta functions with given characteristics turn
out to be in a close relation to the functional determinants associated with the Dirac operators defined
on the two-surface. It is useful to divide the theta functions to even and odd theta functions according
to whether the inner product 4a·b is even or odd integer. The numbers of even and odd theta functions
are 2g−1(2g + 1) and 2g−1(2g − 1) respectively.

The values of the theta functions at the origin of the Jacobian variety understood as functions of
Teichmueller parameters turn out to be of special interest in the following and the following notation
will be used:

Θ[a, b](Ω) ≡ Θ[a, b](0|Ω) , (16.2.19)

Θ[a, b](Ω) will be referred to as theta functions in the sequel. From the defining properties of odd
theta functions it can be found that they are odd functions of z and therefore vanish at the origin of
the Jacobian variety so that only even theta functions will be of interest in the sequel.

An important result is that also some even theta functions vanish for g > 2 hyper-elliptic surfaces
: in fact one can characterize g > 2 hyper-elliptic surfaces by the vanishing properties of the theta
functions [83, 108] . The vanishing property derives from conformal symmetry (Z2 in the case of hyper-
elliptic surfaces) and the vanishing phenomenon is rather general [45] : theta functions tend to vanish
for Riemann surfaces possessing discrete conformal symmetries. It is not clear (to the author) whether
the presence of a conformal symmetry is in fact equivalent with the vanishing of some theta functions.
As already noticed, spinor structures and the theta functions with half integer characteristics are in
one-to-one correspondence and the vanishing of theta function with given half integer characteristics
is equivalent with the vanishing of the Dirac determinant associated with the corresponding spinor
structure or equivalently: with the existence of a zero mode for the Dirac operator [47] . For odd
characteristics zero mode exists always: for even characteristics zero modes exist, when the surface is
hyper-elliptic or possesses more general conformal symmetries.
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16.2.4 Elementary particle vacuum functionals

The basic assumption is that elementary particle families correspond to various elementary particle
vacuum functionals associated with the 2-dimensional boundary components of the 3-surface. These
functionals need not be localized to a single boundary topology. Neither need their dependence on
the boundary component be local. An important role in the following considerations is played by
the fact that the minimization requirement of the Kähler action associates a unique 3-surface to each
boundary component, the ”Bohr orbit” of the boundary and this surface provides a considerable (and
necessarily needed) flexibility in the definition of the elementary particle vacuum functionals. There
are several natural constraints to be satisfied by elementary particle vacuum functionals.

Extended Diff invariance and Lorentz invariance

Extended Diff invariance is completely analogous to the extension of 3-dimensional Diff invariance to
four-dimensional Diff invariance in the interior of the 3-surface. Vacuum functional must be invariant
not only under diffeomorphisms of the boundary component but also under the diffeomorphisms of
the 3- dimensional ”orbit” Y 3 of the boundary component. In other words: the value of the vacuum
functional must be same for any time slice on the orbit the boundary component. This is guaranteed
if vacuum functional is functional of some two-surface Y 2 belonging to the orbit and defined in Diff3

invariant manner.
An additional natural requirement is Poincare invariance. In the original formulation of the theory

only Lorentz transformations of the light cone were exact symmetries of the theory. In this framework
the definition of Y 2 as the intersection of the orbit with the hyperboloid

√
mklmkml = a is Diff3

and Lorentz invariant.

1. Interaction vertices as generalization of stringy vertices

For stringy diagrams Poincare invariance of conformal equivalence class and general coordinate
invariance are far from being a trivial issues. Vertices are now not completely unique since there is an
infinite number of singular 3-manifolds which can be identified as vertices even if one assumes space-
likeness. One should be able to select a unique singular 3-manifold to fix the conformal equivalence
class.

One might hope that Lorentz invariant invariant and general coordinate invariant definition of Y 2

results by introducing light cone proper time a as a height function specifying uniquely the point at
which 3-surface is singular (stringy diagrams help to visualize what is involved), and by restricting the
singular 3-surface to be the intersection of a = constant hyperboloid of M4 containing the singular
point with the space-time surface. There would be non-uniqueness of the conformal equivalence class
due to the choice of the origin of the light cone but the decomposition of the configuration space of
3-surfaces to a union of configuration spaces characterized by unions of future and past light cones
could resolve this difficulty.

2. Interaction vertices as generalization of ordinary ones

If the interaction vertices are identified as intersections for the ends of space-time sheets repre-
senting particles, the conformal equivalence class is naturally identified as the one associated with the
intersection of the boundary component or light like causal determinant with the vertex. Poincare
invariance of the conformal equivalence class and generalized general coordinate invariance follow
trivially in this case.

Conformal invariance

Conformal invariance implies that vacuum functionals depend on the conformal equivalence class of
the surface Y 2 only. What makes this idea so attractive is that for a given genus g configuration
space becomes effectively finite-dimensional. A second nice feature is that instead of trying to find
coordinates for the space of the conformal equivalence classes one can construct vacuum functionals
as functions of the Teichmueller parameters.

That one can construct this kind of functions as suitable functions of the Teichmueller parameters
is not trivial. The essential point is that the boundary components can be regarded as submanifolds
of M4

+ × CP2: as a consequence vacuum functional can be regarded as a composite function:
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2-surface → Teichmueller matrix Ω determined by the induced metric → Ωvac(Ω)

Therefore the fact that there are Teichmueller parameters which do not correspond to any Riemann
surface, doesn’t produce any trouble. It should be noticed that the situation differs from that in the
Polyakov formulation of string models, where one doesn’t assume that the metric of the two-surface
is induced metric (although classical equations of motion imply this).

Diff invariance

Since several values of the Teichmueller parameters correspond to the same conformal equivalence
class, one must pose additional conditions on the functions of the Teichmueller parameters in order
to obtain single valued functions of the conformal equivalence class.

The first requirement of this kind is the invariance under topologically nontrivial Diff transfor-
mations inducing Sp(2g, Z) transformation (A,B;C,D) in the homology basis. The action of these
transformations on Teichmueller parameters is deduced by requiring that holomorphic one-forms sat-
isfy the defining conditions in the transformed homology basis. It turns out that the action of the
topologically nontrivial diffeomorphism on Teichmueller parameters can be regarded as a generalized
Möbius transformation:

Ω→ (AΩ +B)(CΩ +D)−1 . (16.2.20)

Vacuum functional must be invariant under these transformations. It should be noticed that the
situation differs from that encountered in the string models. In TGD the integration measure over
the configuration space is Diff invariant: in string models the integration measure is the integration
measure of the Teichmueller space and this is not invariant under Sp(2g, Z) but transforms like a
density: as a consequence the counterpart of the vacuum functional must be also modular covariant
since it is the product of vacuum functional and integration measure, which must be modular invariant.

It is possible to show that the quantities

(Θ[a, b]/Θ[c, d])4 . (16.2.21)

and their complex conjugates are Sp(2g, Z) invariants [108] and therefore can be regarded as basic
building blocks of the vacuum functionals.

Teichmueller parameters are not uniquely determined since one can always perform a permutation
of the g handles of the Riemann surface inducing a redefinition of the canonical homology basis
(permutation of g generators). These transformations act as similarities of the Teichmueller matrix:

Ω→ SΩS−1 , (16.2.22)

where S is the g × g matrix representing the permutation of the homology generators understood
as orthonormal vectors in the g- dimensional vector space. Therefore the Teichmueller parameters
related by these similarity transformations correspond to the same conformal equivalence class of the
Riemann surfaces and vacuum functionals must be invariant under these similarities.

It is easy to find out that these similarities permute the components of the theta characteristics:
[a, b] → [S(a), S(b)]. Therefore the invariance requirement states that the handles of the Riemann
surface behave like bosons: the vacuum functional constructed from the theta functions is invariant
under the permutations of the theta characteristics. In fact, this requirement brings in nothing new.
Handle permutations can be regarded as Sp(2g, Z) transformations so that the modular invariance
alone guarantees invariance under handle permutations.

Cluster decomposition property

Consider next the behavior of the vacuum functional in the limit, when boundary component with
genus g splits to two separate boundary components of genera g1 and g2 respectively. The splitting
into two separate boundary components corresponds to the reduction of the Teichmueller matrix Ωg

to a direct sum of g1 × g1 and g2 × g2 matrices (g1 + g2 = g):
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Ωg = Ωg1 ⊕ Ωg2 , (16.2.23)

when a suitable definition of the Teichmueller parameters is adopted. The splitting can also take place
without a reduction to a direct sum: the Teichmueller parameters obtained via Sp(2g, Z) transforma-
tion from Ωg = Ωg1 ⊕ Ωg2 do not possess direct sum property in general.

The physical interpretation is obvious: the non-diagonal elements of the Teichmueller matrix
describe the geometric interaction between handles and at this limit the interaction between the
handles belonging to the separate surfaces vanishes. On the physical grounds it is natural to require
that vacuum functionals satisfy cluster decomposition property at this limit: that is they reduce to
the product of appropriate vacuum functionals associated with the composite surfaces.

Theta functions satisfy cluster decomposition property [47, 108] . Theta characteristics reduce
to the direct sums of the theta characteristics associated with g1 and g2 (a = a1 ⊕ a2, b = b1 ⊕ b2)
and the dependence on the Teichmueller parameters is essentially exponential so that the cluster
decomposition property indeed results:

Θ[a, b](Ωg) = Θ[a1, b1](Ωg1)Θ[a2, b2](Ωg2) . (16.2.24)

Cluster decomposition property holds also true for the products of theta functions. This property
is also satisfied by suitable homogenous polynomials of thetas. In particular, the following quantity
playing central role in the construction of the vacuum functional obeys this property

Q0 =
∑
[a,b]

Θ[a, b]4Θ̄[a, b]4 , (16.2.25)

where the summation is over all even theta characteristics (recall that odd theta functions vanish at
the origin of Cg).

Together with the Sp(2g, Z) invariance the requirement of cluster decomposition property implies
that the vacuum functional must be representable in the form

Ωvac = PM,N (Θ4, Θ̄4)/QMN (Θ4, Θ̄4) (16.2.26)

where the homogenous polynomials PM,N and QM,N have same degrees (M and N as polynomials of
Θ[a, b]4 and Θ̄[a, b]4.

Finiteness requirement

Vacuum functional should be finite. Finiteness requirement is satisfied provided the numerator QM,N

of the vacuum functional is real and positive definite. The simplest quantity of this type is the quantity
Q0 defined previously and its various powers. Sp(2g, Z) invariance and finiteness requirement are
satisfied provided vacuum functionals are of the following general form

Ωvac =
PN,N (Θ4, Θ̄4)

QN0
, (16.2.27)

where PN,N is homogenous polynomial of degree N with respect to Θ[a, b]4 and Θ̄[a, b]4. In addition
PN,N is invariant under the permutations of the theta characteristics and satisfies cluster decomposi-
tion property.
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Stability against the decay g → g1 + g2

Elementary particle vacuum functionals must be stable against the genus conserving decays g →
g1 + g2. This decay corresponds to the limit at which Teichmueller matrix reduces to a direct sum
of the matrices associated with g1 and g2 (note however the presence of Sp(2g, Z) degeneracy). In
accordance with the topological description of the particle reactions one expects that this decay doesn’t
occur if the vacuum functional in question vanishes at this limit.

In general the theta functions are non-vanishing at this limit and vanish provided the theta char-
acteristics reduce to a direct sum of the odd theta characteristics. For g < 2 surfaces this condition
is trivial and gives no constraints on the form of the vacuum functional. For g = 2 surfaces the
theta function Θ(a, b), with a = b = (1/2, 1/2) satisfies the stability criterion identically (odd theta
functions vanish identically), when Teichmueller parameters separate into a direct sum. One can how-
ever perform Sp(2g, Z) transformations giving new points of Teichmueller space describing the decay.
Since these transformations transform theta characteristics in a nontrivial manner to each other and
since all even theta characteristics belong to same Sp(2g, Z) orbit [47, 108] , the conclusion is that
stability condition is satisfied provided g = 2 vacuum functional is proportional to the product of
fourth powers of all even theta functions multiplied by its complex conjugate.

If g > 2 there always exists some theta functions, which vanish at this limit and the minimal
vacuum functional satisfying this stability condition is of the same form as in g = 2 case, that is
proportional to the product of the fourth powers of all even Theta functions multiplied by its complex
conjugate:

Ωvac =
∏
[a,b]

Θ[a, b]4Θ̄[a, b]4/QN0 , (16.2.28)

where N is the number of even theta functions. The results obtained imply that genus-generation
correspondence is one to one for g > 1 for the minimal vacuum functionals. Of course, the multiplica-
tion of the minimal vacuum functionals with functionals satisfying all criteria except stability criterion
gives new elementary particle vacuum functionals: a possible physical identification of these vacuum
functionals is most naturally as some kind of excited states.

One of the questions posed in the beginning was related to the experimental absence of g > 0,
possibly massless, elementary bosons. The proposed stability criterion suggests a nice explanation.
The point is that elementary particles are stable against decays g → g1 + g2 but not with respect to
the decay g → g + sphere. As a consequence the direct emission of g > 0 gauge bosons is impossible
unlike the emission of g = 0 bosons: for instance the decay muon → electron +(g = 1) photon is
forbidden.

Stability against the decay g → g − 1

This stability criterion states that the vacuum functional is stable against single particle decay g →
g−1 and, if satisfied, implies that vacuum functional vanishes, when the genus of the surface is smaller
than g. In stringy framework this criterion is equivalent to a separate conservation of various lepton
numbers: for instance, the spontaneous transformation of muon to electron is forbidden. Notice that
this condition doesn’t imply that that the vacuum functional is localized to a single genus: rather the
vacuum functional of genus g vanishes for all surfaces with genus smaller than g. This hierarchical
structure should have a close relationship to Cabibbo-Kobayashi-Maskawa mixing of the quarks.

The stability criterion implies that the vacuum functional must vanish at the limit, when one of
the handles of the Riemann surface suffers a pinch. To deduce the behavior of the theta functions at
this limit, one must find the behavior of Teichmueller parameters, when i:th handle suffers a pinch.
Pinch implies that a suitable representative of the homology generator ai or bi contracts to a point.

Consider first the case, when ai contracts to a point. The normalization of the holomorphic one-
form ωi must be preserved so that that ωi must behaves as 1/z, where z is the complex coordinate
vanishing at pinch. Since the homology generator bi goes through the pinch it seems obvious that
the imaginary part of the Teichmueller parameter Ωii =

∫
bi
ωi diverges at this limit (this conclusion

is made also in [108] ): Im(Ωii)→∞.
Of course, this criterion doesn’t cover all possible manners the pinch can occur: pinch might take

place also, when the components of the Teichmueller matrix remain finite. In the case of torus topology
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one finds that Sp(2g, Z) element (A,B;C,D) takes Im(Ω) = ∞ to the point C/D of real axis. This
suggests that pinch occurs always at the boundary of the Teichmueller space: the imaginary part of
Ωij either vanishes or some matrix element of Im(Ω) diverges.

Consider next the situation, when bi contracts to a point. From the definition of the Teichmueller
parameters it is clear that the matrix elements Ωkl, with k, l 6= i suffer no change. The matrix element
Ωki obviously vanishes at this limit. The conclusion is that i:th row of Teichmueller matrix vanishes
at this limit. This result is obtained also by deriving the Sp(2g, Z) transformation permuting ai and
bi with each other: in case of torus this transformation reads Ω→ −1/Ω.

Consider now the behavior of the theta functions, when pinch occurs. Consider first the limit, when
Im(Ωii) diverges. Using the general definition of Θ[a, b] it is easy to find out that all theta functions
for which the i:th component ai of the theta characteristic is non-vanishing (that is ai = 1/2) are
proportional to the exponent exp(−πΩii/4) and therefore vanish at the limit. The theta functions
with ai = 0 reduce to g−1 dimensional theta functions with theta characteristic obtained by dropping
i:th components of ai and bi and replacing Teichmueller matrix with Teichmueller matrix obtained
by dropping i:th row and column. The conclusion is that all theta functions of type Θ(a, b) with
a = (1/2, 1/2, ...., 1/2) satisfy the stability criterion in this case.

What happens for the Sp(2g, Z) transformed points on the real axis? The transformation formula
for theta function is given by [47, 108]

Θ[a, b]((AΩ +B)(CΩ +D)−1) = exp(iφ)det(CΩ +D)1/2Θ[c, d](Ω) ,

(16.2.29)

where

(
c
d

)
=

(
A B
C D

)((
a
b

)
−
(

(CDT )d/2
(ABT )d/2

))
.

(16.2.30)

Here φ is a phase factor irrelevant for the recent purposes and the index d refers to the diagonal part
of the matrix in question.

The first thing to notice is the appearance of the diverging square root factor, which however disap-
pears from the vacuum functionals (P and Q have same degree with respect to thetas). The essential
point is that theta characteristics transform to each other: as already noticed all even theta character-
istics belong to the same Sp(2g, Z) orbit. Therefore the theta functions vanishing at Im(Ωii) =∞ do
not vanish at the transformed points. It is however clear that for a given Teichmueller parametrization
of pinch some theta functions vanish always.

Similar considerations in the case Ωik = 0, i fixed, show that all theta functions with b =
(1/2, ...., 1/2) vanish identically at the pinch. Also it is clear that for Sp(2g, Z) transformed points
one can always find some vanishing theta functions. The overall conclusion is that the elementary
particle vacuum functionals obtained by using g → g1 + g2 stability criterion satisfy also g → g − 1
stability criterion since they are proportional to the product of all even theta functions. Therefore
the only nontrivial consequence of g → g− 1 criterion is that also g = 1 vacuum functionals are of the
same general form as g > 1 vacuum functionals.

A second manner to deduce the same result is by restricting the consideration to the hyper-elliptic
surfaces and using the representation of the theta functions in terms of the roots of the polynomial
appearing in the definition of the hyper-elliptic surface [108] . When the genus of the surface is smaller
than three (the interesting case), this representation is all what is needed since all surfaces of genus
g < 3 are hyper-elliptic.

Since hyper-elliptic surfaces can be regarded as surfaces obtained by gluing two compactified
complex planes along the cuts connecting various roots of the defining polynomial it is obvious that
the process g → g − 1 corresponds to the limit, when two roots of the defining polynomial coincide.
This limit corresponds either to disappearance of a cut or the fusion of two cuts to a single cut. Theta
functions are expressible as the products of differences of various roots (Thomae’s formula [108] )

Θ[a, b]4 ∝
∏

i<j∈T
(zi − zj)

∏
k<l∈CT

(zk − zl) , (16.2.31)
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where T denotes some subset of {1, 2, ..., 2g} containing g+1 elements and CT its complement. Hence
the product of all even theta functions vanishes, when two roots coincide. Furthermore, stability
criterion is satisfied only by the product of the theta functions.

Lowest dimensional vacuum functionals are worth of more detailed consideration.
i) g = 0 particle family corresponds to a constant vacuum functional: by continuity this vacuum
functional is constant for all topologies.
ii) For g = 1 the degree of P and Q as polynomials of the theta functions is 24: the critical number
of transversal degrees of freedom in bosonic string model! Probably this result is not an accident.
ii) For g = 2 the corresponding degree is 80 since there are 10 even genus 2 theta functions.

There are large numbers of vacuum functionals satisfying the relevant criteria, which do not satisfy
the proposed stability criteria. These vacuum functionals correspond either to many particle states
or to unstable single particle states.

Continuation of the vacuum functionals to higher genus topologies

From continuity it follows that vacuum functionals cannot be localized to single boundary topology.
Besides continuity and the requirements listed above, a natural requirement is that the continuation
of the vacuum functional from the sector g to the sector g + k reduces to the product of the original
vacuum functional associated with genus g and g = 0 vacuum functional at the limit when the surface
with genus g + k decays to surfaces with genus g and k: this requirement should guarantee the
conservation of separate lepton numbers although different boundary topologies suffer mixing in the
vacuum functional. These requirements are satisfied provided the continuation is constructed using
the following rule:

Perform the replacement

Θ[a, b]4 →
∑
c,d

Θ[a⊕ c, b⊕ d]4 (16.2.32)

for each fourth power of the theta function. Here c and d are Theta characteristics associated with a
surface with genus k. The same replacement is performed for the complex conjugates of the theta func-
tion. It is straightforward to check that the continuations of elementary particle vacuum functionals
indeed satisfy the cluster decomposition property and are continuous.

To summarize, the construction has provided hoped for answers to some questions stated in the
beginning: stability requirements explain the separate conservation of lepton numbers and the exper-
imental absence of g > 0 elementary bosons. What has not not been explained is the experimental
absence of g > 2 fermion families. The vanishing of the g > 2 elementary particle vacuum functionals
for the hyper-elliptic surfaces however suggest a possible explanation: under some conditions on the
surface X2 the surfaces Y 2 are hyper-elliptic or possess some conformal symmetry so that elementary
particle vacuum functionals vanish for them. This conjecture indeed might make sense since the sur-
faces Y 2 are determined by the asymptotic dynamics and one might hope that the surfaces Y 2 are
analogous to the final states of a dissipative system.

16.2.5 Explanations for the absence of the g > 2 elementary particles from
spectrum

The decay properties of the intermediate gauge bosons [37] are consistent with the assumption that
the number of the light neutrinos is N = 3. Also cosmological considerations pose upper bounds on
the number of the light neutrino families and N = 3 seems to be favored [37]. It must be however
emphasized that p-adic considerations [53] encourage the consideration the existence of higher genera
with neutrino masses such that they are not produced in the laboratory at present energies. In any
case, for TGD approach the finite number of light fermion families is a potential difficulty since genus-
generation correspondence suggests that the number of the fermion (and possibly also boson) families
is infinite. Therefore one had better to find a good argument showing that the number of the observed
neutrino families, or more generally, of the observed elementary particle families, is small also in the
world described by TGD.

It will be later found that also TGD inspired cosmology requires that the number of the effectively
massless fermion families must be small after Planck time. This suggests that boundary topologies
with handle number g > 2 are unstable and/or very massive so that they, if present in the spectrum,
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disappear from it after Planck time, which correspond to the value of the light cone proper time
a ' 10−11 seconds.

In accordance with the spirit of TGD approach it is natural to wonder whether some geometric
property differentiating between g > 2 and g < 3 boundary topologies might explain why only g < 3
boundary components are observable. One can indeed find a good candidate for this kind of property:
namely hyper-ellipticity, which states that Riemann surface is a two-fold branched covering of sphere
possessing two-element group Z2 as conformal automorphisms. All g < 3 Riemann surfaces are hyper-
elliptic unlike g > 2 Riemann surfaces, which in general do not posses this property. Thus it is natural
to consider the possibility that hyper-ellipticity or more general conformal symmetries might explain
why only g < 2 topologies correspond to the observed elementary particles.

As regards to the present problem the crucial observation is that some even theta functions vanish
for the hyper-elliptic surfaces with genus g > 2 [108] . What is essential is that these surfaces have
the group Z2 as conformal symmetries. Indeed, the vanishing phenomenon is more general. Theta
functions tend to vanish for g > 2 two-surfaces possessing discrete group of conformal symmetries [45]
: for instance, instead of sphere one can consider branched coverings of higher genus surfaces.

From the general expression of the elementary particle vacuum functional it is clear that elementary
particle vacuum functionals vanish, when Y 2 is hyper-elliptic surface with genus g > 2 and one might
hope that this is enough to explain why the number of elementary particle families is three.

Hyper-ellipticity implies the separation of g ≤ 2 and g > 2 sectors to separate worlds

If the vertices are defined as intersections of space-time sheets of elementary particles and if elementary
particle vacuum functionals are required to have Z2 symmetry, the localization of elementary particle
vacuum functionals to g ≤ 2 topologies occurs automatically. Even if one allows as limiting case
vertices for which 2-manifolds are pinched to topologies intermediate between g > 2 and g ≤ 2
topologies, Z2 symmetry present for both topological interpretations implies the vanishing of this
kind of vertices. This applies also in the case of stringy vertices so that also particle propagation
would respect the effective number of particle families. g > 2 and g ≤ 2 topologies would behave
much like their own worlds in this approach. This is enough to explain the experimental findings if
one can understand why the g > 2 particle families are absent as incoming and outgoing states or are
very heavy.

What about g > 2 vacuum functionals which do not vanish for hyper-elliptic surfaces?

The vanishing of all g ≥ 2 vacuum functionals for hyper-elliptic surfaces cannot hold true generally.
There must exist vacuum functionals which do satisfy this condition. This suggest that elementary
particle vacuum functionals for g > 2 states have interpretation as bound states of g handles and that
the more general states which do not vanish for hyper-elliptic surfaces correspond to many-particle
states composed of bound states g ≤ 2 handles and cannot thus appear as incoming and outgoing
states. Thus g > 2 elementary particles would decouple from g ≤ 2 states.

Should higher elementary particle families be heavy?

TGD predicts an entire hierarchy of scaled up variants of standard model physics for which particles
do not appear in the vertices containing the known elementary particles and thus behave like dark
matter [97] . Also g > 2 elementary particles would behave like dark matter and in principle there is
no absolute need for them to be heavy.

The safest option would be that g > 2 elementary particles are heavy and the breaking of Z2

symmetry for g ≥ 2 states could guarantee this. p-Adic considerations lead to a general mass formula
for elementary particles such that the mass of the particle is proportional to 1√

p [55] . Also the

dependence of the mass on particle genus is completely fixed by this formula. What remains however
open is what determines the p-adic prime associated with a particle with given quantum numbers. Of
course, it could quite well occur that p is much smaller for g > 2 genera than for g ≤ 2 genera.
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16.3 Non-topological contributions to particle masses from p-
adic thermodynamics

In TGD framework p-adic thermodynamics provides a microscopic theory of particle massivation in
the case of fermions. The idea is very simple. The mass of the particle results from a thermal mixing of
the massless states with CP2 mass excitations of super-conformal algebra. In p-adic thermodynamics
the Boltzmann weight exp(−E/T ) does not exist in general and must be replaced with pL0/Tp which
exists for Virasoro generator L0 if the inverse of the p-adic temperature is integer valued Tp = 1/n. The
expansion in powers of p converges extremely rapidly for physical values of p, which are rather large.
Therefore the three lowest terms in expansion give practically exact results. Thermal massivation
does not not necessarily lead to light states and this drops a large number of exotic states from the
spectrum of light particles. The partition functions of N-S and Ramond type representations are not
changed in TGD framework despite the fact that fermionic super generators carry fermion numbers
and are not Hermitian. Thus the practical calculations are relatively straightforward.

In free fermion picture the p-adic thermodynamics in the boson sector is for fermion-antifermion
states associated with the two throats of the bosonic wormhole. The question is whether the thermo-
dynamical mass squared is just the sum of the two independent fermionic contributions for Ramond
representations or should one use N-S type representation resulting as a tensor product of Ramond
representations.

The overall conclusion about p-adic mass calculations is that fermionic mass spectrum is predicted
in an excellent accuracy but that the thermal masses of the intermediate gauge bosons come 20-30
per cent to large for Tp = 1 and are completely negligible for Tp = 1/2. This forces to consider very
seriously the possibility that thermal contribution to the bosonic mass is negligible and that TGD
can, contrary to the original expectations, provide dynamical Higgs field as a fundamental field. The
identification of Higgs as wormhole contact would provide this field. The bound state character of
the boson states could be responsible for Tp < 1. For this option the Higgs contribution to fermion
masses would be negligible.

A more plausible option is based on the identification of the Higgs like contribution in terms of the
deviation of the ground state conformal weight from negative half integer. The negative ground state
conformal weights in turn correspond to the squares of the generalized eigenvalues of the modified
Dirac operator determined by the dynamics of Kähler action for preferred extremals.

A microscopic theory explaining the non-half integer contribution to the conformal weight follows
from the identification of the physical elementary particles in terms of pairs of wormhole contacts
with upper and lower throat pairs connected by Kähler magnetic flux tubes. This requires zero energy
ontology, weak form of electric-magnetic duality, and twistor approach as theoretical ingredients. This
gives also a nice connection with Higgs mechanism. TGD predicts scalar and pseudo scalar Higgs which
correspond to SU(2) triplet and singlet and therefore same representations of SU(2) as electroweak
gauge bosons. Higgs vacuum expectation is not needed and there are strong reasons to believe that
also gauge bosons regarded usually as massless receive a small mass and scalar Higgs boson disappears
completely from the spectrum. This could happen also for Higgsinos if they combine with gauginos to
form massive fermions. Only pseudo scalar Higgs and its super partner would remain in the spectrum
for this option unless they combine with possibly existing massless axial gauge bosons and their super
partners to form massive states.

16.3.1 Partition functions are not changed

One must write Super Virasoro conditions for Ln and both Gn and G†n rather than for Ln and Gn
as in the case of the ordinary Super Virasoro algebra, and it is a priori not at all clear whether the
partition functions for the Super Virasoro representations remain unchanged. This requirement is
however crucial for the construction to work at all in the fermionic sector, since even the slightest
changes for the degeneracies of the excited states can change light state to a state with mass of order
m0 in the p-adic thermodynamics.

Super conformal algebra

Super Virasoro algebra is generated by the bosonic the generators Ln (n is an integer valued index)
and by the fermionic generators Gr, where r can be either integer (Ramond) or half odd integer (NS).
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Gr creates quark/lepton for r > 0 and antiquark/antilepton for r < 0. For r = 0, G0 creates lepton
and its Hermitian conjugate anti-lepton. The defining commutation and anti-commutation relations
are the following:

[Lm, Ln] = (m− n)Lm+n +
c

2
m(m2 − 1)δm,−n ,

[Lm, Gr] = (
m

2
− r)Gm+r ,[

Lm, G
†
r

]
= (

m

2
− r)G†m+r ,

{Gr, G†s} = 2Lr+s +
c

3
(r2 − 1

4
)δm,−n ,

{Gr, Gs} = 0 ,

{G†r, G†s} = 0 . (16.3.1)

By the inspection of these relations one finds some results of a great practical importance.

1. For the Ramond algebra G0, G1 and their Hermitian conjugates generate the r ≥ 0, n ≥ 0 part
of the algebra via anti-commutations and commutations. Therefore all what is needed is to
assume that Super Virasoro conditions are satisfied for these generators in case that G0 and G†0
annihilate the ground state. Situation changes if the states are not annihilated by G0 and G†0
since then one must assume the gauge conditions for both L1, G1 and G†1 besides the mass shell

conditions associated with G0 and G†0, which however do not affect the number of the Super
Virasoro excitations but give mass shell condition and constraints on the state in the cm spin
degrees of freedom. This will be assumed in the following. Note that for the ordinary Super
Virasoro only the gauge conditions for L1 and G1 are needed.

2. NS algebra is generated by G1/2 and G3/2 and their Hermitian conjugates (note that G3/2 cannot
be expressed as the commutator of L1 and G1/2) so that only the gauge conditions associated
with these generators are needed. For the ordinary Super Virasoro only the conditions for G1/2

and G3/2 are needed.

Conditions guaranteing that partition functions are not changed

The conditions guaranteing the invariance of the partition functions in the transition to the modified
algebra must be such that they reduce the number of the excitations and gauge conditions for a given
conformal weight to the same number as in the case of the ordinary Super Virasoro.

1. The requirement that physical states are invariant under G ↔ G† corresponds to the charge
conjugation symmetry and is very natural. As a consequence, the gauge conditions for G and
G† are not independent and their number reduces by a factor of one half and is the same as in
the case of the ordinary Super Virasoro.

2. As far as the number of the thermal excitations for a given conformal weight is considered, the
only remaining problem are the operators GnG

†
n, which for the ordinary Super Virasoro reduce

to GnGn = L2n and do not therefore correspond to independent degrees of freedom. In present
case this situation is achieved only if one requires

(GnG
†
n −G†nGn)|phys〉 = 0 . (16.3.2)

It is not clear whether this condition must be posed separately or whether it actually follows
from the representation of the Super Virasoro algebra automatically.
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Partition function for Ramond algebra

Under the assumptions just stated, the partition function for the Ramond states not satisfying any
gauge conditions

Z(t) = 1 + 2t+ 4t2 + 8t3 + 14t4 + .... , (16.3.3)

which is identical to that associated with the ordinary Ramond type Super Virasoro.
For a Super Virasoro representation with N = 5 sectors, of main interest in TGD, one has

ZN (t) = ZN=5(t) =
∑

D(n)tn

= 1 + 10t+ 60t2 + 280t3 + ... . (16.3.4)

The degeneracies for the states satisfying gauge conditions are given by

d(n) = D(n)− 2D(n− 1) . (16.3.5)

corresponding to the gauge conditions for L1 and G1. Applying this formula one obtains for N = 5
sectors

d(0) = 1 , d(1) = 8 , d(2) = 40 , d(3) = 160 . (16.3.6)

The lowest order contribution to the p-adic mass squared is determined by the ratio

r(n) =
D(n+ 1)

D(n)
,

where the value of n depends on the effective vacuum weight of the ground state fermion. Light state
is obtained only provided the ratio is integer. The remarkable result is that for lowest lying states the
ratio is integer and given by

r(1) = 8 , r(2) = 5 , r(3) = 4 . (16.3.7)

It turns out that r(2) = 5 gives the best possible lowest order prediction for the charged lepton masses
and in this manner one ends up with the condition hvac = −3 for the tachyonic vacuum weight of
Super Virasoro.

Partition function for NS algebra

For NS representations the calculation of the degeneracies of the physical states reduces to the calcu-
lation of the partition function for a single particle Super Virasoro

ZNS(t) =
∑
n

z(n/2)tn/2 . (16.3.8)

Here z(n/2) gives the number of Super Virasoro generators having conformal weight n/2. For a
state with N active sectors (the sectors with a non-vanishing weight for a given ground state) the
degeneracies can be read from the N-particle partition function expressible as

ZN (t) = ZN (t) . (16.3.9)

Single particle partition function is given by the expression

Z(t) = 1 + t1/2 + t+ 2t3/2 + 3t2 + 4t5/2 + 5t3 + ... . (16.3.10)
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Using this representation it is an easy task to calculate the degeneracies for the operators of conformal
weight ∆ acting on a state having N active sectors.

One can also derive explicit formulas for the degeneracies and calculation gives

D(0, N) = 1 , D(1/2, N) = N ,

D(1, N) = N(N+1)
2 , D(3/2, N) = N

6 (N2 + 3N + 8) ,
D(2, N) = N

2 (N2 + 2N + 3) , D(5/2, N) = 9N(N − 1) ,
D(3, N) = 12N(N − 1) + 2N(N − 1) .

(16.3.11)

as a function of the conformal weight ∆ = 0, 1/2, ..., 3.
The number of states satisfying Super Virasoro gauge conditions created by the operators of a

conformal weight ∆, when the number of the active sectors is N , is given by

d(∆, N) = D(∆, N)−D(∆− 1/2, N)−D(∆− 3/2, N) . (16.3.12)

The expression derives from the observation that the physical states satisfying gauge conditions for
G1/2, G3/2 satisfy the conditions for all Super Virasoro generators. For Tp = 1 light bosons correspond
to the integer values of d(∆ + 1, N)/d(∆, N) in case that massless states correspond to thermal
excitations of conformal weight ∆: they are obtained for ∆ = 0 only (massless ground state). This
is what is required since the thermal degeneracy of the light boson ground state would imply a
corresponding factor in the energy density of the black body radiation at very high temperatures. For
the physically most interesting nontrivial case with N = 2 two active sectors the degeneracies are

d(0, 2) = 1 , d(1, 2) = 1 , d(2, 2) = 3 , d(3, 2) = 4 . (16.3.13)

N,∆ 0 1/2 1 3/2 2 5/2 3
2 1 1 1 3 3 4 4
3 1 2 3 9 11
4 1 3 5 19 26
5 1 4 10 24 150

Table 3. Degeneracies d(∆, N) of the operators satisfying NS type gauge conditions as a function
of the number N of the active sectors and of the conformal weight ∆ of the operator. Only those
degeneracies, which are needed in the mass calculation for bosons assuming that they correspond to
N-S representations are listed.

16.3.2 Fundamental length and mass scales

The basic difference between quantum TGD and super-string models is that the size of CP2 is not
of order Planck length but much larger: of order 103.5 Planck lengths. This conclusion is forced by
several consistency arguments, the mass scale of electron, and by the cosmological data allowing to
fix the string tension of the cosmic strings which are basic structures in TGD inspired cosmology.

The relationship between CP2 radius and fundamental p-adic length scale

One can relate CP2 ’cosmological constant’ to the p-adic mass scale: for kL = 1 one has

m2
0 =

m2
1

kL
= m2

1 = 2Λ . (16.3.14)

kL = 1 results also by requiring that p-adic thermodynamics leaves charged leptons light and leads to
optimal lowest order prediction for the charged lepton masses. Λ denotes the ’cosmological constant’
of CP2 (CP2 satisfies Einstein equations Gαβ = Λgαβ with cosmological term).
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The real counterpart of the p-adic thermal expectation for the mass squared is sensitive to the
choice of the unit of p-adic mass squared which is by definition mapped as such to the real unit
in canonical identification. Thus an important factor in the p-adic mass calculations is the correct
identification of the p-adic mass squared scale, which corresponds to the mass squared unit and hence
to the unit of the p-adic numbers. This choice does not affect the spectrum of massless states but can
affect the spectrum of light states in case of intermediate gauge bosons.

1. For the choice

M2 = m2
0 ↔ 1 (16.3.15)

the spectrum of L0 is integer valued.

2. The requirement that all sufficiently small mass squared values for the color partial waves are
mapped to real integers, would fix the value of p-adic mass squared unit to

M2 =
m2

0

3
↔ 1 . (16.3.16)

For this choice the spectrum of L0 comes in multiples of 3 and it is possible to have a first order
contribution to the mass which cannot be of thermal origin (say m2 = p). This indeed seems to
happen for electro-weak gauge bosons.

p-Adic mass calculations allow to relate m0 to electron mass and to Planck mass by the formula

m0

mPl
=

1√
5 + Ye

× 2127/2 × me

mPl
,

mPl =
1√
~G

. (16.3.17)

For Ye = 0 this gives m0 = .2437× 10−3mPl.
This means that CP2 radius R defined by the length L = 2πR of CP2 geodesic is roughly 103.5

times the Planck length. More precisely, using the relationship

Λ =
3

2R2
= M2 = m2

0 ,

one obtains for

L = 2πR = 2π

√
3

2

1

m0
' 3.1167× 104

√
~G for Ye = 0 . (16.3.18)

The result came as a surprise: the first belief was that CP2 radius is of order Planck length. It has
however turned out that the new identification solved elegantly some long standing problems of TGD.

Ye 0 .5 .7798
(m0/mPl)103 .2437 .2323 .2266
KR × 10−7 2.5262 2.7788 2.9202

(LR/
√
~G)× 10−4 3.1580 3.3122 3.3954

K × 10−7 2.4606 2.4606 2.4606

(L/
√
~G)× 10−4 3.1167 3.1167 3.1167

KR/K 1.0267 1.1293 1.1868
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Table 1. Table gives the values of the ratio KR = R2/G and CP2 geodesic length L = 2πR for Ye ∈
{0, 0.5, 0.7798}. Also the ratio of KR/K, where K = 2×3×5×7×11×13×17×19×23×2−3∗(15/17)
is rational number producing R2/G approximately is given.

The value of top quark mass favors Ye = 0 and Ye = .5 is largest value of Ye marginally consistent
with the limits on the value of top quark mass.

CP2 radius as the fundamental p-adic length scale

The identification of CP2 radius as the fundamental p-adic length scale is forced by the Super Virasoro
invariance. The pleasant surprise was that the identification of the CP2 size as the fundamental p-adic
length scale rather than Planck length solved many long standing problems of older TGD.

1. The earliest formulation predicted cosmic strings with a string tension larger than the critical
value giving the angle deficit 2π in Einstein’s equations and thus excluded by General Relativity.
The corrected value of CP2 radius predicts the value k/G for the cosmic string tension with k
in the range 10−7 − 10−6 as required by the TGD inspired model for the galaxy formation
solving the galactic dark matter problem.

2. In the earlier formulation there was no idea as how to derive the p-adic length scale L ∼ 103.5
√
~G

from the basic theory. Now this problem becomes trivial and one has to predict gravitational
constant in terms of the p-adic length scale. This follows in principle as a prediction of quantum
TGD. In fact, one can deduce G in terms of the p-adic length scale and the action exponential
associated with the CP2 extremal and gets a correct value if αK approaches fine structure
constant at electron length scale (due to the fact that electromagnetic field equals to the Kähler
field if Z0 field vanishes).

Besides this, one obtains a precise prediction for the dependence of the Kähler coupling strength
on the p-adic length scale by requiring that the gravitational coupling does not depend on the p-
adic length scale. p-Adic prime p in turn has a nice physical interpretation: the critical value of
αK is same for the zero modes with given p. As already found, the construction of graviton state
allows to understand the small value of the gravitational constant in terms of a de-coherence
caused by multi-p fractality reducing the value of the gravitational constant from L2

p to G.

3. p-Adic length scale is also the length scale at which super-symmetry should be restored in
standard super-symmetric theories. In TGD this scale corresponds to the transition to Euclidian
field theory for CP2 type extremals. There are strong reasons to believe that sparticles are
however absent and that super-symmetry is present only in the sense that super-generators
have complex conformal weights with Re(h) = ±1/2 rather than h = 0. The action of this
super-symmetry changes the mass of the state by an amount of order CP2 mass.

16.3.3 Color degrees of freedom

The ground states for the Super Virasoro representations correspond to spinor harmonics in M4×CP2

characterized by momentum and color quantum numbers. The correlation between color and electro-
weak quantum numbers is wrong for the spinor harmonics and these states would be also hyper-
massive. The super-symplectic generators allow to build color triplet states having negative vacuum
conformal weights, and their values are such that p-adic massivation is consistent with the predictions
of the earlier model differing from the recent one in the quark sector. In the following the construction
and the properties of the color partial waves for fermions and bosons are considered. The discussion
follows closely to the discussion of [111] .

SKM algebra and counterpart of Super Virasoro conditions

The geometric part of SKM algebra is defined as an algebra respecting the light-likeness of the partonic
3-surface. It consists of X3-local conformal transformations of M4

± and SU(3)-local SU(3) rotations.
The requirement that generators have well defined radial conformal weight with respect to the lightlike
coordinate r of X3 restricts M4 conformal transformations to the group SO(3) × E3. This involves
choice of preferred time coordinate. If the preferred M4 coordinate is chosen to correspond to a pre-
ferred light-like direction in δM4

± characterizing the theory, a reduction to SO(2)×E2 more familiar
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from string models occurs. The algebra decomposes into a direct sum of sub-algebras mapped to them-
selves by the Kac-Moody algebra generated by functions depending on r only. SKM algebra contains
also U(2)ew Kac-Moody algebra acting as holonomies of CP2 and having no bosonic counterpart.

p-Adic mass calculations require N = 5 sectors of super-conformal algebra. These sectors corre-
spond to the 5 tensor factors for the SO(3)×E3×SU(3)×U(2)ew (or SO(2)×E2×SU(3)×U(2)ew )
decomposition of the SKM algebra to gauge symmetries of gravitation, color and electro-weak interac-
tions. These symmetries act on the intersections X2 = X3

l ∩X7 of 3-D light like causal determinants
(CDs) X3

l and 7-D light like CDs X7 = δM4
+ × CP2. This constraint leaves only the 2 transversal

M4 degrees of freedom since the translations in light like directions associated with X3
l and δM4

+ are
eliminated.

The algebra differs from the standard one in that super generators G(z) carry lepton and quark
numbers are not Hermitian as in super-string models (Majorana conditions are not satisfied). The
counterparts of Ramond representations correspond to zero modes of a second quantized spinor field
with vanishing radial conformal weight. Non-zero modes with generalized eigenvalues λ = 1/2 + iy,
y =

∑
k nkyk, nk ≥ 0, of the modified Dirac operator with sk = 1/2 + iyk a zero or Rieman Zeta,

define ground states of N-S type super Virasoro representations.

What is new is the imaginary part of conformal weight which means that the arrow of geometric
time manifests itself via the sign of the imaginary part y already at elementary particle level. More
concretely, positive energy particle propagating to the geometric future is not equivalent with negative
energy particle propagating to the geometric past. The strange properties of the phase conjugate
provide concrete physical demonstration of this difference. p-Adic mass calculations suggest the
interpretation of y in terms of a decay width of the particle.

The Ramond or N-S type Virasoro conditions satisfied by the physical states in string model
approach are replaced by the formulas expressing mass squared as a conformal weight. The condition
is not equivalent with super Virasoro conditions since four-momentum does not appear in super
Virasoro generators. It seems possible to assume that the commutator algebra [SKM,SC] and the
commutator of [SKMV,SSV ] of corresponding Super Virasoro algebras annihilate physical states.
This would give rise to the analog of Super Virasoro conditions which could be seen as a Dirac
equation in the world of classical worlds.

1. CP2 CM degrees of freedom

Important element in the discussion are center of mass degrees of freedom parameterized by imbed-
ding space coordinates. By the effective 2-dimensionality it is indeed possible to assign to partons
momenta and color partial waves and they behave effectively as free particles. In fact, the technical
problem of the earlier scenario was that it was not possible to assign symmetry transformations acting
only on on the boundary components of 3-surface.

One can assign to each eigen state of color quantum numbers a color partial wave in CP2 degrees
of freedom. Thus color quantum numbers are not spin like quantum numbers in TGD framework
except effectively in the length scales much longer than CP2 length scale. The correlation between
color partial waves and electro-weak quantum numbers is not physical in general: only the covariantly
constant right handed neutrino has vanishing color.

2. Mass formula, and condition determining the effective string tension

Mass squared eigenvalues are given by

M2 = m2
CP2

+ kL0 . (16.3.19)

The contribution of CP2 spinor Laplacian to the mass squared operator is in general not integer
valued.

The requirement that mass squared spectrum is integer valued for color partial waves possibly
representing light states fixes the possible values of k determining the effective string tension modulo
integer. The value k = 1 is the only possible choice. The earlier choice kL = 1 and kq = 2/3, kB = 1
gave integer conformal weights for the lowest possible color partial waves. The assumption that the
total vacuum weight hvac is conserved in particle vertices implied kB = 1.
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General construction of solutions of Dirac operator of H

The construction of the solutions of massless spinor and other d’Alembertians in M4
+ × CP2 is based

on the following observations.

1. d’Alembertian corresponds to a massless wave equation M4×CP2 and thus Kaluza-Klein picture
applies, that is M4

+ mass is generated from the momentum in CP2 degrees of freedom. This
implies mass quantization:

M2 = M2
n ,

where M2
n are eigenvalues of CP2 Laplacian. Here of course, ordinary field theory is considered.

In TGD the vacuum weight changes mass squared spectrum.

2. In order to get a respectable spinor structure in CP2 one must couple CP2 spinors to an odd
integer multiple of the Kähler potential. Leptons and quarks correspond to n = 3 and n = 1
couplings respectively. The spectrum of the electromagnetic charge comes out correctly for
leptons and quarks.

3. Right handed neutrino is covariantly constant solution of CP2 Laplacian for n = 3 coupling to
Kähler potential whereas right handed ’electron’ corresponds to the covariantly constant solution
for n = −3. From the covariant constancy it follows that all solutions of the spinor Laplacian
are obtained from these two basic solutions by multiplying with an appropriate solution of the
scalar Laplacian coupled to Kähler potential with such a coupling that a correct total Kähler
charge results. Left handed solutions of spinor Laplacian are obtained simply by multiplying
right handed solutions with CP2 Dirac operator: in this operation the eigenvalues of the mass
squared operator are obviously preserved.

4. The remaining task is to solve scalar Laplacian coupled to an arbitrary integer multiple of Kähler
potential. This can be achieved by noticing that the solutions of the massive CP2 Laplacian can
be regarded as solutions of S5 scalar Laplacian. S5 can indeed be regarded as a circle bundle over
CP2 and massive solutions of CP2 Laplacian correspond to the solutions of S5 Laplacian with
exp(isτ) dependence on S1 coordinate such that s corresponds to the coupling to the Kähler
potential:

s = n/2 .

Thus one obtains

D2
5 = (Dµ − iAµ∂τ )(Dµ − iAµ∂τ ) + ∂2

τ (16.3.20)

so that the eigen values of CP2 scalar Laplacian are

m2(s) = m2
5 + s2 (16.3.21)

for the assumed dependence on τ .

5. What remains to do, is to find the spectrum of S5 Laplacian and this is an easy task. All
solutions of S5 Laplacian can be written as homogenous polynomial functions of C3 complex
coordinates Zk and their complex conjugates and have a decomposition into the representations
of SU(3) acting in natural manner in C3.
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6. The solutions of the scalar Laplacian belong to the representations (p, p + s) for s ≥ 0 and to
the representations (p+ |s|, p) of SU(3) for s ≤ 0. The eigenvalues m2(s) and degeneracies d are

m2(s) =
2Λ

3
[p2 + (|s|+ 2)p+ |s|] , p > 0 ,

d =
1

2
(p+ 1)(p+ |s|+ 1)(2p+ |s|+ 2) . (16.3.22)

Λ denotes the ’cosmological constant’ of CP2 (Rij = Λsij).

Solutions of the leptonic spinor Laplacian

Right handed solutions of the leptonic spinor Laplacian are obtained from the asatz of form

νR = Φs=0ν
0
R ,

where uR is covariantly constant right handed neutrino and Φ scalar with vanishing Kähler charge.
Right handed ’electron’ is obtained from the ansats

eR = Φs=3e
0
R ,

where e0
R is covariantly constant for n = −3 coupling to Kähler potential so that scalar function must

have Kähler coupling s = n/2 = 3 a in order to get a correct Kähler charge. The d’Alembert equation
reduces to

(DµD
µ − (1− ε)Λ)Φ = −m2Φ ,

ε(ν) = 1 , ε(e) = −1 . (16.3.23)

The two additional terms correspond to the curvature scalar term and JklΣ
kl terms in spinor Laplacian.

The latter term is proportional to Kähler coupling and of different sign for ν and e, which explains
the presence of the sign factor ε in the formula.

Right handed neutrinos correspond to (p, p) states with p ≥ 0 with mass spectrum

m2(ν) =
m2

1

3

[
p2 + 2p

]
, p ≥ 0 ,

m2
1 ≡ 2Λ . (16.3.24)

Right handed ’electrons’ correspond to (p, p+ 3) states with mass spectrum

m2(e) =
m2

1

3

[
p2 + 5p+ 6

]
, p ≥ 0 . (16.3.25)

Left handed solutions are obtained by operating with CP2 Dirac operator on right handed solutions and
have the same mass spectrum and representational content as right handed leptons with one exception:
the action of the Dirac operator on the covariantly constant right handed neutrino ((p = 0, p = 0)
state) annihilates it.

Quark spectrum

Quarks correspond to the second conserved H-chirality of H-spinors. The construction of the color
partial waves for quarks proceeds along similar lines as for leptons. The Kähler coupling corresponds
to n = 1 (and s = 1/2) and right handed U type quark corresponds to a right handed neutrino. U
quark type solutions are constructed as solutions of form

UR = uRΦs==1 ,
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where uR possesses the quantum numbers of covariantly constant right handed neutrino with Kähler
charge n = 3 (s = 3/2). Hence Φs has s = −1. For DR one has

DR = drΦs=2 .

dR has s = −3/2 so that one must have s = 2. For UR the representations (p+ 1, p) with triality one
are obtained and p = 0 corresponds to color triplet. For DR the representations (p, p+2) are obtained
and color triplet is missing from the spectrum (p = 0 corresponds to 6̄).

The CP2 contributions to masses are given by the formula

m2(U, p) =
m2

1

3

[
p2 + 3p+ 2

]
, p ≥ 0 ,

m2(D, p) =
m2

1

3

[
p2 + 4p+ 4

]
, p ≥ 0 . (16.3.26)

Left handed quarks are obtained by applying Dirac operator to right handed quark states and mass
formulas and color partial wave spectrum are the same as for right handed quarks.

The color contributions to p-adic mass squared are integer valued if m2
0/3 is taken as a fundamental

p-adic unit of mass squared. This choice has an obvious relevance for p-adic mass calculations since
canonical identification does not commute with a division by integer. More precisely, the images of
number xp in canonical identification has a value of order 1 when x is a non-trivial rational whereas
for x = np the value is n/p and extremely is small for physically interesting primes. This choice does
not however affect the spectrum of massless states but can affect the spectrum of light states in case
of electro-weak gauge bosons.

16.3.4 Spectrum of elementary particles

The assumption that k = 1 holds true for all particles forces to modify the earlier construction of quark
states. This turns out to be possible without affecting the p-adic mass calculations whose outcome
depend in an essential manner on the ground state conformal weights hgr of the fermions (which can
be negative).

Leptonic spectrum

For k = 1 the leptonic mass squared is integer valued in units of m2
0 only for the states satisfying

p mod 3 6= 2 .

Only these representations can give rise to massless states. Neutrinos correspond to (p, p) represen-
tations with p ≥ 1 whereas charged leptons correspond to (p, p+ 3) representations. The earlier mass
calculations demonstrate that leptonic masses can be understood if the ground state conformal weight
is hgr = −1 for charged leptons and hgr = −2 for neutrinos.

The contribution of color partial wave to conformal weight is hc = (p2 +2p)/3, p ≥ 1, for neutrinos
and p = 1 gives hc = 1 (octet). For charged leptons hc = (p2 + 5p + 6)/3 gives hc = 2 for p = 0
(decuplet). In both cases super-symplectic operator O must have a net conformal weight hsc = −3
to produce a correct conformal weight for the ground state. p-adic considerations suggests the use
of operators O with super-symplectic conformal weight z = −1/2 − i

∑
nkyk, where sk = 1/2 + iyk

corresponds to zero of Riemann ζ. If the operators in question are color Hamiltonians in octet
representation net super-symplectic conformal weight hsc = −3 results. The tensor product of two
octets with conjugate super-symplectic conformal weights contains both octet and decuplet so that
singlets are obtained. What strengthens the hopes that the construction is not adhoc is that the same
operator appears in the construction of quark states too.

Right handed neutrino remains essentially massless. p = 0 right handed neutrino does not however
generate N = 1 space-time (or rather, imbedding space) super symmetry so that no sparticles are
predicted. The breaking of the electro-weak symmetry at the level of the masses comes out basically
from the anomalous color electro-weak correlation for the Kaluza-Klein partial waves implying that
the weights for the ground states of the fermions depend on the electromagnetic charge of the fermion.
Interestingly, TGD predicts leptohadron physics based on color excitations of leptons and color bound
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states of these excitations could correspond topologically condensed on string like objects but not
fundamental string like objects.

Spectrum of quarks

Earlier arguments [58] related to a model of CKM matrix as a rational unitary matrix suggested that
the string tension parameter k is different for quarks, leptons, and bosons. The basic mass formula
read as

M2 = m2
CP2

+ kL0 .

The values of k were kq = 2/3 and kL = kB = 1. The general theory however predicts that k = 1 for
all particles.

1. By earlier mass calculations and construction of CKM matrix the ground state conformal weights
of U and D type quarks must be hgr(U) = −1 and hgr(D) = 0. The formulas for the eigenvalues
of CP2 spinor Laplacian imply that if m2

0 is used as unit, color conformal weight hc ≡ m2
CP2

is integer for p mod = ±1 for U type quark belonging to (p + 1, p) type representation and
obeying hc(U) = (p2 + 3p+ 2)/3 and for p mod 3 = 1 for D type quark belonging (p, p+ 2) type
representation and obeying hc(D) = (p2 + 4p + 4)/3. Only these states can be massless since
color Hamiltonians have integer valued conformal weights.

2. In the recent case p = 1 states correspond to hc(U) = 2 and hc(D) = 3. hgr(U) = −1 and
hgr(D) = 0 reproduce the previous results for quark masses required by the construction of
CKM matrix. This forces the super-symplectic operator O to compensate the anomalous color
to have a net conformal weight hsc = −3 just as in the leptonic case. The facts that the values of
p are minimal for spinor harmonics and the super-symplectic operator is same for both quarks
and leptons suggest that the construction is not had hoc. The real justification would come
from the demonstration that hsc = −3 defines null state for SSV: this would also explain why
hsc would be same for all fermions.

3. It would seem that the tensor product of the spinor harmonic of quarks (as also leptons) with
Hamiltonians gives rise to a large number of exotic colored states which have same thermody-
namical mass as ordinary quarks (and leptons). Why these states have smaller values of p-adic
prime that ordinary quarks and leptons, remains a challenge for the theory. Note that the decay
widths of intermediate gauge bosons pose strong restrictions on the possible color excitations of
quarks. On the other hand, the large number of fermionic color exotics can spoil the asymptotic
freedom, and it is possible to have and entire p-adic length scale hierarchy of QCDs existing
only in a finite length scale range without affecting the decay widths of gauge bosons.

The following table summarizes the color conformal weights and super-symplectic vacuum confor-
mal weights for the elementary particles.

L νL U D W γ,G, g
hvac -3 -3 -3 -3 -2 0
hc 2 1 2 3 2 0

Table 2. The values of the parameters hvac and hc assuming that k = 1. The value of hvac ≤ −hc
is determined from the requirement that p-adic mass calculations give best possible fit to the mass
spectrum.

Photon, graviton and gluon

For photon, gluon and graviton the conformal weight of the p = 0 ground state is hgr = hvac = 0.
The crucial condition is that h = 0 ground state is non-degenerate: otherwise one would obtain
several physically more or less identical photons and this would be seen in the spectrum of black-body
radiation. This occurs if one can construct several ground states not expressible in terms of the action
of the Super Virasoro generators.
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Masslessness or approximate masslessness requires low enough temperature Tp = 1/n, n > 1 at
least and small enough value of the possible contribution coming from the ground state conformal
weight.

In NS thermodynamics the only possibility to get exactly massless states in thermal sense is to
have ∆ = 0 state with one active sector so that NS thermodynamics becomes trivial due to the absence
of the thermodynamical excitations satisfying the gauge conditions. For neutral gauge bosons this is
indeed achieved. For Tp = 1/2, which is required by the mass spectrum of intermediate gauge bosons,
the thermal contribution to the mass squared is however extremely small even for W boson.

16.4 Modular contribution to the mass squared

The success of the p-adic mass calculations gives convincing support for the generation-genus corre-
spondence. The basic physical picture is following.

1. Fermionic mass squared is dominated by partonic contribution, which is sum of cm and modular
contributions: M2 = M2(cm)+M2(mod). Here ’cm’ refers to the thermal contribution. Modular
contribution can be assumed to depend on the genus of the boundary component only.

2. If Higgs contribution for diagonal (g, g) bosons (singlets with respect to ”topological” SU(3))
dominates, the genus dependent contribution can be assumed to be negligible. This should be
due to the bound state character of the wormhole contacts reducing thermal motion and thus
the p-adic temperature.

3. Modular contribution to the mass squared can be estimated apart from an overall proportion-
ality constant. The mass scale of the contribution is fixed by the p-adic length scale hypoth-
esis. Elementary particle vacuum functionals are proportional to a product of all even theta
functions and their conjugates, the number of even theta functions and their conjugates being
2N(g) = 2g(2g + 1). Also the thermal partition function must also be proportional to 2N(g):th
power of some elementary partition function. This implies that thermal/ quantum expectation
M2(mod) must be proportional to 2N(g). Since single handle behaves effectively as particle, the
contribution must be proportional to genus g also. The success of the resulting mass formula
encourages the belief that the argument is essentially correct.

The challenge is to construct theoretical framework reproducing the modular contribution to mass
squared. There are two alternative manners to understand the origin modular contribution.

1. The realization that super-symplectic algebra is relevant for elementary particle physics leads to
the idea that two thermodynamics are involved with the calculation of the vacuum conformal
weight as a thermal expectation. The first thermodynamics corresponds to Super Kac-Moody
algebra and second thermodynamics to super-symplectic algebra. This approach allows a first
principle understanding of the origin and general form of the modular contribution without
any need to introduce additional structures in modular degrees of freedom. The very fact that
super-symplectic algebra does not commute with the modular degrees of freedom explains the
dependence of the super-symplectic contribution on moduli.

2. The earlier approach was based on the idea that he modular contribution could be regarded
as a quantum mechanical expectation value of the Virasoro generator L0 for the elementary
particle vacuum functional. Quantum treatment would require generalization the concepts of
the moduli space and theta function to the p-adic context and finding an acceptable definition of
the Virasoro generator L0 in modular degrees of freedom. The problem with this interpretation
is that it forces to introduce, not only Virasoro generator L0, but the entire super Virasoro
algebra in modular degrees of freedom. One could also consider of interpreting the contribution
of modular degrees of freedom to vacuum conformal weight as being analogous to that of CP2

Laplacian but also this would raise the challenge of constructing corresponding Dirac operator.
Obviously this approach has become obsolete.

The thermodynamical treatment taking into account the constraints from that p-adicization is
possible might go along following lines.
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1. In the real case the basic quantity is the thermal expectation value h(M) of the conformal weight
as a function of moduli. The average value of the deviation ∆h(M) = h(M) − h(M0) over
moduli space M must be calculated using elementary particle vacuum functional as a modular
invariant partition function. Modular invariance is achieved if this function is proportional to
the logarithm of elementary particle vacuum functional: this reproduces the qualitative features
basic formula for the modular contribution to the conformal weight. p-Adicization leads to a
slight modification of this formula.

2. The challenge of algebraically continuing this calculation to the p-adic context involves several
sub-tasks. The notions of moduli space Mp and theta function must be defined in the p-
adic context. An appropriately defined logarithm of the p-adic elementary particle vacuum
functional should determine ∆h(M). The average of ∆h(M) requires an integration over Mp.
The problems related to the definition of this integral could be circumvented if the integral in
the real case could be reduced to an algebraic expression, or if the moduli space is discrete in
which case integral could be replaced by a sum.

3. The number theoretic existence of the p-adic Θ function leads to the quantization of the moduli so
that the p-adic moduli space is discretized. Accepting the sharpened form of Riemann hypothesis
[75] , the quantization means that the imaginary resp. real parts of the moduli are proportional to
integers resp. combinations of imaginary parts of zeros of Riemann Zeta. This quantization could
occur also for the real moduli for the maxima of Kähler function. This reduces the problematic
p-adic integration to a sum and the resulting sum defining 〈∆h〉 converges extremely rapidly for
physically interesting primes so that only the few lowest terms are needed.

16.4.1 Conformal symmetries and modular invariance

The full SKM invariance means that the super-conformal fields depend only on the conformal moduli of
2-surface characterizing the conformal equivalence class of the 2-surface. This means that all induced
metrics differing by a mere Weyl scaling have same moduli. This symmetry is extremely powerful
since the space of moduli is finite-dimensional and means that the entire infinite-dimensional space of
deformations of parton 2-surfaceX2 degenerates to a finite-dimensional moduli spaces under conformal
equivalence. Obviously, the configurations of given parton correspond to a fiber space having moduli
space as a base space. Super-symplectic degrees of freedom could break conformal invariance in some
appropriate sense.

Conformal and SKM symmetries leave moduli invariant

Conformal transformations and super Kac Moody symmetries must leave the moduli invariant. This
means that they induce a mere Weyl scaling of the induced metric of X2 and thus preserve its non-
diagonal character ds2 = gzzdzdz. This is indeed true if

1. the Super Kac Moody symmetries are holomorphic isometries of X7 = δM4
± × CP2 made local

with respect to the complex coordinate z of X2, and

2. the complex coordinates of X7 are holomorphic functions of z.

Using complex coordinates for X7 the infinitesimal generators can be written in the form

JAn = znjAkDk + znjAkDk . (16.4.1)

The intuitive picture is that it should be possible to choose X2 freely. It is however not always possible
to choose the coordinate z of X2 in such a manner that X7 coordinates are holomorphic functions
of z since a consistency of inherent complex structure of X2 with that induced from X7 is required.
Geometrically this is like meeting of two points in the space of moduli.

Lorentz boosts produce new inequivalent choices of S2 with their own complex coordinate: this set
of complex structures is parameterized by the hyperboloid of future light cone (Lobatchevski space or
mass shell), but even this is not enough. The most plausible manner to circumvent the problem is that
only the maxima of Kähler function correspond to the holomorphic situation so that super-symplectic
algebra representing quantum fluctuations would induce conformal anomaly.
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The isometries of δM4
+ are in one-one correspondence with conformal transformations

For CP2 factor the isometries reduce to SU(3) group acting also as symplectic transformations. For
δM4

+ = S2 ×R+ one might expect that isometries reduce to Lorentz group containing rotation group
of SO(3) as conformal isometries. If rM corresponds to a macroscopic length scale, then X2 has a
finite sized S2 projection which spans a rather small solid angle so that group SO(3) reduces in a
good approximation to the group E2 × SO(2) of translations and rotations of plane.

This expectation is however wrong! The light-likeness of δM4
+ allows a dramatic generalization of

the notion of isometry. The point is that the conformal transformations of S2 induce a conformal factor
|df/dw|2 to the metric of δM4

+ and the local radial scaling rM → rM/|df/dw| compensates it. Hence
the group of conformal isometries consists of conformal transformations of S2 with compensating
radial scalings. This compensation of two kinds of conformal transformations is the deep geometric
phenomenon which translates to the condition LSC − LSKM = 0 in the sub-space of physical states.
Note that an analogous phenomenon occurs also for the light-like CDsX3

l with respect to the metrically
2-dimensional induced metric.

The X2-local radial scalings rM → rM (z, z) respect the conditions gzz = gzz = 0 so that a mere
Weyl scaling leaving moduli invariant results. By multiplying the conformal isometries of δM4

+ by
zn (z is used as a complex coordinate for X2 and w as a complex coordinate for S2) a conformal
localization of conformal isometries would result. Kind of double conformal transformations would be
in question. Note however that this requires that X7 coordinates are holomorphic functions of X2

coordinate. These transformations deform X2 unlike the conformal transformations of X2. For X3
l

similar local scalings of the light like coordinate leave the moduli invariant but lead out of X7.

Symplectic transformations break the conformal invariance

In general, infinitesimal symplectic transformations induce non-vanishing components gzz, gzz of the
induced metric and can thus change the moduli of X2. Thus the quantum fluctuations represented
by super-symplectic algebra and contributing to the configuration space metric are in general moduli
changing. It would be interesting to know explicitly the conditions (the number of which is the
dimension of moduli space for a given genus), which guarantee that the infinitesimal symplectic
transformation is moduli preserving.

16.4.2 The physical origin of the genus dependent contribution to the mass
squared

Different p-adic length scales are not enough to explain the charged lepton mass ratios and an addi-
tional genus dependent contribution in the fermionic mass formula is required. The general form of
this contribution can be guessed by regarding elementary particle vacuum functionals in the modular
degrees of freedom as an analog of partition function and the modular contribution to the confor-
mal weight as an analog of thermal energy obtained by averaging over moduli. p-Adic length scale
hypothesis determines the overall scale of the contribution.

The exact physical origin of this contribution has remained mysterious but super-symplectic degrees
of freedom represent a good candidate for the physical origin of this contribution. This would mean a
sigh of relief since there would be no need to assign conformal weights, super-algebra, Dirac operators,
Laplacians, etc.. with these degrees of freedom.

Thermodynamics in super-symplectic degrees of freedom as the origin of the modular
contribution to the mass squared

The following general picture is the simplest found hitherto.

1. Elementary particle vacuum functionals are defined in the space of moduli of surfaces X2 corre-
sponding to the maxima of Kähler function. There some restrictions on X2. In particular, p-adic
length scale poses restrictions on the size of X2. There is an infinite hierarchy of elementary
particle vacuum functionals satisfying the general constraints but only the lowest elementary
particle vacuum functionals are assumed to contribute significantly to the vacuum expectation
value of conformal weight determining the mass squared value.
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2. The contribution of Super-Kac Moody thermodynamics to the vacuum conformal weight h
coming from Virasoro excitations of the h = 0 massless state is estimated in the previous
calculations and does not depend on moduli. The new element is that for a partonic 2-surface
X2 with given moduli, Virasoro thermodynamics is present also in super-symplectic degrees of
freedom.

Super-symplectic thermodynamics means that, besides the ground state with hgr = −hSC with
minimal value of super-symplectic conformal weight hSC , also thermal excitations of this state by
super-symplectic Virasoro algebra having hgr = −hSC −n are possible. For these ground states
the SKM Virasoro generators creating states with net conformal weight h = hSKM−hSC−n ≥ 0
have larger conformal weight so that the SKM thermal average h depends on n. It depends also
on the moduli M of X2 since the Beltrami differentials representing a tangent space basis for
the moduli space M do not commute with the super-symplectic algebra. Hence the thermally
averaged SKM conformal weight hSKM for given values of moduli satisfies

hSKM = h(n,M) . (16.4.2)

3. The average conformal weight induced by this double thermodynamics can be expressed as a
super-symplectic thermal average 〈·〉SC of the SKM thermal average h(n,M):

h(M) = 〈h(n,M)〉SC =
∑

pn(M)h(n) , (16.4.3)

where the moduli dependent probability pn(M) of the super-symplectic Virasoro excitation with
conformal weight n should be consistent with the p-adic thermodynamics. It is convenient to
write h(M) as

h(M) = h0 + ∆h(M) , (16.4.4)

where h0 is the minimum value of h(M) in the space of moduli. The form of the elementary
particle vacuum functionals suggest that h0 corresponds to moduli with Im(Ωij) = 0 and thus
to singular configurations for which handles degenerate to one-dimensional lines attached to a
sphere.

4. There is a further averaging of ∆h(M) over the moduli spaceM by using the modulus squared
of elementary particle vacuum functional so that one has

h = h0 + 〈∆h(M)〉M . (16.4.5)

Modular invariance allows to pose very strong conditions on the functional form of ∆h(M).
The simplest assumption guaranteing this and thermodynamical interpretation is that ∆h(M)
is proportional to the logarithm of the vacuum functional Ω:

∆h(M) ∝ −log(
Ω(M)

Ωmax
) . (16.4.6)

Here Ωmax corresponds to the maximum of Ω for which ∆h(M) vanishes.
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Justification for the general form of the mass formula

The proposed general ansatz for ∆h(M) provides a justification for the general form of the mass
formula deduced by intuitive arguments.

1. The factorization of the elementary particle vacuum functional Ω into a product of 2N(g) =
2g(2g + 1) terms and the logarithmic expression for ∆h(M) imply that the thermal expectation
values is a sum over thermal expectation values over 2N(g) terms associated with various even
characteristics (a, b), where a and b are g-dimensional vectors with components equal to 1/2
or 0 and the inner product 4a · b is an even integer. If each term gives the same result in the
averaging using Ωvac as a partition function, the proportionality to 2Ng follows.

2. For genus g ≥ 2 the partition function defines an average in 3g−3 complex-dimensional space of
moduli. The analogy of 〈∆h〉 and thermal energy suggests that the contribution is proportional
to the complex dimension 3g−3 of this space. For g ≤ 1 the contribution the complex dimension
of moduli space is g and the contribution would be proportional to g.

〈∆h〉 ∝ g ×X(g) for g ≤ 1 ,

〈∆h〉 ∝ (3g − 3)×X(g) for g ≥ 2 ,

X(g) = 2g(2g + 1) . (16.4.7)

If X2 is hyper-elliptic for the maxima of Kähler function, this expression makes sense only for
g ≤ 2 since vacuum functionals vanish for hyper-elliptic surfaces.

3. The earlier argument, inspired by the interpretation of elementary particle vacuum functional
as a partition function, was that each factor of the elementary particle vacuum functional gives
the same contribution to 〈∆h〉, and that this contribution is proportional to g since each handle
behaves like a particle:

〈∆h〉 ∝ g ×X(g) . (16.4.8)

The prediction following from the previous differs by a factor (3g − 3)/g for g ≥ 2. This would
scale up the dominant modular contribution to the masses of the third g = 2 fermionic generation
by a factor

√
3/2 ' 1.22. One must of course remember, that these rough arguments allow g−

dependent numerical factors of order one so that it is not possible to exclude either argument.

16.4.3 Generalization of Θ functions and quantization of p-adic moduli

The task is to find p-adic counterparts for theta functions and elementary particle vacuum functionals.
The constraints come from the p-adic existence of the exponentials appearing as the summands of
the theta functions and from the convergence of the sum. The exponentials must be proportional to
powers of p just as the Boltzmann weights defining the p-adic partition function. The outcome is
a quantization of moduli so that integration can be replaced with a summation and the average of
∆h(M) over moduli is well defined.

It is instructive to study the problem for torus in parallel with the general case. The ordinary
moduli space of torus is parameterized by single complex number τ . The points related by SL(2, Z) are
equivalent, which means that the transformation τ → (Aτ +B)/(Cτ +D) produces a point equivalent
with τ . These transformations are generated by the shift τ → τ + 1 and τ → −1/τ . One can choose
the fundamental domain of moduli space to be the intersection of the slice Re(τ) ∈ [−1/2, 1/2] with
the exterior of unit circle |τ | = 1. The idea is to start directly from physics and to look whether one
might some define p-adic version of elementary particle vacuum functionals in the p-adic counter part
of this set or in some modular invariant subset of this set.

Elementary particle vacuum functionals are expressible in terms of theta functions using the func-

tions Θ4[a, b]Θ
4
[a, b] as a building block. The general expression for the theta function reads as
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Θ[a, b](Ω) =
∑
n

exp(iπ(n+ a) · Ω · (n+ a))exp(2iπ(n+ a) · b) . (16.4.9)

The latter exponential phase gives only a factor ±i or ±1 since 4a · b is integer. For p mod 4 = 3
imaginary unit exists in an algebraic extension of p-adic numbers. In the case of torus (a, b) has the
values (0, 0), (1/2, 0) and (0, 1/2) for torus since only even characteristics are allowed.

Concerning the p-adicization of the first exponential appearing in the summands in Eq. 16.4.9, the
obvious problem is that π does not exists p-adically unless one allows infinite-dimensional extension.

1. Consider first the real part of Ω. In this case the proper manner to treat the situation is to
introduce and algebraic extension involving roots of unity so that Re(Ω) rational. This approach
is proposed as a general approach to the p-adicization of quantum TGD in terms of harmonic
analysis in symmetric spaces allowing to define integration also in p-adic context in a physically
acceptable manner by reducing it to Fourier analysis. The simplest situation corresponds to
integer values for Re(Ω) and in this case the phase are equal to ±i or ±1 since a is half-integer
valued. One can consider a hierarchy of variants of moduli space characterized by the allowed
roots of unity. The physical interpretation for this hierarchy would be in terms of a hierarchy of
measurement resolutions. Note that the real parts of Ω can be assumed to be rationals of form
m/n where n is constructed as a product of finite number of primes and therefore the allowed
rationals are linear combinations of inverses 1/pi for a subset {pi} of primes.

2. For the imaginary part of Ω different approach is required. One wants a rapid convergence of
the sum formula and this requires that the exponents reduces in this case to positive powers of
p. This is achieved if one has

Im(Ω) = −nlog(p)

π)
, (16.4.10)

Unfortunately this condition is not consistent with the condition Im(Ω) > 0. A manner to
circumvent the difficulty is to replace Ω with its complex conjugate. Second approach is to define
the real discretized variant of theta function first and then map it by canonical identification to
its p-adic counterpart: this would map phase to phases and powers of p to their inverses. Note
that a similar change of sign must be performed in p-adic thermodynamics for powers of p to

map p-adic probabilities to real ones. By rescaling Im(Ω)→ log(p)
π) Im(Ω) one has non-negative

integer valued spectrum for Im(Ω) making possible to reduce integration in moduli space to a
summation over finite number of rationals associated with the real part of Ω and powers of p
associated with the imaginary part of Ω.

3. Since the exponents appearing in

p(n+a)·Im(Ωij,p)·(n+a) = pa·Im(Ω)·a × p2a·Im(Ω·n × p+n·Im(Ωij,p)·n

are positive integers valued, Θ[a,b] exist in Rp and converges. The problematic factor is the
first exponent since the components of the vector a can have values 1/2 and 0 and its existence
implies a quantization of Im(Ωij) as

Im(Ω) = −Knlog(p)

p
, n ∈ Z , n ≥ 1 , (16.4.11)

In p-adic context this condition mustbe formulated for the exponent of Ω defining the natural
coordinate. K = 4 guarantees the existence of Θ functions and K = 1 the existence of the

building blocks Θ4[a, b]Θ
4
[a, b] of elementary particle vacuum functionals in Rp. The extension

to higher genera means only replacement of Ω with the elements of a matrix.
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4. One can criticize this approach for the loss of the full modular covariance in the definition of
theta functions. The modular transformations Ω → Ω + n are consistent with the number
theoretic constraints but the transformations Ω→ −1/Ω do not respect them. It seem that one
can circumvent the difficulty by restricting the consideration to a fundamental domain satisfying
the number theoretic constraints.

This variant of moduli space is discrete and p-adicity is reflected only in the sense that the moduli
space makes sense also p-adically. One can consider also a continuum variant of the p-adic moduli
space using the same prescription as in the construction of p-adic symmetric spaces [85] .

1. One can introduce exp(iπRe(Ω)) as the counterpart of Re(Ω) as a coordinate of the Teichmueller
space. This coordinate makes sense only as a local coordinate since it does not differentiate
between Re(Ω) and Re(Ω+2n). On the other hand, modular invariance states that Ω abd Ω+n
correspond to the same moduli so that nothing is lost. In the similar manner one can introduce
exp(πIm(Ω)) ∈ {pn, n > 0} as the counterpart of discretized version of Im(Ω).

2. The extension to continuum would mean in the case of Re(Ω) the extension of the phase
exp(iπRe(Ω)) to a product exp(iπRe(Ω))exp(ipx) = exp(iπRe(Ω) + exp(ipx), where x is p-
adic integer which can be also infinite as a real integer. This would mean that each root of
unity representing allowed value Re(Ω) would have a p-adic neighborhood consisting of p-adic
integers. This neighborhood would be the p-adic counterpart for the angular integral ∆φ for a
given root of unity and would not make itself visible in p-adic integration.

3. For the imaginary part one can also consider the extension of exp(πIm(Ω)) to pn × exp(npx)
where x is a p-adic integer. This would assign to each point pn a p-adic neighborhood defined
by p-adic integers. This neighborhood is same all integers n with same p-adic norm. When n is
proportional to pk one has exp(npx)− 1 ∝ pk.

The quantization of moduli characterizes precisely the conformal properties of the partonic 2-
surfaces corresponding to different p-adic primes. In the real context -that is in the intersection of
real and p-adic worlds- the quantization of moduli of torus would correspond to

τ = K

[∑
q + i× nlog(p)

π

]
, (16.4.12)

where q is a rational number expressible as linear combination of inverses of a finite fixed set of primes
defining the allowed roots of unity. K = 1 guarantees the existence of elementary particle vacuum
functionals and K = 4 the existence of Theta functions. The ratio for the complex vectors defining the
sides of the plane parallelogram defining torus via the identification of the parallel sides is quantized.
In other words, the angles Φ between the sides and the ratios of the sides given by |τ | have quantized
values.

The quantization rules for the moduli of the higher genera is of exactly same form

Ωij = K

[∑
qij + i× nij ×

log(p)

π

]
,

(16.4.13)

If the quantization rules hold true also for the maxima of Kähler function in the real context or more
precisely- in the intersection of real and p-adic variants of the ”world of classical worlds” identified
as partonic 2-surfaces at the boundaries of causal diamond plus the data about their 4-D tangent
space, there are good hopes that the p-adicized expression for ∆h is obtained by a simple algebraic
continuation of the real formula. Thus p-adic length scale would characterize partonic surface X2

rather than the light like causal determinant X3
l containing X2. Therefore the idea that various

p-adic primes label various X3
l connecting fixed partonic surfaces X2

i would not be correct.
Quite generally, the quantization of moduli means that the allowed 2-dimensional shapes form

a lattice and are thus additive. It also means that the maxima of Kähler function would obey a
linear superposition in an extreme abstract sense. The proposed number theoretical quantization is



1388 Chapter 16. Particle Massivation in TGD Universe

expected to apply for any complex space allowing some preferred complex coordinates. In particular,
configuration space of 2-surfaces could allow this kind of quantization in the complex coordinates
naturally associated with isometries and this could allow to define configuration space integration, at
least the counterpart of integration in zero mode degrees of freedom, as a summation.

Number theoretic vision leads to the notion of multi-p-p-adicity in the sense that the same partonic
2-surface can correspond to several p-adic primes and that infinite primes code for these primes [31, 84]
. At the level of the moduli space this corresponds to the replacement of p with an integer in the
formulas so that one can interpret the formulas both in real sense and p-adic sense for the primes
p dividing the integer. Also the exponent of given prime in the integer matters. The construction
of generalized eigen modes of Chern-Simons Dirac operator leads to the proposal that the collection
of infinite primes characterizing infinite prime characterizes the geometry of the orbit of partonic
2-surface [31] . It would not be too surprising if this connection would reduce to the proposed
discretization of the modular parameters of the partonic 2-surface.

16.4.4 The calculation of the modular contribution 〈∆h〉 to the conformal
weight

The quantization of the moduli implies that the integral over moduli can be defined as a sum over
moduli. The theta function Θ[a, b](Ω)p(τp) is proportional to pa·aIm(Ωij,p) = pKnijm(a)/4 for a · a =
m(a)/4, where K = 1 resp. K = 4 corresponds to the existence existence of elementary particle
vacuum functionals resp. theta functions in Rp. These powers of p can be extracted from the thetas

defining the vacuum functional. The numerator of the vacuum functional gives (pn)2K
∑
a,bm(a).

The numerator gives (pn)2K
∑
a,bm(a0), where a0 corresponds to the minimum value of m(a). a0 =

(0, 0, .., 0) is allowed and gives m(a0) = 0 so that the p-adic norm of the denominator equals to one.
Hence one has

|Ωvac(Ωp)|p = p−2nK
∑
a,bm(a) (16.4.14)

The sum converges extremely rapidly for large values of p as function of n so that in practice only few
moduli contribute.

The definition of log(Ωvac) poses however problems since in log(p) does not exist as a p-adic
number in any p-adic number field. The argument of the logarithm should have a unit p-adic norm.
The simplest manner to circumvent the difficulty is to use the fact that the p-adic norm |Ωp|p is also
a modular invariant, and assume that the contribution to conformal weight depends on moduli as

∆hp(Ωp) ∝ log(
Ωvac
|Ωvac|p

) . (16.4.15)

The sum defining 〈∆hp〉 converges extremely rapidly and gives a result of order O(p) p-adically as
required.

The p-adic expression for 〈∆hp〉 should result from the corresponding real expression by an al-
gebraic continuation. This encourages the conjecture that the allowed moduli are quantized for the
maxima of Kähler function, so that the integral over the moduli space is replaced with a sum also in
the real case, and that ∆h given by the double thermodynamics as a function of moduli can be defined
as in the p-adic case. The positive power of p multiplying the numerator could be interpreted as a
degeneracy factor. In fact, the moduli are not primary dynamical variables in the case of the induced
metric, and there must be a modular invariant weight factor telling how many 2-surfaces correspond
to given values of moduli. The power of p could correspond to this factor.

16.5 General mass formulas for non-Higgsy contributions

In the sequel various contributions to the mass squared are discussed.
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16.5.1 General mass squared formula

The thermal independence of Super Virasoro and modular degrees of freedom implies that mass
squared for elementary particle is the sum of Super Virasoro, modular and Higgsy contributions:

M2 = M2(color) +M2(SV ) +M2(mod) +M2(Higgsy) . (16.5.1)

Also small renormalization correction contributions might be possible.

16.5.2 Color contribution to the mass squared

The mass squared contains a non-thermal color contribution to the ground state conformal weight
coming from the mass squared of CP2 spinor harmonic. The color contribution is an integer multiple
of m2

0/3, where m2
0 = 2Λ denotes the ’cosmological constant’ of CP2 (CP2 satisfies Einstein equations

Gαβ = Λgαβ).
The color contribution to the p-adic mass squared is integer valued only if m2

0/3 is taken as
a fundamental p-adic unit of mass squared. This choice has an obvious relevance for p-adic mass
calculations since the simplest form of the canonical identification does not commute with a division
by integer. More precisely, the image of number xp in canonical identification has a value of order 1
when x is a non-trivial rational number whereas for x = np the value is n/p and extremely is small
for physically interesting primes.

The choice of the p-adic mass squared unit are no effects on zeroth order contribution which
must vanish for light states: this requirement eliminates quark and lepton states for which the CP2

contribution to the mass squared is not integer valued using m2
0 as a unit. There can be a dramatic

effect on the first order contribution. The mass squared m2 = p/3 using m2
0/3 means that the particle

is light. The mass squared becomes m2 = p/3 when m2
0 is used as a unit and the particle has mass of

order 10−4 Planck masses. In the case of W and Z0 bosons this problem is actually encountered. For
light states using m2

0/3 as a unit only the second order contribution to the mass squared is affected
by this choice.

16.5.3 Modular contribution to the mass of elementary particle

The general form of the modular contribution is derivable from p-adic partition function for confor-
mally invariant degrees of freedom associated with the boundary components. The general form of
the vacuum functionals as modular invariant functions of Teichmuller parameters was derived in [22]
and the square of the elementary particle vacuum functional can be identified as a partition function.
Even theta functions serve as basic building blocks and the functionals are proportional to the product
of all even theta functions and their complex conjugates. The number of theta functions for genus
g > 0 is given by

N(g) = 2g−1(2g + 1) . (16.5.2)

One has N(1) = 3 for muon and N(2) = 10 for τ .

1. Single theta function is analogous to a partition function. This implies that the modular con-
tribution to the mass squared must be proportional to 2N(g). The factor two follows from the
presence of both theta functions and their conjugates in the partition function.

2. The factorization properties of the vacuum functionals imply that handles behave effectively as
particles. For example, at the limit, when the surface splits into two pieces with g1 and g − g1

handles, the partition function reduces to a product of g1 and g − g1 partition functions. This
implies that the contribution to the mass squared is proportional to the genus of the surface.
Altogether one has

M2(mod, g) = 2k(mod)N(g)g
m2

0

p
,

k(mod) = 1 . (16.5.3)
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Here k(mod) is some integer valued constant (in order to avoid ultra heavy mass) to be deter-
mined. k(mod) = 1 turns out to be the correct choice for this parameter.

Summarizing, the real counterpart of the modular contribution to the mass of a particle belonging
to g + 1:th generation reads as

M2(mod) = 0 for e, νe, u, d ,

M2(mod) = 9
m2

0

p(X))
for X = µ, νµ, c, s ,

M2(mod) = 60
m2

0

p(X)
for X = τ, ντ , t, b . (16.5.4)

The requirement that hadronic mass spectrum and CKM matrix are sensible however forces the
modular contribution to be the same for quarks, leptons and bosons. The higher order modular
contributions to the mass squared are completely negligible if the degeneracy of massless state is
D(0,mod, g) = 1 in the modular degrees of freedom as is in fact required by k(mod) = 1.

16.5.4 Thermal contribution to the mass squared

One can deduce the value of the thermal mass squared in order O(p2) (an excellent approximation) us-
ing the general mass formula given by p-adic thermodynamics. Assuming maximal p-adic temperature
Tp = 1 one has

M2 = k(sp+Xp2 +O(p3)) ,

s∆ =
D(∆ + 1)

D(∆)
,

X∆ = 2
D(∆ + 2)

D(∆)
− D2(∆ + 1)

D2(∆)
,

k = 1 . (16.5.5)

∆ is the conformal weight of the operator creating massless state from the ground state.
The ratios rn = D(n+1)/D(n) allowing to deduce the values of s and X have been deduced from p-

adic thermodynamics in [49] . Light state is obtained only provided r(∆) is an integer. The remarkable
result is that for lowest lying states this is the case. For instance, for Ramond representations the
values of rn are given by

(r0, r1, r2, r3) = (8, 5, 4,
55

16
) . (16.5.6)

The values of s and X are

(s0, s1, s2) = (8, 5, 4) ,

(X0, X1, X2) = (16, 15, 11 + 1/2)) . (16.5.7)

The result means that second order contribution is extremely small for quarks and charged leptons
having ∆ < 2. For neutrinos having ∆ = 2 the second order contribution is non-vanishing.

16.5.5 The contribution from the deviation of ground state conformal
weight from negative integer

The interpretation inspired by p-adic mass calculations is that the squares λ2
i of the eigenvalues of

the modified Dirac operator correspond to the conformal weights of ground states. Another natural
physical interpretation of λ is as an analog of the Higgs vacuum expectation. The instability of the
Higgs=0 phase would corresponds to the fact that λ = 0 mode is not localized to any region in which
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ew magnetic field or induced Kähler field is non-vanishing. A good guess is that induced Kähler
magnetic field BK dictates the magnitude of the eigenvalues which is thus of order h0 =

√
BKR, R

CP2 radius. The first guess is that eigenvalues in the first approximation come as (n+ 1/2)h0. Each
region where induced Kähler field is non-vanishing would correspond to different scale mass scale h0.

1. The vacuum expectation value of Higgs is only proportional to an eigenvalue λ, not equal to
it. Indeed, Higgs and gauge bosons as elementary particles correspond to wormhole contacts
carrying fermion and antifermion at the two wormhole throats and must be distinguished from
the space-time correlate of its vacuum expectation as something proportional to λ. In the
fermionic case the vacuum expectation value of Higgs does not seem to be even possible since
fermions do not correspond to wormhole contacts between two space-time sheets but possess
only single wormhole throat (p-adic mass calculations are consistent with this).

2. Physical considerations suggest that the vacuum expectation of Higgs field corresponds to a
particular eigenvalue λi of modified Dirac operator so that the eigenvalues λi would define
TGD counterparts for the minima of Higgs potential. Since the vacuum expectation of Higgs
corresponds to a condensate of wormhole contacts giving rise to a coherent state, the vacuum
expectation cannot be present for topologically condensed CP2 type vacuum extremals repre-
senting fermions since only single wormhole throat is involved. This raises a hen-egg question
about whether Higgs contributes to the mass or whether Higgs is only a correlate for massivation
having description using more profound concepts. From TGD point of view the most elegant
option is that Higgs does not give rise to mass but Higgs vacuum expectation value accompanies
bosonic states and is naturally proportional to λi. With this interpretation λi could give a
contribution to both fermionic and bosonic masses.

3. If the coset construction for super-symplectic and super Kac-Moody algebra implying Equiva-
lence Principle is accepted, one encounters what looks like a problem. p-Adic mass calculations
require negative ground state conformal weight compensated by Super Virasoro generators in
order to obtain massless states. The tachyonicity of the ground states would mean a close anal-
ogy with both string models and Higgs mechanism. λ2

i is very natural candidate for the ground
state conformal weights identified but would have wrong sign if the effective metric of X3

l defined

by the inner products T kαK T lβK hkl of the Kähler energy momentum tensor T kα = hkl∂LK/∂h
l
α

and appearing in the modified Dirac operator DK has Minkowskian signature.

The situation changes if the effective metric has Euclidian signature. This seems to be the case
for the light-like surfaces assignable to the known extremals such as MEs and cosmic strings.
In this kind of situation light-like coordinate possesses Euclidian signature and real eigenvalue
spectrum is replaced with a purely imaginary one. Since Dirac operator is in question both
signs for eigenvalues are possible and one obtains both exponentially increasing and decreasing
solutions. This is essential for having solutions extending from the past end of X3

l to its future
end. Non-unitary time evolution is possible because X3

l does not strictly speaking represent
the time evolution of 2-D dynamical object but actual dynamical objects (by light-likeness
both interpretation as dynamical evolution and dynamical object are present). The Euclidian
signature of the effective metric would be a direct analog for the tachyonicity of the Higgs
in unstable minimum and the generation of Higgs vacuum expectation would correspond to
the compensation of ground state conformal weight by conformal weights of Super Virasoro
generators.

4. In accordance with this λ2
i would give constant contribution to the ground state conformal

weight. What contributes to the thermal mass squared is the deviation of the ground state
conformal weight from half-odd integer since the negative integer part of the total conformal
weight can be compensated by applying Virasoro generators to the ground state. The first
guess motivated by cyclotron energy analogy is that the lowest conformal weights are of form
hc = λ2

i = −1/2−n+ ∆hc so that lowest ground state conformal weight would be hc = −1/2 in
the first approximation. The negative integer part of the net conformal weight can be canceled
using Super Virasoro generators but ∆hc would give to mass squared a contribution analogous to
Higgs contribution. The mapping of the real ground state conformal weight to a p-adic number
by canonical identification involves some delicacies.
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5. p-Adic mass calculations are consistent with the assumption that Higgs type contribution is
vanishing (that is small) for fermions and dominates for gauge bosons. This requires that the
deviation of λ2

i with smallest magnitude from half-odd integer value in the case of fermions is
considerably smaller than in the case of gauge bosons in the scale defined by p-adic mass scale
1/L(k) in question. Somehow this difference could relate to the fact that bosons correspond to
pairs of wormhole throats.

16.5.6 General mass formula for Ramond representations

By taking the modular contribution from the boundaries into account the general p-adic mass formulas
for the Ramond type states read for states for which the color contribution to the conformal weight
is integer valued as

m2(∆ = 0)

m2
0

= (8 + n(g))p+ Y p2 ,

m2(∆ = 1)

m2
0

= (5 + n(g)p+ Y p2 ,

m2(∆ = 2)

m2
0

= (4 + n(g))p+ (Y +
23

2
)p2 ,

n(g) = 3g · 2g−1(2g + 1) . (16.5.8)

Here ∆ denotes the conformal weight of the operators creating massless states from the ground state
and g denotes the genus of the boundary component. The values of n(g) for the three lowest generations
are n(0) = 0, n(1) = 9 and n(2) = 60. The value of second order thermal contribution is nontrivial
for neutrinos only. The value of the rational number Y can, which corresponds to the renormalization
correction to the mass, can be determined using experimental inputs.

Using m2
0 as a unit, the expression for the mass of a Ramond type state reads in terms of the

electron mass as

M(∆, g, p)R = K(∆, g, p)

√
M127

p
me

K(0, g, p) =

√
n(g) + 8 + YR

X

K(1, g, p) =

√
n(g) + 5 + YR

X

K(2, g, p) =

√
n(g) + 4 + YR

X
,

X =
√

5 + Y (e)R . (16.5.9)

Y can be assumed to depend on the electromagnetic charge and color representation of the state
and is therefore same for all fermion families. Mathematica provides modules for calculating the real
counterpart of the second order contribution and for finding realistic values of Y .

16.5.7 General mass formulas for NS representations

Using m2
0/3 as a unit, the expression for the mass of a light NS type state for Tp = 1 ad kB = 1 reads

in terms of the electron mass as
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M(∆, g, p,N)R = K(∆, g, p,N)

√
M127

p
me

K(0, g, p, 1) =

√
n(g) + YR

X
,

K(0, g, p, 2) =

√
n(g) + 1 + YR

X
,

K(1, g, p, 3) =

√
n(g) + 3 + YR

X
,

K(2, g, p, 4) =

√
n(g) + 5 + YR

X
,

K(2, g, p, 5) =

√
n(g) + 10 + YR

X
,

X =
√

5 + Y (e)R . (16.5.10)

Here N is the number of the ’active’ NS sectors (sectors for which the conformal weight of the massless
state is non-vanishing). Y denotes the renormalization correction to the boson mass and in general
depends on the electro-weak and color quantum numbers of the boson.

The thermal contribution to the mass of W boson is too large by roughly a factor
√

3 for Tp = 1.
Hence Tp = 1/2 must hold true for gauge bosons and their masses must have a non-thermal origin
perhaps analogous to Higgs mechanism. Alternatively, the non-covariant constancy of charge matrices
could induce the boson mass [49] .

It is interesting to notice that the minimum mass squared for gauge boson corresponds to the
p-adic mass unit M2 = m2

0p/3 and this just what is needed in the case of W boson. This forces to
ask whether m2

0/3 is the correct choice for the mass squared unit so that non-thermally induced W
mass would be the minimal m2

W = p in the lowest order. This choice would mean the replacement

YR →
(3Y )R

3

in the preceding formulas and would affect only neutrino mass in the fermionic sector. m2
0/3 option

is excluded by charged lepton mass calculation. This point will be discussed later.

16.5.8 Primary condensation levels from p-adic length scale hypothesis

p-Adic length scale hypothesis states that the primary condensation levels correspond to primes near
prime powers of two p ' 2k, k integer with prime values preferred. Black hole-elementary particle
analogy [60] suggests a generalization of this hypothesis by allowing k to be a power of prime. The
general number theoretical vision discussed in [85] provides a first principle justification for p-adic
length scale hypothesis in its most general form. The best fit for the neutrino mass squared differences
is obtained for k = 132 = 169 so that the generalization of the hypothesis might be necessary.

A particle primarily condensed on the level k can suffer secondary condensation on a level with
the same value of k: for instance, electron (k = 127) suffers secondary condensation on k = 127
level. u, d, s quarks (k = 107) suffer secondary condensation on nuclear space-time sheet having
k = 113). All quarks feed their color gauge fluxes at k = 107 space-time sheet. There is no deep
reason forbidding the condensation of p on p. Primary and secondary condensation levels could also
correspond to different but nearly identical values of p with the same value of k.

16.6 Fermion masses

In the earlier model the coefficient of M2 = kL0 had to be assumed to be different for various particle
states. k = 1 was assumed for bosons and leptons and k = 2/3 for quarks. The fact that k = 1
holds true for all particles in the model including also super-symplectic invariance forces to modify
the earlier construction of quark states. This turns out to be possible without affecting the earlier
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p-adic mass calculations whose outcome depend in an essential manner on the ground state conformal
weights hgr of the fermions (hgr can be negative). The structure of lepton and quark states in color
degrees of freedom was discussed in [49] .

16.6.1 Charged lepton mass ratios

The overall mass scale for lepton and quark masses is determined by the condensation level given by
prime p ' 2k, k prime by length scale hypothesis. For charged leptons k must correspond to k = 127
for electron, k = 113 for muon and k = 107 for τ . For muon p = 2113 − 1 − 4 ∗ 378 is assumed
(smallest prime below 2113 allowing

√
2 but not

√
3). So called Gaussian primes are to complex

integers what primes are for the ordinary integers and the Gaussian counterparts of the Mersenne
primes are Gaussian primes of form (1 ± i)k − 1. Rather interestingly, k = 113 corresponds to a
Gaussian Mersenne so that all charged leptons correspond to generalized Mersenne primes.

For k = 1 the leptonic mass squared is integer valued in units of m2
0 only for the states satisfying

p mod 3 6= 2 .

Only these representations can give rise to massless states. Neutrinos correspond to (p, p) represen-
tations with p ≥ 1 whereas charged leptons correspond to (p, p+ 3) representations. The earlier mass
calculations demonstrate that leptonic masses can be understood if the ground state conformal weight
is hgr = −1 for charged leptons and hgr = −2 for neutrinos.

The contribution of color partial wave to conformal weight is hc = (p2 +2p)/3, p ≥ 1, for neutrinos
and p = 1 gives hc = 1 (octet). For charged leptons hc = (p2 + 5p + 6)/3 gives hc = 2 for p = 0
(decuplet). In both cases super-symplectic operator O must have a net conformal weight hsc = −3
to produce a correct conformal weight for the ground state. p-adic considerations suggests the use
of operators O with super-symplectic conformal weight z = −1/2 − i

∑
nkyk, where sk = 1/2 + iyk

corresponds to zero of Riemann ζ. If the operators in question are color Hamiltonians in octet
representation net super-symplectic conformal weight hsc = −3 results. The tensor product of two
octets with conjugate super-symplectic conformal weights contains both octet and decuplet so that
singlets are obtained. What strengthens the hopes that the construction is not adhoc is that the same
operator appears in the construction of quark states too.

Using CP2 mass scale m2
0 [49] as a p-adic unit, the mass formulas for the charged leptons read as

M2(L) = A(ν)
m2

0

p(L)
,

A(e) = 5 +X(p(e)) ,

A(µ) = 14 +X(p(µ)) ,

A(τ) = 65 +X(p(τ)) . (16.6.1)

X(·) corresponds to the yet unknown second order corrections to the mass squared.
The following table gives the basic parameters as determined from the mass of electron for some

values of Ye. The mass of top quark favors as maximal value of CP2 mass which corresponds to Ye = 0.

Ye 0 .5 .7798
(m0/mPl)× 103 .2437 .2323 .2266
K × 10−7 2.5262 2.7788 2.9202

(LR/
√
G)× 10−4 3.1580 3.3122 3.3954

Table 1. Table gives the values of CP2 mass m0 using Planck mass mPl = 1/
√
G as unit, the ratio

K = R2/G and CP2 geodesic length L = 2πR for Ye ∈ {0, 0.5, 0.7798}.

The following table lists the lower and upper bounds for the charged lepton mass ratios obtained
by taking second order contribution to zero or allowing it to have maximum possible value. The values
of lepton masses are me = .510999 MeV, mµ = 105.76583 MeV, mτ = 1775 MeV.
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m(µ)+

m(µ)
=

√
15

5
27me

(µ)
' 1.0722 ,

m(µ)−
m(µ)

=

√
14

6
27 me

m(µ)
' 0.9456 ,

m(τ)+

m(τ)
=

√
66

5
210 me

m(τ)
' 1.0710 ,

m(τ)−
m(τ)

=

√
65

6
210 me

m(τ)
' .9703 .

(16.6.2)

For the maximal value of CP2 mass the predictions for the mass ratio are systematically too large by
a few per cent. From the formulas above it is clear that the second order corrections to mass squared
can be such that correct masses result.

τ mass is least sensitive to X(p(e)) ≡ Ye and the maximum value of Ye ≡ Ye,max consistent with
τ mass corresponds to Ye,max = .7357 and Yτ = 1. This means that the CP2 mass is at least a
fraction .9337 of its maximal value. If YL is same for all charged leptons and has the maximal value
Ye,max = .7357, the predictions for the mass ratios are

m(µ)pr
m(µ)

=

√
14 + Ye,max
5 + Ye,max

× 27 me

m(µ)
' .9922 ,

m(τ)pr
m(τ)

=

√
65 + Ye,max
5 + Ye(max

× 210 me

m(τ)
' .9980 .

(16.6.3)

The error is .8 per cent resp. .2 per cent for muon resp. τ .

The argument leading to estimate for the modular contribution to the mass squared [49] leaves
two options for the coefficient of the modular contribution for g = 2 fermions: the value of coefficient
is either X = g for g ≤ 1, X = 3g− 3 for g ≥ 2 or X = g always. For g = 2 the predictions are X = 2
and X = 3 in the two cases. The option X = 3 allows slightly larger maximal value of Ye equal to

Y
1)
e,max = Ye,max + (5 + Ye,max)/66.

16.6.2 Neutrino masses

The estimation of neutrino masses is difficult at this stage since the prediction of the primary conden-
sation level is not yet possible and neutrino mixing cannot yet be predicted from the basic principles.
The cosmological bounds for neutrino masses however help to put upper bounds on the masses. If
one takes seriously the LSND data on neutrino mass measurement of [58, 35] and the explanation of
the atmospheric ν-deficit in terms of νµ − ντ mixing [47, 39] one can deduce that the most plausible
condensation level of µ and τ neutrinos is k = 167 or k = 132 = 169 allowed by the more general
form of the p-adic length scale hypothesis suggested by the blackhole-elementary particle analogy.
One can also deduce information about the mixing matrix associated with the neutrinos so that mass
predictions become rather precise. In particular, the mass splitting of µ and τ neutrinos is predicted
correctly if one assumes that the mixing matrix is a rational unitary matrix.

Super Virasoro contribution

Using m2
0/3 as a p-adic unit, the expression for the Super Virasoro contribution to the mass squared

of neutrinos is given by the formula
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M2(SV ) = (s+ (3Y p)R/3)
m2

0

p
,

s = 4 or 5 ,

Y =
23

2
+ Y1 , (16.6.4)

where m2
0 is universal mass scale. One can consider two possible identifications of neutrinos corre-

sponding to s(ν) = 4 with ∆ = 2 and s(ν) = 5 with ∆ = 1. The requirement that CKM matrix is
sensible forces the asymmetric scenario in which quarks and, by symmetry, also leptons correspond
to lowest possible excitation so that one must have s(ν) = 4. Y1 represents second order contribution
to the neutrino mass coming from renormalization effects coming from self energy diagrams involving
intermediate gauge bosons. Physical intuition suggest that this contribution is very small so that the
precise measurement of the neutrino masses should give an excellent test for the theory.

With the above described assumptions and for s = 4, one has the following mass formula for
neutrinos

M2(ν) = A(ν)
m2

0

p(ν))
,

A(νe) = 4 +
(3Y (p(νe)))R

3
,

A(νµ) = 13 +
(3Y (p(νµ)))R

3
,

A(ντ ) = 64 +
(3Y (p(ντ )))R

3
,

3Y ' 1

2
. (16.6.5)

The predictions must be consistent with the recent upper bounds [26]
of order 10 eV , 270 keV and 0.3 MeV for νe, νµ and ντ respectively. The recently reported results of
LSND measurement [35] for νe− > νµ mixing gives string limits for ∆m2(νe, νµ) and the parameter
sin2(2θ) characterizing the mixing: the limits are given in the figure 30 of [35]. The results suggests
that the masses of both electron and muon neutrinos are below 5 eV and that mass squared difference
∆m2 = m2(νµ) − m2(νe) is between .25 − 25 eV 2. The simplest possibility is that νµ and νe have
common condensation level (in analogy with d and s quarks). There are three candidates for the
primary condensation level: namely k = 163, 167 and k = 169. The p-adic prime associated with
the primary condensation level is assumed to be the nearest prime below 2k allowing p-adic

√
2 but

not
√

3 and satisfying p mod 4 = 3. The following table gives the values of various parameters and
unmixed neutrino masses in various cases of interest.

k p (3Y )R/3 m(νe)/eV m(νµ)/eV m(ντ )/eV
163 2163 − 4 ∗ 144− 1 1.36 1.78 3.16 6.98
167 2167 − 4 ∗ 144− 1 .34 .45 .79 1.75

169 2169 − 4 ∗ 210− 1 .17 .22 .40 .87

Could neutrino topologically condense also in other p-adic length scales than k = 169?

One must keep mind open for the possibility that there are several p-adic length scales at which
neutrinos can condense topologically. Biological length scales are especially interesting in this respect.
In fact, all intermediate p-adic length scales k = 151, 157, 163, 167 could correspond to metastable
neutrino states. The point is that these p-adic lengths scales are number theoretically completely
exceptional in the sense that there exist Gaussian Mersenne 2k ± i (prime in the ring of complex
integers) for all these values of k. Since charged leptons, atomic nuclei (k = 113) , hadrons and
intermediate gauge bosons correspond to ordinary or Gaussian Mersennes, it would not be surprising
if the biologically important Gaussian Mersennes would correspond to length scales giving rise to
metastable neutrino states. Of course, one can keep mind open for the possibility that k = 167 rather
than k = 132 = 169 is the length scale defining the stable neutrino physics.



16.6. Fermion masses 1397

Neutrino mixing

Consider next the neutrino mixing. A quite general form of the neutrino mixing matrix D given by
the table below will be considered.

νe νµ ντ
νe c1 s1c3 s1s3

νµ −s1c2 c1c2c3 − s2s3exp(iδ) c1c2s3 + s2c3exp(iδ)
ντ −s1s2 c1s2c3 + c2s3exp(iδ) c1s2s3 − c2c3exp(iδ)

Physical intuition suggests that the angle δ related to CP breaking is small and will be assumed
to be vanishing. Topological mixing is active only in modular degrees of freedom and one obtains for
the first order terms of mixed masses the expressions

s(νe) = 4 + 9|U12|2 + 60|U13|2 = 4 + n1 ,

s(νµ) = 4 + 9|U22|2 + 60|U23|2 = 4 + n2 ,

s(ντ ) = 4 + 9|U32|2 + 60|U33|2 = 4 + n3 .

(16.6.6)

The requirement that resulting masses are not ultraheavy implies that s(ν) must be small integers.
The condition n1 + n2 + n3 = 69 follows from unitarity. The simplest possibility is that the mixing
matrix is a rational unitary matrix. The same ansatz was used successfully to deduce information
about the mixing matrices of quarks. If neutrinos are condensed on the same condensation level,
rationality implies that νµ − ντ mass squared difference must come from the first order contribution
to the mass squared and is therefore quantized and bounded from below.

The first piece of information is the atmospheric νµ/νe ratio, which is roughly by a factor 2 smaller
than predicted by standard model [47]. A possible explanation is the CKM mixing of muon neutrino
with τ -neutrino, whereas the mixing with electron neutrino is excluded as an explanation. The latest
results from Kamiokande [47] are in accordance with the mixing m2(ντ )−m2(νµ) ' 1.6 ·10−2 eV 2 and
mixing angle sin2(2θ) = 1.0: also the zenith angle dependence of the ratio is in accordance with the
mixing interpretation. If mixing matrix is assumed to be rational then only k = 169 condensation level
is allowed for νµ and ντ . For this level νµ−ντ mass squared difference turns out to be ∆m2 ' 10−2 eV 2

for ∆s ≡ s(ντ )−s(νµ) = 1, which is the only acceptable possibility and predicts νµ−ντ mass squared
difference correctly within experimental uncertainties! The fact that the predictions for mass squared
differences are practically exact, provides a precision test for the rationality assumption.

What is measured in LSND experiment is the probability P (t, E) that νµ transforms to νe in time
t after its production in muon decay as a function of energy E of νµ. In the limit that ντ and νµ
masses are identical, the expression of P (t, E) is given by

P (t, E) = sin2(2θ)sin2(
∆Et

2
) ,

sin2(2θ) = 4c21s
2
1c

2
2 , (16.6.7)

where ∆E is energy difference of νµ and νe neutrinos and t denotes time. LSND experiment gives
stringent conditions on the value of sin2(2θ) as the figure 30 of [35] shows. In particular, it seems that
sin2(2θ) must be considerably below 10−1 and this implies that s2

1 must be small enough.

The study of the mass formulas shows that the only possibility to satisfy the constraints for the
mass squared and sin2(2θ) given by LSND experiment is to assume that the mixing of the electron
neutrino with the tau neutrino is much larger than its mixing with the muon neutrino. This means
that s3 is quite near to unity. At the limit s3 = 1 one obtains the following (nonrational) solution of
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the mass squared conditions for n3 = n2 + 1 (forced by the atmospheric neutrino data)

s2
1 =

69− 2n2 − 1

60
,

c22 =
n2 − 9

2n2 − 17
,

sin2(2θ) =
4(n2 − 9)

51

(34− n2)(n2 − 4)

302
,

s(νµ)− s(νe) = 3n2 − 68 . (16.6.8)

The study of the LSND data shows that there is only one acceptable solution to the conditions obtained
by assuming maximal mass squared difference for νe and νµ

n1 = 2 n2 = 33 n3 = 34 ,

s2
1 =

1

30
c22 =

24

49
,

sin2(2θ) =
24

49

2

15

29

30
' .0631 ,

s(νµ)− s(νe)) = 31↔ .32 eV 2 . (16.6.9)

That c22 is near 1/2 is not surprise taking into account the almost mass degeneracy of νmu and ντ .
From the figure 30 of [35] it is clear that this solution belongs to 90 per cent likelihood region of LSND
experiment but sin2(2θ) is about two times larger than the value allowed by Bugey reactor experiment.
The study of various constraints given in [35] shows that the solution is consistent with bounds from
all other experiments. If one assumes that k > 169 for νe νµ − νe mass difference increases, implying
slightly poorer consistency with LSND data.

There are reasons to hope that the actual rational solution can be regarded as a small deformation
of this solution obtained by assuming that c3 is non-vanishing. s2

1 = 69−2n2−1
60−51c23

increases in the

deformation by O(c23) term but if c3 is positive the value of c22 '
24−102c01c

0
2s

0
2c3

49 ∼ 24−61c3
49 decreases

by O(c3) term so that it should be possible to reduce the value of sin2(2θ). Consistency with Bugey
reactor experiment requires .030 ≤ sin2(2θ) < .033. sin2(2θ) = .032 is achieved for s2

1 ' .035,s2
2 ' .51

and c23 ' .068. The construction of U and D matrices for quarks shows that very stringent number
theoretic conditions are obtained and as in case of quarks it might be necessary to allow complex CP
breaking phase in the mixing matrix. One might even hope that the solution to the conditions is
unique.

For the minimal rational mixing one has s(νe) = 5, s(νµ) = 36 and s(ντ ) = 37 if unmixed νe
corresponds to s = 4. For s = 5 first order contributions are shifted by one unit. The masses (s = 4
case) and mass squared differences are given by the following table.

k m(νe) m(νµ) m(ντ ) ∆m2(νµ − νe) ∆m2(ντ − νµ)
169 .27 eV .66 eV .67 eV .32 eV 2 .01 eV 2

Predictions for neutrino masses and mass squared splittings for k = 169 case.

Evidence for the dynamical mass scale of neutrinos

In recent years (I am writing this towards the end of year 2004 and much later than previous lines)
a great progress has been made in the understanding of neutrino masses and neutrino mixing. The
pleasant news from TGD perspective is that there is a strong evidence that neutrino masses depend
on environment [24]. In TGD framework this translates to the statement that neutrinos can suffer
topological condensation in several p-adic length scales. Not only in the p-adic length scales suggested
by the number theoretical considerations but also in longer length scales, as will be found.

The experiments giving information about mass squared differences can be divided into three
categories [24].

1. There along baseline experiments, which include solar neutrino experiments [44, 49, 53] and [71]
as well as earlier studies of solar neutrinos. These experiments see evidence for the neutrino
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mixing and involve significant propagation through dense matter. For the solar neutrinos and
KamLAND the mass splittings are estimated to be of order O(8× 10−5) eV2 or more cautiously
8×10−5 eV2 < δm2 < 2×10−3 eV2. For K2K and atmospheric neutrinos the mass splittings are
of order O(2 × 10−3)eV 2 or more cautiously δm2 > 10−3eV2. Thus the scale of mass splitting
seems to be smaller for neutrinos in matter than in air, which would suggest that neutrinos able
to propagate through a dense matter travel at space-time sheets corresponding to a larger p-adic
length scale than in air.

2. There are null short baseline experiments including CHOOZ, Bugey, and Palo Verde reactor
experiments, and the higher energy CDHS, JARME, CHORUS, and NOMAD experiments,
which involve muonic neutrinos (for references see [24]. No evidence for neutrino oscillations
have been seen in these experiments.

3. The results of LSND experiment [35] are consistent with oscillations with a mass splitting greater
than 3 × 10−2eV 2. LSND has been generally been interpreted as necessitating a mixing with
sterile neutrino. If neutrino mass scale is dynamical, situation however changes.

If one assumes that the p-adic length scale for the space-time sheets at which neutrinos can
propagate is different for matter and air, the situation changes. According to [24] a mass 3× 10−2 eV
in air could explain the atmospheric results whereas mass of of order .1 eV and .07eV 2 < δm2 < .26eV 2

would explain the LSND result. These limits are of the same order as the order of magnitude predicted
by k = 169 topological condensation.

Assuming that the scale of the mass splitting is proportional to the p-adic mass scale squared, one
can consider candidates for the topological condensation levels involved.

1. Suppose that k = 169 = 132 is indeed the condensation level for LSND neutrinos. k = 173
would predict mνe ∼ 7 × 10−2 eV and δm2 ∼ .02 eV2. This could correspond to the masses of
neutrinos propagating through air. For k = 179 one has mνe ∼ .8×10−2 eV and δm2 ∼ 3×10−4

eV2 which could be associated with solar neutrinos and KamLAND neutrinos.

2. The primes k = 157, 163, 167 associated with Gaussian Mersennes would give δm2(157) =
26δm2(163) = 210δm2(167) = 212δm2(169) and mass scales m(157) ∼ 22.8 eV, m(163) ∼ 3.6
eV, m(167) ∼ .54 eV. These mass scales are unrealistic or propagating neutrinos. The inter-
pretation consistent with TGD inspired model of condensed matter in which neutrinos screen
the classical Z0 force generated by nucleons would be that condensed matter neutrinos are con-
fined inside these space-time sheets whereas the neutrinos able to propagate through condensed
matter travel along k > 167 space-time sheets.

The results of MiniBooNE group as a support for the energy dependence of p-adic mass
scale of neutrino

The basic prediction of TGD is that neutrino mass scale can depend on neutrino energy and the
experimental determinations of neutrino mixing parameters support this prediction. The newest
results (11 April 2007) about neutrino oscillations come from MiniBooNE group which has published
its first findings [25] concerning neutrino oscillations in the mass range studied in LSND experiments
[22].

1. The motivation for MiniBooNE

Neutrino oscillations are not well-understood. Three experiments LSND, atmospheric neutrinos,
and solar neutrinos show oscillations but in widely different mass regions (1 eV2 , 3× 10−3 eV2, and
8× 10−5 eV2).

In TGD framework the explanation would be that neutrinos can appear in several p-adically
scaled up variants with different mass scales and therefore different scales for the differences ∆m2 for
neutrino masses so that one should not try to try to explain the results of these experiments using
single neutrino mass scale. In single-sheeted space-time it is very difficult to imagine that neutrino
mass scale would depend on neutrino energy since neutrinos interact so extremely weakly with matter.
The best known attempt to assign single mass to all neutrinos has been based on the use of so called
sterile neutrinos which do not have electro-weak couplings. This approach is an ad hoc trick and
rather ugly mathematically and excluded by the results of MiniBooNE experiments.
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2. The result of MiniBooNE experiment
The purpose of the MiniBooNE experiment was to check whether LSND result ∆m2 = 1eV 2 is

genuine. The group used muon neutrino beam and looked whether the transformations of muonic
neutrinos to electron neutrinos occur in the mass squared region ∆m2 ' 1 eV2. No such transitions
were found but there was evidence for transformations at low neutrino energies.

What looks first as an over-diplomatic formulation of the result was MiniBooNE researchers showed
conclusively that the LSND results could not be due to simple neutrino oscillation, a phenomenon in
which one type of neutrino transforms into another type and back again. rather than direct refutation
of LSND results.

3. LSND and MiniBooNE are consistent in TGD Universe

The habitant of the many-sheeted space-time would not regard the previous statement as a mere
diplomatic use of language. It is quite possible that neutrinos studied in MiniBooNE have suffered
topological condensation at different space-time sheet than those in LSND if they are in different
energy range (the preferred rest system fixed by the space-time sheet of the laboratory or Earth). To
see whether this is the case let us look more carefully the experimental arrangements.

1. In LSND experiment 800 MeV proton beam entering in water target and the muon neutrinos
resulted in the decay of produced pions. Muonic neutrinos had energies in 60-200 MeV range [22].

2. In MiniBooNE experiment [25] 8 GeV muon beam entered Beryllium target and muon neutrinos
resulted in the decay of resulting pions and kaons. The resulting muonic neutrinos had energies
the range 300-1500 GeV to be compared with 60-200 MeV.

Let us try to make this more explicit.

1. Neutrino energy ranges are quite different so that the experiments need not be directly compara-
ble. The mixing obeys the analog of Schrödinger equation for free particle with energy replaced
with ∆m2/E, where E is neutrino energy. The mixing probability as a function of distance L
from the source of muon neutrinos is in 2-component model given by

P = sin2(θ)sin2(1.27∆m2L/E) .

The characteristic length scale for mixing is L = E/∆m2. If L is sufficiently small, the mixing is
fifty-fifty already before the muon neutrinos enter the system, where the measurement is carried
out and no mixing is detected. If L is considerably longer than the size of the measuring system,
no mixing is observed either. Therefore the result can be understood if ∆m2 is much larger
or much smaller than E/L, where L is the size of the measuring system and E is the typical
neutrino energy.

2. MiniBooNE experiment found evidence for the appearance of electron neutrinos at low neutrino
energies (below 500 MeV) which means direct support for the LSND findings and for the depen-
dence of neutron mass scale on its energy relative to the rest system defined by the space-time
sheet of laboratory.

3. Uncertainty Principle inspires the guess Lp ∝ 1/E implying mp ∝ E. Here E is the energy of
the neutrino with respect to the rest system defined by the space-time sheet of the laboratory.
Solar neutrinos indeed have the lowest energy (below 20 MeV) and the lowest value of ∆m2.
However, atmospheric neutrinos have energies starting from few hundreds of MeV and ∆;m2

is by a factor of order 10 higher. This suggests that the the growth of ∆m2 with E2 is slower
than linear. It is perhaps not the energy alone which matters but the space-time sheet at which
neutrinos topologically condense. For instance, MiniBooNE neutrinos above 500 MeV would
topologically condense at space-time sheets for which the p-adic mass scale is higher than in
LSND experiments and one would have ∆m2 >> 1 eV2 implying maximal mixing in length
scale much shorter than the size of experimental apparatus.

4. One could also argue that topological condensation occurs in condensed matter and that no
topological condensation occurs for high enough neutrino energies so that neutrinos remain
massless. One can even consider the possibility that the p-adic length scale Lp is proportional
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to E/m2
0, where m0 is proportional to the mass scale associated with non-relativistic neutrinos.

The p-adic mass scale would obey mp ∝ m2
0/E so that the characteristic mixing length would

be by a factor of order 100 longer in MiniBooNE experiment than in LSND.

Comments

Some comments on the proposed scenario are in order: some of the are written much later than the
previous text.

1. Mass predictions are consistent with the bound ∆m(νµ, νe) < 2 eV 2 coming from the requirement
that neutrino mixing does not spoil the so called r-process producing heavy elements in Super
Novae [67].

2. TGD neutrinos cannot solve the dark matter problem: the total neutrino mass required by the
cold+hot dark matter models would be about 5 eV . In [25] a model of galaxies based on string
like objects of galaxy size and providing a more exotic source of dark matter, is discussed.

3. One could also consider the explanation of LSND data in terms of the interaction of νµ and
nucleon via the exchange of g = 1 W boson. The fraction of the reactions ν̄µ + p → e+ + n is

at low neutrino energies P ∼ m4
W (g=0)

m4
W (g=1)

sin2(θc), where θc denotes Cabibbo angle. Even if the

condensation level of W (g = 1) is k = 89, the ratio is by a factor of order .05 too small to
explain the average νµ → νe transformation probability P ' .003 extracted from LSND data.

4. The predicted masses exclude MSW and vacuum oscillation solutions to the solar neutrino
problem unless one assumes that several condensation levels and thus mass scales are possible
for neutrinos. This is indeed suggested by the previous considerations.

16.6.3 Quark masses

The prediction or quark masses is more difficult due the facts that the deduction of even the p-adic
length scale determining the masses of these quarks is a non-trivial task, and the original identifi-
cation was indeed wrong. Second difficulty is related to the topological mixing of quarks. The new
scenario leads to a unique identification of masses with top quark mass as an empirical input and
the thermodynamical model of topological mixing as a new theoretical input. Also CKM matrix is
predicted highly uniquely.

Basic mass formulas

By the earlier mass calculations and construction of CKM matrix the ground state conformal weights
of U and D type quarks must be hgr(U) = −1 and hgr(D) = 0. The formulas for the eigenvalues
of CP2 spinor Laplacian imply that if m2

0 is used as a unit, color conformal weight hc ≡ m2
CP2

is
integer for p mod = ±1 for U type quark belonging to (p + 1, p) type representation and obeying
hc(U) = (p2 + 3p+ 2)/3 and for p mod 3 = 1 for D type quark belonging (p, p+ 2) type representation
and obeying hc(D) = (p2 + 4p + 4)/3. Only these states can be massless since color Hamiltonians
have integer valued conformal weights.

In the recent case the minimal p = 1 states correspond to hc(U) = 2 and hc(D) = 3. hgr(U) = −1
and hgr(D) = 0 reproduce the previous results for quark masses required by the construction of CKM
matrix. This requires super-symplectic operators O with a net conformal weight hsc = −3 just as
in the leptonic case. The facts that the values of p are minimal for spinor harmonics and the super-
symplectic operator is same for both quarks and leptons suggest that the construction is not had hoc.
The real justification would come from the demonstration that hsc = −3 defines null state for SCV:
this would also explain why hsc would be same for all fermions.

Consider now the mass squared values for quarks. For h(D) = 0 and h(U) = −1 and using m2
0/3

as a unit the expression for the thermal contribution to the mass squared of quark is given by the
formula
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M2 = (s+X)
m2

0

p
,

s(U) = 5 , s(D) = 8 ,

X ≡ (3Y p)R
3

, (16.6.10)

where the second order contribution Y corresponds to renormalization effects coming and depending
on the isospin of the quark. When m2

0 is used as a unit X is replaced by X = (Yp)R.
With the above described assumptions one has the following mass formula for quarks

M2(q) = A(q)
m2

0

p(q) ,

A(u) = 5 +XU (p(u) , A(c) = 14 +XU (p(c)) , A(t) = 65 +XU (p(t)) ,
A(d) = 8 +XD(p(d)) , A(s) = 17 +XD(p(s)) , A(b) = 68 +XD(p(b)) .

(16.6.11)

p-Adic length scale hypothesis allows to identify the p-adic primes labelling quarks whereas topo-
logical mixing of U and D quarks allows to deduce topological mixing matrices U and D and CKM
matrix V and precise values of the masses apart from effects like color magnetic spin orbit splitting,
color Coulombic energy, etc..

Integers nqi satisfying
∑
i n(Ui) =

∑
i n(Di) = 69 characterize the masses of the quarks and also

the topological mixing to high degree. The reason that modular contributions remain integers is
that in the p-adic context non-trivial rationals would give CP2 mass scale for the real counterpart of
the mass squared. In the absence of mixing the values of integers are nd = nu = 0, ns = nc = 9,
nb = nt = 60.

The fact that CKM matrix V expressible as a product V = U†D of topological mixing matrices
is near to a direct sum of 2 × 2 unit matrix and 1 × 1 unit matrix motivates the approximation
nb ' nt. The large masses of top quark and of tt meson encourage to consider a scenario in which
nt = nb = n ≤ 60 holds true.

The model for topological mixing matrices and CKM matrix predicts U and D matrices highly
uniquely and allows to understand quark and hadron masses in surprisingly detailed level.

1. nd = nu = 60 is not allowed by number theoretical conditions for U and D matrices and by
the basic facts about CKM matrix but nt = nb = 59 allows almost maximal masses for b and
t. This is not yet a complete hit. The unitarity of the mixing matrices and the construction of
CKM matrix to be discussed in the next section forces the assignments

(nd, ns, nb) = (5, 5, 59) , (nu, nc, nt) = (5, 6, 58) . (16.6.12)

fixing completely the quark masses apart possible Higgs contribution [58] . Note that top quark
mass is still rather near to its maximal value.

2. The constraint that valence quark contribution to pion mass does not exceed pion mass implies
the constraint n(d) ≤ 6 and n(u) ≤ 6 in accordance with the predictions of the model of
topological mixing. u− d mass difference does not affect π+− π0 mass difference and the quark
contribution to m(π) is predicted to be

√
(nd + nu + 13)/24×136.9 MeV for the maximal value

of CP2 mass (second order p-adic contribution to electron mass squared vanishes).

The p-adic length scales associated with quarks and quark masses

The identification of p-adic length scales associated with the quarks has turned to be a highly non-
trivial problem. The reasons are that for light quarks it is difficult to deduce information about quark
masses for hadron masses and that the unknown details of the topological mixing (unknown until the



16.6. Fermion masses 1403

advent of the thermodynamical model [58] ) made possible several p-adic length scales for quarks. It
has also become clear that the p-adic length scale can be different form free quark and bound quark
and that bound quark p-adic scale can depend on hadron.

Two natural constraints have however emerged from the recent work.

1. Quark contribution to the hadron mass cannot be larger than color contribution and for quarks
having kq 6= 107 quark contribution to mass is added to color contribution to the mass. For
quarks with same value of k conformal weight rather than mass is additive whereas for quarks
with different value of k masses are additive. An important implication is that for diagonal
mesons M = qq having k(q) 6= 107 the condition m(M) ≥

√
2mq must hold true. This gives

strong constraints on quark masses.

2. The realization that scaled up variants of quarks explain elegantly the masses of light hadrons
allows to understand large mass splittings of light hadrons without the introduction of strong
isospin-isospin interaction.

The new model for quark masses is based on the following identifications of the p-adic length
scales.

1. The nuclear p-adic length scale L(k), k = 113, corresponds to the p-adic length scale determining
the masses of u, d, and s quarks. Note that k = 113 corresponds to a so called Gaussian
Mersenne. The interpretation is that quark massivation occurs at nuclear space-time sheet at
which quarks feed their em fluxes. At k = 107 space-time sheet, where quarks feed their color
gauge fluxes, the quark masses are vanishing in the first p-adic order. This could be due to
the fact that the p-adic temperature is Tp = 1/2 at this space-time sheet so that the thermal
contribution to the mass squared is negligible. This would reflect the fact that color interactions
do not involve any counterpart of Higgs mechanism.

p-Adic mass calculations turn out to work remarkably well for massive quarks. The reason could
be that M107 hadron physics means that all quarks feed their color gauge fluxes to k = 107
space-time sheets so that color contribution to the masses becomes negligible for heavy quarks
as compared to Super-Kac Moody and modular contributions corresponding to em gauge flux
feeded to k > 107 space-time sheets in case of heavy quarks. Note that Z0 gauge flux is feeded
to space-time sheets at which neutrinos reside and screen the flux and their size corresponds to
the neutrino mass scale. This picture might throw some light to the question of whether and
how it might be possible to demonstrate the existence of M89 hadron physics.

One might argue that k = 107 is not allowed as a condensation level in accordance with the idea
that color and electro-weak gauge fluxes cannot be feeded at the space-time space time sheet
since the classical color and electro-weak fields are functionally independent. The identification
of η′ meson as a bound state of scaled up k = 107 quarks is not however consistent with this
idea unless one assumes that k = 107 space-time sheets in question are separate.

2. The requirement that the masses of diagonal pseudoscalar mesons of type M = qq are larger but
as near as possible to the quark contribution

√
2mq to the valence quark mass, fixes the p-adic

primes p ' 2k associated with c, b quarks but not t since toponium does not exist. These values
of k are ”nominal” since k seems to be dynamical. c quark corresponds to the p-adic length scale
k(c) = 104 = 23 × 13. b quark corresponds to k(b) = 103 for n(b) = 5. Direct determination of
p-adic scale from top quark mass gives k(t) = 94 = 2× 47 so that secondary p-adic length scale
is in question.

Top quark mass tends to be slightly too low as compared to the most recent experimental
value of m(t) = 169.1 GeV with the allowed range being [164.7, 175.5] GeV [27] . The optimal
situation corresponds to Ye = 0 and Yt = 1 and happens to give top mass exactly equal to the
most probable experimental value. It must be emphasized that top quark is experimentally in
a unique position since toponium does not exist and top quark mass is that of free top.

In the case of light quarks there are good reasons to believe that the p-adic mass scale of quark
is different for free quark and bound state quark and that in case of bound quark it can also depend
on hadron. This would explain the notions of valence (constituent) quark and current quark mass as



1404 Chapter 16. Particle Massivation in TGD Universe

masses of bound state quark and free quark and leads also to a TGD counterpart of Gell-Mann-Okubo
mass formula [58] .

1. Constituent quark masses

Constituent quark masses correspond to masses derived assuming that they are bound to hadrons.
If the value of k is assumed to depend on hadron one obtains nice mass formula for light hadrons as
will be found later. The table below summarizes constituent quark masses as predicted by this model.

2. Current quark masses

Current quark masses would correspond to masses of free quarks which tend to be lower than
valence quark masses. Hence k could be larger in the case of light quarks. The table of quark masses
in Wikipedia [7] gives the value ranges for current quark masses depicted in the table below together
with TGD predictions for the spectrum of current quark masses.

q d u s
m(q)exp/MeV 4-8 1.5-4 80-130

k(q) (122,121,120) (125,124,123,122) (114,113,112)
m(q)/MeV (4.5,6.6,9.3) (1.4,2.0,2.9,4.1) (74,105,149)

q c b t
m(q)exp/MeV 1150-1350 4100-4400 1691

k(q) (106,105) (105,104) 92
m(q)/MeV (1045,1477) (3823,5407) 167.8× 103

Table 3. The experimental value ranges for current quark masses [7] and TGD predictions for their
values assuming (nd, ns, nb) = (5, 5, 59), (nu, nc, nt) = (5, 6, 58), and Ye = 0. For top quark Yt = 0 is
assumed. Yt = 1 would give 169.2 GeV.

Some comments are in order.

1. The long p-adic length associated with light quarks seem to be in conflict with the idea that
quarks have sizes smaller than hadron size. The paradox disappears when one realized that k(q)
characterizes the electromagnetic ”field body” of quark having much larger size than hadron.

2. u and d current quarks correspond to a mass scale not much higher than that of electron and the
ranges for mass estimates suggest that u could correspond to scales k(u) ∈ (125, 124, 123, 122) =
(53, 4×31, 3×41, 2×61), whereas d would correspond to k(d) ∈ (122, 121, 120) = (2×61, 112, 3×
5× 8).

3. The TGD based model for nuclei based on the notion of nuclear string leads to the conclusion
that exotic copies of k = 113 quarks having k = 127 are present in nuclei and are responsible
for the color binding of nuclei [82, 6] , [6] .

4. The predicted values for c and b masses are slightly too low for (k(c), k(b)) = (106, 105) =
(2 × 53, 3 × 5 × 7). Second order Higgs contribution could increase the c mass into the range
given in [7] but not that of b.

5. The mass of top quark has been slightly below the experimental estimate for long time. The
experimental value has been coming down slowly and the most recent value obtained by CDF [29]
is mt = 165.1± 3.3± 3.1 GeV and consistent with the TGD prediction for Ye = Yt = 0.

One can talk about constituent and current quark masses simultaneously only if they correspond
to dual descriptions. M8 − H duality [49] has been indeed suggested to relate the old fashioned
low energy description of hadrons in terms of SO(4) symmetry (Skyrme model) and higher energy
description of hadrons based on QCD. In QCD description the mass of say baryon would be dominated
by the mass associated with super-symplectic quanta carrying color. In SO(4) description constituent
quarks would carry most of the hadron mass.
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Can Higgs field develop a vacuum expectation in fermionic sector at all?

An important conclusion following from the calculation of lepton and quark masses is that if Higgs
contribution is present, it can be of second order p-adically and even negligible, perhaps even vanishing.
There is indeed an argument forcing to consider this possibility seriously. The recent view about
elementary particles is following.

1. Fermions correspond to CP2 type vacuum extremals topologically condensed at positive/negative
energy space-time sheets carrying quantum numbers at light-like wormhole throat. Higgs and
gauge bosons correspond to wormhole contacts connecting positive and negative energy space-
time sheets and carrying fermion and anti-fermion quantum numbers at the two light-like worm-
hole throats.

2. If the values of p-adic temperature are Tp = 1 and Tp = 1/n, n > 1f or fermions and bosons the
thermodynamical contribution to the gauge boson mass is negligible.

3. Different p-adic temperatures and Kähler coupling strengths for fermions and bosons make
sense if bosonic and fermionic partonic 3-surfaces meet only along their ends at the vertices of
generalized Feynman diagrams but have no other common points [23] . This forces to consider
the possibility that fermions cannot develop Higgs vacuum expectation value although they can
couple to Higgs. This is not in contradiction with the modification of sigma model of hadrons
based on the assumption that vacuum expectation of σ field gives a small contribution to hadron
mass [53] since this field can be assigned to some bosonic space-time sheet pair associated with
hadron.

4. Perhaps the most elegant interpretation is that ground state conformal is equal to the square of
the eigenvalue of the modified Dirac operator. The ground state conformal weight is negative
and its deviation from half odd integer value gives contribution to both fermion and boson
masses. The Higgs expectation associated with coherent state of Higgs like wormhole contacts
is naturally proportional to this parameter since no other parameter with dimensions of mass
is present. Higgs vacuum expectation determines gauge boson masses only apparently if this
interpretation is correct. The contribution of the ground state conformal weight to fermion mass
square is near to zero. This means that λ is very near to negative half odd integer and therefore
no significant difference between fermions and gauge bosons is implied.

q d u s c b t
nq 4 5 6 6 59 58
sq 12 10 14 11 67 63
k(q) 113 113 113 104 103 94

m(q)/GeV .105 .092 .105 2.191 7.647 167.8

Table 2. Constituent quark masses predicted for diagonal mesons assuming (nd, ns, nb) =
(5, 5, 59) and (nu, nc, nt) = (5, 6, 58), maximal CP2 mass scale(Ye = 0), and vanishing of second
order contributions.

16.7 Higgsy aspects of particle massivation

16.7.1 Can p-adic thermodynamics explain the masses of intermediate
gauge bosons?

The requirement that the electron-intermediate gauge boson mass ratios are sensible, serves as a
stringent test for the hypothesis that intermediate gauge boson masses result from the p-adic ther-
modynamics. It seems that the only possible option is that the parameter k has same value for both
bosons, leptons, and quarks:

kB = kL = kq = 1 .
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In this case all gauge bosons have D(0) = 1 and there are good changes to obtain boson masses
correctly. k = 1 together with Tp = 1 implies that the thermal masses of very many boson states are
extremely heavy so that the spectrum of the boson exotics is reduced drastically. For Tp = 1/2 the
thermal contribution to the mass squared is completely negligible.

Contrary to the original optimistic beliefs based on calculational error, it turned out impossible to
predict W/e and Z/e mass ratios correctly in the original p-adic thermodynamics scenario. Although
the errors are of order 20-30 percent, they seemed to exclude the explanation for the massivation of
gauge bosons using p-adic thermodynamics.

1. The thermal mass squared for a boson state with N active sectors (non-vanishing vacuum
weight) is determined by the partition function for the tensor product of N NS type Super
Virasoro algebras. The degeneracies of the excited states as a function of N and the weight ∆
of the operator creating the massless state are given in the table below.

2. Both W and Z must correspond to N = 2 active Super Virasoro sectors for which D(1) = 1
and D(2) = 3 so that (using the formulas of p-adic thermodynamics the thermal mass squared
is m2 = kB(p+ 5p2) for Tp = 1. The second order contribution to the thermal mass squared is
extremely small so that Weinberg angle vanishes in the thermal approximation. kB = 1 gives
Z/e mass-ratio which is about 22 per cent too high. For Tp = 1/2 thermal masses are completely
negligible.

3. The thermal prediction for W-boson mass is the same as for Z0 mass and thus even worse since
the two masses are related M2

W = M2
Zcos

2(θW ).

16.7.2 Comparison of TGD Higgs and with MSSM Higgs

The notion of Higgs in TGD framework differs from that of standard model and super-symmetric
extension in several respects. Very concisely, the two complex SU(2)V doublets are replaced with
scalar and pseudoscalar triplet and singlet so that the number of field components is same. The Higgs
possibly developing vacuum expectation is now uniquely the scalar singlet unless one allows parity
breaking. The number of remaining Higgs field components is 5 as in the minimal supersymmetric
extension of the standard model.

TGD based particle concept very briefly

Before attempt to clarify the differences between TGD and standard model Higgs it is good to list
the basic ideas behind TGD based notion of particle.

1. Bosonic emergence means that gauge bosons and Higgs and their super partners can be in the
first approximation regarded as wormhole contacts with the throats carrying quantum numbers
of fermion and antifermion. A given throat carrying fermionic quantum numbers. Also many
fermion states are possible and have interpretation in terms of a supersymmetry extending the
ordinary space-time supersymmetry in which super-generators are simply the fermionic oscillator
operators assignable to the partonic 2-surface. These generators can be used to construct various
super-conformal algebras. Right-handed neutrinos define the analog of ordinary space-time
super-supersymmetry as it is encountered in MSSM. In topological condensation also fermions
become wormhole contacts with second throat carrying purely bosonic quantum numbers.

2. The weak form of electric magnetic duality forces the conclusion that wormhole throats carry
Kähler magnetic charges which much be neutralized by opposite Kähler magnetic charge. The
natural idea is that monopole confinement is also behind color confinement and electroweak
screening. In the case of color confinement the valence quarks would form wormhole throats
connected by color magnetic flux tubes having total Kähler magnetic charge. Weak screen-
ing would mean that the throat compensating he Kähler magnetic charge of fermionic throat
contains a neutrino-antineutrino pairs screening the weak isospin. This leaves to Z0 coupling
I3
L + sin2(θW )Qem and if classical Z0 field is present this leads to an interaction distinguishing

between TGD and standard model.
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3. Particle massivation is described by p-adic thermodynamics. p-Adic thermodynamics cannot
explain gauge boson masses and if it contributes the contribution is small and corresponds
to low p-adic temperatures Tp = 1/n. It is not yet completely clear whether the generation
of vacuum contribution to ground state conformal weight implying deviation from half-integer
value is responsible for weak gauge boson masses. It might be sensible to speak about coherent
state of Higgs bosons in zero energy ontology and also in the case of fermions if interacting
fermions have suffered topological condensation. If this is the case Higgs vacuum expectation
value defining the coherent state can contribute to the particle mass but only in the case of
weak gauge bosons give a dominating contribution. It is not clear whether the generation of
non-half-integer vacuum conformal weight and Higgs mechanisms could be seen descriptions of
one and same thing.

Scalar and pseudo-scalar triplet and singlet instead of two doublets

TGD based notion of Higgs differs from its standard model and MSSM counterpart because the notion
of spinor is different. If one believes on the following arguments, the basic implication is that two
Higgs doublest of MSSM are replaced with scalar and pseudo-scalar triplet and singlet.

1. In TGD framework space-time spinors are induced spinors and therefore spinors of 8-D space
M4×CP2. The mixing of M4 chiralities in the modified Dirac equation in the space-time interior
serves as a tell-tale signature for the massivation and does not imply mixing of the imbedding
space chiralities identified in terms of leptons and quarks.

2. Group theoretically gauge bosons and Higgs itself corresponds to a tensor product of two M4×
CP2 spinors giving rise to a spin singlet. In electroweak degrees of freedom one has a tensor
product of right and left handed doublets decomposing to triplet and singlet under SU(2)V . The
first guess would be that one obtains just triplet 3 and singlet 1 whereas in standard model one
has a complex SU(2)V doublet. In MSSM the cancellation of anomalies requires two doublets.
As noticed, TGD allows supersymmetry generalizing the usual space-time supersymmetry and
also no anomaly cancellation argument allows to expect a pairs of triplets and singlets.

3. One can assign fermion with ”upper” throat and antifermion with the ”lower” throat or vice versa
and one can have both the sum or difference or these two states. This does not however imply
additional degeneracy. Fermionic statistics requires the antisymmetry of the state with respect
to the exchange of all quantum numbers. Spin and isospin triplets (singlets) are symmetric
(antisymmetric) under the exchange of spin quantum numbers and singlets antisymmetric. In
the case of Higgs triplet (singlet) the sum (difference) of these states must be assumed and there
is no additional degeneracy.

4. One can construct gauge bosons and Higgs type particles from both quarks and leptons. The
requirement that the gauge bosons couple to both quarks and leptons implies that they corre-
spond to sums of these Higgses and behave like H-vectors for one has Γ9 = 1. One can however
ask whether also H-axial vector gauge bosons and Higgs with Γ9 = −1 should be allowed. They
are not suggested by the study of the modified Dirac equation and it seems that this leads to
physically non-sensical results. First of all, the exchanges of vectorial and axial Higgses between
leptons and quarks would be of opposite sign and at high energies the sum over these exchanges
would approach zero so that quark and lepton sectors would separate into non-interacting worlds.
It is also difficult to imagine how one could avoid H-axial massless photon. p-Adic thermody-
namics would allow the H-axial photon to become massive but it is not possible to understand
how the H-axial scalar Higgs could transform to a longitudinal degree of freedom of the resulting
H-axial photon.

5. One can construct the most general candidate for a Higgs particle using as charge matrix con-
tracted between spinors associated with the opposite wormhole throats the product of a vector
in the tangent space of CP2 represented as sum of constant gamma matrices γA and electroweak
charge matrix. One can express the products of the CP2 gamma matrices and charge matrices
in terms of CP2 gamma matrices γA and and γ5(CP2)γA. The action of CP2 gamma matrix γ5

however reduces to that of εγ5(M4), where the sign factor ε = ±1 depends on H-chirality. There-
fore one would have scalar Higgs and pseudo-scalar Higgs and the couplings of pseudo-scalar
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Higgs are of opposite sign for quarks and leptons. In unitary gauge one would have neutral scalar
Higgs and 4 pseudo-scalar Higgses with the same charge spectrum as in MSSM. One can indeed
construct Higgs particles as fermion-antifermion pairs by using products of charge matrices and
CP2 tangent space vector and transform them to scalar and pseudoscalar multiplets.

6. In Higgs mechanism the key idea is that one can represent the directional degrees of freedom of
Higgs field in terms of coset space G/H, now SU(2)L×U(1)/U(1)em. Therefore Higgs field can
be written as in the form exp(

∑
Ta∈t T

aξa/v)(ρ+v), t = g−h, where v is the expectation value of
the Higgs field fixing a preferred direction. The gauge transformation g = exp(−

∑
Ta∈t T

aξa/v)
transforms Higgs to ρ+ v so that the degrees of freedom corresponding to the direction of Higgs
are ”eaten” by charge gauge potentials. In the resulting gauge the action contains only the YM
part and Higgs term restricted to the fluctuations of Higgs around vacuum in the direction of v.

In the recent case the coset space would be the coset space of the holonomy group of CP2

divided by the subgroup defined by electromagnetic charge commuting with the vacuum expec-
tation value which is therefore linear combination of γ0 and γ3 in the most general case. The
condition that entire SU(2)V leaves invariant the preferred direction fixes this direction to γ0

which corresponds to the radial coordinate of CP2 in the standard vielbein basis. In the recent
case CP2 holonomy group naturally defines a preferred direction of Higgs field and it seems that
vacuum expectation value is not necessary for the elimination of the charged Higgs. Neutral
Higgs would essentially correspond to the magnitude of the Higgs field.

7. If the TGD based description of radiative corrections relying on the notion of generalized Feyn-
man diagram is approximately equivalent with QFT based description and if should not differ
too dramatically from those of MSSM in the approximation of N = 1 supersymmetry mean-
ing that only the super partners obtained using right handed neutrinos and antineutrinos are
taken into account. At high energies the the action of γ5 gives only a minus sign telling the
M4 chirality of approximately massless particle and one has right to expect that the effects of
pseudo-scalar exchange in loops do not differ dramatically from those of a scalar exchange.

Can one identify a classical correlate for the Higgs?

The natural question is whether one can identify classical correlates for the Higgs field and massivation.
Kähler action does not allow to identify any obvious correlates whereas Kähler Dirac action does.

1. Kähler Dirac action in the interior of space-time surface should contain the counterpart of Higgs
term whose signature is that it mixes M4 chiralities. The interaction term analogous to that
appearing in the ordinary Dirac action coupled to gauge fields is

Lint = ΨΓ̂αAαΨ ,

Γ̂α = Tαkγk = Tαkγk(M4) + Tαkγk(CP2) ,

Tαk =
∂LK

∂(∂αhk)
. (16.7.1)

Here Aα are the components of the induced spinor connection. Tαk denotes canonical momentum
densities and conserved momentum and color currents are closely related to them. They are
required by internal consistency (in particular, by the consistency with the vacuum degeneracy of
Kähler action) and super-symmetry. If action were defined by the volume of space-time surface in
the induced metric, modified gamma matrices would reduce to induced gamma matrices coding
information about classical gravitational fields. Also now information about gravitation is coded
besides the dynamics of Kähler action associated with zero modes. Kähler field can indeed be
said to characterize zero modes locally whereas quantum fluctuating degrees contributing to the
WCW metric and therefore identifiable as gravitational degrees of freedom in generalized sense
of the word [21] .

The modified gamma matrices decompose to two parts corresponding to M4 and CP2 gamma
matrices and the presence of CP2 gamma matrices implies the mixing of M4 chiralities so that
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massivation is unavoidable once one has a space-time surface which does not correspond to the
canonically imbedded M4. Also the kinetic part of Γ̂α∂α contains a term mixing M4 chiralities
having no obvious counterpart in the ordinary Dirac equation. The important conclusion is that
whatever the dynamical details of massivation are it must take place.

2. The interaction term Tαkγk(CP2)Aα of the modified Dirac action defined by the contraction
of canonically conjugate momenta with gauge potentials mixes M4 chiralities so that it is in
this sense analogous to Higgs coupling. In gauge transformations the gauge potentials however
transform inhomogenously. Does this mean that the term in question can be interpreted only as
a signature for the presence of particle massivation or is also the identification as the classical
counterpart of Higgs field sensical?

Optimist could argue that there is a natural preferred gauge associated with the classical spinor
connection. For instance, the Coulomb interaction term for Kähler action vanishes in preferred
gauge for the general solution ansatz implying the reduction of Kähler function to Chern-Simons
term for extremal in presence of a constraint expressing the weak form of electric-magnetic
duality. For Kähler gauge potential this gauge is highly unique. Also, if one imagines adding
to the induced gauge potential quantum fluctuating part representing the quantum field, one
could say that the classical Higgs field transforms homogenously and that quantum part is gauge
transformed inhomogenously. The situation remains unsettled.

3. The classical correlate for the Higgs field in TGD is not a genuine scalar field but defines a
vector in the 4-D tangent space of CP2. This allows to speak about CP2 polarization. If the
notion of unitary gauge meaning that an electro-weak gauge rotation takes Higgs to a standard
direction invariant under SU(2)V rotations - in particular those induced by the vectorial isospin
I3
V appearing in electromagnetic charge- then one can say that CP2 polarization is always in the

same direction for the scalar Higgs. In the case of pseudo-scalar Higgs all four CP2 polarizations
a possible.

16.7.3 How TGD based description of particle massivation relates to Higgs
mechanism

In TGD framework p-adic thermodynamics gives the dominating contribution to fermion masses,
which is something completely new. In the case of gauge bosons thermodynamic contribution is small
since the inverse integer valued p-adic temperature is T = 1/2 for bosons or even lower: for fermions
one has T = 1.

Whether Higgs can contribute to the masses is not completely clear. In TGD framework Mexican
hat potential however looks like trick. One must however keep in mind that any other mechanism must
explain the ratio of W and Z0 masses and how these bosons receive their longitudinal polarizations.
One must also consider seriously the possibility that all components for the TGD counterpart of Higgs
boson are transformed to the longitudinal polarizations of the gauge bosons. Twistorial approach to
TGD indeed strongly suggests that also the gauge bosons regarded usually as massless have a small
mass guaranteing cancellation of IR singularities. As I started write to write this piece of text I
believed that photon does not eat Higgs but had to challenge my beliefs. Maybe there is no Higgs to
be found at LHC! Only pseudo-scalar partner of Higgs would remain to be discovered.

The weak form of electric magnetic duality implying that each wormhole throat carrying fermionic
quantum numbers is accompanied by a second wormhole throat carrying opposite magnetic charge and
neutrino pair screening weak isospin and making gauge bosons massive. Concerning the implications
the following view looks the most plausible one at this moment.

1. Neutral Higgs-if not eaten by photon- could develop a coherent state meaning vacuum expec-
tation value and this is naturally proportional to the inverse of the p-adic length scale as are
boson masses. This contribution can be assigned to the magnetic flux tube mentioned above
since it screens weak force - or equivalently - makes them massive. Higgs expectation would not
cause boson massivation. Rather, massivation and Higgs vacuum expectation would be caused
by the presence of the magnetic flux tubes. Standard model would suffer from a causal illusion.
Even a worse illusion is possible if the photon eats the neutral Higgs.
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2. The ”stringy” magnetic flux tube connecting fermion wormhole throat and the wormhole throat
containing neutrino pair would give to the vacuum conformal weight a small contribution and
therefore to the mass squared of both fermions and gauge bosons (dominating one for the
latter). This contribution would be small in the p-adic sense (proportional 1/p2 rather than
1/p). I cannot calculate this ”stringy” contribution but stringy formula in weak scale is very
suggestive.

3. In the case of light fermions and massless gauge bosons the stringy contribution must vanish
and therefore must correspond to n = 0 string excitation (string does not vibrate at all) :
otherwise the mass of fermion would be of order weak boson mass. For weak bosons n = 1
would look like a natural identification but also n = 0 makes sense since h±1 states corresponds
opposite three-momenta for massless fermion and antifermion so that the state is massive. The
mechanism bringing in the h = 0 helicity of gauge boson would be the TGD counterpart for
the transformation of Higgs component to a longitudinal polarization. n ≥ 0 excited states of
fermions and n ≥ 1 excitations of bosons having masses above weak boson masses are predicted
and would mean new physics becoming possibly visible at LHC.

16.7.4 The identification of Higgs

Consider now the identification of Higgs in TGD framework.

1. In TGD framework Higgs particles do not correspond to complex SU(2) doublets but to triplet
and singlet having same quantum numbers as gauge bosons. Therefore the idea that photon
eats neutral Higgs is suggestive. Also a pseudo-scalar variant of Higgs is predicted. Let us see
how these states emerge from weak strings.

2. The two kinds of massive states corresponding to n = 0 and n = 1 give rise to massive spin
1 and spin 2 particles. First of all, the helicity doublet (1,−1) is necessarily massive since the
3-momenta for massless fermion and anti-fermion are opposite. For n = L = 0 this gives two
states but helicity zero component is lacking. For n = L = 1 one has tensor product of doublet
(1,−1) and angular momentum triplet formed by L = 1 rotational state of the weak string.
This gives 2× 3 states corresponding to J = 0 and J = 2 multiplets. Note however than in spin
degrees of freedom the Higgs candidate is not a genuine elementary scalar particle.

3. Fermion and antifermion can have parallel three momenta summing up to a massless 4-momentum.
Spin vanishes so that one has Higgs like particle also now. This particle is however pseudo-scalar
being group theoretically analogous to meson formed as a pair of quark and antiquark. p-Adic
thermodynamics gives a contribution to the mass squared. By taking a tensor product with
rotational states of strings one would obtain Regge trajectory containing pseudoscalar Higgs as
the lowest state.

16.7.5 Do all gauge bosons possess small mass?

Consider now the problem how the gauge bosons can eat the Higgs boson to get their longitudinal
component.

1. (J = 0, n = 1) Higgs state can be combined with n = 0 h = ±1 doublet to give spin 1 massive
triplet provided the masses of the two states are same. This will be discussed below.

2. Also gauge bosons usually regarded as massless can eat the scalar Higgs so that Higgs like
particle could disappear completely. There would be no Higgs to be discovered at LHC! But
is this a real prediction? Could it be that it is not possible to have exactly massless photons
and gluons? The mixing of M4 chiralities for Chern-Simons Dirac equation implies that also
collinear massless fermion and antifermion can have helicity ±1. The problem is that the mixing
of the chiralities is a signature of massivation!

Could it really be that even the gauge bosons regarded as massless have a small mass char-
acterized by the length scale of the causal diamond defining the physical IR cutoff and that
the remaining Higgs component would correspond to the longitudinal component of photon?
This would mean the number of particles in the final states for a particle reaction with a fixed
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initial state is always bounded from above. This is important for the twistorial aesthetics of
generalized Feynman diagrammatics implied by zero energy ontology. Also the vanishing of IR
divergences is guaranteed by a small physical mass [99] . Maybe internal consistency allows only
pseudo-scalar Higgs.

16.7.6 Weak Regge trajectories

The weak form of electric-magnetic duality suggests strongly the existence of weak Regge trajectories.

1. The most general mass squared formula with spin-orbit interaction term M2
L−SL · S reads as

M2 = nM2
1 +M2

0 +M2
L−SL · S , n = 0, 2, 4 or n = 1, 3, 5, ..., . (16.7.2)

M2
1 corresponds to string tension and M2

0 corresponds to the thermodynamical mass squared
and possible other contributions. For a given trajectory even (odd) values of n have same parity
and can correspond to excitations of same ground state. From ancient books written about
hadronic string model one vaguely recalls that one can have several trajectories (satellites) and
if one has something called exchange degeneracy, the even and odd trajectories define single
line in M2 − J plane. As already noticed TGD variant of Higgs mechanism combines together
n = 0 states and n = 1 states to form massive gauge bosons so that the trajectories are not
independent.

2. For fermions, possible Higgs, and pseudo-scalar Higgs and their super partners also p-adic ther-
modynamical contributions are present. M2

0 must be non-vanishing also for gauge bosons and
be equal to the mass squared for the n = L = 1 spin singlet. By applying the formula to h = ±1
states one obtains

M2
0 = M2(boson) . (16.7.3)

The mass squared for transversal polarizations with (h, n, L) = (±1, n = L = 0, S = 1) should
be same as for the longitudinal polarization with (h = 0, n = L = 1, S = 1, J = 0) state. This
gives

M2
1 +M2

0 +M2
L−SL · S = M2

0 . (16.7.4)

From L · S = [J(J + 1)− L(L+ 1)− S(S + 1)] /2 = −2 for J = 0, L = S = 1 one has

M2
L−S = −M

2
1

2
. (16.7.5)

Only the value of weak string tension M2
1 remains open.

3. If one applies this formula to arbitrary n = L one obtains total spins J = L+ 1 and L− 1 from
the tensor product. For J = L− 1 one obtains

M2 = (2n+ 1)M2
1 +M2

0 .

For J = L+ 1 only M2
0 contribution remains so that one would have infinite degeneracy of the

lightest states. Therefore stringy mass formula must contain a non-linear term making Regge
trajectory curved. The simplest possible generalization which does not affect n=0 and n=1
states is of from

M2 = n(n− 1)M2
2 + (n− L · S

2
)M2

1 +M2
0 . (16.7.6)
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The challenge is to understand the ratio of W and Z0 masses, which is purely group theoretic and
provides a strong support for the massivation by Higgs mechanism.

1. The above formula and empirical facts require

M2
0 (W )

M2
0 (Z)

=
M2(W )

M2(Z)
= cos2(θW ) . (16.7.7)

in excellent approximation. Since this parameter measures the interaction energy of the fermion
and antifermion decomposing the gauge boson depending on the net quantum numbers of the
pair, it would look very natural that one would have

M2
0 (W ) = g2

WM
2
SU(2) , M2

0 (Z) = g2
ZM

2
SU(2) . (16.7.8)

Here M2
SU(2) would be the fundamental mass squared parameter for SU(2) gauge bosons. p-

Adic thermodynamics of course gives additional contribution which is vanishing or very small
for gauge bosons.

2. The required mass ratio would result in an excellent approximation if one assumes that the
mass scales associated with SU(2) and U(1) factors suffer a mixing completely analogous to
the mixing of U(1) gauge boson and neutral SU(2) gauge boson W3 leading to γ and Z0. Also
Higgs, which consists of SU(2) triplet and singlet in TGD Universe, would very naturally suffer
similar mixing. Hence M0(B) for gauge boson B would be analogous to the vacuum expectation
of corresponding mixed Higgs component. More precisely, one would have

M0(W ) = MSU(2) ,

M0(Z) = cos(θW )MSU(2) + sin(θW )MU(1) ,

M0(γ) = −sin(θW )MSU(2) + cos(θW )MU(1) . (16.7.9)

The condition that photon mass is very small and corresponds to IR cutoff mass scale gives
M0(γ) = εcos(θW )MSU(2), where ε is very small number, and implies

MU(1)

M(W )
= tan(θW ) + ε ,

M(γ)

M(W )
= ε× cos(θW ) ,

M(Z)

M(W )
=

1 + ε× sin(θW )cos(θW )

cos(θW )
. (16.7.10)

There is a small deviation from the prediction of the standard model for W/Z mass ratio but
by the smallness of photon mass the deviation is so small that there is no hope of measuring
it. One can of course keep mind open for ε = 0. The formulas allow also an interpretation in
terms of Higgs vacuum expectations as it must. The vacuum expectation would most naturally
correspond to interaction energy between the massless fermion and antifermion with opposite 3-
momenta at the throats of the wormhole contact and the challenge is to show that the proposed
formulas characterize this interaction energy. Since CP2 geometry codes for standard model
symmetries and their breaking, it woul not be surprising if this would happen. One cannot
exclude the possibility that p-adic thermodynamics contributes to M2

0 (boson). For instance, ε
might characterize the p-adic thermal mass of photon.

If the mixing applies to the entire Regge trajectories, the above formulas would apply also to
weak string tensions, and also photons would belong to Regge trajectories containing high spin
excitations.
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3. What one can one say about the value of the weak string tension M2
1 ? The naive order of

magnitude estimate is M2
1 ' m2

W ' 104 GeV2 is by a factor 1/25 smaller than the direct scaling
up of the hadronic string tension about 1 GeV2 scaled up by a factor 218. The above argument
however allows also the identification as the scaled up variant of hadronic string tension in which
case the higher states at weak Regge trajectories would not be easy to discover since the mass
scale defined by string tension would be 512 GeV to be compared with the recent beam energy
7 TeV. Weak string tension need of course not be equal to the scaled up hadronic string tension.
Weak string tension - unlike its hadronic counterpart- could also depend on the electromagnetic
charge and other characteristics of the particle.

16.7.7 Is the earlier conjectured pseudoscalar Higgs there at all?

Spin 1 gauge bosons and Higgs differ only by different spin direction of fermions at opposite wormhole
throats. For spin 1 gauge bosons the 3-momenta at two wormhole throats cannot be parallel if if
one wants non-vanishing spin component in the direction of moment. 3-momenta are most naturally
opposite for the massless states at throats. This forces massivation for all gauge bosons and even
graviton and this in turn requires Higgs even in the case of gluons.

This inspires the question whether the parity properties of the couplings of gauge boson and corre-
sponding Higgs transforming like 3+1 under SU(2) (this is due to the special character of imbedding
space spinors) could be exactly the same? Higgs would couple like a mixture of scalar and pseudoscalar
to fermions just as weak gauge bosons couple and the mixture would be just the same. If there are no
axial variants of vector gauge bosons there should exist no pseudoscalar Higgs. The nonexistence of
axial variants of vector gauge bosons is suggested by quantum classical correspondence: only gauge
bosons having classical space-time correlates as induced gauge potentials should be allowed, nothing
else. Note that color variant of Higgs would exist and would be eaten by gluons to get mass.

The similarity of the construction of gauge bosons and Higgsinos as pairs of wormhole throats
containing fermion and antifermion encourages to think that Higgs mechanism is invariant under
supersymmetries. If so, also Higgsinos would be eaten and one would have massive super-symmetric
gauge theory with fermions with photon and other massless particle possessing a tiny mass. This
looks very simple. The testable implication would be that only weak gauginos should contribute to
muon g-2 anomaly.

16.7.8 Higgs issue after Europhysics 2011

The general feeling at the Eve of Europhysics 2011 conference was that this meeting might become
one of the key events in the history of physics. This might turn out to be the case. CDF and D0
were the groups representing the data from p-pbar collisions at Tevatron whereas ATLAS and CMS
represented the data about p-p collisions at LHC. The blog participation transformed the conference
from a closed meeting of specialists to a media event inspiring intense blog discussions and viXra log
became the most interesting discussion forum thanks to the excellent postings of Phil Gibbs giving
focused summaries of various reports about SUSY and Higgs.

The hope was that two basic questions would receive a unique answer. Does Higgs exist and if so
what is its mass? Is the standard view about SUSY correct: in other words do the super-partners
exist with masses below TeV scale? It was clear that negative answer to even the Higgs issue would
force a thorough reconsideration of the status of not only MSSM but also that of super string theory
and M-theory because of the general role of Higgs mechanism in the description massivation and
symmetry breaking for the QFT limits of these theories. The implications are far reaching also for the
inflationary cosmology where scalar fields and Higgs mechanism are taken as granted. Actually the
non-existence of Higgs forces to reconsider the entire quantum field theoretic description of particle
massivation.

Already before the conference several anomalies had emerged and the question was whether LHC
data gives a support for these anomalies.

• A 145 GeV bump with 4 sigma significance in the mass distribution of jet pairs jj in Wjj final
states was reported by CDF [3] but not confirmed by D0 [21]. The interpretation as Higgs was
excluded and some of the proposed identifications of 145 GeV bump was as decay products of
leptophobic Z′ boson or of technicolor pion. There were also indications for 300 GeV bump in
the mass distribution of Wjj states themselves suggesting cascade like decay.

http://eps-hep2011.eu/
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• Both CDF and D0 had reported two bumps at almost same mass about 325 GeV [8, 9] having
no obvious interpretation in standard model framework. Technicolor approach and also TGD
suggests an interpretation as pionlike state.

• CDF and D0 had also reported anomalous forward-backward asymmetry in top-pair production
in p-pbar collisions suggesting the existence of new kind of flavor changing colored neutral
currents [18, 48]. TGD based explanation of family replication phenomenon combined with
bosonic emergence predicts that gauge bosons should appear as flavor singlets and octets. Octets
would indeed induce flavor changing currents and asymmetry. Also many other indications for
new physics such as anomalously large CP breaking in BBbar system had been reported and
one should not forget long list of forgotten anomalies from previous years, say the two and half
year old CDF anomaly which D0 failed to observe. Recall also that proton has shown no signs
of decaying.

What did we learn during these days? Already before the conference it was clear that standard
SUSY had transformed from the healer of the standard model to a patient. The parameter space for
MSSM (minimal supersymmetric extension of standard model predicting two Higgs multiplets) had
been narrowed down by strong lower limits on squark and sgluon masses to the extent that the original
basic motivation for MSSM (stability of Higgs mass against radiative corrections) had been lost as
well as the explanation for the anomaly of g-2 of muon. During the conference the bounds on SUSY
parameters were tightened further and the rough conclusion is that squark and gluinos masses must
be above 1 TeV. Even Lubos Motl was forced to conclude that the probability that LCH discovers
standard SUSY is 50 per cent instead of 90 per cent or more of 2008 blog posting. In TGD framework
simple p-adic scaling arguments lead to the proposal that the only sfermions with mass below 1 TeV
are selectron and sneutrinos with selectron having mass equal to 262 GeV. Low sneutrino masses
allow in principle to understand g-2 of muon. Selectron could decay to electron plus neutralino for
which mass must be larger than 46 GeV neutralino would eventually decay to photon or virtual Z
plus neutrino.

The Higgs issue became the central theme of the conference and the three days from Thursday to
Sunday were loaded with excitement. After many twists, the final conclusion was that there is 2.5
sigma evidence from ATLAS for a state in the mass range 140-150 GeV, which might be Higgs or
something else. The press release of Fermi lab at Friday announced that they have confined Higgs to
the interval 120-137 GeV. After the announcement of ATLAS both D0 and CDF discovered suddenly
evidence for Higgs in 140-150 GeV mass range. The evidence for this mass range emerged from
the decays of a might-be Higgs to WW pairs decaying in turn to lepton pairs. The proponent of
technicolor would of course see this as evidence for an off mass shell state of a neutral pion like state
explaining also the jj bump in Wjj system and at 145 GeV mass and not allowing an interpretation as
Higgs. In TGD framework the experience with earlier anomalies such as two year old CDF anomaly
encouraged the interpretation in terms p-adic mass octaves of the pion of p-adically scaled up variant of
hadron physics with mass scale 512 times higher than that of the ordinary hadron physics. Somewhat
frustratingly, the final conclusion about the Higgs issue was promised to emerge only towards the
end of the next year but it is clear that already now standard model might well be inconsistent with
all data irrespective of the mass of Higgs. MSSM would allow additional flexibility but is also in
difficulties.

The surprise of the first conference day was additional evidence for the bump at 327 GeV reported
already earlier by CDF. This state is a complete mystery in standard model framework and therefore
extremely interesting. The proponents of technicolor would probably suggest interpretation as exotic
ρ or ω meson. in TGD framework both 145 GeV pion and 325 GeV ρ and ω appear as mesons of
M89 hadron physics if one assumes that the u and d quarks of M89 physics have masses corresponding
to the p-adic length scale k = 93 (mass is 102 GeV and should be visible as a preferred quark jet
mass). I would not be surprised if technicolor models would experience a brief renessaince but fail
experimentally since a lot of new states and elementary particles is implied by the extension of the
color gauge group. The mere p-adic scaling does not imply anything like this.

Also super string inspired predictions of various exotics such as microscopic black holes, strong
gravity, large extra dimensions, Randall-Sundrum gravitons, split supersymmetry, and whatever were
tested. No evidence was found. Neither there was evidence for lepto-quarks, heavier partners of
intermediate gauge bosons, and various other exotics.
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To my view, the results of the conference force to re-consider the basic assumptions of the approach
followed during last more than three decades. Is it possible be find a more realistic physical inter-
pretation of the mathematically extremely attractive supersymmetry? Unitarity requires new physics
in TeV scale: is this new physics technicolor or its TGD analog without gauge group extenssion or
something else? To me however the mother of all questions concerns the microscopic description of
massivation. The description in terms of Higgs is after all a phenomenological description borrowed
from condensed matter physics. It does not work for extended objects like strings but require quantum
field theory limit. p-Adic thermodynamics for conformal weight (to which mass squared is propor-
tional to) should be an essential element of the microscopic approach too since it is a description
working for the fundamental objects and in presence of super-conformal invariance.

What actually happens in the massivation: could it be that all components of Higgs, of its super
partners, and of its higher spin generalizations are eaten in a process in which massless multiplets
with various spins combine to form only massive multiplets? Here twistor approach might provide
the guideline since its applicability requires that massive particles should allow an interpretation as
bound states of massless ones. Perhaps the simple observation that spin one bound states of massless
fermion and anti-fermion are automatically massive might help to get to the deeper waters.

What next? Standard model Higgs is more or less excluded and the same fate is very probably
waiting the SUSY Higgs. I would not be surprised if technicolor models would experience a brief
renaissance but fail experimentally since very many new hadronlike states and new elementary particles
are implied by the extension of the color gauge group. Sooner or later the simple p-adic scaling of the
ordinary hadron physics probably turns out to be the only realistic option. If technicolor becomes in
fashion, the hadrons of M89 hadron physics will be however found as a side product of this search.

Eventually this requires giving up the Planck length scale reductionism as the basic philosophy and
replacing it with p-adic fractality as the basic guiding principle tying together physics at very short
and at very long length scales making possible the long sough for ultraviolet completion of known
physics. This led to the landscape catastrophe in M-theory since very many physics in long length
scales had the same UV completion. Some general principle fixing the long range physics is obviously
missing. p-Adic smoothness for which infinite in real sense is infinitesimal selects the unique long
length scale physics among infinitely many alternatives. The real problems are really much much
deeper than finding proper parameters for SUSY and it would be a high time for theoreticians to
finally realize this.

16.8 Calculation of hadron masses and topological mixing of
quarks

The calculation of quark masses is not enough since one must also understand CKM mixing of quarks
in order to calculate hadron massess. A model for CKM matrix and hadron masses is constructed
in [58] and here only a brief summary about basic ideas involved is given.

16.8.1 Topological mixing of quarks

In TGD framework CKM mixing is induced by topological mixing of quarks (that is 2-dimensional
topologies characterized by genus). The strongest number theoretical constraint on mixing matrices
would be that they are rational. Perhaps a more natural constraint is that they are expressible in
terms of roots of unity for some finite dimensional algebraic extension of rationals and therefore also
p-adic numbers.

Number theoretical constraints on topological mixing can be realized by assuming that topological
mixing leads to a thermodynamical equilibrium subject to constraints from the integer valued modular
contributions remaing integer valued in the mixing. This gives an upper bound of 1200 for the number
of different U and D matrices and the input from top quark mass and π+−π0 mass difference implies
that physical U and D matrices can be constructed as small perturbations of matrices expressible
as direct sum of essentially unique 2 × 2 and 1 × 1 matrices. The maximally entropic solutions can
be found numerically by using the fact that only the probabilities p11 and p21 can be varied freely.
The solutions are unique in the accuracy used, which suggests that the system allows only single
thermodynamical phase.
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The matrices U and D associated with the probability matrices can be deduced straightforwardly
in the standard gauge. The U and D matrices derived from the probabilities determined by the
entropy maximization turn out to be unitary for most values of integers n1 and n2 characterizing the
lowest order contribution to quark mass. This is a highly non-trivial result and means that mass and
probability constraints together with entropy maximization define a sub-manifold of SU(3) regarded
as a sub-manifold in 9-D complex space. The choice (n(u), n(c)) = (4, n), n < 9, does not allow
unitary U whereas (n(u), n(c)) = (5, 6) does. This choice is still consistent with top quark mass
and together with n(d) = n(s) = 5 it leads to a rather reasonable CKM matrix with a value of CP
breaking invariant within experimental limits. The elements Vi3 and V3i, i = 1, 2 are however roughly
twice larger than their experimental values deduced assuming standard model. V31 is too large by a
factor 1.6. The possibility of scaled up variants of light quarks could lead to too small experimental
estimates for these matrix elements. The whole parameter space has not been scanned so that better
candidates for CKM matrices might well exist.

16.8.2 Higgsy contribution to fermion masses is negligible

There are good reasons to believe that Higgs expectation for the fermionic space-time sheets is van-
ishing although fermions couple to Higgs. Thus p-adic thermodynamics would explain fermion masses
completely. This together with the fact that the prediction of the model for the top quark mass is
consistent with the most recent limits on it, fixes the CP2 mass scale with a high accuracy to the
maximal one obtained if second order contribution to electron’s p-adic mass squared vanishes. This
is very strong constraint on the model.

16.8.3 The p-adic length scale of quark is dynamical

The assumption about the presence of scaled up variants of light quarks in light hadrons leads to
a surprisingly successful model for pseudo scalar meson masses using only quark masses and the
assumption mass squared is additive for quarks with same p-adic length scale and mass for quarks
labelled by different primes p. This conforms with the idea that pseudo scalar mesons are Goldstone
bosons in the sense that color Coulombic and magnetic contributions to the mass cancel each other.
Also the mass differences between hadrons containing different numbers of strange and heavy quarks
can be understood if s, b and c quarks appear as several scaled up versions.

This hypothesis yields surprisingly good fit for meson masses but for some mesons the predicted
mass is slightly too high. The reduction of CP2 mass scale to cure the situation is not possible since
top quark mass would become too low. In case of diagonal mesons for which quarks correspond to
same p-adic prime, quark contribution to mass squared can be reduced by ordinary color interactions
and in the case of non-diagonal mesons one can require that quark contribution is not larger than
meson mass.

It should be however made clear that the notion of quark mass is problematic. One can speak about
current quark masses and constituent quark masses. For u and d quarks constituent quark masses have
scale 102 GeV are much higher than current quark masses having scale 10 GeV. For current quarks
the dominating contribution to hadron mass would come from super-symplectic bosons at quantum
level and at more phenomenological level from hadronic string tension. The open question is which
option to choose or whether one should regard the two descriptions as duals of each other based on
M8 −H duality. M8 description would be natural at low energies since SO(4) takes the role of color
group. One could also say that current quarks are created in deconfinement phase transition which
involves change of the p-adic length scale characterizing the quark. Somewhat counter intuitively but
in accordance with Uncertainty Principle this length scale would increase but one could assign it the
color magnetic field body of the quark.

16.8.4 Super-symplectic bosons at hadronic space-time sheet can explain
the constant contribution to baryonic masses

Current quarks explain only a small fraction of the baryon mass and that there is an additional
contribution which in a good approximation does not depend on baryon. This contribution should
correspond to the non-perturbative aspects of QCD which could be characterized in terms of con-
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stituent quark masses in M8 picture and in terms of current quark masses and string tension or
super-symplectic bosons in M4 × CP2 picture.

Super-symplectic gluons provide an attractive description of this contribution. They need not
exclude more phenomenological description in terms of string tension. Baryonic space-time sheet with
k = 107 would contain a many-particle state of super-symplectic gluons with net conformal weight of
16 units. This leads to a model of baryons masses in which masses are predicted with an accuracy
better than 1 per cent. Super-symplectic gluons also provide a possible solution to the spin puzzle of
proton.

Hadronic string model provides a phenomenological description of non-perturbative aspects of
QCD and a connection with the hadronic string model indeed emerges. Hadronic string tension is
predicted correctly from the additivity of mass squared for J = 2 bound states of super-symplectic
quanta. If the topological mixing for super-symplectic bosons is equal to that for U type quarks then
a 3-particle state formed by 2 super-symplectic quanta from the first generation and 1 quantum from
the second generation would define baryonic ground state with 16 units of conformal weight.

In the case of mesons pion could contain super-symplectic boson of first generation preventing the
large negative contribution of the color magnetic spin-spin interaction to make pion a tachyon. For
heavier bosons super-symplectic boson need not to be assumed. The preferred role of pion would
relate to the fact that its mass scale is below QCD Λ.

16.8.5 Description of color magnetic spin-spin splitting in terms of confor-
mal weight

What remains to be understood are the contributions of color Coulombic and magnetic interactions
to the mass squared. There are contributions coming from both ordinary gluons and super-symplectic
gluons and the latter is expected to dominate by the large value of color coupling strength.

Conformal weight replaces energy as the basic variable but group theoretical structure of color
magnetic contribution to the conformal weight associated with hadronic space-time sheet (k = 107)
is same as in case of energy. The predictions for the masses of mesons are not so good than for
baryons, and one might criticize the application of the format of perturbative QCD in an essentially
non-perturbative situation.

The comparison of the super-symplectic conformal weights associated with spin 0 and spin 1 states
and spin 1/2 and spin 3/2 states shows that the different masses of these states could be understood
in terms of the super-symplectic particle contents of the state correlating with the total quark spin.
The resulting model allows excellent predictions also for the meson masses and implies that only pion
and kaon can be regarded as Goldstone boson like states. The model based on spin-spin splittings is
consistent with the model.

To sum up, the model provides an excellent understanding of baryon and meson masses. This
success is highly non-trivial since the fit involves only the integers characterizing the p-adic length
scales of quarks and the integers characterizing color magnetic spin-spin splitting plus p-adic thermo-
dynamics and topological mixing for super-symplectic gluons. The next challenge would be to predict
the correlation of hadron spin with super-symplectic particle content in case of long-lived hadrons.
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Chapter 17

New Physics Predicted by TGD

17.1 Introduction

TGD predicts a lot of new physics and it is quite possible that this new physics becomes visible at
LHC. Although calculational formalism is still lacking, p-adic length scale hypothesis allows to make
precise quantitative predictions for particle masses by using simple scaling arguments. Actually there
is already now evidence for effects providing further support for TGD based view about QCD and
first rumors about super-symmetric particles have appeared.

Before detailed discussion it is good to summarize what elements of quantum TGD are responsible
for new physics.

1. The new view about particles relies on their identification as partonic 2-surfaces (plus 4-D
tangent space data to be precise). This effective metric 2-dimensionality implies generalizaton
of the notion of Feynman diagram and holography in strong sense. One implication is the
notion of field identity or field body making sense also for elementary particles and the Lamb
shift anomaly of muonic hydrogen could be explained in terms of field bodies of quarks.

2. The topological explanation for family replication phenomenon implies genus generation cor-
respondence and predicts in principle infinite number of fermion families. One can however
develop a rather general argument based on the notion of conformal symmetry known as hyper-
ellipticity stating that only the genera g = 0, 1, 2 are light [22] . What ”light” means is however
an open question. If light means something below CP2 mass there is no hope of observing new
fermion families at LHC. If it means weak mass scale situation changes.

For bosons the implications of family replication phenomenon can be understood from the fact
that they can be regarded as pairs of fermion and antifermion assignable to the opposite worm-
hole throats of wormhole throat. This means that bosons formally belong to octet and singlet
representations of dynamical SU(3) for which 3 fermion families define 3-D representation. Sin-
glet would correspond to ordinary gauge bosons. Also interacting fermions suffer topological
condensation and correspond to wormhole contact. One can either assume that the resulting
wormhole throat has the topology of sphere or that the genus is same for both throats.

3. The view about space-time supersymmetry differs from the standard view in many respects.
First of all, the super symmetries are not associated with Majorana spinors. Super generators
correspond to the fermionic oscillator operators assignable to leptonic and quark-like induced
spinors and there is in principle infinite number of them so that formally one would have N =
∞ SUSY. I have discussed the required modification of the formalism of SUSY theories in
[32] and it turns out that effectively one obtains just N = 1 SUSY required by experimental
constraints. The reason is that the fermion states with higher fermion number define only short
range interactions analogous to van der Waals forces. Right handed neutrino generates this
super-symmetry broken by the mixing of the M4 chiralities implied by the mixing of M4 and
CP2 gamma matrices for induced gamma matrices. The simplest assumption is that particles
and their superpartners obey the same mass formula but that the p-adic length scale can be
different for them.
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4. The new view about particle massivation involves besides p-adic thermodynamics also Higgs but
there is no need to assume that Higgs vacuum expectation plays any role. The most natural
option favored by the assumption that elementary bosons are bound states of massless elementary
fermions, by twistorial considerations, and by the fact that both gauge bosons and Higgs form
SU(2) triplet and singlet, predicts that also photon and other massless gauge bosons develop
small mass so that all Higgs particles and their colored variants would disappear from spectrum.
Also Higgsinos could be eaten by gauginos so that only massive gauginos would be seen at LHC.

5. One of the basic distinctions between TGD and standard model is the new view about color.

(a) The first implication is separate conservation of quark and lepton quantum numbers im-
plying the stability of proton against the decay via the channels predicted by GUTs. This
does not mean that proton would be absolutely stable. p-Adic and dark length scale hierar-
chies indeed predict the existence of scale variants of quarks and leptons and proton could
decay to hadons of some zoomed up copy of hadrons physics. These decays should be slow
and presumably they would involve phase transition changing the value of Planck constant
characterizing proton. It might be that the simultaneous increase of Planck constant for
all quarks occurs with very low rate.

(b) Also color excitations of leptons and quarks are in principle possible. Detailed calculations
would be required to see whether their mass scale is given by CP2 mass scale. The so called
leptohadron physics proposed to explain certain anomalies associated with both electron,
muon, and τ lepton could be understood in terms of color octet excitations of leptons [90] .

6. Fractal hierarchies of weak and hadronic physics labelled by p-adic primes and by the levels of
dark matter hierarchy are highly suggestive. Ordinary hadron physics corresponds to M107 =
2107 − 1 One especially interesting candidate would be scaled up hadronic physics which would
correspond to M89 = 289−1 defining the p-adic prime of weak bosons. The corresponding string
tension is about 512 GeV and it might be possible to see the first signatures of this physics at
LHC. Nuclear string model in turn predicts that nuclei correspond to nuclear strings of nucleons
connected by colored flux tubes having light quarks at their ends. The interpretation might be
in terms of M127 hadron physics. In biologically most interesting length scale range 10 nm-2.5
µm there are four Gaussian Mersennes and the conjecture is that these and other Gaussian
Mersennes are associated with zoomed up variants of hadron physics relevant for living matter.
Cosmic rays might also reveal copies of hadron physics corresponding to M61 and M31

7. Weak form of electric magnetic duality implies that the fermions and antifermions associated
with both leptons and bosons are Kähler magnetic monopoles accompanied by monopoles of
opposite magnetic charge and with opposite weak isospin. For quarks Kähler magnetic charge
need not cancel and cancellation might occur only in hadronic length scale. The magnetic flux
tubes behave like string like objects and if the string tension is determined by weak length scale,
these string aspects should become visible at LHC. If the string tension is 512 GeV the situation
becomes less promising.

In this chapter the predicted new physics and possible indications for it are discussed.

17.2 Scaled variants of quarks and leptons

17.2.1 Are scaled up variants of quarks there?

The following arguments suggest that p-adically scaled up variants of quarks might appear not only
at very high energies but even in low energy hadron physics.

Aleph anomaly and scaled up copy of b quark

The prediction for the b quark mass is consistent with the explanation of the long since forgotten
Aleph anomaly [74] suggesting the exietence of a particle with 55 GeV mass which might represent
something real. If b quark condenses at k(b) = 97 level, the predicted mass is m(b, 97) = 52.3 GeV
for nb = 59 for the maximal CP2 mass consistent with η′ mass and interpretation as Aleph particle.
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If the mass of the particle candidate is defined experimentally as one half of the mass of resonance,
b quark mass is actually by a factor

√
2 higher and scaled up b corresponds to k(b) = 96 = 25 × 3.

The prediction is consistent with the estimate 55 GeV for the mass of the Aleph particle and gives
additional support for the model of topological mixing. Also the decay characteristics of Aleph particle
are consistent with the interpretation as a scaled up b quark.

Could top quark have scaled variants?

Tony Smith has emphasized the fact that the distribution for the mass of the top quark candidate
has a clear structure suggesting the existence of several states, which he interprets as excited states
of top quark [70]. According to the figures 17.2.1 and 17.2.1 representing published FermiLab data,
this structure is indeed clearly visible.

Figure 17.1: Fermilab semileptonic histogram for the distribution of the mass of top quark candidate
(FERMILAB-PUB-94/097-E).

There is evidence for a sharp peak in the mass distribution of the top quark in 140-150 GeV range
(Fig. 17.2.1). There is also a peak slightly below 120 GeV, which could correspond to a p-adically
scaled down variant t quark with k = 95 having mass 119.6 GeV for (Ye = 0, Yt = 1) There is also a
small peak also around 265 GeV which could relate to m(t(93)) = 240.4 GeV. There top could appear
at least for the p-adic scales k = 93, 94, 95 as also u and d quarks seem to appear as current quarks.

Scaled up variants of d, s, u, c in top quark mass scale

The fact that all neutrinos seem to appear as scaled up versions in several scales, encourages to look
whether also u, d, s, and c could appear as scaled up variants transforming to the more stable variants
by a stepwise increase of the size scale involving the emission of electro-weak gauge bosons. In the
following the scenario in which t and b quarks mix minimally is considered.
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Figure 17.2: Fermilab D0 semileptonic histogram for the distribution of the mass of top quark candi-
date (hep-ex/9703008, April 26, 1994

q m(92)/GeV m(91)/GeV m(90)/GeV
u 134 189 267
d 152 216 304
c 140 198 280
s 152 216 304

Table 1. The masses of k = 92, 91 and k = 90 scaled up variants of u,d,c,s quarks assuming same
integers nqi as for ordinary quarks in the scenario (nd, ns, nb) = (5, 5, 59) and (nu, nc, nt) = (5, 6, 58)
and maximal CP2 mass consistent with the η′ mass.

1. For k = 92, the masses would be m(q, 92) =134,140,152,152 GeV in the order q= u,c,d,s so
that all these quarks might appear in the critical region where the top quark mass has been
wandering.

2. For k = 91 copies would have masses m(q, 91) =189, 198, 256, 256 GeV in the order q= u,c,d,s.
The masses of u and c are somewhat above the value of latest estimate 170 GeV for top quark
mass [28] .

Note that it is possible to distinguish between scaled up quarks of M107 hadron physics and the
quarks of M89 hadron physics since the unique signature of M89 hadron physics would be the increase
of the scale of color Coulombic and magnetic energies by a factor of 512. As will be found, this allows
to estimate the masses of corresponding mesons and baryons by a direct scaling. For instance, M89

pion and nucleon would have masses 71.7 GeV and 481 GeV.

It must be added that the detailed identifications are sensitive to the exact value of the CP2 mass
scale. The possibility of at most 2.5 per cent downward scaling of masses occurs is allowed by the
recent value range for top quark mass.
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Fractally scaled up copies of light quarks and low mass hadrons?

One can of course ask, whether the fractally scaled up quarks could appear also in low lying hadrons.
The arguments to be developed in detail later suggest that u, d, and s quark masses could be dynamical
in the sense that several fractally scaled up copies can appear in low mass hadrons and explain the
mass differences between hadrons.

In this picture the mass splittings of low lying hadrons with different flavors would result from
fractally scaled up excitations of s and also u and d quarks in case of mesons. This notion would
also throw light into the paradoxical presence of two kinds of quark masses: constituent quark masses
and current quark masses having much smaller values than constituent quarks masses. That color
spin-spin splittings are of same order of magnitude for all mesons supports the view that color gauge
fluxes are feeded to k = 107 space-time sheet.

The alert reader has probably already asked whether also proton mass could be understood in
terms of scaled up copies of u and d quarks. This does not seem to be the case, and an argument
predicting with 23 per cent error proton mass scale from ρ − π and ∆ −N color magnetic splittings
emerges.

To sum up, it seems quite possible that the scaled up quarks predicted by TGD have been observed
for decade ago in FermiLab about that the prevailing dogmas has led to their neglect as statistical
fluctuations. Even more, scaled up variants of s quarks might have been in front of our eyes for half
century! Phenomenon is an existing phenomenon only if it is an understood phenomenon.

The mystery of two Ωb baryons

Tommaso Dorigo has three interesting postings [30] about the discovery of Ωb baryon containing two
strange quarks and one bottom quark. Ωb has been discovered -even twice. This is not a problem. The
problem is that the masses of these Ωbs differ quite too much. D0 collaboration discovered Ωb with a
significance of 5.4 sigma and a mass of 6165 ± 16.4 MeV [20] . Later CDF collaboration announced
the discovery of the same particle with a significance of 5.5 sigma and a mass of 6054.4 ± 6.9 MeV.
Both D0 and CDF agree that the particle is there at better than 5 sigma significance and also that
the other collaboration is wrong. They cannot both be right. Or could they? In some other Universe
that that of standard model and all its standard generalizations, maybe in some less theoretically
respected Universe, say TGD Universe?

The mass difference between the two Ωb candidates is 111 MeV, which represents the mass scale of
strange quark. TDG inspired model for quark masses relies on p-adic thermodynamics and predicts
that quarks can appear in several p-adic mass scales forming a hierarchy of half octaves - in other
words mass scales comes as powers of square root of two. This property is absolutely essential for
the TGD based model for masses of even low lying baryons and mesons where strange quarks indeed
appear with several different p-adic mass scales. It also explains the large difference of the mass scales
assigned to current quarks and constituent quarks. Light variants of quarks appear also in nuclear
string model where nucleons are connected by color bonds containing light quark and antiquark at
their ends.

Ωb contains two strange quarks and the mass difference between the two candidates is of order of
mass of strange quark. Could it be that both Ωb s are real and the discrepancy provides additional
support for p-adic length scale hypothesis? The prediction of p-adic mass calculations for the mass of
s quark is 105 MeV (see Table 1) so that the mass difference can be understood if the second s-quark
in Ωb has mass which is twice the ”standard” value. Therefore the strange finding about Ωb could
give additional support for quantum TGD. Before buying a bottle of champaigne, one should however
understand why D0 and CDF collaborations only one Ωb instead of both of them.

17.2.2 Could neutrinos appear in several p-adic mass scales?

There are some indications that neutrinos can appear in several mass scales from neutrino oscillations
[6]. These oscillations can be classified to vacuum oscillations and to solar neutrino oscillations believed
to be due to the so called MSW effect in the dense matter of Sun. There are also indications that the
mixing is different for neutrinos and antineutrinos [?, 5].

In TGD framework padic length scale hypothesis might explain these findings. The basic vision
is that the p-adic length scale of neutrino can vary so that the mass squared scale comes as octaves.
Mixing matrices would be universal. The large discrepancy between LSND and MiniBoone results [?]
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contra solar neutrino results could be understood if electron and muon neutrinos have same p-adic
mass scale for solar neutrinos but for LSND and MiniBoone the mass scale of either neutrino type is
scaled up. The existence of a sterile neutrino [54] suggested as an explanation of the findings would be
replaced by p-adically scaled up variant of ordinary neutrino having standard weak interactions. This
scaling up can be different for neutrinos and antineutrinos as suggested by the fact that the anomaly
is present only for antineutrinos.

The different values of ∆m2 for neutrinos and antineutrinos in MINOS experiment [5] can be
understood if the p-adic mass scale for neutrinos increases by one unit. The breaking of CP and CPT
would be spontaneous and realized as a choice of different p-adic mass scales and could be understood
in zero energy ontology. Similar mechanism would break supersymmetry and explain large differences
between the mass scales of elementary fermions, which for same p-adic prime would have mass scales
differing not too much.

Experimental results

There several different type of experimental approaches to study the oscillations. One can study the
deficit of electron type solar electron neutrinos (Kamiokande, Super-Kamiokande); one can measure
the deficit of muon to electron flux ratio measuring the rate for the transformation of νµ to ντ (super-
Kamiokande); one can study directly the deficit of νe (νe) neutrinos due to transformation to νµ νµ
coming from nuclear reactor with energies in the same range as for solar neutrinos (KamLAND); and
one can also study neutrinos from particle accelerators in much higher energy range such as solar
neutrino oscillations (K2K,LSND,Miniboone,Minos).

1. Solar neutrino experiments and atmospheric neutrino experiments

The rate of neutrino oscillations is sensitive to the mass squared differences ∆m2
12, ∆m2

12, ∆m2
13

and corresponding mixing angles θ12, θ13, θ23 between νe, νµ, and ντ (ordered in obvious manner).
Solar neutrino experiments allow to determine sin2(2θ12) and ∆m2

12. The experiments involving
atmospheric neutrino oscillations allow to determine sin2(2θ23) and ∆m2

23.

The estimates of the mixing parameters obtained from solar neutrino experiments and atmospheric
neutrino experiments are sin2(2θ13) = 0.08, sin2(2θ23) = 0.95, and sin2(2θ12) = 0.86. The mixing
between νe and ντ is very small. The mixing between νe and νµ, and νµ and ντ tends is rather near to
maximal. The estimates for the mass squared differences are ∆m2

12 = 8×10−5 eV2, ∆m2
23 ' ∆m2

13 =
2.4 × 10−3 eV2. The mass squared differences have obviously very different scale but this need not
means that the same is true for mass squared values.

2. The results of LSND and MiniBoone

LSND experiment measuring the transformation of νµ to νe gave a totally different estimate for
∆m2

12 than solar neutrino experiments MiniBoone, [54]. If one assumes same value of sin2(θ12)2 ' .86
one obtains ∆m2

23 ∼ .1 eV2 to be compared with ∆m2
12 = 8×10−5 eV2. This result is known as LSND

anomaly and led to the hypothesis that there exists a sterile neutrino having no weak interactions and
mixing with the ordinary electron neutrino and inducing a rapid mixing caused by the large value of
∆m2 The purpose of MiniBoone experiment [?] was to test LSND anomaly.

1. It was found that the two-neutrino fit for the oscillations for νµ → νe is not consistent with
LSND results. There is an unexplained 3σ electron excess for E < 475 MeV. For E > 475 MeV
the two-neutrino fit is not consistent with LSND fit. The estimate for ∆m2 is in the range .1−1
eV2 and differs dramatically from the solar neutrino data.

2. For antineutrinos there is a small 1.3σ electron excess for E < 475 MeV. For E > 475 MeV the
excess is 3 per cent consistent with null. Two-neutrino oscillation fits are consistent with LSND.
The best fit gives (∆m2

12, sin
2(2θ12) = (0.064 eV 2, 0.96). The value of ∆m2

12 is by a factor 800
larger than that estimated from solar neutrino experiments.

All other experiments (see the table of the summary of [54] about sterile neutrino hypothesis) are
consistent with the absence of νµ → ne and νµ → νe mixing and only LSND and MiniBoone report an
indication for a signal. If one however takes these findings seriously they suggest that neutrinos and
antineutrinos behave differently in the experimental situations considered. Two-neutrino scenarios for
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the mixing (no sterile neutrinos) are consistent with data for either neutrinos or antineutrinos but not
both [54].

3. The results of MINOS group

The MINOS group at Fermi National Accelerator Laboratory has reported evidence that the mass
squared differences between neutrinos are not same for neutrinos and antineutrinos [5]. In this case
one measures the disappearance of νµ and νµ neutrinos from high energy beam beam in the range
.5-1 GeV and the dominating contribution comes from the transformation to τ neutrinos. ∆m2

23

is reported to be about 40 percent larger for antineutrinos than for neutrinos. There is 5 percent
probability that the mass squared differences are same. The best fits for the basic parameters are
(∆m2

23 = 2.35× 10−3, sin2(2θ23 = 1) for neutrinos with error margin for ∆m2 being about 5 per cent
and (∆m2

23 = 3.36× 10−3, sin2(2θ23) = .86) for antineutrinos with errors margin around 10 per cent.
The ratio of mass squared differences is r ≡ ∆m2(ν)/∆m2(ν) = 1.42. If one assumes sin2(2θ23) = 1
in both cases the ratio comes as r = 1.3.

Explanation of findings in terms of p-adic length scale hypothesis

p-Adic length scale hypothesis predicts that fermions can correspond to several values of p-adic prime
meaning that the mass squared comes as octaves (powers of two). The simplest model for the neu-
trino mixing assumes universal topological mixing matrices and therefore for CKM matrices so that
the results should be understood in terms of different p-adic mass scales. Even CP breaking and CPT
breaking at fundamental level is un-necessary although it would occur spontaneously in the experi-
mental situation selecting different p-adic mass scales for neutrinos and antineutrinos. The expression
for the mixing probability a function of neutrino energy in two-neutrino model for the mixing is of
form

P (E) = sin2(2θ)sin2(X) , X = k ×∆m2 × L

E
.

Here k is a numerical constant, L is the length travelled, and E is neutrino energy.

1. LSND and MiniBoone results

LSND and MiniBoone results are inconsistent with solar neutrino data since the value of ∆m2
12 is

by a factor 800 larger than that estimated from solar neutrino experiments. This could be understood
if in solar neutrino experiments νµ and νw correspond to the same p-adic mass scale k = k0 and have
very nearly identical masses so that ∆m2 scale is much smaller than the mass squared scale. If either
p-adic scale is changed from k0 to k0 + k, the mass squared difference increases dramatically. The
counterpart of the sterile neutrino would be a p-adically scaled up version of the ordinary neutrino
having standard electro-weak interactions. The p-adic mass scale would correspond to the mass scale
defined by ∆m2 in LSND and MiniBoone experiments and therefore a mass scale in the range .3-1 eV.
The p-adic length scale assignable to eV mass scale could correspond to k = 167, which corresponds
to cell length scale of 2.5 µm. k = 167 defines one of the Gaussian Mersennes MG,k = (1 + i)k − 1
k = 151, 157, 163, 167 varying in the range 10 nm (celle membrane thickness) and 2.5 µm defining the
size of cell nucleus proposed to be fundamental for the understanding of living matter [27] .

2. MINOS results

One must assume also now that the p-adic mass scales for ντ and ντ are near to each other in the
”normal” experimental situation. Assuming that the mass squared scales of νµ or νµ come as 2−k

powers of m2
νµ = m2

ντ + ∆m2, one obtains

m2
ντ (k0)−m2

νµ(k0 + k) = (1− 2−k)m2
ντ − 2−k∆m2

0 .

For k = 1 this gives

r =
∆m2(k = 2)

∆m2(k = 1)
=

3
2 −

2r
3

1− r
, r =

∆m2
0

m2
ντ

. (17.2.1)
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One has r ≥ 3/2 for r > 0 if one has mντ > mνµ for the same p-adic length scale. The experimental
ratio r ' 1.3 could be understood for r ' −.31. The experimental uncertainties certainly allow the
value r = 1.5 for k(νµ) = 1 and k(νµ) = 2.

This result implies that the mass scale of νµ and ντ differ by a factor 1/2 in the ”normal” situation
so that mass squared scale of ντ would be of order 5×10−3 eV2. The mass scales for ντ and ντ would
about .07 eV and .05 eV. In the LSND and MiniBoone experiments the p-adic mass scale of other
neutrino would be around .1-1 eV so that different p-adic mass scale large by a factor 2k/2, 2 ≤ 2 ≤ 7
would be in question. The different resuts from various experiments could be perhaps understood in
terms of the sensitivity of the p-adic mass scale to the experimental situation. Neutrino energy could
serve as a control parameter.

CP and CPT breaking

Different values of ∆m2
ij for neutrinos and antineutrinos would require in standard QFT framework

not only the violation of CP but also CP [3] which is the cherished symmetry of quantum field
theories. CPT symmetry states that when one reverses time’s arrow, reverses the signs of momenta
and replaces particles with their antiparticles, the resulting Universe obeys the same laws as the
original one. CPT invariance follows from Lorentz invariance, Lorentz invariance of vacuum state,
and from the assumption that energy is bounded from below. On the other hand, CPT violation
requires the breaking of Lorentz invariance.

In TGD framework this kind of violation does not seem to be necessary at fundamental level since
p-adic scale hypothesis allowing neutrinos and also other fermions to have several mass scales coming
as half-octaves of a basic mass scale for given quantum numbers. In fact, even in TGD inspired low
enery hadron physics quarks appear in several mass scales. One could explain the different choice of the
p-adic mass scales as being due to the experimental arrangement which selects different p-adic length
scales for neutrinos and antineutrinos so that one could speak about spontaneous breaking of CP and
possibly CPT. The CP breaking at the fundamental level which is however expected to be small in
the case considered. The basic prediction of TGD and relates to the CP breaking of Chern-Simons
action inducing CP breaking in the modified Dirac action defining the fermionic propagator [13] .

One can indeed consider the possibility of a spontaneous breaking of CPT symmetry in TGD
framework since for a given CD (causal diamond defined as the intersection of future and past directed
light-cones whose size scales are assumed to come as octaves) the Lorentz invariance is broken due
to the preferred time direction (rest system) defined by the time-like line connecting the tips of CD.
Since the world of classical worlds is union of CDs with all boosts included the Lorentz invariance is
not violated at the level of WCW. Spontaneous symmetry breaking would be analogous to that for the
solutions of field equations possessing the symmetry themselves. The mechanism of breaking would be
same as that for supersymmetry. For same p-adic length scale particles and their super-partners would
have same masses and only the selection of the p-adic mass scale would induces the mass splitting.

There is an article about CPT violation [60] of the dynamics defined by what the authors also call
Chern-Simons term. This term is not identical with the measurement interaction term introduced
in TGD framework. It is however linear in momentum as is also the measurement interaction term
added to Chern-Simons Dirac action and this is what is essential from the point of view of CPT. The
measurement interaction term has a formal interpretation as U(1) gauge transform but having non-
trivial physical effect since it is added only to the Chern-Simons Dirac action term but not to Kähler-
Dirac action. The linearity with respect to momentum suggests CPT oddness of the measurement
interaction term. In absence of the measurement interaction CPT would be intact but the change of
the sign of the measurement interaction term in PT would bring in CPT violation. One must however
notice that in TGD framework both imbedding space level and space-time level are involved and this
does not allow straightforward application of strandard arguments.

17.3 Family replication phenomenon and super-symmetry

17.3.1 Family replication phenomenon for bosons

TGD predicts that also gauge bosons, with gravitons included, should be characterized by family
replication phenomenon but not quite in the expected manner. The first expectation was that these
gauge bosons would have at least 3 light generations just like quarks and leptons.
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Only within last years it has become clear that there is a deep difference between fermions and
gauge bosons. Elementary fermions and particles super-conformally related to elementary fermions
correspond to single throat of a wormhole contact assignable to a topologically condensed CP2 type
vacuum extremal whereas gauge bosons would correspond to a wormhole throat pair assignable to
wormhole contact connecting two space-time sheets. Wormhole throats correspond to light-like par-
tonic 3-surfaces at which the signature of the induced metric changes.

In the case of 3 generations gauge bosons can be arranged to octet and singlet representations of a
dynamical SU(3) and octet bosons for which wormhole throats have different genus could be massive
and effectively absent from the spectrum.

Exotic gauge boson octet would induce particle reactions in which conserved handle number would
be exchanged between incoming particles such that total handle number of boson would be difference
of the handle numbers of positive and negative energy throat. These gauge bosons would induce
flavor changing but genus conserving neutral current. There is no evidence for this kind of currents
at low energies which suggests that octet mesons are heavy. Typical reaction would be µ+ e→ e+ µ
scattering by exchange of ∆g = 1 exotic photon.

17.3.2 Masses of super partners and first rumors about supersymmetric
partners from LHC

Experimental indication for space-time super-symmetry

Experimental indication for space-time super-symmetry

There is experimental indication for super-symmetry dating back to 1995 [66] . The event involves
e+e−γγ plus missing transverse energy /ET . The electron-positron pair has transversal energies ET =
(36, 59) GeV and invariant mass Mee = 165 GeV. The two photons have transversal energies (30,38)
GeV. The missing transverse energy is /ET = 53 GeV. The cross sections for these events in standard
model are too small to be observed. Statistical fluctuation could be in question but one could also
consider the event as an indication for super-symmetry.

In [43] an explanation of the event in terms of minimal super-symmetric standard model (MSSM)
was proposed.

1. The collision of proton and antiproton would induce an annihilation of quark and antiquark to
selectron pair ẽ−ẽ+ via virtual photon or Z0 boson with the mass of ẽ in the range (80,130)
GeV (the upper bound comes from the total energy of the particles involved.

2. ẽ± would in turn decay to e± and neutralino χ0
2 and χ0

2 in turn to the lightest super-symmetric
particle χ0

1 and photon. The neutralinos are in principle mixtures of the super partners associated
with γ, Z0, and neutral higgs h (there are two of them in minimal super-symmetric generalization
of standard model). The highest probability for the chain is obtained if χ0

2 is zino and χ0
1 is

higgsino.

3. The kinematics of the event allows to deduce the bounds

80 < m(ẽ)/GeV < 130 ,

38 ≤ m(χ0
2)/GeV ≤ min

[
1.12m(ẽ)/GeV − 37, 95 + 0.17m(χ0

1)/GeV
]
,

m(χ0
1)/GeV ≤ m(χ0

2)/GeV ≤ min
[
1.4m(ẽ)/GeV − 105, 1.6m(χ0

2)/GeV − 60
]
.

(17.3.1)

Note that the bounds give no lower bound for m(χ0
1) so that it could correspond to neutrino.

4. Sfermion production rate depends only on masses of the sfermions, so that slepton production
cross section decouples from the analysis of particular scenarios. The cross section is at the
level of σ = 10 fb and consistent with data (one event!). The parameters of MSSM are super-
symmetric soft-breaking parameters, super-potential parameters, and the parameter tan(β).
This allows to derive more stringent limits on the masses and parameters of MSSM.
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Consider now the explanation of the event in TGD framework.

1. For the simplest TGD inspired option both Higgs and higgsino would disappear from the spec-
trum in the massivation and χ0

2 would decay to photon and neutrino so that the missing energy
would consist of neutrinos.

2. By the properties of super-partners the production rate for ẽ−ẽ+ is predicted to be same as in
MSSM for ẽ = eRνR. Same order of magnitude is predicted also for more exotic super-partners
such as eLνR with spin 1.

3. In TGD framework it is safest to use just the kinematical bounds on the masses and p-adic
length scale hypothesis. If super-symmetry breaking means same mass formula from p-adic
thermodynamics but in a different p-adic mass scale, m(ẽ) is related by a power of

√
2 to m(e).

Using m(ẽ) = 2(127−k(ẽ))/2m(e) one finds that the mass range [80, 130] GeV allows two possible
masses for selectron corresponding to p ' 2k, k = 91 with m(ẽ) = 131.1 GeV and k = 92 with
m(ẽ) = 92.7 GeV. The bounds on m(Z) leave only the option m(Z̃) = m(Z) = 91.2 GeV and
m(ẽ) = 131.1 GeV.

4. In the earlier variant of the TGD inspired model the existence of Higgs was considered as a
realistic option. The indirect determinations of Higgs masses from experimental data seemed to
converge to two different values. The first one seemed to correspond to m(h) = 129 GeV and
k(h) = 94 and second one to m(h) = 91 GeV with k(h) = 95 [49] . The fact that already the
TGD counterpart for the Gell-Mann-Okubo mass formula in TGD framework requires quarks
to exist at several p-adic mass scales [58], suggests that Higgs can exist in both of these mass
scales depending on the experimental situation. The mass of Higgsino would correspond to some
half octave of m(h). Note that the model allows to conclude that Higgs indeed exists also in
TGD Universe although it does not seem to play the same role in particle massivation as in
the standard model. The bounds allow only k(h̃) = k(h) + 3 = 97 and m(h̃) = 45.6 GeV for
m(h) = 129 GeV . The same same mass is obtained for m(h) = 91 GeV. Therefore the kinematic
limits plus super-symmetry breaking at the level of p-adic mass scale fix completely the masses
of the super-particles involved in absence of mixing effects for sneutralinos.

To sum up, the masses of sparticles involved for the option alllowing Higgs are predicted to be

m(ẽ) = 131 GeV , m(Z̃0) = 91.2 GeV , m(h̃) = 45.6 GeV . (17.3.2)

If Higgs and Higgsino are both eaten in the massivation, the third condition drops off. The
argument to be represented below suggests that also sleptons could correspond to Mersennes
and Gaussian Mersennes: this option predictions k(ẽ) = 89 so that the mass would be 250 GeV:
this excludes the proposed interpretation of the strange event.

First rumors about supersymmetric partners from LHC

First rumors about supersymmetric partners from LHC

Lubos Motl reported the first rumors from LHC concerning super-partners [62] . The estimates for the
masses are 200 GeV for a scalar super partner of fermion and 160 GeV for a fermionic superpartner
of gauge boson or Higgs. Being an incurable optimist I supposed that the rumors from LHC are more
trustworthy than the physics blog rumors usually. Therefore I asked whether one could understand
these masses in TGD framework? It was not possible to achieve consistency with the strange CDF
event and it turned later that the rumour suffered the usual fate of rumours. I however decided to
keep my reaction to it.

Consider first the theoretical background in light p-adic mass calculations, the weak form of electric-
magnetic duality, and TGD based view about supersymmetry.

1. The simplest possibility is that the p-adic length scale of the super-partner differs from that
of partner but the p-adic thermodynamical contributions to the mass squared obey the same
formula.
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2. If the p-adic prime p ' 2k of super-partner is smaller than M89 = 289− 1, the weak length scale
must be scaled down and M61 = 289− 1 is the next Mersenne prime. Scaled up variant of QCD
for M89 would naturally correspond to M61 weak physics and would have hadronic string tension
about 218 GeV2 by scaling the ordinary hadronic string tension of about 1 GeV2. This scaled
up variant of hadronic physics is an old prediction of TGD. As noticed, also weak string tension
could have the same value. Quite generally, the pairs of weak and hadronic scales predicted to
form a hierarchy could correspond to pairs of subsequent (possibly Gaussian) Mersenne primes.

3. What happens for k = 89? Can the particle topologically condense at the same p-adic scale that
characterizes its weak flux tube? Or should one assume that the p-adic prime corresponds to
k ≤ 89assuming that the particle has standard weak interactions. If so then the superpartners
of light fermions would have k ≤ 89. This is a strong prediction if superpartners obey the same
mass formula as particles. In the case of weak gluinos and also QCD gluinos the bound would
be k ≤ 89 and even stronger bound would be k = 89 so that the masses of wino and zino would
be same as W and Z0.

One must be however very cautious with this kind of arguments since one is dealing with
quantum theory. For instance, quarks inside proton have masses in 10 MeV scale and their
Compton lengths are much larger than the Compton size of proton and even atomic nucleus. The
interpretation is that for the corresponding space-time sheets is in terms of the color magnetic
body of quark. These large space-time sheets are essential in the model of the Lamb shift
anomaly of muonic hydrogen discussed in the section ”The incredibly shrinking proton”.

4. In TGD framework Higgs and its pseudo-scalar companion define electroweak triplet and singlet
and Higgs could be eaten completely by electro-weak gauge bosons if the TGD based mechanism
of massivation is correct. The condition of exact Yangian symmetry demands the cancellation
of IR divergences requiring a small mass for all gauge bosons and graviton. The twistorially
natural assumption that gauge bosons are bound states of massless fermion and antifermion
implies that the three-momenta of fermion and antifermion are in opposite directions so that all
gauge bosons -even photon- and graviton would be massive. Super-symmetry strongly suggests
that gauginos eat Higgsinos as they become massive so that only massive gauge bosons and
gauginos and possible pseudoscalar Higgs and its superpartner would remain to be discovered
at LHC. Similar mechanism can indeed work also in the case of gluons expected to have colored
scalar counterparts. Gluon would be massless below the scale corresponding to QCD Λ and
massive above this scale.

What does this picture give when compared with the rumors about super-partners of fermion and
scalar. If selectron corresponds to the not necessarily allowed M89 = 289− 1, and obeys otherwise the
same mass formula as electron, the mass should be 250 GeV, which seems too large. For k = 88 which
is the smallest value allowed by the above argument, one would obtain 177 GeV. It remains unclear
whether the interpretation as selectron could make sense.

In the case of super-partner of scalar one can consider several options.

1. 160 GeV mass does not satisfy the proposed upper bound k ≥ 89 for higgsinos and gauginos
suggested by the condition that the weak string cannot have p-adic length scale longer than the
p-adic length scale at which the particle condensed topologically. Hence neither higgsino nor
longitudinal polarization of gaugino can be in question.

2. If one gives up the upper bound mZ = 91.2 GeV on mass but takes the twistorially motivated
and mathematically beautiful horror scenario for LHC seriously, the 160 GeV particle can only
correspond to a longitudinal polarization of Zino or photino.

One can of course forget the upper bound on mass and give up the horror scenario for a moment
and look what one obtains.

1. If photonic Higgs is not eaten by photon, one would obtain k(Higgs) = k(Higgsino) + n.
n = 1, 2, 3 would give Higgs mass equal to (141, 100, 71) GeV for m(Higgsino) = 200 GeV. On
basis of experimental data mildly suggesting that neutral Higgs appears in two mass scales I have
considered the possibility that Higgs indeed appears at two p-adic length scales corresponding
to about 130 GeV and 92 GeV related by square root of two factor. 130 GeV would give
m(Higgsino) = 184 GeV: I dare guess that this is consistent with the estimate 200 GeV.
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2. For W and Z0 Higgsinos the mass mass would be p-adically scaled up variant of W or Z0 mass
and for Z0 mass about 91.2 GeV Z0 Higgsino mass would be 182.4 GeV for n = 2. For W
Higgsino the mass would be around 160.8 GeV.

I have already earlier considered the predictions of p-adic length scale hypothesis for super partners
on basis of single very strange scattering event (see the section ”Experimental indication for space-time
supersymmetry”). This kind of considerations must of course be taken as a mere blog entertainment.
The hypothesis assuming that the mass formulas for particles and sparticles are same but p-adic length
scale is possibly different, combined with kinematical constraints fixes the masses of TGD counterparts
of selectron, higgsino, and Z0-gluino to be 131 GeV (just at the upper bound allowed kinematically),
45.6 GeV, and 91.2 GeV (Z0 mass) respectively. The masses are consistent with the bounds predicted
by the MSSM inspired model.

Selectron mass would be by a factor factor 2−1/2 smaller than 177 GeV and inconsistent with
LHC rumour. Higgsino mass would be one half of Z0 mass and would satisfy the proposed constraint
k ≤ 89. Z0 gluino mass would be equal to Z0 mass also in accordance with the proposed constraint.
W gluino is predicted to have same mass as W. In the case of photino the upper bound to the mass
would be given by weak boson mass scale. Could it be that the life would be so simple? Could these
predictions make it easy to discover super partners at LHC? Well-informed reader might be able to
answer these questions.

17.4 New hadron physics

17.4.1 Leptohadron physics

TGD suggest strongly (’predicts’ is perhaps too strong expression) the existence of color excited
leptons. The mass calculations based on p-adic thermodynamics and p-adic conformal invariance lead
to a rather detailed picture about color excited leptons.

1. The simplest color excited neutrinos and charged leptons belong to the color octets ν8 and
L10 and L1̄0 decuplet representations respectively and lepto-hadrons are formed as the color
singlet bound states of these and possible other representations. Electro-weak symmetry suggests
strongly that the minimal representation content is octet and decuplets for both neutrinos and
charged leptons.

2. The basic mass scale for lepto-hadron physics is completely fixed by p-adic length scale hypoth-
esis. The first guess is that color excited leptons have the levels k = 127, 113, 107, ... (p ' 2k,
k prime or power of prime) associated with charged leptons as primary condensation levels.
p-Adic length scale hypothesis allows however also the level k = 112 = 121 in case of electronic
lepto-hadrons. Thus both k = 127 and k = 121 must be considered as a candidate for the level
associated with the observed lepto-hadrons. If also lepto-hadrons correspond non-perturbatively
to exotic Super Virasoro representations, lepto-pion mass relates to pion mass by the scaling fac-
tor L(107)/L(k) = k(107−k)/2. For k = 121 one has mπL ' 1.057 MeV which compares favorably
with the mass mπL ' 1.062 MeV of the lowest observed state: thus k = 121 is the best candidate
contrary to the earlier beliefs. The mass spectrum of lepto-hadrons is expected to have same
general characteristics as hadronic mass spectrum and a satisfactory description should be based
on string tension concept. Regge slope is predicted to be of order α′ ' 1.02/MeV 2 for k = 121.
The masses of ground state lepto-hadrons are calculable once primary condensation levels for
colored leptons and the CKM matrix describing the mixing of color excited lepton families is
known.

The strongest counter arguments against color excited leptons are the following ones.

1. The decay widths of Z0 and W boson allow only N = 3 light particles with neutrino quantum
numbers. The introduction of new light elementary particles seems to make the decay widths
of Z0 and W intolerably large.

2. Lepto-hadrons should have been seen in e+e− scattering at energies above few MeV . In partic-
ular, lepto-hadronic counterparts of hadron jets should have been observed.
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A possible resolution of these problems is provided by the loss of asymptotic freedom in lepto-hadron
physics. Lepto-hadron physics would effectively exist in a rather limited energy range about one MeV.

The development of the ideas about dark matter hierarchy [35, 82, 28, 26] led however to a much
more elegant solution of the problem.

1. TGD predicts an infinite hierarchy of various kinds of dark matters which in particular means a
hierarchy of color and electro-weak physics with weak mass scales labelled by appropriate p-adic
primes different from M89: the simplest option is that also ordinary photons and gluons are
labelled by M89.

2. There are number theoretical selection rules telling which particles can interact with each other.
The assignment of a collection of primes to elementary particle as characterizer of p-adic primes
characterizing the particles coupling directly to it, is inspired by the notion of infinite primes [84]
, and discussed in [35] . Only particles characterized by integers having common prime factors
can interact by the exchange of elementary bosons: the p-adic length scale of boson corresponds
to a common primes.

3. Also the physics characterized by different values of ~ are dark with respect to each other as
far quantum coherent gauge interactions are considered. Laser beams might well correspond
to photons characterized by p-adic prime different from M89 and de-coherence for the beam
would mean decay to ordinary photons. De-coherence interaction involves scaling down of the
Compton length characterizing the size of the space-time of particle implying that particles do
not anymore overlap so that macroscopic quantum coherence is lost.

4. Those dark physics which are dark relative to each other can interact only via graviton exchange.
If lepto-hadrons correspond to a physics for which weak bosons correspond to a p-adic prime
different from M89, intermediate gauge bosons cannot have direct decays to colored excitations
of leptons irrespective of whether the QCD in question is asymptotically free or not. Neither
are there direct interactions between the QED:s and QCD:s in question if M89 characterizes also
ordinary photons and gluons. These ideas are discussed and applied in detail in [35, 82, 28] .

Skeptic reader might stop the reading after these counter arguments unless there were definite
experimental evidence supporting the lepto-hadron hypothesis.

1. The production of anomalous e+e− pairs in heavy ion collisions (energies just above the Coulomb
barrier) suggests the existence of pseudoscalar particles decaying to e+e− pairs. A natural
identification is as lepto-pions that is bound states of color octet excitations of e+ and e−.

2. The second puzzle, Karmen anomaly, is quite recent [55] . It has been found that in charge pion
decay the distribution for the number of neutrinos accompanying muon in decay π → µ + νµ
as a function of time seems to have a small shoulder at t0 ∼ ms. A possible explanation is the
decay of charged pion to muon plus some new weakly interacting particle with mass of order
30 MeV [73] : the production and decay of this particle would proceed via mixing with muon
neutrino. TGD suggests the identification of this state as color singlet leptobaryon of, say type
LB = fabcL

a
8L

b
8L̄

c
8, having electro-weak quantum numbers of neutrino.

3. The third puzzle is the anomalously high decay rate of orto-positronium. [14] . e+e− annihilation
to virtual photon followed by the decay to real photon plus virtual lepto-pion followed by the
decay of the virtual lepto-pion to real photon pair, πLγγ coupling being determined by axial
anomaly, provides a possible explanation of the puzzle.

4. There exists also evidence for anomalously large production of low energy e+e− pairs [45, 32,
41, 11] in hadronic collisions, which might be basically due to the production of lepto-hadrons
via the decay of virtual photons to colored leptons.

In this chapter a revised form of lepto-hadron hypothesis is described.

1. Sigma model realization of PCAC hypothesis allows to determine the decay widths of lepto-
pion and lepto-sigma to photon pairs and e+e− pairs. Ortopositronium anomaly determines the
value of f(πL) and therefore the value of lepto-pion-lepto-nucleon coupling and the decay rate of
lepto-pion to two photons. Various decay widths are in accordance with the experimental data
and corrections to electro-weak decay rates of neutron and muon are small.
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2. One can consider several alternative interpretations for the resonances.

Option 1: For the minimal color representation content, three lepto-pions are predicted corre-
sponding to 8, 10, 10 representations of the color group. If the lightest lepto-nucleons eex have
masses only slightly larger than electron mass, the anomalous e+e− could be actually e+

ex + e−ex
pairs produced in the decays of lepto-pions. One could identify 1.062, 1.63 and 1.77 MeV states
as the three lepto-pions corresponding to 8, 10, 10 representations and also understand why the
latter two resonances have nearly degenerate masses. Since d and s quarks have same primary
condensation level and same weak quantum numbers as colored e and µ, one might argue that
also colored e and µ correspond to k = 121. From the mass ratio of the colored e and µ, as
predicted by TGD, the mass of the muonic lepto-pion should be about 1.8 MeV in the absence
of topological mixing. This suggests that 1.83 MeV state corresponds to the lightest g = 1
lepto-pion.

Option 2: If one believes sigma model (in ordinary hadron physics the existence of sigma meson is
not established and its width is certainly very large if it exists), then lepto-pions are accompanied
by sigma scalars. If lepto-sigmas decay dominantly to e+e− pairs (this might be forced by
kinematics) then one could adopt the previous sceneario and could identify 1.062 state as lepto-
pion and 1.63, 1.77 and 1.83 MeV states as lepto-sigmas rather than lepto-pions. The fact
that muonic lepto-pion should have mass about 1.8 MeV in the absence of topological mixing,
suggests that the masses of lepto-sigma and lepto-pion should be rather close to each other.

Option 3: One could also interpret the resonances as string model ’satellite states’ having inter-
pretation as radial excitations of the ground state lepto-pion and lepto-sigma. This identification
is not however so plausible as the genuinely TGD based identification and will not be discussed
in the sequel.

3. PCAC hypothesis and sigma model leads to a general model for lepto-hadron production in
the electromagnetic fields of the colliding nuclei and production rates for lepto-pion and other
lepto-hadrons are closely related to the Fourier transform of the instanton density Ē · B̄ of
the electromagnetic field created by nuclei. The first source of anomalous e+e− pairs is the
production of σLπL pairs from vacuum followed by σL → e+e− decay. If e+

exe
−
ex pairs rather

than genuine e+e− pairs are in question, the production is production of lepto-pions from vacuum
followed by lepto-pion decay to lepto-nucleon pair.

Option 1: For the production of lepto-nucleon pairs the cross section is only slightly below the
experimental upper bound for the production of the anomalous e+e− pairs and the decay rate
of lepto-pion to lepto-nucleon pair is of correct order of magnitude.

Option 2: The rough order of magnitude estimate for the production cross section of anomalous
e+e− pairs via σlπl pair creation followed by σL → e+e− decay, is by a factor of order 1/

∑
N2
c

(Nc is the total number of states for a given colour representation and sum over the represen-
tations contributing to the ortopositronium anomaly appears) smaller than the reported cross
section in case of 1.8 MeV resonance. The discrepancy could be due to the neglect of the large
radiative corrections (the coupling g(πLπLσL) = g(σLσLσL) is very large) and also due to the
uncertainties in the value of the measured cross section.

Given the unclear status of sigma in hadron physics, one has a temptation to conclude that
anomalous e+e− pairs actually correspond to lepto-nucleon pairs.

4. The vision about dark matter suggests that direct couplings between leptons and lepto-hadrons
are absent in which case no new effects in the direct interactions of ordinary leptons are pre-
dicted. If colored leptons couple directly to ordinary leptons, several new physics effects such as
resonances in photon-photon scattering at cm energy equal to lepto-pion masses and the produc-
tion of eexēex (eex is leptobaryon with quantum numbers of electron) and eexē pairs in heavy ion
collisions, are possible. Lepto-pion exchange would give dominating contribution to ν − e and
ν̄ − e scattering at low energies. Lepto-hadron jets should be observed in e+e− annihilation at
energies above few MeV:s unless the loss of asymptotic freedom restricts lepto-hadronic physics
to a very narrow energy range and perhaps to entirely non-perturbative regime of lepto-hadronic
QCD.
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During 18 years after the first published version of the model also evidence for colored µ has
emerged. Towards the end of 2008 CDF anomaly gave a strong support for the colored excitation of
τ . The lifetime of the light long lived state identified as a charged τ -pion comes out correctly and
the identification of the reported 3 new particles as p-adically scaled up variants of neutral τ -pion
predicts their masses correctly. The observed muon jets can be understood in terms of the special
reaction kinematics for the decays of neutral τ -pion to 3 τ -pions with mass scale smaller by a factor
1/2 and therefore almost at rest. A spectrum of new particles is predicted. The discussion of CDF
anomaly led to a modification and generalization of the original model for lepto-pion production and
the predicted production cross section is consistent with the experimental estimate.

17.4.2 Evidence for TGD view about quark gluon plasma

17.4.3 Evidence for TGD view about QCD plasma

The emergence of the first interesting findings from LHC by CMS collaboration [19, 2] provide new
insights to the TGD picture about the phase transition from QCD plasma to hadronic phase and
inspired also the updating of the model of RHIC events (mainly elimination of some remnants from
the time when the ideas about hierarchy of Planck constants had just born).

In some proton-proton collisions more than hundred particles are produced suggesting a single
object from which they are produced. Since the density of matter approaches to that observed in
heavy ion collisions for five years ago at RHIC, a formation of quark gluon plasma and its subsequent
decay is what one would expect. The observations are not however quite what QCD plasma picture
would allow to expect. Of course, already the RHIC results disagreed with what QCD expectations.
What is so striking is the evolution of long range correlations between particles in events containing
more than 90 particles as the transverse momentum of the particles increases in the range 1-3 GeV
(see the excellent description of the correlations by Lubos Motl in his blog [63] ).

One studies correlation function for two particles as a function of two variables. The first variable
is the difference ∆φ for the emission angles and second is essentially the difference for the velocities
described relativistically by the difference ∆η for hyperbolic angles. As the transverse momentum pT
increases the correlation function develops structure. Around origin of ∆η axis a widening plateau
develops near ∆φ = 0. Also a wide ridge with almost constant value as function of ∆η develops near
∆φ = π. The interpretation is that particles tend to move collinearly and or in opposite directions.
In the latter case their velocity differences are large since they move in opposite directions so that a
long ridge develops in ∆η direction in the graph.

Ideal QCD plasma would predict no correlations between particles and therefore no structures
like this. The radiation of particles would be like blackbody radiation with no correlations between
photons. The description in terms of string like object proposed also by Lubos on basis of analysis
of the graph showing the distributions as an explanation of correlations looks attractive. The decay
of a string like structure producing particles at its both ends moving nearly parallel to the string to
opposite directions could be in question.

Since the densities of particles approach those at RHIC, I would bet that the explanation (whatever
it is!) of the hydrodynamical behavior observed at RHIC for some years ago should apply also now.
The introduction of string like objects in this model was natural since in TGD framework even ordinary
nuclei are string like objects with nucleons connected by color flux tubes [6] , [6] : this predicts a lot
of new nuclear physics for which there is evidence. The basic idea was that in the high density
hadronic color flux tubes associated with the colliding nucleon connect to form long highly entangled
hadronic strings containing quark gluon plasma. The decay of these structures would explain the
strange correlations. It must be however emphasized that in the recent case the initial state consists
of two protons rather than heavy nuclei so that the long hadronic string could form from the QCD
like quark gluon plasma at criticality when long range fluctuations emerge.

The main assumptions of the model for the RHIC events and those observed now deserve to be
summarized. Consider first the ”macroscopic description”.

1. A critical system associated with confinement-deconfinement transition of the quark-gluon plasma
formed in the collision and inhibiting long range correlations would be in question.

2. The proposed hydrodynamic space-time description was in terms of a scaled variant of what I call
critical cosmology defining a universal space-time correlate for criticality: the specific property
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of this cosmology is that the mass contained by comoving volume approaches to zero at the the
initial moment so that Big Bang begins as a silent whisper and is not so scaring;-). Criticality
means flat 3-space instead of Lobatchevski space and means breaking of Lorentz invariance to
SO(4). Breaking of Lorentz invariance was indeed observed for particle distributions but now I
am not so sure whether it has much to do with this.

The microscopic level the description would be like follows.

1. A highly entangled long hadronic string like object (color-magnetic flux tube) would be formed
at high density of nucleons via the fusion of ordinary hadronic color-magnetic flux tubes to much
longer one and containing quark gluon plasma. In QCD world plasma would not be at flux tube.

2. This geometrically (and perhaps also quantally!) entangled string like object would straighten
and split to hadrons in the subsequent ”cosmological evolution” and yield large numbers of
almost collinear particles. The initial situation should be apart from scaling similar as in cos-
mology where a highly entangled soup of cosmic strings (magnetic flux tubes) precedes the
space-time as we understand it. Maybe ordinary cosmology could provide analogy as galaxies
arranged to form linear structures?

3. This structure would have also black hole like aspects but in totally different sense as the 10-
D hadronic black-hole proposed by Nastase to describe the findings. Note that M-theorists
identify black holes as highly entangled strings: in TGD 1-D strings are replaced by 3-D string
like objects.

17.4.4 New view about space-time and particles and Lamb shift anomaly
of muonium

17.4.5 The incredibly shrinking proton

The discovery that the charge radius of proton deduced from the muonic version of hydrogen atom is
about 4 per cent smaller than from the radius deduced from hydrogen atom [50, 61] is in complete
conflict with the cherished belief that atomic physics belongs to the museum of science. The title of
the article Quantum electrodynamics-a chink in the armour? of the article published in Nature [42]
expresses well the possible implications, which might actually go well extend beyond QED.

The finding is a problem of QED or to the standard view about what proton is. Lamb shift [4]
is the effect distinguishing between the states hydrogen atom having otherwise the same energy but
different angular momentum. The effect is due to the quantum fluctuations of the electromagnetic
field. The energy shift factorizes to a product of two expressions. The first one describes the effect of
these zero point fluctuations on the position of electron or muon and the second one characterizes the
average of nuclear charge density as ”seen” by electron or muon. The latter one should be same as in
the case of ordinary hydrogen atom but it is not. Does this mean that the presence of muon reduces
the charge radius of proton as determined from muon wave function? This of course looks implausible
since the radius of proton is so small. Note that the compression of the muon’s wave function has the
same effect.

Before continuing it is good to recall that QED and quantum field theories in general have diffi-
culties with the description of bound states: something which has not received too much attention.
For instance, van der Waals force at molecular scales is a problem. A possible TGD based expla-
nation and a possible solution of difficulties proposed for two decades ago is that for bound states
the two charged particles (say nucleus and electron or two atoms) correspond to two 3-D surfaces
glued by flux tubes rather than being idealized to points of Minkowski space. This would make the
non-relativistic description based on Schrödinger amplitude natural and replace the description based
on Bethe-Salpeter equation having horrible mathematical properties.

Basic facts and notions

In this section the basic TGD inspired ideas and notions - in particular the notion of field body- are
introduced and the general mechanism possibly explaining the reduction of the effective charge radius
relying on the leakage of muon wave function to the flux tubes associated with u quarks is introduced.
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After this the value of leakage probability is estimated from the standard formula for the Lamb shift
in the experimental situation considered.

1. Basic notions of TGD which might be relevant for the problem

Can one say anything interesting about the possible mechanism behind the anomaly if one accepts
TGD framework? How the presence of muon could reduce the charge radius of proton? Let us first
list the basic facts and notions.

1. One can say that the size of muonic hydrogen characterized by Bohr radius is by factor me/mµ =
1/211.4 = 4.7 × 10−4 smaller than for hydrogen atom and equals to 250 fm. Hydrogen atom
Bohr radius is .53 Angstroms.

2. Proton contains 2 quarks with charge 2e/3 and one d quark which charge -e/3. These quarks
are light. The last determination of u and d quark masses [36] gives masses, which are mu = 2
MeV and md = 5 MeV (I leave out the error bars). The standard view is that the contribution
of quarks to proton mass is of same order of magnitude. This would mean that quarks are
not too relativistic meaning that one can assign to them a size of order Compton wave length
of order 4 × re ' 600 fm in the case of u quark (roughly twice the Bohr radius of muonic
hydrogen) and 10 × re ' 24 fm in the case of d quark. These wavelengths are much longer
than the proton charge radius and for u quark more than twice longer than the Bohr radius
of the muonic hydrogen. That parts of proton would be hundreds of times larger than proton
itself sounds a rather weird idea. One could of course argue that the scales in question do not
correspond to anything geometric. In TGD framework this is not the way out since quantum
classical correspondence requires this geometric correlate.

3. There is also the notion of classical radius of electron and quark. It is given by r = α~/m and is
in the case of electron this radius is 2.8 fm whereas proton charge radius is .877 fm and smaller.
The dependence on Planck constant is only apparent as it should be since classical radius is
in question. For u quark the classical radius is .52 fm and smaller than proton charge radius.
The constraint that the classical radii of quarks are smaller than proton charge radius gives
a lower bound of quark masses: p-adic scaling of u quark mass by 2−1/2 would give classical
radius .73 fm which still satisfies the bound. TGD framework the proper generalization would be
r = αK~/m, where αK is Kähler coupling strength defining the fundamental coupling constant
of the theory and quantized from quantum criticality. Its value is very near or equal to fine
structure constant in electron length scale.

4. The intuitive picture is that light-like 3-surfaces assignable to quarks describe random motion
of partonic 2-surfaces with light-velocity. This is analogous to zitterbewegung assigned classi-
cally to the ordinary Dirac equation. The notion of braid emerging from Chern-Simons Dirac
equation via periodic boundary conditions means that the orbits of partonic 2-surface effectively
reduces to braids carrying fermionic quantum numbers. These braids in turn define higher level
braids which would move inside a structure characterizing the particle geometrically. Internal
consistency suggests that the classical radius r = αK~/m characterizes the size scale of the
zitterbewegung orbits of quarks.

I cannot resist the temptation to emphasize the fact that Bohr orbitology is now reasonably well
understood. The solutions of field equations with higher than 3-D CP2 projection describing
radiation fields allow only generalizations of plane waves but not their superpositions in accor-
dance with the fact it is these modes that are observed. For massless extremals with 2-D CP2

projection superposition is possible only for parallel light-like wave vectors. Furthermore, the
restriction of the solutions of the Chern-Simons Dirac equation at light-like 3-surfaces to braid
strands gives the analogs of Bohr orbits. Wave functions of -say electron in atom- are wave
functions for the position of wormhole throat and thus for braid strands so that Bohr’s theory
becomes part of quantum theory.

5. In TGD framework quantum classical correspondence requires -or at least strongly suggests-
that also the p-adic length scales assignable to u and d quarks have geometrical correlates.
That quarks would have sizes much larger than proton itself how sounds rather paradoxical
and could be used as an objection against p-adic length scale hypothesis. Topological field
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quantization however leads to the notion of field body as a structure consisting of flux tubes
and and the identification of this geometric correlate would be in terms of Kähler (or color-,
or electro-) magnetic body of proton consisting of color flux tubes beginning from space-time
sheets of valence quarks and having length scale of order Compton wavelength much longer
than the size of proton itself. Magnetic loops and electric flux tubes would be in question. Also
secondary p-adic length scale characterizes field body. For instance, in the case of electron the
causal diamond assigned to electron would correspond to the time scale of .1 seconds defining
an important bio-rhythm.

2. Could the notion of field body explain the anomaly?

The large Compton radii of quarks and the notion of field body encourage the attempt to imagine
a mechanism affecting the charge radius of proton as determined from electron’s or muon’s wave
function.

1. Muon’s wave function is compressed to a volume which is about 8 million times smaller than the
corresponding volume in the case of electron. The Compton radius of u quark more that twice
larger than the Bohr radius of muonic hydrogen so that muon should interact directly with the
field body of u quark. The field body of d quark would have size 24 fm which is about ten times
smaller than the Bohr radius so that one can say that the volume in which muons sees the field
body of d quark is only one thousandth of the total volume. The main effect would be therefore
due to the two u quarks having total charge of 4e/3.

One can say that muon begins to ”see” the field bodies of u quarks and interacts directly with
u quarks rather than with proton via its elecromagnetic field body. With d quarks it would still
interact via protons field body to which d quark should feed its electromagnetic flux. This could
be quite enough to explain why the charge radius of proton determined from the expectation
value defined by its wave function wave function is smaller than for electron. One must of course
notice that this brings in also direct magnetic interactions with u quarks.

2. What could be the basic mechanism for the reduction of charge radius? Could it be that the
electron is caught with some probability into the flux tubes of u quarks and that Schrödinger
amplitude for this kind state vanishes near the origin? If so, this portion of state would not
contribute to the charge radius and the since the portion ordinary state would smaller, this would
imply an effective reduction of the charge radius determined from experimental data using the
standard theory since the reduction of the norm of the standard part of the state would be
erratically interpreted as a reduction of the charge radius.

3. This effect would be of course present also in the case of electron but in this case the u quarks
correspond to a volume which million times smaller than the volume defined by Bohr radius so
that electron does not in practice ”see” the quark sub-structure of proton. The probability P
for getting caught would be in a good approximation proportional to the value of |Ψ(ru)|2 and
in the first approximation one would have

Pe
Pµ
∼ (aµ/ae)

3 = (me/mµ)3 ∼ 10−7 .

from the proportionality Ψi ∝ 1/a
3/2
i , i=e,µ.

3. A general formula for Lamb shift in terms of proton charge radius

The charge radius of proton is determined from the Lamb shift between 2S- and 2P states of
muonic hydrogen. Without this effect resulting from vacuum polarization of photon Dirac equation
for hydrogoen would predict identical energies for these states. The calculation reduces to the calcu-
lation of vacuum polarization of photon inducing to the Coulomb potential and an additional vacuum
polarization term. Besides this effect one must also take into account the finite size of the proton which
can be coded in terms of the form factor deducible from scattering data. It is just this correction
which makes it possible to determine the charge radius of proton from the Lamb shift.
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1. In the article [10] the basic theoretical results related to the Lamb shift in terms of the vacuum
polarization of photon are discussed. Proton’s charge density is in this representation is expressed
in terms of proton form factor in principle deducible from the scattering data. Two special cases
can be distinguished corresponding to the point like proton for which Lamb shift is non-vanishing
only for S wave states and non-point like proton for which energy shift is present also for other
states. The theoretical expression for the Lamb shift involves very refined calculations. Between
2P and 2S states the expression for the Lamb shift is of form

∆E(2PF=2
3/2 2SF=1

1/2 = a− br2
p + cr3

p = 209.968(5)5.2248× r2
p + 0.0347× r3

p meV . (17.4.1)

where the charge radius rp = .8750 is expressed in femtometers and energy in meVs.

2. The general expression of Lamb shift is given in terms of the form factor by

E(2P − 2S) =

∫
d3q

2π)3
× (−4πα)

F (q2)

q2

Π(q2)

q2
×
∫

(|Ψ2P (r)|2 − |Ψ2S(r)|2)exp(iq · r)dV .

(17.4.2)

Here Π is is a scalar representing vacuum polarization due to decay of photon to virtual pairs.

The model to be discussed predicts that the effect is due to a leakage from ”standard” state to
what I call flux tube state. This means a multiplication of |Ψ2P |2 with the normalization factor 1/N
of the standard state orthogonalized with respect to flux tube state. It is essential that 1/N is larger
than unity so that the effect is a genuine quantum effect not understandable in terms of classical
probability.

The modification of the formula is due to the normalization of the 2P and 2S states. These are in
general different. The normalization factor 1/N is same for all terms in the expression of Lamb shift
for a given state but in general different for 2S and 2P states. Since the lowest order term dominates
by a factor of ∼ 40 over the second one, one one can conclude that the modification should affect
the lowest order term by about 4 per cent. Since the second term is negative and the modification
of the first term is interpreted as a modification of the second term when rp is estimated from the
standard formula, the first term must increase by about 4 per cent. This is achieved if this state is
orthogonalized with respect to the flux tube state. For states Ψ0 and Ψtube with unit norm this means
the modification

Ψ0 → 1

1− |C|2
× (Ψi − CΨtube) ,

C = 〈Ψtube|Ψ0〉 . (17.4.3)

In the lowest order approximation one obtains

a− br2
p + cr3

p → (1 + |C|2)a− br2
p + cr3

p . (17.4.4)

Using instead of this expression the standard formula gives a wrong estimate rp from the condition

a− br̂2
p + cr̂3

p → (1 + |C|2)a− br2
p + cr3

p . (17.4.5)

This gives the equivalent conditions

r̂2
p = r2

p −
|C|2a
b

,

Ptube ≡ |C|2 ' 2
b

a
× r2

p ×
(rp − r̂p
rp

) . (17.4.6)

The resulting estimate for the leakage probability is Ptube ' .0015. The model should be able to
reproduce this probability.
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A model for the coupling between standard states and flux tube states

Just for fun one can look whether the idea about confinement of muon to quark flux tube carrying
electric flux could make sense.

1. Assume that the quark is accompanied by a flux tube carrying electric flux
∫
EdS = −

∫
∇Φ ·

dS = q, where q = 2e/3 = ke is the u quark charge. The potential created by the u quark at the
proton end of the flux tube with transversal area S = πR2 idealized as effectively 1-D structure
is

Φ = − ke

πR2
|x|+ Φ0 . (17.4.7)

The normalization factor comes from the condition that the total electric flux is q. The value
of the additive constant V0 is fixed by the condition that the potential coincides with Coulomb
potential at r = ru, where ru is u quark Compton length. This gives

eΦ0 =
e2

ru
+Kru , K =

ke2

πR2
. (17.4.8)

2. Parameter R should be of order of magnitude of charge radius αKru of u quark is free parameter
in some limits. αK = α is expected to hold true in excellent approximation. Therefore a
convenient parametrization is

R = zαru . (17.4.9)

This gives

K =
4k

αr2
u

, eΦ0 = 4(πα+
k

α
)

1

ru
. (17.4.10)

3. The requirement that electron with four times larger charge radius that u quark can topologically
condensed inside the flux tube without a change in the average radius of the flux tube (and thus
in a reduction in p-adic length scale increasing its mass by a factor 4!) suggests that z ≥ 4 holds
true at least far away from proton. Near proton the condition that the radius of the flux tube
is smaller than electron’s charge radius is satisfied for z = 1.

1. Reduction of Schrödinger equation at flux tube to Airy equation

The 1-D Schrödinger equation at flux tube has as its solutions Airy functions and the related
functions known as ”Bairy” functions.

1. What one has is a one-dimensional Schrödinger equation of general form

− ~2

2mµ

d2Ψ

dx2
+ (Kx− eΦ0)Ψ = EΨ , K =

ke2

πR2
. (17.4.11)

By performing a linear coordinate change
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u = (
2mµK

~2
)1/3(x− xE) , xE =

−|E|+ eΦ0

K
, (17.4.12)

one obtains

d2Ψ

du2
− uΨ = 0 . (17.4.13)

This differential equation is known as Airy equation (or Stokes equation) and defines special
functions Ai(x) known as Airy functions and related functions Bi(x) referred to as ”Bairy”
functions [1] . Airy functions characterize the intensity near an optical directional caustic such
as that of rainbow.

2. The explicit expressions for Ai(u) and Bi(u) are is given by

Ai(u) =
1

π

∫ ∞
0

cos(
1

3
t3 + ut)dt ,

Bi(u) =
1

π

∫ ∞
0

[
exp(−1

3
t3) + sin(

1

3
t3 + ut)dt

]
. (17.4.14)

Ai(u) oscillates rapidly for negative values of u having interpretation in terms of real wave
vector and goes exponentially to zero for u > 0. Bi(u) oscillates also for negative values of x
but increases exponentially for positive values of u. The oscillatory behavior and its character
become obvious by noticing that stationary phase approximation is possible for x < 0.

The approximate expressions of Ai(u) and Bi(u) for u > 0 are given by

Ai(u) ∼ 1

2π1/2
exp(−2

3
u3/2)u−1/4 ,

Bi(u) ∼ 1

π1/2
exp(

2

3
u3/2)u−1/4 . (17.4.15)

For u < 0 one has

Ai(u) ∼ 1

π1/2
sin(

2

3
(−u)3/2)(−u)−1/4 ,

Bi(u) ∼ 1

π1/2
cos(

2

3
(−u)3/2)(−u)−1/4 . (17.4.16)

3. u = 0 corresponds to the turning point of the classical motion where the kinetic energy changes
sign. x = 0 and x = ru correspond to the points

umin ≡ u(0) = −(
2mµK

~2
)1/3xE ,

umax ≡ u(ru) = (
2mµK

~2
)1/3(ru − xE) ,

xE =
−|E|+ eΦ0

K
. (17.4.17)
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4. The general solution is

Ψ = aAi(u) + bBi(u) . (17.4.18)

The natural boundary condition is the vanishing of Ψ at the lower end of the flux tube giving

b

a
= − Ai(u(0)

Bi(u(0))
. (17.4.19)

A non-vanishing value of b implies that the solution increases exponentially for positive val-
ues of the argument and the solution can be regarded as being concentrated in an excellent
approximation near the upper end of the flux tube.

Second boundary condition is perhaps most naturally the condition that the energy is same for
the flux tube amplitude as for the standard solution. Alternative boundary conditions would
require the vanishing of the solution at both ends of the flux tube and in this case one obtains
very large number of solutions as WKB approximation demonstrates. The normalization of the
state so that it has a unit norm fixes the magnitude of the coefficients a and b since one can
choose them to be real.

2. Estimate for the probability that muon is caught to the flux tube
The simplest estimate for the muon to be caught to the flux tube state characterized by the same

energy as standard state is the overlap integral of the ordinary hydrogen wave function of muon and
of the effectively one-dimensional flux tube. What one means with overlap integral is however not
quite obvious.

1. The basic condition is that the modified ”standard” state is orthogonal to the flux tube state.
One can write the expression of a general state as

Ψnlm → N × (Ψnlm − C(E,nlm)Φnlm) ,

Φnlm = YlmΨE ,

C(E,nlm) = 〈ΨE |Ψnlm〉 . (17.4.20)

Here Φnlm depends a flux tube state in which spherical harmonics is wave function in the space
of orientations of the flux tube and ΨE is flux tube state with same energy as standard state.
Here an inner product between standard states and flux tube states is introduced.

2. Assuming same energy for flux tube state and standard state, the expression for the total
total probability for ending up to single flux tube would be determined from the orthogonality
condition as

Pnlm =
|C(E,nlm)|2

1− |C(E, lmn)|2
. (17.4.21)

Here E refers to the common energy of flux tube state and standard state. The fact that flux
tube states vanish at the lower end of the flux tube implies that they do not contribute to the
expression for average charge density. The reduced contribution of the standard part implies
that the attempt to interpret the experimental results in ”standard model” gives a reduced value
of the charge radius. The size of the contribution is given by Pnlm whose value should be about
4 per cent.
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One can consider two alternative forms for the inner product between standard states and flux
tube states. Intuitively it is clear that an overlap between the two wave functions must be in question.

1. The simplest possibility is that one takes only overlap at the upper end of the flux tube which
defines 2-D surface. Second possibility is that that the overlap is over entire flux tube projection
at the space-time sheet of atom.

〈ΨE |Ψnlm〉 =

∫
end

ΨrΨnlmdS (Option I) ,

〈ΨE |Ψnlm〉 =

∫
tube

ΨrΨnlmdV (Option II) . (17.4.22)

2. For option I the inner product is non-vanishing only if ΨE is non-vanishing at the end of the flux
tube. This would mean that electron ends up to the flux tube through its end. The inner product
is dimensionless without introduction of a dimensional coupling parameter if the inner product
for flux tube states is defined by 1-dimensional integral: one might criticize this assumption as
illogical. Unitarity might be a problem since the local behaviour of the flux tube wave function at
the end of the flux tube could imply that the contribution of the flux tube state in the quantum
state dominates and this does not look plausible. One can of course consider the introduction
to the inner product a coefficient representing coupling constant but this would mean loss of
predictivity. Schrödinger equation at the end of the flux tubes guarantees the conservation of
the probability current only if the energy of flux tube state is same as that of standard state or
if the flux tube Schrödinger amplitude vanishes at the end of the flux tube.

3. For option II there are no problems with unitary since the overlap probability is always smaller
than unity. Option II however involves overlap between standard states and flux tube states
even when the wave function at the upper end of the flux tube vanishes. One can however
consider the possibility that the possible flux tube states are orthogonalized with respect to
standard states with leakage to flux tubes. The interpretation for the overlap integral would be
that electron ends up to the flux tube via the formation of wormhole contact.

3. Option I fails

The considerations will be first restricted to the simpler option I. The generalization of the results
of calculation to option II is rather straighforward. It turns out that option II gives correct order of
magnitude for the reduction of charge radius for reasonable parameter values.

1. In a good approximation one can express the overlap integrals over the flux tube end (option I)
as

C(E,nlm) =

∫
tube

ΨEΨnlmdS ' πR2 × Ylm × C(E,nl) ,

C(E,nl) = ΨE(ru)Rnl(ru) . (17.4.23)

An explicit expression for the coefficients can be deduced by using expression for ΨE as a
superposition of Airy and Bairy functions. This gives

C(E,nl) = ΨE(ru)Rnl(ru) ,

ΨE(x) = aEAi(uE) + bBi(uE) ,
aE
bE

= −Bi(uE(0))

Ai(uE(0)
,

uE(x) = (
2mµK

~2
)1/3(x− xE) , xE =

|E| − eΦ0

K
,

K =
ke2

πR2
, R = zαKru , k =

2

3
.

(17.4.24)
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The normalization of the coefficients is fixed from the condition that a and b chosen in such
a manner that Ψ has unit norm. For these boundary conditions Bi is expected to dominate
completely in the sum and the solution can be regarded as exponentially decreasing function
concentrated around the upper end of the flux tube.

In order to get a quantitative view about the situation one can express the parameters umin and
umax in terms of the basic dimensionless parameters of the problem.

1. One obtains

umin ≡ u(0) = −2(
k

zα
)1/3

[
1 + π

z

k
α2(1− 1

2
αr)

]
× r1/3 ,

umax ≡ u(ru) = u(0) + 2
k

zα
× r1/3 ,

r =
mµ

mu
, R = zαru . (17.4.25)

Using the numerical values of the parameters one obtains for z = 1 and α = 1/137 the values
umin = −33.807 and umax = 651.69. The value of umax is so large that the normalization is in
practice fixed by the exponential behavior of Bi for the suggested boundary conditions.

2. The normalization constant is in good approximation defined by the integral of the approximate
form of Bi2 over positive values of u and one has

N2 ' dx

du
×
∫ umax

umin

Bi(u)2du ,
dx

du
=

1

2
(
z2α

k
)1/3 × r1/3ru ,

(17.4.26)

By taking t = exp( 4
3u

3/2) as integration variable one obtains

∫ umax

umin

Bi(u)2du ' π−1

∫ umax

umin

exp(
4

3
u3/2)u−1/2du

= (
4

3
)2/3π−1

∫ tmax

tmin

dt

log(t)2/3
' 1

π

exp( 4
3u

3/2
max)

umax
. (17.4.27)

This gives for the normalization factor the expression

N ' 1

2
(
z2α

k
)2/3r1/3r1/2

u exp(
2

3
u3/2
max) . (17.4.28)

3. One obtains for the value of ΨE at the end of the flux tube the estimate

ΨE(ru) = Bi(umax)
N ' 2π−1/2 × (

k

z2α
)2/3r1/3r−1/2

u , r =
ru
rµ

. (17.4.29)
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4. The inner product defined as overlap integral gives for the ground state

CE,00 = ΨE(ru)×Ψ1,0,0(ru)× πR2

= 2π−1/2(
k

z2α
)2/3r1/3r−1/2

u × (
1

πa(µ)3
)1/2 × exp(−αr)× πz2α2r2

u

= 2π1/2k2/3z2/3r11/6α17/6exp(−αr) . (17.4.30)

The relative reduction of charge radius equals to P = C2
E,00. For z = 1 one obtains P =

C2
E,00 = 5.5 × 10−6, which is by three orders of magnitude smaller than the value needed for

Ptube = C2
E,20 = .0015. The obvious explanation for the smallness is the α2 factor coming from

the area of flux tube in the inner product.

4. Option II could work

The failure of the simplest model is essentially due to the inner product. For option II the inner
product for the flux tube states involves the integral over the area of flux tube so that the normalization
factor for the state is obtained from the previous one by the replacementN → N/

√
πR2. In the integral

over the flux tube the exponent function is is in the first approximation equal to constant since the
wave function for ground state is at the end of the flux tube only by a factor .678 smaller than at
the origin and the wave function is strongly concentrated near the end of the flux tube. The inner
product defined by the overlap integral over the flux tube implies N → NS1/2, S = πR2 = z2α2r2

u.
In good approximation the inner product for option II means the replacement

CE,n0 → A×B × CE,n0 ,

A =
dx
du√
πR2

=
1

2
√
π
z−1/3k−1/3α−2/3r1/3 ,

B =

∫
Bi(u)du√
Bi(umax)

= u−1/4
max = 2−1/4z1/2k−1/4α1/4r−1/12 . (17.4.31)

Using the expression

R20(ru) =
1

2
√

2
× (

1

aµ
)3/2 × (2− rα)× exp(−rα) , r =

ru
rµ

(17.4.32)

one obtains for CE,20 the expression

CE,20 = 2−3/4z5/6k1/12α29/12r25/12 × (2− rα)× exp(−rα) . (17.4.33)

By the earlier general argument one should have Ptube = |CE,20|2 ' .0015. Ptube = .0015 is obtained
for z = 1 and N = 2 corresponding to single flux tube per u quark. If the flux tubes are in opposite
directions, the leakage into 2P state vanishes. Note that this leakage does not affect the value of the
coefficient a in the general formula for the Lamb shift. The radius of the flux tube is by a factor 1/4
smaller than the classical radius of electron and one could argue that this makes it impossible for
electron to topologically condense at the flux tube. For z = 4 one would have Ptube = .015 which is 10
times too large a value. Note that the nucleus possess a wave function for the orientation of the flux
tube. If this corresponds to S-wave state then only the leakage beween S-wave states and standard
states is possible.
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Are exotic flux tube bound states possible?

There seems to be no deep reason forbidding the possibility of genuine flux tube states decoupling
from the standard states completely. To get some idea about the energy eigenvalues one can apply
WKB approximation. This approach should work now: in fact, the study on WKB approximation
near turning point by using linearization of the the potential leads always to Airy equation so that
the linear potential represents an ideal situation for WKB approximation. As noticed these states
do not seem to be directly relevant for the recent situation. The fact that these states have larger
binding energies than the ordinary states of hydrogen atom might make possible to liberate energy
by inducing transitions to these states.

1. Assume that a bound state with a negative energy E is formed inside the flux tube. This means
that the condition p2 = 2m(E − V ) ≥ 0, V = −eΦ, holds true in the region x ≤ xmax < ru and
p2 = 2m(E − V ) < 0 in the region ru > x ≥ xmax. The expression for xmax is

xmax =
πR2

k
(−|E|

e2
+

1

ru
+
kru
πR2

)~ . (17.4.34)

xmax < ru holds true if one has

|E| <
e2

ru
= Emax . (17.4.35)

The ratio of this energy to the ground state energy of muonic hydrogen is from E(1) = e2/2a(µ)
and a = ~/αm given by

Emax
E(n = 1)

=
2mu

αmµ
' 5.185 . (17.4.36)

This encourages to think that the ground state energy could be reduced by the formation of this
kind of bound state if it is possible to find a value of n in the allowed range. The physical state
would of course contain only a small fraction of this state. In the case of electron the increase
of the binding energy is even more dramatic since one has

Emax
E(n = 1)

=
2mu

αme
=

8

α
' 1096 . (17.4.37)

Obviously the formation of this kind of states could provide a new source of energy. There have
been claims about anomalous energy production in hydrogen [15] . I have discussed these claims
from TGD viewpoint in [88]

2. One can apply WKB quantization in the region where the momentum is real to get the condition

I =

∫ xmax

0

√
2m(E + eΦ)

dx

~
= n+

1

2
. (17.4.38)

By performing the integral one obtains the quantization condition
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I = k−1(8πα)1/2 × R2

r
3/2
u rµ

×A3/2 = n+
1

2
,

A = 1 + kx2 − |E|ru
e2

,

x =
ru
R

, k =
2

3π
, ri =

~
mi

. (17.4.39)

3. Parameter R should be of order of magnitude of charge radius αKru of u quark is free parameter
in some limits. αK = α is expected to hold true in excellent approximation. Therefore a
convenient parametrization is

R = zαru . (17.4.40)

This gives for the binding energy the general expression in terms of the ground state binging
energy E(1, µ) of muonic hydrogen as

|E| = C × E(1, µ) ,

C = D × (1 +Kz−2α−2 − (
y

z2
)2/3 × (n+ 1/2)2/3) ,

D = 2y × (
K2

8πα
)1/3 ,

y =
mu

mµ
, K =

2

3π
. (17.4.41)

4. There is a finite number of bound states. The above mentioned consistency conditions coming
from 0 < xmax < rµ give 0 < C < Cmax = 5.185 restricting the allowed value of n to some
interval. One obtains the estimates

nmin ' z2

y
(1 +Kz−2α−2 − Cmax

D
)3/2 − 1

2
,

nmax =
z2

y
(1 +Kz−2α−2)3/2 − 1

2
. (17.4.42)

Very large value of n is required by the consistency condition. The calculation gives nmin ∈
{1.22×107, 4.59×106, 1.48×105} and nmax ∈ {1.33×107, 6.66×106, 3.34×106} for z ∈ {1, 2, 4}.
This would be a very large number of allowed bound states -about 3.2× 106 for z = 1.

The WKB state behaves as a plane wave below xmax and sum of exponentially decaying and
increasing amplitudes above xmax:

1√
k(x)

[
Aexp(i

∫ x

0

k(y)dy) +Bexp(−i
∫ x

0

k(y)dy)

]
,

1√
κ(x)

[
Cexp(−

∫ x

xmax

κ(y)dy +Dexp(

∫ x

xmax

κ(y)dy

]
,

k(x) =
√

2m(−|E|+ eΦ , κ(x)
√

2m(|E| − eΦ . (17.4.43)
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At the classical turning point these two amplitudes must be identical.

The next task is to decide about natural boundary conditions. Two types of boundary conditions
must be considered. The basic condition is that genuine flux tube states are in question. This requires
that the inner product between flux tube states and standard states defined by the integral over flux
tube ends vanishes. This is guaranteed if the Schrödinger amplitude for the flux tube state vanishes
at the ends of the flux tube so that flux tube behaves like an infinite potential well. The condition
Ψ(0) = 0 at the lower end of the flux tube would give A = −B. Combined with the continuity condition
at the turning point these conditions imply that Ψ can be assumed to be real. The Ψ(ru) = 0 gives a
condition leading to the quantization of energy.

The wave function over the directions of flux tube with a given value of n is given by the spherical
harmonics assigned to the state (n, l,m).

17.4.6 Dark nucleons and genetic code

Water memory is one of the ugly words in the vocabulary of a main stream scientist. The work of
pioneers is however now carrying fruit. The group led by Jean-Luc Montagnier, who received Nobel
prize for discovering HIV virus, has found strong evidence for water memory and detailed information
about the mechanism involved [40, 89] , [9] . The work leading to the discovery was motivated by the
following mysterious finding. When the water solution containing human cells infected by bacteria
was filtered in purpose of sterilizing it, it indeed satisfied the criteria for the absence of infected cells
immediately after the procedure. When one however adds human cells to the filtrate, infected cells
appear within few weeks. If this is really the case and if the filter does what it is believed to do, this
raises the question whether there might be a representation of genetic code based on nano-structures
able to leak through the filter with pores size below 200 nm.

The question is whether dark nuclear strings might provide a representation of the genetic code.
In fact, I posed this question year before the results of the experiment came with motivation coming
from attempts to understand water memory. The outcome was a totally unexpected finding: the
states of dark nucleons formed from three quarks can be naturally grouped to multiplets in one-one
correspondence with 64 DNAs, 64 RNAS, and 20 aminoacids and there is natural mapping of DNA
and RNA type states to aminoacid type states such that the numbers of DNAs/RNAs mapped to
given aminoacid are same as for the vertebrate genetic code.

Figure 17.3: Illustration of a possible vision about dark nucleus as a nuclear string consisting of
rotating baryonic strings.

The basic idea is simple. Since baryons consist of 3 quarks just as DNA codons consist of three
nucleotides, one might ask whether codons could correspond to baryons obtained as open strings with
quarks connected by two color flux tubes. This representation would be based on entanglement rather
than letter sequences. The question is therefore whether the dark baryons constructed as string of 3
quarks using color flux tubes could realize 64 codons and whether 20 aminoacids could be identified as
equivalence classes of some equivalence relation between 64 fundamental codons in a natural manner.
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The following model indeed reproduces the genetic code directly from a model of dark neutral
baryons as strings of 3 quarks connected by color flux tubes.

1. Dark nuclear baryons are considered as a fundamental realization of DNA codons and con-
structed as open strings of 3 dark quarks connected by two colored flux tubes, which can be
also charged. The baryonic strings cannot combine to form a strictly linear structure since strict
rotational invariance would not allow the quark strings to have angular momentum with re-
spect to the quantization axis defined by the nuclear string. The independent rotation of quark
strings and breaking of rotational symmetry from SO(3) to SO(2) induced by the direction of
the nuclear string is essential for the model.

(a) Baryonic strings could form a helical nuclear string (stability might require this) locally
parallel to DNA, RNA, or aminoacid) helix with rotations acting either along the axis of
the DNA or along the local axis of DNA along helix. The rotation of a flux tube portion
around an axis parallel to the local axis along DNA helix requires that magnetic flux tube
has a kink in this portion. An interesting question is whether this kink has correlate at the
level of DNA too. Notice that color bonds appear in two scales corresponding to these two
strings. The model of DNA as topological quantum computer [29] allows a modification in
which dark nuclear string of this kind is parallel to DNA and each codon has a flux tube
connection to the lipid of cell membrane or possibly to some other bio-molecule.

(b) The analogs of DNA -, RNA -, and of amino-acid sequences could also correspond to
sequences of dark baryons in which baryons would be 3-quark strings in the plane transversal
to the dark nuclear string and expected to rotate by stringy boundary conditions. Thus
one would have nuclear string consisting of short baryonic strings not connected along their
ends (see Fig. 17.4.6). In this case all baryons would be free to rotate.

2. The new element as compared to the standard quark model is that between both dark quarks
and dark baryons can be charged carrying charge 0,±1. This is assumed also in nuclear string
model and there is empirical support for the existence of exotic nuclei containing charged color
bonds between nuclei.

3. The net charge of the dark baryons in question is assumed to vanish to minimize Coulomb
repulsion:

∑
q

Qem(q) = −
∑

flux tubes

Qem(flux tube) . (17.4.44)

This kind of selection is natural taking into account the breaking of isospin symmetry. In the
recent case the breaking cannot however be as large as for ordinary baryons (implying large
mass difference between ∆ and nucleon states).

4. One can classify the states of the open 3-quark string by the total charges and spins associated
with 3 quarks and to the two color bonds. Total em charges of quarks vary in the range
ZB ∈ {2, 1, 0,−1} and total color bond charges in the range Zb ∈ {2, 1, 0,−1,−2}. Only neutral
states are allowed. Total quark spin projection varies in the range JB = 3/2, 1/2,−1/2,−3/2
and the total flux tube spin projection in the range Jb = 2, 1,−1,−2. If one takes for a given
total charge assumed to be vanishing one representative from each class (JB , Jb), one obtains
4 × 5 = 20 states which is the number of amino-acids. Thus genetic code might be realized
at the level of baryons by mapping the neutral states with a given spin projection to single
representative state with the same spin projection. The problem is to find whether one can
identify the analogs of DNA, RNA and aminoacids as baryon like states.

States in the quark degrees of freedom

One must construct many-particle states both in quark and flux tube degrees of freedom. These states
can be constructed as representations of rotation group SU(2) and strong isospin group SU(2) by using
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the standard tensor product rule j1 × j2 = j1 + j2 ⊕ j1 + j2 − 1⊕ ...⊕ |j1 − j2| for the representation
of SU(2) and Fermi statistics and Bose-Einstein statistics are used to deduce correlations between
total spin and total isospin (for instance, J = I rule holds true in quark degrees of freedom). Charge
neutrality is assumed and the breaking of rotational symmetry in the direction of nuclear string is
assumed.

Consider first the states of dark baryons in quark degrees of freedom.

1. The tensor product 2 ⊗ 2 ⊗ 2 is involved in both cases. Without any additional constraints
this tensor product decomposes as (3 ⊕ 1) ⊗ 2 = 4 ⊕ 2 ⊕ 2: 8 states altogether. This is what
one should have for DNA and RNA candidates. If one has only identical quarks uuu or ddd,
Pauli exclusion rule allows only the 4-D spin 3/2 representation corresponding to completely
symmetric representation -just as in standard quark model. These 4 states correspond to a
candidate for amino-acids. Thus RNA and DNA should correspond to states of type uud and
ddu and aminoacids to states of type uuu or ddd. What this means physically will be considered
later.

2. Due to spin-statistics constraint only the representations with (J, I) = (3/2, 3/2) (∆ resonance)
and the second (J, I) = (1/2, 1/2) (proton and neutron) are realized as free baryons. Now of
course a dark -possibly p-adically scaled up - variant of QCD is considered so that more general
baryonic states are possible. By the way, the spin statistics problem which forced to introduce
quark color strongly suggests that the construction of the codons as sequences of 3 nucleons -
which one might also consider - is not a good idea.

3. Second nucleon like spin doublet - call it 2odd - has wrong parity in the sense that it would
require L = 1 ground state for two identical quarks (uu or dd pair). Dropping 2odd and using
only 4 ⊕ 2 for the rotation group would give degeneracies (1, 2, 2, 1) and 6 states only. All the
representations in 4 ⊕ 2 ⊕ 2odd are needed to get 8 states with a given quark charge and one
should transform the wrong parity doublet to positive parity doublet somehow. Since open
string geometry breaks rotational symmetry to a subgroup SO(2) of rotations acting along the
direction of the string and since the boundary conditions on baryonic strings force their ends to
rotate with light velocity, the attractive possibility is to add a baryonic stringy excitation with
angular momentum projection Lz = −1 to the wrong parity doublet so that the parity comes
out correctly. Lz = −1 orbital angular momentum for the relative motion of uu or dd quark
pair in the open 3-quark string would be in question. The degeneracies for spin projection value
Jz = 3/2, ...,−3/2 are (1, 2, 3, 2). Genetic code means spin projection mapping the states in
4⊕ 2⊕ 2odd to 4.

States in the flux tube degrees of freedom

Consider next the states in flux tube degrees of freedom.

1. The situation is analogous to a construction of mesons from quarks and antiquarks and one
obtains the analogs of π meson (pion) with spin 0 and ρ meson with spin 1 since spin statistics
forces J = I condition also now. States of a given charge for a flux tube correspond to the tensor
product 2⊗ 2 = 3⊕ 1 for the rotation group.

2. Without any further constraints the tensor product 3⊗3 = 5⊕3⊕1 for the flux tubes states gives
8+1 states. By dropping the scalar state this gives 8 states required by DNA and RNA analogs.
The degeneracies of the states for DNA/RNA type realization with a given spin projection for
5⊕ 3 are (1, 2, 2, 2, 1). 8× 8 states result altogether for both uud and udd for which color bonds
have different charges. Also for ddd state with quark charge -1 one obtains 5 ⊕ 3 states giving
40 states altogether.

3. If the charges of the color bonds are identical as the are for uuu type states serving as candidates
for the counterparts of aminoacids bosonic statistics allows only 5 states (J = 2 state). Hence
20 counterparts of aminoacids are obtained for uuu. Genetic code means the projection of the
states of 5⊕ 3 to those of 5 with the same spin projection and same total charge.
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Analogs of DNA,RNA, aminoacids, and of translation and transcription mechanisms

Consider next the identification of analogs of DNA, RNA and aminoacids and the baryonic realization
of the genetic code, translation and transcription.

1. The analogs of DNA and RNA can be identified dark baryons with quark content uud, ddu with
color bonds having different charges. There are 3 color bond pairs corresponding to charge pairs
(q1, q2) = (−1, 0), (−1, 1), (0, 1) (the order of charges does not matter). The condition that the
total charge of dark baryon vanishes allows for uud only the bond pair (−1, 0) and for udd only
the pair (−1, 1). These thus only single neutral dark baryon of type uud resp. udd: these would
be the analogous of DNA and RNA codons. Amino-acids would correspond to uuu states with
identical color bonds with charges (−1,−1), (0, 0), or (1, 1). uuu with color bond charges (-1,-1)
is the only neutral state. Hence only the analogs of DNA, RNA, and aminoacids are obtained,
which is rather remarkable result.

2. The basic transcription and translation machinery could be realized as processes in which the
analog of DNA can replicate, and can be transcribed to the analog of mRNA in turn translated
to the analogs of amino-acids. In terms of flux tube connections the realization of genetic code,
transcription, and translation, would mean that only dark baryons with same total quark spin
and same total color bond spin can be connected by flux tubes. Charges are of course identical
since they vanish.

3. Genetic code maps of (4⊕ 2⊕ 2)⊗ (5⊕ 3) to the states of 4× 5. The most natural map takes
the states with a given spin to a state with the same spin so that the code is unique. This would
give the degeneracies D(k) as products of numbers DB ∈ {1, 2, 3, 2} and Db ∈ {1, 2, 2, 2, 1}:
D = DB × Db. Only the observed degeneracies D = 1, 2, 3, 4, 6 are predicted. The numbers
N(k) of aminoacids coded by D codons would be

[N(1), N(2), N(3), N(4), N(6)] = [2, 7, 2, 6, 3] .

The correct numbers for vertebrate nuclear code are (N(1), N(2), N(3), N(4), N(6)) = (2, 9, 1, 5, 3).
Some kind of symmetry breaking must take place and should relate to the emergence of stopping
codons. If one codon in second 3-plet becomes stopping codon, the 3-plet becomes doublet. If
2 codons in 4-plet become stopping codons it also becomes doublet and one obtains the correct
result (2, 9, 1, 5, 3)!

4. Stopping codons would most naturally correspond to the codons, which involve the Lz = −1
relative rotational excitation of uu or dd type quark pair. For the 3-plet the two candidates for
the stopping codon state are |1/2,−1/2〉 ⊗ {|2, k〉}, k = 2,−2. The total spins are Jz = 3/2
and Jz = −7/2. The three candidates for the 4-plet from which two states are thrown out are
|1/2,−3/2〉 ⊗ {|2, k〉, |1, k〉}, k = 1, 0,−1. The total spins are now Jz = −1/2,−3/2,−5/2. One
guess is that the states with smallest value of Jz are dropped which would mean that Jz = −7/2
states in 3-plet and Jz = −5/2 states 4-plet become stopping codons.

5. One can ask why just vertebrate code? Why not vertebrate mitochondrial code, which has
unbroken A−G and T −C symmetries with respect to the third nucleotide. And is it possible to
understand the rarely occurring variants of the genetic code in this framework? One explanation
is that the baryonic realization is the fundamental one and biochemical realization has gradually
evolved from non-faithful realization to a faithful one as kind of emulation of dark nuclear physics.
Also the role of tRNA in the realization of the code is crucial and could explain the fact that
the code can be context sensitive for some codons.

Understanding the symmetries of the code

Quantum entanglement between quarks and color flux tubes would be essential for the baryonic
realization of the genetic code whereas chemical realization could be said to be classical. Quantal
aspect means that one cannot decompose to codon to letters anymore. This raises questions concerning
the symmetries of the code.

1. What is the counterpart for the conjugation ZY Z → XcYcZc for the codons?
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2. The conjugation of the second nucleotide Y having chemical interpretation in terms of hydrophoby-
hydrophily dichotomy in biology. In DNA as tqc model it corresponds to matter-antimatter
conjugation for quarks associated with flux tubes connecting DNA nucleotides to the lipids of
the cell membrane. What is the interpretation in now?

3. The A-G, T-C symmetries with respect to the third nucleotide Z allow an interpretation as weak
isospin symmetry in DNA as tqc model. Can one identify counterpart of this symmetry when
the decomposition into individual nucleotides does not make sense?

Natural candidates for the building blocks of the analogs of these symmetries are the change of
the sign of the spin direction for quarks and for flux tubes.

1. For quarks the spin projections are always non-vanishing so that the map has no fixed points.
For flux tube spin the states of spin Sz = 0 are fixed points. The change of the sign of quark spin
projection must therefore be present for both XY Z → XcYcZc and Y → Yc but also something
else might be needed. Note that without the symmetry breaking (1, 3, 3, 1) → (1, 2, 3, 2) the
code table would be symmetric in the permutation of 2 first and 2 last columns of the code table
induced by both full conjugation and conjugation of Y .

2. The analogs of the approximate A−G and T −C symmetries cannot involve the change of spin
direction in neither quark nor flux tube sector. These symmetries act inside the A-G and T-C
sub-2-columns of the 4-columns defining the rows of the code table. Hence this symmetry must
permute the states of same spin inside 5 and 3 for flux tubes and 4 and 2 for quarks but leave
2odd invariant. This guarantees that for the two non-degenerate codons coding for only single
amino-acid and one of the codons inside triplet the action is trivial. Hence the baryonic analog
of the approximate A − G and T − C symmetry would be exact symmetry and be due to the
basic definition of the genetic code as a mapping states of same flux tube spin and quark spin to
single representative state. The existence of full 4-columns coding for the same aminoacid would
be due to the fact that states with same quark spin inside (2, 3, 2) code for the same amino-acid.

3. A detailed comparison of the code table with the code table in spin representation should
allow to fix their correspondence uniquely apart from permutations of n-plets and thus also the
representation of the conjugations. What is clear that Y conjugation must involve the change
of quark spin direction whereas Z conjugation which maps typically 2-plets to each other must
involve the permutation of states with same Jz for the flux tubes. It is not quite clear what X
conjugation correspond to.

Some comments about the physics behind the code

Consider next some particle physicist’s objections against this picture.

1. The realization of the code requires the dark scaled variants of spin 3/2 baryons known as ∆
resonance and the analogs (and only the analogs) of spin 1 mesons known as ρ mesons. The
lifetime of these states is very short in ordinary hadron physics. Now one has a scaled up variant
of hadron physics: possibly in both dark and p-adic senses with latter allowing arbitrarily small
overall mass scales. Hence the lifetimes of states can be scaled up.

2. Both the absolute and relative mass differences between ∆ and N resp. ρ and π are large in
ordinary hadron physics and this makes the decays of ∆ and ρ possible kinematically. This is
due to color magnetic spin-spin splitting proportional to the color coupling strength αs ∼ .1,
which is large. In the recent case αs could be considerably smaller - say of the same order of
magnitude as fine structure constant 1/137 - so that the mass splittings could be so small as to
make decays impossible.

3. Dark hadrons could have lower mass scale than the ordinary ones if scaled up variants of quarks
in p-adic sense are in question. Note that the model for cold fusion that inspired the idea about
genetic code requires that dark nuclear strings have the same mass scale as ordinary baryons.
In any case, the most general option inspired by the vision about hierarchy of conscious entities
extended to a hierarchy of life forms is that several dark and p-adic scaled up variants of baryons
realizing genetic code are possible.
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4. The heaviest objection relates to the addition of Lz = −1 excitation to Sz = |1/2,±1/2〉odd
states which transforms the degeneracies of the quark spin states from (1, 3, 3, 1) to (1, 2, 3, 2).
The only reasonable answer is that the breaking of the full rotation symmetry reduces SO(3)
to SO(2). Also the fact that the states of massless particles are labeled by the representation
of SO(2) might be of some relevance. The deeper level explanation in TGD framework might
be as follows. The generalized imbedding space is constructed by gluing almost copies of the
8-D imbedding space with different Planck constants together along a 4-D subspace like pages
of book along a common back. The construction involves symmetry breaking in both rotational
and color degrees of freedom to Cartan sub-group and the interpretation is as a geometric
representation for the selection of the quantization axis. Quantum TGD is indeed meant to be
a geometrization of the entire quantum physics as a physics of the classical spinor fields in the
”world of classical worlds” so that also the choice of measurement axis must have a geometric
description.

The conclusion is that genetic code can be understand as a map of stringy baryonic states induced
by the projection of all states with same spin projection to a representative state with the same
spin projection. Genetic code would be realized at the level of dark nuclear physics and biochemical
representation would be only one particular higher level representation of the code. A hierarchy
of dark baryon realizations corresponding to p-adic and dark matter hierarchies can be considered.
Translation and transcription machinery would be realized by flux tubes connecting only states with
same quark spin and flux tube spin. Charge neutrality is essential for having only the analogs of DNA,
RNA and aminoacids and would guarantee the em stability of the states.

17.5 Cosmic rays and Mersenne primes

TGD suggests the existence of a scaled up copy of hadron physics associated with each Mersenne
prime Mn = 2n − 1, n prime: M107 corresponds to ordinary hadron physics. There is some evidence
for exotic hadrons. Also Gaussian Mersennes (1 + i)k − 1, could correspond to hadron physics. Four
of them (k = 151, 157, 163, 167) are in the biologically interesting length scale range between cell
membrane thickness and the size of cell nucleus.

Centauro events and the peculiar events associated with E > 105 GeV radiation from Cygnus X-3
could be understood as due to the decay of gamma rays to M89 hadron pair in the atmosphere. The

decay πn → γγ produces a peak in the spectrum of the cosmic gamma rays at energy m(πn)
2 and there

is evidence for the peaks at energies E89 ' 34 GeV and E31 ' 3.5 · 1010 GeV . The absence of the
peak at E61 ' 1.5 · 106 GeV can be understood as due to the strong absorption caused by the e+e−

pair creation with photons of the cosmic microwave background.
Cosmic string decays cosmic string → M2 hadrons → M3 hadrons ..→ M107 hadrons is a new

source of cosmic rays. The mechanism could explain the change of the slope in the hadronic cosmic
ray spectrum at 3 · 106 GeV which is not far from M61 pion rest energy 1.2 · 106 GeV .

The cosmic ray radiation at energies near 109 GeV apparently consisting of protons and nuclei
not lighter than Fe might be actually dominated by gamma rays: at these energies γ and p induced
showers have same muon content and the decays of gamma rays to M89 and M61 hadrons in the
atmosphere can mimic the presence of heavy nuclei in the cosmic radiation.

The identification of the hadronic space-time sheet as a super-symplectic mini black-hole [58]
suggests that part of ultra-high energy cosmic rays could be protons which have lost their valence
quarks. These particles would have essentially same mass as proton and would behave like mini black-
holes consisting of dark matter. They could even give a dominating contribution to the dark matter.
Since electro-weak interactions are absent, the scattering from microwave background is absent, and
they could propagate over much longer distances than ordinary particles. An interesting question is
whether the ultrahigh energy cosmic rays having energies larger than the GZK cut-off of 5 × 1010

GeV are super-symplectic mini black-holes associated with M107 hadron physics or some other copy
of hadron physics.

17.5.1 Mersenne primes and mass scales

p-Adic mass calculations lead to quite detailed predictions for elementary particle masses. In particu-
lar, there are reasons to believe that the most important fundamental elementary particle mass scales
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correspond to Mersenne primes Mn = 2n − 1, n = 2, 3, 7, 13, 17, 19, ...

m2
n =

m2
0

Mn
,

m0 ' 1.41 · 10−4

√
G

, (17.5.1)

where
√
G is Planck length. The lower bound for n can be of course larger than n = 2. The known

elementary particle mass scales were identified as mass scales associated identified with Mersenne
primes M127 ' 1038 (leptons), M107 (hadrons) and M89 (intermediate gauge bosons). Of course,
also other p-adic length scales are possible and it is quite possible that not all Mersenne primes are
realized. On the other hand, also Gaussian Mersennes could be important (muon and atomic nuclei
corresponds to Gaussian Mersenne (1 + i)k − 1 with k = 113).

Theory predicts also some higher mass scales corresponding to the Mersenne primes Mn for n =
89, 61, 31, 19, 17, 13, 7, 3 and suggests the existence of a scaled up copy of hadron physics with each
of these mass scales. In particular, masses should be related by simple scalings to the masses of the
ordinary hadrons.

An attractive hypothesis is that the color interactions of the particles of level Mn can be described
using the ordinary QCD scaled up to the level Mn so that that masses and the confinement mass scale
Λ is scaled up by the factor

√
Mn/M107.

Λn =

√
Mn

M107
Λ . (17.5.2)

In particular, the naive scaling prediction for the masses of the exotic pions associated with Mn is
given by

m(πn) =

√
Mn

M107
mπ . (17.5.3)

Here mπ ' 135 MeV is the mass of the ordinary pion.
The interactions between the different level hadrons are mediated by the emission of electro-weak

gauge bosons and by gluons with cm energies larger than the energy defined by the confinement scale
of level with smaller p. The decay of the exotic hadrons at level Mnk to exotic hadrons at level Mnk+1

must take place by a transition sequence leading from the effective Mnk -adic space-time topology to
effective Mnk+1

-adic topology. All intermediate p-adic topologies might be involved.

17.5.2 Cosmic strings and cosmic rays

Cosmic strings are fundamental objects in quantum TGD and dominated during early cosmology.

Cosmic strings

Cosmic strings (not quite the same thing in TGD as in GUTs) are basic objects in TGD inspired
cosmology [25, 78] .

1. In TGD inspired galaxy model galaxies are regarded as mass concentrations around cosmic
strings and the energy of the string corresponds to the dark energy whereas the particles con-
densed at cosmic strings and magnetic flux tubes resulting from them during cosmic expansion
correspond to dark matter [25, 78] . The galactic nuclei, often regarded as candidates for black
holes, are the most probable seats for decaying highly entangled cosmic strings.

2. Galaxies are known to organize to form larger linear structures. This can be understood if
the highly entangled galactic strings organize around long strings like pearls in necklace. Long
strings could correspond to galactic jets and their gravitational field could explain the constant
velocity spectrum of distant stars in the galactic halo.
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3. In [25, 78, 77] it is suggested that decaying cosmic strings might provide a common explanation
for the energy production of quasars, galactic jets and gamma ray bursters and that the visible
matter in galaxies could be regarded as decay products of cosmic strings. The magnetic and Z0

magnetic flux tubes resulting during the cosmic expansion from cosmic strings allow to assign at
least part of gamma ray bursts to neutron stars. Hot spots (with temperature even as high as

T ∼ 10−3,5
√
G

) in the cosmic string emitting ultra high energy cosmic rays might be created under

the violent conditions prevailing in the galactic nucleus.

The decay of the cosmic strings provides a possible mechanism for the production of the exotic
hadrons and in particular, exotic pions. In [77] the idea that cosmic strings might produce gamma rays
by decaying first into ’X’ particles with mass of order 1015 GeV and then to gamma rays, was proposed.
As authors notice this model has some potential difficulties resulting from the direct production of
gamma rays in the source region and the presence of intensive electromagnetic fields near the source.
These difficulties are overcome if cosmic strings decay first into exotic hadrons of type Mn0

, n0 ≥ 3
of energy of order 2−n0+21025 GeV , which in turn decay to exotic hadrons corresponding to Mk,
k > n0 via ordinary color interaction, and so on so that a sequence of Mk:s starting some value of
n0 in n = 2, 3, 7, 13, 17,19, 31, 61, 89, 107 is obtained. The value of n remains open at this stage and
depends on the temperature of the hot spot and much smaller temperatures than the T ∼ m0 are
possible: favored temperatures are the temperatures Tn ∼ mn at which Mn hadrons become unstable
against thermal decay.

Decays of cosmic strings as producer of high energy cosmic gamma rays

In [60] the gamma ray signatures from ordinary cosmic strings were considered and a dynamical QCD
based model for the decay of cosmic string was developed. In this model the final state particles
were assumed to be ordinary hadrons and final state interactions were neglected. In present case the
string decays first to Mn0

hadrons and the time scale of for color interaction between Mn0
hadrons is

extremely short (given by the length scale defined by the inverse of πn0 mass) as compared to the time
time scale in case of ordinary hadrons. Therefore the interactions between the final state particles
must be taken into account and there are good reasons to expect that thermal equilibrium sets on
and much simpler thermodynamic description of the process becomes possible.

A possible description for the decaying part of the highly tangled cosmic string is as a ’fireball’
containing various Mn0 (n ≥ 3) partons in thermal equilibrium at Hagedorn temperature Tn0 of order

Tn0 ∼ mn0 = 2−2+n0 10−4

k
√
G

, k ' 1.288. The experimental discoveries made in RHIC suggest [59] that

high energy nuclear collisions create instead of quark gluon plasma a liquid like phase involving gluonic
BE condensate christened as color glass condensate. Also black hole like behavior is suggested by the
experiments.

RHIC findings inspire a TGD based model for this phase as a macroscopic quantum phase con-
densed on a highly tangled color magnetic string at Hagedorn temperature. The model relies also
on the notion of dynamical but quantized ~ [26] and its recent form to the realization that super-
symplectic many-particle states at hadronic space-time sheets give dominating contribution to the
baryonic mass and explain hadronic masses with an excellent accuracy.

This phase has no direct gauge interactions with ordinary matter and is identified in TGD frame-
work as a particular instance of dark matter. Quite generally, quantum coherent dark matter would
reside at magnetic flux tubes idealizable as string like objects with string tension determined by the
p-adic length scale and thus outside the ”ordinary” space-time. This suggests that color glass con-
densate forms when hadronic space-time sheets fuse to single long string like object containing large
number of super-symplectic bosons.

Color glass condensate has black-hole like properties by its electro-weak darkness and there are
excellent reasons to believe that also ordinary black holes could by their large density correspond to
states in which super-symplectic matter would form single connected string like structure (if Planck
constant is larger for super-symplectic hadrons, this fusion is even more probable).

This inspires the following mechanism for the decay of exotic boson.

1. The tangled cosmic string begins to cool down and when the temperature becomes smaller
than m(πn0) mass it has decayed to Mn1 matter which in turn continues to decay to Mn2

matter. The decay to Mn1
matter could occur via a sequence n0 → n0 − 1 → ...n1 of phase
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transitions corresponding to the intermediate p-adic length scales p ' 2k, n1 ≥ k > n0. Of
course, all intermediate p-adic length scales are in principle possible so that the process would
be practically continuous and analogous to p-adic length scale evolution with p ' 2k representing
more stable intermediate states.

2. The first possibility is that virtual hadrons decay to virtual hadrons in the transition k → k− 1.
The alternative option is that the density of final state hadrons is so high that they fuse to form
a single highly entangled hadronic string at Hagedorn temperature Tk−1 so that the process
would resemble an evaporation of a hadronic black hole staying in quark plasma phase without
freezing to hadrons in the intermediate states. This entangled string would contain partons as
”color glass condensate”.

3. The process continues until all particles have decayed to ordinary hadrons. Part of the Mn low
energy thermal pions decay to gamma ray pairs and produce a characteristic peak in cosmic

gamma ray spectrum at energies En = m(πn)
2 (possibly red-shifted by the expansion of the

Universe). The decay of the cosmic string generates also ultra high energy hadronic cosmic
rays, say protons. Since the creation of ordinary hadron with ultra high energy is certainly a
rare process there are good hopes of avoiding the problems related to the direct production of
protons by cosmic strings (these protons produce two high flux of low energy gamma rays, when
interacting with cosmic microwave background [77] ).

Topologically condensed cosmic strings as analogs super-symplectic black-holes?

Super-symplectic matter has very stringy character. For instance, it obeys stringy mass formula due
the additivity and quantization of mass squared as multiples of p-adic mass scale squared [58] . The
ensuing additivity of mass squared defines a universal formula for binding energy having no inde-
pendence on interaction mechanism. Highly entangled strings carrying super-symplectic dark matter
are indeed excellent candidates for TGD variants of black-holes. The space-time sheet containing the
highly entangled cosmic string is separated from environment by a wormhole contact with a radius of
black-hole horizon. Schwartschild radius has also interpretation as Compton length with Planck con-
stant equal to gravitational Planck constant ~/~0 = 2GM2. In this framework the proposed decay of
cosmic strings would represent nothing but the TGD counterpart of Hawking radiation. Presumably
the value of p-adic prime in primordial stage was as small as possible, even p = 2 can be considered.

Exotic cosmic ray events and exotic hadrons

One signature of the exotic hadrons is related to the interaction of the ultra high energy gamma rays
with the atmosphere. What can happen is that gamma rays in the presence of an atmospheric nucleus
decay to virtual exotic quark pair associated with Mnk , which in turn produces a cascade of exotic
hadrons associated with Mnk through the ordinary scaled up color interaction. These hadrons in turn
decay Mnk+1

type hadrons via mechanisms to be discussed later. At the last step ordinary hadrons
are produced. The collision creates in the atmospheric nucleus the analog of quark gluon plasma
which forms a second kind of fireball decaying to ordinary hadrons. RHIC experiments have already
discovered these fireballs and identified them as color glass condensates [59]. It must be emphasized
that it is far from clear whether QCD really predicts this phase.

These showers differ from ordinary gamma ray showers in several respects.

1. Exotic hadrons can have small momenta and the decay products can have isotropic angular
distribution so that the shower created by gamma rays looks like that created by a massive
particle.

2. The muon content is expected to be similar to that of a typical hadronic shower generated by
proton and larger than the muon content of ordinary gamma ray shower [75] .

3. Due to the kinematics of the reactions of type γ + p→ HMn
+ ...+ p the only possibility at the

available gamma ray energies is that M89 hadrons are produced at gamma ray energies above
10 TeV . The masses of these hadrons are predicted to be above 70 GeV and this suggests
that these hadrons might be identified incorrectly as heavy nuclei (heavier than 56Fe). These
signatures will be discussed in more detail in the sequel in relation to Centauro type events,
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Cygnus X-3 events and other exotic cosmic ray events. For a good review for these events and
models form them see the review article [1] .

Some cosmic ray events [51, 23] have total laboratory energy as high as 3000 TeV which suggests
that the shower contains hadron like particles, which are more penetrating than ordinary hadrons.

1. One might argue that exotic hadrons corresponding Mk, k > 107with interact only electro-
weakly (color is confined in the length scale associated with Mn) with the atmosphere one might
argue that they are more penetrating than the ordinary hadrons.

2. The observed highly penetrating fireballs could also correspond super-symplectic dark matter
part of incoming, possibly exotic, hadron fused with that for a hadron of atmosphere. Both
hadrons would have lost their valence quarks in the collision just as in the case of Pomeron
events. Large fraction of the collision energy would be transformed to super-symplectic quanta
in the process and give rise to a large color spin glass condensate. These condensates would
have no direct electro-weak interactions with ordinary matter which would explain their long
penetration lengths in the atmosphere. Sooner or later the color glass condensate would decay
to hadrons by the analog of blackhole evaporation. This process is different from QCD type
hadronization process occurring in hadronic collisions and this might allow to understand the
anomalously low production of neutral pions.

Exotic mesons can also decay to lepton pairs and neutral exotic pions produce gamma pairs. These
gamma pairs in principle provide a signature for the presence of exotic pions in the cosmic ray shower.
If M89 proton is sufficiently long-lived enough they might be detectable.The properties of Centauro
type events however suggest that M89 protons are short lived.

17.5.3 Centauro type events, Cygnus X-3 and M89 hadrons

The results reported by Brazil-Japan Emulsion Chamber Collaboration
[51, 38] on multiple production of hadrons induced by cosmic rays with energies Elab > 105 GeV
provide evidence for new Physics. The distributions for the transverse momentum pT and longitu-
dinal momentum fraction x for pions were found to differ from the distributions extrapolated from
lower energies. The widening of the transversal momentum distributions has also been observed at
accelerator energies (ISR above

√
s = 63 GeV and CERN SPS-pp̄ Collider at

√
s = 540 GeV ).

Furthermore, exotic events called Geminion, Centauro, Chiron with emission of nB ≤ 100 hundred
baryons but practically no pions were detected. There are also peculiar events associated with the
radiation coming from Cygnus X-3. A recent summary about peculiar events is given in the review
article [1] .

Mirim, Acu and Quacu

The exotic cosmic ray events are described in the review article of [51] . In [51] the multiple production
of pions is classified into 3 jet types called Mirim, Acu and Quacu. Although the transverse momentum
distributions for pions observed at low energies are universal, Acu and Quacu jets are characterized by
wider transverse momentum distributions with larger value of average transverse momentum pT than
in low energy pionization: this widening is in accordance with accelerator results. The distributions
for the longitudinal momentum fraction x scale but differ from the low energy situation for Acu and
Quacu jets.

In [51, 64] a description of these events in terms of ’fireballs’ decaying into ordinary hadrons were
considered. The pT distribution associated with Mirim is just the ordinary low energy transverse
momentum distribution whereas the distributions associated with Acu and Quacu are wider. The
masses of the fireballs were assumed to be discrete and were found to be M0 ∼ 2 − 3 GeV (Mirim),
M1 ∼ 15 − 30 GeV (Acu) , M2 ∼ 100 − 300 GeV (Quacu). It should be noticed that the upper
bounds for the masses associated with Acu and Quacu fireballs are roughly by a factor of two smaller
than the naive mass estimates 69 GeV and 481 GeV associated with M89 pion and M89 proton. The
temperatures were found to be in range 0.4−10 GeV for Acu and Quacu fireball and to be substantially
larger than the ordinary Hagedorn temperature TH ' 0.16 GeV .
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Chirons, Centauros, anti-Centauros, and Geminions

For the second class of events consisting of Chirons, Centauros and Geminions observed at laboratory
energies 100 − 1000 TeV pion production is strongly suppressed (gamma pairs resulting from the
decay of neutral pions are almost absent) [51] . The primary event takes place few hundred meters
above the detector and decay products are known to be hadrons and mostly baryons: about 15 (100 )
for Mini-Centauros (Centauros). This excludes the possibility that exotic hadrons decay in emulsion
chamber and implies also that the decay mechanism of the primary particle is such that very few
mesons are produced.

The fireball hypothesis has been applied also to Centauro type events assuming that fireballs
corresponds to a different phase than in the case of Mirim, Acu and Quacu [51] . The fireball masses
associated with Mini-Centauro and Centauro are according to the estimate of [51] Mmini = 35 GeV
and MCentauro = 230 GeV. These masses are almost exactly one half of the masses of the M89 pion
(70 GeV) and proton (470 GeV) respectively!

MMini '
m(π89)

2
,

MCentauro ' m(p89)

2
. (17.5.4)

This suggests that the decay of cosmic gamma ray to M89 quark pair which in turn hadronizes to
(possibly virtual) M89 hadrons induced by the interaction with the nucleon of atmosphere is the origin
of Mini-Centauro/Centauro events.

The basic difference between the decaying fireballs in Acu/Quacu events and Centauro type events
is that Acu/Quacu decays produce neutral pions unlike Centauros.

The appearance of the factor of 1/2 in the mass estimates needs an explanation. One explanation
is systematic error in the evaluation of hadronic energy: for instance, the gamma inelasticity kγ telling
which fraction of hadronic energy is transformed to electromagnetic energy might be actually smaller
than believed by a factor of order two. An alternative explanation is related to the decay mechanism
of M89 particle: if the decay takes place via a decay to two off mass shell M89 hadrons decaying in turn
to hadrons then the average rest energy of the fireball is indeed one half of the mass of the decaying
on mass shell particle. The reason for the necessity of off mass shell intermediate states is perhaps
the stability of the on mass shell exotic hadrons against the direct decay to ordinary hadrons.

Anti-Centauros are much like Centauros except that neutral pions are over-abundant [1] . The
speculative model [12] relies on the notion of chiral condensates consisting of neutral pions in the case
of Centauros and charged pions in the case of anti-Centauros. If one wants to explain Anti-Centauros
in terms of M89 physics should be able to explain the over abundance of neutral pions in terms of
decay products of ordinary hadrons at later stages of the decay cascade.

The case of Cygnus X-3

There are peculiar events associated with the cosmic rays coming from Cygnus X-3 at gamma ray
energies above 105 GeV [13] . The primary particle must be massless particle and is most probably
ordinary gamma ray. The structure of the shower however suggests that the decaying particle is very
massive! Furthermore, the muon content of the shower is larger than that associated with gamma ray
shower. A possible explanation is that the gamma rays coming from Cygnus X-3 with energy above
the threshold 104 GeV produce M89 hadrons, which in turn create the cosmic ray shower through the
decay to M89 hadrons and the decay of these to the ordinary M107 hadrons: this indeed means that
the gamma rays behave like a massive particles in the atmosphere.

17.5.4 TGD based explanation of the exotic events

The TGD based model for exotic events involve p-adic length scale hierarchy, many-sheeted space-
time, and TGD inspired view about dark matter. A decisive empirical input comes from RHIC events
suggesting that quark gluon plasma is actually a liquid like ”macroscopic” quantum phase identifiable
as a particular instance of dark matter.
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General considerations

The mass estimates for the fireballs and the absence of neutral pions suggest that Mini-Centauro/Centauro
type events correspond to the decay of M89 hadrons (pion/proton) to ordinary hadrons. The general
model for the exotic events would be following.

1. Cosmic gamma ray decays first into M89 quark pair via electromagnetic interaction with the
nucleon of the atmosphere. Pairs of Centauros/anti-Centauros and quark-gluon-plasma blobs
explaing Mirim/Qcu/Quacu events would be naturally created in these collisions.

2. The quark pair in turn hadronizes to M89 hadrons decaying to virtual k > 89 hadrons which in
turn end up via a sequential decay process to ordinary hadrons. This process is kinematically
possible if the condition Etot > 2M2/mp, is satisfied (M is the mass of the exotic hadron).
For example, the energy of the gamma ray must be larger than 500 TeV for exotic proton pair
production. For the exotic pion the corresponding lower bound is about 10 TeV . The energies of
the exotic events are indeed above 100 TeV in accordance with these bounds. The average total
energy is about Etot = 1740 TeV for Centauros and Etot ' 903 TeV for Mini-Centauros [51].
The mechanism implies that two M89 fireballs are produced. ’Binocular’ events (Geminions)
consisting of two widely separated fireballs have indeed been observed [51] .

3. If anti-Centauros result via the same mechanism there must be a mechanism explaining why
the production of neural pions varies from event to event. One proposal is that the difference
is due to a formation of pion condensates consisting of neural resp. charged pions in the two
situations [12] . This hypothesis would unify Centauro events with anti-Centauro events in which
the production of neutral pions is abnormally high [1] .

4. Mirim/Acu/Quacu events could correspond to the decay of a high temperature quark-gluon
plasma blob, or rather color glass condensate, to hadrons (recall that the estimated plasma
temperatures are much lower than for Centauros). The collision of M89 hadron possibly gen-
erated in the interaction of the cosmic gamma ray with ordinary nucleon could induce both
the decay of M89 hadron to virtual hadrons and generate quark-gluon plasma blob in the at-
mospheric target nucleus. Hagedorn temperature T (k), 89 < k ≤ 107 is a good guess for the
temperature of this plasma blob. RHIC findings [59] suggest that the blob corresponds to highly
tangled hadronic string containing super-symplectic dark matter and decaying by de-coherence
to ordinary hadrons [26] .

Connection with TGD based model for RHIC events

The counterparts of Centauros and other exotic events have not been observed in accelerator exper-
iments. More than a decade after writing the first version of the model for Centauros came however
data from RHIC experiment [59], which seems to provide a connection between laboratory and cosmic
ray data. In RHIC collisions of very energetic Gold nuclei are studied. The collisions were expected to
create a quark gluon plasma freezing to ordinary hadrons. The surprise was that the resulting state
behaves like an ideal liquid and has also black hole like properties [59].

Recall that the TGD based model [77, 26] for RHIC findings is following.

1. The state in question corresponds to a highly entangled hadronic string at Hagedorn temperature
defining the analog of black hole and decaying by evaporation. The gravitational constant
defined by Planck length is effectively replaced by a hadronic gravitational constant defined by
the hadronic length scale. p-Adic length scale hypothesis predicts entire hierarchy of Hagedorn
temperatures.

2. Bose-Einstein condensate of gluons referred to as color glass condensate has been proposed as
an explanation for the liquid like behavior of the quark-gluon phase. TGD based explanation
for the liquid like state is that that the state in question corresponds to a large Bose-Einstein
condensate like state of super-symplectic particles resulting as hadronic space-time sheets fuse.
Super-symplectic bosons have vanishing electro-weak quantum numbers since super-symplectic
generators are either purely bosonic or possess quantum numbers of right handed neutrino. Dark
matter is in question.
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3. LHC has already produce evidence for quark gluon plasma possessing anomalous properties but
created in collisions of protons rather than those of heavy nuclei. The TGD based explanation
is in formation of long highly entangled color flux tube producing hadrons as it decays [53] .
It might be that the creation of these objects in the decays of M89 hadrons are responsible for
some aspects of the exotic cosmic ray events.

A more precise model for exotic events

A more detailed formulation necessitates a rough model for the transformation of M89 hadrons to
M107 hadrons.

1. On mass shell exotic hadrons can be assumed to be stable against direct decay to ordinary
hadrons so that their decay must take place via a sequential decay to off mass shell exotic
hadrons characterized by 107 > k > 89, which eventually decay to ordinary hadrons. The
simplest decay mode is the decay to two virtual exotic hadrons with average mass, which is one
half of the mass of the decaying exotic hadron in accordance with observations.

2. M89 hadron decays to virtual hadrons with p ' 2k > M89 dominate over electro-weak decays
since the characteristic time scale is defined by Λ(QCD,M89) = 512Λ(QCD, 107). This means
that most of the energy in the process goes to virtual k > 89 virtual mesons. Neutral k > 89
virtual pions, if created, can decay to gamma pairs so that the problem of understanding the
absence of neutral pions remains.

3. M89 hadronic space-time sheet suffers a topological phase transition to M107 hadronic space-
time sheet via several steps k = 89 → k1 > 89.. → kn = 107. In the process the size of
hadronic surface suffers a 29 = 512-fold expansion meaning the increase of volume by a factor
for 227 ∼ 109/8 so that a small scale Big Bang is really in question! The expansion brings in
mind liquid-vapor phase transition but the freezing to hadrons (due to the properties of color
coupling constant evolution) makes the transition more like a liquid-solid phase transition.

As noticed, all p-adic length scales in the range involved could be present but p ' 2k would define
more stable intermediate states. A possible experimental signature for the sequence of the phase
transitions labeled by 89 ≤ k ≤ 107 is a bumpy structure of the detected hadronic cascades with
a maximum of 17 maxima. This kind of structure with a constant distance between maxima
and 11 maxima has been indeed observed for some cascades (see Fig. 8 of [1] ).

A good guess for the critical temperature of the Big Bang like phase transition to occur is
Tcr(89) = km89, where k is some numerical factor. TGD inspired model for the early cosmology
provides a universal hydrodynamics model for this period as a mini Big Bang, or rather ”a soft
whisper amplified to a relatively big bang”, containing the duration of the period as the only
parameter [78] .

4. If the decay process is fast enough, the density of virtual hadrons in the final state becomes
so high that they form single highly tangled cosmic string in Hagedorn temperature T (k). An
entire sequence of T (k) = kmk, 107 > k > 89 of phase transition temperatures could be involved
without intermediate freezing to hadrons. Since the transformation of k = 89 hadrons to k = 107
hadrons would be essentially a decay process, the distribution of decay products is isotropic in
the center of mass frame of k = 89 hadron (Centauros/anti-Centauros). The same conclusion
holds true for the decay of quark gluon plasma (Mirim/Qcu/Quacu).

How to understand the anomalous production of pions?

One can imagine two different explanations for the varying number of pions in the events.

1. M89 hadrons produce M89 pions

This model would explain the special features of Centauros. To Anti-Centauros the model does
not apply. One could hope that the decay cascade of Centauro leads at later stages to color glass
phases for ordinary hadrons producing surplus of neutral pions.

2. Restoration of electro-weak symmetry?
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The anomalous production of pions might relate to the restoration of electro-weak symmetry
in case of M89 hadrons. For M89 hadrons the restoration of the electro-weak symmetry would be
natural since in TGD framework classical induced gauge fields are massless for known non-vacuum
extremals below the p-adic length scale L(89) defining the fundamental electro-weak length scale.
The finite size of the space-time sheet carrying these fields brings in the length scale determining
the boson mass when the space-time sheet in question looks point like in the length scale resolution
used. The model of elementary particles as weak strings (Kähler magnetic flux tubes) suggests that
electroweak symmetry restoration takes place inside weak magnetic flux tubes and that one might
have Bose-Einstein condensate with negative and positive net charges in turn implying the abundance
of charged pions. One might argue argue that for particles topologically condensed to space-time
sheets with k > 89 M61 defines the weak scale so that weak interactions effectively disappear.

In zero energy ontology zero energy states are characterized by time-like entanglement coefficients
defining M -matrices in turn identifiable as the rows of the unitary U -matrix coding for physics in
TGD Universe. The superposition of zero energy states for which positive energy parts have varying
values of conserved charges (say electromagnetic charge) do not break conservation laws. Note that
also in super-conductors coherent states of Cooper pairs make sense in zero energy ontology without
breaking the conservation of fermion number. Therefore one can consider generation of coherent
states of pions with non-standard direction of isospin in the collisions of cosmic rays with the nuclei
of atmosphere. The TGD inspired model for leptohadrons [90] assumes that the coherent states of
leptopions consisting of pionlike bound states of colored excitations of leptons are created in the strong
non-orthogonal magnetic and electric fields of the colliding heavy nuclei or other charged particles.
Similar situation might be encountered in the collision of high energy cosmic rays with the nuclei of
the atmosphere.

Both Centauros and anti-Centauros ccould be understood if the transformation of M89 hadrons
to ordinary hadrons generates ”mis-aligned” pionic BE condensates. U(2)ew symmetry is restored for
M89 hadrons and there is no preferred isospin direction for the order parameter of M89 pionic BE
condensate. This BE condensate is however excluded by energetic considerations. The sequence of
phase transitions leading to M107 hadrons involving intermediate p-adic length scales could however
generate this kind of BE condensate.

If an overcooling occurs in the sense that electro-weak symmetry is not lost, the first intermediate
pion condensate can correspond to π+,π− or π0. Charged π condensates would be created in pairs
with opposite charges. In this kind of situation the number of gamma rays produced in the decay to
ordinary hadrons would vary from event to event.

The presence of pionic BE condensates favors the decay to M107 hadrons via hadronic intermediate
states rather than via the cooling of partonic phase condensed on single tangled string whose length
grows. This and the idea that U(2)ew symmetry could be exact for the dark matter phase, encourages
to consider also the possibility that M89 hadron decays to a state consisting of dark M107 hadrons
forming a BE condensate like state behaving like single coherent unit and interacting with the ordinary
matter only via emission of dark gauge boson BE condensates de-cohering to ordinary gauge bosons.

Dark pionic BE condensates with various charges could be present. These dark π condensates
would decay coherently to pairs of dark ew boson ”laser beams”, which can interact with the ordinary
matter only after they have de-cohered to ordinary ew gauge bosons and remain undetected if the
de-coherence time for dark bosons is long enough, probably not so. Dark hadron option could thus
explain also the abnormally long penetration lengths.

3. Is long range charge entanglement involved?

The variation for the number of pions could involve electromagnetic charge entanglement between
particles produced in the event and ordinary matter. This would guarantee strict charge conservation
when the quantization axis for weak isospin for the resulting hadrons differs from that for the ordinary
matter. The decay of the pion to gamma pair becomes possible only after the entanglement is reduced
and if de-coherence time is long enough it is possible to understand the variation.

17.5.5 Cosmic ray spectrum and exotic hadrons

The hierarchy of Mn hadron physics provides also a mechanism producing ultra high energy cosmic
gamma rays and hadrons.
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Do gamma rays dominate the spectrum at ultrahigh energies?

A possible piece of evidence forM89 hadrons is related to the analysis [46] of the cosmic ray composition
near 109 GeV . The analysis was based on the assumption that the spectrum consists of nuclei. The
assumptions and conclusions of the analysis can be criticized:

1. There is argument [52] , which states that the interaction of protons having energy above 109 GeV
with the cosmic microwave background implies pion pair creation and a rapid loss of proton
energy so that the contribution of protons should be strongly suppressed in the cosmic ray
spectrum above E = 7 · 1010 GeV . If protons dominate, cosmic ray spectrum should effectively
terminate at energy of order 7 · 1010 GeV : some events above E = 1011 GeV have been however
detected [65] .

2. It is not obvious whether one can distinguish between protons and gamma rays at these energies
since the muon content of the photon and proton showers are near to each other at these
energies [77] . Therefore the particles identified as protons might well be gamma rays.

3. The spectrum can be fitted assuming that cosmic ray spectrum has two components. Light
component (’protons’) can be identified as protons and He nuclei. The heavy component (’Fe’)
corresponds to Fe and heavier nuclei. The nuclei between He and Fe seem to be peculiarly
absent. Furthermore, there are also indications that spectrum contains only light nuclei in the
range 3 · 107 − 1011 GeV [57] .

An alternative interpretation suggested also in [77] is that cosmic ray flux is dominated by gamma
rays at these energies. ’Protons’ correspond to gamma rays interacting ordinarily with matter. ’Fe
nuclei’ correspond to the fraction of gamma rays decaying first into M89 exotic quark pair producing
corresponding exotic hadrons, which then decay to ordinary hadrons and produce showers resembling
ordinary heavy nucleus shower. Super-symplectic vision allows to consider the possibility that ’protons’
correspond to super-symplectic part of proton having essentially the same mass.

Hadronic component of the cosmic ray spectrum

The properties of the hadronic cosmic ray spectrum above 4 · 105 GeV are not well understood.

1. It has turned out difficult to invent acceleration mechanisms producing hadronic cosmic rays
having energies above 105 GeV [46] .

2. The spectrum contains a ’knee’ ( power E−2.7 changes to about E−3 at the knee), which is at
the energy 3 · 106 GeV [46] and equals to the mass of M61 pion. It is difficult to understand
how the knee is generated although several explanations have been proposed (these are reviewed
shortly in [46] ).

A possible solution of the problems is that part of the hadronic cosmic rays are generated in the
decay of string like objects rather than by some acceleration mechanism. Assume that Mnk hadron
is created in the decay cascade. Since Mnk+m

, m = 1, 2, .. hadrons can have rest masses above Mnk

threshold mass, one can consider the possibility that Mnk hadron decays sequentially to ordinary M107

hadron with arbitrary large rest mass (even larger than Mnk pion mass) and that this ordinary hadron
in turn produces some very energetic low mass hadrons, say proton and antiproton, identifiable as
cosmic rays. The most efficient producers of hadrons are Mnk pions since these are produced most
abundantly in the decay of Mnk+1

hadrons. Mnk pion at rest cannot however decay to ordinary
hadrons with energy above Mnk pion mass. Therefore the slope of the cosmic ray energy flux should
become steeper above Mnk , in particular M61, threshold.

The problem of relic quarks and hierarchy of QCD:s

Baryon and lepton numbers are conserved separately in TGD and one of the basic problems of the
gauge theories with conserved baryon number is the problem of relic quarks. Hadronization starts in
temperature of the order of quark mass and since hadronization is basically many quark process it
continues until the expansion rate of the Universe becomes larger than the rate of the hadronization.
As a consequence the number density of relic quarks is much larger than the upper bound nrelic <
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ρB/mq = 10−9nγmp/mq obtained from the requirement that the contribution of relic quarks to
mass density is smaller than the baryonic mass density. There is also an experimental upper bound
nrelic < 10−28nγ .

The assumption about the existence of QCD:s with a hierarchy of increasing scales ΛQCD(Mn)

implies that the length scale L(n) ∼ 1/
√

ΛQCD(Mn) below which quarks are free, decreases with
increasing cosmic temperature and therefore the problem of the relic quarks disappears.

17.5.6 Ultrahigh energy cosmic rays as super-symplectic quanta?

Near the end of year 2007 Pierre Auger Collaboration made a very important announcement relating
to ultrahigh energy cosmic rays. I glue below a popular summary of the findings [14] .

Scientists of the Pierre Auger Collaboration announced today (8 Nov. 2007) that active galactic
nuclei are the most likely candidate for the source of the highest-energy cosmic rays that hit Earth.
Using the Pierre Auger Observatory in Argentina, the largest cosmic-ray observatory in the world,
a team of scientists from 17 countries found that the sources of the highest-energy particles are not
distributed uniformly across the sky. Instead, the Auger results link the origins of these mysterious
particles to the locations of nearby galaxies that have active nuclei in their centers. The results appear
in the Nov. 9 issue of the journal Science.

Active Galactic Nuclei (AGN) are thought to be powered by supermassive black holes that are
devouring large amounts of matter. They have long been considered sites where high-energy particle
production might take place. They swallow gas, dust and other matter from their host galaxies and
spew out particles and energy. While most galaxies have black holes at their center, only a fraction
of all galaxies have an AGN. The exact mechanism of how AGNs can accelerate particles to energies
100 million times higher than the most powerful particle accelerator on Earth is still a mystery.

What has been found?

About million cosmic ray events have been recorded and 80 of them correspond to particles with
energy above the so called GKZ bound, which is .54 × 1011 GeV. Electromagnetically interacting
particles with these energies from distant galaxies should not be able to reach Earth. This would be
due to the scattering from the photons of the microwave background. About 20 particles of this kind
however comes from the direction of distant active galactic nuclei and the probability that this is an
accident is about 1 per cent. Particles having only strong interactions would be in question. The
problem is that this kind of particles are not predicted by the standard model (gluons are confined).

What does TGD say about the finding?

TGD provides an explanation for the new kind of particles.

1. The original TGD based model for the galactic nucleus is as a highly tangled cosmic string (in
TGD sense of course [25] . Much later it became clear that also TGD based model for black-hole
is as this kind of string like object near Hagedorn temperature [25] . Ultrahigh energy particles
could result as decay products of a decaying split cosmic string as an extremely energetic galactic
jet. Kind of cosmic fire cracker would be in question. Originally I proposed this decay as an
explanation for the gamma ray bursts. It seems that gamma ray bursts however come from
thickened cosmic strings having weaker magnetic field and much lower energy density [77] .

2. TGD predicts particles having only strong interactions [49] . I have christened these particles
super-symplectic quanta. These particles correspond to the vibrational degrees of freedom of
partonic 2-surface and are not visible at the quantum field theory limit for which partonic
2-surfaces become points.

What super-symplectic quanta are?

Super-symplectic quanta are created by the elements of super-symplectic algebra, which creates quan-
tum states besides the super Kac-Moody algebra present also in super string model. Both algebras
relate closely to the conformal invariance of light-like 3-surfaces.
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1. The elements of super-symplectic algebra are in one-one correspondence with the Hamiltonians
generating symplectic transformations of δM4

+ × CP2. Note that the 3-D light-cone boundary
is metrically 2-dimensional and possesses degenerate symplectic and Kähler structures so that
one can indeed speak about symplectic (canonical) transformations.

2. This algebra is the analog of Kac-Moody algebra with finite-dimensional Lie group replaced with
the infinite-dimensional group of symplectic transformations [21] . This should give an idea about
how gigantic a symmetry is in question. This is as it should be since these symmetries act as
the largest possible symmetry group for the Kähler geometry of the world of classical worlds
(WCW) consisting of light-like 3-surfaces in 8-D imbedding space for given values of zero modes
(labeling the spaces in the union of infinite-dimensional symmetric spaces). This implies that for
the given values of zero modes all points of WCW are metrically equivalent: a generalization of
the perfect cosmological principle making theory calculable and guaranteing that WCW metric
exists mathematically. Super-symplectic generators correspond to gamma matrices of WCW
and have the quantum numbers of right handed neutrino (no electro-weak interactions). Note
that a geometrization of fermionic statistics is achieved.

3. The Hamiltonians and super-Hamiltonians have only color and angular momentum quantum
numbers and no electro-weak quantum numbers so that electro-weak interactions are absent.
Super-symplectic quanta however interact strongly.

Also hadrons contain super-symplectic quanta

One can say that TGD based model for hadron is at space-time level kind of combination of QCD and
old fashioned string model forgotten when QCD came in fashion and then transformed to the highly
unsuccessful but equally fashionable theory of everything.

1. At quantum level the energy corresponding to string tension explaining about 70 per cent of
proton mass corresponds to super-symplectic quanta [58] . super-symplectic quanta allow to
understand hadron masses with a precision better than 1 per cent.

2. Super-symplectic degrees of freedom allow also to solve spin puzzle of the proton: the average
quark spin would be zero since same net angular momentum of hadron can be obtained by
coupling quarks of opposite spin with angular momentum eigen states with different projection
to the direction of quantization axis.

3. If one considers proton without valence quarks and gluons, one obtains a boson with mass very
nearly equal to that of proton (for proton super-symplectic binding energy compensates quark
masses with high precision). These kind of pseudo protons might be created in high energy
collisions when the space-time sheets carrying valence quarks and super-symplectic space-time
sheet separate from each other. Super-symplectic quanta might be produced in accelerators in
this manner and there is actually experimental support for this from Hera.

4. The exotic particles could correspond to some p-adic copy of hadron physics predicted by TGD
and have very large mass smaller however than the energy. Mersenne primes Mn = 2n−1 define
excellent candidates for these copies. Ordinary hadrons correspond to M107. The protons of M31

hadron physics would have the mass of proton scaled up by a factor 2(107−31)/2 = 238 ' 2.6×1011.
Energy should be above 2.6 × 1011 GeV and is above .54 × 1011 GeV for the particles above
the GKZ limit. Even super-symplectic quanta associated with proton of this kind could be in
question. Note that CP2 mass corresponds roughly to about 1014 proton masses.

5. Ideal blackholes would be very long highly tangled string like objects, scaled up hadrons, con-
taining only super-symplectic quanta. Hence it would not be surprising if they would emit super-
symplectic quanta. The transformation of supernovas to neutron stars and possibly blackholes
would involve the fusion of hadronic strings to longer strings and eventual annihilation and evap-
oration of the ordinary matter so that only super-symplectic matter would remain eventually. A
wide variety of intermediate states with different values of string tension would be possible and
the ultimate blackhole would correspond to highly tangled cosmic string. Dark matter would
be in question in the sense that Planck constant could be very large.
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Chapter 1

Appendix

A-1 Basic properties of CP2 and elementary facts about p-adic
numbers

A-1.1 CP2 as a manifold

CP2, the complex projective space of two complex dimensions, is obtained by identifying the points
of complex 3-space C3 under the projective equivalence

(z1, z2, z3) ≡ λ(z1, z2, z3) . (A-1.1)

Here λ is any non-zero complex number. Note that CP2 can be also regarded as the coset space
SU(3)/U(2). The pair zi/zj for fixed j and zi 6= 0 defines a complex coordinate chart for CP2. As
j runs from 1 to 3 one obtains an atlas of three oordinate charts covering CP2, the charts being
holomorphically related to each other (e.g. CP2 is a complex manifold). The points z3 6= 0 form a
subset of CP2 homoeomorphic to R4 and the points with z3 = 0 a set homeomorphic to S2. Therefore
CP2 is obtained by ”adding the 2-sphere at infinity to R4”.

Besides the standard complex coordinates ξi = zi/z3 , i = 1, 2 the coordinates of Eguchi and
Freund [128] will be used and their relation to the complex coordinates is given by

ξ1 = z + it ,

ξ2 = x+ iy . (A-1.2)

These are related to the ”spherical coordinates” via the equations

ξ1 = rexp(i
(Ψ + Φ)

2
)cos(

Θ

2
) ,

ξ2 = rexp(i
(Ψ− Φ)

2
)sin(

Θ

2
) . (A-1.3)

The ranges of the variables r,Θ,Φ,Ψ are [0,∞], [0, π], [0, 4π], [0, 2π] respectively.
Considered as a real four-manifold CP2 is compact and simply connected, with Euler number Euler

number 3, Pontryagin number 3 and second b = 1.

A-1.2 Metric and Kähler structure of CP2

In order to obtain a natural metric for CP2, observe that CP2 can be thought of as a set of the orbits
of the isometries zi → exp(iα)zi on the sphere S5:

∑
ziz̄i = R2. The metric of CP2 is obtained

by projecting the metric of S5 orthogonally to the orbits of the isometries. Therefore the distance
between the points of CP2 is that between the representative orbits on S5.

The line element has the following form in the complex coordinates
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ds2 = gab̄dξ
adξ̄b , (A-1.4)

where the Hermitian, in fact Kähler metric gab̄ is defined by

gab̄ = R2∂a∂b̄K , (A-1.5)

where the function K, Kähler function, is defined as

K = log(F ) ,

F = 1 + r2 . (A-1.6)

The Kähler function for S2 has the same form. It gives the S2 metric dzdz/(1 + r2)2 related to its
standard form in spherical coordinates by the coordinate transformation (r, φ) = (tan(θ/2), φ).

The representation of the CP2 metric is deducible from S5 metric is obtained by putting the angle
coordinate of a geodesic sphere constant in it and is given

ds2

R2
=

(dr2 + r2σ2
3)

F 2
+
r2(σ2

1 + σ2
2)

F
, (A-1.7)

where the quantities σi are defined as

r2σ1 = Im(ξ1dξ2 − ξ2dξ1) ,

r2σ2 = −Re(ξ1dξ2 − ξ2dξ1) ,

r2σ3 = −Im(ξ1dξ̄1 + ξ2dξ̄2) . (A-1.8)

R denotes the radius of the geodesic circle of CP2. The vierbein forms, which satisfy the defining
relation

skl = R2
∑
A

eAk e
A
l , (A-1.9)

are given by

e0 = dr
F , e1 = rσ1√

F
,

e2 = rσ2√
F

, e3 = rσ3

F .
(A-1.10)

The explicit representations of vierbein vectors are given by

e0 = dr
F , e1 = r(sinΘcosΨdΦ+sinΨdΘ)

2
√
F

,

e2 = r(sinΘsinΨdΦ−cosΨdΘ)

2
√
F

, e3 = r(dΨ+cosΘdΦ)
2F .

(A-1.11)

The explicit representation of the line element is given by the expression

ds2/R2 =
dr2

F 2
+

r2

4F 2
(dΨ + cosΘdΦ)2 +

r2

4F
(dΘ2 + sin2ΘdΦ2) .

(A-1.12)

The vierbein connection satisfying the defining relation
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deA = −V AB ∧ eB , (A-1.13)

is given by

V01 = − e
1

r , V23 = e1

r ,

V02 = − e
2

r , V31 = e2

r ,
V03 = (r − 1

r )e3 , V12 = (2r + 1
r )e3 .

(A-1.14)

The representation of the covariantly constant curvature tensor is given by

R01 = e0 ∧ e1 − e2 ∧ e3 , R23 = e0 ∧ e1 − e2 ∧ e3 ,
R02 = e0 ∧ e2 − e3 ∧ e1 , R31 = −e0 ∧ e2 + e3 ∧ e1 ,
R03 = 4e0 ∧ e3 + 2e1 ∧ e2 , R12 = 2e0 ∧ e3 + 4e1 ∧ e2 .

(A-1.15)

Metric defines a real, covariantly constant, and therefore closed 2-form J

J = −igab̄dξadξ̄b , (A-1.16)

the so called Kähler form. Kähler form J defines in CP2 a symplectic structure because it satisfies
the condition

JkrJ
rl = −skl . (A-1.17)

The form J is integer valued and by its covariant constancy satisfies free Maxwell equations. Hence it
can be regarded as a curvature form of a U(1) gauge potential B carrying a magnetic charge of unit
1/2g (g denotes the gauge coupling). Locally one has therefore

J = dB , (A-1.18)

where B is the so called Kähler potential, which is not defined globally since J describes homological
magnetic monopole.

It should be noticed that the magnetic flux of J through a 2-surface in CP2 is proportional to its
homology equivalence class, which is integer valued. The explicit representations of J and B are given
by

B = 2re3 ,

J = 2(e0 ∧ e3 + e1 ∧ e2) =
r

F 2
dr ∧ (dΨ + cosΘdΦ) +

r2

2F
sinΘdΘdΦ .

(A-1.19)

The vierbein curvature form and Kähler form are covariantly constant and have in the complex
coordinates only components of type (1,1).

Useful coordinates for CP2 are the so called canonical coordinates in which Kähler potential and
Kähler form have very simple expressions

B =
∑
k=1,2

PkdQk ,

J =
∑
k=1,2

dPk ∧ dQk . (A-1.20)

The relationship of the canonical coordinates to the ”spherical” coordinates is given by the equations
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P1 = − 1

1 + r2
,

P2 =
r2cosΘ

2(1 + r2)
,

Q1 = Ψ ,

Q2 = Φ . (A-1.21)

A-1.3 Spinors in CP2

CP2 doesn’t allow spinor structure in the conventional sense [111] . However, the coupling of the
spinors to a half odd multiple of the Kähler potential leads to a respectable spinor structure. Because
the delicacies associated with the spinor structure of CP2 play a fundamental role in TGD, the
arguments of Hawking are repeated here.

To see how the space can fail to have an ordinary spinor structure consider the parallel transport
of the vierbein in a simply connected space M . The parallel propagation around a closed curve with
a base point x leads to a rotated vierbein at x: eA = RABe

B and one can associate to each closed path
an element of SO(4).

Consider now a one-parameter family of closed curves γ(v) : v ∈ (0, 1) with the same base point x
and γ(0) and γ(1) trivial paths. Clearly these paths define a sphere S2 in M and the element RAB(v)
defines a closed path in SO(4). When the sphere S2 is contractible to a point e.g., homologically
trivial, the path in SO(4) is also contractible to a point and therefore represents a trivial element of
the homotopy group Π1(SO(4)) = Z2.

For a homologically nontrivial 2-surface S2 the associated path in SO(4) can be homotopically
nontrivial and therefore corresponds to a nonclosed path in the covering group Spin(4) (leading from
the matrix 1 to -1 in the matrix representation). Assume this is the case.

Assume now that the space allows spinor structure. Then one can parallel propagate also spinors
and by the above construction associate a closed path of Spin(4) to the surface S2. Now, however this
path corresponds to a lift of the corresponding SO(4) path and cannot be closed. Thus one ends up
with a contradiction.

From the preceding argument it is clear that one could compensate the non-allowed −1- factor
associated with the parallel transport of the spinor around the sphere S2 by coupling it to a gauge
potential in such a way that in the parallel transport the gauge potential introduces a compensating
−1-factor. For a U(1) gauge potential this factor is given by the exponential exp(i2Φ) , where Φ
is the magnetic flux through the surface. This factor has the value −1 provided the U(1) potential
carries half odd multiple of Dirac charge 1/2g. In case of CP2 the required gauge potential is half odd
multiple of the Kähler potential B defined previously. In the case of M4 × CP2 one can in addition
couple the spinor components with different chiralities independently to an odd multiple of B/2.

A-1.4 Geodesic sub-manifolds of CP2

Geodesic sub-manifolds are defined as sub-manifolds having common geodesic lines with the imbedding
space. As a consequence the second fundamental form of the geodesic manifold vanishes, which means
that the tangent vectors hkα (understood as vectors of H) are covariantly constant quantities with
respect to the covariant derivative taking into account that the tangent vectors are vectors both with
respect to H and X4.

In [93] a general characterization of the geodesic sub-manifolds for an arbitrary symmetric space
G/H is given. Geodesic sub-manifolds are in 1-1-correspondence with the so called Lie triple systems
of the Lie-algebra g of the group G. The Lie triple system t is defined as a subspace of g characterized
by the closedness property with respect to double commutation

[X, [Y,Z]] ∈ t for X,Y, Z ∈ t . (A-1.22)

SU(3) allows, besides geodesic lines, two nonequivalent (not isometry related) geodesic spheres. This
is understood by observing that SU(3) allows two nonequivalent SU(2) algebras corresponding to
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subgroups SO(3) (orthogonal 3 × 3 matrices) and the usual isospin group SU(2). By taking any
subset of two generators from these algebras, one obtains a Lie triple system and by exponentiating
this system, one obtains a 2-dimensional geodesic sub-manifold of CP2.

Standard representatives for the geodesic spheres of CP2 are given by the equations

S2
I : ξ1 = ξ̄2 or equivalently (Θ = π/2,Ψ = 0) ,

S2
II : ξ1 = ξ2 or equivalently (Θ = π/2,Φ = 0) .

The non-equivalence of these sub-manifolds is clear from the fact that isometries act as holomorphic
transformations in CP2. The vanishing of the second fundamental form is also easy to verify. The
first geodesic manifold is homologically trivial: in fact, the induced Kähler form vanishes identically
for S2

I . S2
II is homologically nontrivial and the flux of the Kähler form gives its homology equivalence

class.

A-2 CP2 geometry and standard model symmetries

A-2.1 Identification of the electro-weak couplings

The delicacies of the spinor structure of CP2 make it a unique candidate for space S. First, the coupling
of the spinors to the U(1) gauge potential defined by the Kähler structure provides the missing U(1)
factor in the gauge group. Secondly, it is possible to couple different H-chiralities independently to
a half odd multiple of the Kähler potential. Thus the hopes of obtaining a correct spectrum for the
electromagnetic charge are considerable. In the following it will be demonstrated that the couplings
of the induced spinor connection are indeed those of the GWS model [37] and in particular that the
right handed neutrinos decouple completely from the electro-weak interactions.

To begin with, recall that the space H allows to define three different chiralities for spinors. Spinors
with fixed H-chirality e = ±1, CP2-chirality l, r and M4-chirality L,R are defined by the condition

ΓΨ = eΨ ,

e = ±1 , (A-2.1)

where Γ denotes the matrix Γ9 = γ5×γ5, 1×γ5 and γ5×1 respectively. Clearly, for a fixed H-chirality
CP2- and M4-chiralities are correlated.

The spinors with H-chirality e = ±1 can be identified as quark and lepton like spinors respectively.
The separate conservation of baryon and lepton numbers can be understood as a consequence of
generalized chiral invariance if this identification is accepted. For the spinors with a definiteH-chirality
one can identify the vielbein group of CP2 as the electro-weak group: SO(4) = SU(2)L × SU(2)R.

The covariant derivatives are defined by the spinorial connection

A = V +
B

2
(n+1+ + n−1−) . (A-2.2)

Here V and B denote the projections of the vielbein and Kähler gauge potentials respectively and
1+(−) projects to the spinor H-chirality +(−). The integers n± are odd from the requirement of a
respectable spinor structure.

The explicit representation of the vielbein connection V and of B are given by the equations

V01 = − e
1

r , V23 = e1

r ,

V02 = − e
2

r , V31 = e2

r ,
V03 = (r − 1

r )e3 , V12 = (2r + 1
r )e3 ,

(A-2.3)

and

B = 2re3 , (A-2.4)
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respectively. The explicit representation of the vielbein is not needed here.
Let us first show that the charged part of the spinor connection couples purely left handedly.

Identifying Σ0
3 and Σ1

2 as the diagonal (neutral) Lie-algebra generators of SO(4), one finds that the
charged part of the spinor connection is given by

Ach = 2V23I
1
L + 2V13I

2
L , (A-2.5)

where one have defined

I1
L =

(Σ01 − Σ23)

2
,

I2
L =

(Σ02 − Σ13)

2
. (A-2.6)

Ach is clearly left handed so that one can perform the identification

W± =
2(e1 ± ie2)

r
, (A-2.7)

where W± denotes the charged intermediate vector boson.
Consider next the identification of the neutral gauge bosons γ and Z0 as appropriate linear com-

binations of the two functionally independent quantities

X = re3 ,

Y =
e3

r
, (A-2.8)

appearing in the neutral part of the spinor connection. We show first that the mere requirement that
photon couples vectorially implies the basic coupling structure of the GWS model leaving only the
value of Weinberg angle undetermined.

To begin with let us define

γ̄ = aX + bY ,

Z̄0 = cX + dY , (A-2.9)

where the normalization condition
ad− bc = 1 ,

is satisfied. The physical fields γ and Z0 are related to γ̄ and Z̄0 by simple normalization factors.
Expressing the neutral part of the spinor connection in term of these fields one obtains

Anc = [(c+ d)2Σ03 + (2d− c)2Σ12 + d(n+1+ + n−1−)]γ̄

+ [(a− b)2Σ03 + (a− 2b)2Σ12 − b(n+1+ + n−1−)]Z̄0 .

(A-2.10)

Identifying Σ12 and Σ03 = 1 × γ5Σ12 as vectorial and axial Lie-algebra generators, respectively, the
requirement that γ couples vectorially leads to the condition

c = −d . (A-2.11)

Using this result plus previous equations, one obtains for the neutral part of the connection the
expression
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Anc = γQem + Z0(I3
L − sin2θWQem) . (A-2.12)

Here the electromagnetic charge Qem and the weak isospin are defined by

Qem = Σ12 +
(n+1+ + n−1−)

6
,

I3
L =

(Σ12 − Σ03)

2
. (A-2.13)

The fields γ and Z0 are defined via the relations

γ = 6dγ̄ =
6

(a+ b)
(aX + bY ) ,

Z0 = 4(a+ b)Z̄0 = 4(X − Y ) . (A-2.14)

The value of the Weinberg angle is given by

sin2θW =
3b

2(a+ b)
, (A-2.15)

and is not fixed completely. Observe that right handed neutrinos decouple completely from the
electro-weak interactions.

The determination of the value of Weinberg angle is a dynamical problem. The angle is completely
fixed once the YM action is fixed by requiring that action contains no cross term of type γZ0. Pure
symmetry non-broken electro-weak YM action leads to a definite value for the Weinberg angle. One
can however add a symmetry breaking term proportional to Kähler action and this changes the value
of the Weinberg angle.

To evaluate the value of the Weinberg angle one can express the neutral part Fnc of the induced
gauge field as

Fnc = 2R03Σ03 + 2R12Σ12 + J(n+1+ + n−1−) , (A-2.16)

where one has

R03 = 2(2e0 ∧ e3 + e1 ∧ e2) ,

R12 = 2(e0 ∧ e3 + 2e1 ∧ e2) ,

J = 2(e0 ∧ e3 + e1 ∧ e2) , (A-2.17)

in terms of the fields γ and Z0 (photon and Z- boson)

Fnc = γQem + Z0(I3
L − sin2θWQem) . (A-2.18)

Evaluating the expressions above one obtains for γ and Z0 the expressions

γ = 3J − sin2θWR03 ,

Z0 = 2R03 . (A-2.19)

For the Kähler field one obtains

J =
1

3
(γ + sin2θWZ

0) . (A-2.20)
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Expressing the neutral part of the symmetry broken YM action

Lew = Lsym + fJαβJαβ ,

Lsym =
1

4g2
Tr(FαβFαβ) , (A-2.21)

where the trace is taken in spinor representation, in terms of γ and Z0 one obtains for the coefficient
X of the γZ0 cross term (this coefficient must vanish) the expression

X = − K

2g2
+
fp

18
,

K = Tr
[
Qem(I3

L − sin2θWQem)
]
, (A-2.22)

In the general case the value of the coefficient K is given by

K =
∑
i

[
− (18 + 2n2

i )sin
2θW

9

]
, (A-2.23)

where the sum is over the spinor chiralities, which appear as elementary fermions and ni is the integer
describing the coupling of the spinor field to the Kähler potential. The cross term vanishes provided
the value of the Weinberg angle is given by

sin2θW =
9
∑
i 1

(fg2 + 2
∑
i(18 + n2

i ))
. (A-2.24)

In the scenario where both leptons and quarks are elementary fermions the value of the Weinberg
angle is given by

sin2θW =
9

( fg
2

2 + 28)
. (A-2.25)

The bare value of the Weinberg angle is 9/28 in this scenario, which is quite close to the typical value
9/24 of GUTs [84] .

A-2.2 Discrete symmetries

The treatment of discrete symmetries C, P, and T is based on the following requirements:
a) Symmetries must be realized as purely geometric transformations.
b) Transformation properties of the field variables should be essentially the same as in the conventional
quantum field theories [14] .

The action of the reflection P on spinors of is given by

Ψ → PΨ = γ0 ⊗ γ0Ψ . (A-2.26)

in the representation of the gamma matrices for which γ0 is diagonal. It should be noticed that W
and Z0 bosons break parity symmetry as they should since their charge matrices do not commute
with the matrix of P.

The guess that a complex conjugation in CP2 is associated with T transformation of the physicist
turns out to be correct. One can verify by a direct calculation that pure Dirac action is invariant
under T realized according to

mk → T (Mk) ,

ξk → ξ̄k ,

Ψ → γ1γ3 ⊗ 1Ψ . (A-2.27)
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The operation bearing closest resemblance to the ordinary charge conjugation corresponds geo-
metrically to complex conjugation in CP2:

ξk → ξ̄k ,

Ψ → Ψ†γ2γ0 ⊗ 1 . (A-2.28)

As one might have expected symmetries CP and T are exact symmetries of the pure Dirac action.

A-3 Basic facts about induced gauge fields

Since the classical gauge fields are closely related in TGD framework, it is not possible to have space-
time sheets carrying only single kind of gauge field. For instance, em fields are accompanied by Z0 fields
for extremals of Kähler action. Weak forces is however absent unless the space-time sheets contains
topologically condensed exotic weakly charged particles responding to this force. Same applies to
classical color forces. The fact that these long range fields are present forces to assume that there
exists a hierarchy of scaled up variants of standard model physics identifiable in terms of dark matter.

Classical em fields are always accompanied by Z0 field and some components of color gauge field.
For extremals having homologically non-trivial sphere as a CP2 projection em and Z0 fields are the
only non-vanishing electroweak gauge fields. For homologically trivial sphere only W fields are non-
vanishing. Color rotations does not affect the situation.

For vacuum extremals all electro-weak gauge fields are in general non-vanishing although the net
gauge field has U(1) holonomy by 2-dimensionality of the CP2 projection. Color gauge field has U(1)
holonomy for all space-time surfaces and quantum classical correspondence suggest a weak form of color
confinement meaning that physical states correspond to color neutral members of color multiplets.

A-3.1 Induced gauge fields for space-times for which CP2 projection is a
geodesic sphere

If one requires that space-time surface is an extremal of Kähler action and has a 2-dimensional CP2

projection, only vacuum extremals and space-time surfaces for which CP2 projection is a geodesic
sphere, are allowed. Homologically non-trivial geodesic sphere correspond to vanishing W fields and
homologically non-trivial sphere to non-vanishing W fields but vanishing γ and Z0. This can be
verified by explicit examples.

r =∞ surface gives rise to a homologically non-trivial geodesic sphere for which e0 and e3 vanish
imply the vanishing of W field. For space-time sheets for which CP2 projection is r =∞ homologically
non-trivial geodesic sphere of CP2 one has

γ = (
3

4
− sin2(θW )

2
)Z0 ' 5Z0

8
.

The induced W fields vanish in this case and they vanish also for all geodesic sphere obtained by
SU(3) rotation.

Im(ξ1) = Im(ξ2) = 0 corresponds to homologically trivial geodesic sphere. A more general
representative is obtained by using for the phase angles of standard complex CP2 coordinates constant
values. In this case e1 and e3 vanish so that the induced em, Z0, and Kähler fields vanish but induced
W fields are non-vanishing. This holds also for surfaces obtained by color rotation. Hence one can
say that for non-vacuum extremals with 2-D CP2 projection color rotations and weak symmetries
commute.

A-3.2 Space-time surfaces with vanishing em, Z0, or Kähler fields

In the following the induced gauge fields are studied for general space-time surface without assuming
the extremal property. In fact, extremal property reduces the study to the study of vacuum extremals
and surfaces having geodesic sphere as a CP2 projection and in this sense the following arguments are
somewhat obsolete in their generality.
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Space-times with vanishing em, Z0, or Kähler fields

The following considerations apply to a more general situation in which the homologically trivial
geodesic sphere and extremal property are not assumed. It must be emphasized that this case is
possible in TGD framework only for a vanishing Kähler field.

Using spherical coordinates (r,Θ,Ψ,Φ) for CP2, the expression of Kähler form reads as

J =
r

F 2
dr ∧ (dΨ + cos(Θ)dΦ) +

r2

2F
sin(Θ)dΘ ∧ dΦ ,

F = 1 + r2 . (A-3.1)

The general expression of electromagnetic field reads as

Fem = (3 + 2p)
r

F 2
dr ∧ (dΨ + cos(Θ)dΦ) + (3 + p)

r2

2F
sin(Θ)dΘ ∧ dΦ ,

p = sin2(ΘW ) , (A-3.2)

where ΘW denotes Weinberg angle.
a) The vanishing of the electromagnetic fields is guaranteed, when the conditions

Ψ = kΦ ,

(3 + 2p)
1

r2F
(d(r2)/dΘ)(k + cos(Θ)) + (3 + p)sin(Θ) = 0 , (A-3.3)

hold true. The conditions imply that CP2 projection of the electromagnetically neutral space-time is
2-dimensional. Solving the differential equation one obtains

r =

√
X

1−X
,

X = D

[
| (k + u

C
|
]ε

,

u ≡ cos(Θ) , C = k + cos(Θ0) , D =
r2
0

1 + r2
0

, ε =
3 + p

3 + 2p
, (A-3.4)

where C and D are integration constants. 0 ≤ X ≤ 1 is required by the reality of r. r = 0
would correspond to X = 0 giving u = −k achieved only for |k| ≤ 1 and r = ∞ to X = 1 giving
|u+ k| = [(1 + r2

0)/r2
0)](3+2p)/(3+p) achieved only for

sign(u+ k)× [
1 + r2

0

r2
0

]
3+2p
3+p ≤ k + 1 ,

where sign(x) denotes the sign of x.
The expressions for Kähler form and Z0 field are given by

J = − p

3 + 2p
Xdu ∧ dΦ ,

Z0 = −6

p
J . (A-3.5)

The components of the electromagnetic field generated by varying vacuum parameters are proportional
to the components of the Kähler field: in particular, the magnetic field is parallel to the Kähler
magnetic field. The generation of a long range Z0 vacuum field is a purely TGD based feature not
encountered in the standard gauge theories.

b) The vanishing of Z0 fields is achieved by the replacement of the parameter ε with ε = 1/2
as becomes clear by considering the condition stating that Z0 field vanishes identically. Also the

relationship Fem = 3J = − 3
4
r2

F du ∧ dΦ is useful.
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c) The vanishing Kähler field corresponds to ε = 1, p = 0 in the formula for em neutral space-times.
In this case classical em and Z0 fields are proportional to each other:

Z0 = 2e0 ∧ e3 =
r

F 2
(k + u)

∂r

∂u
du ∧ dΦ = (k + u)du ∧ dΦ ,

r =

√
X

1−X
, X = D|k + u| ,

γ = −p
2
Z0 . (A-3.6)

For a vanishing value of Weinberg angle (p = 0) em field vanishes and only Z0 field remains as a
long range gauge field. Vacuum extremals for which long range Z0 field vanishes but em field is
non-vanishing are not possible.

The effective form of CP2 metric for surfaces with 2-dimensional CP2 projection

The effective form of the CP2 metric for a space-time having vanishing em,Z0, or Kähler field is of
practical value in the case of vacuum extremals and is given by

ds2
eff = (srr(

dr

dΘ
)2 + sΘΘ)dΘ2 + (sΦΦ + 2ksΦΨ)dΦ2 =

R2

4
[seffΘΘdΘ2 + seffΦΦ dΦ2] ,

seffΘΘ = X ×
[
ε2(1− u2)

(k + u)2
× 1

1−X
+ 1−X

]
,

seffΦΦ = X ×
[
(1−X)(k + u)2 + 1− u2

]
, (A-3.7)

and is useful in the construction of vacuum imbedding of, say Schwartchild metric.

Topological quantum numbers

Space-times for which either em, Z0, or Kähler field vanishes decompose into regions characterized by
six vacuum parameters: two of these quantum numbers (ω1 and ω2) are frequency type parameters,
two (k1 and k2 ) are wave vector like quantum numbers, two of the quantum numbers (n1 and n2)
are integers. The parameters ωi and ni will be referred as electric and magnetic quantum numbers.
The existence of these quantum numbers is not a feature of these solutions alone but represents a
much more general phenomenon differentiating in a clear cut manner between TGD and Maxwell’s
electrodynamics.

The simplest manner to avoid surface Kähler charges and discontinuities or infinities in the deriva-
tives of CP2 coordinates on the common boundary of two neighboring regions with different vacuum
quantum numbers is topological field quantization, 3-space decomposes into disjoint topological field
quanta, 3-surfaces having outer boundaries with possibly macroscopic size.

Under rather general conditions the coordinates Ψ and Φ can be written in the form

Ψ = ω2m
0 + k2m

3 + n2φ+ Fourier expansion ,

Φ = ω1m
0 + k1m

3 + n1φ+ Fourier expansion . (A-3.8)

m0,m3 and φ denote the coordinate variables of the cylindrical M4 coordinates) so that one has
k = ω2/ω1 = n2/n1 = k2/k1. The regions of the space-time surface with given values of the vacuum
parameters ωi,ki and ni and m and C are bounded by the surfaces at which space-time surface becomes
ill-defined, say by r > 0 or r <∞ surfaces.

The space-time surface decomposes into regions characterized by different values of the vacuum
parameters r0 and Θ0. At r =∞ surfaces n2,ω2 and m can change since all values of Ψ correspond to
the same point of CP2: at r = 0 surfaces also n1 and ω1 can change since all values of Φ correspond
to same point of CP2, too. If r = 0 or r =∞ is not in the allowed range space-time surface develops
a boundary.

This implies what might be called topological quantization since in general it is not possible to
find a smooth global imbedding for, say a constant magnetic field. Although global imbedding exists
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it decomposes into regions with different values of the vacuum parameters and the coordinate u in
general possesses discontinuous derivative at r = 0 and r = ∞ surfaces. A possible manner to avoid
edges of space-time is to allow field quantization so that 3-space (and field) decomposes into disjoint
quanta, which can be regarded as structurally stable units a 3-space (and of the gauge field). This
doesn’t exclude partial join along boundaries for neighboring field quanta provided some additional
conditions guaranteing the absence of edges are satisfied.

For instance, the vanishing of the electromagnetic fields implies that the condition

Ω ≡ ω2

n2
− ω1

n1
= 0 , (A-3.9)

is satisfied. In particular, the ratio ω2/ω1 is rational number for the electromagnetically neutral
regions of space-time surface. The change of the parameter n1 and n2 (ω1 and ω2) in general generates
magnetic field and therefore these integers will be referred to as magnetic (electric) quantum numbers.

A-4 p-Adic numbers and TGD

A-4.1 p-Adic number fields

p-Adic numbers (p is prime: 2,3,5,...) can be regarded as a completion of the rational numbers using
a norm, which is different from the ordinary norm of real numbers [56] . p-Adic numbers are repre-
sentable as power expansion of the prime number p of form:

x =
∑
k≥k0

x(k)pk, x(k) = 0, ...., p− 1 . (A-4.1)

The norm of a p-adic number is given by

|x| = p−k0(x) . (A-4.2)

Here k0(x) is the lowest power in the expansion of the p-adic number. The norm differs drastically
from the norm of the ordinary real numbers since it depends on the lowest pinary digit of the p-adic
number only. Arbitrarily high powers in the expansion are possible since the norm of the p-adic
number is finite also for numbers, which are infinite with respect to the ordinary norm. A convenient
representation for p-adic numbers is in the form

x = pk0ε(x) , (A-4.3)

where ε(x) = k + .... with 0 < k < p, is p-adic number with unit norm and analogous to the phase
factor exp(iφ) of a complex number.

The distance function d(x, y) = |x − y|p defined by the p-adic norm possesses a very general
property called ultra-metricity:

d(x, z) ≤ max{d(x, y), d(y, z)} . (A-4.4)

The properties of the distance function make it possible to decompose Rp into a union of disjoint sets
using the criterion that x and y belong to same class if the distance between x and y satisfies the
condition

d(x, y) ≤ D . (A-4.5)

This division of the metric space into classes has following properties:
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a) Distances between the members of two different classes X and Y do not depend on the choice
of points x and y inside classes. One can therefore speak about distance function between classes.

b) Distances of points x and y inside single class are smaller than distances between different
classes.

c) Classes form a hierarchical tree.

Notice that the concept of the ultra-metricity emerged in physics from the models for spin glasses
and is believed to have also applications in biology [63] . The emergence of p-adic topology as the
topology of the effective space-time would make ultra-metricity property basic feature of physics.

A-4.2 Canonical correspondence between p-adic and real numbers

The basic challenge encountered by p-adic physicist is how to map the predictions of the p-adic
physics to real numbers. p-Adic probabilities provide a basic example in this respect. Identification
via common rationals and canonical identification and its variants have turned out to play a key role
in this respect.

Basic form of canonical identification

There exists a natural continuous map I : Rp → R+ from p-adic numbers to non-negative real numbers
given by the ”pinary” expansion of the real number for x ∈ R and y ∈ Rp this correspondence reads

y =
∑
k>N

ykp
k → x =

∑
k<N

ykp
−k ,

yk ∈ {0, 1, .., p− 1} . (A-4.6)

This map is continuous as one easily finds out. There is however a little difficulty associated with
the definition of the inverse map since the pinary expansion like also decimal expansion is not unique
(1 = 0.999...) for the real numbers x, which allow pinary expansion with finite number of pinary digits

x =

N∑
k=N0

xkp
−k ,

x =

N−1∑
k=N0

xkp
−k + (xN − 1)p−N + (p− 1)p−N−1

∑
k=0,..

p−k .

(A-4.7)

The p-adic images associated with these expansions are different

y1 =

N∑
k=N0

xkp
k ,

y2 =

N−1∑
k=N0

xkp
k + (xN − 1)pN + (p− 1)pN+1

∑
k=0,..

pk

= y1 + (xN − 1)pN − pN+1 , (A-4.8)

so that the inverse map is either two-valued for p-adic numbers having expansion with finite pinary
digits or single valued and discontinuous and non-surjective if one makes pinary expansion unique by
choosing the one with finite pinary digits. The finite pinary digit expansion is a natural choice since
in the numerical work one always must use a pinary cutoff on the real axis.
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The topology induced by canonical identification

The topology induced by the canonical identification in the set of positive real numbers differs from
the ordinary topology. The difference is easily understood by interpreting the p-adic norm as a norm
in the set of the real numbers. The norm is constant in each interval [pk, pk+1) (see Fig. A-4.2) and is
equal to the usual real norm at the points x = pk: the usual linear norm is replaced with a piecewise
constant norm. This means that p-adic topology is coarser than the usual real topology and the higher
the value of p is, the coarser the resulting topology is above a given length scale. This hierarchical
ordering of the p-adic topologies will be a central feature as far as the proposed applications of the
p-adic numbers are considered.

Ordinary continuity implies p-adic continuity since the norm induced from the p-adic topology is
rougher than the ordinary norm. p-Adic continuity implies ordinary continuity from right as is clear
already from the properties of the p-adic norm (the graph of the norm is indeed continuous from
right). This feature is one clear signature of the p-adic topology.

Figure 1: The real norm induced by canonical identification from 2-adic norm.

The linear structure of the p-adic numbers induces a corresponding structure in the set of the non-
negative real numbers and p-adic linearity in general differs from the ordinary concept of linearity.
For example, p-adic sum is equal to real sum only provided the summands have no common pinary
digits. Furthermore, the condition x +p y < max{x, y} holds in general for the p-adic sum of the
real numbers. p-Adic multiplication is equivalent with the ordinary multiplication only provided that
either of the members of the product is power of p. Moreover one has x×p y < x× y in general. The
p-Adic negative −1p associated with p-adic unit 1 is given by (−1)p =

∑
k(p−1)pk and defines p-adic

negative for each real number x. An interesting possibility is that p-adic linearity might replace the
ordinary linearity in some strongly nonlinear systems so these systems would look simple in the p-adic
topology.

These results suggest that canonical identification is involved with some deeper mathematical
structure. The following inequalities hold true:

(x+ y)R ≤ xR + yR ,

|x|p|y|R ≤ (xy)R ≤ xRyR , (A-4.9)

where |x|p denotes p-adic norm. These inequalities can be generalized to the case of (Rp)
n (a linear

vector space over the p-adic numbers).

(x+ y)R ≤ xR + yR ,

|λ|p|y|R ≤ (λy)R ≤ λRyR , (A-4.10)

where the norm of the vector x ∈ Tnp is defined in some manner. The case of Euclidian space suggests
the definition
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(xR)2 = (
∑
n

x2
n)R . (A-4.11)

These inequalities resemble those satisfied by the vector norm. The only difference is the failure of
linearity in the sense that the norm of a scaled vector is not obtained by scaling the norm of the
original vector. Ordinary situation prevails only if the scaling corresponds to a power of p.

These observations suggests that the concept of a normed space or Banach space might have a
generalization and physically the generalization might apply to the description of some non-linear
systems. The nonlinearity would be concentrated in the nonlinear behavior of the norm under scaling.

Modified form of the canonical identification

The original form of the canonical identification is continuous but does not respect symmetries even
approximately. This led to a search of variants which would do better in this respect. The modification
of the canonical identification applying to rationals only and given by

IQ(q = pk × r

s
) = pk × I(r)

I(s)
(A-4.12)

is uniquely defined for rationals, maps rationals to rationals, has also a symmetry under exchange
of target and domain. This map reduces to a direct identification of rationals for 0 ≤ r < p and
0 ≤ s < p. It has turned out that it is this map which most naturally appears in the applications.
The map is obviously continuous locally since p-adically small modifications of r and s mean small
modifications of the real counterparts.

Canonical identification is in a key role in the successful predictions of the elementary particle
masses. The predictions for the light elementary particle masses are within extreme accuracy same
for I and IQ but IQ is theoretically preferred since the real probabilities obtained from p-adic ones by
IQ sum up to one in p-adic thermodynamics.

Generalization of number concept and notion of imbedding space

TGD forces an extension of number concept: roughly a fusion of reals and various p-adic number fields
along common rationals is in question. This induces a similar fusion of real and p-adic imbedding
spaces. Since finite p-adic numbers correspond always to non-negative reals n-dimensional space Rn

must be covered by 2n copies of the p-adic variant Rnp of Rn each of which projects to a copy of Rn+
(four quadrants in the case of plane). The common points of p-adic and real imbedding spaces are
rational points and most p-adic points are at real infinity.

For a given p-adic space-time sheet most points are literally infinite as real points and the projection
to the real imbedding space consists of a discrete set of rational points: the interpretation in terms
of the unavoidable discreteness of the physical representations of cognition is natural. Purely local
p-adic physics implies real p-adic fractality and thus long range correlations for the real space-time
surfaces having enough common points with this projection.

p-Adic fractality means that M4 projections for the rational points of space-time surface X4 are
related by a direct identification whereas CP2 coordinates of X4 at these points are related by I, IQ
or some of its variants implying long range correlates for CP2 coordinates. Since only a discrete set
of points are related in this manner, both real and p-adic field equations can be satisfied and there
are no problems with symmetries. p-Adic effective topology is expected to be a good approximation
only within some length scale range which means infrared and UV cutoffs. Also multi-p-fractality is
possible.
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