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Abstract

It is shown why the E8 Yang-Mills can be constructed from a Cl(16) algebra Gauge Theory and why
the 11D Chern-Simons (Super) Gravity theory is a very small sector of a more fundamental theory based
on a Cl(11) algebra Gauge theory. These results may shed some light into the origins behind the hidden
E8 symmetry of 11D Supergravity and reveal more important features of a Clifford-algebraic structure
underlying M,F theory.

1. INTRODUCTION

Ever since the discovery [1] that 11D supergravity, when dimensionally reduced to an n-dim torus led to
maximal supergravity theories with hidden exceptional symmetries En for n ≤ 8, it has prompted intensive
research to explain the higher dimensional origins of these hidden exceptional En symmetries [2, 6] . More
recently, there has been a lot of interest in the infinite-dim hyperbolic Kac-Moody E10 and non-linearly
realized E11 algebras arising in the asymptotic chaotic oscillatory solutions of Supergravity fields close to
cosmological singularities [1,2].

The classification of symmetric spaces associated with the scalars of N extended Supergravity theories
(emerging from compactifications of 11D supergravity to lower dimensions), and the construction of the
U -duality groups as spectrum-generating symmetries for four-dimensional BPS black-holes [6] also involved
exceptional symmetries associated with the Jordan algebras J3[R,C, H, O]. The discovery of the anomaly
free 10-dim heterotic string for the algebra E8 ×E8 was another hallmark of the importance of Exceptional
Lie groups in Physics.

Exceptional, Jordan, Division and Clifford algebras are deeply related and essential tools in many
aspects in Physics [3, 5, 8, 9,14,15,16,17,18,19,20]. In this work we will focus mainly on the Clifford algebraic
structures and show how the E8 Yang-Mills theory can naturally be embedded into a Cl(16) algebra Gauge
Theory and why the 11D Chern-Simons (Super) Gravity [4] is a very small sector of a more fundamental
theory based on the Cl(11) algebra Gauge theory. Polyvector-valued Supersymmetries [11] in Clifford-spaces
[3] turned out to be more fundamental than the supersymmetries associated with M,F theory superalgebras
[7,10]. For this reason we believe that Clifford structures may shed some light into the origins behind the
hidden E8 symmetry of 11D Supergravity and reveal more important features underlying M,F theory.

2. THE E8 YANG-MILLS FROM A Cl(16) ALGEBRA GAUGE THEORY

It is well known among the experts that the E8 algebra admits the SO(16) decomposition 248 →
120 ⊕ 128. The E8 admits also a SL(8, R) decomposition [6]. Due to the triality property , the SO(8)
admits the vector 8v and spinor representations 8s,8c. After a triality rotation, the SO(16) vector and
spinor representations decompose as [6]

16 → 8s ⊕ 8c. (2.1a)

128s → 8v ⊕ 56v ⊕ 1⊕ 28⊕ 35v. (2.1b)

128c → 8s ⊕ 56s ⊕ 8c ⊕ 56c. (2.1c)

To connect with (real) Clifford algebras [8], i.e. how to fit E8 into a Clifford structure , start with the
248-dim fundamental representation E8 that admits a SO(16) decomposition given by the 120-dim bivector

1



representation plus the 128-dim chiral-spinor representations of SO(16). From the modulo 8 periodicity of
Clifford algebras one has Cl(16) = Cl(2 × 8) = Cl(8) ⊗ Cl(8), meaning, roughly, that the 216 = 256 × 256
Cl(16)-algebra matrices can be obtained effectively by replacing each single one of the entries of the 28 =
256 = 16 × 16 Cl(8)-algebra matrices by the 16 × 16 matrices of the second copy of the Cl(8) algebra. In
particular, 120 = 1×28+8×8+28×1 and 128 = 8+56+8+56 , hence the 248-dim E8 algebra decomposes
into a 120 + 128 dim structure such that E8 can be represented indeed within a tensor product of Cl(8)
algebras.

At the E8 Lie algebra level, the E8 gauge connection decomposes into the SO(16) vector I, J = 1, 2, ...16
and (chiral) spinor A = 1, 2, ...128 indices as follows

Aµ = AIJ
µ XIJ +AA

µ YA. XIJ = −XJI . I, J = 1, 2, 3, ...., 16. A = 1, 2, ....., 128. (2.3)

where XIJ , YA are the E8 generators. The Clifford algebra (Cl(8) ⊗ Cl(8) ) structure behind the SO(16)
decomposition of the E8 gauge field AIJ

µ XIJ +AA
µ YA can be deduced from the expansion of the generators

XIJ , YA in terms of the Cl(16) algebra generators. The Cl(16) bivector basis admits the decomposition

XIJ = aIJ
ij (γij ⊗ 1) + bIJ

ij (1⊗ γij) + cIJ
ij (γi ⊗ γj). (2.4)

where γi, are the Clifford algebra generators of the Cl(8) algebra present in Cl(16) = Cl(8)⊗Cl(8); 1 is the
unit Cl(8) algebra element that can be represented by a unit 16× 16 diagonal matrix. The tensor products
⊗ of the 16× 16 Cl(8)-algebra matrices, like γi ⊗ 1, γi ⊗ γj , ...... furnish a 256× 256 Cl(16)-algebra matrix,
as expected. The Cl(8) algebra basis elements are

γM = 1, γi, γi1i2 = γi1 ∧ γi2 , γi1i2i3 = γi1 ∧ γi2 ∧ γi3 , ......., γi1i2....i8 = γi1 ∧ γi2 ∧ .... ∧ γi8 (2.5)

Therefore, the decomposition in (2.4) yields the 28+28+8×8 = 56+64 = 120-dim bivector representation
of SO(16); i.e. for each fixed values of IJ there are 120 terms in the r.h.s of (2.4), that match the number of
independent components of the E8 generators XIJ = −XJI , given by 1

2 (16×15) = 120 . The decomposition
of YA is more subtle. A spinor Ψ in 16D has 28 = 256 components and can be decomposed into a 128
component left-handed spinor ΨA and a 128 component right-handed spinor ΨȦ; The 256 spinor indices are
α = A, Ȧ; β = B, Ḃ, ...... with A,B = 1, 2, ....128 and Ȧ.Ḃ = 1, 2, ..., 128, respectively.

Spinors are elements of right (left) ideals of the Cl(16) algebra and admit the expansion Ψ = Ψαξα in
a 256-dim spinor basis ξα which in turn can be expanded as sums of Clifford polyvectors of mixed grade;
i.e. into a sum of scalars, vectors, bivectors, trivectors, ..... . The chiral ( left handed, right-handed )
128-component spinors Ψ± are obtained via the projection operators

Ψ± =
1
2
(1± Γ17)Ψ. Γ17 = Γ1 ∧ Γ2 ∧ ......... ∧ Γ16. (2.6)

such that ξα
+ ≡ ξA; ξα

− ≡ ξȦ, so the left-handed (right-handed) spinor basis ξ± can be represented by a
column matrix (an element of the left ideal) with 128 non-vanishing upper ( lower ) components in the Weyl
representation as

ξα
± = (

1± Γ17

2
)αβ [ (1⊗ 1)βδ Aδ + (γi ⊗ 1)βδ Aδ

i + (γi1i2 ⊗ 1)βδ Aδ
i1i2 + .........

(γi1i2.....i7 ⊗ 1)βδ Aδ
i1i2.....i7 + (γi1i2.....i8 ⊗ 1)βδ Aδ

i1i2.....i8 ] (2.7)

where the numerical tensor-spinorial coefficients in the r.h.s of (2.7) are constrained to satisfy all the condi-
tions imposed by the definition of an ideal element of the Cl(16) algebra; namely that any element of the
ideal upon a multiplication from the left by any Clifford algebra element yields another element of the left
ideal. Similar definitions apply to the right ideal elements upon multiplication from the right by any Clifford
algebra element. The row matrix (an element of the right ideal) with 128 non-vanishing components is just
given by (ξ±)†.
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The rigorous procedure to construct spinors as elements of right/left ideals of Clifford algebras using
primitive idempotents can be found in [5] and references therein. The final outcome is the same as performing
the expansion (2.7) and solving for the coefficients. In this fashion one can construct the 128-dim left handed
(right handed ) chiral spinor representations of SO(16) that match the number of 128 generators YA. Hence,
the total number of E8 generators is then 120 + 128 = 248. What remains to be done is to enforce the
E8 commutation relations that in conjunction with the defining relations of a primitive ideal element of the
Cl(16) algebra will fix the values of the coefficients appearing in eqs-(2.4, 2.7) . Based on the fact that the
Clifford algebra commutators of even and odd grade satisfy the relations

[Even ,Even] = Even. [Odd ,Odd] = Even. [Even ,Odd] = [Odd ,Even] = Odd. (2.8)

which are similar to the E8 commutation relations described below, one can immediately choose to expand
the spinor basis elements in (2.7) as sums of Polyvectors of odd grade only, meaning that for each fixed
value of δ, there are only 128 terms in the r.h.s of (2.7) given by the number of odd-grade elements of the
Cl(8) algebra 8 + 56 + 56 + 8 = 128. This is consistent with the fact that a chiral spinor in 16D has 128
non-vanishing components in a Weyl representation. Therefore, the generators Y A ≡ Y α

+ ; Y Ȧ = Y α
− must

involve odd grade elements of the form

Y α
± = (

1± Γ17

2
)αβ [(γi⊗1)βδAδ

i +(γi1i2i3⊗1)βδ Aδ
i1i2i3 +(γi1i2....i5⊗1)βδAδ

i1i2...i5 +(γi1i2.....i7⊗1)βδAδ
i1i2.....i7 ]

(2.9)
The commutation relations of E8 are [6]

[XIJ , XKL] = 4(δIK XLJ − δIL XKJ + δJK XIL − δJL XIK)

[XIJ , Y A] = −1
2
ΓIJ

ABY B ; [Y A, Y B ] =
1
4
ΓIJ

ABXIJ (2.10)

The combined E8 indices are denoted by A ≡ [IJ ], A ( 120 + 128 = 248 indices in total ) that yield the
Killing metric and the structure constants

ηAB =
1
60

Tr TATB = − 1
60

fACD fBCD (2.11a)

.

f IJ,KL,MN = −8δIK δLJ
MN + permutations; f IJ,A,B = −1

2
ΓIJ

AB ; ηIJKL = − 1
60

f IJ
CD fKL,CD (2.11b)

Therefore, the odd grade expansion in (2.9) and the bivector grade expansion in (2.4) is consistent with the
commutation relations of E8. We shall proceed with the construction of a novel Cl(16) gauge theory that
encodes the exceptional Lie algebra E8 symmetry from the start. The E8 gauge theory in D = 4 is based
on the E8-valued field strengths

F IJ
µν XIJ = (∂µAIJ

ν − ∂νAIJ
µ ) XIJ +AKL

µ AMN
ν [XKL, XMN ] +AA

µ AB
ν [YA, YB ]. (2.12)

FA
µνYA = (∂µAA

ν − ∂νAA
µ ) YA +AA

µ AIJ
ν [YA, XIJ ]. (2.13)

The E8 actions are

STopological[E8] =
∫

d4x
1
60

Tr [ FAµν FBρτ TATB ] εµνρτ =
∫

d4x FAµν FBρτ ηAB εµνρτ =

∫
d4x [ F IJ

µν FKL
ρτ ηIJKL + FA

µνFB
ρτ ηAB + 2F IJ

µν FB
ρτ ηIJB ] εµνρτ . (2.14)
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where εµνρτ is the covariantized permutation symbol and

SY M [E8] =
∫

d4x
√

g
1
60

Tr [ FAµν FBρτ TATB ] gµρgντ =
∫

d4x
√

g FAµν FBρτ ηAB gµρgντ =

∫
d4x

√
g [ F IJ

µν FKL
ρτ ηIJKL + FA

µνFB
ρτ ηAB + 2F IJ

µν FB
ρτ ηIJB ] gµρgντ . (2.15)

The above E8 actions (are part of ) can be embedded onto more general Cl(16) actions with a much larger
number of terms given by

STopological[Cl(16)] =
∫

d4x < FMµν FNρτ ΓMΓN > εµνρτ =
∫

d4x FMµν FNρτ GMN εµνρτ . (2.16)

and

SY M [Cl(16)] =
∫

d4x
√

g < FMµν FNρτ ΓMΓN > gµρgντ =
∫

d4x
√

g FMµν FNρτ GMN gµρgντ . (2.17)

where < ΓMΓN > = GMN 1 denotes the scalar part of the Clifford geometric product of the gammas.
Notice that there are a total of 65536 terms in

FMµν FNρτ GMN = FµνFρτ + F I
µνF I

ρτ + F I1I2
µν F I1I2

ρτ + .......... + F I1I2.......I16
µν F I1I2......I16

ρτ . (2.18)

where the indices run as I = 1, 2, .....16. The Clifford algebra Cl(16) has the graded structure ( scalars,
bivectors, trivectors,....., pseudoscalar ) given by

1 16 120 560 1820 4368 8008 11440 12870

11440 8008 4368 1820 560 120 16 1. (2.19)

consistent with the dimension of the Cl(16) algebra 216 = 256 × 256 = 65536. The possibility that one
can acommodate another copy of the E8 algebra within the Cl(16) algebraic structure warrants further
investigation by working with the duals of the bivectors XIJ and recurring to the remaining YȦ generators.
The motivation is to understand the full symmetry of the E8×E8 heterotic string from this Clifford algebraic
perspective. A clear embedding is, of course, the following

E8 × E8 ⊂ Cl(8)⊗ Cl(8)⊗ Cl(8)⊗ Cl(8) ⊂ Cl(16)⊗ Cl(16) = Cl(32). (2.20)

where SO(32) ⊂ Cl(32) and SO(32) is also an anomaly free group of the heterotic string that has the same
dimension and rank as E8 × E8.

3. CHERN-SIMONS-GRAVITY IN 11D FROM A CLIFFORD ALGEBRA GAUGE THEORY

The 11D Chern-Simons Supergravity action is based on the smallest Anti de Sitter OSp(32|1) superal-
gebra. The Anti de Sitter group SO(10, 2) must be embedded into a larger group Sp(32, R) to accomodate
the fermionic degrees of freedom associated with the superalgebra OSp(32|1). The bosonic sector involves
the connection [4]

Aµ = Aa
µΓa + Aab

µ Γab + Aa1a2....a5
µ Γa1a2....a5 = ea

µΓa + ωab
µ Γab + Aa1a2....a5

µ Γa1a2....a5 (3.1)

with 11 + 55 + 462 = 528 generators. A Hermitian complex 32 × 32 matrix has a total of 32 + 2( 32×31
2 ) =

992 + 32 = 1024 = 322 = 210 independent real components (parameters), the same number as the real
parameters of the anti-symmetric and symmetric real 32 × 32 matrices 496 + 528 = 1024. The dimension
of Sp(32) = (1/2)(32 × 33) = 528. Notice that 210 = 1024 is also the number of independent generators of
the Cl(11) algebra since out of the 211 generators, only half of them 210, are truly independent due to the
duality conditions valid in odd dimensions only :
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εa1a2.....a2n+1Γa1 ∧ Γa2 ∧ ..... ∧ Γap
∼ Γap+1 ∧ Γap+2 ∧ ..... ∧ Γa2n+1 . (3.2)

This counting of components is the underlying reason why the Cl(11) algebra appears in this section. The
generators of the Cl(11) algebra {Γa,Γb} = 2ηab1 and the unit element 1 generate the Clifford polyvectors
(including a scalar, pseudoscalar ) of different grading

ΓA = 1, Γa, Γa1 ∧ Γa2 , Γa1 ∧ Γa2 ∧ Γa3 , ......., Γa1 ∧ Γa2 ∧ ........ ∧ Γa11 . (3.3)

obeying the conditions (3.2). The commutation relations (see eqs-(3.4) below) involving the generators
Γa,Γab,Γa1a2....a5 do in fact close due to the duality conditions (3.2). The Cl(11) algebra commutators, up
to numerical factors, are

[Γa,Γb] = Γab. [Γa,Γbc] = 2ηabΓc − 2ηacΓb (3.4a)

[Γa1a2 ,Γb1b2 ] = −ηa1b1Γa2b2 + ηa1b2Γa2b1 − .... (3.4b)

[Γa1a2a3 ,Γb1b2b3 ] = Γa1a2a3b1b2b3 − (ηa1b1a2b2Γa3b3 + ....). (3.4c)

[Γa1a2a3a4 ,Γb1b2b3b4 ] = −(ηa1b1Γa2a3a4b2b3b4 + ....)− (ηa1b1a2b2a3b3Γa4b4 + ....). (3.4d)

[Γa1a2 ,Γb1b2b3b4 ] = −ηa1b1Γa2b2b3b4 + .... (3.4e)

[Γa1 ,Γb1b2b3 ] = Γa1b1b2b3 . [Γa1a2 ,Γb1b2b3 ] = −2ηa1b1Γa2b2b3 + .... (3.4f)

[Γa1 ,Γb1b2b3b4 ] = −ηa1b1Γb2b3b4 + ..... (3.4g)

[Γa1a2....a5 ,Γb1b2....b5 ] = Γa1a2...a5b1b2....b5 + (ηa1b1a2b2Γa3a4a5b3b4b5 + .....) + (ηa1b1a2b2a3b3a4b4Γa5b5 + .....) =

εa1a2...a5b1b2....b5c Γc + (ηa1b1a2b2εa3a4a5b3b4b5c1c2.....c5Γc1c2....c5 + .....) + (ηa1b1a2b2a3b3a4b4Γa5b5 + .....). (3.4h)

etc....... with

ηa1b1a2b2 = ηa1b1ηa2b2 − ηa2b1ηa1b2 (3.5a)

ηa1b1a2b2a3b3 = ηa1b1ηa2b2ηa3b3 − ηa1b2ηa2b1ηa3b3 + ....... (3.5b)

ηa1b1a2b2......anbn
=

1
n!

εi1i2......in εj1j2......jn ηai1bj1
ηai2bj2

......... ηain bjn
. (3.5c)

The Cl(11) algebra gauge field is

Aµ = AA
µ = Aµ1 +Aa

µΓa +Aa1a2
µ Γa1a2 +Aa1a2a3

µ Γa1a2a3 + ......... +Aa1a2....a11
µ Γa1a2.......a11 . (3.6)

and the Cl(11)-algebra-valued field strength

FA
µν ΓA = ∂[µAν] 1 + [ ∂[µAa

ν] + Ab2
[µAb1a

ν] ηb1b2 + ..... ] Γa +

[ ∂[µAab
ν] + Aa

[µAb
ν] −Aa1a

[µ Ab1b
ν] ηa1b1 −Aa1a2a

[µ Ab1b2b
ν] ηa1b1a2b2 −Aa1a2a3a

[µ Aa1b2b3b
ν] ηa1b1a2b2a3b3 + ..... ] Γab +

[ ∂[µAabc
ν] + Aa1a

[µ Ab1bc
ν] ηa1b1 + ...... ] Γabc + [ ∂[µAabcd

ν] −Aa1a
[µ Ab1bcd

ν] ηa1b1 + ...... ] Γabcd + .........

[ ∂[µAa1a2....a5b1b2.....b5
ν] + Aa1a2...a5

[µ Ab1b2....b5
ν] + ...... ] Γa1a2....a5b1b2.....b5 + .... (3.7)
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The Chern-Simons actions rely on Stokes theorem∫
M12

εµ1µ2....µ11µ12 ∂µ12 (Aµ1µ2....µ11) =
∫

∂M12=Σ11
εµ1µ2....µ11µ12 Aµ1µ2....µ11 dΣ11

µ12
. (3.8)

which in our case reads

d (LClifford) =< F ∧ F ∧ .......... ∧ F > = < FA1 ∧ FA2 ∧ ......... ∧ FA6 ΓA1ΓA2 ....ΓA6 > (3.9)

where the bracket < ...... > means taking the scalar part of the Clifford geometric product among the gammas.
It involves products of the dABC , fABC structure constants corresponding to the ( anti ) commutators
{ΓA,ΓB} = dABCΓC and [ΓA,ΓB ] = fABCΓC .

One of the main results of this work is that the Cl(11) algebra based action (3.9) contains a vast number
of terms among which is the Chern-Simons action of [4] L11

CS(e, ω, A5)

LClifford(AA
µ ΓA) = L11

CS(ω, e, A5) + EXTRA TERMS. (3.10)

SCS(ω, e, A5) =
∫

∂M12
L11

CS =
∫

Σ11
L11

CS . (3.11)

L11
CS(ω, e, A5) = L11

Lovelock(ω, e) + L11
Pontryagin(ω, e) + L11(A5, ω, e) (3.12)

In odd dimensions D = 2n− 1, the Lanczos-Lovelock Lagrangian is

LD
Lovelock =

n−1∑
p=0

ap Lp(D). ap = κ
(±1)p+1l2p−D

(D − 2p)
Cn−1

p ; p = 1, 2, ....., n− 1 (3.13)

Cn−1
p is the binomial coefficient. The constants κ, l are related to the Newton’s constant G and to the

cosmological constant Λ through κ−1 = 2(D − 2)ΩD−2G where ΩD−2 is the area of the D − 2-dim unit
sphere and Λ = ±(D− 1)(D− 2)/2l2 for de Sitter ( Anti de Sitter ) spaces [4] . A derivation of the vacuum
energy density of Anti de Sitter space (de Sitter ) as the geometric mean between an upper and lower
scale was obtained in [17] based on a BF-Chern-Simons-Higgs theory. Upon setting the lower scale to the
Planck scale LP and the upper scale to the Hubble radius (today) RH , it yields the observed value of the
cosmological constant ρ = L−2

P R−2
H = L−4

P (LP /RH)2 ∼ 10−120M4
P .

The terms inside the summand of (3.13) are

Lp(D) = εa1a2.......aD
Ra1a2Ra3a4 ....Ra2p−1a2p ea2p+1 .......eaD (3.14)

where we have omitted the space-time indices µ1, µ2, ......... Despite the higher powers of the curvature ( after
eliminating the spin connection ωab

µ in terms of the ea
µ field ) the LD

Lovelock furnishes equations of motion for
the ea

µ field containing at most derivatives of second order, and not higher, due to the Topological property
of the Lovelock terms

d (L11
Lovelock) = εa1a2.....a11(R

a1a2 +
ea1ea2

l2
)......(Ra9a10 +

ea9ea10

l2
) T a11 = Euler density in 12D. (3.15)

The exterior derivative of the Lovelock terms can be rewritten compactly as

d (L11
Lovelock) = εA1A2....A12F

A1A2 ......FA11A12 (3.16)

where FA1A2 is the curvature field strength associated with the SO(10, 2) connection ΩA1A2
µ in 12D and

which can be decomposed in terms of the fields ea
µ, ωab

µ , a, b = 1, 2, ...., 11 by identifying ΩaD
µ = 1

l e
a
µ and

Ωab
µ = ωab

µ so that the Torsion and Lorenz curvature 2-forms are

T a(ω, e) = F aD = dΩaD + Ωa
b ∧ ΩbD =

1
l
(dea − ωa

b ∧ eb).
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F ab = (dΩab + Ωa
c ∧ Ωcb) + (Ωa

D ∧ ΩDb) = Rab(ω) +
1
l2

ea ∧ eb. Rab(ω) = dωab + ωa
c ∧ ωcb (3.17)

where a length parameter l must be introduced to match dimensions since the connection has units of 1/l.
This l parameter is related to the cosmological constant.

L11
Pontryagin(ω, e) is the Chern-Simons 11-form whose exterior derivative

d (LPontryagin) = FA1
A2

FA2
A3

.......FA5
A6

FA6
A1

(3.18)

is the (one of the many) Pontryagin 12-form (up to numerical factors) for the SO(10, 2) connection in 12D.
As mentioned above, the SO(10, 2) connection ΩAB

µ can be broken into the ea
µ field and the SO(10, 1) spin

connection ωab
µ such that the number of components is 11 + 1

2 (11 × 10) = 66 = 1
2 (12 × 11). Finally, the

exterior derivative of L11(A5, ω, e) is the 12-form (we are omitting space-time indices µ1, µ2, ......, µ12)

dL11(A5, ω, e) = (εa1a2.....a11R
a1a2.....a5Ra6a7....a10T a11)(εb1b2.....b11R

b1b2.....b5Rb6b7....b10T b11) (3.19)

the curvature 2-form associated with the field Ac1c2.....c5
µ , after recurring to the duality conditions of eq-(3.2),

is

Rc1c2.....c5
µν = ∂[µAc1c2.....c5

ν] + Aa1a2.....a5
[µ Ab1b2.....b5

ν] fa1a2...a5 b1b2....b5 d1d2....d6 εd1d2....d6c1c2....c5 (3.20)

where the structure constants fABC in (3.18) are obtained from the Cl(11) algebra commutation relations
in (3.4h).

The Cl(11) algebra based action (3.9) can in turn be embedded into a more general expression in C-space
(Clifford Space) which is a generalized tensorial spacetime of coordinates X = σ, xµ, xµν , xµνρ.... [3] involving
antisymetric tensor ( and scalar ) gauge fields Φ(X), Aµ(X), Aµν(X), Aµνρ(X)..... of higher rank (higher spin
theories) [13]. The most general action onto which the action (3.9) itself can be embedded requires a tensorial
gauge field theory [12, 13] ( a Generalization of Yang-Mills theories) and an integration w.r.t the Clifford-
valued coordinates X = XMΓM corresponding to the C-space associated with the underlying Cl(2n)-algebra
in D = 2n dimensions

S =
∫

[d2n

X] < (F ∧ F ∧ ..... ∧ F) > . [d2n

X] = (dσ)(dxµ)(dxµν)(dxµνρ)...... (3.21)

A Generalized Polyvector-valued Supersymmetry [10] based on a Grassmanian extension θ, θα, θαβ , θαβδ, ...
of the bosonic C-space coordinates X was undertaken in [11]. Such C-space Generalized Supersymmetry is
based on an extension and generalizations of the M,F Theory Superalgebras [7] that we will briefly discuss
below.

A Chern-Simons Supergravity (CS-SUGRA) in D = 11 involves the symplectic supergroup OSp(32|1)
and the connection [4]

Aµ = ea
µΓa + ωab

µ Γab + Aa1a2....a5
µ Γa1a2....a5 + Ψ̄α

µQα. (3.22)

whereas the M theory superalgebra involve 32-component spinorial supercharges Qα whose anticommutators
are [7]

{Qα, Qβ} = (AΓµ)αβ Pµ + (AΓµ1µ2)αβ Zµ1µ2 + (AΓµ1µ2....µ5)αβ Zµ1µ2.....µ5 . (3.23)

there are 32 × 32 symmetric real matrices with at most 1
2 (32 × 33) = 528 independent components that

match the number of degrees of freedom associated with the translations Pµ and the antisymmetric rank
2, 5 abelian tensorial central charges Zµ1µ2 , Zµ1µ2.....µ5 in the r.h.s since 11 + 55 + 462 = 528. The matrix A
plays the role of the timelike γ0 matrix in Minkowski spacetime and is used to introduce barred-spinors [7]

The F theory 12D super-algebra involves the Majorana-Weyl spinors with 32 components whose anti-
commutators are [7]

{Qα, Qβ} = (AΓµν)αβ Zµν + (AΓµ1µ2....µ6)αβ Zµ1µ2....µ6 . (3.24)
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and the counting of components in D = 12 yields also 32×33
2 = 528 = 66 + 462. In 13D it requires the

superalgebra OSp(64|1) which is connected to a membrane, a 3-brane and a 6-brane, respectively, since
antisymmetric tensors of ranks 2, 3, 6 in 13D have a total of 64×65

2 = 78 + 286 + 1716 = 2080 components.
For this reason we believe that Polyvector-valued Supersymmetries in C-spaces [11] deserve to be in-

vestigated further since they are more fundamental than the supersymmetries associated with M,F theory
superalgebras and also span well beyond the N -extended Supersymmetric Field Theories involving super-
algebras, like OSp(32|N) for example, which are related to a SO(N) Gauge Theory coupled to matter
fermions (besides the gravitinos). Finally, the results of this work may shed some light into the origins
behind the hidden E8 symmetry of 11D Supergravity , the hyperbolic Kac-Moody algebra E10 and the non-
linearly realized E11 algebra related to Chaos in M theory and oscillatory solutions close to cosmological
singularities [1,2,6].
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