
Born’s Reciprocal General Relativity
Theory and Complex Nonabelian Gravity as
Gauge Theory of the Quaplectic Group : A

novel path to Quantum Gravity

Carlos Castro

November, 2007

Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta

Abstract

Born’s Reciprocal Relativity in flat spacetimes is based on the principle of a
maximal speed limit (speed of light) and a maximal proper force (which is also
compatible with a maximal and minimal length duality) and where coordinates
and momenta are unified on a single footing. We extend Born’s theory to the case of
curved spacetimes and construct a Reciprocal General Relativity theory (in curved
spacetimes) as a local Gauge Theory of the Quaplectic Group and given by the semi-
direct product Q(1, 3) ≡ U(1, 3)⊗s H(1, 3), where the Nonabelian Weyl-Heisenberg
group is H(1, 3). The gauge theory has the same structure as that of Complex
Nonabelian Gravity. Actions are presented and it is argued why such actions based
on Born’s Reciprocal Relativity principle, involving a maximal speed limit and a
maximal proper force, is a very promising avenue to Quantize Gravity that does
not rely in breaking the Lorentz symmetry at the Planck scale, in contrast to other
approaches based on deformations of the Poincare algebra, Quantum Groups. It
is discussed how one could embed the Quaplectic gauge theory into one based on
the U(1, 4), U(2, 3) groups where the observed cosmological constant emerges in a
natural way. We conclude with a brief discussion of Complex coordinates and Finsler
spaces with symmetric and nonsymmetric metrics studied by Eisenhart as relevant
closed-string target space backgrounds where Born’s principle may be operating.

1 Introduction : On Born’s Reciprocal Theory of

Relativity

In this introductory section we will review in detail Born’s Reciprocal (”Dual”) Relativ-
ity [1] and the principle of Maximal-acceleration Relativity from the perspective of 8D
Phase Spaces and the role of the invariance U(1, 3) Group. We will focus for simplicity
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on a flat 8D Phase Space. A curved case scenario has been analyzed by Brandt [8]
within the context of the Finsler geometry of the 8D tangent bundle of spacetime and
written the generalized 8D gravitational equations that reduce to the ordinary Einstein-
Riemannian gravitational equations in the infinite acceleration limit. Vacaru [35] has
constructed the Riemann-Finsler geometries endowed with non-holonomic structures in-
duced by nonlinear connections and developed the formalism to build a Noncommuta-
tive Riemann-Finsler Geometry by introducing suitable Clifford structures. A curved
momentum space geometry was studied by [27] . Toller [18] has explored the different
possible geometries associated with the maximal acceleration principle and the physical
implications of the meaning of an ”observer”, ”measuring device” in the cotangent space.

The U(1, 3) = SU(1, 3)⊗U(1) Group transformations, which leave invariant the phase-
space intervals under rotations, velocity and acceleration boosts, were found by Low
[20] and can be simplified drastically when the velocity/acceleration boosts are taken
to lie in the z-direction, leaving the transverse directions x, y, px, py intact ; i.e., the
U(1, 1) = SU(1, 1)⊗U(1) subgroup transformations that leave invariant the phase-space
interval are given by (in units of h̄ = c = 1)

(dω)2 = (dT )2 − (dX)2 +
(dE)2 − (dP )2

b2
=

(dτ)2[1 +
(dE/dτ)2 − (dP/dτ)2

b2
] = (dτ)2[1− m2g2(τ)

m2
P A2

max

]. (1.1)

where we have factored out the proper time infinitesimal (dτ)2 = dT 2 − dX2 in eq-(1-1)
and the maximal proper-force is set to be b ≡ mP Amax. mP is the Planck mass 1/LP so
that b = (1/LP )2, may also be interpreted as the maximal string tension when LP is the
Planck scale.

The quantity g(τ) is the proper four-acceleration of a particle of mass m in the z-
direction which we take to be defined by the X coordinate. The interval (dω)2 described by
Low [20] is U(1, 3)-invariant for the most general transformations in the 8D phase-space.
These transformations are rather elaborate, so we refer to the references [20] for details.
The appearance of the U(1, 3) group in 8D Phase Space is not too surprising since it could
be seen as the ” complex doubling ” version of the Lorentz group SO(1, 3). Low discussed
the irreducible unitary representations of such U(1, 3) group and the relevance for the
strong interactions of quarks and hadrons since U(1, 3), with 16 generators, contains the
SU(3) group.

The analog of the Lorentz relativistic factor in eq-(1-1) involves the ratios of two proper
forces. One variable force is given by mg(τ) and the maximal proper force sustained by
an elementary particle of mass mP (a Planckton) is assumed to be Fmax = mPlanckc

2/LP .
When m = mP , the ratio-squared of the forces appearing in the relativistic factor of eq-
(1-1 ) becomes then g2/A2

max, and the phase space interval coincides with the geometric
interval discussed by [9], [5], [11] , [12] .

The transformations laws of the coordinates in that leave invariant the interval (1-1)
were given by [20]:

T ′ = Tcoshξ + (
ξvX

c2
+

ξaP

b2
)
sinhξ

ξ
. (1.2a)
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E ′ = Ecoshξ + (−ξaX + ξvP )
sinhξ

ξ
. (1.2b)

X ′ = Xcoshξ + (ξvT −
ξaE

b2
)
sinhξ

ξ
. (1.2c)

P ′ = Pcoshξ + (
ξvE

c2
+ ξaT )

sinhξ

ξ
. (1.2d)

The ξv is velocity-boost rapidity parameter and the ξa is the force/acceleration-boost
rapidity parameter of the primed-reference frame. They are defined respectively :

tanh(
ξv

c
) =

v

c
. tanh(

ξa

b
) =

ma

mP Amax

. (1.3)

The effective boost parameter ξ of the U(1, 1) subgroup transformations appearing
in eqs-(1-2a, 1-2d) is defined in terms of the velocity and acceleration boosts parameters
ξv, ξa respectively as:

ξ ≡
√

ξ2
v

c2
+

ξ2
a

b2
. (1.4)

Our definition of the rapidity parameters are different than those in [20].
Straightforward algebra allows us to verify that these transformations leave the interval

of eq- (1-1) in classical phase space invariant. They are are fully consistent with Born’s
duality Relativity symmetry principle [1] (Q, P ) → (P,−Q). By inspection we can see
that under Born duality, the transformations in eqs-(1-2a, 1-2d) are rotated into each
other, up to numerical b factors in order to match units. When on sets ξa = 0 in (1-
2a, 1-2d) one recovers automatically the standard Lorentz transformations for the X, T
and E, P variables separately, leaving invariant the intervals dT 2 − dX2 = (dτ)2 and
(dE2 − dP 2)/b2 separately.

When one sets ξv = 0 we obtain the transformations rules of the events in Phase
space, from one reference-frame into another uniformly-accelerated frame of reference,
a = constant, whose acceleration-rapidity parameter is in this particular case:

ξ ≡ ξa

b
. tanh(ξ) =

ma

mP Amax

. (1.5)

The transformations for pure acceleration-boosts in Phase Space are:

T ′ = Tcoshξ +
P

b
sinhξ. (1.6a)

E ′ = Ecoshξ − bXsinhξ. (1.6b)

X ′ = Xcoshξ − E

b
sinhξ. (1.6c)

P ′ = Pcoshξ + bTsinhξ. (1.6d)
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It is straightforwad to verify that the transformations (1-6a, 1-6c) leave invariant
the fully phase space interval (1-1) but does not leave invariant the proper time interval
(dτ)2 = dT 2 − dX2. Only the combination:

(dω)2 = (dτ)2(1− m2g2

m2
P A2

max

) (1.7)

is truly left invariant under pure acceleration-boosts in Phase Space. Once again, can
verify as well that these transformations satisfy Born’s duality symmetry principle:

(T, X) → (E, P ). (E, P ) → (−T,−X). (1.8)

and b → 1
b
. The latter Born duality transformation is nothing but a manifestation of

the large/small tension duality principle reminiscent of the T -duality symmetry in string
theory; i.e. namely, a small/large radius duality, a winding modes/ Kaluza-Klein modes
duality symmetry in string compactifications and the Ultraviolet/Infrared entanglement
in Noncommutative Field Theories. Hence, Born’s duality principle in exchanging coor-
dinates for momenta could be the underlying physical reason behind T -duality in string
theory.

The composition of two succesive pure acceleration-boosts is another pure acceleration-
boost with acceleration rapidity given by ξ′′ = ξ + ξ′. The addition of proper forces (
accelerations ) follows the usual relativistic composition rule:

tanhξ′′ = tanh(ξ + ξ′) =
tanhξ + tanh ξ′

1 + tanhξtanhξ′
⇒ ma′′

mP A
=

ma
mP A

+ ma′

mP A

1 + m2aa′

m2
P A2

. (1.9)

and in this fashion the upper limiting proper acceleration is never surpassed like it happens
with the ordinary Special Relativistic addition of velocities.

The group properties of the full combination of velocity and acceleration boosts eqs-
(1-2a, 1-2d) in Phase Space requires much more algebra [4]. A careful study reveals that
the composition rule of two succesive full transformations is given by ξ′′ = ξ + ξ′ and the
transformation laws are preserved if, and only if, the ξ; ξ′; ξ′′...... parameters obeyed the
suitable relations:

ξa

ξ
=

ξ′a
ξ′

=
ξ′′a
ξ′′

=
ξ′′a

ξ + ξ′
. (1.10a)

ξv

ξ
=

ξ′v
ξ′

=
ξ′′v
ξ′′

=
ξ′′v

ξ + ξ′
. (1.10b)

Finally we arrive at the compostion law for the effective, velocity and acceleration
boosts parameters ξ′′; ξ′′v ; ξ′′a respectively:

ξ′′v = ξv + ξ′v. (1.11a)

ξ′′a = ξa + ξ′a. (1.11b)
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ξ′′ = ξ + ξ′. (1.11c)

The above relations among the parameters are required in order to prove the U(1, 1) group
composition law of the transformations in order to have a truly Maximal-Acceleration
Phase Space Relativity theory resulting from a Phase-Space change of coordinates in the
cotangent bundle of spacetime.

Planck-Scale Areas are Invariant under Acceleration Boosts

Having displayed explicity the Group transformations rules of the coordinates in Phase
space we will show why infinite acceleration-boosts (which is not the same as infinite
proper acceleration) preserve Planck-Scale Areas [4] as a result of the fact that b = (1/L2

P )
equals the maximal invariant force, or string tension, if the units of h̄ = c = 1 are used.

At Planck-scale LP intervals/increments in one reference frame we have by definition
(in units of h̄ = c = 1): ∆X = ∆T = LP and ∆E = ∆P = 1

LP
where b ≡ 1

L2
P

is the

maximal tension. From eqs-(1-6a, 1-6d) we get for the transformation rules of the finite
intervals ∆X, ∆T, ∆E, ∆P , from one reference frame into another frame, in the infinite
acceleration-boost limit ξ →∞,

∆T ′ = LP (coshξ + sinhξ) →∞ (1.12a)

∆E ′ =
1

LP

(coshξ − sinhξ) → 0 (1.12b)

by a simple use of L’Hopital’s rule or by noticing that both coshξ; sinhξ functions ap-
proach infinity at the same rate.

∆X ′ = LP (coshξ − sinhξ) → 0. (1.12c)

∆P ′ =
1

LP

(coshξ + sinhξ) →∞ (1.12d)

where the discrete displacements of two events in Phase Space are defined: ∆X = X2 −
X1 = LP , ∆E = E2 − E1 = 1

LP
, ∆T = T2 − T1 = LP and ∆P = P2 − P1 = 1

LP
.

Due to the identity:

(coshξ + sinhξ)(coshξ − sinhξ) = cosh2ξ − sinh2ξ = 1 (1.13)

one can see from eqs-(1.12a, 1.12d) that the Planck-scale Areas are truly invariant under
infinite acceleration-boosts ξ = ∞:

∆X ′∆P ′ = 0×∞ = ∆X∆P (cosh2ξ − sinh2ξ) = ∆X∆P =
LP

LP

= 1. (1.14a)

∆T ′∆E ′ = ∞× 0 = ∆T∆E(cosh2ξ − sinh2ξ) = ∆T∆E =
LP

LP

= 1. (1.14b)
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∆X ′∆T ′ = 0×∞ = ∆X∆T (cosh2ξ − sinh2ξ) = ∆X∆T = (LP )2. (1.14c)

∆P ′∆E ′ = ∞× 0 = ∆P∆E(cosh2ξ − sinh2ξ) = ∆P∆E =
1

L2
P

. (1.14d)

It is important to emphasize that the invariance property of the minimal Planck-scale
Areas (maximal Tension) is not an exclusive property of infinite acceleration boosts
ξ = ∞, but, as a result of the identity cosh2ξ−sinh2ξ = 1, for all values of ξ, the minimal
Planck-scale Areas are always invariant under any acceleration-boosts transformations.
Meaning physically, in units of h̄ = c = 1, that the Maximal Tension (or maximal Force)
b = 1

L2
P

is a true physical invariant universal quantity. Also we notice that the Phase-

space areas, or cells, in units of h̄, are also invariant ! The pure-acceleration boosts
transformations preserve the symplectic form dX ∧ dP + dE ∧ dT .

The infinite acceleration-boosts are closely related to the infinite red-shift effects when
light signals barely escape Black hole Horizons reaching an asymptotic observer with an
infinite redshift factor. The important fact is that the Planck-scale Areas are truly main-
tained invariant under acceleration-boosts. This could reveal very important information
about Black-holes Entropy and Holography.

A natural action associated with the invariant interval in Phase-Space given by eq-(1.1)
is :

S = m
∫

dτ

√
1 +

m2

m2
P a2

(d2xµ/dτ 2)(d2xµ/dτ 2). (1.15)

The proper-acceleration is orthogonal to the proper-velocity and this can be easily
verified by differentiating the timelike proper-velocity squared:

V 2 =
dxµ

dτ

dxµ

dτ
= V µVµ = 1 > 0 ⇒ dV µ

dτ
Vµ =

d2xµ

dτ 2
Vµ = 0. (1.16)

which implies that the proper-acceleration is spacelike:

−g2(τ) =
d2xµ

dτ 2

d2xµ

dτ 2
< 0 ⇒ S = m

∫
dτ

√
1− m2g2

m2
P a2

= m
∫

dω. (1.17)

where the analog of the Lorentz time-dilation factor in Phase-space is now given by

dω = dτ

√√√√1− m2g2(τ)

m2
P a2

. (1.18a)

namely,

(dω)2 = Ω2dτ 2 = [1− m2g2(τ)

m2
P a2

]gµνdxµdxν . (1.18b)

The invariant proper interval is no longer the standard proper-time τ but is given by
the quantity ω(τ) . The deep connection between the physics of maximal acceleration
and Finsler geometry has been analyzed by [8]. The action is real-valued if, and only if,
m2g2 < m2

P a2 in the same fashion that the action in Minkowski spacetime is real-valued
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if, and only if, v2 < c2. This is the physical reason why there is an upper bound in the
proper-four force acting on a fundamental particle given by (mg)bound = mP (c2/LP ) = m2

P

in natural units of h̄ = c = 1.
In the next section we construct a local gauge theory of the Quaplectic group

Q(1, 3) ≡ U(1, 3)⊗sH(1, 3), where the Nonabelian Heisenberg group is H(1, 3) and which
has been studied extensively over the years by Low [20]. The U(1, 3) arises as the group
that leaves invariant the interval in 8D Phase dxµdxµ + dpµdpµ space as well as invariant
the symplectic two-form ω = ωµνdxµ ∧ dpν , simultaneously. For further details on the
Quaplectic group Q(1, 3) ≡ U(1, 3)⊗s H(1, 3), the Nonabelian Phase Space defined as the
coset Q1,3 ≡ Q(1, 3)/SU(1, 3); Casimir invariant field equations; unitary irreducible rep-
resentations based on Mackey’s theory of induced representations; relativistic harmonic
oscillator, coherent states, the granularity of spacetime, the Schrodinger-Robertson in-
equality, multi-mode squeezed states, ”non-commutative” relativistic phase space geome-
try, ..... in which position and momentum are interchangeable and frame-dependent, ....
see [20], [21].

2 Complex Nonabelian Gravity as a Gauge The-

ory of the Quaplectic Group and Born’s Reciprocal

General Relativity

Einstein’s General Theory of Relativity admits a reformulation as a gauge theory of the
Poincare group that is the semi-direct product of the Lorentz group and the (Abelian)
Translation group SO(1, 3) ⊗s T4. The spin connection ω[ab]

µ gauges the (local) Lorentz
symmetry of the tangent space while the tetrad ea

µ gauges the (local) Abelian translations.

The latter fields can be incorporated into a connection Aµ = ω[ab]
µ L[ab]+ea

µPa. The Lorentz
and translation generators are L[ab], Pa respectively with a, b = 1, 2, 3, 4 and where [ab]
denotes the anti-symmetry property of the indices of the Lorentz generators. Supergravity
also admits a reformulation as a gauge theory of the super-Poincare group where the spin
3
2

gravitino field Ψα
µ gauges the (local) supersymmetry algebra and whose generators are

given by the spinorial Qα ”charges”. The Metric Affine Theories of Gravity are based
on the semi-direct product of GL(4, R)⊗s T4 [19]. The group GL(4, R) admits infinite-
dimensional spinorial representations and for this reason it has not been widely used,
compared to the Lorentz group that admits finite-dimensional spinorial representations.

The main purpose of this section is to show how one can construct an Extended Gen-
eral Relativity Theory based on Born’s Reciprocal Relativity principe with a maximal
speed limit c and a maximal proper force Fmax = b by gauging the Quaplectic-group
[20] given by the semi-direct product of the U(1, 3) group and the Nonabelian Heisen-
berg H(1, 3) group : Q(1, 3) ≡ U(1, 3)⊗s H(1, 3). We should stress that our results (as
far as we know) are new and differ from the prior constructions of a Complex Gravity
theory initiated by Einstein-Strauss [25] and continued later on by Moffat and Boal [27]
by recurring to a symmetric and non-symmetric metrics. A U(1, 3) gauge formulation of
Complex Gravity has been studied before by [22], however these authors did not include
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the Nonabelian Heisenberg algebra H(1, 3) into account, nor they and the prior authors
studying Complex Gravity realized the crucial existence of an underlying Born’s Recip-
rocal Relativity principle operating in the Complex Nonabelian Gravity Theory to be
constructed next. For these reasons we must emphasize that the results of this section are
new (to our knowledge) and are not a repetition of previous work on Complex Gravity.

Furthermore, we must also emphasize that Low [20] has already explained that it is
possible to avoid the no − go theorem of Schuller [9], stating that one cannot lift the
identification of the Quaplectic coset space Q1,n = Q(1, n)/SU(1, n) to the tangent space
of a more general Nonabelian manifold with curvature, due precisely to the presence
of the central charge generator I of the Nonabelian Weyl-Heisenberg algebra and which
furnishes a crucial ηab I Zab term in the quadratic Casimir invariant associated with the
Quaplectic group. Zab are the U(1, n) generators. Interestingly enough is the fact that
Armand Wyler [30] long ago studied the geometry of the coset spaces Q1,n within the
context of Symplectic Groups, Spinors and the Complex Lightcone that permitted him
to derive the value of the fine structure constant 1/137 from purely geometric means.

Also worth mentioning is that the real dimensions of the Quaplectic coset space Q1,3 =
Q(1, 3)/SU(1, 3) is 25− 15 = 10 which coincides with the ten dimensions of the anomaly
free superstring theory. This may be just a numerical coincidence, nevertheless it deserves
further investigation. Quaternionic and Octonionic Gravity have been studied in [26], [29],
[32]. It is warranted to study the physical implications of these theories within the context
of Grand Unfication. A Chern-Simons E8 Gauge theory of Gravity and Grand Unification
was proposed recently by [34].

The Nonabelian Heisenberg algebra H(1, 3) involves the generators

Za =
1√
2

(
Xa

λl

− i
Pa

λp

); Z̄a =
1√
2

(
Xa

λl

+ i
Pa

λp

); a = 1, 2, 3, 4. (2.1a)

Notice that we must not confuse the generators Xa, Pa (associated with the fiber coordi-
nates of the internal space of the fiber bundle) with the ordinary spacetime coordinates
and momenta xµ, pu. If one writes

xµ = ea
µ Xa; pν = eb

µ pb ⇒ [xµ, pν ] = ih̄ gµν I. (2.1b)

where the curved spacetime metric in terms of the tetrads is gµν = ea
µ eb

ν ηab. The Gauge
theory is constructed in the fiber bundle over the base manifold which is a 4D curved
spacetime with commuting coordinates xµ = x0, x1, x2, x3. The Quaplectic group acts
as the Automorphism group along the internal Fiber coordinates. The 8D curved Phase
space is defined as the cotangent bundle of the 4D curved spacetime. Since Xa does
not commute with Pa one has a Noncommutative Relativistic Phase space. However,
we must stress that the coordinates xµ are commuting among themselves. Also the
momenta pµ variables are commuting among themselves. Therefore we must not confuse
the Complex Nanbelian Gravity constructed here with the Noncommutative Gravity work
in the literature [15] where the spacetime coordinates xµ are not commuting.

The four fundamental length, momentum, temporal and energy scales are respectively

λl =

√
h̄c

b
; λp =

√
h̄b

c
; λt =

√
h̄

bc
; λe =

√
h̄bc. (2.2)
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where b is the maximal proper force associated with the Born’s reciprocal Relativity
theory. In the natural units h̄ = c = b = 1 all four scales become unity. The gravitational
coupling is given by

G = αG
c4

Fmax

= αG
c4

b
. (2.3)

if, and only if, αG = 1 the four scales coincide then with the Planck length, momentum,
time and energy, respectively and we can verify that

Fmax = mPlanck
c2

LPlanck

∼ MUniverse
c2

RHubble

. (2.4)

it was proposed in [33] that a certain large (Hubble) /small (Planck) scale duality was
operating in this Born Reciprocal Relativity theory reminiscent of the T -duality in string
theory compactifications. The numerical value αG needs to be determined experimentally.

The generators Zab, Za, Z̄a, I of the U(1, 3) algebra and the non-abelian Heisenberg
algebra obey the relations

(Zab)
† = Zab; (Za)

† = Z̄a; I† = I; a, b = 1, 2, 3, 4. (2.5)

The Quaplectic group [20] is given by the semi-direct product of the U(1, 3) group and
the Heisenberg H(1, 3) group : Q(1, 3) ≡ U(1, 3) ⊗s H(1, 3) and is defined in terms
of the generators Zab, Za, Z̄a, I with a, b = 1, 2, 3, 4. The commutation relations of the
Non-abelian Heisenberg algebra generators Za

Za =
1√
2

(
Xa

λl

− i
Pa

λp

); Z̄a =
1√
2

(
Xa

λl

+ i
Pa

λp

). (2.6)

are

[Za, Z̄b] = −αh̄ ηab I; [Z̄a, Zb] = αh̄ ηab I; [Za, Zb] = [Z̄a, Z̄b] = 0. (2.7)

with the Planck constant given by h̄ = αh̄ λl λp from which we can infer that αh̄ = 1 as
a result of the relations (2.2).

The generators Zab of the U(1, 3) algebra can be decomposed into the Lorentz-
subalgebra generators Lab and the ”shear”-like generators Mab as

Zab ≡ Mab− iLab; Lab = L[ab] =
i

2
(Zab−Zba); Mab = M(ab) =

1

2
(Zab +Zba), (2.8)

one can see that the ”shear”-like generators Mab are Hermitian and the Lorentz gen-
erators Lab are anti − Hermitian with respect to the fiber internal space indices. The
explicit commutation relations of the Quaplectic algebra are then

[Lab, Lcd] = (ηbcLad − ηacLbd − ηbdLac + ηadLbc). (2.9a)

[Mab, Mcd] = i (ηbcMad + ηacMbd + ηbdMac + ηadMbc). (2.9b)

[Lab, Mcd] = (ηbcMad − ηacMbd − ηbdMac + ηadMbc). (2.9c)
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[Lab, Xc] = (ηbcXa − ηacXb); [Lab, Pc] = (ηbcPa − ηacPb). (2.10a)

[Mab, Xc] = − i (ηbcPa − ηacPb); [Mab, Pc] = i (ηbcXa − ηacXb) (2.10b)

supplemented by the commutators of the Weyl-Heisenberg non-Abelian algebra

[
Xa

λl

,
Pb

λp

] = i αh̄ ηab I; [Xa, Xb] = [Pa, Pb] = 0. (2.11)

where the metric ηab = (+1,−1,−1,−1) is used to raise and lower indices and h̄ =
αh̄ λl λp. From the definitions ( 2.2 ) one can infer that αh̄ = 1.

The complex tetrad Ea
µ transforming under the fundamental representation of U(1, 3)

is defined as

Ea
µ =

1√
2

( ea
µ + ifa

µ ); Ēa
µ =

1√
2

( ea
µ − ifa

µ ). (2.12)

The complex metric is given by

Gµν = Ēa
µ Eb

ν ηab = g(µν) + ig[µν] = g(µν) + iBµν . (2.13)

such that

(Gµν)
† = Ḡνµ = Gµν ; Ḡµν = Gνµ. (2.14)

where the bar denotes complex conjugation. Despite that the metric is complex the
infinitesimal line element is real

ds2 = Gµν dxµ dxν = g(µν) dxµ dxν , because i g[µν] dxµ dxν = 0. (2.15a)

We have identified the anti-symmetric components of the metric g[µν] = Bµν with the
anti-symmetric tensor Kalb-Ramond-like field present in the massless spectrum of closed-
strings and the symmetric components g(µν) with the ordinary spacetime Riemannian
metric. Under infinitesimal U(1, 3) gauge transformations the complex tetrad transforms
as

δEa
µ = (ξa

b(1) + iξa
b(2))E

b
µ. (2.15b)

where the real ξ
(1)
[ab] and imaginary ξ

(2)
(ab) components of the complex parameter are anti-

symmetric and symmetric respectively with respect to the indices a, b for anti-Hermitian
infinitesimal U(1, 3) gauge transformations.

The Quaplectic-algebra-valued anti-Hermitian gauge field (Aµ)† = −Aµ is given by

Aµ = Ωab
µ Zab +

i

LP

( Ea
µ Za + Ēa Z̄a ) + i Ωµ I . (2.16)

where the Planck length scale LP needs to be introduced in the second terms in the r.h.s
since the connection Aµ must have units of (length)−1. In natural units of h̄ = c = 1 the
gravitational coupling in 4D is G = L2

P . A length scale squared l2 given as the product
of the Hubble and Planck scale l2 = RHubble LPlanck and such that the observed value of
the vacuum energy is l−4 ∼ 10−122M4

Planck was derived in [16]. Since Born’s Reciprocal
Relativity is consistent with a maximal (Hubble) and minimal (Planck) scale duality [33]
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it is not surprising to see why the observed vacuum energy might involve the product of
an upper and lower scale.

From eq-(2.1) one obtains the dimensionless quantity

Ea
µ Za + Ēa Z̄a = ea

µ

Xa

λl

+ fa
µ

Pa

λp

. (2.17)

In Born’s Reciprocal Relativity X and P are interchangeable so there is no discrepancy
in assigning fa

µ to the Pa generator and ea
µ to the Xa generator.

Decomposing the anti-Hermitian components of the connection Ωab
µ into anti-

symmetric [ab] and symmetric (ab) pieces with respect to the internal indices

Ωab
µ = Ω[ab]

µ + i Ω(ab)
µ . (2.18)

gives the anti-Hermitian U(1, 3)-valued connection

Ωab
µ Zab = (Ω[ab]

µ + i Ω(ab)
µ ) (Mab − i Lab) =

− i Ω[ab]
µ Lab + i Ω(ab)

µ Mab ⇒ (Ωab
µ Zab)

† = − Ωab
µ Zab. (2.19)

since (Zab)
† = Zab

In the standard complex gravity theory introduced by Einstein-Strauss the complex
connection (affinity) Λab

µ which defines the covariant derivatives of the complex tetrads is
also anti-Hermitian with respect to the indices of the tangent space

Λab
µ = Λ[ab]

µ + i Λ(ab)
µ ⇒ (Λab

µ )† = − Λba
µ . (2.20)

The Quaplectic-algebra-valued field strength is :

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] =

F ab
µν Zab + F a

µν Za + F̄ a
µν Z̄a + Fµν I (2.21)

The components of the curvature two-form associated with the anti-Hermitian con-
nection Ωab

µ = Ω[ab]
µ + iΩ(ab)

µ are

F ab
µν = ∂µΩab

ν − ∂νΩ
ab
µ + Ωa

µc Ωcb
ν − Ωa

νc Ωcb
µ . (2.22)

where Ωa
µc = Ωad

µ ηdc.
The components of the Torsion two-form are :

F a
µν = ∂µE

a
ν − ∂νE

a
µ + Ωa

µc Ec
ν − Ωa

νc Ec
µ. (2.23)

the F̄ a
µν components are obtained by replacing Ea

µ → Ēa
µ in (2.23). The remaining field

strength has roughly the same form as a U(1) field strength in Noncommutative spaces
due to the additional contribution of Bµν resulting from the Nonabelian nature of the
Weyl-Heisenberg algebra in the internal space (fibers) and which is reminiscent of the
Noncommutativity of the coordinates with the momentum :

Fµν = i ∂µΩν − i ∂νΩµ + [ iEa
µ Za, iĒb

ν Z̄b ] + [ iĒa
µ Z̄a, iEb

ν Zb ] =

11



i( ∂µΩν − ∂νΩµ ) − αh̄ ( Gµν − Gνµ ) =

i Ω[µν] − ( Gµν − Gνµ ) = i Ω[µν] − 2i Bµν (2.24)

upon setting αh̄ = 1 and recurring to the commutation relations

[Za, Z̄b] = − αh̄ ηab I; [Z̄a, Zb] = αh̄ ηab I. (2.25)

and the Hermitian property of the metric

Gµν = Ēa
µ Eb

ν ηab = [ Ea
µ Ēb

ν ηab ]∗ = (Gνµ)∗ ⇒ (Gµν)
∗ = Gνµ. (2.26)

where ∗ stands for (bar) complex conjugation.
In the Complex Gravity formulation of Einstein-Strauss the components Fµν are

absent. One may constrain the Torsion F a
µν to zero (which is not required to do so in

the most general case and especially if we wish to incorporate fermions). The curvature
tensor is defined in terms of the anti-Hermitian connection Ω[ab]

µ + i Ω(ab)
µ as

Rρ
µνλ ≡ ( F [ab]

µν + i F (ab)
µν ) Eρ

a Ebλ. (2.27)

where the explicit components F [ab]
µν and F (ab)

µν can be read from the defining relations :

F [ab]
µν L[ab] = (∂µΩ[ab]

ν − ∂νΩ
[ab]
µ ) L[ab] + [ Ω[ac]

µ L[ac], Ω[eb]
ν L[eb] ]. (2.28a)

F (ab)
µν M(ab) = (∂µΩ(ab)

ν − ∂νΩ
(ab)
µ ) M(ab) + [ Ω(ac)

µ M(ac), Ω(eb)
ν M(eb) ] +

[ Ω[ac]
µ L[ac], Ω(eb)

ν M(eb) ] + [ Ω(ac)
µ M(ac), Ω[eb]

ν L[eb] ]. (2.28b)

after recurring to the commutation relations (2.9). The above relations (2.28) are consis-
tent with the definitions in eqs-(2.22, 2.23).

Contracting indices yields a complex-valued Ricci tensor

Rµλ = δν
ρ Rρ

µνλ = R(µλ) + i R[µλ]. (2.29)

A further contraction yields the generalized (real-valued) Ricci scalar

R = (g(µλ) + i g[µλ]) ( R(µλ) + i R[µλ] ) =

R = g(µλ) R(µλ) − Bµλ R[µλ]; g[µλ] ≡ Bµλ. (2.30)

where the first term g(µλ) R(µλ) corresponds to the usual scalar curvature of the ordi-
nary Riemannian geometry. The presence of the extra terms Bµλ R[µλ] due to the anti-
symmetric components of the metric and the Ricci tensors are one of the hallmarks of
Complex Gravity.

The real-valued action linear in the generalized Ricci scalar curvature is then given by
the Einstein-Srauss form

1

2κ2

∫
M4

d4x
√
| det (g(µν) + iBµν) | R =

12



1

2κ2

∫
M4

d4x
√
| det (g(µν) + iBµν) | ( g(µλ) R(µλ) − Bµλ R[µλ] ). (2.31)

where κ2 = 8πG is the gravitational coupling and in natural units h̄ = c = 1 one has
G = L2

Planck. We should not forget the presence of the components Fµν (and in general
not to constrain the Torsion to zero) . Therefore, one could add an extra contribution to
the action stemming from the terms iBµνFµν which is very reminiscent of the BF terms
in Topological Gravity and Plebanksi’s formulation of gravity. In the most general case,
one must include both the contributions from the Torsion and the i BµνFµν terms.

The contractions involving Gµν = g(µν) + iBµν with the components Fµν (due to the
antisymmetry property of Fµν = −Fνµ) lead to

i Bµν Fµν = − Bµν ( ∂µΩν − ∂νΩµ ) + 2 Bµν Bµν = − Bµν Ωµν + 2 Bµν Bµν . (2.32)

Therefore, the above terms (2.32) are real-valued as they should be if one wishes to build
a real-valued action involving these terms.

When the Torsion is not constrained to vanish one must include those contributions
as well. Hence, to sum up, the net contribution of the R scalar curvature, including the
i BµνFµν and Torsion terms, to the candidate action is of the form

1

2κ2

∫
M4

d4x
√
| det (g(µν) + iBµν) | [ a1R + i a2B

µνFµν + Torsion ] =

1

2κ2

∫
M4

d4x
√
| det (g(µν) + iBµν) | [ a1g

(µλ) R(µλ) − a1 Bµλ R[µλ] + ............ ]. (2.33)

where the ellipsis ....... stand for

−a2 Bµν Ωµν + 2a2 Bµν Bµν + Torsion. (2.34)

The Torsion terms are
a3 Tµνρ T µνρ + a4 Tµ T µ. (2.35)

where the Torsion tensor and Torsion vector are defined in terms of the components of
the Torsion two-form

( F a
µν Za + F̄ a

µν Z̄a ) dxµ ∧ dxν . (2.36a)

as
T ρ

µν ≡ (F a
µν Eρ

a + F̄ a
µν Ēρ

a); Tµ = δν
ρ T ρ

µν . (2.36b)

a1, a2, a3, a4 are suitable numerical coefficients that will be constrained to have certain
values if one wishes to avoid the presence of propagating ghosts degrees of freedom.

In the very special case when Ωµν = Bµν one has

− Bµν Ωµν + 2 Bµν Bµν = Bµν Bµν . (2.37)

such that the BF terms reduce to a mass-like term for the Bµν field. Mass terms for the
Bµν and a massive graviton formulation of bi-gravity (in addition to a massles graviton)
based on a SL(2, C) gauge formulation have been studied by [22], [28], [27] .

13



For closed-strings propagating in curved backgrounds the Kalb-Ramond field Bµν ap-
pears in the closed-string effective action only through the presence of its field strength
H = Hµνρ = ∂µBνρ + ..... which has the same role as a propagating Torsion and it exhibits
the gauge symmetry Bµν → Bµν + ∂µΛν − ∂νΛµ leaving H invariant. It is interesting that
if Ωµν = Bµν this means that the Kalb-Ramond field is pure gauge with trivial kinetic
degrees of freedom since H = dB = ddΩ = 0. Therefore, one could gauge away the
field Bµν from the action and which is consistent with the fact that there are no mass
terms BµνB

µν in the closed-string effective action action to lowest order, because the Bµν

field in closed string theory is massless. We need to explore further the connection of
Born’s Reciprocal Relativity with closed-string theory, in particular to find the place for
the massless dilaton which is not present here. However, one knows that the conformal
group is SU(2, 2) which would be associated with a gauge theory based on the group
U(2, 2) = U(1) ⊗ SU(2, 2) rather than U(1, 3) group studied here; i.e. the signature of
spacetime would be (+, +,−,−) instead of (+,−,−,−).

Notice that in general the extra contribution from the iBµνFµν terms is not present in
the Einstein-Strauss formulation of Complex Gravity. These extra iBF terms in the action
are the signature of the Nonabelian Weyl-Heisenberg algebraic sector of the Quaplectic-
group and should be essential in the construction of a Quantum Gravity based on Born’s
Reciprocal General Relativity theory in a curved spacetime. It is our belief that the action
(2.33) based on Born’s Reciprocal Relativity principle involving a maximal speed limit
and a maximal proper force is a very promising avenue to Quantize Gravity that does not
rely in breaking the Lorentz symmetry at the Planck scale in contrast to other approaches
based on deformations of the Poincare algebra, Quantum Groups [10], [17], [14] .

A Quaplectic-group invariant Killing metric κAB is given in terms of the structure
constants of the algebra as κAB = fACD fCD

B where the indices A, B... span over all the
indices of the generators Zab, Za, Z̄a and the central element I of the Quaplectic-algebra
with a, b = 1, 2, 3, 4. A Quaplectic-group-invariant Yang-Mills-like action is then

∫
M4

d4x
√
| det (g(µν) + iBµν) | κAB FA

µν FB
ρσ Gµρ Gνσ + complex conjugate. (2.38)

A Quaplectic-group-invariant topological action like the theta term in QCD is∫
M4

d4x
√
| det (g(µν) + iBµν) | κAB FA

µν FB
ρσ εµνρσ + complex conjugate. (2.39)

where FA
µν are the components of the Quaplectic-algebra-valued two-form

Fµν dxµ∧dxν = FA
µν TA dxµ∧dxν = (F ab

µν Zab + F a
µν Za + F̄ a

µν Z̄a + Fµν I) dxµ∧dxν .
(2.40)

These actions (2.38, 2.39) are very appealing because we know from the work of McDowell-
Mansouri and Chamseddine-West that a topological action like (2.39) based on the Anti
de Sitter group SO(3, 2) in 4D, with signature (+, +, +, 1) and after setting the Tor-
sion to zero, leads to the Einstein-Hilbert action with a cosmological constant and the
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Gauss-Bonnet curvature squared terms (a topological invariant in four dimensions). The
Einstein-Hilbert action stems form the terms R ∧ e ∧ e present in the Fab ∧ Fcd ex-
pansion of the action resulting from the decomposition of the SO(3, 2) field strength
F ab

µν = Rab
µν + 1

l2
ea

µ ∧ eb
µ. The tetrad ea

µ ≡ l Aa5
µ and the spin connection is ωab

µ ≡ Aab
µ since

the internal SO(3, 2) group indices range from 1, 2, 3, 4, 5. The length scale l required
to match units is related to the throat size of Anti de Sitter space (the cosmological
constant).

One may ask whether or not something similar might occur with the action (2.39).
The reason is that the Quaplectic group Q(1, 3) has 25 real generators. 16 generators
from the U(1, 3) group. 8 generators from the Nonabelian translation generators Za, Z̄a (
or Xa and Pa ) and 1 central element generator I. Thus the 25 real generators of Q(1, 3)
match precisely the number of generators of the group U(1, 4) = U(1)⊗SU(1, 4). Thus a
Topological action based on the group U(1, 4) would be the unitary group analogy of the
McDowell-Mansouri and Chamseddine-West procedure to generate an Einstein-Hilbert
action with a cosmological constant and the Gauss-Bonnet curvature-squared topological
invariant.

The indices A, B associated with a U(1, 4) gauge theory range now from 1, 2, 3, 4, 5 so
the gravitational term should emerge from products of the form Fab

µν ∧ F cd
µν where now

Fab
µν = (∂µΩab

ν − ∂νΩ
ab
µ + Ωa

µc Ωcb
ν − Ωa

νc Ωcb
µ ) + (Ωa

µ5 Ω5b
ν − Ωa

ν5 Ω5b
µ ) +

(Ωab
µ Ω55

ν − Ωab
ν Ω55

µ ) =

F ab
µν +

i

l2
(Ea

µ ∧ Eb
ν + Ēa

µ ∧ Ēb
ν) + i Ωab

µ ∧ Ων . (2.41)

where one makes the following identifications of the components ΩAB
µ when A, B =

1, 2, 3, 4, 5

Ω55
µ = i Ωµ;

1

2
(Ea

µ + Ēa
µ) = Ω(a5)

µ ;
1

2i
(Ea

µ − Ēa
µ) = Ω[a5]

µ . (2.42a)

ΩAB
µ = Ωab

µ , when A, B = a, b = 1, 2, 3, 4. (2.42b)

Therefore the products of the form Fab
µν ∧ F cd

µν will contain the gravitational term :

1

l2
Rab

µν ∧ Ec
ρ ∧ Ed

σ εabcd εµνρσ. (2.43a)

since Rab
µν = F ab

µν in last terms of (2.41), in addition to curvature squared terms and the
cosmological constant term

1

l4
Ea

µ ∧ Eb
ν ∧ Ec

ρ ∧ Ed
σ εabcd εµνρσ + complex conjugate (2.43b)

There is one problem when l2 ∼ G because it yields a huge value of the cosmological
constant. The way to solve this problem in the case of the Anti de Sitter group SO(3, 2)
in 4D and generate the correct value of the cosmological constant was found in [16] by
working with a BF-Chern-Simons-Higgs model
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S =
∫

M4

Φ F ∧ F + Φ dΦ ∧ dΦ ∧ dΦ ∧ dΦ − VH(Φ). (2.44)

after adjoining a family of 5 Higgs scalars φA belonging to a SO(3, 2)-valued scalar-
multiplet Φ. It was shown that the solutions to the equations of motion when the Higgs
potential VH(Φ) was minimized at tree level upon choosing the vacuum expectation values

< φ5 > = v; < φa > = 0; a = 1, 2, 3, 4. (2.45)

yielded the zero Torsion condition, without having to impose it by hand, and the Einstein-
Hilbert action with a cosmological constant plus the curvature squared terms (topological
Gauss-Bonnet terms ) such that now one has the following numerical relations

1

l2
v ∼ 1

G
=

1

L2
Planck

;
1

l4
v ∼ ρvacuum. (2.46)

by eliminating the value of the vacuum expectation value < φ5 > = v from (2.46) we
can infer that the vacuum energy density ρvacuum is given then by the geometric mean

ρvacuum ∼ 1

l2
1

L2
Planck

. (2.47)

if one identifies the length scale l with the throat size of Anti de Sitter space given by
the Hubble scale one arrives at the correct value for the observed vacuum energy density
ρvacuum

ρvacuum =
1

R2
Hubble

1

L2
Planck

=
L2

Planck

R2
Hubble

1

L4
Planck

∼ 10−122 M4
Planck (2.48)

Of course, the BF-Chern-Simons-Higgs theory based on the U(1, 4), U(2, 3) groups
needs to be investigated thoroughly, in particular, the topological nature of the curvature
squared terms. These ideas were the basis of our original motivation to construct the
novel Chern-Simons E8 gauge theory of Gravity in D = 15 within the context of a E8

Grand Unification scheme [34].
To conclude, it is warranted to explore the relationship of Finsler Geometry and Max-

imal proper acceleration found by Brandt [8] and the Complex Nonabelian Gravity for-
mulation of Born’s Reciprocal Relativity with a maximal speed and maximal proper force
in spacetime. A covariant acceleration in curved space-times in units of c = 1 is given by

Dvµ

dτ
=

dvµ

dτ
+ Γµ

νρv
νvρ. (2.49)

A particle in free fall follows a geodesic with zero covariant acceleration. The norm of
the spacelike proper acceleration is :

a2 = −gµν
Dvµ

dτ

Dvν

dτ
. (2.50)

The condition a2 ≤ a2
o = ( c2

LP
)2 = 1

L2
P

after the substitution vµ = dxµ/dτ leads to
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dσ2 = gµνdxµdxν + L2
P gαβ (dvα + Γα

λµv
λdxµ) (dvβ + Γβ

δνv
δdxν) ≥ 0. (2.51)

as was shown by Brandt. This is the 8D curved-phase space interval associated with the
cotangent space of the curved spacetime. The Lagrange-Finsler geometric approach to
the interval (2.43) requires that the metric components gµν , gαβ and Γα

µν (the nonlinear
connection) depend both on xµ and vµ !

We treated the spacetime coordinates of the Quaplectic valued gauge theory as real-
valued. One should be able to extend our construction to the case of Complex Coordinates
as well. For example, to build a Quaplectic Gauge theory as a Fiber bundle over the
curved 8D Phase Space rather than having a Quaplectic Gauge theory as a Fiber bundle
over the 4D curved spacetime. Curved Phase spaces, Conformal groups, wavelets and
the geometry of the complex domains studied by Wyler [30] in his derivation of the fine
structure constant have been reviewed by [31].

Chamseddine has studied Gravity in Complex Hermitian Spacetimes based on the
results by Witten [24] on the high-energy behaviour of string scattering amplitudes where
it was observed that the imaginary parts of the string coordinates of the target manifold
appear. In this picture the metric tensor and the Kalb-Ramond anti-symmetric tensor Bµν

are unified in one field, the complex metric tensor of the Hermitian manifold first proposed
by Einstein [25]. Chamseddine arrived at an action in an 8D Real space ( four-complex
dimensional spacetime) which was compatible with the equations of motion associated
with the consistent propagation of closed-strings on Complex target backgrounds. The
action was expressed entirely in terms of the integrable complex structure J (a two-form)
of the complex Hermitian spacetime given by∫

M8

d4z d4z̄ J ∧ ∂J ∧ ∂̄J (2.52)

A Complex Hermitian but non-Kahlerian space has nontrivial Torsion. A Kahler space
has vanishing Torsion. Finsler metrics with symmetric and nonsymmetric components
have been studied by Eisenhart [35]. It is these spaces studied by Eisenhart which deserve
further investigation as those particular closed-string target space backgrounds where
Born’s Reciprocal Relativity principle of a maximal proper force and maximal speed may
be operating simultaneously. The propagation of D branes in curved backgrounds with
anti-symmetric tensor fields Bµν is another interesting project, after all the effective action
governing the behaviour of D branes in curved backgrounds is precisely given by a Born-
Infeld action. Thus the principle of maximal force which is compatible with a minimal
length [36] may be operating in string theory with the main advantage that one does
not need to break the Lorentz invariance. Finally, the connections to Noncommutative
Geometry [23], Noncommutative Gravity [22], [15] and the Extended Relativity theory in
Clifford-spaces [13], [33] warrants further investigation.
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