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Abstract
A novel Moyal-Yang star product deformation of generalized p-brane actions in Clifford-space target

backgrounds involving multivectors ( polyvectors, antisymmetric tensors ) valued coordinates is constructed
based on the novel Moyal-Yang star product deformations of Generalized-Yang-Mills theories. This novel
Moyal-Yang star product requires the use of the Noncommutative Yang’s spacetime algebra involving a
lower (ultraviolet) scale λ ( Planck’s scale ) and an upper (infrared) scale R simultaneously. The ”classical
” h̄eff = (h̄λ/R) → 0 limit of the Moyal-Yang star products leads naturally to Noncommutative p-branes
actions in Clifford-space target backgrounds which are associated to the Noncommutative ”classical” p-brane
dynamics described by nontrivial ( nonzero ) Poisson brackets among the multivector-valued coordinates
and multivector-valued momenta of the p-branes moving in Clifford spaces. We derived in previous work,
from first principles, why the observed value of the vacuum energy density (cosmological constant ) is
given by a geometric mean relationship ρ ∼ L−2

PlanckR−2 = L−4
P (LPlanck/R)2 ∼ 10−122M4

Planck and can be
obtained when the infrared scale R is set to be of the order of the present value of the Hubble radius. A
Noncommutative QFT in Clifford spaces (devoid of ultraviolet and infrared divergences ) involving both an
upper R (infrared) and lower (ultraviolet) scale λ remains to be developed further in order to study in full
the physical applications of these Noncommutative p-branes living in Clifford space target backgrounds.

1. Introduction

In recent years we have argued that the underlying fundamental physical principle behind string theory,
not unlike the principle of equivalence and general covariance in Einstein’s general relativity, might well be
related to the existence of an invariant minimal length scale (Planck scale) attainable in nature. A scale
relativistic theory involving spacetime resolutions was developed long ago by Nottale where the Planck scale
was postulated as the minimum observer independent invariant resolution [43] in Nature. Since “points”
cannot be observed physically with an ultimate resolution, they are fuzzy and smeared out into fuzzy balls
of Planck radius of arbitrary dimension. For this reason one must construct a theory that includes all
dimensions (and signatures) on the equal footing. Because the notion of dimension is a topological invariant,
and the concept of a fixed dimension is lost due to the fuzzy nature of points, dimensions are resolution-
dependent, one must also include a theory with all topologies as well. It is our belief that this may lead to
the proper formulation of string and M theory.

In [15] we applied this Extended Scale Relativity principle to the quantum mechanics of p-branes which
led to the construction of C-space (a dimension category) where all p-branes were taken to be on the same
footing; i.e. transformations in C-space reshuffled a string history for a five-brane history, a membrane
history for a string history, for example. It turned out that Clifford algebras contained the appropriate
algebro-geometric features to implement this principle of polydimensional transformations [15, 16, 17, 18].
Clifford algebras have been a very useful tool for a description of geometry and physics [39]. In [17,18] it
was proposed that every physical quantity is in fact a polyvector, that is, a Clifford number or a Clifford
aggregate. Also, spinors are the members of left or right minimal ideals of Clifford algebra, which may
provide the framework for a deeper understanding of sypersymmetries, i.e., the transformations relating
bosons and fermions. The Fock-Stueckelberg theory of a relativistic particle [17] can be embedded in the
Clifford algebra of spacetime [3]. Many important aspects of Clifford algebra are described in [39]

Using these methods the bosonic p-brane propagator, in the quenched mini superspace approximation,
was constructed in [33]; the logarithmic corrections to the black hole entropy based on the geometry of Clifford
space (in short C-space) were obtained in [35]; the action for a higher derivative gravity with torsion was
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obtained directly from the geometry of C-spaces [34] and how the Conformal agebra of spacetime emerges
also from the Clifford algebra was described in [40]; the resolution of the ordering ambiguities of QFT in
curved spaces was resolved by [17].

In this new physical theory the arena for physics is no longer the ordinary spacetime, but a more general
manifold of Clifford algebra valued objects, polyvectors. Such a manifold has been called a pan-dimensional
continuum [18] or C-space [15]. The latter describes on a unified basis the objects of various dimensionality:
not only points, but also closed lines, surfaces, volumes,.., called 0-loops (points), 1-loops (closed strings)
2-loops (closed membranes), 3-loops, etc.. It is a sort of a dimension category, where the role of functorial
maps is played by C-space transformations which reshuffles a p-brane history for a p′-brane history or a
mixture of all of them, for example.

The above geometric objects may be considered as to corresponding to the well-known physical objects,
namely closed p-branes. Technically those transformations in C-space that reshuffle objects of different
dimensions are generalizations of the ordinary Lorentz transformations to C-space. In that sense, the C-
space is roughly speaking a sort of generalized Penrose-Twistor space from which the ordinary spacetime
is a derived concept. In [15] we derived the minimal length uncertainty relations as well as the full blown
uncertainty relations due to the contributions of all branes of every dimensionality, ranging from p = 0 all
the way to p = ∞. For further details of the Extended Relativity Theory in Clifford spaces we refer to the
review [16] .

Another current important applications of multivectors, (polyvectors) in Physics is the work on Polyvec-
tor Super-Poincare Algebras and its relation to the M-theory superalgebra [55] and the formulations of Higher
Spin Theories based on twistor-particle dynamics in Tensorial spaces [54]. The role of enlarged superspace
coordinates in the context of super p-branes, Born-Infeld and M-theory has recently been investigated by
[56] . Clifford Spaces are more fundamental than these tensorial spaces.

This work is organized as follows. Section 2 provides the physical motivation for this work that is based
on two different ways to view the physics of branes. One view is to interpret them as composite antisymmetric
tensor field field theories possessing an infinite-dimensional group of volume-preserving diffeomorphisms (
of the target space of the scalar primitive field constituents ) . The other view is related to the large N
limit of SU(N) Yang-Mills theories that is tantamount to the ”classical ” h̄ = 2π/N → 0 limit of the Moyal
deformations of ( Generalized ) Yang-Mills theories.

In 2.1 we will summarize the construction of p′-brane solutions to the rank p + 1 composite anti-
symmetric tensor field theories [2] developed by Guendelman, Nissimov and Pacheva [1] when the condition
D = p + p′ + 2 is satisfied. These field theories posess an infinite-dimensional group of volume-preserving
diffeomorphisms of the target space of the scalar primitive field constituents. In section 2.2 we reviewed
the interplay between ordinary brane actions in ordinary target spacetime backgrounds and the Moyal defor-
mation quantization of ( Generalized ) Yang-Mills theories, in the quenched-reduced approximation. Brane
actions from Moyal deformations of SU(N) Yang-Mills Theories are obtained. In particular, the connection
between the large N limit of SU(N) Yang-Mills (in the quenched-reduced approximation) and p-branes is
displayed. New p-branes actions in terms of a new measure of integration via the introduction of auxil-
iary scalar fields are also studied that are also amenable to Moyal deformations. Section 2 provides the
background material necessary for the remaining sections with contain the new results.

In 3.1,3.2 the basic features of the Extended Relativity Theory in Clifford-spaces (C-spaces) are briefly
outlined that allowed us [16] to construct for the first time (to our knowledge) a unified action encom-
passing the dynamics of all closed p-branes of different dimensionality in Clifford spaces : namely, the
generalized master brane action in Clifford-space target backgrounds is constructed involving multivector
valued coordinates (antisymmeric tensorial coordinates, representing the holographic areas, volumes, hyper-
volumes degrees of freedom associated with the projections of the several p-brane world-volumes onto their
embedding spacetimes ). The latter unified master action of all closed p-branes ( p-loops ) is what we called
the C-space Brane action.

Section 3.3 is new where we extend the discussion of composite antisymmetric tensor field theories
of volume-preserving diffs in ordinary spaces to Clifford-spaces and provide the Clifford-valued field theory
action associated with a Clifford-valued field, that is the generalization of a massless scalar field action to
Clifford-spaces. In particular we study the implications of a brane-field theory duality in Clifford spaces.
The material in 3.2, 3.3 will be revisited in 6 when we furnish the Noncommutative C-space branes actions
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based on Moyal-Yang star products in C-spaces.
Section 4 is essential to be able to define later on in section 6 the novel Moyal-Yang star products

deformations (with ultraviolet and infrared cutoffs ) of the Master-Brane actions in Clifford-space target
backgrounds . In section 4 we derive the relationship among the Yang’s 4D Noncommutative space-time
algebra [21] ( in terms of ordinary 8D phase space coordinates ), the holographic area coordinates algebra
of the C-space associated with a 6D Clifford algebra, and the Euclideanized AdS5 spaces. The role of AdS5

was instrumental in explaining the origins of an extra ( infrared ) scale R in conjunction to the ( ultraviolet
) Planck scale λ characteristic of C-spaces. Tanaka [23] gave the physical and mathematical derivation of
the discrete spectra for the spatial coordinates and spatial momenta that yields a minimum length-scale λ
( ultraviolet cutoff in energy ) and a minimum momentum p = h̄/R ( maximal length R, infrared cutoff ) .

We will show why one of the most salient features of the results of section 4 is that it agrees with
our previous findings of [25] where a geometric mean relationship was found from first principles among
the vacuum energy density (cosmological constant) ρvacuum , the Planck area λ2 and the AdS4 throat size
squared R2 given by (ρv)−1 = (λ)2(R2). By setting the infrared scale R equal to the Hubble radius horizon
RH and λ equal to the Planck scale one reproduces precisely the observed value of the vacuum energy
density ! [25] : ρ ∼ L−2

PlanckR−2
H = L−4

P (LPlanck/RH)2 ∼ 10−122M4
Planck. Cosmological bounds on the

vacuum energy density and the universe’s entropy based on an upper and lower scale are being investigated
nowadays within the framework of the the ’T Hooft-Susskind-Maldacena holographic hypothesis. A different
approach to the cosmological constant based on exploiting the pseudo-Euclidean signatures of C-spaces and
Jackiw’s definition of the vacuum state has been discussed by Pavsic [17] .

In 5 we construct the generalized Yang’s algebra in Clifford spaces involving multivector-valued coor-
dinates and momenta of arbitrary grade and which yields generalized uncertainty relations consistent with
a volume ( hypervolume ) quantization in units of the Planck scale. The generalized Yang’s algebra in
Clifford spaces is essential to define a Moyal-Yang star product and bracket whose deformation parameter
is comprised now of 3 fundamental physical parameters h̄eff = (h̄λ/R). Finally, having constructed the
generalized Yang’s algebra in Clifford spaces, the crux of the last section 6 is to perform a novel Moyal-Yang
Quantization of Generalized Yang-Mills theories in Clifford spaces, in the quenched-reduced approximation,
that yields the sought-after star-product deformations of the brane actions in Clifford space target back-
grounds based on multivector ( polyvector, antisymmetric tensor ) valued coordinates. It is shown that the
novel Moyal-Yang star product deformations of brane actions in Clifford space backgrounds are induced
from the Moyal-Yang star product deformation quantization of Generalized-Yang-Mills theories in Clifford
spaces.

The ”classical” limit h̄eff → 0 is defined by taking λ → 0, R → ∞ but maintaining h̄ = c = 1 in
natural units while implementing simultaneously the double-scaling limit λR = L2 = finite. Upon taking
the h̄eff → 0 limit, novel Noncommutative Brane actions in Clifford space target backgrounds are obtained
which are associated with the Noncommutative ”classical” brane dynamics described by nontrivial Poisson
brackets among the multivector-valued coordinates and momenta of the branes in Clifford spaces. The
latter Noncommutative Classical Mechanics has a natural correspondence to the Noncommutative Quantum
Mechanics in C-spaces ( when h̄eff 6= 0 ) described by the generalized Noncommutative Yang’s algebra
in Clifford-spaces constructed in section 5 . This is one of the most relevant findings of this work. A
Noncommutative QFT in Clifford spaces (devoid of ultraviolet and infrared divergences ) involving both an
upper R (infrared ) and lower ( ultraviolet ) scale λ remains to be developed.

2. Branes as Gauge Theories of Volume Preserving Diffeomorphisms

The purpose of this section is to discuss two different ways to view the physics of branes. One view is
to interpret them as composite antisymmetric tensor field field theories possessing an infinite-dimensional
group of volume-preserving diffeomorphisms (of the target space of the scalar primitive field constituents).
The other view is related to the large N limit of SU(N) Yang-Mills theories that is tantamount to the
”classical ” h̄ = 2π/N → 0 limit of the Moyal deformations of ( Generalized ) Yang-Mills theories. This
section provides with the physical motivations behind this work in the sense that Noncommutative branes
in Clifford-space backgrounds are constructed based on a novel Moyal-Yang star product involving and UV
( ultraviolet ) and IR ( infrared ) scale cutoffs.
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2.1 Branes as composite antisymmetric tensor field theories

In this section we will review the construction of p′-brane solutions to the rank p + 1 composite anti-
symmetric tensor field theories [2] developed by Guendelman, Nissimov and Pacheva [1] when the condition
D = p+p′+2 is satisfied. These field theories posess an infinite-dimensional group of volume-preserving dif-
feomorphisms of the target space of the scalar primitive field constituents. The role of local gauge symmetry
is traded over to an infinite-dimensional global Noether symmetry of volume-preserving diffs. The study of
the Ward identities for this infinite-dim global Noether symmetry to obtain non-perturbative information in
the mini-QED models ( the composite form of QED ) was analysed in [ 1 ] .

The starting Lagrangian is defined [1,2 ]:

L = − 1
g2

F 2
µ1µ2...µp+1

. F = dA = εa1a2....ap+1∂µ1φ
a1 ........∂µp+1φ

ap+1 . (2.1)

the rank p + 1 composite field strength is given in terms of p + 1 scalar fields φ1(x), φ2(x)....φp+1(x) .
Notice that the dimensionality of spacetime where the field theory is defined is greater than the number of
primitive scalars D > p + 1. An Euler variation w.r.t the φa fields yields the following field equations, after
pre-multiplying by a factor of ∂µp+2φ

a1 and using the Bianchi identity dF = 0:

∂µ1 [
δL

δ(∂µ1φ
p+2)

] = 0 ⇒ Fµp+2µ2...µp+1∂µ1F
µ1µ2...µp+1 = 0. (2.2)

Notice that despite the Abelian-looking form F = dA the infinite-dimensional (global ) symmetry of
volume-preserving diffs is not Abelian. The theory we are describing is not the standard YM type .

We are going to find now p′-brane solutions to eq-( 2 ) , where D = p + p′ + 2. These brane solutions
obeyed the classical analogs of S and T -duality [2] . Ordinary EM duality for branes requires D = p+p′+4.
The latter condition is more closely related to the EM duality among two Chern-Simons p, p′-branes [44]
which are embeddings of a p, p′-dimensional object into p + 2; p′ + 2 dimensions. These co-dimension two
objects are nothing but the analog of higher-dimensional ”Knots” . A special class of ( non-Maxwellian )
extended- solutions to eqs-( 2.2 ) requires a dualization procedure [ 2 ]:

G =∗ F ⇒ Gν1ν2...νp′+1(φ̃(x)) = εµ1µ2....µp+1ν1ν2....νp′+1Fµ1µ2....µp+1(φ(x)) (2.3)

After this dualization procedure the eqs-(2.2) are recast in the form:

Gµ1ν2...νp′+1∂µ1Gν2ν3....νp′+2
(φ̃(x)) = 0. (2.4)

The dualized equations (2.4) have a different form than eqs-(2.2 ) due to the position of the indices
( the index contraction differs in both cases ). Extended p′-brane solutions to eqs-( 2.4 ) exist based on
solutions to the Aurilia-Smailagic-Spallucci local gauge field theory reformulation of extended objects given
in [4]. These solutions are

Gν1ν2...νp′+1(φ̃(x))|x=X = T
{Xν1 , Xν2 , ......, Xνp′+1}√

− 1
(p′+1)! [{Xµ1 , Xµ2 , ......, Xµp′+1}][{Xµ1 , Xµ2 , ......, Xµp′+1

}]
. (2.5)

where T is the p′-brane tension and the Nambu-Poisson bracket w.r.t the p′ + 1 world-volume variables is
defined as the ordinary determinant /Jacobian:

{Xν1 , Xν2 , Xν3 , ......, Xνp′+1}NPB = εσ1σ2σ3....σp′+1
∂σ1Xν1∂σ2Xν2 .......∂σp′+1Xνp′+1 . (2.6)

All quantities are evaluated on the p′ + 1-dim world-volume support of the p′-brane; i.e. one must
restrict the dual-scalar solutions φ̃a(x) to those points in the D-dimensional spacetime which have support
on the brane given by x = X(σ1, σ2, ...). Solutions to all of the D-dim spacetime region can be extended
simply by using delta functionals δ(x−X(σ)).
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Now we are going to re-interpret these findings in terms of the composite-antisymmetric tensor field
theories ( CATF ) of area ( volume ) preserving-diffs [1] that inspired the work of [ 2]. The rank-two composite
antisymmetric tensor field ( CATF ) strength may be written in terms of a symplectic (antisymmetric) two-
form ωab as :

F (CATF )
µν = ωab∂µφa∂νφb. (2.21)

The next step is to relate the F
(CATF )
µν in terms of string degrees of feedom associated with the large

N limit of SU(N) Yang-Mills and Born-Infeld models in the quenched reduced approximation derived in [
5,6 ]. Another procedure to achieve this is by invoking the string (brane ) analog of wave-particle duality
for point particles which has been coined brane-wave duality in the literature by [7]. For point-particles one
has standard QM wave-particle correspondence :

xµ(τ) ↔ φ(xµ).
∂xµ

∂τ
↔ ∂µφ(xµ). (2.22)

Given the relativistic constraint pµpµ + m2 = 0, upon quantization one recovers the Klein-Gordon
equation

(∂µ∂µ + m2)φ(x) = 0. (2.23)

. Thus, standard quantization is the basis for the particle-field ( wave ) correspondence ( 2-22 ) .
The brane/wave duality [7] is just a generalization of the point particle case :

Xµ(σa) ↔ φa(xµ). a = 1, 2. (2.24)

but encoded via the string (brane) kinetic terms given in terms of the Poisson brackets ( Nambu-Poisson
Brackets ) of the string ( brane ) coordinates Xµ(σa) as follows :

{Xµ, Xν}PB = ωab∂aXµ(σ)∂bXν(σ) ↔

FCATF
µν [φ] = ωab∂µφa(x)∂νφb(x). (2.25)

The evaluation of the Poisson bracket with respect to the variables σ1, σ2 requires to use the inverse ωab

( a 2 × 2 matrix) of the symplectic non-degenerate two-form ωab associated with a 2-dim phase space.
Symplectic-diffs are area-preserving.

The above equation (2.25 ) expresses the composite antisymmetric tensor field strength/string corre-
spondence by interpreting the scalar fields φa as the generalized world-sheet variables σa associated with
the 2-dim world-sheet swept by a string for a = 1, 2. Therefore, the string/wave duality expressed by eqs-(
2.25 ) is basically a world-volume/target space duality since φa(x) represent the mappings ( inmersions )
from spacetime xµ to a field-space φa. Whereas the inverse maps from the field-space φa variables to the
spacetime xµ variables is what the maps/embeddings of the string’s world-volume into the target spacetime
background represent. The latter are the maps Xµ(σa). Hence, eq-( 2.25) is just the correspondence between
a two-dim area measure of the string’s world-sheet and the CATF strength Fµν [φ]. It can be generalized to
branes as well.

F 2
µ1µ2...µp+1

↔ {Xµ1 , Xµ2 , ....., Xµp+1}2

F = dA = εa1a2....ap+1∂µ1φ
a1 .........∂µp+1φ

ap+1 ↔ {Xµ1 , Xµ2 , ....., Xµp+1} (2.26)

Since this last correspondence between branes and CATF theories, based on brane-wave duality, seems
too heuristic in the next section we will show rigorously why the Poisson bracket has a correspondence
to the Lie-algebra commutator of the large N limit of SU(N) Yang-Mills theory in the quenched reduced
approximation :

{Xµ, Xν}PB ↔ [Aµ, Aν ] (2.27)

In particular, we will see why the large N limit of Yang-Mills theory admits strings, membranes and bag
excitations [ 5,6 ] .
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2.2 Branes from Moyal deformations of Yang-Mills Theories

It is essential now to explain the derivation of how Hadronic Bags (branes) [5,6] and Chern-Simons
Branes [44] can be obtained from the Large N limit of Yang-Mills and Generalized Yang-Mills theories
[12] in Flat Backgrounds. A Moyal deformation quantization was instrumental in the construction of p-
brane actions and Chern-Simons branes from the large N limit of SU(N) YM in flat backgrounds. SU(N)
reduced-quenched gauge theories have been shown by us to be related to Hadronic Bags and Chern Simons
Membranes in the large N limit [5,6,8] . This is reminiscent of the chiral model approaches to Self Dual
Gravity based on Self Dual Yang Mills theories [9] .

A different approach than the quenched-reduced approximation relating the large N limit and the
Eguchi-Schild action for strings and Matrix Membranes was undertaken by Zachos et al in [14, 50]. Most
recently extensions of Moyal-deformed hierarchies of soliton equations and noncommutative KP hierarchy
have been studied by Muller-Hoissen and Dimakis [53 ]. A Moyal deformation quantization of the Nahm
equations associated with a SU(2) YM theory yields the classical N →∞ limit of the SU(N) YM Nahm
equations directly, without ever having to use ∞×∞ matrices in the large N matrix models. By simply
taking the classical h̄ = 0 limit of the Moyal brackets, the ordinary Poisson bracket algebra associated with
area-preserving diffs algebra SU(∞) [ 10, 11] is automatically recovered.

This Moyal deformation approach also furnishes dynamical membranes as well [5] when one uses the
spatial quenching approximation to a line ( one dimension ) , instead of quenching to a point. In this
fashion we constructed what is called a QCD membrane. Basically, a Moyal quantization takes the operator
Âµ(xµ) into Aµ(xµ; q, p) and commutators into Moyal brackets. A dimensional reduction to one temporal
dimension ( quenching to a line ) brings us to functions of the form Aµ(t, q, p), which precisely corresponds
to the membrane coordinates Xµ(t, σ1, σ2) after identifying the σa variables with q, p. The h̄ = 0 limit turns
the Moyal bracket ( after dividing by ih̄ ) into a Poisson one. Upon the identification of h̄ = 2π/N , the
classical h̄ = 0 limit is tantamount to the N = ∞ limit and it is in this fashion how the large N SU(N)
matrix model bears a direct relation to the physics of membranes. The Moyal quantization explains this in
a straightforward fashion without having to use ∞×∞ matrices !

We will briefly review [5,6,8] how a 4D Yang-Mills theory reduced and quenched to a point, and supple-
mented by a topological theta term can be related through a Weyl-Wigner Groenowold Moyal ( WWGM)
quantization procedure to an open domain of the 3-dim disk D3. The bulk D3×R1 is the interior of a hadronic
bag and the (lateral ) boundary is the Chern-Simons world volume S2 × R1 of a membrane of topology S2

( a codimension two object ). Hence, we have an example where the world-volume of a boundary S2 × R1

is the lateral-boundary of the world-volume of an open 3-brane of topology D3 : ∂(D3 × R1) = S2 × R1

(setting asside the points at infinity). The boundary dynamics is not trivial despite the fact that there are
no transverse bulk dynamics associated with the interior of the bag. This is due to the fact that the 3-brane
is spacetime filling : 3 + 1 = 4 and therefore has no transverse physical degrees of freedom.

The reduced-quenched action to a point in D = 4 is:

S = −1
4
(
2π

a
)4

1
g2

Y M

Tr(FµνFµν).

Fµν = i[Dµ, Dν ]. (2.28)

Notice that the reduced-quenched action is defined at a ” point ” xo . The quenched approximation
is based essentially by replacing the field strengths by their commutator dropping the ordinary derivative
terms . For simplicity we have omitted the matrix SU(N) indices in (2-28). The theta term is:

Sθ = −θg2
Y M

16π2
(
2π

a
)4εµνρσTr(FµνFρσ). (2.29)

The WWGM quantization establishes a one-to-one correspondence between a linear operator Dµ =
∂µ + Aµ acting on the Hilbert space H of square integrable functions in RD and a smooth function Aµ(x, y)
which is the Fourier transform of Aµ(q, p). The latter quantity is obtained by evaluating the trace of the
Dµ = ∂µ + Aµ operator summing over the diagonal elements with respect to an orthonormal basis in the
Hilbert space. Under the WWGM correspondence , in the quenched-reduced approximation, the matrix
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product Aµ.Aν is mapped into the noncommutative Moyal star product of their symbols Aµ ∗ Aν and the
commutators are mapped into their Moyal brackets:

[Aµ, Aν ] ⇒ {Aµ,Aν}MB = Aµ ∗ Aν −Aν ∗ Aµ (2.30)

where the Moyal star product is defined as

( Aµ ∗ Aν )(ξ) ≡ exp [ (ih̄/2) ωab ∂(ξ1)
a ∂

(ξ2)
b ] Aµ(ξ1) Aν(ξ2)|ξ1=ξ2=ξ

with
ξ = (qi, pi) = (q1, q2, ....qn, p1, p2, ....pn) a, b = 1, 2, 3, .....2n. ()

The trace operation is replaced by an integration w.r.t the internal phase space variables , σ ≡ qi, pi

(
2π

N
)3 trace →

∫
d4σ. (2.31)

The WWGM deformation quantization of the quenched-reduced orginal actions is:

S∗ = −1
4
(
2π

a
)4

1
g2

Y M

∫
d4σFµν(σ) ∗ Fµν(σ).

Fµν = i{Aµ,Aν}MB . (2.32)

And the corresponding WWGM deformation of the theta term:

S∗θ = −θg2
Y M

16π2
(
2π

a
)4εµνρσ

∫
d4σFµν(σ) ∗ Fρσ(σ). (2.33)

Performing the following gauge fields/coordinate correspondence:

Aµ(σ) → (
2π

N
)1/4Xµ(σ)

Fµν(σ) → (
2π

N
)1/2{Xµ(σ), Xν(σ)}MB . (2.34)

and by setting the Moyal deformation parameter ”h̄” = 2π/N of the WWGM deformed action, to zero, by
taking the ”classical” h̄ = 0 limit, which is tantamount to taking the N = ∞ limit, one can see that the
quenched-reduced YM action in the large N limit will become the Dolan-Tchrakian action for a 3-brane [12],
in the conformal gauge, moving in a flat D = 4-dim background

S = − 1
4g2

Y M

(
2π

a
)4

∫
d4σ{Xµ, Xν}PB {Xρ, Xτ}PB ηµρηντ (2.35a)

due to the fact that noncommutative Moyal star products reduce to ordinary commutative pointwise products
and Moyal brackets collapse to the ordinary Poisson brackets in the h̄ = 2π/N = 0 limit ( large N limit ) as
follows :

lim h̄→0
1
ih̄
{Aµ,Aν}MB = {Aµ,Aν}PB . (2.3b)

It is essential to include the ih̄ factors in the denominator as shown.
The θ term S∗θ in the large N limit becomes the action for a Chern-Simons membrane whose world

volume is the 3-dim boundary of a 4-dim hadronic bag . For further details and more references of the
interplay between SU(N) Born-Infeld actions and Nambu-Gotos strings in the large N limit see [5,6] . A
quenched-reduction process to a line instead of quenching to a point allowed us to construct a Matrix model
of a QCD Membrane [5] via the Moyal quantization method of SU(N) YM. The resulting action [5] has
the same form as the Matrix model of Banks et al [ 49] . Other types of p-brane actions were also derived
from a Moyal quantization of the Generalized Yang-Mills models (GYM) described in [12] . A confinement

7



mechanism via the relationship between strings and the Wilson Loops associated with the large N limit
of SU(N) YM, following this Moyal quantization approach in the quenched-reduced approximation, was
attained in [48] and a Moyal deformation of gravity in AdSn × Sm backgrounds was presented in [48].

Having reviewed how brane actions can be obtained from the large N limit of quenched-reduced SU(N)
YM we proceed with the construction of new types of brane actions that are amenable to Moyal star product
deformations in a straightforward fashion. The reparametrization invariant action for a point particle moving
in a flat target spacetime:

S = −1
2

m

∫
dτe(τ)[− Ẋ2

e(τ)2
+ 1]. (2.36)

after introducing the auxiliary einbein field e = e(τ) and eliminating it from the action via its algebraic equa-
tions of motion and plugging its solution back into the original action gives the well known reparametrization
invariant action in terms of a (dimensionless) affine parameter τ along the particle’s worldline:

S = −m

∫
dτ

√
|ẊµẊµ|. (2.37)

Guendelman et al generalized such point particle action to the (super) string case [13] by introducing a
modified measure of integration, independent of a metric, involving auxiliary scalar fields. Next section we
will construct new types of p-brane actions [ 48 ] (in flat spacetime backgrounds) that will be amenable to
deformations of the Nambu-Poisson brackets, after making the following correspondence in eq-(2.37):

(dX/dτ)2 ↔ ({Xµ1 , Xµ2 , ......, Xµp+1}NPB)2.

m ↔ Tp.

∫
dτe(τ) ↔

∫
dp+1σ{φ1, φ2, ...., φp+1}. (2.38)

where the measure in the r.h.s of (2.38) is the one introduced by [13]
The new p-brane actions based on a modified-measure are given then by [48]

S = −1
2

∫
dp+1σ {φ1, φ2, ...., φp+1} [ −

T 2
p

(p + 1)!
{Xµ1 , Xµ2 , Xµ3 , ....., Xµp+1}2

{φ1, φ2, ...., φp+1}2
+ 1 ]. (2.39)

Notice that the new measure of integration has the same dimensions ( units ) as the p-brane tension. Such
worldvolume reparametrization invariant actions are just a new version of the reparametrization invariant
Schild actions for p-branes where the auxiliary determinant field e is replaced by the Jacobian measure
involving the auxiliary Guendelman scalars. Eliminating the Jacobian measure ( the auxiliary Guendelman
scalars ) from the action (2.39) via its equation of motion, and inserting its value back into the action (2.39),
yields the standard p-brane Dirac-Nambu-Goto actions given by the p+1-dim world volume spanned by the
p-brane in its motion across the target spacetime background.

Now we turn to the deformations of these new types of p-brane actions by deforming the Nambu-Poisson
brackets. When the dimension of the the worldvolume p+1 = 2n is even, one can recur to the star products
applied to the even-dimensional phase space formalism and deform these p-brane actions. After 30 years, the
construction of Quantum Nambu Mechanics has been recently settled by Curtright and Zachos [14 ] since it
remains unclear whether or not this problem can be solved by the Zariski Abelian deformation method [ 14 ]
due to the fact that it does not satisfy the three crucial properties of antisymmetry, Liebnitz derivation rule
and the fundamental identity that should be obeyed by any (quantum) bracket. Zachos and Curthright [14]
defined the quantum Nambu brackets (QNB) by the signed sum over all permutations of the star products
of functions of the even-dim phase space variables:

[A1, A2, ...., Ak]∗ =
∑

(−1)π(p)Ap1 ∗Ap2 ∗ .... ∗Apk
. (2.40)
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it is explicitly antisymmetric, by construction, however the Leibnitz derivation property and the fundamental
identity of the QNB are not explicitly manifest. Even-order Quantum Nambu Brackets ( QNB) can always
be resolved into sums of products of commutators, for instance [14]

[A,B,C, D]∗ = [A,B]∗ ∗ [C,D]∗ − [A,C]∗ ∗ [B,D]∗ − [A,D]∗ ∗ [C,B]∗+

[C,D]∗ ∗ [A,B]∗ − [B,D]∗ ∗ [A,C]∗ + [B,C]∗ ∗ [A,D]∗. (2.41)

with

[A,B]∗ ≡ A ∗B −B ∗A. (2.42)

In the case of a four-dim space of topology S2 × S2 (a four-volume can be written as wedge-products
of areas) it follows from the SU(2) Moyal-bracket algebra, and the crucial commutator-resolution of the
four-bracket given by (2.41), that the Liebnitz and the Fundamental Identity properties are indeed satisfied.

This procedure can be generalized to spaces of topology S2×S2× ....×S2. Hence, for even-dimensional
worldvolumes, p+1 = 2n, the deformation of the p-brane actions (2.39), in the preferred volume unimodular
gauge:

{φ1, φ2, ...., φp+1}NPB = 1. (2.43)

is attained by replacing:

({Xµ1 , Xµ2 , Xµ3 , ....., Xµp+1}NPB)2 →

[Xµ1 , Xµ2 , Xµ3 , ....., Xµp+1 ]∗ ∗ [Xµ1 , Xµ2 , Xµ3 , ....., Xµp+1 ]∗. (2.44)

Where the QNBs of the p-brane’s embedding spacetime coordinates Xµ(σ) in (4-10) is given explicitly
in terms of the signed-sum over all the permutations of the star products:

[Xµ1 , Xµ2 , Xµ3 , ....., Xµp+1 ]∗ ≡ Xµ1(σ) ∗Xµ2(σ) ∗Xµ3(σ) ∗ ..... ∗Xµp+1(σ) + permutations (2.45)

The even 2n-dim phase space variables required in the evaluation of the star products q1, p1; q2, p2; ...qn, pn

can be identified with the p + 1 = 2n worldvolume variables σ1, σ2, ....σ2n , respectively, of the p-brane.
The reason we chose to fix the unimodular gauge by choosing a preferred volume in (2.39), leaving

a residual symmetry of volume-preserving diffs, is to simplify the deformation procedure of the p-brane
action because the presence of denominators in the action (2.39) will complicate matters. Therefore, in the
unimodular gauge (2.43) , the deformation of the p-brane action (2.39) in flat backgrounds in terms of the
Quantum Nambu Brackets (QNB ), when p + 1 = 2n, is

S∗ = −1
2

∫
dp+1σ[−

T 2
p

(p + 1)!
1

(ih̄)p+1
([Xµ1 , Xµ2 , ....., Xµp+1 ]∗)

2 + 1]. {φ1, φ2, ...., φp+1}∗NPB = 1. (2.45)

In the classical limit h̄ = 0 it reduces to the classical action because the star products collapse to ordinary
pointwise commutative products and the QNBs divided by (ih̄)p+1 collapse to ordinary NPBs since the
denominator factors of (ih̄)p+1 in (2.45) are absorbed by the QNBs in the classical h̄ = 0 limit leading to
ordinary NPBs.

The deformed p-brane action when p+1 = 2n = even is invariant under deformations of a subalgebra of
the volume-preserving diffs since an even-dim volume can be written as wedge-products of area-forms. We
should notice, however, that there are volume-preserving diffs that do not always amount to area-preserving
diffs.

3. Field Theory and Branes in Clifford-space Backgrounds

In this section we will introduce the novel physics of branes in Clifford spaces.
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3.1 The Extended Relativity Theory in Clifford Spaces

The Extended Relativity theory in Clifford-spaces ( C-spaces ) is a natural extension of the ordinary
Relativity theory. For a comprehensive review we refer to [16 ] . A natural generalization of the notion of a
space-time interval in Minkwoski space to C-space is :

dX2 = dΩ2 + dxµdxµ + dxµνdxµν + ... (3.1)

The Clifford valued poly-vector:

X = XMEM = Ω 1 + xµγµ + xµνγµ ∧ γν + ...xµ1µ2....µDγµ1 ∧ γµ2 .... ∧ γµD
. (3.2a)

denotes the position of a polyparticle in a manifold, called Clifford space or C-space. The series of terms in
(2) terminates at a finite value depending on the dimension D. A Clifford algebra Cl(r, q) with r + q = D
has 2D basis elements. For simplicity, the gammas γµ correspond to a Clifford algebra associated with a flat
spacetime :

1/2{γµ, γν} = ηµν . (3.2b)

but in general one could extend this formulation to curved spacetimes with metric gµν . The multi-graded
basis elements EM of the Clifford-valued poly-vectors are

EM ≡ 1, γµ, γµ1 ∧ γµ2 , γµ1 ∧ γµ2 ∧ γµ3 , γµ1 ∧ γµ2 ∧ γµ3 ∧ ..... ∧ γµD . (3.2c)

It is convenient to order the collective M indices as µ1 < µ2 < µ3 < ...... < µD.
The connection to strings and p-branes can be seen as follows. In the case of a closed string (a 1-

loop) embedded in a target flat spacetime background of D-dimensions, one represents the projections of
the closed string (1-loop) onto the embedding spacetime coordinate-planes by the variables xµν . These
variables represent the respective areas enclosed by the projections of the closed string (1-loop) onto the
corresponding embedding spacetime planes. Similary, one can embed a closed membrane (a 2-loop) onto
a D-dim flat spacetime, where the projections given by the antisymmetric variables xµνρ represent the
corresponding volumes enclosed by the projections of the 2-loop along the hyperplanes of the flat target
spacetimr background.

This procedure can be carried to all closed p-branes ( p-loops ) where the values of p are p =
0, 1, 2, 3, ....D − 2. The p = 0 value represents the center of mass and the coordinates xµν , xµνρ.... have
been coined in the string-brane literature [32] as the holographic areas, volumes, ...projections of the nested
family of p-loops ( closed p-branes ) onto the embedding spacetime coordinate planes/hyperplanes.

The classification of Clifford algebras Cl(r, q) in D = r+q dimensions ( modulo 8 ) for different values of
the spacetime signature r, q is discussed, for example, in the book of Porteous [19]. All Clifford algebras can
be understood in terms of CL(8) and the CL(k) for k less than 8 due to the modulo 8 Periodicity theorem

CL(n) = CL(8)× Cl(n− 8)

. Cl(r, q) is a matrix algebra for even n = r + q or the sum of two matrix algebras for odd n = r + q.
Depending on the signature, the matrix algebras may be real, complex, or quaternionic. For furher details
we refer to [19] .

If we take the differential dX and compute the scalar product among two polyvectors < dX†dX >scalar

we obtain the C-space extension of the particles proper time in Minkwoski space. The symbol X+ denotes
the reversion operation and involves reversing the order of all the basis γµ elements in the expansion of X
. It is the analog of the transpose ( Hermitian ) conjugation. The C-space proper time associated with a
polyparticle motion is then :

< dX†dX >scalar= dΣ2 = (dΩ)2 + Λ2D−2dxµdxµ + Λ2D−4dxµνdxµν + .. (3.3)

Here we have explicitly introduced the Planck scale Λ since a length parameter is needed in order to tie
objects of different dimensionality together: 0-loops, 1-loops,..., p-loops. Einstein introduced the speed of
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light as a universal absolute invariant in order to “unite” space with time (to match units) in the Minkwoski
space interval:

ds2 = c2dt2 − dxidxi. (3.4)

A similar unification is needed here to “unite” objects of different dimensions, such as xµ, xµν , etc... The
Planck scale then emerges as another universal invariant in constructing an extended scale relativity theory
in C-spaces [16].

To continue along the same path, we consider the analog of Lorentz transformations in C-spaces which
transform a poly-vector X into another poly-vector X ′ given by X ′ = RXR−1 with

R = eθAEA = exp [(θ1 + θµγµ + θµ1µ2γµ1 ∧ γµ2 .....)]. (3.5)

and

R−1 = e−θAEA = exp [−(θ1 + θνγν + θν1ν2γν1 ∧ γν2 .....)]. (3.6)

where the theta parameters in (2.5, 2.6) are the components of the Clifford-value parameter Θ = θAEA :

θ; θµ; θµν ; .... (3.7)

they are the C-space version of the Lorentz rotations/boosts parameters.
Since a Clifford algebra admits a matrix representation, one can write the norm of a poly-vectors in

terms of the trace operation as: ||X||2 = Trace X2 Hence under C-space Lorentz transformation the norms
of poly-vectors behave like follows:

Trace X ′2 = Trace [RX2R−1] = Trace [RR−1X2] = Trace X2. (3.8)

These norms are invariant under C-space Lorentz transformations due to the cyclic property of the trace
operation and RR−1 = 1. Another way of rewriting the inner product of poly-vectors is by means of the
reversal operation that reverses the order of the Clifford basis generators : (γµ∧γν)† = γν ∧γµ, etc... Hence
the inner product can be rewritten as the scalar part of the geometric product < X†X >s . The analog of
an orthogonal matrix in Clifford spaces is R† = R−1 such that

< X ′†X ′ >s=< (R−1)†X†R†RXR−1 >s=< RX†XR−1 >s=< X†X >s= invariant. (3.9a)

This condition R† = R−1 , of course, will restrict the type of terms allowed inside the exponential defining
the rotor R in eq-(3-5) because the reversal of a p-vector obeys

(γµ1 ∧ γµ2 ..... ∧ γµp
)† = γµp

∧ γµp−1 ..... ∧ γµ2 ∧ γµ1 = (−1)p(p−1)/2γµ1 ∧ γµ2 ..... ∧ γµp
(3.9b)

Hence only those terms that change sign ( under the reversal operation ) are permitted in the exponential
defining R = exp[θAEA].

Another possibility is to complexify the C-space polyvector valued coordinates = Z = ZAEA =
XAEA + iY AEA and the boosts/rotation parameters θ allowing the unitarity condition Ū† = U−1 to hold
in the generalized Clifford unitary transformations Z ′ = UZU† associated with the complexified polyvector
Z = ZAEA such that the interval

< dZ̄† dZ >s = dΩ̄dΩ + dz̄µdzµ + dz̄µνdzµν + dz̄µνρdzµνρ + ..... (3.9c)

remains invariant ( upon setting the Planck scale Λ = 1 ).
The unitary condition Ū† = U−1 under the combined reversal and complex-conjugate operation will con-

strain the form of the complexified boosts/rotation parameters θA appearing in the rotor : U = exp[ θAEA ].
The theta parameters θA are either purely real or purely imaginary depending if the reversal EA

† = ±EA,
to ensure that an overall change of sign occurs in the terms θAEA inside the exponential defining U so that
Ū† = U−1 holds and the norm < Z̄†Z >s remains invariant under the analog of unitary transformations in

11



complexified C-spaces. These techniques are not very different from Penrose Twistor spaces. As far as we
know a Clifford-Twistor space construction of C-spaces has not been performed so far.

Another alternative is to define the polyrotations by R = exp (ΘAB [EA, EB ]) where the commuta-
tor [EA, EB ] = FABCEC is the C-space analog of the i[γµ, γν ] commutator which is the generator of the
Lorentz algebra, and the theta parameters ΘAB are the C-space analogs of the rotation/boots parame-
ters θµν . The diverse parameters ΘAB are purely real or purely imaginary depending whether the reversal
[EA, EB ]† = ±[EA, EB ] to ensure that R† = R−1 so that the scalar part < X†X >s remains invariant under
the transformations X ′ = RXR−1 . This last alternative seems to be more physical because a poly-rotation
should map the EA direction into the EB direction in C-spaces, hence the meaning of the generator [EA, EB ]
which extends the notion of the [γµ, γν ] Lorentz generator. We refer to the review [16] for further details
about the Extended Relativity Theory in Clifford spaces.

3.2 Brane Actions in Clifford-space Target Backgrounds

In the next sections we will develop further the construction of the generalization to C-spaces of string
and p-brane actions [16] as embeddings of world-manifolds onto target spacetime backgrounds which involves
the embeddings of polyvector-valued world-manifolds (of dimensions 2d) onto polyvector-valued target spaces
(of dimensions 2D), given by the Clifford-valued maps X = X(Σ) . These are maps from the Clifford-valued
world-manifold, parametrized by the polyvector-valued variables Σ, onto the Clifford-valued target space
parametrized by the polyvector-valued coordinates X. Physically one envisions these maps as taking an
n-dimensional simplicial cell (n-loop) of the world-manifold onto an m-dimensional simplicial cell (m-loop)
of the target C-space manifold ; i.e. maps from n-dim objects onto m-dim objects generalizing the old maps
of taking points onto points. One is basically dealing with a dimension-category of objects. The size of the
simplicial cells (p-loops), upon quantization of a generalized harmonic oscillator, for example, are given by
multiples of the Planck scale, in area, volume, hypervolume units or Clifford-bits.

In compact multi-index notation X = XMΓM one denotes for each one of the components of the target
space polyvector X:

XM ≡ Xµ1µ2....µr , µ1 < µ2 < ... < µr. 3.10

and for the world-manifold polyvector Σ = ΣAEA:

ΣA ≡ ξa1a2....as , a1 < a2 < ... < as. 3.11

where ΓM = (1, γµ, γµν , ...) and EA = (1, ea, eab, ...) form the basis of the target manifold and world manifold
Clifford algebra, respectively. It is very important to order the indices within each multi-index M and A as
shown above. The above Clifford-valued coordinates XM ,ΣA correspond to antisymmetric tensors of ranks
r, s in the target spacetime background and in the world-manifold, respectively.

There are many different ways to construct C-space brane actions which are on-shell equivalent to
the analogs of the Dirac-Nambu-Goto action for extended objects and that are given by the world-volume
spanned by the branes in their motion through the target spacetime background.

One of these actions is the Polyakov-Howe-Tucker action:

I =
T

2

∫
[DΣ]

√
|H|[HAB∂AXM∂BXNGMN + (2− 2d)]. 3.12

with the 2d-dim world-manifold measure:

[DΣ] = (dξ)(dξa)(dξa1a2)(dξa1a2a3)..... 3.13

Upon the algebraic elimination of the auxiliary world-manifold metric HAB from the action (3.12 ), via
the equations of motion, yields for its on-shell solution the pullback of the target C-space metric onto the
C-space world-manifold:

HAB(on− shell) = GAB = ∂AXM∂BXNGMN 3.14
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upon inserting back the on-shell solutions (3.14) into (3.12) gives the Dirac-Nambu-Goto action for the C-
space branes directly in terms of the C-space determinant, or measure, of the induced C-space world-manifold
metric GAB , as a result of the embedding:

I = T

∫
[DΣ]

√
Det (∂AXM∂BXNGMN ). 3.15

However in C-space, the Polyakov-Howe-Tucker action admits an even further generalization that is
comprised of two terms S1 + S2. The first term is:

S1 =
∫

[DΣ]|E|EAEB∂AXM∂BXNΓMΓN . 3.16

Notice that this is a generalized action which is written in terms of the C-space coordinates XM (Σ)
and the C-space analog of the target-spacetime vielbein/frame one-forms em = em

µdxµ given by the ΓM

variables. The auxiliary world-manifold vielbein variables ea, are given now by the Clifford-valued frame EA

variables.
In the conventional Polyakov-Howe-Tucker action, the auxiliary world-manifold metric hab associated

with the standard p-brane actions is given by the usual scalar product of the frame vectors ea.eb = ea
µeb

νgµν =
hab. Hence, the C-space world-manifold metric HAB appearing in (3.12 ) is given by scalar product
< (EA)†EB >0= HAB , where (EA)† denotes the reversal operation of EA which requires reversing the
orderering of the vectors present in the Clifford aggregate EA.

Notice, however, that the form of the action ( 3.12 ) is far more general than the action in In particular,
the S1 itself can be decomposed futher into two additional pieces by rewriting the Clifford product of two
basis elements into a symmetric plus an antisymmetric piece, respectively:

EAEB =
1
2
{EA, EB}+

1
2
[EA, EB ]. 3.17

ΓMΓN =
1
2
{ΓM ,ΓN}+

1
2
[ΓM ,ΓN ]. 3.18

In this fashion, the S1 component has two kinds of terms. The first term containing the symmetric
combination is just the analog of the standard non-linear sigma model action, and the second term is a
Wess-Zumino-like term, containing the antisymmetric combination [17] .

To extract the non-linear sigma model part of the generalized action above, we may simply take the
scalar product of the vielbein-variables as follows:

(S1)sigma =
T

2

∫
[DΣ]|E| < (EA∂AXMΓM )†(EB∂BXNΓN ) >0 . 3.19

where once again we have made use of the reversal operation (the analog of the hermitian adjoint) before
contracting multi-indices. In this fashion we recover again the Clifford-scalar valued action given by (3.19).

Actions like the ones presented here in terms of derivatives with respect to quantities with multi-
indices can be mapped to actions involving higher derivatives, in the same fashion that the C-space scalar
curvature, the analog of the Einstein-Hilbert action, could be recast as a higher derivative gravity with
torsion (reviewed in sec. 4). Higher derivatives actions are also related to theories of Higher spin fields
Vasiliev and W -geometry, W -algebras [20]

The S2 (scalar) component of the C-space brane action is the usual cosmological constant term given by
the C-space determinant |E| = det(HAB) based on the scalar part of the geometric product < (EA)†EB >0=
HAB

S2 =
T

2

∫
[DΣ]|E|(2− 2d) 3.20

where the C-space determinant |E| =
√
|det(HAB)| of the 2d × 2d generalized world-manifold metric HAB

is given by:

det(HAB) =
1

(2d)!
εA1A2....A2d

εB1B2....B2d
HA1B1HA2B2 ....HA2dB2d . 3.21
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The εA1A2....A2d
is the totally antisymmetric tensor density in C-space. In section 6 we will add some

concluding remarks pertaining the quantization program of C-space branes.

3.3 Field Theory and Brane-Wave Duality in Clifford Spaces

The main result of this section is to discuss the implications of the correspondence

Fµ1µ2...µp+1 Fµ1µ2...µp+1 ↔ { Xµ1 , Xµ2 , .....Xµp+1 }NPB { Xµ1 , Xµ2 , .....Xµp+1 }NPB . (3.22a)

between composite antisymmetric tensor fields and the Nambu-Poisson Brackets ( NPB ) associated with
p-brane coordiantes Xµ(σa) and its generalization to Clifford-spaces where

F = dA = εa1a2....ap+1∂µ1φ
a1 ........∂µp+1φ

ap+1 . (3.22b)

the rank p + 1 composite field strength is given in terms of p + 1 scalar fields φ1(x), φ2(x)....φp+1(x) .

F = dA = εa1a2....ap+1∂µ1φ
a1 .........∂µp+1φ

ap+1 ↔ { Xµ1 , Xµ2 , .....Xµp+1 }NPB =

εσ1σ2....σp+1 (∂σ1Xµ1)(∂σ2Xµ2)............(∂σp+1Xµp+1). (3.23)

Notice that

{ Xµ1 , Xµ2 , .....Xµp+1 }NPB 6=
∂Xµ1µ2.....µp+1

∂σa1a2......ap+1
. (3.24)

Hence, very strong constraints would be imposed in the C-space dynamics of C-space branes if one were to
set :

{ Xµ1 , Xµ2 , .....Xµp+1 }NPB ∼
∂Xµ1µ2.....µp+1

∂σa1a2......ap+1
(3.25)

The C-space target background coordinates admit the expansion :

X(Σ) = XM (Σ)EM = Ω(Σ) 1 + Xµ(Σ)γµ + Xµν(Σ)γµ ∧ γν + Xµνρ(Σ)γµ ∧ γν ∧ γρ + ........ (3.26)

whereas the C-space brane world-volume coordinates admit the expansion :

Σ = ΣAEA = σ 1 + σaγa + σabγa ∧ γb + σabcγa ∧ γb ∧ γc...... (3.27)

The kinetic terms of a C-space scalar field action is

S =
∫

[DX] GMN (∂Mϕ) (∂Nϕ). (3.28)

where ϕ is the scalar component of the Clifford-valued field Φ that is a section of the Clifford-polyvector-
bundle whose structure group is the generalization of the GL(dim F, R) group acting on the fiber F; namely
it is the Clifford group acting on the polyvector-valued-fiber and generated by the basis elements EA . A
special case of a Clifford-polyvector-valued bundle is the Clifford-tangent-bundle when the fiber F has the
same dimension as the base manifold M . Hence, the multi-graded components of the section Φ of the
Clifford-polyvector-bundle are

Φ(X) = ΦAEA = ϕ(X) 1 + Φa(X)γa + Φab(X)γa ∧ γb + .... (3.29)

and the Clifford-gauge-covariant derivative is

DMΦA = ∂MΦA + AA
BM ΦB
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where A is the conection associated with the Clifford-polyvector-bundle. A natural action associated with
the kinetic terms of the Clifford-analog of a massless field Φ is

S =
∫

[DX] GMNDMΦADNΦBΥAB =
∫

[DX] GMN (∂MΦA +AA
CMΦC) (∂NΦB +AB

DNΦD)ΥAB . (3.30)

The action above in the case that Φ is a section of the Clifford-Tangent-Bundle can be rewritten as :

S =
∫

[DX] < (DΦ)†(DΦ) >scalar=
∫

[DX] < (EMDMΦAEA)†(ENDNΦBEB) >scalar . (3.31)

where the frame EA of the Clifford-Tangent-Bundle is covariantly constant DMEA = 0 and

GMN =
1
2

< (EM )†EN + EN (EM )† >scalar . ΥAB =
1
2

< (EA)†EB + EB(EA)† >scalar . (3.32)

The Geometric product among the Clifford basis elements is multi-graded since it contains objects of
different grade given

(EM )†EN = {< (EM )†EN >r+s, < (EM )†EN >r+s−2, ..... < (EM )†EN >|r−s| }. (3.33)

when r = s , the scalar part coincides with

< (EM )†EN >|r−s|=< EN (EM )† >|r−s|=< (EM )†EN >0=< EN (EM )† >0 . (3.34)

∂MΦA = { ∂ΦA

∂xµ
,

∂ΦA

∂xµν
,

∂ΦA

∂xµνρ
, .... }. (3.35)

where :
∂ΦA

∂xµ
= { ∂ϕ

∂xµ
,

∂Φa

∂xµ
,

∂Φab

∂xµ
,

∂Φabc

∂xµ
, .... }. (3.36)

∂ΦA

∂xµν
= { ∂ϕ

∂xµν
,

∂Φa

∂xµν
,

∂Φab

∂xµν
,

∂Φabc

∂xµν
, .... }. (3.37)

∂ΦA

∂xµνρ
= { ∂ϕ

∂xµνρ
,

∂Φa

∂xµνρ
,

∂Φab

∂xµνρ
,

∂Φabc

∂xµνρ
, .... }. (3.38)

The measure in the target 2D-dim C-space background is :

[DX] = [dΩ] [Π dxµ] [Π dxµν ] [Π dxµνρ].... (3.39)

while the measure in the Clifford-valued 2d-dim world-volume of the C-space brane is :

[DΣ] = [dσ] [Π dσa] [Π dσab] [Π dσabc]... (3.40)

Given a 2d-multiplet of Clifford-scalars

ϕI = ϕ1, ϕ2, ϕ3, ........, ϕ2d

. (3.41)

that defines the CATF in Clifford-spaces, in the same way that one obtained p-brane solutions to the CATF
of volume-preserving diffs in section 2.1 one can find C-space brane solutions to the Clifford extensions
of the ordinary CATF , thus the Brane/Composite-Antisymmetric-Tensor-Field Theory (CATF) duality in
C-spaces is realized in terms of C-space brane actions as follows

∂MϕI ↔ ∂ΣI XM . (3.42)
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so that

FM1M2......M2d
[ ϕ1, ϕ2, ....., ϕ2d

] ≡ εI1I2.....I2d
(∂M1ϕ

I1)(∂M2ϕ
I2).....(∂M2d

ϕI2d ) ↔

εA1A2.....A2d (∂ΣA1 XM1)(∂ΣA2 XM2).....(∂
Σ

A
2d XM2d ) ≡ { XM1 , XM2 , ....., XM2d}CNPB . (3.43a)

The following identity holds expressing the determinant of the induced metric GAB resulting from the
embedding of the 2d-dim world-volume of the C-space Brane into the 2D-dim target C-space background

det [ GAB ] = det [ GMN ∂AXM ∂BXN ] =

1
(2d)!

{ XM1 , XM2 , ....., XM2d
}CNPB { XM1 , XM2 , ....., XM2d}CNPB . (3.43b)

where XM are the multi-graded components of the target 2D-dim C-space background and ΣA are the
multi-graded components of the Clifford-valued 2d-dim world-manifold associated with the C-space brane.

The Clifford-analog of the brane-field duality relationship [7] discussed in section 2.1 is√
[ FM1M2......M2d

( ϕ1, ϕ2, ....., ϕ2d) ]2 ↔
√

[ { XM1 , XM2 , ....., XM2d}CNPB ]2. (3.44)

The C-space branes actions can be explicitly written in terms of the Clifford Nambu-Poisson Brackets
( CNPB)

S = T
∫

[DΣ]

√
1

(2d)!
[ εA1A2.....A2d (∂ΣA1 XM1)(∂ΣA2 XM2).....(∂

Σ
A

2d XM2d ) ]2 =

T
∫

[DΣ]

√
1

(2d)!
[ { XM1 , XM2 , ....., XM2d

}CNPB{ XM1 , XM2 , ....., XM2d}CNPB ]. (3.45)

When d = D , all the M indices become saturated since the C-space brane is C-space filling and there
is one term only inside the square-root, hence the square root simplifies giving the standard Jacobian of the
change of variables from XM to the ΣA described by the Nambu-Poisson Bracket :

S (d = D) = T
∫

[DΣ] { XM1 , XM2 , ....., XM2d
}CNPB =

∫
[DX]. (3.46)

where the measures [DΣ] and [DX] were given in eqs-(3.39, 3.40). When D > d, the number of terms inside
the square root in the action (3.45 ) is given by the binomial coefficient C2D

2d giving the number of possible
independent combinations of 2d elements among a collection of 2D elements.

In section 2. 2 we have shown why the heuristic duality between p-branes and composite-antisymmetric
tensor field theories of volume-preserving diffs in section 2.1 could be me made more precise in terms of the
large N limit of SU(N) Yang-Mills theories via the Moyal deformation procedure, that could be extended to
Generalized Yang-Mills theories ( GYM ). A Moyal deformation of GYM theories in the quenched-reduced
approximation has been shown to yield p-brane actions [ 5 ] in the case that p + 1 = 2n = 4k . When the
group is compact like SO(2n) and when 2n = 4k = D the GYM Lagrangians in RD are defined [12]

L = trace ( Fµ1µ2....µ2n )2 = trace ( F i1i2....i2n
µ1µ2....µ2n

Σi1i2....i2n )2. (3.47a)

The antisymmetrization of indices is performed with respect to the totally antisymmetrized product

Σi1i2i3i4........i2n−1i2n
= Σi1i2Σi3i4 ......Σi2n−1i2n

+ permutations. (3.47b)

on the indices i1i2.....i2n of the products of the 22k−1 × 22k−1 matrices Σij corresponding to the chiral
representation of SO(4k). This is just the higher dimensional version of the decomposition of SO(4) into
SU(2)× SU(2).
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A Moyal deformation quantization procedure of the GYM actions [12] , in the quenched-reduced ap-
proximation, in the classical limit h̄ → 0 yields upon using the gauge-field/ coordinate correspondence [5,6]
Aµ ↔ Xµ and the trace ↔

∫
correspondence the following

Fµ1µ2....µ2n
→ { Xµ1 , Xµ2 } { Xµ3 , Xµ4 } .....{ Xµ2n−1 , Xµ2n

} + permutations. (3.48)

and
trace [ Fµ1µ2....µ2n ]2 →

∫
[d4nσ] [ Fµ1µ2....µ2n(σ1, σ2, ....σ2n) ]2. (3.49)

The Dolan-Tchrakian p-branes Lagrangians in flat backgrounds [12] when the conformal gauge is chosen
[5] have a similar form as eq-(3.49) after using the expression eq-(3.48) when commutators are replaced by
brackets. The integration domain is now p + 1 = 4n-dimensional

∫
d4nσ and the Poisson brackets must

be taken with respect to an enlarged phase space of variables q1, p1, .......q2n, p2n (since the new domain
of integration is now 4n-dimensional) instead of the variables q1, p1, ......qn, pn ( 2n-dimensional ). See the
results of section 2.2 for an example.

Eguchi-Schild types of actions are different than Dolan-Tchrakian actions and involve an integration
domain that is 2n-dimensional over the variables q1, p1, ......qn, pn When the world-volume of the p-brane is
even dimensional 2n one can decompose the Nambu-Poisson-Bracket ( NPB ) as sums of antisymmetrized
products of ordinary Poisson brackets since an even 2n-volume form can be rewritten as

Ω(2n) = ω(2) ∧ ω(2)....... ∧ ω(2). (3.50)

Hence the NPB can be decomposed as

{ Xµ1 , Xµ2 , ....., Xµ2n
}NPB =

{ Xµ1 , Xµ2 } { Xµ3 , Xµ4 } .....{ Xµ2n−1 , Xµ2n } + permutations. (3.51)

trace [ Fµ1µ2....µ2n
]2 →

∫
[d2nσ] [ Fµ1µ2....µ2n

(σ1, σ2, ....σ2n) ]2 =∫
[d2nσ] [ { Xµ1 , Xµ2 , ....., Xµ2n

}NPB ]2. (3.52)

this last eq-(3.52) is just the p-brane version of the Eguchi-Schild string action ( area-squared ) that is only
area-preserving diffs invariant. One can fully covariantize these volume-preserving diffs invariant p-brane
actions (3.52) by recurring to the auxiliary fields of [13] as we discussed in eq-(2.39) of section 2.2 when
we constructed the new fully reparametrization invariant p-brane actions and/or by introducing an auxiliary
metric as it is customary done in the covariant form of Eguchi-Schild actions.

In the next sections we will construct the generalized Noncommutative Yang’s spacetime algebra ex-
tended to C-spaces, which in turn, will allow us to define a Moyal-Yang star product deformations of
Generalized Yang-Mills in C-spaces and establish the relationship with branes in C-spaces . In 6 we will
perform the Moyal-Yang deformations of C-space brane models described by the actions

S = T
∫

[DΣ]
√

[ { XM1 , XM2 , ....., XM2d
}CNPB ]2. (3.53)

and the new p-brane actions studied in section 2.2 in terms of a family of scalar fields which define new
integration measures in eq-(2.39) .

4. The Noncommutative Yang’s Spacetime algebra from Clifford algebras

Prior to constructing the Moyal deformations (based on the novel Moyal-Yang star products with an
UV-IR cutoff ) of the brane actions in Clifford-space target backgrounds discussed in the previous section, it
is essential to discuss in detail the interplay between the Noncommutative Yang’s Spacetime algebra in 4D
involving a lower and upper length scale and Clifford algebras.
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The main result of this section is to show that there is a subalgebra of the C-space operator-valued
coordinates which is isomorphic to the Noncommutative Yang’s spacetime algebra [21] . This, in conjunction
to the discrete spectrum of angular momentum, leads to the discrete area-quantization in multiples of Planck
areas. Namely, the 4D Yang’s Noncommutative space-time ( YNST ) algebra [21] ( written in terms of 8D
phase-space coordinates ) is isomorphic to the 15-dimensional subalgebra of the C-space operator-valued
coordinates associated with the holographic areas of C-space. This connection between Yang’s algebra and
the 6D Clifford algebra is possible because the 8D phase-space coordinates xµ, pµ ( associated to a 4D
spacetime ) have a one-to-one correspondence to the X̂µ5; X̂µ6 holographic area-coordinates of the C-space
(corresponding to the 6D Clifford algebra).

Furhermore, Tanaka [23] has shown that the Yang’s algebra [ 21] ( with 15 generators ) is related to
the 4D conformal algebra ( 15 generators ) which in turn is isomorphic to a subalgebra of the 4D Clifford
algebra because it is known that the 15 generators of the 4D conformal algebra SO(4, 2) can be explicitly
realized in terms of the 4D Clifford algebra as [16] :

Pµ = Mµ5 +Mµ6 = γµ(1 + γ5). Kµ = Mµ5 −Mµ6 = γµ(1− γ5). D = γ5. Mµν = i[γµ, γν ]. (4.1)

where the Clifford algebra generators :

1. γ0 ∧ γ1 ∧ γ2 ∧ γ3 = γ5. (4.2)

account for the extra two directions within the C-space associated with the 4D Cliffiord-algebra leaving
effectively 4 + 2 = 6 degrees of freedom that match the degrees of freedom of a 6D spacetime [16] . The
relevance of [ 16 ] is that it was not necessary to work directly in 6D to find a realization of the 4D conformal
algebra SO(4, 2) . It was possible to attain this by recurring solely to the 4D Clifford algebra as shown in
eq-( 4.1 ) .

One can also view the 4D conformal algebra SO(4, 2) realized in terms of a 15-dim subalgebra of the
6D Clifford algebra. The bivector holographic area-coordinates Xµν couple to the basis generators Γµ ∧ Γν .
The bivector coordinates Xµ5 couple to the basis generators Γµ ∧ Γ5 where now the Γ5 is another generator
of the 6D Clifford algebra and must not be confused with the usual γ5 defined by eq-(4.2) . The bivector
coordinates Xµ6 couple to the basis generators Γµ ∧ Γ6. The bivector coordinate X56 couples to the basis
generator Γ5 ∧ Γ6.

In view of this fact that these bivector holographic area-coordinates in 6D couple to the bivectors basis
elements Γµ ∧Γν , ... , and whose algebra is in turn isomorphic to the 4D conformal algebra SO(4, 2) via the
realization in terms of the 6D angular momentum generators ( and boosts generators ) Mµν ∼ [Γµ,Γν ] ,
Mµ5 ∼ [Γµ,Γ5],.... we shall define the holographic area coordinates algebra in C-space as the dual algebra
to the SO(4, 2) conformal algebra (realized in terms of the 6D angular momentum, boosts, generators in
terms of a 6D Clifford algebra generators as shown )

Notice that the conformal boosts Kµ and the translations Pµ in eq-( 4.1 ) do commute [Pµ, P ν ] =
[Kµ,Kν ] = 0 and for this reason we shall assign the appropriate correspondence pµ ↔ Xµ6 and xµ ↔ Xµ5,
up to numerical factors ( lengths ) to match dimensions, in order to attain noncommuting variables xµ, pµ .

Therefore, one has two possible routes to relate Yang’s algebra with Clifford algebras. One can relate
Yang’s algebra with the holographic area-coordinates algebra in the C-space associated to a 6D Clifford
algebra and/or to the subalgebra of a 4D Clifford algebra via the realization of the conformal algebra
SO(4, 2) in terms of the 4D Clifford algebra generators 1, γ5, γµ as shown in eq-(4.1).

Since the relation between the 4D conformal and Yang’s algebra and the implications for the AdS/CFT ,
dS/CFT duality have been discussed before by Tanaka [23], in this work we shall establish the following
correspondence between the C-space holographic-area coordinates algebra ( associated to the 6D Clifford
algebra ) and the Yang’s spacetime algebra via the angular momentum generators in 6D as follows :

iM̂µν = ih̄Σµν ↔ i
h̄

λ2
X̂µν . (4.3)

iM̂56 = ih̄Σ56 ↔ i
h̄

λ2
X̂56. (4.4)
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iλ2Σµ5 = iλx̂µ ↔ iX̂µ5. (4.5)

iλ2Σµ6 = iλ2 R

h̄
p̂µ ↔ iX̂µ6. (4.6)

With Hermitian ( bivector ) operator- coordinates :

(X̂µν)† = X̂µν . (X̂µ5)† = X̂µ5. (X̂µ6)† = X̂µ6. (X̂56)† = X̂56. (4.7)

The algebra generators can be realized as :

X̂µν = iλ2(Xµ ∂

∂Xν
−Xν ∂

∂Xµ
). (4.8a)

X̂µ5 = iλ2(Xµ ∂

∂X5
−X5 ∂

∂Xµ
). (4.8b)

X̂µ6 = iλ2(Xµ ∂

∂X6
−X6 ∂

∂Xµ
). (4.8c)

X̂56 = iλ2(X5 ∂

∂X6
−X6 ∂

∂X5
). (4.8d)

where the angular momentum generators are defined as usual :

M̂µν ≡ h̄Σµν . M̂µ5 ≡ h̄Σµ5. M̂µ6 ≡ h̄Σµ6. M̂56 ≡ h̄Σ56. (4.8e)

which have a one-to-one correspondence to the Yang Noncommutative space-time ( YNST ) algebra
generators in 4D. These generators ( angular momentum differential operators ) act on the coordinates of a
5D hyperboloid AdS5 space defined by :

−(x1)2 + (x2)2 + (x3)2 + (x4)2 + (x5)2 − (x6)2 = R2. (4.9a)

where R is the throat size of the hyperboloid. This introduces an extra and crucial scale in addition to the
Planck scale. Notice that η55 = +1. η66 = −1. 5D de Sitter space dS5 has the topology of S4 × R1 .
Whereas AdS5 space has the topology of R4×S1 and its conformal ( projective ) boundary at infinity has a
topology S3 × S1 . Whereas the Euclideanized Anti de Sitter space AdS5 can be represented geometrically
as two disconnected branches ( sheets ) of a 5D hyperboloid embedded in 6D . The topology of these
two disconnected branches is that of a 5D disc and the metric is the Lobachevsky one of constant negative
curvature. The conformal group SO(4, 2) leaves the 4D lightcone at infinity invariant.

Thus, Euclideanized AdS5 is defined by a Wick rotation of the x6 coordinate giving :

−(x1)2 + (x2)2 + (x3)2 + (x4)2 + (x5)2 + (x6)2 = R2. (4.9b)

whereas de Sitter space dS5 with the topology of a pseudo-sphere S4 × R1 , and positive constant scalar
curvature is defined by :

−(x1)2 + (x2)2 + (x3)2 + (x4)2 + (x5)2 + (x6)2 = −R2. (4.9c)

( Notice that Tanaka [23] uses different conventions than ours in his definition of the 5D hyperboloids. He
has a sign change from R2 to −R2 because he introduces i factors in iR ) .

After this discussion and upon a direct use of the correspondence in eqs-(4.3, 4.4, 4.5, 4.6 ...) yields the
exchange algebra between the position and momentum coordinates :

[X̂µ6, X̂56] = −iλ2η66X̂µ5 ↔ [
λ2R

h̄
p̂µ, λ2Σ56] = −iλ2η66λx̂µ. (4.10)
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from which we can deduce that :
[p̂µ, Σ56] = −iη66 h̄

λR
x̂µ. (4.11)

and after using the definition N = (λ/R)Σ56 one has the exchange algebra commutator of pµ and N of the
Yang’s spacetime algebra :

[p̂µ,N ] = −iη66 h̄

R2
x̂µ. (4.12)

The other commutator is :

[X̂µ5, X̂56] = −[X̂µ5, X̂65] = iη55λ2X̂µ6 ↔ [λx̂µ, λ2Σ56] = iη55λ2λ2 R

h̄
p̂µ. (4.13)

from which we can deduce that :
[x̂µ,Σ56] = iη55 λR

h̄
p̂µ. (4.14)

and after using the definition N = (λ/R)Σ56 one has the exchange algebra commutator of xµ and N of the
Yang’s spacetime algebra :

[x̂µ,N ] = iη55 λ2

h̄
p̂µ. (4.15)

The other relevant holographic area-coordinates commutators in C-space are :

[X̂µ5, X̂ν5] = −iη55λ2X̂µν ↔ [x̂µ, x̂ν ] = −iη55λ2Σµν . (4.16)

after using the representation of the C-space operator holographic area-coordinates :

iX̂µν ↔ iλ2 1
h̄
Mµν = iλ2Σµν iX̂56 ↔ iλ2Σ56. (4.17)

where we appropriately introduced the Planck scale λ as one should to match units.
From the correspondence :

p̂µ =
h̄

R
Σµ6 ↔ h̄

R

1
λ2

X̂µ6. (4.18)

one can obtain nonvanishing momentum commutator :

[X̂µ6, X̂ν6] = −iη66λ2X̂µν ↔ [p̂µ, p̂ν ] = −iη66 h̄2

R2
Σµν . (4.19)

The signatures for AdS5 space are η55 = +1; η66 = −1 and for the Euclideanized AdS5 space are η55 = +1
and η66 = +1. Yang’s space-time algebra corresponds to the latter case.

Finally, the modified Heisenberg algebra can be read from the following C-space commutators :

[X̂µ5, X̂ν6] = iηµνλ2X̂56 ↔

[x̂µ, p̂µ] = ih̄ηµν λ

R
Σ56 = ih̄ηµνN . (4.20)

Eqs-(4.12, 4.15, 4.16, 4.19, 4.20 ) are the defining relations of Yang’s Noncommutative 4D spacetime algebra
involving the 8D phase-space variables. These commutators obey the Jacobi identities. There are other
commutation relations like [Mµν , xρ], [Mµν , pρ] that we did not write down. These are just the well known
rotations ( boosts ) of the coordinates and momenta.

When λ → 0 and R → ∞ one recovers the ordinary commutative spacetime algebra. The Snyder
algebra [ 22 ] is recovered by setting R →∞ while leaving λ intact. To recover the ordinary Weyl-Heisenberg
algebra is more subtle. Tanaka [23 ] has shown the the spectrum of the operator N = (λ/R)Σ56 is discrete
given by n(λ/R) . This is not suprising since the angular momentum generator M56 associated with the
Euclideanized AdS5 space is a rotation in the now compact x5 − x6 directions. This is not the case in
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AdS5 space since η66 = −1 and this timelike direction is no longer compact. Rotations involving timelike
directions are equivalent to noncompact boosts with a continuous spectrum.

In order to recover the standard Weyl-Heisenberg algebra from Yang’s Noncommutative spacetime
algebra, and the standard uncertainty relations ∆x∆p ≥ h̄ with the ordinary h̄ term , rather than the nh̄
term, one needs to take the limit n →∞ limit in such a way that the net combination of n λ

R → 1.
This can be attained when one takes the double scaling limit of the quantities as follows :

λ → 0. R →∞. λR → L2.

limn→∞ n
λ

R
= n

λ2

λR
=

nλ2

L2
→ 1. (4.21)

From eq-(4.21) one learns then that :

nλ2 = λR = L2. (4.22)

The spectrum n corresponds to the quantization of the angular momentum operator in the x5−x6 direction
(after embedding the 5D hyperboloid of throat size R onto 6D ) . Tanaka [23] has shown why there is a
discrete spectra for the spatial coordinates and spatial momenta in Yang’s spacetime algebra that yields a
minimum length λ ( ultraviolet cutoff in energy ) and a minimum momentum p = h̄/R ( maximal length R
, infrared cutoff ) . The energy and temporal coordinates had a continous spectrum.

The physical interpretation of the double-scaling limit of eq-(4.21, 4.22) is that the the area L2 = λR
becomes now quantized in units of the Planck area λ2 as L2 = nλ2 . Thus the quantization of the area ( via
the double scaling limit ) L2 = λR = nλ2 is a result of the discrete angular momentum spectrum in the x5−x6

directions of the Yang’s Noncommutative spacetime algebra when it is realized by ( angular momentum )
differential operators acting on the Euclideanized AdS5 space ( two branches of a 5D hyperboloid embedded
in 6D ). A general interplay between quantum of areas and quantum of angular momentum, for arbitrary
values of spin, in terms of the square root of the Casimir A ∼ λ2

√
j(j + 1), has been obtained a while ago in

Loop Quantum Gravity by using spin-networks techniques and highly technical area-operator regularization
procedures [24] . The advantage of this work is that we have arrived at similar ( not identical ) area-
quantization conclusions in terms of minimal Planck areas and a discrete angular momentum spectrum n via
the double scaling limit based on Clifford algebraic methods (C-space holographic area-coordinates). This
is not surprising since the norm-squared of the holographic Area operator has a correspondence with the
quadratic Casimir ΣABΣAB of the conformal algebra SO(4, 2) ( SO(5, 1) in the Euclideanized AdS5 case ).
This quadratic Casimir must not be confused with the SU(2) Casimir J2 with eigenvalues j(j + 1) . Hence,
the correspondence given by eqs-(4.1-4.8) gives A2 ↔ λ4ΣABΣAB .

In [25] we have shown why AdS4 gravity with a topological term; i.e. an Einstein-Hilbert action with
a cosmological constant plus Gauss-Bonnet terms can be obtained from the vacuum state of a BF-Chern-
Simons-Higgs theory without introducing by hand the zero torsion condition imposed in the MacDowell-
Mansouri-Chamsedine-West construction. One of the most salient features of [25] was that a geometric mean
relationship was found among the cosmological constant ρvacuum , the Planck area λ2 and the AdS4 throat
size squared R2 given by (ρv)−1 = (λ)2(R2). A similar geometric mean relation is also obeyed by the condition
λR = L2(= nλ2) in the double scaling limit of Yang’s algebra which suggests to identify the cosmological
constant as ρvacuum = L−4 . Notice that by setting the infrared scale R equal to the Hubble radius horizon
RH and λ equal to the Planck scale one reproduces precisely the observed value of the vacuum energy
density ! [25] : ρ ∼ L−2

PlanckR−2
H = L−4

P (LPlanck/RH)2 ∼ 10−122M4
Planck . This geometric mean condition

remains to be investigated further. In particular, we presented the preliminary steps how to construct a
Noncommutative Gravity via the Vasiliev-Moyal star products deformations of the SO(4, 2) algebra used in
the study of higher conformal massless spin theories in AdS spaces by taking the inverse-throat size 1/R as
a deformation parameter of the SO(4, 2) algebra [ 20] . A new realization of holography and the geometrical
intepretation of AdS2n spaces in terms of SO(2n− 1, 2) instantons was studied in [27] .

Since the expectation value
λ2

L2
< n|Σ56|n >=

nλ2

L2
= 1. (4.23)
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in the double-scaling limit one recovers the standard Heisenberg uncertainty relations :

∆xµ∆pµ ≥ 1
2
|| < [xµ, pµ] > || = h̄. (4.24)

and the commutators become in the double-scaling limit:

[p̂µ, Σ56] = −iη66 h̄

L2
x̂µ. [p̂µ, N ] = 0. (4.25)

[x̂µ, Σ56] = −iη55 L2

h̄
p̂µ. [x̂µ, N ] = 0. (4.26)

[x̂µ, x̂ν ] = [p̂µ, p̂ν ] = 0. [x̂µ, p̂µ] = ih̄ηµν λ2

L2
Σ56 → ih̄ηµν1. (4.27)

Rigorously speaking, when λ → 0 the last commutator [xµ, pν ] → 0 since the generator Σ56 is well defined.
It is the large n limit of the spectrum < n|Σ56|n > that reproduces the ordinary Heisenberg uncertainty
relations.

5 The Generalized Noncommutative Yang’s Algebra In Clifford Spaces

Having studied in detail the Yang’s Noncommutative spacetime algebra in section 4 we must generalize
such algebra to include multivector-valued coordinates and momenta of arbitrary grade. This will be the final
step before one can proceed with the novel Moyal-Yang star products deformations of branes in Clifford-space
target backgrounds ( involving the UV-IR cutoffs ) that is the final goal of this work.

In order to generalize Yang’s Noncommutative spacetime algebra to the full Clifford space associated
with the 4-dim real Clifford algebra Cl(4, R) one needs to enlarge the number of dimensions from D = 4
to D = 12 as follows. Since in the previous section we have established the isomorphism xµ ↔ λΣµ5,
pµ ↔ h̄

RΣµ6, and (λ/R)Σ56 = N , the generalized nonzero [x, p] commutator must be of the form :

[ xµ1,µ2....µn , pν1ν2...νn ] = [ λnΣµ1µ2...µn i1i2....in , (
h̄

R
)nΣν1ν2.....νn j1j2...jn ] =

ih̄nηµ1ν1µ2ν2.....µnνn(
λ

R
)nΣ [i1i2....in] [j1j2.....jn] = ih̄nηµ1ν1µ2ν2.....µnνnN [i1i2....in] [j1j2.....jn]. (5.1)

where the indices i, j span the extra dimensions as follows : the index i spans over the values i = 5, 7, 9, 11
only, and the index j spans over the values j = 6, 8, 10, 12 only . The i indices are linked to the poly-
vector-valued coordinates xµ1µ2....µn and the j indices are linked to the poly-momentum variables pν1ν2...νn

. Further possibilities occur when both indices i, j span over all the internal directions 5, 6, 7, ...12. In that
case the commutator (5.2 ) will contain additional terms of the form : ηi1j1....injnΣµ1µ2....µnν1ν2....νn . For the
time being we shall restrict the indices so that i = 5, 7, 9, 11 and j = 6, 8, 10, 12 only. The index n spans
1, 2, 3, 4 since n = 4 is the maximal grade of the Clifford polyvector associated with the Clifford algebra in
D = 4 .

ηµ1ν1µ2ν2.....µnνn is given by the determinant of the N ×N matrix Gmn whose entries are ηµmνn :

ηµ1ν1µ2ν2.....µnνn = det Gmn =
1

N !
εi1i2....inεj1j2....jnηµi1νj1 ηµi2νj2 .......ηµinνjn . (5.2)

For example :
ηµ1ν1µ2ν2 = ηµ1ν1ηµ2ν2 − ηµ1ν2ηµ2ν1 etc.... (5.3)

Similar results apply to the definition of ηi1j1....injn .
The generator Σi1i2... which generalizes the λ

RΣ56 = N Yang’s generator is antisymmetric under the
collective exchange of indices :

Σ [i1i2....in] [j1j2.....jn] = −Σ [j1j2....jn] [i1i2.....in]. (5, 4)

22



and is also antisymmetric in the [i1, i2, ....in] and [j1, j2, ....jn] indices, respectively.
Hence, the generalized (nonzero) commutators [x,N ], [p,N ] read:

[ Xµ1µ2...µn k1k2......kn , Σ [i1i2....in] [j1j2.....jn] ] = iηi1k1i2k2....inknXµ1µ2...µn j1j2......jn

−iηj1k1j2k2....jnknXµ1µ2...µn i1i2......in . (5.5)

If the i, k indices span over the 5, 7, 9, 11 directions only, the second term in the r.h.s will vanish. If the
j, k indices span over the 6, 8, 10, 12 only, the first term in the r.h.s will vanish. If all the indices i, j, k span
over all the 5, 6, 7, ...12 directions then both terms in the r.h.s will be nonvanishing. Hence upon using the
correspondence

xµ1µ2...µn ↔ λnΣµ1µ2....µn i1i2...in . pµ1µ2...µn ↔ (
h̄

R
)nΣµ1µ2....µn j1j2...jn .

(
λ

R
)nΣ [i1i2....in] [j1j2.....jn] ≡ N [i1i2....in] [j1j2.....jn] (5.6)

where i = 5, 7, 9, 11 and j = 6, 8, 10, 12, the commutators which exchange coordinates for momenta are :

[ xµ1µ2...µn , N [i1i2....in] [j1j2.....jn] ] = iηi1k1i2k2....inknλn(
1

(h̄/λ)
)npµ1µ2...µn (5.7)

and
[ pµ1µ2...µn , N [i1i2....in] [j1j2.....jn] ] = −iηj1k1j2k2....jnkn(

h̄

R
)n xµ1µ2...µn

Rn
. (5.8)

The generalized (nonzero) commutator of two polyvector-valued coordinate operators is :

[ xµ1µ2...µn , xν1ν2.....νn ] = iλ2nΣ [µ1µ2......µn] [ν1ν2.......νn]. (5.9)

where

Σ [µ1µ2......µn] [ν1ν2.......νn] = −Σ [ν1ν2......νn] [µ1µ2.......µn]. (5.10)

and is antisymmetric in the µ1, µ2...µn and ν1ν2.....νn indices respectively.
The generalized (nonzero) commutator of two polyvector-valued momentum operators is

[ pµ1µ2...µn , pν1ν2.....νn ] = i(
h̄

R
)2nΣ [µ1µ2.......µn] [ν1ν2.......νn]. (5.11)

The remaining (nonzero) commutators are:

[ xµ1µ2...µn , Σ [ν1ν2....νn] [ρ1ρ2....ρn] ] = iηµ1ν1µ2ν2......µnνnxρ1ρ2.....ρn − iηµ1ρ1µ2ρ2......µnρnxν1ν2.....νn . (5.12)

[ pµ1µ2...µn , Σ [ν1ν2....νn] [ρ1ρ2....ρn] ] = iηµ1ν1µ2ν2......µnνnpρ1ρ2.....ρn − iηµ1ρ1µ2ρ2......µnρnpν1ν2.....νn . (5.13)

which are just poly-rotations of poly-vectors and finally the generalized Lorentz algebra in C-space reads:

[ Σ [µ1µ2...µn] [ν1ν2....νn], Σ [ρ1ρ2....ρn] [τ1τ2....τn] ] = iηµ1ρ1µ2ρ2......µnρnΣ [ν1ν2.....νn] [τ1τ2.....τn]

−iηµ1τ1µ2τ2......µnτnΣ [ν1ν2.....νn] [ρ1ρ2.....ρn] − iην1ρ1ν2ρ2......νnρnΣ [µ1µ2.....µn] [τ1τ2.....τn] +

iην1τ1ν2τ2......νnτnΣ [µ1µ2.....µn] [ρ1ρ2.....ρn]. (5.14)

These commutators are the natural generalization of the Yang’s Noncommutative spacetime algebra in
Clifford spaces and obey the Jacobi identities. Since the poly-vector valued coordinates and momenta don’t
commute we expect to have uncertainty relations of the form :
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∆xµ1µ2...µn∆pµ1µ2...µn ≥ h̄n. ∆xµ1µ2...µn∆xν1ν2...νn ≥ λ2n. (5.15)

These generalized uncertainty relations and the n-volume quantization in units of the Planck scale will be
the subject of future investigation.

6. Moyal-Yang Star Products and Noncommutative Branes in Clifford spaces

In section 2.2 we reviewed the interplay between ordinary brane actions in ordinary target spacetime
backgrounds and the Moyal deformation quantization of ( Generalized ) Yang-Mills theories, in the quenched-
reduced approximation. The crux of this last section is to perform a novel Moyal-Yang Quantization of
Generalized Yang-Mills theories in Clifford spaces that yields the sought-after star product deformations of
the brane actions in Clifford space target backgrounds based on multivector ( polyvector, antisymmetric
tensor ) valued coordinates. In order to achieve this goal one must recur to the results of sections 4,5
describing the (generalized ) Yang’s Noncommutative algebra involving the multivector-valued coordinates
in Clifford spaces. Ordinary branes actions in ordinary target spacetime backgrounds were given in eqs-(3.48,
3.49 ) and eq-(3.52). The purpose of this section is to construct generalized generalized brane actions in
Clifford spaces ( C-space branes ) and their deformations based on the novel Moyal-Yang star products with
UV-IR cutoffs.

Noncommutative Classical Mechanics has a correspondence to Noncommutative Quantum Mechanics.
Denoting the Clifford polyvector-valued indices of different grades by the indices A,B,C.... spanning over all
the multi-graded components of a Clifford polyvector , the inverse of the poly-symplectic form in C-phase-
spaces ΩAB is a 2d+1 × 2d+1 matrix comprised of blocks of 2d × 2d antisymmetric matrices consisting of the
entries given by {qA, qB} and {pA, pB} along the main block-diagonal, and blocks of 2d × 2d matrices given
by the entries {pA, qB} and {qB , pA} off the main block-diagonal such that the Noncommutative Poisson
Brackets (NCPB ) are defined as

{ F (qa, pa) , G (qA, pA) }Ω = (∂ΥAF) ΩAB (∂ΥBG) = (∂qAF) {qA, qB} (∂qBG) + (∂pAF) {pA, pB} (∂pBG) +

(∂qAF) {qA, pB} (∂pBG) + (∂pAF) {pA, qB} (∂qBG). (6.1)

where the entries {qA, qB}, {pA, pB}, {pA, qB}, {pA, qB} can be read from the generalized Noncommutative
Yang’s algebra in C-spaces described in the previous section. In ordinary Classical Mechanics (corresponding
to ordinary Quantum Mechanics) the {qA, qB} and {pA, pB} brackets are zero. This is not the case in
Noncommutative Classical Mechanics ( corresponding to Noncommutative Quantum Mechanics ) in C-
spaces. For example, the classical-quantum mechanical correspondence among the ordinary phase space
variables is

{xµ, xν} ↔ 1
ih̄eff

[X̂µ, X̂ν ]. {pµ, pν} ↔ 1
ih̄eff

[P̂µ, P̂ ν ]. {xµ, pν} ↔ 1
ih̄eff

[X̂µ, P̂ ν ]. (6.2)

where the effective Planck constant is now comprised of the 3 fundamental parameters, h̄, λ,R. Hence the
deformation parameter in the Moyal star products induced from the Generalized Yang’s Noncommutative
algebra in C-spaces is h̄eff ≡ (h̄λ/R) .

In order to recover the Poisson brackets from the generalized Noncommutative Yang algebra commu-
tators in C-spaces provided in section 5 , when taking the ”classical” limit h̄eff → 0, one needs firstly to
divide by factors of i(h̄eff )n where n is the grade of the Clifford-valued coordinate and momentum oper-
ators. Hence, after factoring out the i factors in the numerator and denominators, the Poisson brackets
corresponding to the Noncommutative Classical Mechanics in C-spaces are

{ xµ1µ2...µn , xν1ν2.....νn } = lim h̄eff→0
λ2n

(h̄λ/R)n
Σ [µ1µ2......µn] [ν1ν2.......νn]. (6.3a)

{ pµ1µ2...µn , pν1ν2.....νn } = lim h̄eff→0
(h̄/R)2n

(h̄λ/R)n
Σ [µ1µ2.......µn] [ν1ν2.......νn]. (6.3b)
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{ xµ1,µ2....µn , pν1ν2...νn } = ηµ1ν1µ2ν2.....µnνnΣ [i1i2....in] [j1j2.....jn]. (6.3c)

In section 4 we explained how the double− scaling limit behaves :

lim λ → 0. lim R →∞. λR → L2. (6.4)

We will take the double-scaling limit h̄eff = (h̄λ/R) = (h̄λ2/L2) → 0 keeping h̄ = c = 1 in natural units
fixed. Upon doing so one will have a nice cancellation in the r.h.s of eqs-(6.3) without singularities leading
to the Noncommutative Poisson Brackets ( NCPB) associated with a Noncommutative Classical Mechanics.
( h̄ = c = 1 units ) induced from the generalized Yang’s algebra in C-spaces described in section 5

{ xµ1µ2...µn , xν1ν2.....νn }NCPB = L2n Σ [µ1µ2......µn] [ν1ν2.......νn]. (6.5a)

{ pµ1µ2...µn , pν1ν2.....νn }NCPB =
1

L2n
Σ [µ1µ2.......µn] [ν1ν2.......νn]. (6.5b)

{ xµ1,µ2....µn , pν1ν2...νn }NCPB = ηµ1ν1µ2ν2.....µnνnΣ [i1i2....in] [j1j2.....jn]. (6.5c)

where L2 = λR in the double-scaling limit.
Notice that the entries of ΩAB have different units ( dimensions ) depending on the different grades

among the components of the polyvectors in C-phase-space. Therefore, it is convenient to re-scale all the
quantities by judicious powers of h̄ such that all the terms appearing in the evaluation of the brackets {F ,G}
have the same units. Units that we will choose to be h̄−d assuming F ,G are dimensionless. Without this
re-scaling the brackets contain terms of different units given by powers of h̄ and whose exponents depend
on the different grades of a polyvector as indicated by the r.h.s of eqs-(6.3). To conclude : Upon using the
natural units of h̄ = c = 1 it automatically solves the adjustment problem of units for all the terms appearing
in the evaluation of the brackets {F ,G} in eq-(6.1).

Since the deformation parameter is now h̄eff = h̄λ
R the Moyal-Yang star product based on the generalized

Yang’s algebra in Clifford spaces is defined

( F ∗ G )(Υ) ≡ exp [ (ih̄eff/2) ΩAB ∂
(Υ1)
A ∂

(Υ2)
B ] F(Υ1) G(Υ2)|Υ1=Υ2=Υ. (6.6a)

where the derivatives ∂
(Υ1)
A act only on the F(Υ1) term and ∂

(Υ2)
B act only on the G(Υ2) term.

The Noncommutative Moyal-Yang Bracket is defined :

{F , G}MY B ≡ F ∗ G − G ∗ F . (6.6b)

Following our discussion in section 2.2 we will see that the C-space world-volume coordinates ΣA

associated with C-space-branes will be identified with the C-phase-space variables as follows Υ = Σ =
(qA, pA)

qA = q, qa, qa1a2 , qa1a2a3 , ........, qa1a2......ad . (6.7a)

pA = p, pa, pa1a2 , pa1a2a3 , ........, pa1a2......ad . (6.7b)

the total number of variables (qA, pA) is 2× 2d = 2d+1, which matches the degrees of freedom corresponding
to a Clifford space in d + 1-dim since the dimR Cl(d + 1, R) = 2d+1.

The 2d+1 C-phase-space real variables associated with the C-space world-volume of the C-space branes
can be recast in terms of 2d complex variables :

ZA = qA + ipA = q + ip, qa + ipa, qa1a2 + ipa1a2 , ............qa1a2...ad + ipa1a2...ad . (6.8)

Plus their complex conjugates Z̄A = qA− ipA . In order to match units it is required to re-scale the variables
by suitable powers of λ and (h̄/R) if one wishes to work with dimensionless variables ZA, Z̄A . For the time
being we should be working with (qA, pA) instead of (ZA, Z̄A) variables .
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One of the most important physical consequences of this section is the following : since the world-volume
polyvector-valued coordinates Σ = (qA, pA) associated with the C-space Branes are noncommuting because
they obey the Generalized Noncommutative Yang’s algebra described in section 5, like those given by eqs-
(6.3, 6.5), the C-space target background coordinates XM = XM (qA, pA) onto which one embeds the C-space
world-volumes of the C-space branes, will require the use of Noncommutative Poisson brackets themselves
{XM (qA, pA) , XN (qA, pA)}NCPB 6= 0 as we shall see next. We must emphasize that extreme care must
be taken not to confuse the world volume variables (qA, pA) with the Clifford-space target background
coordinates XM , PM !

The extension of the Generalized-Yang-Mills (GYM) theories [5,6,12] to C-spaces can be obtained as
follows. Define the gauge connection of the Clifford-Tangent-Bundle as

AM = AAB
M ΣAB = AAB

M [EA, EB ]. F[MN ] = ∂[NAAB
M ] ΣAB + [ AAB

M ΣAB , ACD
N ΣCD ]. (6.9)

where the EA, EB basis elements admit a representation in terms of 2d/2 × 2d/2 matrices. A Moyal-Yang
star product deformation quantization procedure (along similar lines to the ones described in detail in 2.2
) in the quenched-reduced approximation leads to the correspondence among Hilbert space operators and
functions in phase-space

F[MN ] ↔ F∗[MN ] (qA, pA) = { AM (qA, pA) ,AN (qA, pA) }∗MY B . (6.10)

since here is no X dependence in the r.h.s of (6.10) due to the quenched-reduced approximation. The trace
operation corresponds to an integration w.r.t the C-space-brane variables. Thus, the gauge-field/ coordinate
correspondence AM (qA, pA) ↔ XM (qA, pA) = XM (Σ) of section 2.2 yields

F∗[M1M2M3........M2d+1 ] (qA, pA) = F∗[M1M2] ∗ F∗[M3M4] ∗ ....... ∗ F∗[M2dM2d+1 ] + permutations ↔

{ XM1 , XM2 }∗MY B ∗ { XM2 , XM3 }∗MY B ∗ .............. ∗ { XM2d
, XM2d+1 }∗MY B + permutations =

{ XM1 , XM2 , XM3 , .............., XM2d+1 }MY NPB . (6.11)

where the phase-space coordinates are identified with the world-volume C-space brane coordinates Υ = Σ =
(qA, pA) and this allows us to evaluate the Moyal-Yang star product deformations of the Clifford-Nambu-
Poisson-Brackets in terms of the Moyal-Yang Brackets {XM (qA, pA) , XN (qA, pA)}MY B . The Moyal-Yang
quantization of GYM theories in C-spaces leads to

F∗M1M2......M2d+1 ↔ { XM1 , XM2 , ....., XM2d+1}MY NPB . (6.12)

trace [ F∗M1M2......M2d+1 ∗ FM1M2......M2d+1
∗ ] ↔∫

[DΣ] { XM1 , XM2 , ....., XM2d+1}MY NPB ∗ { XM1 , XM2 , ....., XM2d+1}MY NPB (6.13)

which is the Clifford-space brane analog of the Eguchi-Schild action for strings that is invariant under area-
preserving diffs.

In order to implement the full C-space covariance under world-volume reparametrizations of C-space
branes, instead of the restricted invariance under volume-preserving diffs , we can recur to the reparametriza-
tion invariant new p-brane actions (2.39 ) studied in section 2.2 via the introduction of the auxiliary scalars
in order to define a new integration measure [13 ]. Noncommutative Clifford-space extensions of such new
p-branes actions like eqs-(2.39 ) will be given by eqs-(6.22) below.

The Moyal-Yang star deformations of Dolan-Tchrakian types of actions will require to enlarge the
integration domain of dimension 2d+1 to one of twice the dimension 2d+2 and the Moyal-Yang brackets must
be taken w.r.t an enlarged number of variables as well ( twice the number ). In the meantime, we proceed to
evaluate the Moyal-Yang-Nambu-Poisson Brackets (MYNPB) in terms of the Moyal-Yang Brackets (MYB)
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{ Xµ1µ2....µn
(Υ) , Xν1ν2....νn

(Υ) }MY B = Xµ1µ2....µn
∗ Xν1ν2....νn

− Xν1ν2....νn
∗ Xµ1µ2....µn

. (6.14)

given in terms of the Moyal-Yang star products defined by eqs-(6.6) and that correspond to the Noncommu-
tative Poisson Brackets ( NCPB ) in the ”classical ” h̄eff → 0 limit

{ Xµ1µ2....µn(Υ) , Xν1ν2....νn(Υ) }NCPB = (∂ΥAXµ1µ2....µn) ΩAB (∂ΥBXν1ν2....νn). (6.15)

A Moyal-Yang star-product deformation of the above Nambu-Poisson Brackets yields the Moyal-Yang-
Nambu-Poisson Brackets ( MYNPB )

F∗ [M1M2......M2d+1 ] ↔ { XM1 , XM2 , ....., XM2d+1}MY NPB =

{ XM1 , XM2 }∗MY B ∗ { XM3 , XM4 }∗MY B ∗ ..... ∗ { XM2d
, XM2d+1 }∗MY B + permutations. (6.16)

where the Moyal-Yang star-product deformations of the Nambu-Poisson-Brackets ( MYNPB ) can be de-
composed as suitable antisymmetrized sums of Moyal-Yang star products of the Moyal-Yang brackets
(MYB) among pairs of variables. And the latter MYB given by eqs-(6.6) are those induced from the
generalized Noncommutative Yang’s spacetime algebra in Clifford spaces whose deformation parameter is
h̄eff = h̄λ/R = h̄λ2/L2 in the double-scaling limit. This is the generalization of the Quantum Nambu
Brackets ( QNB ) described in section 2.2 .

Concluding, the Moyal-Yang star product deformation of the Noncommutative C-space Brane Action
Sbranes
∗MY is

T
∫

[DΣ]

√
1

(2d+1)! (ih̄eff )2d+1 | { XM1 , XM2 , ....., XM2d+1}MY NPB ∗ { XM1 , XM2 , ....., XM2d+1}MY NPB |.

(6.17)
where the C-space brane tension T has the unit of (mass)2

d+1
. The terms inside the square root in the

integrand is just the Moyal-Yang star deformation of the determinant of the induced metric GAB resulting
from the embedding of the C-space Brane into the C-space target background resulting from the identity

|det (GAB)| = |det [ GMN ∂AXM ∂BXN ]| =
1

(2d+1)!
| { XM1 , XM2 , ....., XM2d+1}NPB { XM1 , XM2 , ....., XM2d+1}NPB |. (6.18)

In the limit h̄eff = hλ/R → 0, keeping h̄ = c = 1 in the double − scaling limit λR → L2 , the MYB
coalesce to the Noncommutative Poisson Brackets ( NCPB ) as follows :

{F , G}NCPB = lim h̄eff→0
1

ih̄eff
{F , G}MY B = lim h̄eff→0

1
ih̄eff

(F ∗ G − G ∗ F)

these NCPB are associated with the Noncommutative Classical Mechanics and were defined in eqs-(6.1, 6.3,
6.5, 6.15). Hence, the Noncommutative C-space Brane Action induced from the generalized Yang spacetime
algebra in Clifford spaces ( constructed in section 5 ) can be written in terms of the Noncommutative
Nambu Poisson Brackets ( NCNPB ) as

Sbranes
NC = T

∫
[DΣ]

√
1

(2d+1)!
| { XM1 , XM2 , ....., XM2d+1}NCNPB { XM1 , XM2 , ....., XM2d+1}NCNPB |.

(6.19)
And the Noncommutative C-space Brane version of the new p-brane actions given by eqs-(2.39 ) is

SNC = −1
2

∫
[DΣ] J [ϕ] [ − T 2

(2d+1)!
J−2[ϕ] { XM1 , XM2 , ....., XM2d+1 }2NCPB + 1 ]. (6.21)
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where the integration measure is given in terms of the 2d+1 auxiliary scalar fields

J = {ϕ1, ϕ2, ...., ϕ2d+1
}NCPB . (6.22)

A Moyal-Yang star product deformations of the action (6.21) is more subtle since it requires to write the
deformation of the product J−2{........}2 as (1/2)J−2

∗ ∗ {........}2∗ + (1/2){.........}2∗ ∗ J−2
∗ where the inverse

J−2
∗ is defined in terms of the star-product Taylor series expansion of the inverse function.

To sum up : the Moyal-Yang C-space Brane actions (6.17) induced from the Moyal-Yang star product
deformation quantization of Generalized-Yang-Mills theories in C-spaces, upon taking the h̄eff → 0 limit,
lead naturally to Noncommutative C-space Brane actions (6.19) associated to the Noncommutative Clas-
sical Mechanics described by the brackets in eqs-(6.1, 6.3, 6.5, 6.15). The latter Noncommutative Classical
Mechanics has a natural correspondence to the Noncommutative Quantum Mechanics in C-spaces ( when
h̄eff 6= 0 ) described by the generalized Noncommutative Yang’s algebra in Clifford-spaces constructed in
section 5 . This is one of the most relevant findings of this work.

A Noncommutative QFT in Clifford spaces involving both an upper R (infrared ) and lower ( ultraviolet
) scale λ remains to be developed. In particular, the full fledged Quantization of C-space Branes and the
plausible role of L2 to the cosmological constant value ρ ∼ L−4 . In [ 25] we have rigorously derived the
geometric mean relationship among the 3 scales L2 = λR . Notice that by setting the infrared scale R equal
to the Hubble radius horizon RH and λ equal to the Planck scale one reproduces precisely the observed
value of the vacuum energy density ! [25] :

ρ ∼ L−4 = L−2
PlanckR−2

H = L−4
P (LPlanck/RH)2 ∼ 10−122M4

Planck. (6.23)

.
The importance of recurring to an Extended Relativity Theory in Clifford-spaces is that it allows us

to work with many branes of different dimensions simultaneously. For reviews of Noncommutative Field
theories, Yang-Mills and Matrix Models we refer to [36, 38, 46, 51, 52 ] . Some recent remarks about
symplectic methods and Noncommutativity were made in [30, 31, 37] . Noncommutative Riemann-Finsler
Geometries within the context of Clifford algebras have been studied by [45] . Applications of Clifford
and exceptional algebras in the geometrical calculation of particle masses and coupling constants from first
principles have been analyzed by [47] and most recently by us [42]. One final comment we must add is that
the diverse Moyal-Yang star deformed actions are not equivalent to the Moyal-Yang deformed Nambu-Goto
actions since the equations of motion for the auxiliary fields are not longer algebraic but contain an infinite
number of derivatives resulting from the Moyal-Yang star products.
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