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Abstract 
Static electric field in linear uniform neutral dielectric is divergence-free and irrotational. Thus the Maxwell stress 
tensor is divergence-free as well. So, according to Maxwell, the volume force is ZERO. Only surface forces act on 
the polarized dielectric. 

Static electric field iE  in linear uniform neutral 

dielectric is divergence-free, , and irrotational, 0=∂ i
i E

0][ =∂ ji E . Thus the Maxwell stress tensor [1, p. 261].  
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is divergence-free as well, ∂ . So, according to the 

Maxwell electrodynamics, the volume force acting on the 

dielectric is zero [1, p.610], 

0=

.                              (2) 

But this is not the case on a surface of the dielectric b

of bound electric charges.  

Let us consider, as an example, a dielectric slab 

partially inserted between parallel conducting charged 

plates that is shown in Fig.1. The electric field is weaker in 

the slab than on the outside the slab. Lines of E break at the 

surface, and E  in air is x
A κ  times bigger than  in the 

dielectric where 

x
DE

κ  is the relative permittivity (see also 

Figure 4.5 from [1]).  

The component dF  of the 

pondermotive force dF  acts on the back side of 

an oriented element da  of the side surface of the slab. 
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The question of whether the force is actually 

acts on the surface of the slab or on the bulk of the 

slab is not difficult because there is a measurable 

distinction between the internal mechanical stresses of 

the slab in these two cases. 

 A remarkable article [2] is devoted to the force 

acting on the dielectric slab. But the author argues that 

the slab experiences a volume force rather than a 

surface force. He considers electric dipoles p within 

the dielectric and the forces  acting on the 

dipoles. I reproduce Fig. 1 from [2] as my Fig. 2. Then 

the author argue that a force acting on a volume 

element dV  of the dielectric is  

Ep )( ∇⋅

dVd D EPF )( ∇⋅=                              (3) 

where EP )1( −= κ  is the polarization. (I use V as volume instead of τ  because τ  is torque and I put 10 =ε ). 

 It seems that this statement is incorrect. The point is a boundary of any volume cuts dipoles and thus 

creates a surface charge which experiences a force as well as dipoles themselves. This force compensates the 

force acting on dipoles. I think a volume density of force is zero within the dielectric because a volume density 

of charge within the dielectric is zero. But the 

expression (3) may be used for integrating over 

the volume of the whole slab. The boundary of 

this volume does not cut dipoles, and the 

volume does not contain discontinuities of E. 

Because any interior volume of integrating 

gives zero, as I have argued, the surface bound 

charge of the slab is responsible for the force 

attracting the slab to the plates.  

 We cannot consider a part of the slab as 

composed of individual aligned dipoles, which 

feel the field gradient. Indeed, I show dipoles, 

which are aligned along a field line in Fig. 3. If 

you add together F2 and F3, F4 and F5, F6 and F7, you obtain a y+ -directed force. But if you add together F1 



and F2, F3 and F4, F5 and F6, you obtain a -directed force. A conclusion is the following: we cannot 

consider forces acting on an individual charge or on an individual dipole if the average macroscopic volume 

bound charge density is zero (as it always is true for neutral linear dielectrics). 
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 Nevertheless, integral of Eq. 3 over the volume of the whole slab can give -component of the force 

acting on the slab, 
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As is shown in [2], Eq. (4) can be rewritten as 
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in accordance with the standard expression for the attractive force, which is obtained by the energy method [3]. 

(Here  is x-component of E in the center of the capacitor and w is a width of the slab along the z-direction). xE0

 It is important that the same result (6) may be obtained by integrating of our expression  

over the surface of the slab. Because 
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we have 
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Using the Green’s theorem yields 
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Because ,  i.e.  , Eq. (9) coincides with Eq. (4) except the negligible term . 0=⋅∇ E 0=∂+∂ y
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 Our result means that no force acts on the face of the slab (y = 0 in my Fig.2). 

Unfortunately, AJP rejected this paper though their author's incorrectness is discussed here 
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