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I apply the principle of event-symmetry to simple string models and discuss how 

these lead to the conviction that multiple quantisation is linked to dimension. It may 

be that string theory has to be formulated in the absence of space-time which will 

then emerge as a derived property of the dynamics. Another interpretation of the 

event-symmetric approach which embodies this is that instantons are fundamental. 

Just as solitons may be dual to fundamental particles instantons may be dual to 

space-time events. Event-symmetry is then dual to instanton statistics. In that case a 

unification between particle statistics and gauge symmetry follows on naturally from 

the principle of event-symmetry. I build algebras which represent symmetries of 

superstring theories extending event-symmetry but which are also isomorphic to an 

algebra of creation and annihilation operators for strings of fermionic partons. 
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1. ALGEBRAIC STRING THEORY 

Although great strides have been taken towards an understanding of non-

perturbative string theory, there is still little progress towards a formulation which 

shows manifest general covariance. In previous work I have tackled the issue by 

employing the principle of event-symmetry as a means of incorporating topology 

change. Space-time is regarded as a discrete set of events with the permutation 

group on the events being contained in the universal symmetry of physics. The 

symmetric group on events trivially contains the diffeomorphism group over any 

topology (Gibbs P. E., 1996).  

 

It may be that string theory has to be formulated in the absence of space-time which 

will then emerge as a derived property of the dynamics. Another interpretation of the 

event-symmetric approach which embodies this is that instantons are fundamental. 

Just as solitons may be dual to fundamental particles instantons may be dual to 

space-time events or topons (Finkelstein D. R., Saller H., Tang Z., 1997). Event-

symmetry is then dual to instanton statistics. In that case a unification between 

particle statistics and gauge symmetry follows naturally from the principle of event-

symmetry. It is encouraging that this predicted unification now appears in the matrix 

model of M-Theory (Banks T., Fischler W., Shenker S. H., Susskind L., 1997). 

 

The final string theory may be founded on a mixture of geometry, topology and 

algebra. The dual theory origins of string theory hide a clue to an underlying 

algebraic nature. In dual theories the s-channel and t-channel amplitudes are 

supposed to be equal. At tree level, in terms of Feynman diagrams this means that, 

 

 

 

 

This diagram could also be distorted to look like this, 
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This figure is familiar to many mathematicians who recognise it as a diagrammatic 

representation of the associative law, 

 

D = (A B) C = A (B C) 

In developing an algebraic string theory the first step would be to define creation and 

annihilation operators for strings analogous to Dirac’s operators for bosonic and 

fermionic particles. It might be possible to do this if strings are described as 

composites of particles like a string of beads. The creation and annihilation operators 

can then be strings of ordinary bosonic or fermionic operators. 

2. DISCRETE STRING ALGEBRAS 

I have previously defined an infinite dimensional Lie superalgebra for discrete strings 

which includes event-symmetry (Gibbs P. E., 1996). By an isomorphism which pairs 

off space-time events and rotates 45 degrees in the complex plane of each pair, it is 

possible to define the desired algebra. The base elements of the algebra consist of an 

ordered sequence of fermion creation and annihilation operators bi b
*

i linked 

together by arrows which define an arbitrary permutation. A typical element would 

look like this: 

 

        b3  b1 b
*
2 b1 b

*
4 b2 
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These elements can be multiplied associatively by concatenating them together, but 

an additional set of relations is enforced which reflect the anti-commutation relations 

of the creation and annihilation operators. They are defined schematically as follows, 

 

Notice that when a creation operator is exchanged with its annihilation partner there 

is an interaction between the strings. These are partial relations which can be 

embedded into relations involving complete elements of the algebra. When closed 

loops which include no operators appear they are identified with unity.  

 

This example shows a cyclic relation on a loop of two operators. The arrows can be 

joined differently to give another relation, 

 

which is an anti-commutation relation for loops of single operators. 

      b*
i   bj    +       bj   b

*
i    =   2δij 
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By applying these relations repeatedly it is possible to reorder the operators in any 

string so that they are reduced to a canonical form of products and sums of ordered 

cycles. A more convenient notation can be introduced in which an ordered cycle is 

indicated as follows (where a,b,c represent the creation and annihilation operators) , 

 

We can generate cyclic relations for loops of any length and graded commutation 

relations between any pair of strings by repeatedly applying the exchange relations 

for adjacent pairs of operators. Those relations map the interactions between strings. 

The algebra has a Z2 grading given by the parity of the length of string and it is 

therefore possible to construct an infinite dimensional Lie-superalgebra using the 

graded commutator. The algebra may thus be interpreted as both an algebra of 

creation and annihilation operators and as the supersymmetry algebra of discrete 

strings. 

3. SUPERSYMMETRY LADDER 

The next stage of the algebraic string theory program is to construct a ladder 

operation which takes us from one supersymmetry algebra to another one. Starting 

from the one dimensional string supersymmetry constructed in the previous section, 

the ladder operator will take us up to a symmetry of two dimensional membranes. 

Further steps take us up to higher dimensional p-brane algebras.  

We start with a Lie algebra whose elements satisfy the Jacobi relation, 

[[ , ], ] [[ , ], ] [[ , ], ]A B C B C A C A B   0 

A new algebra is constructed by stringing these elements in a sequence and attaching 

them with an orientated string passing through each one like before. A difference 

introduced this time is that the string is allowed to have trivalent branches and we 

must factor out the following relations, 

 

The crossing lines do not (yet) indicated that the lines are knotted. It does not matter 

which goes over the other. 

( )ab c            =      a       b     . . .      c 

      A   B        -        B   A    =     [A,B] 
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When we check the result of combining the interchanges of three consecutive 

elements using the commutation relation above, we find that the result is consistent 

with the Jacobi relation provided we also apply the following associativity relation 

 

and the co-associativity relation 

 

In addition a relationship is used to remove closed loops. 

 

This process defines a new algebra like before except that now we start from any Lie 

algebra and create a new associative algebra. A new Lie algebra is then defined using 

the commutators of the algebra as the Lie product. 

This construction generalises easily to Lie superalgebras  using graded commutators 

and graded Jacobi relations. Thus we have a ladder operator which maps one 

superalgebra to a new one. This ladder operator will be signified by Q. Thus if A is a 

Lie superalgebra then Q(A) is another. 

In the case where we start with the discrete string superalgebra the loops can be 

visualised as circling the new network. These can then be interpreted as sections of a 

branching string world sheet. The new algebra is therefore a symmetry for string 

world sheets or membranes. Application of the ladder operator increases the 

dimension of the structures each time.  

The universal enveloping algebra of the original Lie superalgebra is isomorphic to a 

subalgebra of the higher dimensional one. That is the subalgebra formed by simply 

looping each element to itself (The loop removing relation is needed to establish 

this). I.e. there is a mapping from U(A) into Q(A) 

Up: U(A)   Q(A) 

= 

= 

= 
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Furthermore, there is a homomorphism from the higher algebra to the universal 

enveloping algebra below which is defined by removing the string connections. 

Down: Q(A)  U(A) 

It is possible to apply the ladder operator any number n times giving the algebra 

Q
n
(A). Since the old algebra is contained in the new, it is also possible to define an 

algebra Q(A)generated by an infinite number of application of the ladder operator 

which then contains all the lower ones. More precisely, Q(A) is the universal 

algebra generated from the algebras Q
n
(A) n = 0,...,∞,  modulo the identification: X 

= Up(X) 

for all elements X of the algebra. The algebra B = Q(A) has the property that 

applying the ladder operator generates a new one which is isomorphic to the original. 

Q(B ) ≈ B  

This raises an interesting question. Starting from a given algebra, is it possible that 

after only a finite number of applications of the ladder operator, you always arrive at 

the most complete algebra? Further steps may just create algebras isomorphic to the 

previous one. This is certainly the case for the algebras B  which can be generated as 

above, but in the general case it is an open question. 

4. MULTIPLE QUANTISATION 

I would like to propose an interpretation of what the above construction means. The 

network of connections which appear in the construction of the ladder operator Q 

could be interpreted as Feynman diagrams. In that case Q can be interpreted as the 

process of quantisation. Here quantisation does not just mean a deformation in the 

sense that a quantum group is a deformation of a Lie group. It means the process of 

deriving a quantum theory from a classical one as outlined by Dirac using canonical 

quantisation or by Feynman using path integrals. 

The application of Q many times is then multiple quantisation and suggests a 

connection with multiple quantisation and ur-theory as studied by von Weizsäcker 

and his collaborators (Görnitz T., Graudenz D., von Weizsäcker C. F. 1992; Lyre H. 

1996; see also Finkelstein D. R., Saller H., Tang Z. 1997). Ur-theory starts with bits 

of information which are quantised to give the group SU(2). This group should be 

further quantised multiple times to construct a unified theory of physics. 

If this interpretation is correct it also suggests a link between quantisation and 

dimension. The ladder operator Q produces p-brane structures of one higher 

dimension each time it is applied. It is also quite natural to think of quantisation as an 

operation which generates an extra dimension. Although 4-dimensional classical 

dynamics is only an approximation to the real 4-dimensional quantum physics, the 3-

dimensional kinematic classical state is still preserved in the full quantum theory as 

the basis of the Hilbert space of states. In quantum field theory we do not usually 

think of the time dimension as  being generated by quantisation. It is just the 

dynamics of the fields in space-time which are generated. However, in quantum 
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gravity where the structure of space-time is itself part of the dynamics it is natural to 

regard time as being generated by quantisation. Since the spatial dimensions are to be 

treated the same as the time dimension according to relativity, it is also natural to 

look to multiple quantisation as a mechanism for constructing the dynamics of space-

time from more basic foundations.  

String theorists have become expert at forming lower dimensional theories from 

higher dimensional ones by compactification of some of the dimensions. Their 

difficulty is that they do not have a rigorous foundation for the higher dimensional 

superstring and p-brane theories they begin with. I suggest that quantisation is the 

operation that can take string theories back up the dimensional ladder. It has been 

observed that the first quantised membrane of M-theory in 11 dimensions is the 

second quantised string in 10 dimensions (Townsend P. K., 1996). It may be that in 

general a k times quantised theory in n dimensions is a (k+1) times quantised theory 

in (n-1) dimensions. Unlimited multiple quantisation may be the way to 

understanding classical/quantum duality (Duff M. J., 1994). 

5. FRACTIONAL PARTONS AND KNOTS 

The above superstring symmetry construction is all very well except that strings are 

not made from discrete fermionic partons. They are defined as continuous loops, but 

at the same time they may be topological objects which can be determined by 

discrete points. To try to capture this algebraically it may be necessary to envisage a 

string as being made from discrete partons with fractional statistics like anyons. Such 

partons may be repeatedly subdivided into partons with smaller fractional statistics 

until a continuous limit is found. If strings are truly topological, an infinite sequence 

of subdivisions may not be necessary. A finite discretisation may be sufficient to 

describe any particular interaction. 

When fractional statistics are introduced the links will have to be replaced by knots, 

and the supersymmetry algebras will need to be quantised. Now we are using the 

word quantisation in the sense of the deformation which is used to construct 

quantum groups but this may be related to multiple quantisation in a way that is not 

yet clear.  

The use of braided structures will also resolve other problems which are inherent in 

the use of event-symmetric space-time. If the symmetric group acting on space-time 

events were part of universal symmetry then it is hard to see how parity could not be 

conserved since a mirror reflection of space-time is just a permutation of events. 

Furthermore, event-symmetry could be used to unravel topological solitons which 

are so important in string theories but which depend on the topology of space-time. 

These difficulties might be resolved if the symmetric group is replaced with the braid 

group acting on space-time events, especially if these events are tied together with 

strings which cannot pass through each other. 

Motivated by these thoughts it is natural to seek some kind of deformation of the 

fermionic string algebra replacing the sign factors in the exchange relations with 

some general q-parameter. It is also natural to replace the loops which connect the 

partons with knots. In doing so we immediately hit upon a fortuitous coincidence. 
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The construction of invariant knot polynomials makes use of Skein relations which 

are similar in to those we have already used. e.g. 

 

This is the relation which defines the HOMFLY polynomial. Combining this with the 

algebra previously constructed suggests something like, 

 

The special case where there is only one event is related to the HOMFLY polynomial 

while the Lie superalgebra previously defined corresponds to the case q = i, z = 2i 

with the sense in which two strings cross being disregarded. To completely define an 

algebra these relations can be embedded in knotted links. 

However, the generalisation of the quantisation operator Q to strings of  braided 

partons is not straight forward and will be left for future research. To know how to 

proceed correctly it is probably necessary to understand the construction in more 

basic algebraic terms than the combinatorial form in which it is presented above. 

Further advances may be made using the mathematics of n-category theory. It is 

thought that n-categories are related to physics in n dimensions (Baez J. C. , Dolan 

J., 1995). It is already known that certain 2-categories are applicable to the physics 

of the string worldsheet. It is natural to conjecture that (p+1) categories are similarly 

useful for p-brane world volumes. If the link between multiple quantisation and 

dimension is also correct then quantisation must be defined as a constructor from an 

n-category to an (n+1)-category which can be applied recursively.  

6. CONCLUSIONS 

As an initial step towards a purely algebraic formulation of superstring theories I 

have defined algebras which correspond to both the symmetries and the creation and 

annihilation operators for strings of discrete fermionic partons. The results suggest a 

duality between space-time events and instantons as well as a role for multiple 

quantisation in generating space-time dimensions. These are consistent with features 

of non-perturbative string theories.  

 

It is anticipated that a full algebraic theory will be expressed in the language of n-

category theory. The central problem will be to define algebraic quantisation as an 

q              -   q -1             =   z 

q     a    b     -    q-1   b    a  = zδab 
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operator from n-categories to (n+1)-categories. The universal theory may be 

described by an ω-category which is isomorphic to its image under quantisation. 

 

It is possible that remnants of the symmetries defined here may already lie hidden in 

the Matrix models of M-theory and string theories. 
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