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Circulant mass matrices for triples of charged and neutral leptons have been studied in the context
of qubit quantum field theory. This note describes the discrete Fourier transform behind such
matrices, and discusses a category theoretic interpretation of these operators.
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INTRODUCTION

Using a measurement algebra approach to QFT, Bran-
nen [1] recently recovered the Koide [2] formula
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mτ )2 =
3
2
(me + mµ + mτ ) (1)

for charged lepton masses in the form of a 3 × 3 circu-
lant complex matrix, whose eigenvalues squared give the
lepton masses to experimental precision. This analysis
was extended to a set of three neutrinos, and the mass
ratio predictions agree with preliminary neutrino oscilla-
tion data.

Here it is observed that the discrete Fourier transform
[3] provides a further interpretation of the mass matrices,
both as a duality between operators and eigenvalues and
also as a link to the theory of quantum computation [4].

It is expected that other triples of Standard Model
particles, namely baryons and mesons, will also be asso-
ciated with 3 × 3 matrix operators of the same kind in
accord with their preon structure [1] and the association
of spatial directions to the number of particle genera-
tions, given by the three primitive idempotents of the
measurement algebra.

FOURIER TRANSFORMS AND MASS
MATRICES

A circulant matrix is built from its first row by adding
cyclic permutations. In particular, a 3×3 circulant takes
the form 

 A B C
C A B
B C A


 (2)

where A, B and C will be complex numbers. Note that
any such circulant is a combination of the three permu-
tations (123), (231) and (312). For real eigenvalues λk

it is essential that A be real and C = B. Thus a mass
matrix [1] takes the form

C = η


 1 reiθ re−iθ

re−iθ 1 reiθ

reiθ re−iθ 1


 (3)

for real η, r and θ. In terms of these parameters, the
eigenvalues are given by

λk = η(1 + 2rcos(θ +
2πk

3
))

The Koide formula (1) follows when r2 = 1
2 and this

choice may be applied also to the neutrino matrix.
In the n× n case, the discrete Fourier transform [3][4]

interchanges the set of eigenvalues λk (assumed distinct)
and matrix entries A1, A2, A3, · · · , An via
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∑

j

e
2πijk

n Aj (4)
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n λk

Viewing the eigenvalues as a diagonal matrix, the trans-
form interchanges the bases of projection operators and
cyclic permutations. For real eigenvalues (m1,m2,m3)
with mi = λ2

i in the above, and letting ω = e
2πi
3 , the

transform takes the diagonal matrix to the circulant
�
�

m1 + m2 + m3 m1ω + m2ω
2 + m3 m1ω

2 + m2ω + m3

m1ω
2 + m2ω + m3 m1 + m2 + m3 m1ω + m2ω

2 + m3

m1ω + m2ω
2 + m3 m1ω

2 + m2ω + m3 m1 + m2 + m3

�
�

which must be the square of (3) since the square of a
circulant is a circulant. Thus a choice of scale is specified
by η = 1

3 (m1 + m2 + m3).
A 3 × 3 matrix is viewed as a function on the discrete

torus Z3 ×Z3, which has a quantum description in terms
of the convolution product for matrices [3]. Letting Dij =
δijω

i this product satisfies the Weyl rule

D ∗ (312) = ω(312) ∗ D

where the phase 2π
3 is proportional to �

−1. This asso-
ciates Planck’s constant with a heirarchy N determined
by the size of the matrix, but the continuum limit is ob-
tained via � → ∞ rather than � → 0.

If masses are to be thought of as quantum numbers,
then why are their values so awkward in comparison to,
say, spin? For 2 × 2 circulants with entries A and B,
the eigenvectors are (1, 1) and (1,−1) with eigenvalues
(A + B) and (A − B) respectively. For example, for the



Pauli swap matrix σx, with A = 0, the spin eigenvalues
are ±1. Complexity in the eigenvalue set only arises in
dimension three or higher.

Degenerate eigenvalues λk

η ∈ {1−r, 1−r, 1+2r} occur
when θ = 0 and all matrix entries are real. Although
this pattern does not describe the leptons, we observe
that it is the typical composition of masses for baryon
constituents. Since such mass operators arise in a preon
model that unifies particle structure, it is expected that
all standard model bound states and resonances may be
arranged into mass triples.

In quantum computation [4] a Fourier transform is also
defined in this way, acting on a set of n basis states. An N
qubit computer has n = 2N basis states. The transform
is unitary because it may be built from unitary gates,
namely the Hadamard gate H = 1√

2
(σx + σz) and the

series

Bk =
(

1 0
0 e

2πi

2k

)

By analogy, a mass computation with 3N basis states
uses ternary digits, so the gates Bk would be replaced by
gates

Tk =




1 0 0
0 e

2πi

3k 0
0 0 e

4πi

3k


 (5)

which are also unitary. It is not clear, however, what op-
erator should replace the Hadamard gate H, since it has
no 3× 3 analogue. Noting that σz carries the spin eigen-
values, one possibility is a combination of mass diago-
nals and the generator (312), but such an operator is not
unitary. Such non-unitary processes would have major
implications for the black hole paradox, which may only
conserve qubit (flat space) information, but not gravita-
tional information. On the other hand, the meaning of
time itself is altered in this approach, which does not as-
sume a globally defined time for a nonsensical universal
observer.

Note the similarity between the Tk and powers of the
diagonal D that appears in the Weyl relations. Given the
direct application of the qubit Fourier transform to num-
ber factoring, this associates ternary factorisation with
the quantum torus.

DISCUSSION

The mass matrices arise from a one dimensional dis-
crete transform, which itself involves commutative vari-

ables. However, it is seen that phase space variables sat-
isfy the Weyl algebra of the quantum plane. Is there a
noncommutative transform that extends this analysis to
nonclassical underlying spaces? This is relevant to the
question of extending the perturbative rest mass com-
putations [1] to a nonperturbative regime dealing with
physical scale.

Kapranov [5] has recently considered path spaces ap-
proximated by cubical paths, each of which is represented
by a noncommutative monomial in the spatial directions.
In dimension d > 1 a noncommutative Fourier transform
relates measures on the space of paths to functions of
the noncommuting variables. The basic idea is that a
path integral is just a map from a noncommutative ring
to a suitable commutative subring. In this way, particle
masses [1] could arise as path integral invariants.

Taking T-duality seriously, one also expects to deal
with nonassociativity. From a category theoretic point
of view, both noncommutative and nonassociative struc-
tures can be dealt with in a unified framework. The
cohomological element of interest here is the parity cube
axiom, which describes the now familiar pentagon law
on five of its faces. In a sufficiently lax algebraic setting,
such as for tetracategories, the sixth face may break this
law, providing the deformation parameter that turns a
pentagon into a hexagon representing the permutation
group S3 [6].

The generation count by primitive idempotents [1] is
confirmed by the string theoretic index theorem argu-
ment applied to the Riemann moduli space of the six
punctured sphere, which has an orbifold Euler character-
istic [7] of -6. The six punctures are associated to the
six faces of a cube via a dual vertex, which is thickened
to a sphere. Note that cohomological integrals for such
moduli spaces commonly appear in QFT computations
as multiple zeta values and polylogarithms.
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