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Abstract

It is shown how Quantum Gravity in D = 3 can be described by a
W∞ Matrix Model in D = 1 that can be solved exactly via the Collective
Field Theory method. A quantization of 4D Gravity can be attained
via a 2D Quantum W∞ gauge theory coupled to an infinite-component
scalar-multiplet ; i.e. the quantization of Einstein Gravity in 4D admits a
reformulation in terms of a 2D Quantum W∞ gauge theory coupled to an
infinite family of scalar fields. Since higher-spin W∞ symmetries are very
relevant in the study of 2D W∞ Gravity, the Quantum Hall effect, large
N QCD, strings, membranes, topological QFT, gravitational instantons,
Noncommutative 4D Gravity, Modular Matrix Models and the Monster
group, it is warranted to explore further the interplay among all these
theories.

Keywords: Quantum Gravity, W∞-gravity, W∞ Gauge Theories, Higher spins,
Holography, Moyal Brackets, Collective Field Theory, Strings, Branes, Matrix
Models.

1 Gravity in D = m+n as an m-dim Gauge The-
ory of diffeomorphisms of an internal n-dim
space and Holography

Some time ago Park [1] showed that 4D Self Dual Gravity is equivalent to a
WZNW model based on the group SU(∞). Namely, 4D Self Dual Gravity is the
non-linear sigma model based in 2D whose target space is the “group manifold”
of area-preserving diffs of another 2D-dim manifold. Roughly speaking, this
means that the effective D = 4 manifold, where Self Dual Gravity is defined,
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is “spliced” into two 2D-submanifolds: one submanifold is the original 2D base
manifold where the non-linear sigma model is defined. The other 2D subman-
ifold is the target group manifold of area-preserving diffs of a two-dim sphere
S2.

The authors [2] went further and generalized this particular Self Dual Gravity
case to the full fledged gravity in D = 2 + 2 = 4 dimensions, and in general, to
any combinations of m + n-dimensions. Their main result is that m + n-dim
Einstein gravity can be identified with an m-dimensional generally invariant
gauge theory of Diffs N , where N is an n-dim manifold. Locally the m + n-
dim space can be written as Σ = M × N and the metric GAB decomposes
as:

GAB =
(
gµν(x, y) + e2gab(x, y) Aa

µ(x, y) Ab
ν(x, y) eAa

µ(x, y) gab(x, y)
eAa

µ(x, y) gab(x, y) gab(x, y)

)
,

(1.1)
It must not be confused with the Kaluza-Klein reduction where one imposes

an isometry restriction on the γAB that turns Aa
µ into a gauge connection associ-

ated with the gauge group G generated by isometry. Dropping the isometry re-
strictions allows all the fields to depend on all the coordinates x, y. Nevertheless
Aa

µ(x, y) can still be identified as a connection associated with the infinite-dim
gauge group of Diffs N . The gauge transformations are now given in terms of
Lie-brackets and Lie derivatives:

δAa
µ = −1

e
Dµξ

a = −1
e
(∂µξ

a − e[Aµ, ξ]a) = −1
e
(∂µ − eLAµ)ξa,

Aµ ≡ Aa
µ∂a,

LAµ
ξa ≡ [Aµ, ξ]a,

δgab = −[ξ, g]ab = ξc∂cgab + gac∂bξ
c + gcb∂aξ

c,

δgµν = −[ξ, gµν ]. (1.2)

In particular, if the relevant algebra is the area-preserving diffs of S2, given
by the suitable basis dependent limit SU(∞) [22], one induces a natural Lie-
Poisson structure generated by the gauge fields Aµ. The Lie derivative of f
along a vector ξ is the Lie bracket [ξ, f ], which coincides in this case with the
Poisson bracket {ξ, f}. This implies that the Lie brackets of two generators of
the area-preserving diffs S2 is given precisely by the generator associated with
their respective Poisson brackets (a Lie-Poisson structure):

[Lf , Lg] = L{f,g}. (1.3)

This relation is derived by taking the vectors ξa
1 , ξ

a
2 , along which we compute

the Lie derivatives, to be the symplectic gradients of two functions f(σ1, σ2), g(σ1, σ2):
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ξa
1 = Ωab∂bf, ξa

2 = Ωab∂bg. (1.4)

When nontrivial topologies are involved one must include harmonic forms ω into
the definition of ξa [6] allowing central terms for the algebras. This relation can
be extended to the volume-preserving diffs of N by means of the Nambu-Poisson
brackets:

{A1, A2, A3, ......An} = Jacobian =
∂(A1, A2, A3, ....., An)

∂(σ1, σ2, ....σn)
⇒

[LA1 , LA2 , .........., LAn
] = L{A1,A2,.........,An}, (1.5)

which states that the Nambu-commutator of n-generators of the volume-preserving
diffs of N is given by the generator associated with their corresponding Nambu-
Poisson brackets.

Using eq-(1.1) the authors [2] have shown that the curvature scalar R(m+n)

in m+ n-dim decomposes into:

R(m+n) = gµνR(m)
µν +

e2

4
gabF

a
µνF

b
ρτg

µρgντ + gabR
(n)
ab +

1
4
gµνgabgcdDµgabDνgcd +

1
4
gabgµνgρτ [ ∂agµρ∂bgντ − ∂agµν∂bgρτ ] (1.6)

plus total derivative terms given by

∂µ(
√
|det gµν |

√
|det gab| Jµ ) − ∂a(

√
|det gµν |

√
|det gab| eAa

µJ
µ) +

∂a(
√
|det gµν |

√
|det gab| Ja ), (1.7)

with the currents:

Jµ = gµνgabDνgab, Ja = gabgµν∂bgµν , (1.8)

S =
1

16πG

∫
dmx dny

√
|det(gµν)|

√
|det(gab)| R(m+n)(x, y). (1.9)

Therefore, Einstein gravity in m + n-dim describes an m-dim generally in-
variant field theory under the gauge transformations or Diffs N . Notice how Aa

µ

couples to the graviton gµν , meaning that the graviton is charged /gauged in
this theory and also to the gab fields. The “metric” gab on N can be identified
as a non-linear sigma field whose self interaction potential term is given by:
gabR

(n)
ab . The currents Jµ, Ja are functions of gµν , Aµ, gab. Their contribution

to the action is essential when there are boundaries involved; i.e. like in the
AdS/CFT correspondence.

When the internal manifold N is a homogeneous compact space one can
perform a harmonic expansion of the fields w.r.t the internal y coordinates,
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and after integrating w.r.t these y coordinates, one will generate an infinite-
component field theory on the m-dimensional space. A reduction of the Diffs
N , via the inner automorphims of a subgroup G of the Diffs N , yields the
usual Einstein-Yang-Mills theory interacting with a nonlinear sigma field. But
in general, the theory described in (1.9) is by far richer than the latter theory.
A crucial fact of the decomposition (2.6, 2.7) is that each single term in (1.6,
21.7) is by itself independently invariant under Diffs N . The second term of
(1.6), for example,

1
16πG

√
|det(gµν)|

√
|det(gab)|

e2

4
gabF

a
µνF

b
ρτg

µρgντ , (1.10)

is precisely the one that is related to the large N limit of SU(N) YM [11].
The decomposition of the higher-dim Einstein-Hilbert action shown in eq-

(1.6, 1.7) required to use a non-holonomic basis of derivatives ∂µ − eAa
µ∂a and

∂a that allows a diagonal decomposition of the metric and simplifies the compu-
tation of all the geometrical quantities. In this sense, the lower m-dimensional
spacetime gauged “Ricci scalar” term gµν(x, y)R(m)

µν (x, y) and the internal space
“Ricci scalar” term gab(x, y)R(n)

ab (x, y) are obtained. In the special case when
gµν(x) depends solely on x and gab(y) depends on y then the spacetime gauged
“Ricci scalar” coincides with the ordinary Ricci scalar gµν(x)R(m)

µν (x) and the
internal space “Ricci scalar” becomes the true Ricci scalar of the internal space.
However, the gauge field Aµ(x, y) still retains its full dependence on both vari-
ables x, y.

We have shown [4] that in this particular case the D = m + n dimensional
gravitational action restricted to AdSm×Sn backgrounds admits a holographic
reduction to a lower d = m-dimensional Yang-Mills-like gauge theory of diffs of
Sn, interacting with a charged/gauged nonlinear sigma model plus boundary
terms, by a simple tuning of the radius of Sn and the size of the throat of the
AdSm space. Namely, in the case of AdS5×S5, the holographic reduction occurs
if, and only if, the size of the AdS5 throat coincides precisely with the radius
of S5 ensuring a cancellation of the scalar curvatures gµνR

(m)
µν and gabR

(n)
ab in

eq-(1.6) [4]:

R(10) =
e2

4
gab(y) F a

µν(x, y) F b
ρτ (x, y) gµρ(x) gντ (x) +

1
4
gµν(x) gab(y) gcd(y) (Dµgab) (Dνgcd) (1.11)

plus total derivative terms (boundary terms)

Dµ gab = ∂µgab + [Aµ, gab].

where the Lie-bracket is

[ Aµ , gab ] = (∂a A
c
µ(xµ, ya)) gbc(xµ, ya) + (∂b A

c
µ(xµ, ya)) gac(xµ, ya) +

Ac
µ(xµ, ya) ∂c gab(xµ, ya). (1.12)
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and the Yang-Mills like field strength is

F a
µν = ∂µA

a
ν − ∂νA

a
µ − [Aµ, Aν ]a =

∂µA
a
ν − ∂νA

a
µ − Ac

µ∂cA
a
ν +Ac

ν∂cA
a
µ. (1.13)

Eq-(1.11) is nothing but the holographic reduction of the D = 10-dim pure
gravitational action to a 5-dim Yang-Mills-like action (of diffeomorphisms of the
internal S5 space) interacting with a charged nonlinear sigma model (involving
the gab field) plus boundary terms. The previous argument can also be gen-
eralized to gravitational actions restricted to de Sitter spaces, like dSm × Hn

backgrounds as well, where Hn is an internal hyperbolic noncompact space of
constant negative curvarture, and dSm is a de Sitter space of positive constant
scalar curvature. The decomposition (1.11) provided a very straightfoward ex-
planation of why AdS spaces played a crucial importance in the Maldacena
AdS/CFT duality conjecture, because the algebra of area-preserving diffs of
the sphere is isomorphic to the large N (basis dependent) limit of SU(N), as
shown by Hoppe long ago [22]; i.e. why higher-dim gravity admits a holographic
reduction to a lower-dim SU(∞) YM theory. It is unfortunate that the impor-
tant work of [2], [3] that already contained the seeds of the holographic principle
was largely ignored by the physics community.

Introducing the light-cone coordinates u, v such that

u =
1√
2

(x0 + x1), v =
1√
2

(x0 − x1). (1.14)

and define

Aa
u = Aa

+ =
1√
2

(Aa
0 +Aa

1), Aa
v = Aa

− =
1√
2

(Aa
0 −Aa

1). (1.15)

the Polyakov ansatz is [24]

gµν =
(

0 −1
−1 2h++

)
, gµν =

(
−2h++ −1
−1 0

)
, det gµν = −1. (1.16)

gab = eσ ρab; det ρab = 1. (1.17)

The covariant derivative of a tensor density ρab with weight 1 is

Dµ ρab = ∂µ ρab − [ Aµ , ρ ]ab + (∂cA
c
µ) ρab =

∂µ ρab −Ac
µ∂c ρab − (∂aA

c
µ) ρcb − (∂bA

c
µ) ρac + (∂cA

c
µ) ρab. (1.18)

the covariant derivative on the scalar density Ω = eσ of weight −1 is

DµΩ = ∂µΩ −Aa
µ∂aΩ − (∂aA

a
µ)Ω ⇒

Dµσ = ∂µσ −Aa
µ∂aσ − (∂aA

a
µ). (1.19)
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after factoring the eσ terms. Notice the extra term w(ρab)(∂cA
c
µ)ρab in the

definition of the covariant derivative acting on a tensor density ρab whose weight
is w(ρab) = 1. Similarly there is an extra term −(∂aA

a
µ)Ω in the covariant

derivative of the scalar density Ω of weight−1. The Yang-Mills like field strength
is

F a
+− = ∂+A

a
− − ∂−Aa

+ − [A+, A−]a =

∂+A
a
− − ∂−Aa

+ − Ac
+∂cA

a
− +Ac

−∂cA
a
+. (1.20)

The gauged-Ricci scalar becomes [3]√
det gab g

µν Rµν → 2h++ eσ [D2
−σ +

1
2
(D−σ)2 +

1
4
ρab ρcd (D−ρac) (D−ρbd) ].

(1.21)
The Polyakov ansatz (1.16) leads to

det gµν = −1 ⇒ gµν ∂a gµν = 2(−det gµν)−1/2 ∂a(−det gµν)1/2 = 0. (1.22)

and one can verify that

gab gµν gαβ (∂agµα) (∂bgνβ) = 0. (1.23)

vanishes identically.
To sum up, after a laborious calculation Yoon [3] arrived finally at the ex-

pression for the Lagrangian density

L = − 1
2
e2σ ρab F

a
+− F

b
+− + eσ D+σ D−σ −

1
2
eσ ρab ρcd (D+ρac) (D−ρbd) +

eσ R2 + 2h++ eσ [ D2
−σ +

1
2
(D−σ)2 +

1
4
ρab ρcd (D−ρac) (D−ρbd) ] (1.24)

plus surface terms. At each point xµ of the 2D base space M, the quantity
R2 = gabRab can be interpreted as the ”scalar curvature” of the internal space
or fiber N2 at xµ. Since gab(xµ, ya) depends on both the base space and internal
space coordinates, the integral

∫
d2y eσR2 is no longer given in terms of the

Euler class topological invariant associated with the 2-dim surface N2. The
scalar curvature gabRab is interpreted now as the potential V (gab) for the self-
interacting non-linear sigma field gab.

The gauged-Ricci scalar gµνRµν of the 2D base spacetime M leads to the
those terms multiplying the scalar h++ in (1.24) such that h++ acts as a La-
grange multiplier enforcing the constraint

D2
−σ +

1
2
(D−σ)2 +

1
4
ρab ρcd (D−ρac) (D−ρbd) = 0. (1.25)

The area-preserving diffs algebra is generated by vector fields ξa tangent to
the surface N2 and which are divergence-free ∂aξ

a = 0. The condition ∂aA
a
± = 0

is invariant under area-preserving diffs, thus by imposing the divergence free
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condition ∂aA
a
± = 0 one will have invariance under area-preserving diffs and

such that the covariant derivatives acting on the tensor density ρab and scalar
σ in eqs-(1.18, 1.19) are now given by

D±σ = ∂±σ −Aa
±∂aσ. (1.26)

D±ρab = ∂±ρab − [ A±, ρ ]ab. (1.27)

Under infinitesimal variations, the fields transform

δσ = − [ξ , σ] = − ξa∂aσ, ∂aξ
a = 0. (1.28)

δρab = − [ξ , ρ]ab = − ξc∂cρab − (∂aξ
c)ρcb − (∂bξ

c)ρac. (1.29)

δAa
+ = −D+ξ

a = − ∂+ξ
a + [A+ , ξ]a. (1.30)

δAa
− = − ∂−ξa . (1.31)

since δAa
− is given by a total derivative one can choose the light-cone gauge

Aa
− = 0 leaving Aa

+ 6= 0.

2 w∞, w1+∞ Gauge Field Theory in 2D from 4D
Gravity

2.1 w∞, w1+∞ as Area-preserving Diffs Algebras

Zamolodchikov [5] was the first to pioneer the theory of higher conformal spin
algebras WN , N = 2, 3, 4, ...., N in 2D that are the higher conformal spin ex-
tensions of the Virasoro algebra that arise in various physical systems as 2D
quantum gravity, the quantum Hall effect, the membrane, the large N QCD,
gravitational instantons, topological QFT, etc.... see [7] for an extensive review
and references. The w1+∞ algebra is isomorphic to the area-preserving diffs
algebra of the cylinder S1 ×R1 :

[vi
m , vj

n] = [(j + 1)m − (i+ 1)n] vi+j
m+n. (2.1)

where the index i, j = −1, 0, 1, 2, .... is related to the su(1, 1) conformal spin
s = 1, 2, 3, .... and m,n label their respective Fourier modes. The spin s = 1
correspond to an extra spin 1 current. The w∞ algebra is the area-preserving
diffs algebra of the two-dim plane and is comprised of higher spin generators
whose conformal spin range is s = 2, 3, 4, .... and it is a subalgebra of w1+∞;
whereas su(∞) is the area-preserving diffs algebra of a sphere S2. A realization
of the higher conformal spin generators of w1+∞ is
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vl
m = − i eimθ yl [−im y ∂y + (l + 1) ∂θ]. (2.2)

A complete set of functions ( not orthogonal ) on the cylinder S1 ×R1 is

ul
m = − ieimθ yl+1; −∞ ≤ m ≤ ∞, l ≥ − 1. (2.3)

where the conformal su(1, 1)-spin s in D = 2 is given by s = l + 2 ≥ 1.
The w∞, w1+∞ gauge invariant Lagrangian density was constructed by [13]

L =
∑
~i,~j

(Φ6(x))−~i−~j F~i
+−(x) F~j

+−(x) +

∑
~k

(D+Φ−~k(x)) (D−Φ~k(x)) + V (Φ~k(x)). (2.6)

The gauge field A
~k
µ is Hemitian ( w.r.t a well defined scalar product ) (A~k

µ)∗ =

A−
~k

µ = Aµ,~k and belongs to the adjoint representation Vα,β constructed by

Feigin-Fuks-Kaplansky ( FFK ) [14] with α = 1, β = 0. Φ~k is an infinite-
component complex scalar multiplet belonging to the infinite-dim vector repre-
sentation Vα,β with α = −1/2, β = 0. In order to write invariant actions based
on a scalar product the weights must obey α∗ + α + 1 = 0 and β∗ − β = 0
where α∗, β∗ are the weights of the dual representation V ∗α,β = V−1−α,−β . For
further details we refer to [13]. The gauge invariant Lagrangian based on the
Virasoro w2 algebra involving only the conformal spin 2 current ( stress energy
tensor) was constructed by [12] and can be obtained from the w∞ Lagrangian
by a simple truncation.

The field strength in the adjoint representation of FFK is

F~k
+− = ∂+A

~k
− − ∂−A

~k
+ − ie [ A+, A− ]~k. (2.7)

The commutator of the gauge fields in the adjoint representation is [13]

[ A+, A− ]~k = [ m1 (k2 + 2) − (m2 + 1) k1 ] A~m
+ A~k−~m

− . (2.8)

where ~k denotes a two-dim lattice index

~k = (k1, k2), ~m = (m1,m2), (2.9a)

and their values are constrained by

k2 ≥ −1; m2 ≥ −1; −∞ ≤ k1 ≤ ∞; −∞ ≤ m1 ≤ ∞. (2.9b)

since the conformal su(1, 1)-spin s associated with the 2D higher conformal
spin generators vk2

k1
of the w1+∞ algebra is given by s = k2 + 2 ≥ 1 such

that s = 1, 2, 3, ...... Whereas, the index k1 labels the infinite Fourier modes
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associated with each one of the conformal spin-s generators. The covariant
derivative is

(D±Φ~k) = ∂±Φ~k + ie [ (m2+1)(
m1

2
−k1) − (

m2

2
−k2)m1 ] A~m

± Φ~k−~m. (2.10)

The integration of the Yang-Mills-like terms of eq-(1.24) w.r.t the internal
coordinates of the two-dim surface N2 furnishes the correspondence with the
terms of the w∞, w1+∞ gauge invariant Lagrangian [13] associated with the
two-dim base spacetime M2. Integrating over a cylinder S1 × R1 whose base
S1 has unit radius yields∫

dy dθ e2σ(x;y,θ) [ F y
+− F

y
+− + F θ

+− F
θ
+− ] =

∑
~i,~j

(Φ6(x))−~i−~j F~i
+−(x) F~j

+−(x).

(2.11)
where one has set ρab = δab. The scalar kinetic terms correspondence based on
eq-(1.24) is∫

dy dθ eσ(x;y,θ) D+σ D−σ =
∑
~k

(D+Φ−~k(x)) (D−Φ~k(x)). (2.12)

And integrating ∫
dy dθ eσ gab Rab = V (Φ~k). (2.13)

yields the self-interacting potential V (Φ~k).
The resulting integrals in eqs-(2.12, 2.13) yield the functional relations among

the infinite component fields σlm(xµ), Aa
±,lm(xµ) in the decomposition

σ = σ(xµ, y, θ) =
∑
lm

σlm(xµ) eimθ yl+1. (2.14a)

Aa
± = Aa

±(xµ, y, θ) =
∑
lm

Aa
±,lm(xµ) eimθ yl+1. (2.14b)

with s = l + 2 ≥ 1, l = −1, 0, 1, 2, 3, ..., −∞ ≤ m ≤ ∞, and the fields

Φ~k(x+, x−), A~k
±(x+, x−), ~k = (k1, k2). (2.15)

associated with the FFK representations of the w1+∞ algebra and which appear
in the 2D Lagrangian density of the w1+∞-gauge field theory [13]. Therefore,
the 1+1-dim Lagrangian density of the w1+∞ gauge theory is inherently present
in the 1 + 1-dim description of the algebraically special class of space-times in
4-dim that contain a twist-free null vector field [3].
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2.2 Moyal Star Product Deformations of su(∞), w1+∞, w∞
Gauge Theories

The authors [9] have shown that upon quantization of field theories exhibit-
ing symmetries provided by classical algebras w1+∞, w∞ these symmetries get
deformed to the quantum algebras W1+∞, W∞ whose commutation relations
are

[V i
m , V j

n ] =
∑

l

gij
2l(m,n) V I+j−2l

m+n + ci(m) δij δm+n,0. (2.16)

where the structure constants gij
2l(m,n) are complicated expressions given in

terms of the generalized Saalschutzian hyper-geometric functions, binomial co-
efficients, ... and the ci are the central charges associated with all of the higher
spin sectors [9] [25]. The deformation of the classical algebras w1+∞, w∞ can be
obtained from a Moyal-Fedosov-Kontesevich star product deformation program
as shown by [8] and in this fashion one may generate the structure constants
gij
2l(m,n) that were originally obtained by a tour de force method [9]. In ad-

dition, there are also modifications in the central charges where the central
charge term present only in the Virasoro sector [8] is extended to all of the
higher conformal spin sectors of the quantum W∞,W1+∞ algebras. The ori-
gin of the modifications of the central charge terms is due to universal gauge
anomalies of the algebras [25].

The ordinary Moyal star-product of two functions in phase space f(x, p), g(x, p)
is :

(f ∗ g)(x, p) =
∑

s

h̄s

s!

s∑
t=0

(−1)tC(s, t) (∂s−t
x ∂t

pf(x, p)) (∂t
x∂

s−t
p g(x, p)) (2.17)

where C(s, t) is the binomial coefficient s!/t!(s− t)!. In the h̄→ 0 limit the star
product f ∗ g reduces to the ordinary pointwise product fg of functions. The
Moyal product of two functions of the 2n-dim phase space coordinates (qi, pi)
with i = 1, 2...n is:

(f ∗ g)(x, p) =
n∑
i

∑
s

h̄s

s!

s∑
t=0

(−1)tC(s, t) (∂s−t
xi

∂t
pi
f(x, p)) (∂t

xi
∂s−t

pi
g(x, p))

(2.18
The noncommutative, associative Moyal bracket is defined:

{f, g}MB =
1
ih̄

(f ∗ g − g ∗ f). (2.19)

In the h̄ → 0 limit the star product f ∗ g reduces to the ordinary pointwise
product fg of functions and the Moyal bracket reduces to the Poisson one.
Thus, the Moyal deformations of the Yang-Mills-like terms are
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∫
dy dθ e2σ

∗ ∗ [ F y
+− ∗ F y

+− + F θ
+− ∗ F θ

+− ]. (2.20)

F+− = ∂+A− − ∂−A+ − ie { A+, A− }MB . (2.21)

D±σ = ∂±σ + { A± , σ }MB . (2.22)

D± eσ
∗ = ∂± eσ

∗ + { A± , eσ
∗ }MB . (2.23)

Due to the fact that for higher derivatives

∂n
ya eσ(xµ,ya) 6= eσ(xµ,ya) ∂n

ya σ(xµ, ya) ⇒

{ A± , eσ }MB 6= eσ { A± , σ }MB . (2.24)

and
{ A± , eσ

∗ }MB 6= eσ
∗ { A± , σ }MB . (2.25)

the correct Moyal deformations of the scalar kinetic terms are∫
dy dθ eσ

∗ ∗ [ e−σ
∗ ∗ e−σ

∗ ∗ D+ eσ
∗ ∗ D− eσ

∗ ]. (2.26)

where the star-deformed exponential function is defined by

eσ
∗ = 1 + σ +

1
2!
σ ∗ σ +

1
3!
σ ∗ σ ∗ σ + ....... (2.27)

The star-deformed potential V∗(ϕ) is defined as the star-deformed Taylor ex-
pansion of the original potential V (ϕ)

V∗(ϕ(x, y)) ≡
∑

n

gnϕ ∗ ϕ ∗ ϕ..... ∗ ϕ. (2.28)

where the couplings gn are obtained by taking the n-th derivatives of V (ϕ) w.r.t
ϕ and evaluated at ϕ = 0

gn ≡
1
n!
∂nV (ϕ)
∂ϕn

(ϕ = 0). (2.29)

The Moyal deformed-action S∗ is highly nontrivial. The leading terms h̄0

coincide with the undeformed action based on the Poisson bracket algebra of
area-preserving diffs of the two-dim internal N2 surface. In the case that the in-
ternal two-dim space has the topology of a sphere, this Poisson bracket algebra is
isomorphic to the basis-dependent limit of the N →∞ limit of SU(N) [22]. For
arguments refuting the ismorphism behind the large N limits of su(N) algebras
and the area-preserving diffs of a sphere S2 see [23] . The Moyal-deformations
of the area-preserving-diffs S2 symmetry transformations that leave invariant
the Moyal-deformed gravitationally induced action-density L∗(x) are given by
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δAµ(x, y) = −1
e
[∂µξ(x, y)− e{Aµ(x, y), ξ(x, y)}MB ]. (2.30a)

one may set e = 1 for convenience.

δFµν(x, y) = −{ξ(x, y),Fµν(x, y)}MB . (2.30b)

δϕ(x, y) = −{ξ(x, y), ϕ(x, y)}MB . (2.30c)

δDµϕ = −{ξ(x, y), Dµϕ}MB . (2.30d)

δV∗(ϕ) = −{ξ, V∗(ϕ)}MB . (2.30e)

and the variation of L∗(x) is given by a sum of total derivatives that vanishes
after integration by parts since the internal sphere has no boundaries

δL∗(x, y) = −{ξ, L∗(x, y)}MB ⇒ δL∗(x) =
∫

d2y δL∗(x, y) =

−
∫

d2y {ξ, L∗(x, y)}MB =
∫

(sum of total derivatives) = 0. (2.31)

To show this requires the use of the Liebnitz property of the Moyal Brackets

{ξ , Fµν F
µν}MB = {ξ , Fµν}MB Fµν + Fµν {ξ , Fµν}MB . (2.32)

and∫
d2y Fµν ∗ Fµν =

∫
d2y (Fµν F

µν + total derivatives) =
∫

d2y Fµν F
µν ⇒

δ

∫
d2y Fµν ∗ Fµν = δ

∫
d2y Fµν F

µν =∫
d2y {ξ , Fµν}MB Fµν + Fµν {ξ , Fµν}MB =∫

d2y {ξ , Fµν F
µν}MB =

∫
sum of total derivatives = 0. (2.33)

if there are no boundaries or if the fields vanish fast enough at infinity. Similar
results follow for the kinetic terms. For further details see [16], [17]. In general,
the generators of w∞, w1+∞ admit a parametrization in terms of an infinity
family of functions f as

Lf = ωab ∂bf ∂a, ωab = symplectic structure. (2.34)

where the Lie-Poisson structure is deformed into a Lie-Moyal one upon quanti-
zation
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[Lf , Lg] = L{f,g} → [Lf , Lg]∗ = L{f,g}∗ . (2.36)

For instance, When the topology of the internal two-dim surface is that of a
cylinder S1 ×R1 one may expand the function f and generators Lf as

f(y, θ) = flm eimθ yl+1; Lf = flm vlm = flm eimθ [m yl+1 ∂y +i(l+1) yl ∂θ].
(2.37)

from which one may read the commutation relations of the (deformed )currents
vl

m, V
l
m from the Lie-Poisson and Lie-Moyal algebraic structures upon deforma-

tion quantization. Similar results follow for the sphere and the two-dim plane by
choosing the appropriate basis of functions. The algebras admit central charges
or not depending on the genus of the two-dim surfaces [6].

3 4D Quantum Gravity via 2D Quantum W∞
Gauge Theories, Collective Fields and Matrix
Models

In this section we shall show how Quantum Gravity in D = 3 can be described
by a W∞ Matrix Model in D = 1 that can be solved exactly. 4D Quantum
Gravity is more complicated, nevertheless its quantization program can be at-
tained from the perspective of a 2D Quantum W∞ gauge theory coupled to an
infinite-component scalar-multiplet whose action is described by eq-(2.6); i.e.
Quantization of Einstein Gravity in 4D admits a reformulation in terms of a
2D Quantum W∞ gauge theory coupled to an infinite family of scalars.

It has been known for some time [20] that the bosonization program of non-
relativistic fermions in one space dimension can be used to describe the low
energy excitations of a Fermi gas in terms of a Fermi fluid of various shapes
with the same area as the ground state configuration if one insists in fermion
number conservation. The Fermi fluid exists in the 2-dim phase space of the
single fermion and changes in the state of the Fermi theory correspond to area−
preserving shape changes of the Fermi fluid.

The Das-Jevicki-Sakita [19] collective field theory approximation studies the
fluctuations of the phase-space density and in the semi classical limit describes
the low energy excitations of the Fermi fluid near the Fermi surface when one
restricts the shapes of the Fermi fluid to have a quadratic profile for the Fermi
energy µF = 1

2 (p2 − q2) related to an inverted one-dim harmonic oscillator
potential.

A direct proof of bosonization of non-interacting non-relativistic fermions
in one space dimension was derived by Wadia et al [20] by using W∞ coherent
states in the fermion path-integral. The bosonized action was derived earlier by
the method of coadjoint orbits associated with the W∞ algebra. The classical
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limit of the bosonized theory and the precise nature of the truncation of the
full theory that leads to the Das-Jevicki-Sakita collective field theory was also
described by [20].

The use of W∞ coherent states in the fermionic path-integral was made
possible by the observation [18] that the bosonized problem is analogous to that
of a spin in a magnetic field. This system has aW∞ spectrum generating algebra
that follows from the existence of the w∞ symmetry of the harmonic oscillator.
It is natural to rewrite the collective field theory in 0 + 1 dimensions as a 1 + 1
relativistic field theory [21] so the collective field theory is a theory of a massless
boson that reproduces the fluctuations in the density.

The quantum algebra W∞ may be realized [21] as the algebra of modes of the
Fermion bilinears : ∂kΨ(z)∂lΨ(z) :. A bosonization relates the fermion-bilinears
to the bosonic currents 1

s : e−φ(z)∂seφ(z) : and similarly to the left movers by
replacing z → z̄. The key point was that although the collective field theory is
not a free theory it has a spectrum generating algebra given by charges

Qlm =
∫
dx

∫ p+

p−

dp (p+ x)l+m+1 (p− x)l−m+1. (3.1)

that satisfy a w∞ algebra isomorphic to the Poisson-bracket algebra of the
charges {Qlm , Ql′m′ }PB .

After this historical this preamble one may notice that the action (1.24)
obtained from the decomposition of Einstein gravity in D = 1 + 2 ( instead of
D = 2 + 2 ) is much simpler since there are no Yang-Mills-like terms and a
gauged-Ricci scalar curvature term in a one-dimensional base space M1, and
when ρab = δab the Einstein-Hilbert action in D = 1 + 2 action reduces to

S =
∫

dt L =
∫

dt

∫
dy dθ eσ [ D+σ D−σ + R2 ] =

∫
dt

∫
dy dθ eσ [ D+σ D−σ + V (σ) ]. (3.2)

where R2 = V (σ). The Moyal star product deformation is

∫
dt L∗ =

∫
dt

∫
dy dθ eσ

∗ ∗ [ e−σ
∗ ∗ e−σ

∗ ∗ D+ eσ
∗ ∗ D− eσ

∗ + V∗(σ) ]. (3.3)

and has the same functional form ( up to scaling factors in the integration
measure ) as the W∞ and w∞ Matrix Model Lagrangians in D = 1 studied by
[18]

L = trace [
1
2

( ∂t M(t) + { At (t) , M(t) } )2 − V (M) ] =∫
d2z

1
2

[ ∂t M(t, z, z̄) + { At (t, z, z̄) , M(t, z, z̄) }MB ]2∗ − V∗(M). (3.4a)

14



where the infinite-dimensional trace operation is replaced by an integration
trace→

∫
d2z and

( ∂t M + { At, , M }MB)2∗ =

( ∂t M + { At, , M }MB) ∗ ( ∂t M + { At , M }MB)

the one-dim w∞ Matrix Model is based on the Lagrangian

L =
∫

d2y
1
2

[ ∂t M(t, y1, y2) + { At (t, y1, y2) , M(t, y1, y2) }PB ]2 −V (M).

(3.4b)
the internal coordinates y1, y2 of the two-dim surface N2 are represented by
the complex coordinates z = 1√

2l
(y1 + iy2), z̄ = 1√

2l
(y1 − iy2) associated with

the coherent-states representation and l is length scale parameter . The Moyal
brackets of two functions ξ1(z, z̄), ξ2(z, z̄) in units of h̄ = c = 1 is

{ ξ1(z, z̄) , ξ2(z, z̄) }MB =

i
∞∑

n=1

(−1)n

n!
[ ∂n

z (ξ1(z, z̄)) ∂n
z̄ (ξ2(z, z̄)) − ∂n

z̄ (ξ1(z, z̄)) ∂n
z (ξ2(z, z̄)) ]. (3.5)

The canonical quantization leads to the Hamiltonians expressed in terms of
momentum variables

H =
∫

d2z
1
2

(P (z, z̄)) ∗ (P (z, z̄)) + V∗(M) =∫
d2z

1
2

∞∑
n=0

1
n!

[ ∂n
z (P (z, z̄)) ∂n

z̄ (P (z, z̄)) + V∗(M). (3.6a)

H =
∫

d2y
1
2

(P (y1, y2)) (P (y1, y2)) + V (M). (3.6b)

The W∞, w∞ gauge invariance of the actions leads to the following con-
straints on the state vector |Ψ >∫

d2z { ξ , M }MB P (z, z̄) |Ψ > = 0. (3.7a)∫
d2y { ξ , M }PB P (y1, y2) |Ψ > = 0. (3.7b)

Kavalov and Sakita solved the problem by using the techniques based on the col-
lective field method [19] that requires a change of variables from P (z, z̄),M(z, z̄)
to π(x), φ(x) . The procedure is quite elaborate. The end result yields the fol-
lowing Hamiltonians for the collective field associated with the W∞ algebra

H =
∫

dx [
1
2
(∂xπ(x))2φ(x)+

π

6
φ(x)3 +V (x) φ(x) ] −λ(

∫
dx φ(x) − N).

(3.8a)
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and

H =
∫

dx [
1
2
(∂xπ(x))2φ(x)+

κ

8
(∂xφ(x))2

φ(x)
+V (x) φ(x) ]−λ(

∫
dx φ(x)− L2).

(3.8b)
associated with the w∞ algebra. N is the number of fermions, L2 is the area of
the fluid, κ is a numerical parameter and λ a Lagrange multiplier enforcing the
constraints. After a suitable scaling transformations, in the N → ∞ limit the
excitation spectrum found by Kavalov and Sakita [18] turned out to be

H =
1
2

∞∑
n=0

(p2
n + ω2

n q2n), [qn, pn] = iδmn, h̄ = c = 1. (3.9)

for the W∞ one-dim Matrix model case the frequencies are

ωn =
nπ

T
, T =

∫ x2

x1

dx√
2(Eo − U(x))

,
1
π

∫ x2

x1

dx
√

2(Eo − U(x)) = 1.

(3.10a)
and for the w∞ one-dim Matrix model the frequencies are obtained from the
energy levels of the solutions of the Schroedinger equation

ωn = En − Eo, [−1
2
∂2

x + V (x) ] ψn(x) = En ψn(x). (3.10b)

where

U(x) =
∑

n

N
n
2−1gnx

n =
∑

n

an xn. (3.11a)

and

V (x) =
∑

n

κn−2g̃nx
n =

∑
n

(κl)n−2gnx
n =

∑
n

bn xn. (3.11b)

respectively. As mentioned above, the key point was that although the collec-
tive field theory is not a free theory it has a w∞ spectrum generating algebra
associated with the harmonic oscillator

As stated earlier, quantization of Einstein Gravity in 4D admits a refor-
mulation in terms of a 2D Quantum W∞ gauge theory coupled to an infinite
family of scalars. The starting point is the classical w∞, w1+∞ gauge invariant
Lagrangian density constructed by [13]

L =
∑
~i,~j

(Φ6(x))−~i−~j F~i
+−(x) F~j

+−(x) +

∑
~k

(D+Φ−~k(x)) (D−Φ~k(x)) + V (Φ~k(x)). (3.12)

A quantization of (2.6, 3.12) will deform the classical w∞, w1+∞ symmetry
algebras of the classical Lagrangian to the quantum W∞,W1+∞ symmetry of
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the quantum theory ( a BRST quantization procedure ) and such that the latter
quantum algebras will be the spectrum generating algebras. Since there are an
infinite number of higher conformal spin generators the highest weight represen-
tations will generate an infinite number of states at each level. Kac and Radul
[29] solved this problem by constructing quasi-finite highest weight representa-
tions that were used by [30] to develop the full fledged representation theory
of the quantum W1+∞ algebra. Free field realizations, (Super) Matrix gener-
alizations, the structure of subalgebras such as the W∞ algebra, determinant
formulae and character formulae can be found in [30].

The Bars-Witten stringy black hole in D = 2 has a nonlinear Ŵ∞(k = 9
4 )

for hidden symmetry [8] that can be used as its spectrum generating algebra;
a W∞ symmetry of the Nambu-Goto string in 4D was also found in [8] based
on a SU(2)/U(1) coset model. Closely related to black-holes in 3D, Witten has
shown [32] that the energy spectrum of three-dimensional gravity with negative
cosmological constant associated with the BTZ black-hole can be determined
exactly. Witten has argued that the dual Conformal Field Theory (CFT) is
very likely to be the Monster theory of Frenkel, Lepowsky, and Meurman. The
partition function was found to be a polynomial in the modular invariant Klein
function j(q). Manschot has shown more recently that the partition function
can be obtained as a modular sum over geometries [33].

Not so long ago, the authors [34] inspired by a formal resemblance of certain
q-expansions of modular forms and the master field formalism of matrix models
in terms of Cuntz operators, constructed a Hermitian one-matrix model that was
coined the “Modular Matrix Model” which naturally encode the Klein elliptic
j(q)-invariant and the irreducible representations of the Fischer-Griess Monster
group resulting from the Moonshine conjecture. These results relating Modular
Matrix Models, quantum gravity and the Monster, in particular the role of W∞
algebras, warrant a furher investigation. For an extensive review of 2D Gravity,
Matrix Models and String theory see [21].

Isomonodromic quantization of dimensionally reduced Gravity can be found
in [28]. The relationship between W∞ gravity (geometry) and the Fedosov
deformation quantization of the 4D Self-Dual Gravity [15] associated with the
complexified co-tangent space of a two-dim Riemann surface was studied by
[17]. String and p-branes actions can be obtained by a Moyal deformation
quantization of (Generalized ) Yang-Mills as shown in [11]. A natural Fedosov
type quantization of generalized Lagrange models and gravity theories with
metrics lifted on tangent bundle, or extended to higher dimensions, has been
attained by Vacaru [31]. The constructions are possible due to a synthesis of the
nonlinear connection formalism developed in Finsler and Lagrange geometries
and deformation quantization methods.

Higher spin field theories in D > 2 have been extensively studied over the
years by Vasiliev [10] and Calixto [26] has constructed Generalized W∞-type
Higher Spin Algebras in Higher dimensions D > 2 where non-linear realization
methods [27] could be used to build higher spin extensions of Gravity theo-
ries. The interplay among quantum membranes, the continuous Toda theories
and non-critical W∞ (super) strings has been analyzed by [35] to show why
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non-critical W∞ (super) strings in D = 27(11) dimensions are devoid of BRST
anomalies. Such D = 27(11) dimensions coincide with the alleged critical di-
mensions of the quantum (super) membrane, respectively. To finalize, we must
say that Noncommutative 4D Gravity based on deformed diffs and Poincare
algebras developed by [36] deserves further investigation within the context of
2D W∞ gauge theory.
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