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Diophantine m-tuples with property D(n), for n an integer, are sets of m positive integers 

such that the product of any two of them plus n is a square. Triples and quadruples with this 

property can be classed as regular or irregular according to whether they satisfy certain 

polynomial identities.  Given any such m-tuple, a symmetric integer matrix can be formed 

with the elements of the set placed in the diagonal and with corresponding roots off-

diagonal. In the case of quadruples, Jacobi’s theorem for the minors of the adjugate matrix 

can be used to show that up to eight new Diophantine quadruples can be formed from the 

adjugate matrices with various combinations of signs for the roots. We call these adjugate 

quadruples.  

Introduction 
Diophantus proposed the problem of finding triples and quadruples of rational numbers such that 

the product of any two is one less than a square, and found several examples [1]. Fermat considered 

the problem over positive integers noting the quadruple (1,3,8,120) [2]. Then Euler showed that an 

infinite class of quadruples including Fermat’s example can be extended to rational quintuples such 

as (1,3,8,120, 777480/8288641) [3]. Computer based searches have more recently yielded a finite 

number of rational Diophantine sextuples [4,5].  

Some key questions about Diophantine m-tuples remain unsettled. We do not know if there exists a 

Diophantine quintuple in integers or a rational Diophantine septuple. There are also stronger 

conjectures on the complete set of quadruples. Over the last two decades a number of approaches 

have produced excellent results that have come tantalisingly close to answering the first question. 

By using results from the theory of Diophantine approximations it has been shown that there are no 

Diophantine sextuples in integers and only finitely many quintuples [6]. Impressive though these 

methods are, it seems that they are currently limited by gap requirements that make it difficult to 

derive stronger results. 

It is possible that further progress may follow a better understanding of the algebraic and 

factorisation properties of Diophantine m-tuples and their generalisations. Even if it does not, these 

properties are of interest in their own right. Using algebraic methods and results from the theory of 

elliptic curves it is known that any Diophantine triple can be extended to a quadruple [7]. 

Furthermore, any quadruple can be extended to a rational Diophantine quintuple [8]. These results 

reveal that the structure of quadruples and quintuples is governed by the existence of certain 

polynomials over the m-tuples with useful factorisation properties that are not fully explained. The 

results described here have grown out of attempts to better understand these algebraic structures. 



Basic Definitions 
A Diophantine m-tuple with the property D(n) for n an integer is an m-tuple of distinct positive 

integers (a1,...,am) such that  

ai aj + n = xij
2 

 is always an integer square for i ≠j . The values of ai  are called the components of the quadruple 

and the values of xij are called its roots. For a given quadruple the roots are not unique because the 

alternatives with different signs are also valid roots.  When we talk of rational Diophantine m-tuples 

we mean the case where n is a positive square number.  An improper Diophantine m-tuple is an m-

tuple with similar properties but with the relaxed condition that the elements ai can be any integers 

and need not be distinct. A primitive Diophantine m-tuple is one where there is no common factor > 

1 that divides all the numbers ai and n. Two Diophantine quadruples will be called equivalent if they 

are both integer multiples of the same primitive quadruple after permutations of the components. 

A regular Diophantine triple with the property D(n) is a triple (a,b,c) with the extra condition that  

(c – b – a)2 = 4(ab+n) 

This equation is symmetric under permutations of a, b, c. 

A regular Diophantine quadruple with the property D(n) is a quadruple (a,b,c,d) with the extra 

condition that  

n(d + c – a – b)2 = 4(ab+n)(cd+n) 

This is also symmetric under permutations of the variables. Since both sides of the equation must be 

square it follows that a Diophantine quadruple with property D(n) can only be regular if n is square, 

whereas regular Diophantine triples with property D(n) exist for all n. When n is square the 

quadruple formed by adding a zero to a regular triple is an improper regular quadruple.  An irregular 

Diophantine m-tuple is one that is not regular. A semi-regular Diophantine quadruple is one which 

contains a regular triple, and a twice semi-regular Diophantine quadruple is one that contains two 

regular triples. These definitions will help us classify and understand the quadruples better. 

It is also convenient to define a function Z4(n) whose value is the number (possibly infinite) of  

irregular Diophantine quadruple with property D(n). A number of conjectures concerning 

Diophantine quadruples can then be summarised statements about  Z4(n), for example it is believed 

to be finite for all n ≠ 0. In particular Z4(1) = 0. Setting upper limits for Z4(n) is a hard problem but 

lower limits for congruence classes of n can be found by constructing polynomial solutions [9]. 



Adjugation and Jacobi’s Theorem 
Given a Diophantine m-tu ple (a1,...,am)  we can form a symmetric m by m matrix S with components 

given by 

Sii = ai 

Sij = xij  (i ≠j) 

For a quadruple (a,b,c,d) the matrix would look like this 

𝑆 =  

𝑎 𝑥 𝑦 𝑢
𝑥 𝑏 𝑧 𝑣
𝑦 𝑧 𝑐 𝑤
𝑢 𝑣 𝑤 𝑑

  

A minor MS(I,J) of the matrix S is the determinant of some smaller square matrix formed by removing 

one or more rows and columns from S, such that I is the set of indices of the rows left and J is the set 

of indices of the columns left. The principal minors are the ones formed when I = J  Because of the 

D(n) property the principal 2x2 minors of S are equal to -n 

MS({i,j},{i,j}) = ai aj – xij
2 = -n 

Given S we can form the adjugate matrix T whose elements are the cofactors of S given by  

Tij = (-1)i+j MS(U-{j}, U-{i}) 

U is the set of all row or column indices. 

As a consequence of Laplace’s formula for the determinant of a matrix we can write the matrix 

equation 

ST = |S| I 

Where I is the identity matrix and |S| is the determinant of S, |S| = MS(U,U). 

Jacobi’s theorem [10] relates the minors of T to those of S by the formula 

MT(I,J) = (-1)∑(I,J) MS(U-I, U-J) |S|r-1 

Where the exponent ∑(I,J) used to determine the sign factor is just the sum of all the indices in both 

sets, and r =|I| = |J| is the number of rows and columns removed to form the minors.  

Jacobi’s theorem can be applied to the principal 2x2 minors of the symmetric matrix S for a 

Diophantine quadruple with property D(n) to show that the 2x2 principle minors of the adjugate 

matrix T all have the value –n |S| . If we write out the components of -T as follows 

  

−𝑇 =  

𝐴 𝑋 𝑌 𝑈
𝑋 𝐵 𝑍 𝑉
𝑌 𝑍 𝐶 𝑊
𝑈 𝑉 𝑊 𝐷

  



Then we find that the m-tuple (A,B,C,D) is a (possibly improper) Diophantine m-tuple with the 

property D(n|S|). The negative sign is introduced because in practice we find that the Diophantine 

quadruple formed in this way is less likely to be improper if we reverse the signs. So we have the 

following definition. 

Given a (possibly improper) Diophantine quadruple (a1, a2, a3, a4) with property D(n) and its integer 

root xij such that ai aj + n = xij
2 , an adjugate quadruple is defined by constructing the symmetric 

matrix S with components Sii = ai and Sij = xij  (i ≠j) and forming its adjugate matrix T. The adjugate 

quadruple (A1, A2, A3, A4) and its root Xij are by definition given by Ai = -Tii and Xij = -Tij . Note that we 

speak of an adjugate and not the adjugate. This is because for a given quadruple, the roots xij can be 

given different combinations of signs which can provide different adjugates. From this definition the 

following theorem follows. 

Theorem 1:  

(a) Given a (possibly improper) Diophantine quadruple (a1, a2, a3, a4) with the property D(n), any 

adjugate quadruple (A1, A2, A3, A4) is a (possibly improper) Diophantine quadruple with 

property D(N) where N = n|S| and S is the symmetric matrix constructed as described above.  

(b) If (A1, A2, A3, A4) is an adjugate quadruple of (a1, a2, a3, a4) then (A1, A2, A3, A4) is equivalent 

to an adjugate quadruple of (a1, a2, a3, a4).  

(c) A quadruple has at most eight distinct adjugates. 

Proof: (a) follows from the construction Jacobi’s theorem as described above. (b) is a consequence 

from the matrix equation ST = |S| I. (c) comes from the observation that there are 64 = 26 ways to do 

the construction with different combinations of signs for the six roots. However if the matrix is 

transformed by reversing the signs on one row and the same column, then the adjugate matrix is 

transformed in the same way without affecting the components of the quadruple. Therefore only 

eight = 23 combinations of signs for the roots can lead to distinct adjugates. 

Relationship Between Adjugation and Extension of Triples 
Suppose (a,b,c) is a Diophantine triple with the property D(1) 

ab+1  = x2 

ac+1  = y2 

bc+1  = z2 

Then a fourth integer d can be added to make a D(1) Diophantine quadruple (a,b,c,d)  using the 

formula. 

d = a + b + c + 2abc + 2xyz 

The quadruple is regular because it satisfies the equation 

(d + c – a – b)2 = 4(ab+1)(cd+1) 



This equation shows that (cd+1) must be a square because (ab+1) is square. Similar results follow 

from permutations of the components to show that (a,b,c,d) is indeed a D(1) quadruple. In fact there 

is a second way to extend a triple using the formula 

d = a + b + c + 2abc - 2xyz 

However this case can lead to an improper quadruple with d ≤ 0. 

This 4th degree polynomial equation for regular D(1) quadruples can be interpreted as a special case 

of Cayley’s hyperdeterminant which is a quartic invariant of SL(2)3 acting on a 2x2x2 hypermatrix A 

with components Aijk given by the formula 

Det(A) = (A000A111 + A001A110 - A010A101 – A100A011)2 – 4(A010A100 – A000 A110)(A101A011 – A111 A001) 

So if we set   A111 = -d, A001 = c, A010 = a, A100 = b, A000 = 1, and A110 = A011 = A101 = -1,  

𝐴 =     
1 𝑎
𝑏 −1

  
𝑐 −1
−1 −𝑑

     

then the regularity condition is just Det(A) = 0. 

There is a relationship between the process for extending triples to regular quadruples on the one 

hand, and adjugation of quadruples on the other. This follows from an observation of Holtz and 

Sturmfels who showed that if all the principal minors of a symmetric m by m matrix are naturally 

arranged in a 2m hypermatrix, then the hyperdeterminant of any 23 segment of the hypermatrix is 

equal to zero [11]. To see this take the symmetric matrix S formed from a Diophantine quadruple 

and its roots. Then construct a 2x2x2x2 hypermatrix with its principal minors using the definition of 

the adjugate quadruple as follows, 

 
 

1 𝑎
𝑏 −𝑛

  
𝑐 −𝑛
−𝑛 −𝐷

 

 𝑑 −𝑛
−𝑛 −𝐶

  
−𝑛 −𝐵
−𝐴  𝑆 

 
  

There are 8 different 2x2x2 hypermatrix slices that have a zero hyperdeterminant by the result of 

Holtz and Sturmfels. If n = 1 this would mean that the 4 quadruples with components (a,b,c,D), 

(a,b,C,d), (a,B,c,d) and (A,b,c,d) are regular Diophantine quadruples. In other words the four 

components of the adjugate quadruple are formed from the components used to extend the four 

subtriples of the original quadruple. 

This also allows us to state some relationships between properties of a quadruple and its adjugates 

that can be verified by constructing the possible 2x2x2x2 hypermatrices for each adjugate: 

- If a quadruple is regular then four out of its eight adjugates are the regular quadruples 

formed by dropping one of its for components and replacing it with the other extension 

value. 

- If a quadruple is semi-regular, i.e. it contains a regular triple, then four of its eight adjugates 

will be improper quadruples with a zero component. Note that for any D(n) quadruple with a 

zero component, the value of n must be square, but this does not need to be the case for its 

adjugates. 



- If quadruple is improper with a zero component then all of its adjugates are semi-regular.  

- If a quadruple is twice semi-regular, i.e. it contains two regular triples, then two of its 

adjugates have two zeros and four others have one zero component. 

- If a quadruple is improper with two duplicate components then it can have at most six 

distinct adjugates and four of them are improper with two duplicate components. 

- If quadruple is improper with two zero components then all of its adjugates are twice semi-

regular, but four of them are improper with two duplicate components and there are only 

two other distinct adjugates. 

Adjugation and the Construction of Diophantine Quadruples 
Adjugation can be used to construct generic formula for D(n) Diophantine quadruples . The principle 

is to start with a simple formula for Diophantine quadruples (that may be improper), then apply 

adjugation to get another formula. As an example, consider the well known regular polynomial D(1) 

triple  

(a,b,c) = (x-1, x+1, 4x)  , x > 1 

This can be extended to an improper but regular D(1) quadruple by adding a fourth component d = 

0. We find that seven of the potential adjugates are improper and the remaining one is 

(A,B,C,D) = (9x+3, 9x-3, 4x, 4x(2x+1)(2x-1)) 

which is a D(9 - 32x2) semi-regular quadruple.  
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