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Abstract

Number theoretic Langlands program can be seen as an attempt
to unify number theory on one hand and theory of representations
of reductive Lie groups on the other hand. So called automorphic
functions to which various zeta functions are closely related define the
common denominator. Geometric Langlands program tries to achieve
a similar conceptual unification in the case of function fields. This
program has caught the interest of physicists during last years.

TGD can be seen as an attempt to reduce physics to infinite-
dimensional Kähler geometry and spinor structure of the ”world of
classical worlds” (WCW). Since TGD ce be regarded also as a general-
ized number theory, it is difficult to escape the idea that the interaction
of Langlands program with TGD could be fruitful.

More concretely, TGD leads to a generalization of number concept
based on the fusion of reals and various p-adic number fields and their
extensions implying also generalization of manifold concept, which in-
spires the notion of number theoretic braid crucial for the formulation
of quantum TGD. TGD leads also naturally to the notion of infinite
primes and rationals. The identification of Clifford algebra of WCW
as a hyper-finite factors of type II1 in turn inspires further generaliza-
tion of the notion of imbedding space and the idea that quantum TGD
as a whole emerges from number theory. The ensuing generalization
of the notion of imbedding space predicts a hierarchy of macroscopic
quantum phases characterized by finite subgroups of SU(2) and by
quantized Planck constant. All these new elements serve as potential
sources of fresh insights.

1. The Galois group for the algebraic closure of rationals as infinite
symmetric group?

The naive identification of the Galois groups for the algebraic clo-
sure of rationals would be as infinite symmetric group S∞ consisting
of finite permutations of the roots of a polynomial of infinite degree
having infinite number of roots. What puts bells ringing is that the
corresponding group algebra is nothing but the hyper-finite factor of
type II1 (HFF). One of the many avatars of this algebra is infinite-
dimensional Clifford algebra playing key role in Quantum TGD. The
projective representations of this algebra can be interpreted as repre-
sentations of braid algebra B∞ meaning a connection with the notion
of number theoretical braid.

2. Representations of finite subgroups of S∞ as outer automor-
phisms of HFFs

Finite-dimensional representations of Gal(Q/Q) are crucial for Lang-
lands program. Apart from one-dimensional representations complex
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finite-dimensional representations are not possible if S∞ identifica-
tion is accepted (there might exist finite-dimensional l-adic represen-
tations). This suggests that the finite-dimensional representations cor-
respond to those for finite Galois groups and result through some kind
of spontaneous breaking of S∞ symmetry.

a) Sub-factors determined by finite groups G can be interpreted
as representations of Galois groups or, rather infinite diagonal imbed-
dings of Galois groups to an infinite Cartesian power of Sn acting as
outer automorphisms in HFF. These transformations are counterparts
of global gauge transformations and determine the measured quantum
numbers of gauge multiplets and thus measurement resolution. All the
finite approximations of the representations are inner automorphisms
but the limit does not belong to S∞ and is therefore outer. An analo-
gous picture applies in the case of infinite-dimensional Clifford algebra.

b) The physical interpretation is as a spontaneous breaking of S∞
to a finite Galois group. One decomposes infinite braid to a series of
n-braids such that finite Galois group acts in each n-braid in identical
manner. Finite value of n corresponds to IR cutoff in physics in the
sense that longer wave length quantum fluctuations are cut off. Fi-
nite measurement resolution is crucial. Now it applies to braid and
corresponds in the language of new quantum measurement theory to
a sub-factor N ⊂ M determined by the finite Galois group G imply-
ing non-commutative physics with complex rays replaced by N rays.
Braids give a connection to topological quantum field theories, confor-
mal field theories (TGD is almost topological quantum field theory at
parton level), knots, etc..

c) TGD based space-time correlate for the action of finite Galois
groups on braids and for the cutoff is in terms of the number theoretic
braids obtained as the intersection of real partonic 2-surface and its p-
adic counterpart. The value of the p-adic prime p associated with the
parton is fixed by the scaling of the eigenvalue spectrum of the modified
Dirac operator (note that renormalization group evolution of coupling
constants is characterized at the level free theory since p-adic prime
characterizes the p-adic length scale). The roots of the polynomial
would determine the positions of braid strands so that Galois group
emerges naturally. As a matter fact, partonic 2-surface decomposes
into regions, one for each braid transforming independently under its
own Galois group. Entire quantum state is modular invariant, which
brings in additional constraints.

Braiding brings in homotopy group aspect crucial for geometric
Langlands program. Another global aspect is related to the modu-
lar degrees of freedom of the partonic 2-surface, or more precisely to
the regions of partonic 2-surface associated with braids. Sp(2g,R) (g
is handle number) can act as transformations in modular degrees of
freedom whereas its Langlands dual would act in spinorial degrees of
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freedom. The outcome would be a coupling between purely local and
and global aspects which is necessary since otherwise all information
about partonic 2-surfaces as basic objects would be lost. Interesting
ramifications of the basic picture about why only three lowest genera
correspond to the observed fermion families emerge.

3. Correspondence between finite groups and Lie groups

The correspondence between finite and Lie group is a basic aspect
of Langlands.

a) Any amenable group gives rise to a unique sub-factor (in partic-
ular, compact Lie groups are amenable). These groups act as genuine
outer automorphisms of the group algebra of S∞ rather than being
induced from S∞ outer automorphism. If one gives up uniqueness, it
seems that practically any group G can define a sub-factor: G would
define measurement resolution by fixing the quantum numbers which
are measured. Finite Galois group G and Lie group containing it and
related to it by Langlands correspondence would act in the same repre-
sentation space: the group algebra of S∞, or equivalently configuration
space spinors. The concrete realization for the correspondence might
transform a large number of speculations to theorems.

b) There is a natural connection with McKay correspondence which
also relates finite and Lie groups. The simplest variant of McKay cor-
respondence relates discrete groups G ⊂ SU(2) to ADE type groups.
Similar correspondence is found for Jones inclusions with index M :
N ≤ 4. The challenge is to understand this correspondence.

i) The basic observation is that ADE type compact Lie algebras
with n-dimensional Cartan algebra can be seen as deformations for a
direct sum of n SU(2) Lie algebras since SU(2) Lie algebras appear as
a minimal set of generators for general ADE type Lie algebra. The
algebra results by a modification of Cartan matrix. It is also natural
to extend the representations of finite groups G ⊂ SU(2) to those of
SU(2).

ii) The idea would that is that n-fold Connes tensor power trans-
forms the direct sum of n SU(2) Lie algebras by a kind of deformation
to a ADE type Lie algebra with n-dimensional Cartan Lie algebra. The
deformation would be induced by non-commutativity. Same would oc-
cur also for the Kac-Moody variants of these algebras for which the
set of generators contains only scaling operator L0 as an additional
generator. Quantum deformation would result from the replacement
of complex rays with N rays, where N is the sub-factor.

iii) The concrete interpretation for the Connes tensor power would
be in terms of the fiber bundle structure H = M4

±×CP2 → H/Ga×Gb,
Ga × Gb ⊂ SU(2) × SU(2) ⊂ SL(2, C) × SU(3), which provides the
proper formulation for the hierarchy of macroscopic quantum phases
with a quantized value of Planck constant. Each sheet of the singular
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covering would represent single factor in Connes tensor power and sin-
gle direct SU(2) summand. This picture has an analogy with brane
constructions of M-theory.

4. Could there exist a universal rational function giving rise to the
algebraic closure of rationals?

One could wonder whether there exists a universal generalized ra-
tional function having all units of the algebraic closure of rationals as
roots so that S∞ would permute these roots. Most naturally it would
be a ratio of infinite-degree polynomials.

With motivations coming from physics I have proposed that zeros
of zeta and also the factors of zeta in product expansion of zeta are
algebraic numbers. Complete story might be that non-trivial zeros of
Zeta define the closure of rationals. A good candidate for this function
is given by (ξ(s)/ξ(1 − s)) × (s − 1)/s), where ξ(s) = ξ(1 − s) is the
symmetrized variant of ζ function having same zeros. It has zeros of
zeta as its zeros and poles and product expansion in terms of ratios
(s − sn)/(1 − s + sn) converges everywhere. Of course, this might
be too simplistic and might give only the algebraic extension involving
the roots of unity given by exp(iπ/n). Also products of these functions
with shifts in real argument might be considered and one could consider
some limiting procedure containing very many factors in the product
of shifted ζ functions yielding the universal rational function giving the
closure.

5. What does one mean with S∞?

There is also the question about the meaning of S∞. The hierar-
chy of infinite primes suggests that there is entire infinity of infinities
in number theoretical sense. Any group can be formally regarded as
a permutation group. A possible interpretation would be in terms of
algebraic closure of rationals and algebraic closures for an infinite hi-
erarchy of polynomials to which infinite primes can be mapped. The
question concerns the interpretation of these higher Galois groups and
HFFs. Could one regard these as local variants of S∞ and does this
hierarchy give all algebraic groups, in particular algebraic subgroups of
Lie groups, as Galois groups so that almost all of group theory would
reduce to number theory even at this level?

Be it as it may, the expressive power of HFF:s seem to be abso-
lutely marvellous. Together with the notion of infinite rational and
generalization of number concept they might unify both mathematics
and physics!
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1 Introduction

Langlands program [5, 6, 7, 8] is an attempt to unify number theory and
representation theory of groups and as it seems all mathematics. About
related topics I know frustratingly little at technical level. Zeta functions
and theta functions [10, 11, 12, 13], and more generally modular forms [14]
are the connecting notion appearing both in number theory and in the theory
of automorphic representations of reductive Lie groups. The fact that zeta
functions have a key role in TGD has been one of the reasons for my personal
interest.

The vision about TGD as a generalized number theory [E1, E2, E3, C1,
C2] gives good motivations to learn the basic ideas of Langlands program.
I hasten to admit that I am just a novice with no hope becoming a master
of the horrible technicalities involved. I just try to find whether the TGD
framework could allow new physics inspired insights to Langlands program
and whether the more abstract number theory relying heavily on the repre-
sentations of Galois groups could have a direct physical counterpart in TGD
Universe and help to develop TGD as a generalized number theory vision.
After these apologies I however dare to raise my head a little bit and say
aloud that mathematicians might get inspiration from physics inspired new
insights.

The basic vision is that Langlands program could relate very closely to
the unification of physics as proposed in TGD framework [1, 2, 3]. TGD
can indeed be seen both as infinite-dimensional geometry, as a generalized
number theory involving several generalizations of the number concept, and
as an algebraic approach to physics relying on the unique properties of hyper
finite factors of type II1 so that unification of mathematics would obviously
fit nicely into this framework. The fusion of real and various p-adic physics
based on the generalization of the number concept, the notion of number
theoretic braid, hyper-finite-factors of type II1 andsub-factors, and the no-
tion of infinite prime, inspired a new view about how to represent finite
Galois groups and how to unify the number theoretic and geometric Lang-
lands programs.

1.1 Langlands program very briefly

Langlands program [6] states that there exists a connection between num-
ber theory and automorphic representations of a very general class of Lie
groups known as reductive groups (groups whose all representations are fully
reducible). At the number theoretic side there are Galois groups characteriz-
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ing extensions of number fields, say rationals or finite fields. Number theory
involves also so called automorphic functions to which zeta functions carry-
ing arithmetic information via their coefficients relate via so called Mellin
transform

∑
n anns →

∑
n anzn [13].

Automorphic functions, invariant under modular group SL(2, Z) or sub-
group Γ0(N) ⊂ SL(2, Z) consisting of matrices(

a b
c d

)
, c mod N = 0 ,

emerge also via the representations of groups GL(2, R). This generalizes
also to higher dimensional groups GL(n, R). The dream is that all num-
ber theoretic zeta functions could be understood in terms of representation
theory of reductive groups. The highly non-trivial outcome would be pos-
sibility to deduce very intricate number theoretical information from the
Taylor coefficients of these functions.

Langlands program relates also to Riemann hypothesis and its gener-
alizations. For instance, the zeta functions associated with 1-dimensional
algebraic curve on finite field Fq, q = pn, code the numbers of solutions to
the equations defining algebraic curve in extensions of Fq which form a hier-
archy of finite fields Fqm with m = kn [12]: in this case Riemann hypothesis
has been proven.

It must be emphasized that algebraic 1-dimensionality is responsible for
the deep results related to the number theoretic Langlands program as far
as 1-dimensional function fields on finite fields are considered [12, 7]. In
fact, Langlands program is formulated only for algebraic extensions of 1-
dimensional function fields.

One might also conjecture that Langlands duality for Lie groups reflects
some deep duality on physical side. For instance, Edward Witten is working
with the idea that geometric variant of Langlands duality could correspond
to the dualities discovered in the framework of YM theories and string mod-
els. In particular, Witten proposes that electric-magnetic duality which
indeed relates gauge group and its dual, provides a physical correlate for
the Langlands duality for Lie groups and could be understood in terms of
topological version of four-dimensional N = 4 super-symmetric YM theory
[21]. Interestingly, Witten assigns surface operators to the 2-D surfaces of
4-D space-time. This brings unavoidably in mind partonic 2-surfaces and
TGD as N = 4 super-conformal almost topological QFT. In this chapter it
will be proposed that super-symmetry might correspond to the Langlands
duality in TGD framework.
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1.2 Questions

Before representing in more detail the TGD based ideas related to Langlands
correspondence it is good to summarize the basic questions which Langlands
program stimulates.

1.2.1 Could one give more concrete content to the notion of Ga-
lois group of algebraic closure of rationals?

The notion of Galois group for algebraic closure of rationals Gal(Q/Q) is
immensely abstract and one can wonder how to make it more explicit?
Langlands program adopts the philosophy that this group could be defined
only via its representations. The so called automorphic representations con-
structed in terms of adeles. The motivation comes from the observation
that the subset of adeles consisting of Cartesian product of invertible p-adic
integers is a structure isomorphic with the maximal abelian subgroup of
Gal(Q/Q) obtained by dividing Gal(Q/Q) with its commutator subgroup.
Representations of finite abelian Galois groups are obtained as homomor-
phisms mapping infinite abelian Galois group to its finite factor group. In
this approach the group Gal(Q/Q) remains rather abstract and adeles seem
to define a mere auxiliary technical tool although it is clear that so called
l-adic representations for Galois groups are are natural also in TGD frame-
work.

This raises some questions.
a) Could one make Gal(Q/Q) more concrete? For instance, could one

identify it as an infinite symmetric group S∞ consisting of finite permuta-
tions of infinite number of objects? Could one imagine some universal poly-
nomial of infinite degree or a universal rational function resulting as ratio
of polynomials of infinite degree giving as its roots the closure of rationals?

b) S∞ has only single normal subgroup consisting of even permutations
and corresponding factor group is maximal abelian group. Therefore finite
non-abelian Galois groups cannot be represented via homomorphisms to
factor groups. Furthermore, Sinfty has only infinite-dimensional non-abelian
irreducible unitary representations as a simple argument to be discussed
later shows.

What is highly non-trivial is that the group algebras of S∞ and closely
related braid group B∞ define hyper-finite factors of type II1 (HFF). Could
sub-factors characterized by finite groups G allow to realize the representa-
tions of finite Galois groups as automorphisms p HFF? The interpretation
would be in terms of ”spontaneous symmetry breaking” Gal(Q/Q) → G.
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Could it be possible to get rid of adeles in this manner?
c) Could one find a concrete physical realization for the action of S∞?

Could the permuted objects be identified as strands of braid so that a braid-
ing of Galois group to infinite braid group B∞ would result? Could the outer
automorphism action of Galois group on number theoretic braids defining
the basic structure of quantum TGD allow to realize Galois groups phys-
ically as Galois groups of number theoretic braids associated with subset
of algebraic points defined by the intersection of real and p-adic partonic
2-surface? The requirement that mathematics is able to represent itself
physically would provide the reason for the fact that reality and various
p-adicities intersect along subsets of rational and algebraic points only.

1.2.2 Could one understand the correspondences between the
representations of finite Galois groups and reductive Lie
groups?

Langlands correspondence involves a connection between the representations
of finite-dimensional Galois groups and reductive Lie groups.

a) Could this correspondence result via an extension of the represen-
tations of finite groups in infinite dimensional Clifford algebra to those of
reductive Lie groups identified for instance as groups defining sub-factors
(any compact group can define a unique sub-factor)? If Galois groups and
reductive groups indeed have a common representation space, it might be
easier to understand Langlands correspondence.

b) Is there some deep difference between between general Langlands
correspondence and that for GL(2, F ) and could this relate to the fact that
subgroups of SU(2) define sub-factors with quantized index M : N ≤ 4.

c) McKay correspondence [36] relates finite subgroups of compact Lie
groups to compact Lie group (say finite sub-groups of SU(2) to ADE type
Lie-algebras or Kac-Moody algebras). TGD approach leads to a general
heuristic explanation of this correspondence in terms of Jones inclusions and
Connes tensor product. Could sub-factors allow to understand Langlands
correspondence for general reductive Lie groups as both the fact that any
compact Lie group can define a unique sub-factor and an argument inspired
by McKay correspondence suggest.
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1.2.3 Could one unify geometric and number theoretic Langlands
programs?

There are two Langlands programs: algebraic [5, 7] and geometric [7, 8] one
corresponding to ordinary number fields and function fields. The natural
question is whether and how these approaches could be unified.

a) Could the discretization based on the notion of number theoretic
braids induce the number theoretic Langlands from geometric Langlands so
that the two programs could be unified by the generalization of the notion
of number field obtained by gluing together reals with union of reals and
various p-adic numbers fields and their extensions along common rationals
and algebraics. Certainly the fusion of p-adics and reals to a generalized
notion of number should be essential for the unification of mathematics.

b) Could the distinction between number fields and function fields cor-
respond to two kinds of sub-factors corresponding to finite subgroups G ⊂
SU(2) and SU(2) itself leaving invariant the elements of imbedded algebra?
This would obviously generalize to imbeddings of Galois groups to arbitrary
compact Lie group. Could gauge group algebras contra Kac Moody alge-
bras be a possible physical interpretation for this. Could the two Langlands
programs correspond to two kinds of ADE type hierarchies defined by Jones
inclusions? Could minimal conformal field theories with finite number of
primary fields correspond to algebraic Langlands and full string theory like
conformal field theories with infinite number of primary fields to geomet-
ric Langlands? Could this difference correspond to sub-factors defined by
disrete groups and Lie groups?

c) Could the notion of infinite rational [4] be involved with this unifica-
tion? Infinite rationals are indeed mapped to elements of rational function
fields (also algebraic extensions of them) so that their interpretation as quan-
tum states of a repeatedly second quantized arithmetic super-symmetric
quantum field theory might provide totally new mathematical insights.

1.2.4 Is it really necessary to replace groups GL(n, F ) with their
adelic counterparts?

If the group of invertible adeles is not needed or allowed then a definite devi-
ation from Langlands program is implied. It would seem that multiplicative
adeles (ideles) are not favored by TGD view about the role of p-adic number
fields. The l-adic representations of p-adic Galois groups corresponding to
single p-adic prime l emerge however naturally in TGD framework.

a) The 2 × 2 Clifford algebra could be easily replaced with its adelic
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version. A generalization of Clifford algebra would be in question and very
much analogous to GL(2, A) in fact. The interpretation would be that real
numbers are replaced with adeles also at the level of imbedding space and
space-time. This interpretation does not conform with the TGD based view
about the relationship between real and p-adic degrees of freedom. The
physical picture is that H is 8-D but has different kind of local topologies
and that spinors are in some sense universal and independent of number
field.

b) Configuration space spinors define a hyper-finite factor of type II1.
It is not clear if this interpretation continues to make sense if configuration
space spinors (fermionic Fock space) are replaced with adelic spinors. Note
that this generalization would require the replacement of the group algebra
of Sinfty with its adelic counterpart.

2 Basic concepts and ideas related to the number
theoretic Langlands program

The basic ideas of Langlands program are following.
a) Gal(Q/Q) is a poorly understood concept. The idea is to define

this group via its representations and construct representations in terms of
group GL(2, A) and more generally GL(n, A), where A refers to adeles. Also
representations in any reductive group can be considered. The so called
automorphic representations of these groups have a close relationship to
the modular forms [14], which inspires the conjecture that n-dimensional
representations of Gal(Q/Q) are in 1-1 correspondence with automorphic
representations of GL(n, A).

b) This correspondence predicts that the invariants characterizing the
n-dimensional representations of Gal(Q/Q) resp. GL(n, A) should corre-
spond to each other. The invariants at Galois sides are the eigenvalues of
Frobenius conjugacy classes Frp in Gal(Q/Q). The non-trivial implication
is that in the case of l-adic representations the latter must be algebraic num-
bers. The ground states of the representations of Gl(n, R) are in turn eigen
states of so called Hecke operators Hp,k, k = 1, .., n acting in group algebra
of Gl(n, R). The eigenvalues of Hecke operators for the ground states of
representations must correspond to the eigenvalues of Frobenius elements if
Langlands correspondence holds true.

c) The characterization of the K-valued representations of reductive
groups in terms of Weil group WF associated with the algebraic extension
K/F allows to characterize the representations in terms of homomorphisms
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of Weil group to the Langlands dual GL(F ) of G(F ).

2.1 Correspondence between n-dimensional representations
of Gal(F/F ) and representations of GL(n,AF ) in the space
of functions in GL(n, F )\GL(n, AF )

The starting point is that the maximal abelian subgroup Gal(Qab/Q) of the
Galois group of algebraic closure of rationals is isomorphic to the infinite
product Ẑ =

∏
p Z×p , where Z×p consists of invertible p-adic integers [7].

By introducing the ring of adeles one can transform this result to a
slightly different form. Adeles are defined as collections ((fp)p∈P , f∞), P
denotes primes, fp ∈ Qp, and f∞ ∈ R, such that fp ∈ Zp for all p for
all but finitely many primes p. It is easy to convince oneself that one has
AQ = (Ẑ ⊗Z Q) × R and Q×\AQ = Ẑ × (R/Z) . The basic statement of
abelian class field theory is that abelian Galois group is isomorphic to the
group of connected components of F×\A×F .

This statement can be transformed to the following suggestive statement:
1) 1-dimensional representations of Gal(F/F ) correspond to representa-

tions of GL(1, AF ) in the space of function defined in GL(1, F )\GL(1, AF ).
The basic conjecture of Langlands was that this generalizes to n-dimensional

representations of Gal(F/F ).
2) The n-dimensional representations of Gal(F/F ) correspond to repre-

sentations of GL(n, AF ) in the space of functions defined in GL(n, F )\GL(n, AF ).

This relation has become known as Langlands correspondence.
It is interesting to relate this approach to that discussed in this chapter.
a) In TGD framework adeles do not seem natural although p-adic number

fields and l-adic representations have a natural place also here. The new view
about numbers is of course an essentially new element allowing geometric
interpretation.

b) The irreducible representations of Gal(F , F ) are assumed to reduce
to those for its finite subgroup G. If Gal(F , F ) is identifiable as S∞, finite
dimensional representations cannot correspond to ordinary unitary repre-
sentations since, by argument to be represented later, their dimension is of
order order n →∞ at least. Finite Galois groups can be however interpreted
as a sub-group of outer automorphisms defining a sub-factor of Gal(Q,Q)
interpreted as HFF. Outer automorphisms result at the limit n →∞ from a
diagonal imbedding of finite Galois group to its nth Cartesian power acting
as automorphisms in S∞. At the limit n → ∞ the imbedding does not de-
fine inner automorphisms anymore. Physicist would interpret the situation
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as a spontaneous symmetry breaking.
c) These representations have a natural extension to representations of

Gl(n, F ) and of general reductive groups if also realized as point-wise sym-
metries of sub-factors of HFF. Continuous groups correspond to outer auto-
morphisms of group algebra of S∞ not inducible from outer automorphisms
of Sinfty. That finite Galois groups and Lie groups act in the same represen-
tation space should provide completely new insights to the understanding
of Langlands correspondence.

d) The l-adic representations of Gal(Q/Q) could however change the sit-
uation. The representations of finite permutation groups in R and in p-adic
number fields p < n are more complex and actually not well-understood
[29]. In the case of elliptic curves [7] (say y2 = x3 + ax + b, a, b rational
numbers with 4a3 + 27b2 6= 0) so called first etale cohomology group is Q2

l

and thus 2-dimensional and it is possible to have 2-dimensional representa-
tions Gal(Q/Q) → GL(2, Ql). More generally, l-adic representations σ of of
Gal(F/F ) → GL(n, Ql) is assumed to satisfy the condition that there exists
a finite extension E ⊂ Ql such that σ factors through a homomorphism to
GL(n, E).

Assuming Gal(Q/Q) = S∞, one can ask whether l-adic or adelic repre-
sentations and the representations defined by outer automorphisms of sub-
factors might be two alternative manners to state the same thing.

2.1.1 Frobenius automorphism

Frobenius automorphism is one of the basic notions in Langlands correspon-
dence. Consider a field extension K/F and a prime ideal v of F (or prime p
in case of ordinary integers). v decomposes into a product of prime ideals of
K: v =

∏
wk if v is unramified and power of this if not. Consider unramified

case and pick one wk and call it simply w. Frobenius automorphisms Frv is
by definition the generator of the the Galois group Gal(K/w, F/v), which
reduces to Z/nZ for some n.

Since the decomposition group Dw ⊂ Gal(K/F ) by definition maps the
ideal w to itself and preserves F point-wise, the elements of Dw act like
the elements of Gal(OK/w,OF /v) (OX denotes integers of X). Therefore
there exists a natural homomorphism Dw : Gal(K/F ) → Gal(OK/w,OF /v)
(= Z/nZ for some n). If the inertia group Iw identified as the kernel of the
homomorphism is trivial then the Frobenius automorphism Frv, which by
definition generates Gal(OK/w,OF /v), can be regarded as an element of Dw

and Gal(K/F ). Only the conjugacy class of this element is fixed since any
wk can be chosen. The significance of the result is that the eigenvalues of
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Frp define invariants characterizing the representations of Gal(K/F ). The
notion of Frobenius element can be generalized also to the case of Gal(Q/Q)
[7]. The representations can be also l-adic being defined in GL(n, El) where
El is extension of Ql. In this case the eigenvalues must be algebraic numbers
so that they make sense as complex numbers.

Two examples discussed in [7] help to make the notion more concrete.
a) For the extensions of finite fields F = G(p, 1) Frobenius automorphism

corresponds to x → xp leaving elements of F invariant.
b) All extensions of Q having abelian Galois group correspond to so called

cyclotomic extensions defined by polynomials PN (x) = xN + 1. They have
Galois group (Z/NZ)× consisting of integers k < n which do not divide
n and the degree of extension is φ(N) = |Z/NZ×|, where φ(n) is Euler
function counting the integers n < N which do not divide N . Prime p is
unramified only if it does not divide n so that the number of ”bad primes”
is finite. The Frobenius equivalence class Frp in Gal(K/F ) acts as raising
to pth power so that the Frp corresponds to integer p mod n.

2.1.2 Automorphic representations and automorphic functions

In the following I want to demonstrate that I have at least tried to do my
home lessons by trying to reproduce the description of [7] for the route from
automorphic adelic representations of GL(2, R) to automorphic functions
defined in upper half-plane.

1. Characterization of the representation

The representations of GL(2, Q) are constructed in the space of smooth
bounded functions GL(2, Q)\GL(2, A) → C or equivalently in the space
of GL(2, Q) left-invariant functions in GL(2, A). A denotes adeles and
GL(2, A) acts as right translations in this space. The argument general-
izes to arbitrary number field F and its algebraic closure F .

a) Automorphic representations are characterized by a choice of compact
subgroup K of GL(2, A). The motivating idea is the central role of double
coset decompositions G = K1AK2, where Ki are compact subgroups and A
denotes the space of double cosets K1gK2 in general representation theory.
In the recent case the compact group K2 ≡ K is expressible as a product
K =

∏
p Kp × O2. For each unramified prime p one has Kp = GL(2, Zp).

For ramified primes Kp consists of SL(2, Zp) matrices with c ∈ pnpZp. Here
pnp is the divisor of conductor N corresponding to p. K-finiteness condition
states that the right action of K on f generates a finite-dimensional vector
space.
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b) The representation functions are eigen functions of the Casimir op-
erator C of gl(2, R) with eigenvalue ρ so that irreducible representations
of gl(2, R) are obtained. An explicit representation of Casimir operator is
given by

C =
X2

0

4
+ X+X −+X−X+ ,

where one has

X0

(
0 i
−i 0

)
,

(
1 ∓i
∓i −1

)
.

d) The center A× of GL(2, A) consists of A× multiples of identity matrix
and it is assumed f(gz) = χ(z)f(g), where χ : A× → C is a character
providing a multiplicative representation of A×.

e) Also the so called cuspidality condition∫
Q\NA

f(

(
1 u
0 1

)
g)du = 0

is satisfied [7]. Note that the integration measure is adelic. Note that the
transformations appearing in integrand are an adelic generalization of the 1-
parameter subgroup of Lorentz transformations leaving invariant light-like
vector. The condition implies that the modular functions defined by the
representation vanish at cusps at the boundaries of fundamental domains
representing copies Hu/Γ0(N) where N is the conductor. The ”basic” cusp
corresponds to τ = i∞ for the ”basic” copy of the fundamental domain.

The groups gl(2, R), O(2) and GL(2, Qp) act non-trivially in these rep-
resentations and it can be shown that a direct sum of irreps of GL(2, AF )×
gl(2, R) results with each irrep occurring only once. These representations
are known as cuspidal automorphic representations.

2. From adeles to Γ0(N)\SL(2, R)

The path from adeles to the modular forms in upper half plane involves
many twists.

a) By so called central approximation theorem the group GL(2, Q)\GL(2, A)/K
is isomorphic to the group Γ0(N)\GL+(2, R), where N is conductor [7]. The
group Γ0(N) ⊂ SL(2, Z) consists of matrices(

a b
c d

)
, c mod N = 0.
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+ refers to positive determinant. Note that Γ0(N) contains as a subgroup
congruence subgroup Γ0(N) consisting of matrices, which are unit matri-
ces modulo N . Congruence subgroup is a normal subgroup of SL(2, Z) so
that also SL(2, Z)/Γ(N) is group. Physically Γ(N) would be rather inter-
esting alternative for Γ0(N) as a compact subgroup and the replacement
Kp = Γ0(pkp) → Γ(pkp) of p-adic groups adelic decomposition is expected
to guarantee this.

b) Central character condition together with assumptions about the ac-
tion of K implies that the smooth functions in the original space are com-
pletely determined by their restrictions to Γ0(N)\SL(2, R) so that one gets
rid of the adeles.

3. From Γ0(N)\SL(2, R) to upper half-plane Hu = SL(2, R)/SO(2)

The representations of (gl(2, C), O(2)) come in four categories corre-
sponding to principal series, discrete series, the limits of discrete series, and
finite-dimensional representations [7]. For the discrete series representation
π giving square integrable representation in SL(2, R) one has ρ = k(k−1)/4,
where k > 1 is integer. As sl2 module, π∞ is direct sum of irreducible Verma
modules with highest weight −k and lowest weight k. The former module
is generated by a unique, up to a scalar, highest weight vector v∞ such that

X0v∞ = −kv∞ , X+v∞ = 0 .

The latter module is in turn generated by the lowest weight vector(
1 0
0 −1

)
v∞ .

This means that entire module is generated from the ground state v∞,
and one can focus to the function φπ on Γ0(N)\SL(2, R) corresponding to
this vector. The goal is to assign to this function SO(2) invariant function
defined in the upper half-plane Hu = SL(2, R)/SO(2), whose points can be
parameterized by the numbers τ = (a+ bi)/(c+di) determined by SL(2, R)
elements. The function fπ(g) = φπ(g)(ci + d)k indeed is SO(2) invariant
since the phase exp(ikφ) resulting in SO(2) rotation by φ is compensated
by the phase resulting from (ci + d) factor. This function is not anymore
Γ0(N) invariant but transforms as

fπ((aτ + b)/(cτ + d)) = (cτ + d)kfπ(τ)

under the action of Γ0(N) The highest weight condition X+v∞ implies that f
is holomorphic function of τ . Such functions are known as modular forms of
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weight k and level N . It would seem that the replacement of Γ0(N) suggested
by physical arguments would only replace Hu/Γ0(N) with Hu/Γ(N).

fπ can be expanded as power series in the variable q = exp(2πτ) to give

fπ(q) =
∞∑

n=0

anqn . (1)

Cuspidality condition means that fπ vanishes at the cusps of the fundamen-
tal domain of the action of Γ0(N) on Hu. In particular, it vanishes at q = 0
which which corresponds to τ = −∞. This implies a0 = 0. This function
contains all information about automorphic representation.

2.1.3 Hecke operators

Spherical Hecke algebra (which must be distinguished from non-commutative
Hecke algebra associated with braids) can be defined as algebra of GL(2, Zp)
bi-invariant functions on GL(2, Qp) with respect to convolution product.
This algebra is isomorphic to the polynomial algebra in two generators H1,p

and H2,p and the ground states vp of automorphic representations are eigen-
states of these operators. The normalizations can be chosen so that the
second eigenvalue equals to unity. Second eigenvalue must be an algebraic
number. The eigenvalues of Hecke operators Hp,1 correspond to the co-
efficients ap of the q-expansion of automorphic function fπ so that fπ is
completely determined once these coefficients carrying number theoretic in-
formation are known [7].

The action of Hecke operators induces an action on the modular function
in the upper half-plane so that Hecke operators have also representation as
what is known as classical Hecke operators. The existence of this representa-
tion suggests that adelic representations might not be absolutely necessary
for the realization of Langlands program.

2.2 Some remarks about the representations of Gl(n) and of
more general reductive groups

The simplest representations of Gl(n, R) have the property that the Borel
group B of upper diagonal matrices is mapped to diagonal matrices consist-
ing of character ξ which decomposes to a product of characters χk associated
with diagonal elements bk of B defining homomorphism

bk → sgn(b)m(k)|bk|iak
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to unit circle if ak is real. Also more general, non-unitary, characters can be
allowed. The representation itself satisfies the condition f(bg) = χ(b)f(g).
Thus n complex parameters ak defining a reducible representation of C×

characterize the irreducible representation.
In the case of GL(2, R) one can consider also genuinely two-dimensional

discrete series representations characterized by only single continuous pa-
rameter and the previous example represented just this case. These repre-
sentations are square integrable in the subgroup SL(2, R). Their origin is
related to the fact that the algebraic closure of R is 2-dimensional. The so
called Weil group WR which is semi-direct product of complex conjugation
operation with C× codes for this number theoretically. The 2-dimensional
representations correspond to irreducible 2-dimensional representations of
WR in terms of diagonal matrices of Gl(2, C) .

In the case of GL(n, R) the representation is characterized by integers
nk:

∑
nk = n characterizing the dimensions nk = 1, 2 of the representations

of WR. For Gl(n, C) one has nk = 1 since Weil group WC is obviously trivial
in this case.

In the case of a general reductive Lie group G the homomorphisms of
WR to the Langlands dual GL of G defined by replacing the roots of the
root lattice with their duals characterize the automorphic representations of
G.

The notion of Weil group allows also to understand the general structure
of the representations of GL(n, F ) in GL(n, K), where F is p-adic number
field and K its extension. In this case Weil group is a semi-direct product of
Galois group of Gal(K/F ) and multiplicative group K×. A very rich struc-
ture results since an infinite number of extensions exists and the dimensions
of discrete series representations.

The deep property of the characterization of representations in terms of
Weyl group is functoriality. If one knows the homomorphisms WF → G
and G → H then the composite homomorphism defines an automorphic
representation of H. This means that irreps of G can be passed to those of
H by homomorphism [5].

3 TGD inspired view about Langlands program

In this section a general TGD inspired vision about Langlands program is
described. The fusion of real and various p-adic physics based on the gen-
eralization of the number concept, the notion of number theoretic braid,
hyper-finite-factors of type II1 and their sub-factors, and the notion of infi-

20



nite prime, lead to a new view about how to represent finite Galois groups
and how to unify the number theoretic and geometric Langlands programs.

3.1 What is the Galois group of algebraic closure of ratio-
nals?

Galois group is essentially the permutation group for the roots of an irre-
ducible polynomial. It is a a subgroup of symmetric group Sn, where n is
the degree of polynomial. One can also imagine the notion of Galois group
Gal(Q/Q) for the algebraic closure of rationals but the concretization of this
notion is not easy.

3.1.1 Gal(Q/Q) as infinite permutation group?

The maximal abelian subroup of Gal(Q/Q), which is obtained by dividing
with the normal subgroup of even permutations, is identifiable as a prod-
uct of multiplicative groups Z×p of invertible p-adic integers n = n0 + pZ,
n0 ∈ {1, ..p− 1} for all p-adic primes and can be understood reasonably via
its isomorphism to the product Ẑ =

∏
p Zp of multiplicative groups Zp of

invertible p-adic integers, one factor for each prime p [6, 7, 5].
Adeles [15] are identified as the subring of (Ẑ ⊗Z Q) × R containing

only elements for which the elements of Qp belong to Zp except for a finite
number of primes so that the number obtained can be always represented
as a product of element of Ẑ and point of circle R/Z: A = Ẑ×R/Z. Adeles
define a multiplicative group A× of ideles and GL(1, A) allow to construct
representations Gal(Qab/Q).

It is much more difficult to get grasp on Gal(Q/Q). The basic idea of
Langlands program is that one should try to understand Gal(Q/Q) through
its representations rather than directly. The natural hope is that n-dimensional
representations of Gal(Q/Q) could be realized in GL(n, A).

1. Gal(Q/Q) as infinite symmetric group?

One could however be stubborn and try a different approach based on the
direct identification Gal(Q/Q). The naive idea is that Gal(Q/Q) could in
some sense be the Galois group of a polynomial of infinite degree. Of course,
for mathematical reasons also a rational function defined as a ratio of this
kind of polynomials could be considered so that the Galois group could be
assigned to both zeros and poles of this function. In the generic case this
group would be an infinite symmetric group S∞ for an infinite number of
objects containing only permutations for subsets containing a finite number
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of objects. This group could be seen as the first guess for Gal(Q/Q).
S∞ can be defined by generators em representing permutation of mthand

(m + 1)th object satisfying the conditions

emem = enem for |m− n| > 1,

enen+1en = enen+1enen+1 for n = 1, ..., n− 2 ,

e2
n = 1 . (2)

By the definition S∞ can be expected to possess the basic properties
of finite-dimensional permutation groups. Conjugacy classes, and thus also
irreducible unitary representations, should be in one-one correspondence
with partitions of n objects at the limit n →∞. Group algebra defined by
complex functions in S∞ gives rise to the unitary complex number based
representations and the smallest dimensions of the irreducible representa-
tions are of order n and are thus infinite for S∞. For representations based
on real and p-adic number based variants of group algebra situation is not
so simple but it is not clear whether finite dimensional representations are
possible.

Sn and obviously also S∞ allows an endless number of realizations since
it can act as permutations of all kinds of objects. Factors of a Cartesian and
tensor power are the most obvious possibilities for the objects in question.
For instance, Sn allows a representation as elements of rotation group SO(n)
permuting orthonormalized unit vectors ei with components (ei)k = δk

i . This
induces also a realization as spinor rotations in spinor space of dimension
D = 2d/2.

2. Group algebra of S∞ as HFF

The highly non-trivial fact that the group algebra of S∞ is hyper-finite
factor of type II1 (HFF) [33] suggests a representation of permutations
as permutations of tensor factors of HFF interpreted as an infinite power
of finite-dimensional Clifford algebra. The minimal choice for the finite-
dimensional Clifford algebra is M2(C). In fermionic Fock space representa-
tion of infinite-dimensional Clifford algebra ei would induce the transforma-
tion (b†m,i, b

†
m,i+1) → (b†m,i+1, b

†
m,i). If the index m is lacking, the represen-

tation would reduce to the exchange of fermions and representation would
be abelian.

3. Projective representations of S∞ as representations of braid group
B∞
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Sn can be extended to braid group Bn by giving up the condition e2
i = 1

for the generating permutations of the symmetric group. Generating per-
mutations are represented now as homotopies exchanging the neighboring
strands of braid so that repeated exchange of neighboring strands induces
a sequence of twists by π. Projective representations of S∞ could be in-
terpreted as representations of B∞. Note that odd and even generators
commute mutually and for unitary representations either of them can be di-
agonalized and are represented as phases exp(iφ) for braid group. If exp(iφ)
is not a root of unity this gives effectively a polynomial algebra and the
polynomials subalgebras of these phases might provide representations for
the Hecke operators also forming commutative polynomial algebras.

The additional flexibility brought in by braiding would transform Galois
group to a group analogous to homotopy group and could provide a connec-
tion with knot and link theory [21, 22] and topological quantum field theories
in general [20]. Finite quantum Galois groups would generate braidings and
a connection with the geometric Langlands program where Galois groups
are replaced with homotopy groups becomes suggestive [7, 8].

4. What does one mean with S∞?

There is also the question about the meaning of S∞. The hierarchy of
infinite primes suggests that there is an entire infinity of infinities in num-
ber theoretical sense. After all, any group can be formally regarded as a
permutation group. A possible interpretation would be in terms of alge-
braic closure of rationals and algebraic closures for an infinite hierarchy of
polynomials to which infinite primes can be mapped. The question concerns
the interpretation of these higher Galois groups and HFFs. Could one re-
gard these as local variants of S∞ and does this hierarchy give all algebraic
groups, in particular algebraic subgroups of Lie groups, as Galois groups so
that almost all of group theory would reduce to number theory even at this
level?

3.1.2 The group algebra of Galois group of algebraic closure of
rationals as hyper-finite factor of type II1

The most natural framework for constructing unitary irreducible represen-
tations of Galois group is its group algebra. In the recent case this group
algebra would be that for S∞ or B∞ if braids are allowed. What puts
bells ringing is that the group algebra of S∞ is a hyper-finite factor of type
II1 isomorphic as a von Neumann algebra to the infinite-dimensional Clif-
ford algebra [33], which in turn is the basic structures of quantum TGD
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whose localized version might imply entire quantum TGD. The very close
relationship with the braid group makes it obvious that same holds true
for corresponding braid group B∞. Indeed, the group algebra of an infi-
nite discrete group defines under very general conditions HFF. One of these
conditions is so called amenability [31]. This correspondence gives hopes
of understanding the Langlands correspondence between representations of
discrete Galois groups and the representations of GL(n, F ) (more generally
representations of reductive groups).

Thus it seems that configuration space spinors (fermionic Fock space)
could naturally define a finite-dimensional spinor representation of finite-
dimensional Galois groups associated with the number theoretical braids.
Inclusions N ⊂ M of hyper-finite factors realize the notion of finite mea-
surement resolution and give rise to finite dimensional representations of
finite groups G leaving elements of N invariant. An attractive idea is that
these groups are identifiable as Galois groups.

The identification of the action of G on M as homomorphism G →
Aut(M) poses strong conditions on it. This is discussed in the thesis of Jones
[38] which introduces three algebraic invariants for the actions of finite group
in hyperfinite-factors of type II1, denoted by M in the sequel. In general
the action reduces to inner automorphism of M for some normal subgroup
H ⊂ G: this group is one of the three invariants of G action. In general one
has projective representation for H so that one has uh1uh2 = µ(h1, h2)uh1h2 ,
where µ(h1) is a phase factor which satisfies cocyle conditions coming from
associativity.

a) The simplest action is just a unitary group representation for which
g ∈ G is mapped to a unitary operator ug in M acting in M via adjoint
action m → ugmu†g = Ad(ug)m. In this case one has H = G. In this case
the fixed point algebra does not however define a factor and there is no
natural reduction of the representations of Gal(Q/Q) to a finite subgroup.

b) The exact opposite of this situation outer action of G mean H = {e}
. All these actions are conjugate to each other. This gives gives rise to two
kinds of sub-factors and two kinds of representations of G. Both actions
of Galois group could be realized either in the group or braid algebra of
Gal(Q/Q) or in infinite dimensional Clifford algebra. In neither case the
action be inner automorphic action u → gug† as one might have naively
expected. This is crucial for circumventing the difficulty caused by the
fact that Gal(Q/Q) identified as S∞ allows no finite-dimensional complex
representation.

c) The first sub-factor is MG ⊂ M corresponding, where the action
of G on M is outer. Outer action defines a fixed point algebra for all
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finite groups G. For D = M : N < 4 only finite subgroups G ⊂ SU(2)
would be represented in this manner. The index identifiable as the fractal
dimension of quantum Clifford algebra having N as non-abelian coefficients
is D = 4cos2(π/n). One can speak about quantal representation of Galois
group. The image of Galois group would be a finite subgroup of SU(2)
acting as spinor rotations of quantum Clifford algebra (and quantum spinors)
regarded as a module with respect to the included algebra invariant under
inner automorphisms. These representations would naturally correspond to
2-dimensional representations having very special role for the simple reason
that the algebraic closure of reals is 2-dimensional.

d) Second sub-factor is isomorphic to MG ⊂ (M⊗L(H))G. Here L(H)
is the space of linear operators acting in a finite-dimensional representation
space H of a unitary irreducible representation of G. The action of G is a
tensor product of outer action and adjoint action. The index of the inclusion
is dim(H)2 ≥ 1 [39] so that the representation of Galois group can be said
to be classical (non-fractal).

e) The obvious question is whether and in what sense the outer automor-
phisms represent Galois subgroups. According to [38] the automorphisms
belong to the completion of the group of inner automorphisms of HFF.
Identifying HFF as group algebra of S∞, the interpretation would be that
outer automorphisms are obtained as diagonal embeddings of Galois group
to Sn × Sn × .... If one includes only a finite number of these factors the
outcome is an inner automorphisms so that for all finite approximations
inner automorphisms are in question. At the limit one obtains an automor-
phisms which does not belong to S∞ since it contains only finite permuta-
tions. This identification is consistent with the identification of the outer
automorphisms as diagonal embedding of G to an infinite tensor power of
sub-Clifford algebra of Cl∞.

This picture is physically very appealing since it means that the ordering
of the strands of braid does not matter in this picture. Also the reduction
of the braid to a finite number theoretical braid at space-time level could
be interpreted in terms of the periodicity at quantum level. From the point
of view of physicist this symmetry breaking would be analogous to a spon-
taneous symmetry breaking above some length scale L. The cutoff length
scale L would correspond to the number N of braids to which finite Galois
group G acts and corresponds also to some p-adic length scale.

One might hope that the emergence of finite groups in the inclusions of
hyper-finite factors could throw light into the mysterious looking finding that
the representations of finite Galois groups and unitary infinite-dimensional
automorphic representations of GL(n, R) are correlated by the connection
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between the eigenvalues of Frobenius element Frp on Galois side and eigen-
values of commuting Hecke operators on automorphic side. The challenge
would be to show that the action of Frp as outer automorphism of group
algebra of S∞ or B∞ corresponds to Hecke algebra action on configuration
space spinor fields or in modular degrees of freedom associated with partonic
2-surface.

3.1.3 Could there exist a universal rational function having Gal(Q/Q)
as the Galois group of its zeros/poles?

The reader who is not fascinated by the rather speculative idea about a
universal rational function having Gal(Q/Q) as a permutation group of its
zeros and poles can safely skip this subsection since it will not be needed
anywhere else in this chapter.

a) Taking the idea about permutation group of roots of a polynomial of
infinite order seriously, one could require that the analytic function defining
the Galois group should behave like a polynomial or a rational function with
rational coefficients in the sense that the function should have an everywhere
converging expansion in terms of products over an infinite number of factors
z−zi corresponding to the zeros of the numerator and possible denominator
of a rational function. The roots zi would define an extension of rationals
giving rise to the entire algebraic closure of rationals. This is a tall order
and the function in question should be number theoretically very special.

b) One can speculate even further. TGD has inspired the conjecture
that the non-trivial zeros sn = 1/2 + iyn of Riemann zeta [10] (assuming
Riemann hypothesis) are algebraic numbers and that also the numbers psn ,
where p is any prime, and thus local zeta functions serving as multiplicative
building blocks of ζ have the same property [E8]. The story would be perfect
if these algebraic numbers would span the algebraic closure of rationals.

The symmetrized version of Riemann zeta defined as ξ(s) = π−s/2Γ(s/2)ζ(s)
satisfying the functional equation ξ(s) = ξ(1−s) and having only the trivial
zeros could appear as a building block of the rational function in question.
The function

f(s) =
ξ(s)

ξ(s + 1)
× s− 1

s

has non-trivial zeros sn of ζ as zeros and their negatives as −sn as poles.
There are no other zeros since trivial zeros as well as the zeros at s = 0 and
s = 1 are eliminated. Using Stirling formula one finds that ξ(s) grows as ss

for real values of s → ∞. The growths of the numerator and denominator
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compensate each other at this limit so that the function approaches constant
equal to one for Re(s) →∞.

If f(s) indeed behaves as a rational function whose product expansion
converges everywhere it can be expressed in terms of its zeros and poles as

f(s) =
∏
n>0

An(s) ,

An =
(s− sn)(s− sn)

(1 + s− sn)(1 + s− sn)
. (3)

The product expansion seems to converge for any finite value of s since the
terms An approach unity for large values of |sn| = |1/2 + iyn|. f(s) has
sn = 1/2 + iyn indeed has zeros and sn = −1/2 + iyn as poles.

c) This proposal might of course be quite too simplistic. For instance,
one might argue that the phase factors piy associated with the non-trivial
zeros give only roots of unity multiplied by Gaussian integers. One can
however imagine more complex functions obtained by forming products of
f(s) with its shifted variants f(s + ∆) with algebraic shift ∆ in, say, the
interval [−1/2, 1/2]. Some kind of limiting procedure using a product of this
kind of functions might give the desired universal function.

3.2 Physical representations of Galois groups

It would be highly desirable to have concrete physical realizations for the
action of finite Galois groups. TGD indeed provides two kinds of realizations
of this kind. For both options there are good hopes about the unification
of number theoretical and geometric Galois programs obtained by replacing
permutations with braiding homotopies and by discretization of continuous
situation to a finite number theoretic braids having finite Galois groups as
automorphisms.

3.2.1 Number theoretical braids and the representations of fi-
nite Galois groups as outer automorphisms of braid group
algebra

Number theoretical braids [E1, C1, C2] are in a central role in the formu-
lation of quantum TGD based on general philosophical ideas which might
apply to both physics and mathematical cognition and, one might hope, also
to a good mathematics.
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An attractive idea inspired by the notion of the number theoretical braid
is that the symmetric group Sn might act on roots of a polynomial repre-
sented by the strands of braid and could thus be replaced by braid group.

The basic philosophy underlying quantum TGD is the notion of finite
resolution, both the finite resolution of quantum measurement and finite cog-
nitive resolution [C1, C2]. The basic implication is discretization at space-
time level and finite-dimensionality of all mathematical structures which can
be represented in the physical world. At space-time level the discretization
means that the data involved with the definition of S-matrix comes from a
subset of a discrete set of points in the intersection of real and p-adic vari-
ants of partonic 2-surface obeying same algebraic equations. Note that a
finite number of braids could be enough to code for the information needed
to reconstruct the entire partonic 2-surface if it is given by polynomial or
rational function having coefficients as algebraic numbers. Entire config-
uration space of 3-surfaces would be discretized in this picture. Also the
reduction of the infinite braid to a finite one would conform with the spon-
taneous symmetry breaking S∞ to diagonally imbedded finite Galois group
imbedded diagonally.

1. Two objections

Langlands correspondence assumes the existence of finite-dimensional
representations of Gal(Q/Q). In the recent situation this encourages the
idea that the restrictions of mathematical cognition allow to realize only the
representations of Gal(Q/Q) reducing in some sense to representations for
finite Galois groups. There are two counter arguments against the idea.

a) It is good to start from a simple abelian situation. The abelianiza-
tion of G(A/Q) must give rise to multiplicative group of adeles defined as
Ẑ =

∏
p Z×p where Z×p corresponds to the multiplicative group of invert-

ible p-adic integers consisting of p-adic integers having p-adic norm equal
to one. This group results as the inverse limit containing the information
about subgroup inclusion hierarchies resulting as sequences Z×/(1+pZ)× ⊂
Z×/(1 + p2Z)× ⊂ .. and expressed in terms factor groups of multiplicative
group of invertible p-adic integers. Z∞/A∞ must give the group

∏
p Z×p as

maximal abelian subgroup of Galois group. All smaller abelian subgroups
of S∞ would correspond to the products of subgroups of Ẑ× coming as
Z×p /(1 + pnZ)×. Representations of finite cyclic Galois groups would be
obtained by representing trivially the product of a commutator group with
a subgroup of Ẑ. Thus one would obtain finite subgroups of the maximal
abelian Galois group at the level of representations as effective Galois groups.
The representations would be of course one-dimensional.
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One might hope that the representations of finite Galois groups could
result by a reduction of the representations of S∞ to G = S∞/H where H is
normal subgroup of S∞. Schreier-Ulam theorem [27] however implies that
the only normal subgroup of S∞ is the alternating subgroup A∞. Since the
braid group B∞ as a special case reduces to S∞ there is no hope of obtaining
finite-dimensional representations except abelian ones.

b) The identification of Gal(Q/Q) = S∞ is not consistent with the finite-
dimensionality in the case of complex representations. The irreducible uni-
tary representations of Sn are in one-one correspondence with partitions of
n objects. The direct numerical inspection based on the formula for the
dimension of the irreducible representation of Sn in terms of Yang tableau
[28] suggests that the partitions for which the number r of summands dif-
fers from r = 1 or r = n (1-dimensional representations) quite generally
have dimensions which are at least of order n. If d-dimensional representa-
tions corresponds to representations in GL(d, C), this means that important
representations correspond to dimensions d →∞ for S∞.

Both these arguments would suggest that Langlands program is con-
sistent with the identification Gal(F , F ) = S∞ only if the representations
of Gal(Q,Q) reduce to those for finite Galois subgroups via some kind of
symmetry breaking.

2. Diagonal imbedding of finite Galois group to S∞ as a solution of
problems

The idea is to imbed the Galois group acting as inner automorphisms
diagonally to the m-fold Cartesian power of Sn imbedded to S∞. The limit
m → ∞ gives rise to outer automorphic action since the resulting group
would not be contained in S∞. Physicist might prefer to speak about num-
ber theoretic symmetry breaking Gal(Q/Q) → G implying that the repre-
sentations are irreducible only in finite Galois subgroups of Gal(Q/Q). The
action of finite Galois group G is indeed analogous to that of global gauge
transformation group which belongs to the completion of the group of local
gauge transformations. Note that G is necessarily finite.

3.2.2 Representation of finite Galois groups as outer automor-
phism groups of HFFs

Any finite group G has a representation as outer automorphisms of a hyper-
finite factor of type II1 (briefly HFF in the sequel) and this automorphism
defines sub-factor N ⊂ M with a finite value of index M : N [32]. Hence
a promising idea is that finite Galois groups act as outer automorphisms of
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the associated hyper-finite factor of type II1.
More precisely, sub-factors (containing Jones inclusions as a special case)

N ⊂ M are characterized by finite groups G acting on elements of M as
outer automorphisms and leave the elements of N invariant whereas finite
Galois group associated with the field extension K/L act as automorphisms
of K and leave elements of L invariant. For finite groups the action as
outer automorphisms is unique apart from a conjugation in von Neumann
algebra. Hence the natural idea is that the finite subgroups of Gal(Q/Q)
have outer automorphism action in group algebra of Gal(Q/Q) and that
the hierarchies of inclusions provide a representation for the hierarchies of
algebraic extensions. Amusingly, the notion of Jones inclusion was originally
inspired by the analogy with field extensions [32]!

It must be emphasized that the groups defining sub-factors can be ex-
tremely general and can represent much more than number theoretical in-
formation understood in the narrow sense of the word. Even if one requires
that the inclusion is determined by outer automorphism action of group G
uniquely, one finds that any amenable, in particular compact [31], group
defines a unique sub-factor by outer action [32]. It seems that practically
any group works if uniqueness condition is given up.

The TGD inspired physical interpretation is that compact groups would
serve as effective gauge groups defining measurement resolution by determin-
ing the measured quantum numbers. Hence the physical states differing by
the action of N elements which are G singlets would not be indistinguishable
from each other in the resolution used. The physical states would transform
according to the finite-dimensional representations in the resolution defined
by G.

The possibility of Lie groups as groups defining inclusions raises the ques-
tion whether hyper-finite factors of type II1 could mimic any gauge theory
and one might think of interpreting gauge groups as Galois groups of the al-
gebraic structure of this kind of theories. Also Kac-Moody algebras emerge
naturally in this framework as will be discussed, and could also have an
interpretation as Galois algebras for number theoretical dynamical systems
obeying dynamics dictated by conformal field theory. The infinite hierar-
chy of infinite rationals in turn suggests a hierarchy of groups S∞ so that
even algebraic variants of Lie groups could be interpreted as Galois groups.
These arguments would suggest that HFFs might be kind of Universal Math
Machines able to mimic any respectable mathematical structure.
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3.2.3 Number theoretic braids and unification of geometric and
number theoretic Langlands programs

The notion of number theoretic braid has become central in the attempts
to fuse real physics and p-adic physics to single coherent whole. Number
theoretic braid leads to the discretization of quantum physics by replacing
the stringy amplitudes defined over curves of partonic 2-surface with ampli-
tudes involving only data coded by points of number theoretic braid. The
discretization of quantum physics could have counterpart at the level of geo-
metric Langlands program [7, 16], whose discrete version would correspond
to number theoretic Galois groups associated with the points of number
theoretic braid. The extension to braid group would mean that the global
homotopic information is not lost.

1. Number theoretic braids belong to the intersection of real and p-adic
partonic surface

The points of number theoretic braid belong to the intersection of the
real and p-adic variant of partonic 2-surface consisting of rationals and al-
gebraic points in the extension used for p-adic numbers. The points of
braid have same projection on an algebraic point of the geodesic sphere of
S2 ⊂ CP2 belonging to the algebraic extension of rationals considered (the
reader willing to understand the details can consult [C1]).

The points of braid are obtained as solutions of polynomial equation
and thus one can assign to them a Galois group permuting the points of
the braid. In this case finite Galois group could be realized as left or right
translation or conjugation in S∞ or in braid group.

To make the notion of number theoretic braid more concrete, suppose
that the complex coordinate w of δM4

± is expressible as a polynomial of the
complex coordinate z of CP2 geodesic sphere and the radial light-like coordi-
nate r of δM4

± is obtained as a solution of polynomial equation P (r, z, w) = 0.
By substituting w as a polynomial w = Q(z, r) of z and r this gives poly-
nomial equation P (r, z,Q(z, r)) = 0 for r for a given value of z. Only real
roots can be accepted. Local Galois group (in a sense different as it is used
normally in literature) associated with the algebraic point of S2 defining the
number theoretical braid is thus well defined.

If the partonic 2-surface involves all roots of an irreducible polynomial,
one indeed obtains a braid for each point of the geodesic sphere S2 ⊂ CP2. In
this case the action of Galois group is naturally a braid group action realized
as the action on induced spinor fields and configuration space spinors.

The choice of the points of braid as points common to the real and p-

31



adic partonic 2-surfaces would be unique so that the obstacle created by the
fact that the finite Galois group as function of point of S2 fluctuates wildly
(when some roots become rational Galois group changes dramatically: the
simplest example is provided by y − x2 = 0 for which Galois group is Z2

when y is not a square of rational and trivial group if y is rational).

2. Modified Dirac operator assigns to partonic 2-surface a unique prime
p which could define l-adic representations of Galois group

The overall scaling of the eigenvalue spectrum of the modified Dirac op-
erator assigns to the partonic surface a unique p-adic prime p which phys-
ically corresponds to the p-adic length scale which appears in the discrete
coupling constant evolution [C1, C4]. One can solve the roots of the the
resulting polynomial also in the p-adic number field associated with the
partonic 2-surface by the modified Dirac equation and find the Galois group
of the extension involved. The p-adic Galois group, known as local Galois
group in literature, could be assigned to the p-adic variant of partonic sur-
face and would have naturally l-adic representation, most naturally in the
p-adic variant of the group algebra of S∞ or B∞ or equivalently in the p-adic
variant of infinite-dimensional Clifford algebra. There are however physical
reasons to believe that infinite-dimensional Clifford algebra does not depend
on number field. Restriction to an algebraic number based group algebra
therefore suggests itself. Hence, if one requires that the representations in-
volve only algebraic numbers, these representation spaces might be regarded
as equivalent.

3. Problems

There are however problems.
a) The triviality of the action of Galois group on the entire partonic 2-

surface seems to destroy the hopes about genuine representations of Galois
group.

b) For a given partonic 2-surface there are several number theoretic
braids since there are several algebraic points of geodesic sphere S2 at which
braids are projected. What happens if the Galois groups are different? What
Galois group should one choose?

A possible solution to both problems is to assign to each braid its own
piece X2

k of the partonic 2-surface X2 such that the deformations X2 can be
non-trivial only in X2

k . This means separation of modular degrees of freedom
to those assignable to X2

k and to ”center of mass” modular degrees of freedom
assignable to the boundaries between X2

k . Only the piece X2
k associated with

the kth braid would be affected non-trivially by the Galois group of braid.
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The modular invariance of the conformal field theory however requires that
the entire quantum state is modular invariant under the modular group of
X2. The analog of color confinement would take place in modular degrees of
freedom. Note that the region containing braid must contain single handle
at least in order to allow representations of SL(2, C) (or Sp(2g, Z) for genus
g).

As already explained, in the general case only the invariance under the
subgroup Γ0(N) [14] of the modular group SL(2, Z) can be assumed for
automorphic representations of GL(2, R) [9, 7, 5]. This is due to the fact
that there is a finite set of primes (prime ideals in the algebra of integers),
which are ramified [9]. Ramification means that their decomposition to
a product of prime ideals of the algebraic extension of Q contains higher
powers of these prime ideals: p → (

∏
k Pk)e with e > 1. The congruence

group is fixed by the integer N =
∏

k pnk known as conductor coding the set
of exceptional primes which are ramified.

The construction of modular forms in terms of representations of SL(2, R)
suggests that it is possible to replace Γ0(N) by the congruence subgroup
Γ(N), which is normal subgroup of SL(2, R) so that G1 = SL(2, Z)/Γ is
group. This would allow to assign to individual braid regions carrying single
handle well-defined G1 quantum numbers in such a manner that entire state
would be G1 singlet.

Physically this means that the separate regions of the partonic 2-surface
each containing one braid strand cannot correspond to quantum states with
full modular invariance. Elementary particle vacuum functionals [F1] de-
fined in the moduli space of conformal equivalence classes of partonic 2-
surface must however be modular invariant, and the analog of color confine-
ment in modular degrees of freedom would take place.

3.2.4 Hierarchy of Planck constants and dark matter and gener-
alization of imbedding space

Second hierarchy of candidates for Galois groups is based on the general-
ization of the notion of the imbedding space H = M4 × CP2, or rather
the spaces H± = M4

± × CP2 defining future and past light-cones inside H
[A9]. This generalization is inspired by the quantization of Planck constant
explaining dark matter as a hierarchy of macroscopically quantum coherent
phases and by the requirement that sub-factors have a geometric representa-
tion at the level of the imbedding space and space-time (quantum-classical
correspondence).

Galois groups could also correspond to finite groups Ga×Gb ⊂ SU(2)×
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SU(2) ⊂SL(2,C)×SU(3). These groups act as covering symmetries for the
sectors of the imbedding space, which can be regarded as singular H± =
M4
± × CP2 → H±/Ga ×Gb bundles containing orbifold points (fixed points

of Ga × Gb or either of them. The copies of H with same Ga or Gb are
glued together along M4

± or CP2 factor and along common orbifold points
left fixed by Gb or Ga. The group Ga×Gb plays both the role of both Galois
group and homotopy group.

There are good reasons to expect that both these Galois groups and those
associated with number theoretic braids play a profound role in quantum
TGD based description of dark matter as macroscopically quantum coherent
phases. For instance, Ga would appear as symmetry group of dark matter
part of bio-molecules in TGD inspired biology [3].

3.3 What could be the TGD counterpart for the automor-
phic representations?

Configuration space spinor fields would certainly transform according to a
finite-dimensional and thus non-unitary representation of SL(2, C) which
is certainly the most natural group and should relate to the fact that Ga-
lois groups representable as subgroups of SU(2) acting as rotations of 3-
dimensional space correspond to sub-factors with M : N ≤ 4.

Also larger Lie groups can be considered and diagonal imbeddings of Ga-
lois groups would be naturally accompanied by diagonal imbeddings of com-
pact and also non-compact groups acting on the decomposition of infinite-
dimensional Clifford algebra Cl∞ to an infinite tensor power of finite-dimensional
sub-Clifford algebra of form M(2, C)n. The basic difference between Galois
group representation and corresponding Lie group representations is that
the automorphisms in case of discrete groups are automorphisms of S∞
or B∞ whereas for Lie groups the automorphisms are in general automor-
phisms of group algebra of S∞ or B∞. This could allow to understand the
correspondence between discrete groups and Lie groups naturally. Unitary
automorphic representations are infinite-dimensional and require group alge-
bra of GL(n, F ). Therefore configuration space spinors cannot realize them.
TGD suggests two realizations of automorphic group representations.

3.3.1 Could Lorentz group realize automorphic representations?

There is obvious analogy with spinor fields in Minkowski space and with
the unitary representations of Poincare group which correspond to finite-
dimensional irreps of Lorentz group. One could indeed consider the possibil-
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ity that Lorentz group acting on partonic 2-surfaces at light-cone boundary
δM4

± could allow the automorphic representations.
In this case full modular invariance is not forced by any obvious physical

reason. The group Γ0(N) would correspond to discrete Lorentz transfor-
mations, which leave invariant a light-like vector modulo N . At the limit
N →∞ Γ0(N) would reduce to a sub-group of the little group of light-like
vector consisting of upper diagonal integer valued matrices. For N = 1 full
modular invariance would be predicted. Γ0(N) invariance would mean that
wave functions for cm degrees of freedom of partonic 2-surface at light-cone
boundary would be Γ0(N) invariant. Non-Euclidian lattice like symmetry
of wave functions would be implied in cosmological length scale.

TGD based model for dark matter as a macroscopic quantum phase char-
acterized by Planck constant which can have arbitrarily large value indeed
predicts quantum coherence in astroscopic length scales [A9]. The original
inspiration for the model came from the empirical findings suggesting that
the orbits of planets and exoplanets seem to have quantized radii predicted
by Bohr model [D6].

3.3.2 What about modular degrees of freedom?

A good guess is that modular degrees of freedom associated with the par-
tonic 2-surface or with the regions X2

k it decomposes and containing single
strand of number theoretical braid could provide the degrees of freedom
needed to have unitary representations of SL(2, R) or more general non-
compact groups. In the case of SL(2, C) representations a reduction to
representations in the space obtained by dividing upper plane Hu by Γ0(N)
are obtained. Hu/Γ0(N = 1) corresponds to the space conformal equiva-
lence classes of torus. SL(2, C) acts in upper plane in a natural manner but
not in Hu/Γ0(N = 1).

Physically and the space Hu/Γ(N) looks more natural than Hu/Γ0(N).
a) The fact Γ(N) ⊂ Γ0(N) allows to consider the possibility that Γ(N)

might act as invariance group of automorphic representations. This would
affect only the fundamental domain of upper plane in the case of modular
forms.

b) Γ(N) is a normal subgroup of the modular group so that also G =
SL(2, Z)/Γ(N) would be group and one could regard automorphic represen-
tations also as representation of this group. The invariance under SL(2, Z)
for the entire state consisting of several number theoretical braids would
reduce to the requirement that the overall state is SL(2, Z)/Γ(N) singlet.
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3.3.3 Connection with elementary particle physics?

There might be a connection with elementary particle vacuum functionals
discussed [F1].

a) The genus of the partonic 2-surface labels fermion generations and
only 3 generations have been observed. The TGD based explanation relies
on the observation that 2-surfaces having g ≤ 2 are always hyper-elliptic
and the fact that elementary particle vacuum functionals for g ≥ 3 vanish
for hyper-elliptic surfaces. This could decouple g ≤ 2 and g > 2 worlds by
making decays of the latter to the first ones very rare.

b) It could be that in g > 2 handles do not form Sl(2, Z) invariant bound
states but decompose to ”many-particle” state formed from 2-handle bound
states. This could mean that g > 2 partonic 2-surface decays rapidly to
g ≤ 2 partonic 2-surfaces. This could be due to a decomposition of the
parton system to regions each of them containing a pair of handles forming
a meson like bound state which is SL(2, Z) singlet with the analog of color
confinement occurring in SL(2, Z)/Γ(N) degrees of freedom.

c) g = 2 elementary particle vacuum functionals might perhaps be re-
garded as bound state resulting from g = 1 elementary particle vacuum
functionals for tori with holes glued together along hole boundary and con-
taining number theoretic braid. The moduli space of g = 2 Riemann surfaces
would be needed and Sp(2, Z) would extend to Sp(2g = 4, Z) as the group
of modular symmetries for the bound states and having interpretation as
cm vacuum functional assignable to the variable boundaries between braid
regions X2

k . At the level of configuration space spinors the tensor product of
two M(2, C) factors associated with M4 degrees of freedom would define the
basic unit and define a spinorial representation of SL(4, C). For g > 2 the
state would decompose into a product of meson like 2-handle bound states.
SL(2, Z)/Γ(N) singlets of three handles might not even exist.

d) Also the mere Γ(N) modular invariance might force formation of
meson like bound states of handles. According to [7] the discrete represen-
tations of GL(2, R) decompose to direct sum of k = 1 and k = −1 rep-
resentations of SO(2) subgroup. These correspond to modular forms with
opposite weights k. Γ0(N) invariance of the entire state expressed in terms
of a product of modular forms would require even number of handles and
meson like pair of g = 1 braids would be the simplest manner to achieve
this symmetry. The transformation property under ΓN is the same as for
Γ0(N) for the modular forms fπ so that this argument could generalize.
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3.4 Super-conformal invariance, modular invariance, and Lang-
lands program

The geometric Langlands program [7, 8] deals with function fields, in particu-
lar the field of complex rational analytic functions on 2-dimensional surfaces.
The sheaves in the moduli spaces of conformal blocks characterizing the
n-point functions of conformal field theory replaces automorphic functions
coding both arithmetic data and characterizing the modular representations
of GL(n) in number theoretic Langlands program [7]. These moduli spaces
are labelled both by moduli characterizing the conformal equivalence class
of 2-surface, in particular the positions of punctures, in TGD framework the
positions of strands of number theoretic braids, as well as the moduli related
to the Kac-Moody group involved.

3.4.1 Transition to function fields in TGD framework

According to [7] conformal field theories provide a very promising framework
for understanding geometric Langlands correspondence.

a) That the function fields on 2-D complex surfaces would be in a com-
pletely unique role mathematically fits nicely with the 2-dimensionality of
partons and well-defined stringy character of anticommutation relations for
induced spinor fields. According to [7] there are not even conjectures about
higher dimensional function fields.

b) There are very direct connections between hyper-finite factors of type
II1 and topological QFTs [21, 20], and conformal field theories. For in-
stance, according to the review article [32] Ocneacnu has show that Jones
inclusions correspond in one-one manner to topological quantum field theo-
ries and TGD can indeed be regarded as almost topological quantum field
theory (metric is brought in by the light-likeness of partonic 3-surfaces).
Furthermore, Connes has shown that the decomposition of the hierarchies
of tensor powersM⊗N ....⊗N M as left and right modules to representations
of lower tensor powers directly to fusion rules expressible in terms of 4-point
functions of conformal field theories [32].

In TGD framework the transition from number fields to function fields
would not be very dramatic.

a) Suppose that the representations of SL(n, R) occurring in number
theoretic Langlands program can indeed be realized in the moduli space for
conformal equivalence classes of partonic 2-surface (or, by previous argu-
ments, moduli space for regions of them with fixed boundaries). This means
that representations of local Galois groups associated with number theo-
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retic braids would involve global data about entire partonic 2-surface. This
is physically very important since it otherwise discretization would lead to
a loss of the information about dimension of partonic 2-surfaces.

b) In the case of geometric Langlands program this moduli space would
be extended to the moduli space for n-point functions of conformal field
theory defined at these 2-surfaces containing the original moduli space as a
subspace. Of course, the extension could be present also in the number the-
oretic case. Thus it seems that number theoretic and geometric Langlands
programs would utilize basic structures and would differ only in the sense
that single braid would be replaced by several braids in the geometric case.

c) In TGD Kac-Moody algebras would be also present as well as the so
called super-canonical algebra [C1] related to the isometries of ”the world
of classical worlds” (the space of light-like 3-surfaces) with generators trans-
forming according to the irreducible representations of rotation group SO(3)
and color group SU(3). It must be emphasized that TGD view about con-
formal symmetry generalizes that of string models since light-like 3-surfaces
(orbits of partons) are the basic dynamical objects [C1].

3.4.2 What about more general reductive groups?

Langlands correspondence is conjectured to apply to all reductive Lie groups.
The question is whether there is room for them in TGD Universe. There
are good hopes.

1. Pairs formed by finite Galois groups and Lie groups containing them
and defining sub-factors

Any amenable (in particular compact Lie) group acting as outer auto-
morphism of M defines a unique sub-factor N ⊂M as a group leaving the
elements of N invariant. The representations of discrete subgroups of com-
pact groups extended to representations of the latter would define natural
candidates for Langlands correspondence and would expand the repertoire
of the Galois groups representable in terms of unique factors. If one gives
up the uniqueness condition for the sub-factor, one can expect that almost
any Lie group can define a sub-factor.

2. McKay correspondences and Langlands correspondence

The so called McKay correspondence assigns to the finite subgroups of
SU(2) extended Dynkin diagrams of ADE type Kac-Moody algebras. McKay
correspondence also generalizes to the discrete subgroups of other compact
Lie groups [36]. The obvious question is how closely this correspondence
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between finite groups and Lie groups relates with Langlands correspondence.
The principal graphs representing concisely the fusion rules for Connes

tensor products of M regarded as N bi-module are represented by the
Dynkin diagrams of ADE type Lie groups forM : N < 4 (not all of them ap-
pear). For index M : N = 4 extended ADE type Dynkin diagrams labelling
Kac-Moody algebras are assigned with these representations.

I have proposed that TGD Universe is able to emulate almost any ADE
type gauge theory and conformal field theory involving ADE type Kac-
Moody symmetry and represented somewhat misty ideas about how to con-
struct representations of ADE type gauge groups and Kac-Moody groups us-
ing many particle states at the sheets of multiple coverings H → H/Ga×Gb

realizing the idea about hierarchy of dark matters already mentioned. Also
vertex operator construction also distinguishes ADE type Kac-Moody alge-
bras in a special position.

It is possible to considerably refine this conjecture picture by starting
from the observation that the set of generating elements for Lie algebra
corresponds to a union of triplets {J±i , J3

i }, i = 1, ..., n generating SU(2)
sub-algebras. Here n is the dimension of the Cartan sub-algebra. The
non-commutativity of quantum Clifford algebra suggests that Connes tensor
product can induce deformations of algebraic structures so that ADE Lie
algebra could result as a kind of deformation of a direct sum of commuting
SU(2) Lie (Kac-Moody) algebras associated with a Connes tensor product.
The physical interpretation might in terms of a formation of a bound state.
The finite depth of N would mean that this mechanism leads to ADE Lie
algebra for an n-fold tensor power, which then becomes a repetitive structure
in tensor powers. The repetitive structure would conform with the diagonal
imbedding of Galois groups giving rise to a representation in terms of outer
automorphisms.

This picture encourages the guess that it is possible to represent the
action of Galois groups on number theoretic braids as action of subgroups
of dynamically generated ADE type groups on configuration space spinors.
The connection between the representations of finite groups and reductive
Lie groups would result from the natural extension of the representations of
finite groups to those of Lie groups.

3. What about Langlands correspondence for Kac-Moody groups?vm
The appearance of also Kac-Moody algebras raises the question whether

Langlands correspondence could generalize also to the level of Kac-Moody
groups or algebras and whether it could be easier to understand the Lang-
lands correspondence for function fields in terms of Kac-Moody groups as
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the transition from global to local occurring in both cases suggests.

3.4.3 Could Langlands duality for groups reduce to super-symmetry?

Langlands program involves dualities and the general structure of TGD
suggests that there is a wide spectrum of these dualities.

a) A very fundamental duality would be between infinite-dimensional
Clifford algebra and group algebra of S∞ or of braid group B∞. For instance,
one can ask could it be possible to map this group algebra to the union of
the moduli spaces of conformal equivalence classes of partonic 2-surfaces.
HFFs consists of bounded operators of a separable Hilbert space. Therefore
they are expected to have very many avatars: for instance there is an infinite
number sub-factors isomorphic to the factor. This seems to mean infinite
number of manners to represent Galois groups reflected as dualities.

b) Langlands program involves the duality between reducible Lie groups
G and its Langlands dual having dual root lattices. The interpretation
for this duality in terms of electric-magnetic duality is suggested by Wit-
ten [16]. TGD suggests an alternative interpretation. The super symmetry
aspect of super-conformal symmetry suggests that bosonic and fermionic
representations of Galois groups could be very closely related. In particular,
the representations in terms of configuration space spinors and in terms of
modular degrees of freedom of partonic 2-surface could be in some sense
dual to each other. Rotation groups have a natural action on configuration
space spinors whereas symplectic groups have a natural action in the moduli
spaces of partonic 2-surfaces of given genus possessing symplectic and Kähler
structure. Langlands correspondence indeed relates SO(2g + 1, R) realized
as rotations of configuration space spinors and Sp(2g, C) realized as trans-
formations in modular degrees of freedom. Hence one might indeed wonder
whether super-symmetry could be behind the Langlands correspondence.

3.5 What is the role of infinite primes?

Infinite primes primes at the lowest level of the hierarchy can be represented
as polynomials and as rational functions at higher levels. These in turn de-
fine rational function fields. Physical states correspond in general to infinite
rationals which reduce to unit in real sense but have arbitrarily complex
number theoretical anatomy [E3, 1, 4].
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3.5.1 Does infinite prime characterize the l-adic representation
of Galois group associated with given partonic 2-surface

Consider first the lowest level of hierarchy of infinite primes [E3]. Infinite
primes at the lowest level of hierarchy are in a well-defined sense compos-
ites of finite primes and correspond to states of super-symmetric arithmetic
quantum field theory. The physical interpretation of primes appearing as
composites of infinite prime is as characterizing of the p-adic prime p as-
signed by the modified Dirac action to partonic 2-surfaces associated with
a given 3-surface [A6, C1].

This p-adic prime could naturally correspond to the possible prime as-
sociated with so called l-adic representations of the Galois group(s) associ-
ated with the p-adic counterpart of the partonic 2-surface. Also the Galois
groups associated with the real partonic 2-surface could be represented in
this manner. The generalization of moduli space of conformal equivalence
classes must be generalized to its p-adic variant. I have proposed this gen-
eralization in context of p-adic mass calculations [F1].

It should be possible to identify configuration space spinors associated
with real and p-adic sectors if anti-commutations relations for the fermionic
oscillator operators make sense in any number field (that is involve only
rational or algebraic numbers). Physically this seems to be the only sensible
option.

3.5.2 Could one assign Galois groups to the extensions of infinite
rationals?

A natural question is whether one could generalize the intuitions from finite
number theory to the level of infinite primes, integers, and rationals and con-
struct Galois groups and there representations for them. This might allow
alternative very number theoretical approach to the geometric Langlands
duality.

a) The notion of infinite prime suggests that there is entire hierarchy of
infinite permutation groups such that the N∞ at given level is defined as
the product of all infinite integers at that level. Any group is a permutation
group in formal sense. Could this mean that the hierarchy of infinite primes
could allow to interpret the infinite algebraic sub-groups of Lie groups as
Galois groups? If so one would have a unification of group theory and
number theory.

b) An interesting question concerns the interpretation of the counterpart
of hyper-finite factors of type II1 at the the higher levels of hierarchy of

41



infinite primes. Could they relate to a hierarchy of local algebras defined by
HFF? Could these local algebras be interpreted in terms of direct integrals
of HFFs so that nothing essentially new would result from von Neumann
algebra point of view? Would this be a correlate for the fact that finite
primes would be the irreducible building block of all infinite primes at the
higher levels of the hierarchy?

c) The transition from number fields to function fields is very much anal-
ogous to the replacement of group with a local gauge group or algebra with
local algebra. I have proposed that this kind of local variant based on mul-
tiplication by of HFF by hyper-octonion algebra could be the fundamental
algebraic structure from which quantum TGD emerges. The connection with
infinite primes would suggest that there is infinite hierarchy of localizations
corresponding to the hierarchy of space-time sheets.

e) Perhaps it is worth of mentioning that the order of S∞ is formally
N∞ = limn→∞ n!. This integer is very large in real sense but zero in p-adic
sense for all primes. Interestingly, the numbers N∞/n+n behave like normal
integers in p-adic sense and also number theoretically whereas the numbers
N∞/n+1 behave as primes for all values of n. Could this have some deeper
meaning?

3.5.3 Could infinite rationals allow representations of Galois groups?

One can also ask whether infinite primes could provide representations for
Galois groups. For instance, the decomposition of infinite prime to primes
(or prime ideals) assignable to the extension of rationals is expected to
make sense and would have clear physical interpretation. Also (hyper-
)quaternionic and (hyper-)octonionic primes can be considered and I have
proposed explicit number theoretic interpretation of the symmetries of stan-
dard model in terms of these primes. The decomposition of partonic primes
to hyper-octonionic primes could relate to the decomposition of parton to
regions, one for each number theoretic braid.

There are arguments supporting the view that infinite primes label the
ground states of super-conformal representations [C1, E3]. The question is
whether infinite primes could allow to realize the action of Galois groups.
Rationality of infinite primes would imply that the invariance of ground
states of super-conformal representations under the braid realization of Gal(Q/Q)
of finite Galois groups. The infinite prime as a whole could indeed be invari-
ant but the primes in the decomposition to a product of primes in algebraic
extension of rationals need not be so. This kind of decompositions of in-
finite prime characterizing parton could correspond to the above described
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decomposition of partonic 2-surface to regions X2
k at which Galois groups

act non-trivially. It could also be that only infinite integers are rational
whereas the infinite primes decomposing them are hyper-octonionic. This
would physically correspond to the decomposition of color singlet hadron to
colored partons [E3].

3.6 Could Langlands correspondence, McKay correspondence
and Jones inclusions relate to each other?

The understanding of Langlands correspondence for general reductive Lie
groups in TGD framework seems to require some physical mechanism allow-
ing the emergence of these groups in TGD based physics. The physical idea
would be that quantum dynamics of TGD is able to emulate the dynamics
of any gauge theory or even stringy dynamics of conformal field theory hav-
ing Kac-Moody type symmetry and that this emulation relies on quantum
deformations induced by finite measurement resolution described in terms
of Jones inclusions of sub-factors characterized by group G leaving elements
of sub-factor invariant. Finite measurement resolution would would result
simply from the fact that only quantum numbers defined by the Cartan
algebra of G are measured.

There are good reasons to expect that infinite Clifford algebra has the
capacity needed to realize representations of an arbitrary Lie group. It
is indeed known that that any quantum group characterized by quantum
parameter which is root of unity or positive real number can be assigned
to Jones inclusion [32]. For q = 1 this would gives ordinary Lie groups. In
fact, all amenable groups define unique sub-factor and compact Lie groups
are amenable ones.

It was so called McKay correspondence [36] which originally stimulated
the idea about TGD as an analog of Universal Turing machine able to mimic
both ADE type gauge theories and theories with ADE type Kac-Moody
symmetry algebra. This correspondence and its generalization might also
provide understanding about how general reductive groups emerge. In the
following I try to cheat the reader to believe that the tensor product of
representations of SU(2) Lie algebras for Connes tensor powers of M could
induce ADE type Lie algebras as quantum deformations for the direct sum
of n copies of SU(2) algebras This argument generalizes also to the case of
other compact Lie groups.
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3.6.1 About McKay correspondence

McKay correspondence [36] relates discrete finite subgroups of SU(2) ADE
groups. A simple description of the correspondences is as follows [36].

a) Consider the irreps of a discrete subgroup G ⊂ SU(2) which corre-
spond to irreps of G and can be obtained by restricting irreducible repre-
sentations of SU(2) to those of G. The irreducible representations of SU(2)
define the nodes of the graph.

b) Define the lines of graph by forming a tensor product of any of the rep-
resentations appearing in the diagram with a doublet representation which
is always present unless the subgroup is 2-element group. The tensor prod-
uct regarded as that for SU(2) representations gives representations j−1/2,
and j +1/2 which one can decompose to irreducibles of G so that a branch-
ing of the graph can occur. Only branching to two branches occurs for
subgroups yielding extended ADE diagrams. For the linear portions of the
diagram the spins of corresponding SU(2) representations increase linearly
as .., j, j + 1/2, j + 1, ...

One obtains extended Dynkin diagrams of ADE series representing also
Kac-Moody algebras giving An, Dn, E6, E7, E8. Also A∞ and A−∞,∞ are
obtained in case that subgroups are infinite. The Dynkin diagrams of non-
simply laced groups Bn (SO(2n + 1)), Cn (symplectic group Sp(2n) and
quaternionic group Sp(n)), and exceptional groups G2 and F4 are not ob-
tained.

ADE Dynkin diagrams labelling Lie groups instead of Kac-Moody alge-
bras and having one node less, do not appear in this context but appear in
the classification of Jones inclusions for M : N < 4. As a matter fact, ADE
type Dynkin diagrams appear in very many contexts as one can learn from
John Baez’s This Week’s Finds [37].

a) The classification of integral lattices in Rn having a basis of vectors
whose length squared equals 2

b) The classification of simply laced semisimple Lie groups.
c) The classification of finite sub-groups of the 3-dimensional rotation

group.
d) The classification of simple singularities . In TGD framework these

singularities could be assigned to origin for orbifold CP2/G, G ⊂ SU(2).
e) The classification of tame quivers.

3.6.2 Principal graphs for Connes tensor powers M

The thought provoking findings are following.
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a) The so called principal graphs characterizing M : N = 4 Jones in-
clusions for G = SU(2) are extended Dynkin diagrams characterizing ADE
type affine (Kac-Moody) algebras. Dn is possible only for n ≥ 4.

b) M : N < 4 Jones inclusions correspond to ordinary ADE type dia-
grams for a subset of simply laced Lie groups (all roots have same length)
An (SU(n)), D2n (SO(2n)), and E6 and E8. Thus D2n+1 (SO(2n+2)) and
E7 are not allowed. For instance, for G = S3 the principal graph is not D3

Dynkin diagram.
The conceptual background behind principal diagram is necessary if one

wants to understand the relationship with McKay correspondence.
a) The hierarchy of higher commutations defines an invariant of Jones

inclusion N ⊂M. Denoting by N ′ the commutant of N one has sequences
of horizontal inclusions defined as C = N ′ ∩N ⊂ N ′ ∩M ⊂ N ′ ∩M1 ⊂ ...
and C = M′ ∩M ⊂ M′ ∩M1 ⊂ .... There is also a sequence of vertical
inclusions M′ ∩ Mk ⊂ N ′ ∩ Mk. This hierarchy defines a hierarchy of
Temperley-Lieb algebras [34] assignable to a finite hierarchy of braids. The
commutants in the hierarchy are direct sums of finite-dimensional matrix
algebras (irreducible representations) and the inclusion hierarchy can be
described in terms of decomposition of irreps of kth level to irreps of (k−1)th

level irreps. These decomposition can be described in terms of Bratteli
diagrams [36, 35].

b) The information provided by infinite Bratteli diagram can be coded by
a much simpler bi-partite diagram having a preferred vertex. For instance,
the number of 2k-loops starting from it tells the dimension of kth level
algebra. This diagram is known as principal graph.

Principal graph emerges also as a concise description of the fusion rules
for Connes tensor powers of M.

a) It is natural to decompose the Connes tensor powers [36] Mk =
M⊗N ... ⊗N M to irreducible M−M, N −M, M−N , or N − N bi-
modules. If M : N is finite this decomposition involves only finite number
of terms. The graphical representation of these decompositions gives rise to
Bratteli diagram.

b) If N has finite depth the information provided by Bratteli diagram
can be represented in nutshell using principal graph. The edges of this
bipartite graph connect M− N vertices to vertices describing irreducible
N−N representations resulting in the decomposition ofM−N irreducibles.
If this graph is finite, N is said to have finite depth.
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3.6.3 A mechanism assigning to tensor powers Jones inclusions
ADE type gauge groups and Kac-Moody algebras

The proposal made for the first time in [A9] is that in M : N < 4 case it
is possible to construct ADE representations of gauge groups or quantum
groups and in M : N = 4 using the additional degeneracy of states implied
by the multiple-sheeted cover H → H/Ga × Gb associated with space-time
correlates of Jones inclusions. Either Ga or Gb would correspond to G.
In the following this mechanism is articulated in a more refined manner by
utilizing the general properties of generators of Lie-algebras understood now
as a minimal set of elements of algebra from which the entire algebra can be
obtained by repeated commutation operator (I have often used ” Lie algebra
generator” as an synonym for ”Lie algebra element”). This set is finite also
for Kac-Moody algebras.

1. Two observations

The explanation to be discussed relies on two observations.
a) McKay correspondence for subgroups of G (M : N = 4) resp. its

variants (M : N < 4) and its counterpart for Jones inclusions means that
finite-dimensional irreducible representations of allowed G ⊂ SU(2) label
both the Cartan algebra generators and the Lie (Kac-Moody) algebra gen-
erators of t+ and t− in the decomposition g = h ⊕ t+ ⊕ t−, where h is the
Lie algebra of maximal compact subgroup.

b) Second observation is related to the generators of Lie-algebras and
their quantum counterparts (see Appendix for the explicit formulas for the
generators of various algebras considered). The observation is that each
Cartan algebra generator of Lie- and quantum group algebras, corresponds
to a triplet of generators defining an SU(2) sub-algebra. The Cartan algebra
of affine algebra contains besides Lie group Cartan algebra also a derivation
d identifiable as an infinitesimal scaling operator L0 measuring the conformal
weight of the Kac-Moody generators. d is exceptional in that it does not
give rise to a triplet. It corresponds to the preferred node added to the
Dynkin diagram to get the extended Dynkin diagram.

2. Is ADE algebra generated as a quantum deformation of tensor powers
of SU(2) Lie algebras representations?

The ADE type symmetry groups could result as an effect of finite quan-
tum resolution described by inclusions of HFFs in TGD inspired quantum
measurement theory.

a) The description of finite resolution typically leads to quantization
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since complex rays of state space are replaced as N rays. Hence operators,
which would commute for an ideal resolution cease to do so. Therefore the
algebra SU(2)⊗ ...⊗SU(2) characterized by n mutually commuting triplets,
where n is the number of copies of SU(2) algebra in the original situation
and identifiable as quantum algebra appearing in M tensor powers with
M interpreted as N module, could suffer quantum deformation to a simple
Lie algebra with 3n Cartan algebra generators. Also a deformation to a
quantum group could occur as a consequence.

b) This argument makes sense also for discrete groups G ⊂ SU(2) since
the representations of G realized in terms of configuration space spinors
extend to the representations of SU(2) naturally.

c) Arbitrarily high tensor powers of M are possible and one can wonder
why only finite-dimensional Lie algebra results. The fact that N has finite
depth as a sub-factor means that the tensor products in tensor powers of
N are representable by a finite Dynkin diagram. Finite depth could thus
mean that there is a periodicity involved: the kn tensor powers decomposes
to representations of a Lie algebra with 3n Cartan algebra generators. Thus
the additional requirement would be that the number of tensor powers of
M is multiple of n.

3. Space-time correlate for the tensor powers M⊗N ...⊗N M

By quantum classical correspondence there should exist space-time cor-
relate for the formation of tensor powers of M regarded as N module. A
concrete space-time realization for this kind of situation in TGD would be
based on n-fold cyclic covering of H implied by the H → H/Ga×Gb bundle
structure in the case of say Gb. The sheets of the cyclic covering would
correspond to various factors in the n-fold tensor power of SU(2) and one
would obtain a Lie algebra, affine algebra or its quantum counterpart with
n Cartan algebra generators in the process naturally. The number n for
space-time sheets would be also a space-time correlate for the finite depth
of N as a factor.

Configuration space spinors could provide fermionic representations of
G ⊂ SU(2). The Dynkin diagram characterizing tensor products of repre-
sentations of G ⊂ SU(2) with doublet representation suggests that tensor
products of doublet representations associated with n sheets of the covering
could realize the Dynkin diagram.

Singlet representation in the Dynkin diagram associated with irreps of G
would not give rise to an SU(2) sub-algebra in ADE Lie algebra and would
correspond to the scaling generator. For ordinary Dynkin diagram repre-
senting gauge group algebra scaling operator would be absent and therefore
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also the exceptional node. Thus the difference between (M : N = 4) and
(M : N < 4) cases would be that in the Kac-Moody group would reduce
to gauge group M : N < 4 because Kac-Moody central charge k and there-
fore also Virasoro central charge resulting in Sugawara construction would
vanish.

4. Do finite subgroups of SU(2) play some role also in M : N = 4 case?

One can ask wonder the possible interpretation for the appearance of
extended Dynkin diagrams in (M : N = 4) case. Do finite subgroups
G ⊂ SU(2) associated with extended Dynkin diagrams appear also in this
case. The formal analog for H → Ga × Gb bundle structure would be
H → H/Ga × SU(2). This would mean that the geodesic sphere of CP2

would define the fiber. The notion of number theoretic braid meaning a
selection of a discrete subset of algebraic points of the geodesic sphere of
CP2 suggests that SU(2) actually reduces to its subgroup G also in this
case.

5. Why Kac-Moody central charge can be non-vanishing only for M :
N = 4?

From the physical point of view the vanishing of Kac-Moody central
charge for M : N < 4 is easy to understand. If parton corresponds to a
homologically non-trivial geodesic sphere, space-time surface typically rep-
resents a string like object so that the generation of Kac-Moody central
extension would relate directly to the homological non-triviality of partons.
For instance, cosmic strings are string like objects of form X2 × Y 2, where
X2 is minimal surface of M2 and Y 2 is a holomorphic sub-manifold of CP2

reducing to a homologically non-trivial geodesic sphere in the simplest situ-
ation. A conjecture that deserves to be shown wrong is that central charge
k is proportional/equal to the absolute value of the homology (Kähler mag-
netic) charge h.

6. More general situation

McKay correspondence generalizes also to the case of subgroups of higher-
dimensional Lie groups [36]. The argument above makes sense also for dis-
crete subgroups of more general compact Lie groups H since also they define
unique sub-factors. In this case, algebras having Cartan algebra with nk
generators, where n is the dimension of Cartan algebra of H, would emerge
in the process. Thus there are reasons to believe that TGD could emulate
practically any dynamics having gauge group or Kac-Moody type symme-
try. An interesting question concerns the interpretation of non-ADE type
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principal graphs associated with subgroups of SU(2).

3.7 Technical questions related to Hecke algebra and Frobe-
nius element

3.7.1 Frobenius elements

Frobenius element Frp is mapped to a conjugacy class of Galois group using
the decomposition of prime p to prime ideals in the algebraic extension K/F .

a) At the level of braid group Frobenius element Frp corresponds to some
conjugacy class of Galois group acting imbedded to Sn (only the conjugacy
equivalence class is fixed) and thus can be mapped to an element of the braid
group. Hence it seems possible to assign to Frp an element of infinitely cyclic
subgroup of the braid group.

b) One can always reduce in given representation the element of given
conjugacy class to a diagonal matrix so that it is possible to chose the
representatives of Frp to be commuting operators. These operators would
act as a spinor rotation on quantum Clifford algebra elements defined by
Jones inclusion and identifiable as element of some cyclic group of the group
G defining the sub-factor via the diagonal embedding.

c) Frp for a given finite Galois group G should have representation as an
element of braid group to which G is imbedded as a subgroup. It is possible
to chose the representatives of Frp so that they commute. Could one chose
them in such a manner that they belong to the commuting subgroup defined
by even (odd) generators ei? The choice of representatives for Frp for various
Galois groups must be also consistent with the hierarchies of intermediate
extensions of rationals associated with given extension and characterized by
subgroups of Galois group for the extension.

3.7.2 How the action of commutative Hecke algebra is realized
in hyper-finite factor and braid group?

One can also ask how to imbed Hecke algebra to the braid algebra. Hecke
algebra for a given value of prime p and group GL(n, R) is a polynomial
algebra in Hecke algebra generators. There is a fundamental difference be-
tween Hecke algebra and Frobenius element Frp in the sense that Frp has
finite order as an element of finite Galois group whereas Hecke algebra el-
ements do not except possibly for representations. This means that Hecke
algebra cannot have a representation in a finite Galois groups.

Situation is different for braid algebra generators since they do not satisfy
the condition e2

i = 1 and odd and even generators of braid algebra commute.
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The powers of Hecke algebra generators would correspond to the powers of
basic braiding operation identified as a π twist of neighboring strands. For
unitary representations eigenvalues of ei are phase factors. Therefore Hecke
algebra might be realized using odd or even commuting sub-algebra of braid
algebra and this could allow to deduce the Frobenius-Hecke correspondence
directly from the representations of braid group. The basic questions are
following.

a) Is it possible to represent Hecke algebra as a subalgebra of braid group
algebra in some natural manner? Could the infinite cyclic group generated
by braid group image of Frp belong represent element of Hecke algebra fixed
by the Langlands correspondence? If this were the case then the eigenvalues
of Frobenius element Frp of Galois group would correspond to the eigen
values of Hecke algebra generators in the manner dictated by Langlands
correspondence.

b) Hecke operators Hp,i, i = 1, .., n commute and expressible as two-side
cosets in group GL(n, Qp). This group acts in M and the action could be
made rather explicit by using a proper representations of M (note however
that physical situation can quite well distinguish between various represen-
tations). Does the action of the Hecke sub-algebra fixed by Hecke-Frobenius
correspondence co-incide with the action of Frobenius element Frp identi-
fied as an element of braid sub-group associated with some cyclic subgroup
of the Galois group identified as a group defining the sub-factor?

4 Appendix

4.1 Hecke algebra and Temperley-Lieb algebra

Braid group is accompanied by several algebras. For Hecke algebra, which
is particular case of braid algebra, one has

en+1enen+1 = enen+1en ,

e2
n = (t− 1)en + t . (4)

The algebra reduces to that for symmetric group for t = 1.
Hecke algebra can be regarded as a discrete analog of Kac Moody al-

gebra or loop algebra with G replaced by Sn. This suggests a connection
with Kac-Moody algebras and imbedding of Galois groups to Kac-Moody
group. t = pn corresponds to a finite field. Fractal dimension t = M : N
relates naturally to braid group representations: fractal dimension of quan-
tum quaternions might be appropriate interpretation. t=1 gives symmetric
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group. Infinite braid group could be seen as a quantum variant of Galois
group for algebraic closure of rationals.

b) Temperley-Lieb algebra assignable with Jones inclusions of hyper-
finite factors of type II1 with M : N < 4 is given by the relations

en+1enen + 1 = en+1

enen+1en = en ,

e2
n = ten , , t = −

√
M : N = −2cos(π/n) , n = 3, 4, ... (5)

The conditions involving three generators differ from those for braid group
algebra since en are now proportional to projection operators. An alternative
form of this algebra is given by

en+1enen + 1 = ten+1

enen+1en = ten ,

e2
n = en = e∗n , , t = −

√
M : N = −2cos(π/n) , n = 3, 4, ...(6)

This representation reduces to that for Temperley-Lieb algebra with ob-
vious normalization of projection operators. These algebras are somewhat
analogous to function fields but the value of coordinate is fixed to some par-
ticular values. An analogous discretization for function fields corresponds
to a formation of number theoretical braids.

4.2 Some examples of bi-algebras and quantum groups

The appendix summarizes briefly the simplest bi- and Hopf algebras and
some basic constructions related to quantum groups.

4.2.1 Simplest bi-algebras

Let k(x1, .., xn) denote the free algebra of polynomials in variables xi with
coefficients in field k. xi can be regarded as points of a set. The alge-
bra Hom(k(x1, ..., xn), A) of algebra homomorphisms k(x1, ..., xn) → A can
be identified as An since by the homomorphism property the images f(xi)
of the generators x1, ...xn determined the homomorphism completely. Any
commutative algebra A can be identified as the Hom(k[x], A) with a par-
ticular homomorphism corresponding to a line in A determined uniquely by
an element of A.
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The matrix algebra M(2) can be defined as the polynomial algebra
k(a, b, c, d). Matrix multiplication can be represented universally as an alge-
bra morphism ∆ from from M2 = k(a, b, c, d) to M⊗2

2 = k(a′, a′′, b′, b′′, c′, c′′, d′, d′′)
to k(a, b, c, d) in matrix form as

∆

(
a b
c d

)
=

(
a′ b′

c′ d′

)(
a′′ b′′

c′′ d′′

)
.

This morphism induces algebra multiplication in the matrix algebra M2(A)
for any commutative algebra A.

M(2), GL(2) and SL(2) provide standard examples about bi-algebras.
SL(2) can be defined as a commutative algebra by dividing free polynomial
algebra k(a, b, c, d) spanned by the generators a, b, c, d by the ideal det−1 =
ad− bc− 1 = 0 expressing that the determinant of the matrix is one. In the
matrix representation µ and η are defined in obvious manner and µ gives
powers of the matrix

A =

(
a b
c d

)
.

∆, counit ε, and antipode S can be written in case of SL(2) as(
∆(a) ∆(b)
∆(c) ∆(d)

)
=

(
a b
c d

)
⊗
(

a b
c d

)
,

(
ε(a) ε(b)
ε(c) ε(d)

)
=

(
1 0
0 1

)
.

S

(
a b
c d

)
= (ad− bc)−1

(
d −b
−c a

)
.

Note that matrix representation is only an economical manner to summarize
the action of ∆ on the generators a, b, c, d of the algebra. For instance, one
has ∆(a) = a → a ⊗ a + b ⊗ c. The resulting algebra is both commutative
and co-commutative.

SL(2)q can be defined as a Hopf algebra by dividing the free algebra
generated by elements a, b, c, d by the relations

ba = qab , db = qbd ,
ca = qac , dc = qcd ,
bc = cb , ad− da = (q−1 − 1)bc ,
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and the relation
detq = ad− q−1bc = 1

stating that the quantum determinant of SL(2)q matrix is one.
µ, η, ∆, ε are defined as in the case of SL(2). Antipode S is defined by

S

(
a b
c d

)
= det−1

q

(
d −qb

−q−1c a

)
.

The relations above guarantee that it defines quantum inverse of A. For q
an nth root of unity, S2n = id holds true which signals that these parameter
values are somehow exceptional. This result is completely general.

Given an algebra, the R point of SLq(2) is defined as a four-tuple
(A,B, C, D) in R4 satisfying the relations defining the point of SLq(2). One
can say that R-points provide representations of the universal quantum al-
gebra SLq(2).

4.2.2 Quantum group Uq(sl(2))

Quantum group Uq(sl(2)) or rather, quantum enveloping algebra of sl(2),
can be constructed by applying Drinfeld’s quantum double construction (to
avoid confusion note that the quantum Hopf algebra associated with SL(2)
is the quantum analog of a commutative algebra generated by powers of a
2× 2 matrix of unit determinant).

The commutation relations of sl(2) read as

[X+, X−] = H , [H,X±] = ±2X± . (7)

Uq(sl(2)) allows co-algebra structure given by

∆(J) = J ⊗ 1 + 1⊗ J , S(J) = −J , ε(J) = 0 , J = X±,H ,

S(1) = 1 , ε(1) = 1 .
(8)

The enveloping algebras of Borel algebras U(B±) generated by {1, X+,H}
{1, X−, hH} define the Hopf algebra H and its dual H? in Drinfeld’s con-
struction. h could be called Planck’s constant vanishes at the classical limit.
Note that H? reduces to {1, X−} at this limit. Quantum deformation pa-
rameter q is given by exp(2h). The duality map ? : H → H? reads as
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a → a? , ab = (ab)? = b?a? ,
1 → 1 , H → H? = hH , X+ → (X+)? = hX− .

(9)

The commutation relations of Uq(sl(2) read as

[X+, X−] = qH−q−H

q−q−1 , [H,X±] = ±2X± . (10)

Co-product ∆, antipode S, and co-unit ε differ from those U(sl(2)) only in
the case of X±:

∆(X±) = X± ⊗ qH/2 + q−H/2 ⊗X± ,

S(X±) = −q±1X± .

(11)

When q is not a root of unity, the universal R-matrix is given by

R = q
H⊗H

2
∑∞

n=0
(1−q−2)n

[n]q ! q
n(1−n)

2 q
nH
2 Xn

+ ⊗ q−
nH
2 Xn

− . (12)

When q is m:th root of unity the q-factorial [n]q! vanishes for n ≥ m and
the expansion does not make sense.

For q not a root of unity the representation theory of quantum groups is
essentially the same as of ordinary groups. When q is mth root of unity, the
situation changes. For l = m = 2n nth powers of generators span together
with the Casimir operator a sub-algebra commuting with the whole alge-
bra providing additional numbers characterizing the representations. For
l = m = 2n + 1 same happens for mth powers of Lie-algebra generators.
The generic representations are not fully reducible anymore. In the case of
Uq(sl(2)) irreducibility occurs for spins n < l only. Under certain conditions
on q it is possible to decouple the higher representations from the theory.
Physically the reduction of the number of representations to a finite number
means a symmetry analogous to a gauge symmetry. The phenomenon resem-
bles the occurrence of null vectors in the case of Virasoro and Kac Moody
representations and there indeed is a deep connection between quantum
groups and Kac-Moody algebras [24].

One can wonder what is the precise relationship between Uq(sl(2) and
SLq(2) which both are quantum groups using loose terminology. The re-
lationship is duality. This means the existence of a morphism x → Ψ(x)
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Mq(2) → U?
q defined by a bilinear form 〈u, x〉 = Ψ(x)(u) on Uq × Mq(2),

which is bi-algebra morphism. This means that the conditions

〈uv, x〉 = 〈u⊗ v,∆(x)〉 , 〈u, xy〉 = 〈∆(u), x⊗ y〉 ,

〈1, x〉 = ε(x) , 〈u, 1〉 = ε(u)

are satisfied. It is enough to find Ψ(x) for the generators x = A,B, C, D of
Mq(2) and show that the duality conditions are satisfied. The representation

ρ(E) =

(
0 1
0 0

)
, ρ(F ) =

(
0 0
1 0

)
, ρ(K = qH) =

(
q 0
0 q−1

)
,

extended to a representation

ρ(u) =

(
A(u) B(u)
C(u) D(u)

)
of arbitrary element u of Uq(sl(2) defines for elements in U?

q . It is easy to
guess that A(u), B(u), C(u), D(u), which can be regarded as elements of U?

q ,
can be regarded also as R points that is images of the generators a, b, c, d of
SLq(2) under an algebra morphism SLq(2) → U?

q .

4.2.3 General semisimple quantum group

The Drinfeld’s construction of quantum groups applies to arbitrary semi-
simple Lie algebra and is discussed in detail in [24]. The construction relies
on the use of Cartan matrix.

Quite generally, Cartan matrix A = {aij} is n× n matrix satisfying the
following conditions:

i) A is indecomposable, that is does not reduce to a direct sum of ma-
trices.

ii) aij ≤ 0 holds true for i < j.
iii) aij = 0 is equivalent with aij = 0.
A can be normalized so that the diagonal components satisfy aii = 2.
The generators ei, fi, ki satisfying the commutations relations

kikj = kjki , kiej = q
aij

i ejki ,

kifj = q
−aij

i ejki , eifj − fjei = δij
ki−k−1

i

qi−q−1
i

,
(13)

and so called Serre relations
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∑1−aij

l=0 (−1)l

[
1− aij

l

]
qi

e
1−aij−l
i eje

l
i = 0, i 6= j ,

∑1−aij

l=0 (−1)l

[
1− aij

l

]
qi

f
1−aij−l
i fjf

l
i = 0 , i 6= j .

(14)

Here qi = qDi where one has Diaij = aijDi. Di = 1 is the simplest choice
in this case.

Comultiplication is given by

∆(ki) = ki ⊗ ki , (15)
∆(ei) = ei ⊗ ki + 1⊗ ei , (16)
∆(fi) = fi ⊗ 1 + k−1

i ⊗ 1 . (17)
(18)

The action of antipode S is defined as

S(ei) = −eik
−1
i , S(fi) = −kifi , S(ki) = −k−1

i . (19)

4.2.4 Quantum affine algebras

The construction of Drinfeld and Jimbo generalizes also to the case of
untwisted affine Lie algebras, which are in one-one correspondence with
semisimple Lie algebras. The representations of quantum deformed affine
algebras define corresponding deformations of Kac-Moody algebras. In the
following only the basic formulas are summarized and the reader not famil-
iar with the formalism can consult a more detailed treatment can be found
in [24].

1. Affine algebras

The Cartan matrix A is said to be of affine type if the conditions det(A) =
0 and aijaji ≥ 4 (no summation) hold true. There always exists a diagonal
matrix D such that B = DA is symmetric and defines symmetric bilinear
degenerate metric on the affine Lie algebra.

The Dynkin diagrams of affine algebra of rank l have l + 1 vertices (so
that Cartan matrix has one null eigenvector). The diagrams of semisimple
Lie-algebras are sub-diagrams of affine algebras. From the (l + 1)× (l + 1)
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Cartan matrix of an untwisted affine algebra Â one can recover the l × l
Cartan matrix of A by dropping away 0:th row and column.

For instance, the algebra A1
1, which is affine counterpart of SL(2), has

Cartan matrix aij

A =

(
2 −2
−2 2

)
with a vanishing determinant.

Quite generally, in untwisted case quantum algebra Uq(Ĝl) as 3(l + 1)
generators ei, fi, ki (i = 0, 1, .., l) satisfying the relations of Eq. 14 for Cartan
matrix of G(1). Affine quantum group is obtained by adding to Uq(Ĝl) a
derivation d satisfying the relations

[d, ei] = δi0ei , [d, fi] = δi0fi, [d, ki] = 0 . (20)

with comultiplication ∆(d) = d⊗ 1 + 1⊗ d.

2. Kac Moody algebras

The undeformed extension Ĝl associated with the affine Cartan matrix
G(1)

l is the Kac Moody algebra associated with the group G obtained as the
central extension of the corresponding loop algebra. The loop algebra is
defined as

L(G) = G ⊗ C
[
t, t−1

]
, (21)

where C
[
t, t−1

]
is the algebra of Laurent polynomials with complex coeffi-

cients. The Lie bracket is

[x× P, y ⊗Q] = [x, y]⊗ PQ . (22)

The non-degenerate bilinear symmetric form (, ) in Gl induces corresponding
form in L(Gl) as (x⊗ P, y ⊗Q) = (x, y)PQ.

A two-cocycle on L(Gl) is defined as

Ψ(a, b) = Res(
da

dt
, b) , (23)

where the residue of a Laurent is defined as Res(
∑

n antn) = a−1. The
two-cocycle satisfies the conditions
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Ψ(a, b) = −Ψ(b, a) ,

Ψ([a, b] , c) + Ψ([b, c] , a) + Ψ([c, a] , b) = 0 . (24)

The two-cocycle defines the central extension of loop algebra L(Gl) to Kac
Moody algebra L(Gl)⊗Cc, where c is a new central element commuting with
the loop algebra. The new bracket is defined as [, ] + Ψ(, )c. The algebra
L̃(Gl) is defined by adding the derivation d which acts as td/dt measuring
the conformal weight.

The standard basis for Kac Moody algebra and corresponding commu-
tation relations are given by

Jx
n = x⊗ tn ,

[Jx
n , Jy

m] = J
[x,y]
n+m + nδm+n,0c . (25)

The finite dimensional irreducible representations of G defined represen-
tations of Kac Moody algebra with a vanishing central extension c = 0. The
highest weight representations are characterized by highest weight vector |v〉
such that

Jx
n |v〉 = 0, n > 0 ,

c|v〉 = k|v〉 . (26)

3. Quantum affine algebras

Drinfeld has constructed the quantum affine extension Uq(Gl) using quan-
tum double construction. The construction of generators uses almost the
same basic formulas as the construction of semi-simple algebras. The con-
struction involves the automorphism Dt : Uq(G̃l) ⊗ C

[
t, t−1

]
→ Uq(G̃l) ⊗

C
[
t, t−1

]
given by

Dt(ei) = tδi0ei , Dt(fi) = tδi0fi ,
Dt(ki) = ki Dt(d) = d ,

(27)

and the co-product

∆t(a) = (Dt ⊗ 1)∆(a) , ∆op
t (a) = (Dt ⊗ 1)∆op(a) , (28)
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where the ∆(a) is the co-product defined by the same general formula as
applying in the case of semi-simple Lie algebras. The universal R-matrix is
given by

R(t) = (Dt ⊗ 1)R , (29)

and satisfies the equations

R(t)∆t(a) = ∆op
t (a)R ,

(∆z ⊗ id)R(u) = R13(zu)R23(u) ,

(id⊗∆u)R(zu) = R13(z)R12(zu) ,

R12(t)R13(tw)R23(w) = R23(w)R13(tw)R12(t) .

(30)

The infinite-dimensional representations of affine algebra give representa-
tions of Kac-Moody algebra when one restricts the consideration to genera-
tions ei, fi, ki, i > 0.
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