The Chinese Remainder Theorem • Goldbach’s Conjecture

(A) • Hardy-Littewood’s Conjecture (A)

Tong Xin Ping
txp1313abc @ hotmail.com

Abstract: \(N = p_i + (N-p_i) = p_+ + (N-p) \). \(\text{①} \) If \(p \) is congruent to \(N \) modulo \(p_i \), Then \((N-p) \) is a composite integer. When \(i = 1, 2, \ldots, r \), if \(p \) and \(N \) are incongruent modulo \(p_i \), Then \(p \) and \((N-p) \) are solutions of Goldbach’s Conjecture (A); \(\text{②} \) By Chinese Remainder Theorem we can calculate the primes and solutions of Goldbach’s Conjecture (A) with different system of congruence; \(\text{③} \) The \((N-p) \) must have solution of Goldbach’s Conjecture (A), The number of solutions of Goldbach’s Conjecture (A) is increasing as \(N \rightarrow \infty \), and finding unknown particulars for Hardy-Littewood’s Conjecture (A).

Key words: congruent, Chinese Remainder Theorem, Goldbach’s Conjecture (A), Hardy-Littewood’s Conjecture (A).

“Every even positive integer greater than 2 can be written as the sum of two primes.” This conjecture was stated by Christion Goldbach in a letter to Leonhard Euler in 1742.

Let \(p_i < \sqrt{N} \), \(\sqrt{N} < p < N \). We have \(N = p_i + (N-p_i) = p_+ + (N-p) \). \(\text{①} \) If \(p \) is congruent to \(N \) modulo \(p_i \), then \((N-p) \) is a composite integer, (See Theorem 1.) When \(i = 1, 2, \ldots, r \), if \(p \) and \(N \) are incongruent modulo \(p_i \), Then \(p \) and \((N-p) \) are solutions of Goldbach’s Conjecture (A); (See Theorem 2.) \(\text{②} \) By Chinese Remainder Theorem, we can calculate the primes and solutions of Goldbach’s Conjecture (A) with different system of congruence (3), (5). (See Theorem 3, 4.) \(\text{③} \) The \((N-p) \) must have solution of Goldbach’s Conjecture (A), (See Theorem 5.) The number of solutions of Goldbach’s Conjecture (A) is increasing as \(N \rightarrow \infty \), (See Theorem 6.) and finding unknown particulars for Hardy-Littewood’s Conjecture (A); (See Theorem 6.)

1. Term, Terminology, Symbol.

\(N \) — Even positive integers. Let \(2 \leq p_i \leq p_r \leq \sqrt{N} < p_{r+1} < N < p_{r+1}^2 < p_1 p_2 \ldots p_r \).

\(p_i, p_r, p_{r+1} \) — Prime number. \(i = 1, 2, 3, \ldots, r \). \(r = \lceil \sqrt{N} \rceil \).

\(1 \) \(w_r = p_i p_2 \ldots p_r = \prod_{2 \leq p \leq \sqrt{N}} p \).

\(p \) — Prime number. \(p_{r+1} \leq p < (N - p_r + 1) \). We have \((N - p) > p_r \). Every \(p \) can be written as \(p = p(a_i) + n p_i \). \(1 \leq p(a_i) \leq p_i - 1 \).

Let \(f_i(a_i) = 1, 2, \ldots, (p_i - 1) \).

\(p \) — All \(p \). We have \(p = f_i(a_i) + n p_i \). \(f_i(a_i) = 1, 2, \ldots, (p_i - 1) \).

Let \(N = p_i + (N-p_i) = p_+ + (N-p) \). When \(N = 98, 126, 128, \ldots \) The \((N-p_i) \)-composite integers. We prove that \((N-p) \) must have prime.

Lemma 1. If \(r \geq 4 \), Then \(N < p_1^2 < p_1 p_2 \ldots p_r = w_r \).

When \(r < 4 \), we can finding \(p_1 p_2 \ldots p_r < N \). Therefore, This paper studies \(r \geq 4 \), \(N \geq 50 \).

\(N(a_i) \) — Remainder that divided \(N \) by \(p_i \). We have \(N = N(a_i) + n p_i \). \(0 \leq N(a_i) \leq p_i - 1 \).
N(a)_r — A group of systematic remainders that divided N by p_1, p_2,..., p_r. N(a)_r = N(a_1), N(a_2),..., N(a_r). For example, N=90, r=4, 90(a_1)=90(a_1), 90(a_2),..., 90(a_4) =0, 0, 0, 6.

f_2(a)_i — Take N(a)_i out of f_1(a)_i, we can obtain f_2(a)_i. 1. When p_i | N, N(a)_i=0 using f_2(a)_i, the number of element of f_2(a)_i is (p_r−1); 2. When (p_i, N)=1, 0<N(a)_i≤p_r−1. f_1(a)_i =1, 2,...,(p_r−1). The N(a)_i is one element of f_1(a)_i. The number of element of f_2(a)_i is (p_r−2).

N(1,1)_i — The number of solutions of Goldbach’s Conjecture (A) lying in the interval (0, p_r+1) and (N−p_r−1, N).

N(1,1)_r — The number of solutions of Goldbach’s Conjecture (A) lying in the interval (p_r+1, N−p_r−1).

N(1,1) = r≤(N) — The number of solutions of Goldbach’s Conjecture (A) lying in the interval (0,N). N(1,1) = N(1,1)_r + 2 N(1,1)_i.

Theorem 1. If N is congruent to p modulo p_i, Then the (N−p) is a composite integer.

Proof. N≡p(mod p_i), p_i | (N−p), We have (N−p)=kp_i. (k≥1.) As before, (N−p) > p_r, k>1, Then (N−p) is composite integer. Theorem 1 is proved.

Theorem 2. If i=1, 2, 3,..., r. N and p are incongruent modulo p_1, p_2,..., p_r. Then p and (N−p) are solutions of Goldbach’s Conjecture (A).

Proof. i=1, 2, 3,..., r. N and p are incongruent modulo p_1, p_2,..., p_r. In other words, the (N−p) is not divisible by any prime not exceeding \sqrt{N}. The (N−p) is a prime. The p and (N−p) are solutions of Goldbach’s Conjecture (A). Theorem 2 is proved.

Lemma 2. The Chinese Remainder Theorem. Let m_1, m_2, ..., m_r be pairwise relatively prime positive integers. Then the system of congruences

(2) \[x \equiv a_1 \pmod{m_1}, \]
\[x \equiv a_2 \pmod{m_2}, \]
\[\vdots \]
\[x \equiv a_r \pmod{m_r}, \]

has a unique solution modulo \(M=m_1m_2...m_r\).

Theorem 3. The \(u\) is number of solutions of system of congruences (3). When \(y<N\), the \(y\) is a prime.

(3) \[y \equiv f_1(a_1) \pmod{p_1} \]
\[y \equiv f_1(a_2) \pmod{p_2} \]
\[\vdots \]
\[y \equiv f_1(a_r) \pmod{p_r} \]
\[u=(p_1−1)(p_2−1)...(p_r−1)= \prod_{2 \leq p \leq \sqrt{N}} (p−1) \]

Proof. The \(f_1(a_1)=1\), The number of elements of \(f_1(a_1)\) is \((p_r−1)\);

The \(f_1(a_2)=1, 2\). The number of elements of \(f_1(a_2)\) is \((p_2−1)\); ...

The \(f_1(a_r)=1, 2,..., (p_r−1)\). The number of elements of \(f_1(a_r)\) is \((p_r−1)\).
When \(i=1,2,\ldots, r\) we taking one element of the \(f_i(a_i)\), We can obtain different system of congruences (3), The number of the different system of congruences (3) is \((p_1-1)(p_2-1)\cdots(p_r-1)=u\).

By (3), if \(y< N\), the \(y\) is not divisible by any prime not exceeding \(\sqrt{N}\). The \(y\) is a prime. Theorem 3 is proved.

Theorem 4. The \(v\) is number of solutions of system of congruences (5). When \((p_r+1)<y<(N-p_r-1)\), the \(y\) and \((N-y)\) are solutions of Goldbach's Conjecture (A).

\[
y = f_2(a_1) \pmod{p_1}
y = f_2(a_2) \pmod{p_2}
\vdots
y = f_2(a_i) \pmod{p_i}
\]

\[
(6) \quad v = \prod_{3 \leq p \leq \sqrt{N}} (p-2) \prod_{2 \leq p \leq \sqrt{N}} (p-1) = \prod_{3 \leq p \leq \sqrt{N}} (p-2) \prod_{2 \leq p \leq \sqrt{N}} \frac{p-1}{p-2} \quad \text{(get rid of } p_1-1=1_{\text{, }})\]

Proof. When \((N, p_i)=1\), The number of elements of \(f_2(a_i)\) is \((p_i-2)\); When \((N, p_i)= p_i\), The number of elements of \(f_2(a_i)\) is \((p_i-1)\). (When \(p_i>2\), We have \((p_i-1)=(p_i-2) \frac{p_i-1}{p_i-2}\).)

When \(i=1,2,\ldots, r\) we taking one element of the \(f_2(a_i)\), We can obtain different system of congruences (5), The number of the different system of congruences (5) is multiply \(\prod(p_i-2)\prod(p_i-1)\). (See 6.)

By (5), if \((p_r+1)<y<(N-p_r-1)\), ① Because \(f_2(a_i)\neq 0\), by Theorem 3, the \(y\) is a prime; ② Because \(f_2(a_i)\neq N(a_i)\), \(N\) and \(y\) are incongruent modulo \(p_1, p_2, \ldots, p_r\). By Theorem 2, the \((N-y)\) is a prime. The \(y\) and \((N-y)\) are solutions of Goldbach's Conjecture (A). Theorem 4 is proved.

4. The Proof of Goldbach's Conjecture (A).

Theorem 5. \((N-p)\) must have prime.

Proof. \((N-p)\geq p_r\), Suppose \((N-p)=\text{composite integer}=h_p(h_r>1)\) We have \(p=N-h_p=N(p_i)+np_r\) \(h_p=N(p_i)+(n-h)p_i\). The \(p=N(p_i)+(n-h)p_i\) are in contradiction with \(p=f_1(a_i)+np_r\). (The \(N(p_i)\) is one of the \(f_1(a_i)\).) The contradiction shows, that there are some primes in \((N-p)\). Theorem 5 is proved.

Lemma 3. \(\pi(N) = \varepsilon N \prod_{2 \leq p \leq \sqrt{N}} \frac{p-1}{p}\)

Proof. The \(\pi(N)\) and \(u\) are number of positive integer that are not divisible by any prime not exceeding \(\sqrt{N}\).

Noticing \(\pi(N) \neq \frac{u}{w_r}\), we have \(\pi(N) = \varepsilon \frac{u}{w_r}\), and \(\pi(N) = \varepsilon \frac{N \cdot u}{w_r}\). Lemma 3 is proved.

Theorem 6. The number of solutions of Goldbach's Conjecture (A) is increasing as \(N \to \infty\).

Proof. By Lemma 3, we have
\[
1 = \prod_{p \leq \sqrt{N}} \frac{p}{p-1} \frac{p}{p-1} \times \prod_{p \leq \sqrt{N}} \frac{p-1}{p} \frac{p-1}{p} \times \prod_{2 \leq p \leq \sqrt{N}} \frac{p}{p-1} \frac{p}{p-1}
\]

\[
= \prod_{p \leq \sqrt{N}} \frac{p}{p-1} \frac{p}{p-1} \times \frac{1}{\varepsilon} \frac{\pi(N)}{N} \frac{1}{\varepsilon} \frac{\pi(N)}{N} \times \prod_{p \leq \sqrt{N}} \frac{p}{p-1} \frac{p}{p-1}
\]

\[
= 4 \prod_{p \leq \sqrt{N}} \frac{p}{p-1} \frac{p}{p-1} \times \frac{1}{\varepsilon} \frac{\pi(N)}{N} \frac{1}{\varepsilon} \frac{\pi(N)}{N}
\]

\[
= \prod_{p \leq \sqrt{N}} \frac{p}{p-1} \frac{p}{p-1} \times \frac{1}{\varepsilon} \frac{\pi(N)}{N} \frac{1}{\varepsilon} \frac{\pi(N)}{N}
\]

\[
= \prod_{3 \leq p \leq \sqrt{N}} \frac{p}{p-1} \frac{p}{p-1} \times \frac{1}{\varepsilon} \frac{\pi(N)}{N} \frac{1}{\varepsilon} \frac{\pi(N)}{N}
\]

\[
= \prod_{3 \leq p \leq \sqrt{N}} \frac{p}{p-1} \frac{p}{p-1} \times \frac{1}{\varepsilon} \frac{\pi(N)}{N} \frac{1}{\varepsilon} \frac{\pi(N)}{N}
\]

\[
= \prod_{3 \leq p \leq \sqrt{N}} \frac{p}{p-1} \frac{p}{p-1} \times \frac{1}{\varepsilon} \frac{\pi(N)}{N} \frac{1}{\varepsilon} \frac{\pi(N)}{N}
\]

\[
= \prod_{3 \leq p \leq \sqrt{N}} \frac{p}{p-1} \frac{p}{p-1} \times \frac{1}{\varepsilon} \frac{\pi(N)}{N} \frac{1}{\varepsilon} \frac{\pi(N)}{N}
\]

\[
= \prod_{3 \leq p \leq \sqrt{N}} \frac{p}{p-1} \frac{p}{p-1} \times \frac{1}{\varepsilon} \frac{\pi(N)}{N} \frac{1}{\varepsilon} \frac{\pi(N)}{N}
\]

The \(N(1,1)\) and \(v\) are number of positive integer that are not divisible by any prime not exceeding \(\sqrt{N}\). Added to this, these positive integer and \(N\) are incongruent modulo \(p_i\).

Noticing \(\frac{N(1,1)}{N} \neq \frac{v}{w_r}\). We have \(\frac{N(1,1)}{N} = \psi \frac{v}{w_r}\), and have (7).

(7) \(N(1,1) = \psi \frac{v}{w_r} N\)

\[
= \psi \frac{N}{2} \prod_{3 \leq p \leq \sqrt{N}} \frac{p-2}{p} \prod_{3 \leq p \leq \sqrt{N}} \frac{p-1}{p-2} \times 1
\]

\[
= \psi \frac{2\pi(N)\pi(N)}{\varepsilon N} \prod_{3 \leq p \leq \sqrt{N}} \frac{p-2}{p-1} \frac{p}{p-1} \prod_{3 \leq p \leq \sqrt{N}} \frac{p-1}{p-2}
\]

\[
= \psi \frac{2\pi(N)\pi(N)}{\varepsilon N} \prod_{3 \leq p \leq \sqrt{N}} (1 - \frac{1}{(p-1)^2}) \prod_{3 \leq p \leq \sqrt{N}} \frac{p-1}{p-2}
\]

The \[\frac{2\pi(N)\pi(N)}{\varepsilon N} \prod_{3 \leq p \leq \sqrt{N}} (1 - \frac{1}{(p-1)^2}) \prod_{3 \leq p \leq \sqrt{N}} \frac{p-1}{p-2} (= r_2(N))\]. It is Hardy-Littlewood’s Conjecture (A). The (7) is increasing as \(N \to \infty\). Theorem 6 is proved.

The \(\varepsilon\) and \(\psi\) are some unknown particulars for Hardy-Littlewood’s Conjecture (A).

5. Discussion.

This Goldbach’s Conjecture (A) the proof.

If \(N \to \infty\), proof \(\frac{\psi}{\varepsilon} \to 1\), Then Hardy-Littlewood’s Conjecture (A) is proved.

The others particulars of Hardy-Littlewood’s Conjecture (A) is still under discussion.

Reference material: