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Abstract: Absorption of a circularly polarized light beam is considered as a laser-
material interaction. It is shown that the torque acting on the material is twice as 
much as the standard electrodynamics predicts. 
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The beam [1,2] of power , , 1=P )()]([ 0 rEiie yx
itiz ∂−∂++= − zyxE EB i−= , is considered. 

Here  if , )0(00 EE = 2/0 δ−< Rr 00 =E  if 2/0 δ+> Rr , 

 (see Fig. 1). This circularly polarized beam is 

absorbed by a plane , and the mechanical stress produced in the plane by the beam is 
calculated. It is shown that the central part of the beam produces a torque at the central region of 
the plane due to the spin of the beam, and the skin of the beam produces an additional torque due 
to the orbital angular momentum of the beam. The total torque acting on the plane equals 

. This fact contradicts the standard electrodynamics, which predicts the torque equals 
, and means the standard electrodynamics, as well as the whole classical field theory, 

is incomplete. An introducing of a spin tensor corrects the electrodynamics. Here is our 
calculation.  
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Components of the momentum density p in the circularly polarized beam are  
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(We set ). The beam exerts the force density  on the plane and gives 
rise to a 2-dimensional stress tensor density 

1==ω= ck 2/2
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ikT  of the plane, according to 
 where  is the covariant divergence of the density [3] and  

are the Christoffel symbols of the used cylindrical coordinates 
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 (we ignore the light pressure).   Because , we 

have  
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This equation has a solution, which is depicted in Fig. 2, 
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It is easy to verify that . The solution (3) means that  if  and 

 if , i.e. there is no mechanical stress in the central region of the 
target plane, while the outside part of the plane (

0== φφTT rr 0=φrT 2/0 δ−< Rr

)2/(1 2rT r π=φ 2/0 δ+> Rr
2/0 δ+> Rr ) experiences the torque  

12 =π=τ φ rrT r                              (4) 
This is because the electric and magnetic fields of the beam have a nonzero z-component only 
within the skin region of δ -thickness of the beam. Having z-component within this region 
implies the possibility of a nonzero z-component of angular momentum within this region. Since 
the fields is identically zero outside the skin and constant inside the skin region, the skin region 
is the only one in which the z-component of angular momentum does not vanish [2,4]. The result 
(4) is in accordance with the common opinion that ω=τ P/  (we set 1=ω ). 

However, the central region of the plane evidently catches spin angular momentum and 
experiences a torque. This torque arises from the fact that the dielectric constant  is a tensor. 
Consequently, the electric intensity  is not parallel to the electric polarization P  in the medium 
of the plane [5,6]. But this torque is not connected with a moment of the momentum (1) and with 
the torque (4), and requires a concept of the electrodynamics’ spin tensor [7-11], 
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potentials: ,  and µννµ =∂ FA ][2 αβ

µναβνµ −=Π∂ Fe][2 βααβ −= FF ,  

(
νβµα gαβ

µν gFF =

3,2,1,0,..., =νµ ) is the field strength tensor. The sense of a spin tensor  is as follows. The 
component  is a volume density of spin. This means that  is the spin of 
electromagnetic field inside the spatial element . The component 

λµνΥ
0ijΥ dVdS ijij 0Υ=

dV ijkΥ  is a flux density of 
spin flowing in the direction of the  axis. For example, s 
the z-component of spin flux passing through the surface element  per unit time, i.e. the 
torque acting on the element. 
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We take account of the spin torque here. For our beam, the calculation [11] gives .  2
0Ezr =Υ φ

As is known, the local conservation law  is accompanied by the angular 

momentum conservation law (see, e.g., [12] p. 64) . In our case  

where  is an antisymmetric part of the 3-dimensional stress tensor density in material of the 

absorbing plane. By the integration , we arrive at an asymmetric 2-

dimensional stress tensor density, , which characterizes the medium absorbing spin angular 
momentum flux and satisfies the two equations, instead of (2), 
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These equations have a solution (see Fig. 3):  if ,  

 if . It means that stress tensor is antisymmetric in the central 
region.  
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The component of the total stress tensor density is  if 
. Thus, the outside part of the plane experiences the torque  
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The result (6) is in accordance with the formula ω=τ P/2  [7-11] and contradicts the common 
formula . This means also that a circularly polarized plane wave has spin angular 
momentum described by the spin tensor [13] 

ω=τ P/
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