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On the Unification of Geometric and Random
Structures through Torsion Fields: Brownian
Motions, Viscous and Magneto-fluid-dynamics
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We present the unification of Riemann–Cartan–Weyl (RCW) space-time geom-
etries and random generalized Brownian motions. These are metric compat-
ible connections (albeit the metric can be trivially euclidean) which have a
propagating trace-torsion 1-form, whose metric conjugate describes the aver-
age motion interaction term. Thus, the universality of torsion fields is proved
through the universality of Brownian motions. We extend this approach to give
a random symplectic theory on phase-space. We present as a case study of this
approach, the invariant Navier–Stokes equations for viscous fluids, and the kine-
matic dynamo equation of magnetohydrodynamics. We give analytical random
representations for these equations. We discuss briefly the relation between them
and the Reynolds approach to turbulence. We discuss the role of the Cartan
classical development method and the random extension of it as the method to
generate these generalized Brownian motions, as well as the key to construct
finite-dimensional almost everywhere smooth approximations of the random rep-
resentations of these equations, the random symplectic theory, and the random
Poincaré–Cartan invariants associated to it. We discuss the role of autoparal-
lels of the RCW connections as providing polygonal smooth almost everywhere
realizations of the random representations.

KEY WORDS: Brownian motions; Riemann–Cartan–Weyl connections: trace-
torsion; electromagnetism; autoparallels; Navier–Stokes equations; kinematic
dynamo; turbulence; Reynolds decomposition; stochastic differential equa-
tions.

1. INTRODUCTION

In contemporary theoretical physics, there are two major approaches
which are presented as irreconciliable: the differential geometrical structures
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of gauge theories and general relativity, and the approach to statistical
mechanics and quantum field theories in terms of the Feynman integral
and stochastic processes. Remarkably, the genesis of both can be traced
back to the seminal works of Einstein in general relativity, and his foun-
dational works on Brownian motion. Yet, mainstream physics has left
unconsidered the possibility of an integration, which in fact, has been
developed initially by the present author in a number of fields: equilibrium
and non-equilibrium stastistical mechanics,(24,25) quantum mechanics (36)

and the problem of equivalence between the Maxwell equation (note the
singular on equation) in a Clifford Geometric Calculus(44) setting and
the non-linear Dirac–Hestenes equation which integrates Maxwell’s elec-
tromagnetism and relativistic quantum mechanics in the framework of
a non-linear Heisenberg field theory,(21,27) and specially, the non-linear
Navier–Stokes equations (NS, in the following) of fluid-dynamics and fur-
ther, the equations of passive transport of fields on fluids, particularly, the
kinematic dynamo equation (KDE, in the following) of magnetohydrody-
namics.(3–7,35) The key to this unification between generalized Brownian
motion as the paradigma of non-equilibrium phenomenae whose dynam-
ics are ruled by invariant non-linear stochastic differential equations, and
the geometries of space-time (and still, the random symplectic canonical
structures of phase-space), stems from the simple fact that the genera-
tors of these motions are placed in one-to-one correspondance with linear
connections of Riemann–Cartan–Weyl. These connections (or covariant
derivative operators) have the particularity of being metric compatible (no
historicity problem, which lead to the rejection by Einstein of Weyl’s first
ever gauge theory in 1918(46)) and have a Cartan–Weyl differential 1-form
which is described by the trace-torsion. The laplacian operators of these
covariant derivative operators are the differential generators (or still, the
infinitesimal generators of the diffusion semigroups) of the random con-
tinuous dynamics, and viceversa, given this dynamics, one can retrieve the
connections. The role of the metric, even if trivial Euclidean (in any case,
it has to be properly Riemannian, i.e. positive-definite) is that its square
root describes the noise tensor, and together with the metric conjugate
of the Cartan–Weyl form which describes the average motion (drift) in
their description by stochastic differential equations, they appear in a uni-
fied setting in which, as we said, it is the generalized laplacian associ-
ated to the Riemann–Cartan–Weyl (RCW, in the following) connections.
These connections are of course related still to an extension of scale fields,
and thus they will have appropiate physical constants linked to the noise
term. Thus, this setting can accomodate fluctuations, whatever their origin,
quantum, thermodynamical, or still, due to viscosity (kinematical for NS,
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magnetic for KDE).1 The latter equations of fluid-dynamics, are somewhat
a remarkable example of this approach, since it leads to the analytical rep-
resentations for these equations in terms of stochastic differential equa-
tions, both for the case of compact manifolds with or without boundaries,
and still, in half-space and Euclidean domains; indeed, no general ana-
lytical representations for NS on smooth manifolds were known previous
to this approach (see vol. III, Ref. 15). Although this article will present
some aspects of this example, the author feels obliged to remark that in
no case this example should be seen as final in the formulation of the rela-
tion of this approach with regards to fluid-dynamics, since one can envi-
sion that a new perspective can be forged of theoretical physics and of one
of its standing biggest unsolved problem, that of the characterization of
fluid turbulence, in terms of the derivation of the equations of classical
electrodynamics (which as we shall see in the following accompanying arti-
cle in this volume, can be unified with the Dirac–Hestenes equations of
relativistic quantum mechanics in a Clifford Geometric Calculus setting)

1 The possibility of space-time having torsion, has been discussed mainly in the context
of extensions of general relativity to accomodate for angular momentum.(28) A nota-
ble exception is condensed matter physics, with its applications to metallurgy, defects,
etc., where the role of torsion has for long been known to be essential, precisely asso-
ciated to a dislocation tensor.(22,23) Most of these theories, have proven to be beyond
the reach of present experimental measurements, and thus torsion, whether non-propa-
gating or propagating, is been regarded as a problem of academic exercise. The pres-
ent article, asseses the contrary view: Torsion fields are extremely common as much as
Brownian motion is – and one should stress here the that the quest for verifying exper-
imentally Einstein’s Brownian motion theory lead Perrin and his student Chaudesaiges
to determine Avogrado’s number and basically to establish the reality of the existance of
atoms(20), encompassing as much Chemistry, and in the description of chemical reactions
through the Fokker–Planck operator and stochastic differential equations (see the works
of Schuss and Gardiner(29),) and even polymer physics(29) and as we shall see in this
article, the velocity field of viscous fluids as described by the Navier–Stokes equations.
There is another role of torsion-Brownian motions that should be stressed, which is the
determination of the asymptotic description of chaotic systems, through the determina-
tion of their low dimensional attractors in terms of ordinary differential equations, for
example, the Lorenz attractor. Yet, it has been proved by T. Taylor(33) that the solu-
tions of these systems converge (in the sense of weak convergence of processes) to the
solutions of stochastic differential equations, and thus are equivalenty described by gener-
alized Brownian motions, which as we shall prove in this article, define a connection with
trace-torsion. Taylor reveals in his article his debt to discussions with K. D. Elworthy,
one of the founders of Stochastic Differential Geometry, i.e. the theory of diffusion pro-
cesses on differentiable manifolds, which is the framework in which we shall develop this
article, in connection with the Riemann–Cartan–Weyl connections and their generalized
laplacian operators. Finally, we should like to remark that Taylor’s work was completely
ignored by the chaos industry, which about that time was concerned precisely with the
appearance of random behavior of deterministic dynamics.



1208 Rapoport

from the equations of fluid-dynamics. Such a striking derivation was pro-
vided by H. Marmanis in the framework of 19th century Gibbs vector cal-
culus, and a gauge-theory of turbulence was constructed(19) (where as in
our formulation, it is the potential one-form of velocity that stands at the
basis of the theory, and not the “curvature” 2-form describing the field
intensities, the vorticity as it turns out to be in NS, and we should recall,
in agreement with the Aharonov–Bohm phenomena), and the extension
to the Clifford Geometric Calculus(44) remains as a problem of singular
importance. Having made these clarifications, we state the objective of this
article to be the formulation of the geometry of Brownian motions and
their application to fluid and magnetohydrodynamics, while we keep for
a second accompanying article, the presentation of the constitutive equa-
tions of Brownian motions, particulary electrodynamics and the relation
with the Dirac–Hestenes equation of relativistic quantum mechanics, and
still, the connection with gravitation.

Thus, our first subject will be the general presentation of the equiv-
alence between the RCW connections and random continuous generalized
Brownian motions, to further provide the description of the random trans-
port of differential forms, as the basic setting for the analytical rep-
resentations of NS and KDE, and still, the construction of a natural
random symplectic structure, in terms of the Cartan classical develop-
ment method(26) (from which the gauge theories with torsion appear(34))
and its implementation to give an approximation of the random motions
by ordinary differential equations (in almost all times), and furthermore,
the appearance of random invariants which were obtained recently by the
present author.(7,35)

Some historical considerations are in order. Geometrical and topo-
logical invariants in hydrodynamics and magnetohydrodynamics have been
extensively considered by several authors.(10,16,18,31) Thus, for the Eul-
er equation for perfect fluids, an infinite-dimensional symplectic geome-
try theory was constructed by V. I. Arnold(31) (see refs. in 10), followed
by work by Ebin and Marsden,(17) which is widely perceived as a beau-
tiful example of the differential–geometrical methods in fluid-dynamics,
while a theory for the case of viscous fluids and for magnetohydrodynam-
ics has only been recently constructed by the present author.(3–7,35) This
theory stems from stochastic differential geometry,(1,2,11,12) i.e. a geomet-
ricaly invariant theory of diffusion processes or still, a stochastic theory
of gauge-theoretical structures (linear connnections of RCW in the cur-
rent author’s approach), so that geometrical and probabilistic structures
become unified in a single theory which has been applied to several areas
of mathematical and theoretical physics (see Ref. 5 and references therein).
In particular, this theory has yielded a new class of random symplectic
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invariants for NS, from which in the case of vanishing kinematical vis-
cosity, we retrieve the Arnold–Ebin–Marsden theory. Furthermore, this
approach has yielded analytical representations for NS on smooth com-
pact manifolds with or without smooth boundaries, and still on Euclid-
ean spaces and semispaces.(3,7) The subject of this article is in giving for
a start a rather sketchy (unfortunately due to page limitations) review of
the fundamental elements of stochastic differential geometry, yet stating
the central role of the trace-torsion, which is absent in the classics,(1,2,11,12)

to further extend this methodology previously used to construct the the-
ory for NS and KDE. Of course, such a presentation of Brownian motion
bears little resemblance with the pioneering work of Einstein, Langevin
and Smoluchowski, undoubtedly the founding fathers of the subject, at
least from the physics point of view.(20) This pioneering approach required
the work of several generations of mathematicians working in probability,
starting with Kolmogorov and Wiener, the work of P. Levy as the foun-
der of the school of probability in France and main contributor to Brown-
ian motion theory and its extensions that carry his name, to follow with
the founding of stochastic analysis by Ito and Stratonovich and the devel-
opment of potential theory by Doob. A third conceptual generation car-
ried its development to yield a geometricaly invariant theory of Brownian
motion, and the main activity was carried out by S. Bochner in the
USA, J. Eells, K. D. Elworthy and P. Baxendale in the United Kingdom,
the contributors of the French school P. Malliavin,(2,49) J. M. Bismut,(11)

P. Meyer(49) and L. Schwartz (the founder of the theory of generalized
functions), the Japanese school of Ito (Ikeda, Watanabe, Kunita and Ta-
kayashi(1) and references therein), the Russian school with Dynkin, Dale-
cki, Belopolskaya and Molchanov(51) which lead to the integration by
Gliklikh of NS on the flat torus as a random perturbation of the Arnold–
Ebin–Marsden approach(32); this was followed by the work in the USA by
D. Stroock and S. R. S. Varadhan(50) who developed the martingale prob-
lem approach to the solutions of elliptic and parabolic partial differential
equations for scalar fields through stochastic differential equations, thus
paving the way to its extension to the solution of such equations for differ-
ential forms, which in the work of this author became the method to solve
NS and KDE.

In this article we shall follow a chain of constructions of stochastic
differential geometry following Ref. 5 whose naturality we would like
to stress in remarking that a similar line of development of our ideas,
can be found in the last work by Elworthy (jointly with X. Li and
Y. Le Jan)(47) which was developed independently by the author at
about the same time of appearance of their work: We introduce linear
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connections2and define their laplacians on scalars to further extend them
to define generalized laplacians on differential forms; then we give the sto-
chastic differential equations determined by them through the rules of sto-
chastic analysis, i.e. the Ito–Elworthy formula of the transformation rules
of differential forms along the random continuous curves related to the
generalized scalar laplacian; thus we shall see that the transformation rules
for scalars will determine completely the random evolution of differential
forms. Thus, keeping in mind that odd (even) degree differential forms are
bosons (fermions) in a theory – that we shall present in an accompany-
ing article (see footnote 5 below) – of supersymmetric systems defined by
the Dirac and Laplacian operators for differential forms introduced in this
theory in complementing it with the Clifford geometric calculus, then the
quantization of the motions of bosons and fermions through stochastic
differential equations will appear to be completely determined by the ran-
dom quantization of the paths of scalar fields3. As a final comment, the

2 In Ref. 47 it is the universal connection which will lead to the driftless non-interaction
representations of random motion which also show up in NS as pure noise motions
whose noise tensor incorporates the velocity(5).

3 Starting with the pioneering work by Schroedinger in the thirties of relating his equation
to stochastic processes and in particular diffusion processes, much work has been done to
relate quantum mechanics to diffusion processes, the most known is E. Nelson’s stochas-
tic mechanics.(52) Nelson’s work stirred much interest and developments that follow pres-
ently,(53) as well as alternative approaches in terms of Bernstein’s stochastic processes.(58)

Yet we must stress that although Nelson’s approach was centered on the study of diffu-
sion processes and Schroedinger non-relativistic equations on smooth manifolds, in his
conception stochastic processes and in particular quantum fluctuations bear no relation
with geometrical gauge-theoretical structures, i.e. connections. Thus, it missed the mark
that was being set at the same time by stochastic differential geometry: diffusion pro-
cesses are determined by a geometry, or still, determine a geometry. (Our difference with
the foundational treatment of stochastic differential geometry, is the unified setting that
provides the RCW connections, their Dirac and Laplacian operators.); at the same time
it was elaborated inadvertedly of the fact that the definition of a diffusion process on
a manifold, requires the introduction of a connection (see Ref. 11 and P. Meyer(49)).
Indeed, the problem is to define intrinsically the noise and drift term to yield a diffe-
omorphism invariant construction, and this problem is precisely solved by the introduc-
tion of a RCW connection(5) which places them in a unified setting. Thus, stochastic
mechanics could not treat quantum fluctuations in the setting of a unified theory which
can be established by a gauge theoretical formulation for quantum (or arbitrary) fluctu-
ations that admit a random continuous dynamics. Nelson’s approach requires a forward
and backward stochastic derivative to yield a time-t-reversible theory through a stochas-
tic Newton equation, in contrast with the present one, which is a τ -irreversible theory
(we shall identify τ further below). Yet, it has been argued(57) that the backward deriv-
ative also depends on the single-event distribution, entailing that the drift will depend as
well on it; consequently, the backward process thus introduced is not Markovian and it
yields results in contradiction with quantum mechanics; indeed, the position correlation
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random quantization of scalar fields, such as the Schroedinger equation
for the scalar wave function, such not be understood a priori as the quan-
tization of a spinless particle; indeed, from Hestenes follows that it corre-
sponds to a fixed isotropic spin-eigenvalue (equal to

√−1–h) scalar field.(54)

This quantization in our approach is determined by the generalized la-
placian on scalar fields defined from the connection with torsion, which
we shall see reduces to the RCW connections, since only the trace of the
torsion tensor will appear in the expression for the laplacian. This, as we
shall see in the accompanying article,4does not mean that angular momen-
tum or still spinor fields are excluded from this theory in regards of the
usual association between them and skew-symmetric torsion, but on the
contrary, they are built in the trace-torsion as we shall see in the accompa-
nying article to the present one. Finally, having completed this basic intro-
duction, we shall apply these constructions to NS and KDE and give the
analytical representations for them, in the boundaryless case.

Furthermore, stochastic differential geometry introduced in the con-
figuration manifold M, allows to construct a random symplectic theory
on the cotangent manifold, T ∗M, and in particular, a random symplectic
structure for fluid-dynamics. This construction is established through the
realization by sequences of ordinary differential equations of the random
generalized Brownian motions, and in particular, those that yield the flow
of NS and KDE on smooth compact connected manifolds without bound-
ary, M, which are further isometrically embedded in Euclidean space. In
fact, this construction will follow the formulation of stochastic differen-
tial geometry that stems from the developing (or transfer) method due to
E. Cartan(26), for which a smooth curve lying on an Euclidean n-space is
roled (keeping first-order contact) on a smooth n-manifold,5 extending it
to the random development of Wiener processes on the same Euclidean

function for the quantum harmonic oscillator was computed in the framework of both
quantum and stochastic mechanics, and was found that for the latter yields an exponen-
tially damped expression, which cannot be associated thus with a reversible process.(57)

4 D. Rapoport, “Cartan–Weyl Dirac and Laplacian Operators, Brownian Motions: The
Quantum Potential and Scalar Curvature, Maxwell´s and Dirac–Hestenes Equations, and
Supersymmetric Systems”, to appear in Foundations of Physics, special issue of the Fourth
Biennial Conference on Relativistic Dynamics, Saas Fee, Switzerland, June 12–19, 2004;
L. Horwitz et al. (eds.).

5 Remarkably in the beautiful recent account by Sharpe(26) of the Cartan transfer method
and the theory of the Cartan connections and their formalization by Ehressmann, not
even a comment appears about its role in the foundations of stochastic differential geom-
etry. While E. Cartan and P. Lévy were contemporaries in Paris, and there is no proof
of communication between them (P. Malliavin, personal communication); it is suprising
(or probably we should say that is the signature of the fragmentation of knowledge and
interests of scholars of the present times) that till today followers of E. Cartan continue
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space, as the geometrical construction of the most general diffusion pro-
cesses on general manifolds.(1,2,11) In this extension, we can approximate
smoothly with exception of a zero measure set, the Wiener process and
more generally the noise term and the whole random continuous process,
by a sequence of almost everywhere differentiable smooth paths, that con-
verge in probability to the latter. From this development method, albeit
in configuration space, stemmed our representations for NS and KDE
for smooth boundary compact manifolds.(6) These constructions can be
extended in a seemingly natural presentation (yet a tour de force in sto-
chastic analysis was necessary for this) to T ∗M, which provided with the
canonical symplectic structure, will lead us to construct a random sym-
plectic theory for NS and KDE, and a new class of random invariants
of generalized Brownian motions and a fortiori of quantum mechanics,
yet in this article we shall restrict ourselves to NS and KDE. In the case
of NS, the random lagrangian paths that integrate the fluid flow, can be
associated with a decomposition of the velocity, like the Reynolds’ clas-
sical approach to turbulence in fluids, in a classical velocity which obeys
NS and a random term, which is defined by the noise tensor from the
Riemannian metric which is given; thus, in distinction with the Reynolds
approach, we have no closure problem since the random term is not an
unknown and the only problem which motivates the definition of the ran-
dom Hamiltonian system, is the definition of the derivative of the Wiener
process which is multiplied by the noise tensor. Yet, as we remarked
already, these random flows can be realized by a sequence of almost every-
where classical paths that approximate in probability the random paths
both in configuration and phase spaces generated by the generalized lapla-
cians of our geometries, or still, in terms of a generalized stochastic pro-
cess: the white noise process. This process is defined on a Hilbert rigged
space, or still, a Gel’fand triplet, which is the natural analytical setting
for quantum mechanics as an operator theory, for quantum field theory
in terms of the Feynman path integral and its implementation for gauge
theories (see Rapoport and Tilli(48)), and Prigogine’s spectral approach to
dynamical systems and the problem of the time-arrow.(45) We shall also
briefly discuss the non-uniqueness of these a.e. smooth approximations, as
they can also be realized in terms of almost everywhere (a.e) smooth po-
lygonals RCW autoparallel6 paths (i.e. the ‘straightest’ paths defined by

to be unaware of the role of his work in the foundations of a geometrically invariant
theory of stochastic processes.

6 The Poincaré group theory of gravitation is based on the extension of General Relativ-
ity (GR) by considering Cartan connections with torsion, say ∇, while GR is framed in
terms of metrics g and the associated Levi-Civita connections ∇g . In this theory,(28,56)
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the RCW connection), and thus autoparallels which hitherto could not be
identified with the motion of any physical system (spinless test-particles
submitted to the curvature and torsion of a Cartan connection follow the
geodesic flow, not the autoparallels(34)) adquire a meaning in terms of the
random structure determined by the RCW connection. As an application
of our general constructions, the Euclidean cases R2 and R3 for NS and
KDE will be fully presented.

2. RIEMANN–CARTAN–WEYL GEOMETRY OF DIFFUSIONS

In this section we follow Refs. (3, 5). In this article M denotes a
smooth connected compact orientable n-dimensional manifold (without
boundary). We shall further provide M with a linear (or, still, affine(36))
connection described by a covariant derivative operator ∇ which we
assume to be compatible with a given metric g on M, i.e. ∇g = 0. Given
a coordinate chart (xα) (α = 1, . . . , n) of M, a system of functions on M

(the Christoffel symbols of ∇) are defined by ∇ ∂

∂xβ

∂
∂xγ = �(x)αβγ

∂
∂xα . The

Christoffel coefficients of ∇ can be decomposed as:

�α
βγ =

{
α

βγ

}
+ 1

2Kα
βγ . (1)

The first term in (1) stands for the metric Christoffel coefficients of the
Levi–Civita connection ∇g associated to g, i.e.

{
α

βγ

} = 1
2 ( ∂

∂xβ gνγ + ∂
∂xγ gβν−

∂
∂xν gβγ )gαν , and

Kα
βγ = T α

βγ + Sα
βγ + Sα

γβ, (2)

is the contortion tensor, with Sα
βγ = gανgβκT κ

νγ , and T α
βγ = (�α

βγ −
�α

γβ) the skew-symmetric torsion tensor. We are interested in (one-half) the
Laplacian operator associated to ∇, i.e. the operator acting on smooth
functions on M defined as

H(∇) := 1/2∇2 = 1/2gαβ∇α∇β. (3)

the term ‘autoparallels’ has been coined to indicate the equations of inertial motion
derived from ∇. A more proper name would be ∇-geodesics (which is seldom used):
Indeed, if we consider the restricted case of null torsion so that ∇ becomes ∇g , the ∇g-
geodesic flow is the usual geodesic flow of a metric g. Nevertheless, since the term ‘auto-
parallels’ is the one identifiable by the workers in the field, we shall keep it to facilitate
its interpretation.
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A straightforward computation shows that H(∇) only depends in the trace
of the torsion tensor and g, since it is

H(∇) = 1/2�g + Q̂, (4)

with Q := Qβdxβ = T ν
νβdxβ the trace-torsion one-form and where Q̂ is the

vector field associated to Q via g: Q̂(f ) = g(Q, df ), for any smooth func-
tion f defined on M. Finally, �g is the Laplace–Beltrami operator of g:
�gf = divg gradf , f ∈ C∞(M), with divg and grad are the Riemannian
divergence and gradient, respectively. Thus for any smooth function, we
have �gf = 1/[det (g)]

1
2 gαβ ∂

∂xβ ([det (g)]
1
2 ∂

∂xα f ). Consider the family of 0-
th order differential operators acting on smooth k-forms, i.e. differential
forms of degree k (k = 0, . . . , n) defined on M:

Hk(g, Q) := 1/2�k + L
Q̂

, (5)

In the first summand of the r.h.s. of (5), we have the Hodge operator
acting on k-forms:

�k = (d − δ)2 = −(dδ + δd), (6)

with d and δ the exterior differential and codifferential operators, respec-
tively, i.e. δ is the adjoint operator of d defined through the pairing of k-
forms on M: (ω1, ω2):=

∫ ⊗kg−1(ω1, ω2)volg, for arbitrary k-forms ω1, ω2,
where volg(x) = det(g(x))

1
2 dx is the volume density, g−1 denotes the

induced metric on 1-forms and ⊗kg−1 the induced metric on k-forms. The
last identity in (6) follows from the fact that d2 = 0 so that δ2 = 0. Fur-
thermore, the second term in eq. (5) denotes the Lie-derivative with respect
to the vectorfield Q̂: L

Q̂
= i

Q̂
d + di

Q̂
, where i

Q̂
is the interior product with

respect to Q̂: for arbitrary vectorfields X1, . . . , Xk−1 and φ a k-form defined
on M, we have (i

Q̂
φ)(X1, . . . , Xk−1) = φ(Q̂, X1, . . . , Xk−1). Then, for f a

scalar field, i
Q̂

f = 0 and

L
Q̂

f = (i
Q̂

d + di
Q̂

)f = i
Q̂

df = g(Q, df ) = Q̂(f ). (7)

Since �0 = (∇g)2 = �g, we see that from the family defined in (5) we
retrieve for scalar fields (k = 0) the operator H(∇) defined in (3 and 4).
The Hodge laplacian can be further written expliciting the Weitzenbock
metric curvature term, so that when dealing with M = Rn provided with
the Euclidean metric, �k is the standard Euclidean laplacian acting on the
components of a k-form defined on Rn (0 � k � n).
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Proposition 1. Assume that g is non-degenerate. There is a one-to-one
mapping

∇ � Hk(g, Q) = 1/2�k + L
Q̂

between the space of g-compatible linear connections ∇ with Christoffel
coefficients of the form

�α
βγ =

{
α

βγ

}
+ 2

(n − 1)

{
δα
β Qγ − gβγ Qα

}
, n �= 1 (8)

and the space of elliptic second order differential operators on k-forms
(k = 0, . . . , n).

3. RIEMANN–CARTAN–WEYL DIFFUSIONS ON THE TANGENT
MANIFOLD

In this section we shall present the setting for the extension of the
correspondence of Proposition 1 to a correspondence between RCW con-
nections defined by (8) and diffusion processes of k-forms (k = 0, . . . , n)

having Hk(g, Q) as infinitesimal generators (i.g. for short, in the follow-
ing).7 For this, we shall see this correspondence in the case of scalars,
and then prepare the extension by defining diffusion processes on the
tangent manifold. We have already seen that introduction of more gen-
eral covariant derivative operators (or still, of linear connections) than
the Levi–Civita connection, is naturally associated with the appearance of
an interaction term in the generalized laplacians, which is the vectorfield
given by the g-conjugate of a trace-torsion 1-form and thus with a RCW
connection. We shall further see that in introducing the Wiener processes
(white noise) and the rules of stochastic analysis,(1) the present approach
will lead us to associate the noise tensor of a generalized diffusion process
with the Riemannian metric and the trace-torsion interaction term with
the drift of a diffusion process.

For the sake of generality, in the following we shall further assume
that Q = Q(τ, x) is a time-dependent 1-form, and we assume τ � 0.8

The stochastic flow associated to the diffusion generated by H0(g, Q) has

7 Thus, naturally we shall call these processes as RCW diffusion processes.
8 We have written the dependance of Q in terms of the evolution parameter τ which

should not be confused with the time variable that may exist in the Riemannian mani-
fold M. Thus, we are in a situation similar to relativistic dynamics based in the evolution
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for sample paths the continuous curves τ 	→ x(τ) ∈ M satisfying the Ito
invariant non-degenerate s.d.e. (stochastic differential equation)

dx(τ) = X(x(τ))dW(τ) + Q̂(τ, x(τ ))dτ. (9)

In this expression, X : M × Rm → T M is such that X(x) : Rm → T M is
linear for any x ∈ M, so that we write X(x) = (Xα

i (x)) (1 � α � n, 1 �
i � m) which satisfies Xα

i X
β
i = gαβ , where g = (gαβ), and {W(τ), τ � 0} is

a standard Wiener process on Rm. Taking in account the rules of stochas-
tic analysis(29) for which dWα(τ)dWβ(τ) = δα

βdτ (the Kronecker tensor),
dτdW(τ) = 0 and (dτ)2 = 0, we find that if f : R × M → R is a C2 func-
tion on the M-variables and C1 in the τ -variable, then a Taylor expansion
yields

f (τ, x(τ )) = f (0, x(0)) +
[
∂f

∂τ
+ H0(g, Q)f

]
(τ, x(τ ))dτ

+ ∂f

∂xα
(τ, x(τ ))Xα

i (x(τ ))dWi(τ ) (10)

and thus ∂
∂τ

+ H0(g, Q) is the infinitesimal generator of the diffusion rep-
resented by integrating the s.d.e. (9). Furthermore, this identity sets up the
so-called martingale problem approach to the random integration of linear
evolution equations for scalar fields,(1) and further, for differential forms
as we shall see next. Note, that if we start with Eq. (9), we can reconstruct
the associated RCW connection.

Our next step, is to extend the above results to differential forms, for
which we have to construct diffusions on the tangent manifold. Consider

parameter introduced by Stuckelberg,(37) later elaborated in several pioneering works by
Piron and Horwitz,(38) Fanchi,(39) and which bears a relation with Prigogine’s Liouvil-
lian time.(45) The τ -invariant case of this theory, makes Q independant of τ , but we
stress that it still may depend on t (whenever M is a space-time). In keeping the Rie-
mannian metric (so we are dealing with the local group of orthogonal transformations,
in relation with the random Wiener process that has a positive covariance, and is invari-
ant by these transformations, and further invariant by a full conformal group in which
the rotations are orthogonal(41)) in contrast with a Lorentzian metric, say Minkowski
space, we are formulating a theory which while being invariant by diffeomorphisms, is
not relativistic in the sense of having a Lorentz group gauge invariance. This problem
has been elaborated recently by Horwitz and Oron,(42) and it will be discussed in the
context of Clifford algebras when discussing the random quantization of the Dirac–Hest-
enes equations, in our accompanying article; a fortiori, the present approach will lead to
the non-relativistic equations of viscous fluid-dynamics since M will be a space manifold,
in contrast with the theory for relativistic fluids as approached by Horwitz and Sklarz(43)

in which M is Minkowski space-time.
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the canonical Wiener space � of continuous maps ω : R → Rm, ω(0) = 0,
with the canonical realization of the Wiener process W(τ)(ω) = ω(τ). The
(stochastic) flow of the s.d.e. (9) is a mapping Fτ : M × � → M, τ � 0,

such that for each ω ∈ �, the mapping F.(. , ω): [0, ∞) × M → M, is con-
tinuous and such that {Fτ (x):τ�0} is a solution of Eq. (9) with F0(x) = x,
for any x ∈ M. Under very general analytical conditions on the compo-
nents of the noise tensor and drift vectorfield, for each fixed ω ∈ �, the
flow of Eq. (9) defines a diffeomorphism of M.9 It is most remarkable that
the random flow generated by a RCW connection, and a fortiori, by the
Levi–Civita connection which only accounts for the noise tensor, define for
each fixed Wiener sample path an active diffeomorphism of M, so that the
random flows reproduce diffeomorphormically the differentiable structure
of M. Let us describe the (first) derivative (or jacobian) flow of eq. (9), i.e.
the stochastic process {v(τ) := Tx0Fτ (v(0)) ∈ TFτ (x0)M, v(0) ∈ Tx0M}; here
TzM denotes the tangent space to M at z and Tx0Fτ is the linear derivative
of Fτ at x0. The process {vτ , τ � 0} can be described(12) as the solution of
the invariant Ito s.d.e. on T M:

dv(τ) = ∇gQ̂(τ, v(τ ))dτ + ∇gX(v(τ))dW(τ) (11)

If we take U to be an open neighbourhood in M so that the tangent space
on U is T U = U ×Rn, then v(τ) = (x(τ ), ṽ(τ )) is described by the system
given by integrating Eq. (9) and the invariant Ito s.d.e.

dṽ(τ )(x(τ )) = ∇gX(x(τ))(ṽ(τ ))dW(τ) + ∇gQ̂(τ, x(τ ))(ṽ(τ ))dτ, (12)

9 These analytical conditions are commonplace in p.d.e theory, yet the elaboration of the
diffeomorphism theory for random flows, has been an exceptional piece of art in analy-
sis and probability, which is not possible to present otherwise than in a telegram style.
Say, we assume the components Xα

i , Q̂α , α, β = 1, . . . , n of the vectorfields X and Q̂τ

on M in Eq. (9) are predictable (i.e. measurable with respect to the Borel σ algebra of
sets defined up to time τ ) functions which further belong to C

m,ε
b (0 < ε < 1, m a non-

negative integer), the space of Hölder bounded continuous functions of degree m � 1
and exponent ε, and also that Q̂α(τ ) ∈ L1(R), for any α = 1, . . . , n. With these reg-
ularity conditions, if we further assume that x(τ) is a semimartingale on a probability
space (�, F , P ),(8) then it follows that the flow of Eq. (9) has a modification (which
with abuse of notation we denote as) Fτ (ω) : M → M, Fτ (ω)(x) = Fτ (x, ω), which is
a diffeomorphism of class Cm, almost surely for τ � 0 and ω ∈ �.(8) We would like to
point out that a similar result follows from working with Sobolev space regularity con-
ditions instead of Hölder continuity. Indeed, assume that the components of X and Q̂,
Xα

i ∈ Hs+2(M) and Q̂β ∈ Hs+1(M), 1 � i � m, 1 � β � n, where the Sobolev space

Hs(M) = W 2,s (M) with s > n
2 + m, m � 1.(9) Then, the flow of Eq. (9) for fixed ω

defines a diffeomorphism in Hs(M, M), and hence by the Sobolev embedding theorem,
a diffeomorphism in Cm(M, M).(9)
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with initial condition ṽ(0) = v0. Thus, {v(τ) = (x(τ ), ṽ(τ )), τ � 0} defines
a random flow on T M.

4. REALIZATION OF THE RCW DIFFUSIONS BY ODE’S

To realize the s.d.e’s by o.d.e’s it is mandatory to pass to the
Stratonovich pre-prescription, which are well known to have the same
transformation rules in stochastic analysis that those of classical flows.(1,2,29)

The need for such approximations is obvious whenever the noise tensor is
not trivial, and thus the random integration may be extremely difficult; in
the trivial noise case it becomes superfluous, as we shall see when dealing
with the Euclidean space case further below of this article. Thus, instead
of Eq. (9) we consider the Stratonovich s.d.e. (here denoted, as usual, by
the symbol ◦) for it given by:

dx(τ) = X(x(τ)) ◦ dW(τ) + bQ,X(τ, x(τ ))dτ,

where bQ,X(τ, x(τ )) = Q̂(τ, x(τ )) + S(∇g, X)(x(τ )), (13)

where the drift now contains an additional term, the Stratonovich correc-
tion term, given by S(∇g, X) = 1

2 tr(∇g
XX), where ∇g

XX, the Levi–Civita
covariant derivative of X in the same direction and thus it is an element
of T M, so that in local coordinates we have S(∇g, X)β = 1

2X
β
i ∇g

∂
∂xα

Xα
i .

Now we also represent the jacobian flow using the Stratonovich prescrip-
tion

dṽ(τ ) = ∇gX(x(τ))(ṽ(τ )) ◦ dW(τ) + ∇gbQ,X(τ, x(τ ))(ṽ(τ ))dτ. (14)

Now we shall construct classical flows to approximate the random flow
{x(τ) :τ � 0}. We start by constructing a piecewise linear approximation
of the Wiener process. Thus, we set for each k = 1, 2, . . . ,

Wk(τ) = k

[(
j + 1

k
− τ

)
W

(
j

k

)
+
(

τ − j

k

)
W

(
j + 1

k

)]
,

if
j

k
� τ � j + 1

k
, j = 0, 1, . . . (15)

and we further consider the sequence {xk(τ )}k∈N satisfying

dxk(τ )

dτ
= X(xk(τ ))

dWk

dτ
(τ ) + bQ,X(τ, xk(τ )), (16)
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dṽk(τ )

dτ
= ∇gX(xk(τ ))(ṽk(τ ))

dWk

dτ
(τ ) + ∇gbQ,X(τ, xk(τ ))(ṽk(τ )), (17)

dWk

dτ
(τ) = k

[
W

(
j + 1

k

)
− W

(
j

k

)]
for

j

k
< τ <

j + 1
k

, (18)

(otherwise, it is undefined), so that dWk

dτ
(τ ) exists for almost all values of

τ (a.e., in short in the following). Since {Wk(τ)}k∈N is differentiable a.e.,
thus {xk(τ ) : xk(0) = x(0)}k∈N is a sequence of flows obtained by inte-
gration of well defined o.d.e’s on M a.e., for all W ∈ �. We remark that
{xk(τ )}k∈n depends on the (here chosen canonical) realization of W ∈ �

so that in rigour, we should write {xk(τ, W, x0)}k∈N to describe the flow;
the same observation is valid for the approximation of the derivative flow
below. With the additional assumption that X and Q are smooth, then the
previous sequence defines for almost all τ and for all W ∈ �, a flow of
smooth diffeomorphisms of M, and thus, the flow {vk(τ ) = (xk(τ ), ṽk(τ )) :
vk(0) = (x(0), v(0))} defines a flow of smooth diffeomorphisms of T M.
In this case, this flow converges uniformly in probability, in the group of
smooth diffeomorphisms of T M, to the the flow of random diffeomor-
phisms on T M defined by Eqs. (13) and (14).(1,2,11)

Remarks 1. There is not an unique construction for the approximation
of these random diffeomorphisms by o.d.e’s; indeed, the noise term can
be alternatively presented in terms of the extension of the Cartan develop-
ment method, as a sequence of polygonal geodesic paths.(11) Furthermore,
in the case of manifolds being immersed in Euclidean space (which will
be the case further below) and complete (autoparallels exist for any τ ),
the latter construction can be extended to a unified setting in which the
random diffeomorphisms of a RCW diffusion can be realized (with con-
vergence in probability) by sequences of polygonal autoparallel paths, i.e.
smooth a.e. curves of the form ∇2x(τ)

∂τ 2 = 0, where ∇ is a RCW connection.
These approximations are irreversible per se in distinction with the above
ones, since autoparallels just like geodesics can focus in a point; they can
be constructed through the image of the exponential map of ∇ as the
image of the parallel random transport by ∇ of a family of linear frames
in T M; the presentation of these constructions would increase greatly the
length of this article, and can be found in a somewhat long and intricate
presentation in Chapter 8, of the masterpiece due to Bismut.(11) This is of
great importance, as it allows to establish an original understanding of the
role of the autoparallels of ∇ as we shall argue next. Firstly, autoparallels
are not the paths followed by spinless particles submitted to an exterior
gravitational field described by a linear connection with torsion (the latter
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a common mistake as in Ref. 56), or more restricted, a RCW connec-
tion, which is the geodesic flow as proved independantly of any lagrangian
nor Hamiltonian dynamics.(34) This resulted from applying the ideas of
E. Cartan’s classical developing method and symplectic geometry, to derive
the dynamics of relativistic spinning test-particles on exterior gravitational
fields turned out to be an outstanding success of this approach, yielding
extensions of the well known Papapetrou–Dixon–Souriau equations.(34) So
RCW autoparallel polygonal a.e. smooth paths provide approximations of
the random continuous of RCW diffusions (or still, of the Feynman path
integral representation of their transition density), which as we already
remarked, not necessarily should be thought as spinless particles, further-
more, vis a vis the construction of a theory of supersymmetric systems
which have these motions as their support for the motions of arbitrary
degree differential forms; we shall address the latter problem in the next
Section.10

10 Most remarkably, in the path integral representation due to Kleinert of the classi-
cal action for a scalar path on a time-sliced Euclidean space which through anhol-
onomic coordinate transformation adquires both torsion and curvature, the classical
motions appear to be autoparallels and by applying discretization on them, a short-time-
t Feynman propagator has been built for arbitrary Q which yields the non-relativistic
Schroedinger equation where the Schroedinger operator is the non-relativistic version of
our present H0(g, Q). Yet, in this work, the rule for discretization is the Hanggi–Klim-
ontovich (post-point) rule and thus it is not Ito’s (middle point) nor the Stratonovich
(pre-point) rules; see chapters 10 and 11.(56) Now, the appearance in the present arti-
cle of H0(g, Q) as the differential generator of a diffusion process in terms of which
the whole theory is constructed, has to do with the need of a diffeomorphism invari-
ant description of a diffusion process and its generator, which requires the introduction
of a linear connection,(11) here a RCW connection whose laplacian is H0(g, Q). Such
an approach fixes the discretization rule to be Ito’s, and thus the Brownian integral of
the theory is given by the random integral flow of Ito’s Eq. (9), and thus the Feyn-
man integral which corresponds by analytical continuation on τ of the flow of Eq. (9)
still corresponds to a medium-point rule. In the remarkable computational work due to
Kleinert (which has a number of intriguing postulates for the definition of the Feynman
measure such as a so-called principle of democracy between differentials and increments;
see p. 335 in Ref. 56), no connection is made between diffusion processes, the Schroe-
dinger wave function and the exact term of Q, as it shall appear in the accompanying
article to the present one. Another result of this approach is that it will yield a mod-
ification of the (controversial) coefficient affecting the metric scalar curvature term (see
Ref. 56 and references therein), which in the accompanying article to the present one
due to this author it will be associated with a generalization of Bohm’s quantum poten-
tial in a relativistic setting. We would like to remark that in a recent formulation of a
1 + 1-dimensional relativistic theory of Brownian motion in phase space, it is claimed
that when studying the equilibrium distribution of a free Brownian particle submitted
to a heat bath, the post-point rule is the one that leads to the relativistic Maxwell dis-
tribution for the velocities; see J. Dunkel and P. Hanggi, arXiv:cond-mat/0411011.
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5. RCW GRADIENT DIFFUSIONS OF DIFFERENTIAL FORMS

Assume that there is an isometric immersion of an n-dimensional
manifold M into a Euclidean space Rm given by the mapping f : M →
Rm, f (x) = (f 1(x), . . . , f m(x)). For example, M = Sn, T n, the n-dimen-
sional sphere or torus, respectively, and f is an isometric embedding into
Rn+1, or still M = Rm with f given by the identity map. The existance of
such a smooth immersion is proved by the Nash theorem in the compact
manifold case, yet the result is known to be valid as well for non compact
manifolds (see vol. I(15)). Assume further that X(x) : Rm → TxM, is the
orthogonal projection of Rm onto TxM the tangent space at x to M, con-
sidered as a subset of Rm. Then, if e1, . . . , em denotes the standard basis
of Rm, we have

X(x) = Xi(x)ei, with Xi(x) = grad f i(x), i = 1, . . . , m. (19)

We should remark for the benefit of the reader, that although the noise
term is provided by the isometric immersion and thus associated as in
the general case with the Levi–Civita covariant derivative operator, we still
have a more general covariant derivative, in fact a RCW connection, since
the drift of the diffusion process will continue to be associated with the
g-conjugate of the trace-torsion of this connection, which together with
the metric, yields the RCW connection.

So we are interested in the RCW gradient diffusion processes on com-
pact manifolds isometrically immersed in Euclidean space, given by Eq. (9)
with the diffusion tensor X given by eq. (19). We shall now give the
Ito–Elworthy formula for k-forms (0 � k � n) on compact manifolds
which are isometrically immersed in Euclidean space. Recall that the k-th
exterior product of k time-dependant vector fields v1, . . . , vk is written as
v1∧v2∧· · ·∧vk and �k(R×T M) is the vector space generated by them. We
further denote by C

1,2
c (�k(R × M)) the space of time-dependant k-forms

on M continuously differentiable with respect to the time variable and of
class C2 with respect to the M variable and of compact support with its
derivatives.

Theorem 1 (Ito–Elworthy Formula for k-forms(12)). Let M be isometri-
cally immersed in Rm as above. Let V0 ∈ �kTx0M, 0 � k � n. Set
Vτ = �k(T Fτ )(V0), the k-th Grassmann product of the jacobian flow of
the RCW gradient diffusion with noise tensor X = ∇f . Then ∂τ +Hk(g, Q̂)

is the i.g. (with domain of definition the differential forms of degree k in
C

1,2
c (�k(R × M))) of {Vτ : τ � 0}.
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Remarks 2 Therefore, starting from the flow {Fτ : τ � 0} of the s.d.e.
(9) (or its Stratonovich version given by Eq. (12)) with i.g. given by ∂τ +
H0(g, Q), we construct (fibered on it) the derived velocity process {v(τ) :
τ � 0} given by Eq. (11) (or Eqs. (9) and (12), with the diffusion ten-
sor given by Eq. (19), or still, its Stratonovich version given by Eqs. (13)
and (14)) which has ∂τ + H1(g, Q) for i.g. Finally, if we consider the
diffusion processes of differential forms of degree k � 1, we further get
that ∂τ + Hk(g, Q) is the i.g. of the process {�kv(τ) : τ � 0}, on the
Grassmannian bundle �k(R × T M), (k = 0, . . . , n). Note that consis-
tent with our notation, and since �0(T M) = M we have that �0v(τ) ≡
x(τ), ∀τ � 0. In particular, ∂τ + H2(g, Q) is the i.g. of the stochastic
process {v(τ) ∧ v(τ) : τ � 0} on (R × T M) ∧ (R × T M). Thus, as we
previously commented, for manifolds isometrically immersed in Euclidean
space, the diffusion of differential forms is determined by those of scalar
fields, by a tower of Laplacian operators that extends the scalar Laplacian,
and by taking simply exterior products of the Jacobian process. We want
to remark that this condition of isometric immersion is not essential, and
can be dropped completely, building instead inhomogeneous Levi–Civita
geodesic equations fibered ontop of the diffusions of scalar fields.(5)

Consider on a smooth manifold M isometrically immersed in Euclid-
ean space, the following initial value problem: We want to solve

∂

∂τ
β = Hk(g, Q)βτ , with β(0, x) = β0(x), 0 � k � n, (20)

for an arbitrary time-dependant k-form β = βτ (x) = β(τ, x) defined on M

which belongs to C
1,2
c (�k(R×M)). Then, the formal solution of this prob-

lem is as follows:(13) Consider the stochastic differential equation given by
running backwards in time Eq. (15):11

dxτ,s,x = X(xτ,s,x) ◦ dW(s) + bQ,X(τ − s, xτ,s,x)ds, xτ,0,x = x ∈ M. (21)

and the derived velocity process {vτ,s,v(x), vτ,0,v(x) = v(x) ∈ TxM, 0 � s �
τ } which in a coordinate system we write as vτ,s,v(x) = (xτ,s,x, ṽτ,s,v(x))

verifying Eq. (21) and the s.d.e.

dṽτ,s,v(x) =∇gX(xτ,s,x)(ṽτ,s,v(x))◦ dW(s)+∇gbQ,X(τ −s, xτ,s,x)(ṽτ,s,v(x)) ds,

ṽτ,0,v(x) = v(x). (22)

11 We can, of course, solve this problem by running the Ito form(12)
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Notice that this system is nothing else that the jacobian process running
backwards in time until the beginning τ = 0.

Theorem 2. (12) The formal solution of the initial value problem given
by Eqs. (20) is

β(τ, x)(�kv(x)) = Ex [β0(x
τ,τ,x)(�kṽτ,τ,v(x))]. (23)

where the l.h.s. �kv(x) denotes the exterior product of k linearly indepen-
dant tangent vectors at x, and in the r.h.s. �kvτ,τ,v(x) denotes the exterior
product of the flows having initial condition given by �kv(x).

Proof. It follows from the Ito–Elworthy formula.

Remarks 3. Thus, we see that to determine the value at any time τ and
point x of β(τ, x) as given by its contraction with an arbitrary k-vector,
one takes the initial value β0 and transports it all along the reversed path
in time starting at x while contracting it with the k-vector given by the
Jacobian process fibered on it determined by the generalized laplacian on
k-forms, and then one takes the average over all such paths of the scalar
field given by this contraction. This is the solution of the initial-value mar-
tingale-problem posed by Eq. (20).

6. NAVIER-STOKES AND THE KINEMATICAL DYNAMO
EQUATIONS, AND RCW GRADIENT DIFFUSIONS

The kinematic dynamo equation for a passive magnetic field trans-
ported by an incompressible fluid, is the system of equations(10) for the
time-dependant magnetic vectorfield B(τ, x) = Bτ (x) on M defined by
iBτ µ(x) = ωτ (x) (for τ � 0), where we recall that µ is the Riemannian
volume n-form, µ = vol(g) = det (g)

1
2 dx1 ∧ . . . ∧ dxn, satisfying the initial-

value problem for the “magnetic” n − 1-form:

∂τω + (Lûτ
− νm�n−1)ωτ = 0, ω(0, x) = ω(x), 0 � τ, (24)

where νm is the magnetic diffusivity. Here, the velocity 1-form uτ (x) =
u(τ, x) satisfies the invariant NS,

∂u

∂τ
= [ν�1 − Lûτ

]uτ − dpτ , δuτ = 0, (25)
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where pτ is a time-dependant function, the pressure, ν is the kinematical
viscosity, or either, the Euler equations obtained by setting ν = 0; the sec-
ond equation in (25) is the incompressibility condition written in invari-
ant form, since δuτ = −divgûτ , where ûτ , denotes the velocity vectorfield
g-conjugate to uτ . Note that we can rewrite KDE as

∂τω = Hn−1(2νmg, − 1
2νm

uτ )ωτ , ω(0, x) = ω(x), 0 � τ, (26)

while NS can be written as the system of equations

∂u

∂τ
= H1

(
2νg,

−1
2ν

uτ

)
uτ − dpτ , δuτ = 0. (25′)

By considering the vorticity time-dependant 2-form �τ := duτ , taking in
account that d�1uτ = �2duτ = �2�τ and dLûτ

uτ = Lûτ
duτ = Lûτ

�τ we
have equivalent system of equations obtained by applying d to NS,(3,5)

∂�τ

∂τ
= H2

(
2νg,

−1
2ν

uτ

)
�τ , (27)

H1(g, 0)uτ = −δ�τ , (28)

the first one being NS for the vorticity (NSV, in the following) and the sec-
ond one is the Poisson-de Rham equation, obtained by applying δ to the
definition of �. Note then that NSV is determined by a RCW connection
whose trace-torsion is Q = −1

2ν
u and the metric is 2νg, so that the drift

is 2νg( −1
2νu

, ) = −g(u, ) = −û; a similar result follows for KDE, replac-
ing ν with νm.12 In Refs. (3–7), the geometrical theory of diffusion pro-
cesses was applied to give exact implicit representations for this system, in
terms of stochastic differential equations, and further realize these repre-
sentations in terms of systems of ordinary differential equations, and still
to construct the random symplectic structure. In this article, we shall fol-
low the same line of approach but for KDE, which for n = 3 is identical
to NS for the vorticity, with νm instead of ν, yet we must keep in mind
that for KDE we are after Bτ .

12 Numerical dynamics simulations of NS have indicated that viscous turbulence yields dis-
locations in fluids;(40) the first motivations to use connections with torsion – still related
to the objective of extending General Relativity to account for an angular momentum
tensor (28), have been provided by crystals, in which the torsion is related to the dis-
location tensor, and curvature to disclinations.(23)
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In the following we assume additional conditions on M, namely that
it is isometrically immersed in an Euclidean space, so that the diffusion
tensor is given in terms of the immersion f by X = ∇f . Thus, let u

denote a solution of Eq. (25) (or still, when dealing with KDE exclusively,
of the Euler equations with ν = 0) and consider the flow {Fτ : τ � 0}) of
the s.d.e. whose i.g. is ∂

∂τ
+ H0(2νmg, −1

2νm u); from Eq. (9) and Theorem 1
we know that this is the flow defined by integrating the non-autonomous
Ito s.d.e.

dx(τ) = [2νm]
1
2 X(x(τ))dW(τ) − û(τ, x(τ ))dτ, x(0) = x, 0 � τ. (29)

We shall assume in the following that X and û have the regularity condi-
tions stated in Section 3 so that the random flow of Eq. (29) is a diffeo-
morphism of M of class Cm. Now if we express the random Lagrangian
flow in Stratonovich form

dx(τ) = [2νm]
1
2 X(x(τ)) ◦ dW(τ) + b−u,X(τ, x(τ ))dτ, (30)

with

b−u,X(τ, x(τ )) = νmtr(∇g
XX)(x(τ )) − û(τ, x(τ ))), (31)

we can approximate in the group of diffeomorphisms of M this flow by
considering the sequence of a.e. o.d.e’s

dxk

dτ
(τ ) = [2νm]

1
2 X(xk(τ ))

dWk

dτ
(τ ) + b−u,X(τ, xk(τ )), k ∈ N, (32)

with dWk

dτ
defined in Eq. (18), and we consider as well the jacobian flow

on T M, {v(τ) = (x(τ ), ṽ(τ ))} with ṽ(τ ) satisfying the Stratonovich eqts.

dṽ(τ )(x(τ )) = [2νm]
1
2 ∇gX(x(τ))(ṽ(τ )) ◦ dW(τ)

+∇gb−u,X(τ, x(τ ))(ṽ(τ ))dτ, (33)

which can be approximated by {xk(τ ), ṽk(τ ))}k∈N given by integrating the
a.e. o.d.e.

dṽk(τ )

dτ
= [2νm]

1
2 ∇gX(xk(τ ))(ṽk(τ ))

dWk

dτ
(τ )

+∇gb−u,X(τ, xk(τ ))(ṽk(τ )). (34)

Thus, from Ref. (11) follows that the flow of the system of a.e. o.d.e’s
given by Eqs. (32) and (34), and under the assumption that u is of class
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Cm (m � 1), converges uniformly in probability, in the group of diffeomor-
phisms of T M of class Cm−1 to the random diffeomorphism flow given by
Eqs. (30) and (33), of the same class, that integrates KDE, as we shall see
next.

Let us find the form of the strong solution (whenever it exists) of the
initial value problem for KDE, thus we look for a time-dependant (n−1)-
form ω(τ, x) satisfying Eq. (24) where we assume that ω(0, x) = ω0(x) to
be of class C2 (twice differentiable). For this, we run backwards in time
the random lagrangian flow Eq. (29): For each τ � 0 consider the s.d.e.
(with s ∈ [0, τ ]):

dxτ,s,x=[2νm]
1
2 X(xτ,s,x) ◦ dW(s) + b−u,X(τ − s, xτ,s,x)ds, xτ,0,x=x.

(35)

and the derived velocity process {vτ,s,v(x) : vτ,0,v(x) = v(x) ∈ TxM, 0 �
s � τ } which in a coordinate system we write as vτ,s,v(x) = (xτ,s,x, ṽτ,s,v(x))

verifying Eq. (35) and the s.d.e.

dṽτ,s,v(x) = [2νm]
1
2 ∇gX(xτ,s,x)(ṽτ,s,v(x)) ◦ dW(s)

+∇gb−u,X(τ − s, xτ,s,x)(ṽτ,s,v(x))ds, v
τ,0,v(x)

0

= v(x) ∈ TxM. (36)

Let v1(x), . . . , vn−1(x) linearly independant vectors in TxM, be initial con-
ditions for the flow ṽτ,x,v(x).

Theorem 3. If there is a C1,2 (i.e. continuously differentiable in the time
variable τ ∈ [0, T ), and of class C2 in the space variable) solution ω̃τ (x)

of the initial value problem, it is

ω̃τ (v
1(x) ∧ · · · vn−1(x)) = Ex [ω0(x

τ,τ,x)(ṽτ,τ,v1(x) ∧ · · · ∧ ṽτ,τ,vn−1(x))], (37)

where Ex denotes the expectation value with respect to the measure on
{xτ,τ,x : τ � 0}.

Proof. It is evident from Theorems 1 and 2.

Remarks 4. Thus, we see that to determine the magnetic (n− 1), we see
that on running the process backwards in time τ , the initial magnetic (n−
1) is deformed along the way by the symmetric deformation tensor of the
fluid and furthermore, by the noise tensor. This mathematical result clearly
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describes the actual physical picture. If we replace above νm by the kine-
matical viscosity ν and the (n − 1) form by the vorticity 2-form, a similar
representation corresponding to NSV is obtained. Finally, the above real-
izations by a.e. o.d.e.’s was set to give a meaning to the s.d.e. given by

dxτ,s,x

ds
=[2νm]

1
2 X(xτ,s,x) ◦ dW(s)

ds
+ b−u,X(τ − s, xτ,s,x), xτ,0,x=x. (38)

There is an alternative approach that consists to view this as a gener-
alized random process defined on a rigged Hilbert space so that dW(s)/ds

is the so-called white-noise process.(55) Whatever the approach to give a
meaning to this equation is, it is most remarkable that we obtain a a con-
ceptually similar approach than the Reynolds decomposition of the vis-
cous fluid’s flow, into the classical velocity and a random term. Yet, there
is an important difference with the classical approach to turbulence, since
the noise tensor x is not an unkown, so that the closure problem is lifted,
which we recall that in turbulence theory has to be imposed by ad-hoc
consideration(59).

7. THE REPRESENTATIONS fOR NAVIER–STOKES EQUATIONS

We have already seen that NS is equivalent to the system of Eqs. (27)
and (28), for which we have an evolution equation (which is seemingly linear
if we adopt the vorticity as an independant variable) and Eq. (28) for the
Poisson-de Rham equation for the velocity given the vorticity as the source.
Thus, we have by simple substitution in Eqs. (35), (36) and (37) of the solu-
tion for KDE of νm, the magnetic viscosity, by ν, the kinematic viscosity,
and taking now ω0 and ωτ the initial and time-dependant vorticities.

For solving Eq. (28), we solve a Dirichlet problem on the sets of a
partition of unity on M, and the boundary condition on the closure of an
open set U of this partition is u = φ on ∂Ū , where φ = φ(τ, x) = φτ (x)

is a time-dependant 1-form such that δφτ = 0. Since we have to solve the
Dirichlet problem

H1(g, 0)uτ (x) = −δ�τ (x), ∀x ∈ U,
(39)

uτ (x) = φ(x), ∀x ∈ ∂U,

the s.d.e. we have to run is

dx̃(τ ) = X(x̃(τ ))dW(τ) = X(x̃(τ )) ◦ dW(τ) + tr(∇g
XX)(x̃(τ ))dτ (40)

dṽ(τ ) = ∇gX(x̃(τ ))(ṽ(τ ))dW(τ) = ∇gX(x̃(τ ))(ṽ(τ )) ◦ dW(τ)

+∇gtr(∇g
XX)(x̃(τ ))(ṽ(τ ))dτ, (41)
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with initial conditions x̃(0) = x, ṽ(0) = v(x), then the representation for u

is

ũτ (x)(v(x)) = EB
x

[
φ(x̃(τe))(ṽ(τe)) +

∫ τe

0

1
2
δ�τ (x̃(s))(ṽ(s))ds

]
(42)

where the expectation value is with respect to p(s, x, y) the transition den-
sity of the s.d.e. (40) whose i.g. is H0(g, 0), i.e.the fundamental solution of
the heat equation on M:

∂τp(y) = 1/2�gp(y) (43)

with p(s, x, −) = δx as s ↓ 0, where τe is the first-exit time of U , i.e. τe =
inf{τ : x

g
τ /∈ U}.

Returning to KDE (and NSV), we can approximate Eqs. (35) and (36)
by taking the jacobian flow {(xτ,s,x

k , ṽ
τ,s,v(x)
k )}k∈N on T M given by

dx
τ,s,x
k

ds
(s) = [2νm]

1
2 X(x

τ,s,x
k )

dWk(s)

ds
+ b−u,X(τ − s, x

τ,s,x
k ), x

τ,0,x
k = x,

(44)

dṽ
τ,s,v(x)
k

ds
(s) = [2νm]

1
2 ∇gX

(
x

τ,s,x
k

) (
ṽ

τ,s,v(x)
k

) dWk(s)

ds

+∇gb−u,X
(
τ −s, x

τ,s,x
k

) (
ṽ

τ,s,v(x)
k

)
ds,

ṽ
τ,0,v(x)
k = v(x) ∈ TxM (45)

dWk(s)

ds
= 2k

{
W

(
[2ks/τ ] + 1

2k

)
−W

(
[2ks/τ ]

2k

)}
, s ∈ [0, τ ], (τ > 0),

(46)

with [z] the integer part of z ∈ (0, 1], is the Stroock & Varadhan polygonal
approximation(11). Thus, we can write the expression:

ω̃τ (v
1(x)∧ · · · vn−1(x))= limk→∞Ex [ω0(x

τ,τ,x
k )(ṽ

τ,τ,v1(x)
k ∧ · · ·∧ṽ

τ,τ,vn−1(x)
k )].

(47)

By replacing νm by ν and setting n = 3 we have the approximations of
the representations of NSV. We can proceed identically for the Poisson-
de Rham equation, for which in account of Eqs. (40) and (41) we have to
substitute 2νmX by X and b−u,X ≡ b0,X, the latter being the Stratonovich
correction term.
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8. KDE AND RANDOM SYMPLECTIC DIFFUSIONS

Starting with a general RCW diffusion of 1-forms generated by
H1(g, Q), we introduce a family of Hamiltonian functions, Hk(k ∈ N)

defined on the cotangent manifold T ∗M = {(x, p)/p : TxM → R linear}
by

Hk = HX,k + HQ, (48)

with (in the following 〈−, −〉 denotes the natural pairing between vectors
and covectors)

HX,k(x, p) =
〈
〈p, X(x)〉, dWk

dτ

〉
, (49)

where the derivatives of Wk are given in Eq. (18), and

H
Q̂

(x, p) = 〈p, bQ,X(x)〉. (50)

Now, we have a sequence of a.a. classical Hamiltonian flow, defined by
integrating for each k ∈ N the a.a. system of o.d.e.’s

dxk(τ )

dτ
≡ ∂Hk

∂pk

= X(xk(τ ))
dWk

dτ
+ bQ,X(xk(τ )), (51)

dpk(τ )

dτ
= −∂Hk

∂xk

= −
〈
〈pk(τ), ∇gX(xk(τ ))〉, dWk(τ)

dτ

〉
(52)−〈pk(τ), ∇gbQ,X(τ, xk(τ ))〉.

which preserves the canonical 1-form pkdxk = (pk)αd(xk)
α (no summation

on k!), and then preserves its exterior differential, the canonical symplectic
form Sk = dpk ∧ dxk. We shall denote this flow as φk

. (ω, .); thus φk
τ (ω, .) :

T ∗
xk(0)

M → T ∗
xk(τ )M, is a symplectic diffeomorphism, for any τ ∈ R+ and

ω ∈ �. Furthermore, if we consider the contact 1-form(14) on R × T ∗M
given by γk := pkdxk − HX,kdτ − H

Q̂
dτ, ∀k ∈ N , we obtain a classical

Poincaré–Cartan integral invariant: Let two smooth closed curves σ1 and
σ2 in T ∗M × {τ = constant} encircle the same tube of trajectories of the
Hamiltonian equations for Hk, i.e. Eqs. (51) and (52); then

∫
σ1

γk = ∫
σ2

γk.

Furthermore, if σ1 − σ2 = ∂ρ, where ρ is a piece of the vortex tube deter-
mined by the trajectories of the classical Hamilton’s equations, then it fol-
lows from the Stokes theorem(14) that∫

σ1

γk −
∫

σ2

γk =
∫

σ1

pkdxk −
∫

σ2

pkdxk =
∫

ρ

dγk = 0. (53)
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Returning to our construction of the random Hamiltonian system, we
know already that for X and Q̂ smooth, the Hamiltonian sequence of
flows described by Eqs. (51) and (52) converges uniformly in probability
in the group of diffeomorphisms of T ∗M, to the random flow of the sys-
tem given by Eqs. (30) with Eq. (31) and

dp(τ)=−〈〈p(τ), ∇gX(x(τ))〉, ◦ dW(τ)〉 − 〈p(τ), ∇gbQ,X(τ, x(τ ))dτ 〉.
(54)

Furthermore this flow of diffeomorphisms is the mapping: φτ (ω, ., .)(x, p)

= (Fτ (ω, x), F ∗
τ (ω, x)p), where F ∗

τ (ω, x) is the adjoint mapping of the
jacobian transformation. This map preserves the canonical 1-form pdx,
and consequently preserves the canonical symplectic 2-form S = d(pdx) =
dp∧dx, and thus φτ (ω, .) : T ∗

x(0)
M → T ∗

x(τ)M is a flow of symplectic diffe-
omorphisms on T ∗M for each ω ∈ �. (11) Consequently, �nS is preserved
by this flow, and thus we have obtained the Liouville measure invariant by
a random symplectic diffeomorphism. We shall write onwards, the formal
Hamiltonean function on T ∗M defined by this approximation scheme as

H(x, p) :=
〈
〈p, X(x)〉, dWτ

dτ

〉
+ H

Q̂
(x, p). (55)

We proceed now to introduce the random Poincaré–Cartan integral invari-
ant for this flow. Define the formal 1-form by the expression

γ := pdx − H
Q̂

dτ − 〈p, X〉 ◦ dW(τ), (56)

and its formal exterior differential (with respect to the N = T ∗M variables
only)

dN γ = dp ∧ dx − dN H
Q̂

∧ dτ − dN 〈p, X〉 ◦ dW(τ). (57)

Clearly, we have a random differential form whose definition was given by
Bismut.(7,11) Let a smooth r-simplex with values in R+ ×T ∗M be given as

σ : s ∈ Sr → (τs, xs, ps),

where Sr = {s = (s1, . . . , sr ) ∈ [0, ∞)r , s1+. . .+sr � 1}, (58)

with boundary ∂σ the (r − 1)-chain ∂σ = ∑r+1
i=1 (−1)i−1σ i , where σ i are

the (r − 1)-singular simplexes given by the faces of σ . σ can be extended
by linearity to any smooth singular r-chains. We shall now consider the
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random continuous r-simplex, c, the image of σ by the flow of symplec-
tic diffeomorphisms φ, i.e. the image in R × T ∗M

φ(τs, ω, xs, ps) = (τs, Fτ (ω, xs), F
∗
τ (ω, xs)ps), for fixed ω ∈ �, (59)

where Fτ (ω, x) and F ∗
τ (ω, x)p are defined by Eqs. (30), (31) and (54),

respectively.
Then, given α0 a time-dependant 1-form on N , β0, . . . , βm functions

defined on R × N , the meaning of a random differential 1-form

γ = α0 + β0dτ + βi ◦ dWi(τ ), i = 1, . . . , m, (60)

is expressed by its integration on a continuous 1-simplex

c : s → (τs, φτs (ω, ns)), where ns = (xs, ps) ∈ T ∗M, (61)

the image by φ.(ω, .), (ω ∈ �) the random flow of symplectomorphisms
on T ∗M, of the smooth 1-simplex σ : s ∈ S1 → (τs, (xs, ps)). Then,

∫
c
γ

is a measurable real-valued function defined on the probability space �

in Ref. (11,7). Now we shall review the random differential 2-forms. Let
now α̃0 be a time-dependant 2-form on N , thus α̃0(τ, n) which we further
assume to be smooth. Furthermore, let β̃0(τ, n), . . . , β̃m(τ, n) be smooth
time-dependant 1 forms on N and we wish to give a meaning to the ran-
dom differential 2-form

γ = α̃0 + dτ ∧ β̃0 + dW 1(τ ) ∧ β̃1 + · · · + dWm(τ) ∧ β̃m. (62)

on integrating it on a continuous 2-simplex c : s → (τs, φτs (ω, ns)), or
which we define it as a measurable real valued function on � in Ref.
(11,7). To obtain the random Poincaré–Cartan invariant we need the fol-
lowing results on the approximations of random differential 1 and 2-
forms by classical differential forms. Given as before α̃0 a time dependant
smooth 2-form on N and time-dependant smooth 1-forms β̃1, . . . , βm on
N , there exists a subsequence ki and a zero-measure �̂ subset of � depen-
dant on α̃0, β̃1, . . . , β̃m such that for all ω /∈ �̂, φki

. (ω, .) converges uni-
formly on any compact subset of R+ × R2n to φ.(ω, .) as well as all its
derivatives ∂lφki

∂nl (ω, .) with |l| � m, converges to ∂lφ.

∂nl (ω, .),and for any
smooth 2-simplex, σ :s → (τs, ns) valued on R+ × N , if

γk = α̃0 + dτ ∧
(

β̃0 + β̃1
dW 1

k

dτ
+ · · · β̃m

dWm
k

dτ

)
(63)
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and if ck is the 2-simplex given by the image of a smooth 2-chain by
the a.a. smooth diffeomorphism φk

. (ω, .) defined by integration of Eqs.
(51) and (52): ck : s → (τs, φ

k
τs

(ω, ns)), and c is the continuous 2-chain
s → (φτs (ω, ns)), then

∫
cki γ ki converges to

∫
c
γ . If instead we take a time-

dependant 1-forms α0 and time-dependant functions β0, . . . , βm on N and
consider the time-dependant 1-form on N given by

γk = α0 +
(

β0 + β1
dW 1

k

dτ
+ · · · βm

dWm
k

dτ

)
dτ (64)

and for any a.e. smooth 1-simplex ck :s → (τs, φ
k
τs

(ω, ns)) then there exists
a subsequence ki and a zero-measure set �̂, dependant of α0, β0, . . . , βm,
such that for all ω /∈ �̂, φki

. (ω, .) converges uniformly over all com-
pacts of R+ × R2n with all its derivatives of order up to m to those of
φ.(ω, .), and if c is the continuous 1-simplex c : s → (τs, φs(ω, ns)), then∫
cki γ ki converges to

∫
c
γ , with γ defined in Eq. (60).

Then, we can state the fundamental theorem of Stokes for this ran-
dom setting, which is due to Bismut, Ref. (11), Theorem 3.4). Let c be a
random continuous 2-simplex image of an arbitrary smooth 2-simplex by
the flow φ.(ω, .). There exists a zero-measure set �̃ ⊂ � such that for any
ω /∈ �, then

∫
c
dγ = ∫

∂c
γ, for any differential random 1-form γ .

In the following in the case defined by KDE, for which Q̂ = −û with
u a solution of NS or Euler equations, so that we set

α0 = pdx, β0 = −H−û ≡ Hû, βi = −(2νm)
1
2 〈p, Xi〉 ≡ (2ν)

1
2 pαXα

i ,

i = 1, . . . , m, (65)

where X :Rm → T M with X(x) = gradf with f :M → Rd is an isometric
immersion of M, then

γKDE = pdx + Hûdτ − (2νm)
1
2 〈p, X〉i ◦ dWi(τ )

(66)
= pα(dxα + (bu,X)αdτ − (2νm)

1
2 Xα

i ◦ dWi(τ )),

is the random Poincaré-Cartan 1-form defined on R+ × N for KDE. The
Hamiltonian function for KDE is

H(x, p) := [2νm]
1
2

〈
〈p, X(x)〉, dWτ

dτ

〉
+ H−û(x, p), (67)

with

H−û(x, p) = pα(b−u,X)α = gαβpα(−uβ + νmXα
i ∇g

∂

∂xβ

X
β
i ) (68)
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so that the Hamiltonian system is given by the system

dx(τ) = [2ν]
1
2 X(x(τ)) ◦ dW(τ) + b−u,X(τ, x(τ ))dτ, (69)

with

b−u,X(τ, x(τ )) = ν∇g
XX(x(τ)) − û(τ, x(τ ))) (70)

dp(τ) = −(2νm)
1
2 )〈〈p(τ), ∇gX(x(τ))〉, ◦ dW(τ)〉

(71)
−〈p(τ), ∇gb−u,X(τ, x(τ ))dτ 〉.

As in the general case, we then obtain a Liouville invariant measure
produced from the n-th exterior product of the canonical symplectic form.
Substituting νm by ν we obtain the random Poincaré–Cartan invariant
γNSV for NSV.

To obtain the invariants of the full Navier–Stokes equations, we have
to consider in addition, the random Hamiltonian flow corresponding to
the invariant Poisson-de Rham equation, i.e. Eq. (40) which we rewrite
here

dx̃(τ ) = X(x̃(τ )) ◦ dW(τ) + S(X(x̃), g) ◦ dW(τ), (72)

and

dp̃(τ ) = −〈〈p̃(τ ), ∇gX(x̃(τ ))〉, ◦ dW(τ)〉
(73)

−〈p̃(τ ), ∇gS(∇g, X)(τ, x̃(τ ))dτ 〉.
Furthermore this flow of diffeomorphisms preserves the canonical 1-form
p̃dx̃, and consequently preserves the canonical symplectic 2-form S =
d(p̃dx̃) = dp̃ ∧ dx̃, and thus φτ (ω, .) : T ∗

x(0)
M → T ∗

x(τ)M is a flow of
symplectic diffeomorphisms on T ∗M for each ω ∈ �.(11) Consequently,
�nS is preserved by this flow, and thus we have obtained the Liouville
measure invariant by a random symplectic diffeomorphism. We shall write
onwards, the formal Hamiltonian function on T ∗M defined by the approx-
imation scheme for the formal Hamiltonian function

H(x̃, p̃) :=
〈
〈p̃, X(x̃)〉, dWτ

dτ

〉
+ 〈p̃, S(∇g, X)(x̃)〉. (74)

We now proceed to introduce the random Poincaré–Cartan integral invari-
ant for this flow. It is the 1-form

γPoisson := p̃dx̃ − S(∇g, X)(x̃)dτ − 〈p̃, X〉 ◦ dW(τ). (75)

This completes the construction of the random invariants for NS.
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9. THE EUCLIDEAN CASE

To illustrate with an example, consider M = Rn, f (x) = x, ∀x ∈ M,
and then X = ∇f ≡ I , the identity matrix, as well as g = XX† = I

the Euclidean metric, and ∇g = ∇, is the gradient operator acting on the
components of differential forms. Consequently, the Stratonovich correc-
tion term vanishes since ∇XX = 0 and thus the drift in the Stratonovich
s.d.e’s. is the vector field b−u,X = −û = −u (we recall that û is the g-con-
jugate of the 1-form u, but here g = I ).

We shall write distinctly the cases n = 2 and n = 3. In the latter case
we have that both the vorticity and the magnetic form, say �(τ, x) are a
2-form on R3, or still by duality has an adjoint 1-form, or still a R3-val-
ued function, which with abuse of notation we still write as �̃(τ, .) :R3 →
R3. Consider the flows which integrates KDE (for NSV we simply substi-
tute νm by ν) is given by integrating the system of equations (s ∈ [0, τ ])

dxτ,s,x = [2νm]
1
2 ◦ dW(s) − u(τ − s, xτ,s,x)ds, xτ,0,x = x, (76)

dṽτ,s,v(x)) = −∇u(τ − s, xτ,s,x)(ṽτ,s,v(x))ds, ṽτ,0,v(x) = v(x) (77)

the second being an ordinary differential equation (here, in the canoni-
cal basis of R3 provided with Cartesian coordinates (x1, x2, x3), ∇u is the
matrix ( ∂ui

∂xj ) for u(τ, x) = (u1(τ, x), u2(τ, x), u3(τ, x)), which in account
that since

∫ τ

0 ◦ dW(s) = W(τ) − W(0) = W(τ), we integrate

xτ,s,x = x + [2νm]
1
2 W(s) −

∫ s

0
u(τ − r, xτ,r,x)dr, s ∈ [0, τ ], (78)

and

ṽτ,s,v(x) = e−s∇u(τ−s,xτ,s,x )v(x) (79)

so that the analytical representation for KDE (and alternatively for NSV)
in R3 is

�̃(τ, x) = Ex [ṽτ,τ,I�0(x
τ,τ,x)], (80)

where Ex denotes the expectation value with respect to the measure (if it
exists) on {xτ,x

τ :τ � 0}, for all x ∈ R3, which is a Gaussian function albeit
not centered in the origin of R3 due to the last term in Eq. (78) and in the
r.h.s. of Eq. (80) we have matrix multiplication Thus, in this case, we have
that the deformation tensor acts on the initial vorticity along the random
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paths. This action is the one that for 3D might produce the singularity of
the solution of NS for 3D.

We finally proceed to present the random symplectic theory for KDE
(and alternatively, NSV) on R3. In account of Eq. (55) with the above
choices, the formal random Hamiltonian function is

H(x, p) := [2νm]
1
2

〈
p,

dW(τ)

dτ

〉
+ H−û(x, p), (81)

with

H−û(x, p) = −〈p, u〉. (82)

The Hamiltonian system is described by specializing Eqs. (69), (70) and
(71), so that we obtain the Stratonovich s.d.e. for x(τ) ∈ R3, ∀τ � 0:

dx(τ) = [2νm]
1
2 ◦ dW(τ) − u(τ, x(τ ))dτ, (83)

and the o.d.e

dp(τ) = −〈p(τ), ∇u(τ, x(τ ))〉dτ. (84)

If we further set x(0) = x and p(0) = p, the Hamiltonian flow preserving
the canonical symplectic form S = dp ∧ dx on R6 is given by

φτ (., .)(x, p) = (x(τ ), p(τ)) = (x + [2νm]
1
2 W(τ)

−
∫ τ

0
u(r, x(r))dr, e−τ∇u(τ,x(τ ))p). (85)

Finally, the Poincaré–Cartan 1-form takes the form

γKDE = 〈p, dx − udτ − (2νm)
1
2 ◦ dW(τ)〉, (86)

and the Liouville invariant is S∧S∧S. This, completes the implementation
of the general construction on 3D, for KDE (alternatively, for NSV).

In the case of R2, the representations for KDE and for NSV are for-
mally different. We start by NSV, for which the vorticity is now a sym-
plectic form, and still can be thought as a pseudoscalar, since �τ (x) =
�̃τ (x)dx1 ∧ dx2, with �̃τ : R2 → R, and being the curvature identically
equal to zero, NSV is (a scalar diffusion equation)

∂�̃τ

∂τ
= H0

(
2νI,

−1
2ν

uτ

)
�̃τ (87)
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so that for �̃0 = �̃ given, the solution of the initial value problem is

�̃(τ, x) = Ex [�̃(xτ,τ,x)] (88)

This solution is qualitatively different from the 3D case. Due to a geomet-
rical duality argument, for 2D we have factored out completely the derived
process in which the action of the deformation tensor on the initial vortic-
ity is present. Furthermore, the solution of Eq. (40) is (recall that X = I )

x̃(τ ) = x + Wτ , (89)

and since ∇X = 0, the derived process (see Eq. (41)) is constant

ṽ(τ ) = v(x) ∈ TxR
2, x = x̃(0), ∀τ ∈ [0, T ]. (90)

so that its influence on the velocity of the fluid can be factored out in
Eq. (42). Indeed, we have

ũτ (x)(v(x)) = EB
x

[∫ ∞

0

1
2
δ�τ (x + Ws)(ṽ

g,x,v(x)(s))ds

]

= EB
x

[∫ ∞

0

1
2
δ�τ (x + Ws)ds(v(x))

]

for any tangent vector v(x) at x, and in particular (we take v(x) = I ) we
obtain

ũτ (x) = EB
x

[∫ ∞

0

1
2δ�τ (x + Ws)ds

]
. (91)

In this expression we know from Eq. (43) that the expectation value
is taken with respect to the standard Gaussian function, p(s, x, y) =
(4πs)

−n
2 exp

(
−|x−y|2

4s

)
. For KDE, the magnetic n − 1-form is a 1-form ω̃τ

defined on R2, and the expression is

ω̃(τ, x)(v(x)) = Ex [ω̃0(x
τ,τ,x)(ṽτ,τ,v(x))] (92)

where (xτ,τ,x, ṽτ,τ,v(x)) are given by integrating Eqs. (76) and (77), now in
R2 (So that ∇u is a two by two matrix.).

Let us describe in further detail the solution of the Poisson-de Rham,
separately for each dimension. We note first that if �τ ∈ L1 ∩ C1

b (where
C1

b means continuously differentiable, bounded with bounded derivatives)

EB [δ�τ (x + Ws)] = δEB [�τ (x + Ws)] (93)



Brownian Motions, Viscous and Magneto-fluid-dynamics 1237

In the case n = 2, for a 2-form β̃ on M we have

δβ̃ = δ(β̃dx1 ∧ dx2) = −(∂2β̃dx1 − ∂1β̃dx2) ≡ −∇⊥β̃. (94)

In the case n = 3, for a vorticity described by the 1-form (or a vector-val-
ued function) �̃τ : R3 → R3 adjoint to the vorticity 2-form �τ , we have
that

δ�τ = −d�̃τ = −rot �̃τ . (95)

Therefore, we have the following expressions for the velocity: When n = 2
we have from Eq. (94)

uτ (x) =
∫ ∞

0
− 1

2∇⊥EB
x [�̃τ (x + Ws)]ds (96)

while for n = 3 we have from Eq. (95)

uτ (x) =
∫ ∞

0

−1
2

rot EB
x [�̃τ (x + Ws)]ds. (97)

Now we can obtain an expression for the velocity which has no deriv-
atives of the vorticity: consider the semigroup generated by H0(I, 0) = 1

2�,
i.e. Ps�̃τ (x) = E[�̃τ (x + Ws)] (in the case n = 3 this means the semigroup
given on each component of �̃). From the Elworthy–Bismut formula valid
for scalar fields (see Ref. (13)) we have that (in the following ei, i = 1, 2, 3
denotes the canonical base in R2 or R3)

∂iPs�̃τ (x) ≡ 〈dPs�̃(x), ei〉 = 1
s
EB

x

[
�̃(x + Ws)

∫ s

0
〈ei, dWr 〉

]

= 1
s
EB

x

[
�̃(x + Ws)

∫ s

0
dWi

r

]
= 1

s
EB

[
�̃τ (x + Ws)W

i
s

]
. (98)

Therefore, for n = 2 we have from Eqs. (96) and (98)

uτ (x) = −
∫ ∞

0

1
2s

EB
x [�̃τ (x + Ws)W

⊥
s ]ds (99)

where W⊥
s = (W 1

s , W 2
s )⊥ = (W 2

s , −W 1
s ). Instead, for n = 3 we have from

Eqs. (97) and (98) that

uτ (x) = −
∫ ∞

0

1
2s

EB
x [�̃τ (x + Ws) × Ws ]ds (100)
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where × denotes the vector product and Ws = (W 1
s , W 2

s , W 3
s ) ∈ R3 a

Wiener process. Thus, for NSV we have obtained for 2D and 3D the pre-
cise form of the random Poincaré–Cartan invariants.

To complete our symplectic representations for NS, we still have to
give the symplectic structure associated to Eq. (39) (Poisson-de Rham) for
both R2 and R3. This structure is the same in both cases, the only differ-
ence is in the form of the random Liouville invariant. Indeed, the random
Hamiltonean system for Poisson-de Rham is given by Eqs. (72) and (73),
which in the Euclidean case the former yields Eq. (89), while the latter is
dp̃(τ ) = 0, so that if p̃(0) = p, then the random symplectic flow for Pois-
son-de Rham equation is given by

φτ (., .)(x, p) ≡ (x̃(τ ), p̃(τ )) = (x + W(τ), p), (101)

and the Liouville invariant is S̃ ∧ S̃ for n = 2, and S̃ ∧ S̃ ∧ S̃ for n = 3,
where S̃ = dp̃ ∧ dx̃ is the canonical symplectic form for both cases, for
the Poisson-de Rham equation. In distinction with the random symplec-
tic invariants for NSV, here the momentum is constant, and of course, the
position variable does no longer depend manifestly on u.

Remarks . Geometrical–topological invariants in magnetohydrodynamics
and hydrodynamics have been widely studied.(10,16,18) We have followed the
presentation in Refs. (7,35) which lead to the random symplectic invari-
ants of NS, hitherto unkown. The present approach applies as well to the
random quantization of quantum mechanics through stochastic differential
equations, as we shall present in the accompanying article, and thus we shall
have random phase invariants which have been unnoticed till today.

10. DERIVATION OF THE SYMPLECTIC STRUCTURE FOR
PERFECT FLUIDS

We have seen that NS has an associated Hamiltonian function and
a Liouville invariant, and thus we have in principle the basic elements to
develop a statistical mechanics approach to NS. The purpose of this sec-
tion, is to obtain the symplectic structure for the Euler equations from our
perspective. Indeed, note that if we set ν = 0 in our random Hamilto-
nian system we have a classical limit whose dynamics is described by the
characteristics curves defined by the integral curves of −û, i.e. (minus) the
velocity vector-field. Indeed, if we set the kinematical viscosity ν to zero
in Eqs. (69), (70) and (71) we obtain

dx(τ)

dτ
= −û(τ, x(τ )), (102)
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dp(τ)

dτ
= −〈p(τ), ∇gu(τ, x(τ )〉. (103)

Now, on integrating Eq. (102) with some given initial condition x(0), we
obtain a family (indexed by time) of classical diffeomorphisms of M which
to x(0) associates the position x(τ) of the fluid particles with velocity vec-
tor field given by −û(τ, x(τ )); in fact for each τ this diffeomorphisms pre-
serves the Riemannian volume since û is divergenceless. Thus, it follows
from our particular case for a perfect incompressible fluid obeying the
Euler equations (set ν = 0 in Eq. (25)), that the configuration space is
given by the volume preserving diffeomorphisms of M, which we denote
by SDiff(M) which is nothing else than the starting point the AEM the-
ory; by contrast in the present approach the configuration space for NS
are the random diffeomorphisms defined by the lagrangian flow described
above, which is not volume preserving but in the special case of Euclidean
space for which X = Id.

Now SDiff(M) is an infinite-dimensional Lie group, and we are
interested – in following Arnold – in its Lie algebra, which is the set of
divergenceless vector fields on M, SVect(M) provided with the usual com-
mutator. Arnold further considered the orbits of the coadjoint action of
this group on the dual of the Lie algebra, as a Hamiltonian system whose
Hamiltonian function is (c.f. definition 7.20 and Lemma-definition 7.21 in
Ref.(10)) (following the notation after Eq. (6) above)

1
2

(
[uτ ], [uτ ]

) = 1
2

∫
M

g
(
[ûτ ], [ûτ ]

)
volg, (104)

where [uτ ] denotes the equivalence class of all 1-forms on M of the type
uτ + df , with δuτ = 0 and some function f:M → R, which is nothing else
than

− 1
2

∫
M

H(x, [uτ ])volg := 1
2

∫
M

H[ûτ ](x, [uτ ])volg, (105)

which coincides with Arnold’s energy function on SVect(M)∗, the dual Lie
algebra of SVect(M). From the minimal action principle Arnold obtained
finally the geodesic equation in SDiff(M). But we can obtain these equa-
tions directly in our setting if we further set p ≡ u in Eq. (103) , so that
Eqs. (102) and (103) turn to be the geodesic equation on SDiff(M):

d2x(τ)

dτ
+ ∇g

ûτ (x)
uτ (x(τ )) = 0, (106)
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which in account of the identity

∇g

ûτ (x)
uτ (x) = Lûτ (x)uτ (x) − 1

2d(|uτ |2), (107)

we get the Euler equation (see p. 37, 38 in Ref. (10))

∂u

∂τ
+ Lûτ (x)uτ (x) = 1

2d(|uτ |2) (108)

identically to set ν = 0 in Eq. (25). Note here that the pressure function
p̃ reduces to be (modulo an additive constant) − 1

2 |uτ |2, minus the kinetic
energy term of uτ , and the non-appearance of itself the −dp̃ term in the
r.h.s. of Eq. (108) is produced by the fact that our random flows for NS have
been constructed for the vorticity equation, for which there is no pressure
term since d2p̃ = 0; otherwise stated, to obtain the Euler equation we have
taken uτ ∈ [uτ ] such that f ≡ 0, and thus the total pressure is

f − 1
2 (|uτ |2) = − 1

2 |uτ |2

(see comments in first paragraph after Remark 7.22 in Ref. 10). Thus, we
have proved that the random symplectic approach to NS yields the clas-
sical symplectic approach to the Euler equation, in the case of null vis-
cosity, as a particular result of the kinematics of the random viscous flow.
We may remark that Arnold’s approach stops short of discussing analyti-
cal representations for NS, yet his symplectic approach has been extended
by the addition of Wiener processes, to give the representations of NS for
the flat torus, by Gliklikh.(32) Probably the present work could be seen as
a natural addendum to the joint work by Arnold and Khesin,(10) in which
prior to the introduction of the (random) symplectic geometry, one has
to introduce first the stochastic differential geometry from which it stems,
both aspects being absent in this beautiful treatise.

11. FINAL COMMENTS

We have derived through the association between RCW connections
and generalized Brownian motions, the most general implicit analytical
representations for NS, in the case of manifolds without boundaries. The
case with smooth boundaries and Euclidean semi-space has been treated
completely in Ref.(6). Furthermore, in the case without boundary, we
have proved that the interaction representation of the solutions of NS,
and in general of diffusion processes, in which the trace-torsion plays the
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major role of describing the average motions, can be gauged away (for any
dimension other then 1) and transformed into an equivalent representa-
tions in which the trace-torsion enters in the definition of the noise-tensor,
as if the random motion would be completely free!(5) Yet, concerning NS
this article is still unsatisfying, since the representations are implicit, since
we have not presented a theory in which we would decouple the veloc-
ity 1-form (the gauge potential) and the vorticity 2-form (the ‘curvature’
field strength). We would like to suggest that if this problem might have a
solution, then it should be approached through the application of Clifford
algebras and Clifford analysis, in which through the Dirac operator whose
square is the NS laplacian, we could integrate the theory in terms of the
vorticity alone. This would be similar to the Maxwell equation as a sin-
gle equation for the electromagnetic field strength (a 2-form, and not in
terms of the electromagnetic potential 1-form), as we shall describe in the
accompanying article that follows the present one. In forthcoming articles,
we shall present the relations between fluid-dynamics and turbulence, elec-
trodynamics and quantum mechanics.
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