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According to the standard electrodynamics, a rotating electric dipole emits angular momentum 

mainly into the equatorial part of space situated near the plane of the rotation where polarization of 
the radiation is almost linear. Polar regions situated near the axis of rotating are scanty by the 
angular momentum, although they are intensively illuminated by the almost circularly polarized 
radiation, which must carries spin angular momentum. A conclusion is made that the 
electrodynamics sights orbital angular momentum only and overlooks spin. This means that the 
electrodynamics is not complete. We introduce a spin tensor into the electrodynamics and calculate 
the whole angular momentum flux radiated by the dipole. 
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1. Introduction and conclusions 

 
According to the standard electrodynamics [1], a rotating electric dipole p  radiates time-average 

electromagnetic power1  
πω== 6/24 pdtdE/P                                                  (1.1) 

and angular momentum flux, i.e. torque 
πω==τ 6// 23 pdtdL

L
                                                 (1.2) 

where E  and  are the energy and angular momentum. Below we set L 1=p , the speed of light 1=c , and 
. 10 =ε
The power (1) can be readily obtained by integrating 

πω=πϕθθ+θω>=⋅×=< ∫ ∫ 6/32/sin)1(cos 4224 dddaBEP               (1.3) 

where  is the Poynting vector and  is a surface element ( ). However, the 
torque (1.2) is obtained not so trivially. The standard expression [2] that is a moment of the Poynting vector 
gives zero, 

BE× ϕθθ= ddr sinˆ 2rda r/ˆ rr =

0)( =⋅×× daBEr ,                                                     (1.4) 
because of a collinearity of r  and . A right way of calculating the angular momentum flux is presented at 
[3]. 

da

We must use a component of Maxwell energy-momentum tensor.  is a momentum 

flux across the surface element , and  is the angular momentum flux across . But 

the angular momentum flux relative to z-axis is a three-vector , which must be dualized:  

dtdPdaT i
j

ij /=

jda ki

Lj
jik ddaTr τ=][2 jda

][ˆ3 ki

L

l dz τ

zLlki
ki

L

l degdz τ=τ 2/ˆ .                                                           (1.5) 

Here  is the unite z-coordinate vector and lẑ lkieg  is the antisymmetric tensor. The calculating yields  

∫∫ πω=πϕθθω===τ 6/16/sinˆ/ 3233 dddaegTrzdtdL jlki
ijkl

zzL
.                          (1.6) 

This radiation is elliptically polarized. The ratio of lengths of the half-axes equals to  
θcos .                                                                          (1.7) 

                                                           
1 A. Corney erroneously wrote [2] that the total power radiated by an oscillating electric dipole moment, p, is  in 
both cases, for the case of circular oscillation and for the case of linear oscillation. But his Fig. 1(d) is correct. 

πω= 12/24 pP
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In particular, the z-directed ( 0=θ ) radiation is circularly polarized, and the radiation in the equatorial plane 
 is linearly polarized. The polarization and the angular distribution of power (1.1), (1.3), )2/( π=θ

224 32/)1(cos π+θω=ΩddP/ ,                                          (1.8) 
 is depicted in Fig. 1(b) and Fig. 1(d) [4]. The angular distribution of the angular momentum flux relative to 
z-axis, according to (1.6), is  

223 16/sin/ πω=Ωτ dd zL
,                                              (1.9) 

where . This distribution coincides in shape with Fig. 1(c).  ϕθθ=Ω ddd sin
But, there is a puzzle here. These show that the angular momentum is emitted mainly into the 

equatorial part of space, situated near the plane of the rotation where, according to (1.7), the polarization is 
elliptic or linear. Polar regions, situated near the z-axis, are scanty by the angular momentum, although they 
are intensively illuminated by the almost circularly polarized radiation.  

However, R. Feynman, telling about a spin of photons, clearly shows [5] that when a circularly 
polarized wave is absorbed the absorbing medium gets angular momentum and energy in a  ratio 
because a circularly polarized wave carries spin angular momentum. 

ω/1

From our viewpoint, this means that the angular momentum (1.2), (1.6) is an orbital angular 
momentum unconnected with spin of electromagnetic field. This angular momentum, possibly, has no wave 
nature because the Poynting vector may be not bound to have a wave nature. If rotation of a dipole is 
stationary, a torque applied to the dipole must compensate the radiated power (1.1)   

τω=P                                                                      (1.10) 
This torque is emitted into the equatorial region as orbital angular momentum flux. 

From our viewpoint, the angular momentum (1.2), (1.6) does not exhaust the reality. Actually, the 
polar regions, illuminated by the circularly polarized light, get a certain amount of spin angular momentum. 
But calculating of this angular momentum calls for a spin tensor of electromagnetic waves. 

Electron spins of material of the dipole may be sources of the spin radiation. The electron spins are 
gradually oriented in parallel to z-axis during the radiation. In other words, a rotating dipole is being 
magnetized in the transverse direction. A demagnetization of the dipole requires an additional torque applied 
to the dipole. 
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2. Calculation of the power and the orbital angular momentum 
 

Here we detail eqns. (1.3) and (1.6). The E and B field satisfy equations [2, 6]: 
,////3//34 32435 rprrrprprrrprprrrpE ii

k
kii

k
kii

k
ki &&&&&& −+−+−=π                      (2.1) 

./2/24 2
][

3
][ rrprrpB kikiik &&& +=π                                                    (2.2) 

We use spherical coordinate system   ,  with the metric ,1 rx = ,2 θ=x 3 ϕ=x
,111 =g          ,2

22 rg = ,sin 22
33 θ= rg .sin2 θ= rg                                  (2.3) 

The unit vector p has Cartesian components  , and spherical 
components: 

),exp( tip x ω−= 0),exp( =ω−= zy ptiip

)](exp[)}sin/(,/)(cos,sin{ tiriprppp ri ω−ϕθ=θ=θ== ϕθ                                 (2.4) 
)](exp[}sin,cos,sin{ tiriprppp ri ω−ϕθ=θ=θ== ϕθ                                    (2.5) 

The E and B fields are 
π−ω+ϕθω−= 4/)](exp[sin)/2/2( 23 triirirE r ,                                                 (2.6) 

,4/)](exp[cos)///1( 2234 π−ω+ϕθω+ω+−=θ triirrirE                                         (2.7) 
),sin4/()](exp[)///( 2234 θπ−ω+ϕω+ω−−=ϕ triirirriE                                       (2.8) 

,4/)](exp[cos)/( 2 π−ω+ϕθω+ω=θ triiriBr                                                       (2.9) 
.                                          (2.10) 0,4/)](exp[sin)/( 2 =π−ω+ϕθω−ω= θϕϕ BtriiirB r

r-component of the Poynting vector, i.e. rT 0 -component of the Maxwell tensor, is 
rr

r BEBET ϕ
ϕ

θ
θ −=0 .                                                   (2.11) 

Using the higher powers of r, we obtain the time average quantity: 
)32/()1(cos2/){ 22240 rBEBET rr

r π+θω=−ℜ>=< ∗
ϕ

ϕ∗
θ

θ                                       (2.12) 
in according to (1.3). 

The component rT ϕ  of the Maxwell tensor is 
ϕϕϕθ

θ
ϕ −=−= EEEEBBT r

rr
r .                                         (2.13) 

The time average quantity is 
)16/(2/})({ 423 rEET rr πω=−ℜ>=< ∗ϕϕ .                                  (2.13) 

The unit vector  has spherical components ẑ
0ˆ,/)(sinˆ,cosˆ =θ−=θ= ϕθ zrzz r                                         (2.14) 

Using (1.5) yields (1.6) because , 1−=ϕθre

)6/()16/(sinˆ 3233∫∫ πω=πϕθθω=><=τ ϕθ
ϕθ dddaegTrz rr

r
zL

.                          (2.15) 

 
3. Radiation of spin 

 
In this section we use an electromagnetic spin tensor of the form [7 – 11] (see also the Appendix) 

][][ µνλµνλλµνλµνλµν Π∇Π+∇=Υ+Υ=Υ AA
me

,   3,2,1,0,...,, =νµλ .                     (3.1) 

Here  are the magnetic and electric vector potentials,  λλ Π,A

][2 νµµν ∂= AF ,   .                                                       (3.2) λµλµν
ν

λµν
αλµνα =Π∂Π=Π Fe ,

Because of spherical coordinates we use covariant derivatives in (3.1). 
The sense of the spin tensor is presented by the equation for a spin flux, , across the surface 

element , i.e. for a spin torque on the element , 
dtSd ij /3

kda kda
ij

S

ij
k

ijk ddtSdda τ==Υ /3 .                                                         (3.3) 

Now we calculate the spin radiation of the rotating dipole. 
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We set . So, . Similarly, 00 =φ=A ω−=−= ∫ /iii iEdtEA ω==Π ∫ /iii iBdtB , where  

)//(/ 223 rirgBeB r
r ω−ω== ϕ

θϕθ ,4/)](exp[ π−ω+ϕ trii                           (3.4) 

θω+ω== θ
θϕϕ cos)//(/ 223 rrigBeB r

r )sin4/()](exp[ θπ−ω+ϕ trii .               (3.5) 
Therefore we have the time average spin tensor of the form 

2][][ 2/}{ ω∇+∇ℜ>=Υ+Υ=Υ< ∗∗ jkijkiijk

m

ijk

e

ijk BBEE ,                        (3.6) 

Covariant derivatives, for example  
ji

jk
i

k
i

k EEE Γ+∂=∇ ,                                                                  (3.7) 

need connection coefficients : i
jkΓ

rrr rr
rr /1,sin/cos,cossin,sin, 2 =Γ=Γθθ=Γθ⋅θ−=Γθ−=Γ−=Γ ϕ

ϕ
θ
θ

ϕ
θϕ

θ
ϕϕϕϕθθ            (3.8) 

Using (2.6) – (2.8), (3.4) – (3.8) yields two components of the electric part of the spin tensor, 
)sin32/(cos)/2/( 2643 θπθω−ω>=Υ< θϕ rrr

e
,                                        (3.9) 

)32/( 25 πω−>=Υ< ϕ rrr

e
,                                                     (3.10) 

and the magnetic part 
)sin32/(cos 243 θπθω>=Υ< θϕ rr

m
.                                          (3.11) 

So, we have two components of the spin tensor 
)sin16/(cos)//( 2643 θπθω−ω>=Υ<+>Υ>=<Υ< θϕθϕθϕ rrr

m

r

e

r ,                  (3.12) 

)32/( 25 πω−>=Υ>=<Υ< ϕϕ rrr

e

rr .                                                (3.13) 

The spin angular momentum flux relative to z-axis across an element  is the dualized three-
vector:  

ida

gdazzegdazddtSd r
rrrr

lijk
ijkl

zSz )ˆˆ(2/ˆ/3 ϕθθϕ Υ+Υ=Υ=τ= .             (3.14) 

as in the case with the angular momentum flux (1.5). Using (2.14) yields the time average spin flux radiated 
by the dipole  

)12/()16/()]sinsincos2)(2/(sincos[ 3232223∫ πω=πϕθθ+θθ−ω+θω=τ ddrzS
.                          (3.15) 

The second term in this integrand describes an interesting phenomenon. Except the spin flux (3.15) that is 
radiated to infinity, a closed spin flow circulates not far from the rotating dipole. This spin flow is directed 
outside in the equatorial area, but is returned back in the polar area because 

∫ =ϕθθ+θ⋅θ− 0)sinsincos2( 32 dd .                                 (3.16) 
This is a torque strength of the electromagnetic field. 

Thus the circular oscillator radiates spin flux  
)12/()16/(sincos/ 3223∫ πω=πϕθθω==τ dddtdSzzS

.                          (3.17) 

Angular distribution of this spin flux is 
)16/(cos/ 223 πθω=Ωτ dd zS
                                              (3.18) 

instead of (1.9). This is depicted in Fig. 2. Note that the ratio of the spin flux density to the power density at 
 equals to , just as for a photon, because the radiation is circularly polarized along the direction 
: 

0=θ ω/1
0=θ

ω
=

π+θω
πθω

=θ

1
)32/()1(cos

)16/(cos

0
224

223

.                                                (3.19) 

However, the total spin flux (3.17) is half of the total orbital angular momentum flux (1.2), (2.15). 
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4. Appendix. Spin tensor  
 
We see that the Maxwell electrodynamics provides the deficit of angular momentum in the polar 

regions. So, the electrodynamics is not complete. We introduce a spin tensor in the electrodynamics. 
The standard classical electrodynamics starts from the free field canonical Lagrangian,  

4/µν
µν−= FF

c
L ,    ][2 νµµν ∂= AF .                                                (4.1) 

Using this Lagrangian, by the Lagrange formalism physicists obtain the canonical energy-momentum tensor 

4/
)(

αβ
αβ

λµµα
α

λλµ

αµ
α

λλµ +−∂=−
∂∂

∂
∂= FFgFAg

A
AT

c

c

c
L

L
,                      (4.2) 

and the canonical total angular momentum tensor 
λµννµλλµν Υ+=

ccc
TxJ ][2                                                                                  (4.3) 

where 

νµλ

αν

µ
α

λλµν −=
∂∂

∂
δ−=Υ ][][ 2

)(
2 FA

A
A c

c

L
,                                                  (4.4) 

is the canonical spin tensor.  
Then physicists accomplish a Belinfante-Rosenfeld procedure [12, 13]. They add specific terms to the 

canonical tensors and arrive to the standard energy-momentum tensor , the standard total angular 
momentum tensor , and the standard spin tensor , which is zero, 

λµΘ
λµν

st
J λµνΥ

st

)(4/2/~ µνλ
ν

αβ
αβ

λµµν
ν

λλµν
ν

λµλµ ∂++−∂=Υ∂−=Θ FAFFgFAT
cc

, 

µνλνλµµνλλµνλµν −=Υ+Υ−Υ=Υ FA
ccc

def

c
2~ ,                         (4.5) 

)~( ][ νκµλ
κ

λµνλµν Υ∂−=
ccst

xJJ ,                                                                                         (4.6) 
νµλλµνλµν Θ−=Υ ][2xJ

stst
0~ ][ =Υ−Υ= νλµλµν

cc
.                                                                  (4.7) 

This means that standard addends  are added to the canonical energy-momentum and spin tensors:  λµνλµ

stst
st ,

,λµλµλµ

stc
tT +=Θ  )(2/~ µνλ

ν
λµν

ν
λµ ∂=Υ−∂= FAt

cst
,                                       (4.8) 

0=+Υ=Υ λµνλµνλµν

stcst
s ,     .                                         (4.9) νµλλµνλµν ][2 FAs

cst
=Υ−=

We use another addends; our addends, 
µνλ

ν
λµ FAt ∂= ,       ,                                                     (4.10) νµλλµν AAs ][2 ∂=

satisfy the equation 
λµν

ν
λµ st ∂=][2                                                                     (4.11) 

and lead to the Maxwell energy-momentum tensor 
4/αβ

αβ
λµµν

ν
λλµλµλµ FFgFFtTT

c
+−=+=                                        (4.12) 

and a tensor, which is doubled electric part  of the electrodynamics spin tensor , λµνΥ
e

λµνΥ

]||[22 µνλλµνλµνλµν ∂=+Υ=Υ AAs
ce

.                                                 (4.13) 

This result was submitted to “JETP Letters” on May 12, 1998.  
The expression (4.13) was obtained heuristically. It is not final one. The tensor (4.13) is obvious not 

symmetric in the sense of electric - magnetic symmetry. It represents only the electric field, dt∫−= EAE, . 

A true spin tensor of electromagnetic waves must depend symmetrically on the magnetic vector potential  
and on an electric vector potential  

αA
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λµλµν
ν

λµν
αλµνα =Π∂Π=Π Fe , .                                                       (4.14) 

So the spin tensor of electromagnetic waves has the form 
][][ µνλµνλλµνλµνλµν Π∂Π+∂=Υ+Υ=Υ AA

me
,                                         (4.15) 

and the total angular momentum has the form 

∫ Υ+= ν
λµννµλλµ dVTxJ )2( ][ ,  or   ∫∫ Υ+××= dVdV ij0)( BErJ .                        (4.16) 

 

Conclusions, Notes, and Acknowledgements 

 
This paper conveys new physics. We review existing works concerning electrodynamics spin and 

indicate that existing theory is insufficient to solve spin problems because spin tensor of the modern 
electrodynamics is zero. Then we show how a change of the Belinfante-Rosenfeld procedure resolves the 
difficulty by introducing a true electrodynamics spin tensor. Our spin tensor, in particular, doubles a 
predicted angular momentum of a circularly polarized light beam without an azimuth phase structure and 
explains the Beth experiment. 

Unfortunately, materials of this paper were rejected more than 350 times by scientific journals. For 
example (I show an approximate number of the rejections in parentheses): JETP Lett. (8), JETP (13), TMP 
(10), UFN (9), RPJ (70), AJP (16), EJP (4), EPL (5), PRA (4), PRD (4), PRE (2), APP (5), FP (6), PLA (9), 
OC (5), JPA (4), JPB (1), JMP (6), JOPA (3), JMO (2), CJP (1), OL (4), NJP (2), MPEJ (3), arXiv (70). In 
particular, OC rejected a paper “Inner incompleteness of the Maxwell electrodynamics” submitted on 22 Sep 
2002. 
 

I am deeply grateful to Professor Robert H. Romer for publishing my question [14] (was submitted 
on Oct. 7, 1999) and to Professor Timo Nieminen for valuable discussions (Newsgroups: 
sci.physics.electromag). Unfortunately, Jan Tobochnik, the present-day Editor of AJP, rejected my papers 
more than 20 times. 
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