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We solve the angular momentum problems of the electrodynamics. We show that a desire of using a
spin density proved to be correct for evaluating of the electrodynamics spin because the moment of
momentum is an orbital angular momentum density and does not encompass the spin. However, the
expression Ex A is not a true expression for the spin density. This expression yields correct results in
simplest cases randomly. Its improvement is hopeless. Instead we present a true spin density of
electromagnetic waves and demonstrate a way for its deducing. Our result can be expressed by a sum
of the orbital and spin angular momentums.
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I. INTRODUCTION

There is a scandalous situation in the modern electrodynamics.
On the one hand,

s=ExA (1.1)
is considered as a spin volume density of an electromagnetic field and
S =L E x AdV (1.2)

is considered as the spin of an electromagnetic field in the volume V. (Here E and A are the electric field
strength and the magnetic vector potential, respectively). | present here a series of quotations for a confirmation
of my statement.

1) Jackson [1] divides the angular momentum of a distribution of electromagnetic fields

J :Irx(ExB)dV (1.3)
into a spin and an orbital parts,
J=[[ExA+E (r<V)Aldv (1.4)
(for short I set u, =1, ¢ =1). He wrote, “The first term is sometimes identified with the ‘spin’ of the photon”.
2) Also Ohanian [2] expresses the angular momentum by a sum of two terms:
J=[rx(E'VA)dV + [ExAdV . (1.5)
He wrote, “The first term in Eq. (1.5) represents the orbital angular momentum, and the second term the spin”.
3) The expression E x A is used by Friese et al. [3] for a plane electromagnetic wave.
If E=9RE, E = E,exp[i(kz — wt)], we have A = —iE/ o because
A=—[Edt (1.6)
(symbol “breve’ marks complex vectors and numbers except i). The authors [3] wrote, “The angular momentum
can be found from the electric field E and its complex conjugate E by integrating over all spatial elements dV
giving
J=[ExEdV /2in” (1.7)
(for short I set the permittivity £ =1).

4) Nieminen et al. [4] wrote that, “The Cartesian components of the time-averaged spin angular
momentum flux density s are



s, =3(E,E,))/ o, s, =3(E,E)/e s,=3I(EE,) " (1.8)
5) Crichton & Marston [5] claimed, “The spin angular momentum density,
1 — . _
Si :%Ej(_lgijk)Ew (1.9)

is appropriately named in that there is no moment arm.”
Please note that a corollary of this definition of the spin density is a circularly polarized plane wave,

E = E, exp[i(kz — ot)](x+iy), A=-iE/o, (1.10)
has the spin density
s=ExA=2z(E,A -E,A)/2=2R(EE,)/ 0=2E{ /o, (1.11)

which ratio to the energy density U = EZ, s, /U =1/, is that the quantum theory prescribes.

At the same time, however, on the other hand, all physicists insist that a circularly polarized plane wave
(1.10) does not carry spin. It is a matter of common opinion that
Jj=rx<p>=rx<ExB> (1.12)
encompasses both the spin and orbital angular momentum density of electromagnetic field. (Here p=ExB is

the linear momentum volume density or flux density of electromagnetic mass-energy, i.e. the Poynting vector).
Therefore a circularly polarized plane wave carry neither orbital angular momentum nor spin in direct
contradiction to the quantum theory. | present here a series of quotations for a confirmation of my statement.

1) Heitler [6] wrote, “In Maxwell’s theory the Poynting vector is interpreted as the density of momentum
of the field. We can then also define an angular momentum relative to a given point or to a given axis

J:jr><<ExB>dv. (1.13)

A plane wave traveling in the z-direction and with infinite extension in the xy-directions can have no angular
momentum about the z-axis, because Ex B is in the z-directionand r x <ExB >=0.

2) Simmonds and Guttmann [7]: “For the plane wave states, E and B were mutually perpendicular and
their cross product was parallel to the direction of propagation. It follows that the total angular momentum of a
plane wave can have no component of angular momentum parallel to the direction of propagation”.

3) Stewart [8]: “The angular momentum of a classical electromagnetic plane wave of arbitrary extent is
predicted to be, on theoretical grounds, exactly zero”.

Naturally, this contradiction shows strong evidence for a defect of the classical field theory, and this
defect causes many conflicts, vagueness, and paradoxes concerning electrodynamics angular momentum. This
was recognized long ago, and | present here a series of quotations for a confirmation of my statement.

1) Zambrini, and Barnett [9]: “Experimental observations appear to be in conflict with theoretical
considerations”.

2) Nieminen et al. [4]: “If the above expression (1.12) was in fact the correct angular momentum flux
density, then the angular momentum of a circularly polarized plane would be zero. Since the correct classical
angular momentum density must agree with the classical limit of the quantum angular momentum density, this
must be incorrect.”

3) Allen and Padgett [10]: “A circularly polarised plane wave has a linear momentum density only in
the z-direction. When this is crossed with r to give the angular momentum density, there is no contribution in
the z-direction. Thus, such a beam has no angular momentum to transfer to a waveplate. Yet, Beth was able to
make such a transfer — a paradox.”

4) Khrapko [11]: “The classical experiment of Beth [12, 13] was carried out almost 70 years ago.
However, this experiment raises questions. The Poynting vector was everywhere equal to zero in the
experiment. How is it therefore that the plate experienced a torque and rotated?”

5) Khrapko [14]: “Suppose that a quasiplane wave is absorbed by a round flat target which is divided
concentrically into outer and inner parts. According to previous reasoning, the inner part of the target will not
perceive a torque. Nevertheless R. Feynman [15] clearly showed how a circularly polarized plane wave transfers



a torque to an absorbing medium. What is true? And if R. Feynman is right, how can one express the torque in
terms of ponderomotive forces?”

We intend to solve the angular momentum problems of the electrodynamics in this paper. We show that
the desire of using a spin density proved to be correct for evaluating of the electrodynamics spin because the
moment of momentum (1.12) is an orbital angular momentum density and does not encompass the spin.
However, the expression E x A is not a true expression for the spin density. This expression yields correct
results in simplest cases randomly. Instead we present a true spin density of electromagnetic waves, Y™, and
demonstrate a way for its deducing. Our result can be expressed by a formula for a sum of the orbital and spin
angular momentums of an electromagnetic wave in a volume dV,

dJ =[rx(ExB)+Y"]dV, (1.14)
or, in the general case,
dI™ = 2x0PTHY YY)V, (1.15)

(here T*" is the Maxwell energy-momentum tensor).
Il. THE CANONICAL TENSORS
Unfortunately, authors [1 — 5] do not explain that the expression E x A is a component of the canonical

spin tensor. The point is that the classical field theory starts from a free field Lagrangian. In the case of the
standard classical electrodynamics this Lagrangian is the canonical Lagrangian

IE =-F,F*"14, F,=20,A,, #Vv,.=0123. (2.1)
Using this Lagrangian, by the Lagrange formalism physicists obtain the canonical energy-momentum tensor
oL
T#=0"A, ——S——g*L=-0"AF" +9"F ,F7/4, 2.2
c o 8(8HAQ) g c o g aff ( )
and the canonical total angular momentum tensor
J A= oxlhT My A (2.3)
where
oL
Y= 2APe & = AT, (2.4)
c 0(0,A,)

is the canonical spin tensor.
Here F*" =-F" F = F“ﬂgﬂagvﬂ is the field strength tensor. The sense of its components is

F"=-E', Fy=E, F'=-BY, F,=-B;,, B, =B, B“=Be", ij..=123. (2.5)
For example,
F®=F,=E*=E,, F¥=F,=-B*=-B,. (2.6)
The component
YU = 2AUF 0 = 2AUET —E'Al —ETAT=ExA (2.7)
is a volume density of spin. This means that
dst =y dv (2.8)
is spin of electromagnetic field inside the spatial element dV . The component
y" = 2AUF % = 2AUB K (2.9)

c

is a flux density of spin in the direction of the x* axis. For example,



nyz :2A[xBy]z — AXByZ _A)’BXZ — AXBX +AyBy, (210)

c

and
dS, =dS¥ =Y da, = (A*B, + AyBy)daZ (2.11)

is z-component of spin passing through the surface element da, per unit time.
However, the canonical tensors (2.2), (2.4) are not electrodynamics tensors. They obviously contradict
experiments. In particular, T** is nonsymmetrical and has a wrong divergence:
C

A A oK
au'lc' "=0"A0 F°. (2.12)
We show in the next Sections that Y ™ contradicts experiments as well. For this purpose we apply the

expression to a plane wave and to a standing wave.

I1l. PLANE WAVE
Let a right-circularly polarized electromagnetic plane wave, which propagates in z-direction, takes the
form
E* =cos(z-t), EY =-sin(z-t), B* =sin(z-t), B’ =cos(z-t) (3.1)
(for short we set k = ® =1). Because A = —J' Edt, we have
A* =sin(z-t), AY =cos(z—-t), Y*' =1 Y =1. (3.2)

This result is adequate because the Poynting vector is E*BY —EYB* =1, and the ratio of spin to energy,
S/U =1/w, holds. But a calculation of other components of the spin tensor yields

X! X =2 ZX 2
Y® = A*B, =sin’(z-t), SCKV = A’B, =cos”(z-t). (3.3)

C
This result is absurd, because it means that there are spin flux in the direction, which is transverse to the
direction of the wave propagation.
Let us take now the sum of the wave (3.1)

E =cos(z-t), E)=-sin(z-t), B =sin(z—-t), B =cos(z-t). (3.4)
and a wave reflecting off a perfect conductive plane z =0
E,; =—cos(z+t), E;) =-sin(z+t), B, =-sin(z+t), B) =cos(z+t). (3.5)
The total field is
E* =E+E) =2sinzsint, EY=E’+E) =-2sinzcost, (3.6)
B* =B, + B, =—-2coszsint, BY =B + B, =2coszcost. (3.7)
Magnetic vector potential, according to A = —j Edt, is
A* =2sinzcost, A’ =2sinzsint. (3.8)
So, we can calculate components of the spin tensor:
¥Xy0 = 4sin? z, Y™ =0. (3.9)

The result Y** =0 is adequate because there is no spin flux to the conductive plane, but Y*° = 4sin? z raises
C C

a doubt because there is no cause of dividing electromagnetic spin into layers. As is known, energy density is
constant: (E* +B?%)/2=2.
Unfortunately, the calculation of other components of the spin tensor yields the absurd result as well

Y® = A'B, =-sin2zsin2t, Y’ =A’B, =sin2zsin2t. (3.10)

c c



IV. AMAGNETIC ADDITION TO THE CANONICAL SPIN TENSOR

The canonical spin tensor (2.4), (2.7) is obvious not symmetric in the sense of electric - magnetic
symmetry. It represents only the electric field, E, A = —j Edt . It calls forth the unsatisfactory result (3.9) for

Y ¥°. So, it makes sense to symmetrize the spin tensor by adding a term
Y = 1A (4.1)

c.m
The point is that the electrodynamics is asymmetric. Magnetic induction is closed, but magnetic field strength
has electric current as a source:

0y F, =0, 0,F*" =-]". 4.2)
So, a magnetic vector potential A, exists, but, generally speaking, an electric vector potential does not exist.
However, when currents are absent the symmetry is restored, and a possibility to introduce an electric
multivector potential TT*" appears. The electric multivector potential satisfies the equation

o " =F*, (4.3)
A covariant pseudovector, dual relative to the multivector potential,
I = eWVHﬂ’”, 4.4

is an analog of the magnetic vector potential A_. We name it the electric vector potential. It is inserted into
(4.1). Pseudotensor F/" is dual to the field strength tensor F*",

FA = g"“gvﬂeaﬂyng‘s /2. (4.5)
The sense of its components is
FO B!, Fi=_gkE, . (4.6)
For example,
F> =B*, F”=-E,. 4.7)
So, accordingly with (4.1), omitting * of IT, we have,
Y "= fF1 =(1'B! -T1'B")/2=(I1xB)/2. (4.8)
Y = 1l F i (4.9)
For example,
Y W= -MYFY = (ITE, +IIVE,)/2, Y ™=-TI"'FY =(IT°E, +IT"E,)/ 2. (4.10)
A relation between IT and F can be readily obtained in the vector form as follows. If divD =0, then
D=curlIl. Ifalso oD/¢ot =curlH, then H =0I1/dt, but we set H=B, so
oll/ot=B. (4.11)
We consider now a total spin tensor corresponding to the canonical spin tensor (2.4):
th MY 24 Y M= AP TR MY (4.12)
For the plane wave (3.1) we have the same adequate result (3.2),
IT* =cos(z—t), II’ =-sin(z-t), Y o1, Y v—1 (4.13)
But the calculation of other components of the spin tensor yields the absurd result as well
Y* = (A*B, +11"E,)/2=1/2, Y™ =(A’B,+I1'E,)/2=1/2. (4.14)

tot tot
However, the magnetic part of spin tensor flattens the layers (3.3) of spin flux in the direction, which is
transverse to the direction of the wave propagation.
For the standing wave (3.6) - (3.8) we have, instead of (3.8) - (3.10),



I1* =2coszcost, I1Y =2coszsint. Y ° =2, thxyZ =0. Y*=0 thyzx =0 (4.15)

tot tot
The results are adequate because the energy density is (E* +B?)/2 =2, and the ratio of spin to energy,
S/U =1/w, holds.
Thus the magnetic part of spin tensor flattens the spin layers and eliminates the transverse spin flux in
the case of standing waves. This proves usefulness of adding the magnetic term (4.1) to the canonical spin

tensor (2.4). Nevertheless the transverse spin flux in the case of plane waves proves that the canonical spin
tensor is inadequate even with the magnetic addition.

V. THE STANDARD TENSORS

We must recognize that the canonical energy-momentum tensor (2.2), T™, is inadequate as well as the
C
canonical spin tensor (2.4). It obviously contradicts experiments. It is not symmetric and has a wrong
divergence
Mo AL oK
ap'[ =0"A0_F°". (5.1)

And so, physicists are forced to modify the canonical tensors. Following [16, 17], physicists accomplish a
Belinfante-Rosenfeld procedure. They add specific terms to the canonical tensors and arrive to the standard

energy-momentum tensor ®* , the standard total angular momentum tensor J ***, and the standard spin tensor
st

Y ™ which is zero,

st

O =T"-0,Y"[2=-0"AF" +g"F,F"/4+0,(A'F"),

~ def

Y Y MY MY Vi L NPE Y (5.2)
‘s]t Mw: \3 MLV_aK(XUL Y;' H]VK) , (53)
y = gl = y My 2 A ERIY — 0, (5.4)

st st c

But the standard energy-momentum tensor ®™ obviously contradicts experiments as well. It is not
symmetric and has a wrong divergence

0,0 =0,T" =0"A,0,F™. (5.5)
Tensor ® is never used. The Maxwell tensor,
T}Lu:_F)LGFHKgGK+g}LHFGKFGK/4’ (56)

is used in the electrodynamics instead of ®™ . For example, it is the Maxwell tensor that is used in the standard
expression for the angular momentum of electromagnetic field (1.3),

I 2J'x[“T edv, e J :jrx(Ex B)dV , (5.7)
rather than J*" = 2jx[“®vl°~dva e 1= j r<(ExB—Aj)dV. (5.8)

The main defect of the standard tensors is the absence of spin, S{ “v=0. Neither Eq. (5.7), nor Eq. (5.8)

contains a spin term. In contrast to the canonical pair, T, Y ", the standard pair, ® ™, Y Mv=0, is defective.
C C S

Standard energy-momentum tensor is not accompanied by a spin tensor.

The absence of spin in the standard electrodynamics implies an absurd corollary: a circularly polarized
plane wave has no angular momentum at all [1, 2, 6 — 8, 18, 19] because E x B is parallel to the direction of
propagation and Eq. (5.7) gives zero. But this corollary is in direct contradiction to quantum theory [20]. In



accordance with this absurdity, the author [8] uses mystical concepts of “angular momentum in an actual form”
and “angular momentum in an potential form”.

Integral (1.3), (5.7) is zero in another important case. Jt =0 for the Beth experiment [12, 13] because

E xB =0. In the Beth experiment a beam of circularly polarized light exerted a torque on a doubly refracting
plate, which changes the state of polarization of the light beam. But, it is evident that the Poynting vector equals
to zero in the experiment because the passed beam is added with the reflected one [11]. Therefore the result of
the Beth experiment cannot be understood in the frame of the standard electrodynamics without spin. So, we
must add a concept of spin to the standard electrodynamics.

VI. THE FICTITIOUS DIVISION OF THE ORBITAL ANGULAR MOMENTUM

The absence of the standard spin tensor provokes physicists into a search of spin inside the orbital
angular momentum (5.7). They try to decompose (5.7) into an “orbital” and “spin” parts (1.4), (1.5),

Jt:J‘rx(ExB)dV=L+S. (6.1)
For this purpose

B=VxA, (6.2)
or

E=VxF, F:—jathV, (6.3)

Antr

is substituted into (5.7) for an electromagnetic beam [2, 21, 22, 8]. As a result, Eq. (6.2) gives (1.5)

Jt:'[rx(EiVAi)dV + [(ExA)V, (6.4)
and Eq. (6.3) gives

{:jrx(B‘VFi)dv +I(FxB)dV. (6.5)

But I think these decompositions do not give grounds to interpret the summands as orbital and spin components
of the angular momentum of the beam.

Firstly, neither Ex A nor FxB are spin tensors.

Secondly, for a circularly polarized beam without an azimuth phase structure the contribution to the
integral arises from the skin of the beam where E and B fields have a component parallel to the wave vector (the
field lines are closed loops) and the mass-energy whirls around the bulk of the beam [2, 7]. It confirms the
orbital character of the angular momentum. And I think that the transformation of the integral (6.1) over skin of
the beam into an integral over bulk of the beam proves nothing. For example, consider an analogous

integral j rx jdV where j is an electric current density of a long solenoid. We have
[rxjdv = [rx(VxH)V = [(r'a H, —r'o;H,)dV = [[8,(r'H,) =0, r'H, =8,(r'H,) +6,r'H,JdV = [ 2HdV
The equality between the moment of electric current and an integral of H proves nothing.

VIl. TRUE ELECTRODYNAMICS SPIN TENSOR

It was explained [11, 23, 24] that the Belinfante-Rosenfeld’s modification [16, 17] of the canonical pair
(2.2), (2.4),

Tl/‘:_alA‘/F#V+gﬂ/1FaﬂFaﬂ/4’ YﬂyV:_ZA[iFy]v’
¢ c
does not lead to true energy- momentum and spin tensors. We must change this standard procedure. We must

use another addends. Our addends are
t#=0 A'F*,  s*=2AMo"A", (7.1)



The standard addends,
t#“=0,(A*F*"), s*=2AFFH
st v "ot ’
lead to the defective standard pair (5.2), (5.4)
0% =—0"AF" +g™F F714+0, (AF™),  Y*'=0.

Our addends (7.1) satisfy the equation
2t=pg g (7.2)
as well as the standard addends satisfy. But using our addends we get, instead of (5.2), (5.4), the Maxwell

energy-momentum tensor
T =T"+t“=-F"F" +g"“F,,F" /4 (7.3)

and a tensor, which was proved to be a doubled electric part of the spin tensor
2YM =y Mg gt = 2 AT M AN, (7.4)

This result was submitted to “JETP Letters” on May 12, 1998. But, this result was not final one. The true spin
tensor must depend symmetrically on the magnetic vector potential A, and on the electric vector potential IT

(4.4). So the spin tensor of electromagnetic waves has the form
YMW _ YMW'F Y?»uv _ A[kaM Ap] + H[KaMHP-] , (75)

e

and the total angular momentum has the form
IM = j(zx”T ALYV, or = jrx (ExB)dV +jY”°dv (7.6)
instead of (1.3).

A new spin tensor (7.5) was presented and applied in a series of works [25] and also at web sites
http://www.sciprint.org, http://www.mai.ru/projects/mai_works/.

When calculating this tensor, we must take account of 6 = g“d, = -0, . For the plane wave using (3.2)
and (4.13) yields

Y01, Y™ =1 Y®=Y"™=0. (7.7)
For the standing wave using (3.8), (4.15) yields
Y¥ =2, Y¥=0, Y¥=Y"=0, (7.8)

which was to be demonstrated.
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