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We solve the angular momentum problems of the electrodynamics. We show that a desire of using a 

spin density proved to be correct for evaluating of the electrodynamics spin because the moment of 
momentum is an orbital angular momentum density and does not encompass the spin. However, the 
expression  is not a true expression for the spin density. This expression yields correct results in 
simplest cases randomly. Its improvement is hopeless. Instead we present a true spin density of 
electromagnetic waves and demonstrate a way for its deducing. Our result can be expressed by a sum 
of the orbital and spin angular momentums. 
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I. INTRODUCTION 

 
There is a scandalous situation in the modern electrodynamics.  
On the one hand,  

AEs ×=                                                            (1.1) 
is considered as a spin volume density of an electromagnetic field and  

∫ ×=
V

dVAES                                                      (1.2) 

is considered as the spin of an electromagnetic field in the volume V. (Here E and A are the electric field 
strength and the magnetic vector potential, respectively). I present here a series of quotations for a confirmation 
of my statement.  

1) Jackson [1] divides the angular momentum of a distribution of electromagnetic fields  

∫ ××= dV)( BErJ                                                                 (1.3) 
into a spin and an orbital parts, 

∫ ∇×+×= dVAE i
i ])([ rAEJ                                                       (1.4) 

(for short I set 1,10 == cµ ). He wrote, “The first term is sometimes identified with the ‘spin’ of the photon”.  
2) Also Ohanian [2] expresses the angular momentum by a sum of two terms: 

∫ ∫ ×+∇×= dVdVAE i
i AErJ )( .                                                  (1.5) 

He wrote, “The first term in Eq. (1.5) represents the orbital angular momentum, and the second term the spin”.  
3) The expression  is used by Friese et al.AE×  [3] for a plane electromagnetic wave.  

If EE
(

ℜ= , )](exp[0 tkzi ω−= EE
((

, we have ω−= /EA
((

i  because  

∫−= dtEA
((

                                                           (1.6) 
(symbol ‘breve’ marks complex vectors and numbers except i). The authors [3] wrote, “The angular momentum 
can be found from the electric field E

(
 and its complex conjugate E  by integrating over all spatial elements dV  

giving  
ω×= ∫ idV 2/EEJ

((
”                                                          (1.7) 

(for short I set the permittivity 1=ε ).  
 4) Nieminen et al. [4] wrote that, “The Cartesian components of the time-averaged spin angular 
momentum flux density s  are 



ωℑ=ωℑ=ωℑ= /)(,/)(,/)( yxzxzyzyx EEsEEsEEs
(((

”.                                        (1.8) 
 5) Crichton & Marston [5] claimed, “The spin angular momentum density,  

kijkji EiEs
(

)(
8

1
ε−

πω
= ,                                                    (1.9) 

is appropriately named in that there is no moment arm.” 
 Please note that a corollary of this definition of the spin density is a circularly polarized plane wave, 

))]((exp[0 yxE itkziE +ω−=
(

,   ω−= /EA
((

i ,                                       (1.10) 
has the spin density 

ω=ωℜ=−=×= //)(2/)( 2
0EEiEAEAE yxxyyx zzzAEs

(((
,                                (1.11) 

which ratio to the energy density , 2
0EU = ω= /1/Usz , is that the quantum theory prescribes. 

 At the same time, however, on the other hand, all physicists insist that a circularly polarized plane wave 
(1.10) does not carry spin. It is a matter of common opinion that 

>×<×>=<×= BErprj                                                       (1.12) 
encompasses both the spin and orbital angular momentum density of electromagnetic field. (Here BEp ×=  is 
the linear momentum volume density or flux density of electromagnetic mass-energy, i.e. the Poynting vector). 
Therefore a circularly polarized plane wave carry neither orbital angular momentum nor spin in direct 
contradiction to the quantum theory. I present here a series of quotations for a confirmation of my statement.  
 1) Heitler [6] wrote, “In Maxwell’s theory the Poynting vector is interpreted as the density of momentum 
of the field. We can then also define an angular momentum relative to a given point or to a given axis  

dV∫ >×<×= BErJ .                                                      (1.13) 
A plane wave traveling in the z-direction and with infinite extension in the xy-directions can have no angular 
momentum about the z-axis, because  is in the z-direction and BE× 0>=×<× BEr .  
 2) Simmonds and Guttmann [7]: “For the plane wave states, E and B were mutually perpendicular and 
their cross product was parallel to the direction of propagation. It follows that the total angular momentum of a 
plane wave can have no component of angular momentum parallel to the direction of propagation”. 
 3) Stewart [8]: “The angular momentum of a classical electromagnetic plane wave of arbitrary extent is 
predicted to be, on theoretical grounds, exactly zero”. 
 Naturally, this contradiction shows strong evidence for a defect of the classical field theory, and this 
defect causes many conflicts, vagueness, and paradoxes concerning electrodynamics angular momentum. This 
was recognized long ago, and I present here a series of quotations for a confirmation of my statement.  

1) Zambrini, and Barnett [9]: “Experimental observations appear to be in conflict with theoretical 
considerations”. 

2) Nieminen et al. [4]: “If the above expression (1.12) was in fact the correct angular momentum flux 
density, then the angular momentum of a circularly polarized plane would be zero. Since the correct classical 
angular momentum density must agree with the classical limit of the quantum angular momentum density, this 
must be incorrect.” 

3) Allen and Padgett [10]:  “A circularly polarised plane wave has a linear momentum density only in 
the z-direction. When this is crossed with r to give the angular momentum density, there is no contribution in 
the z-direction. Thus, such a beam has no angular momentum to transfer to a waveplate. Yet, Beth was able to 
make such a transfer – a paradox.” 
 4) Khrapko [11]: “The classical experiment of Beth [12, 13] was carried out almost 70 years ago. 
However, this experiment raises questions. The Poynting vector was everywhere equal to zero in the 
experiment. How is it therefore that the plate experienced a torque and rotated?” 
 5) Khrapko [14]: “Suppose that a quasiplane wave is absorbed by a round flat target which is divided 
concentrically into outer and inner parts. According to previous reasoning, the inner part of the target will not 
perceive a torque. Nevertheless R. Feynman [15] clearly showed how a circularly polarized plane wave transfers 
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a torque to an absorbing medium. What is true? And if R. Feynman is right, how can one express the torque in 
terms of ponderomotive forces?” 
 We intend to solve the angular momentum problems of the electrodynamics in this paper. We show that 
the desire of using a spin density proved to be correct for evaluating of the electrodynamics spin because the 
moment of momentum (1.12) is an orbital angular momentum density and does not encompass the spin. 
However, the expression  is not a true expression for the spin density. This expression yields correct 
results in simplest cases randomly. Instead we present a true spin density of electromagnetic waves, 

AE×
λµνΥ , and 

demonstrate a way for its deducing. Our result can be expressed by a formula for a sum of the orbital and spin 
angular momentums of an electromagnetic wave in a volume dV, 

dVd ij ])([ 0Υ+××= BErJ ,                                          (1.14) 
or, in the general case, 

ν
λµννµλλµ Υ+= dVTxdJ )2( ][                                            (1.15) 

(here µνT  is the Maxwell energy-momentum tensor). 
 

II. THE CANONICAL TENSORS 
 

Unfortunately, authors [1 – 5] do not explain that the expression AE×  is a component of the canonical 
spin tensor. The point is that the classical field theory starts from a free field Lagrangian. In the case of the 
standard classical electrodynamics this Lagrangian is the canonical Lagrangian  

4/µν
µν−= FF

c
L ,   ][2 νµµν ∂= AF ,    3,2,1,0,..., =νµ .                                  (2.1) 

Using this Lagrangian, by the Lagrange formalism physicists obtain the canonical energy-momentum tensor 

4/
)(

αβ
αβ

λµµα
α

λλµ

αµ
α

λλµ FFgFAg
A

AT
c

+−∂=−
∂∂

∂
∂=

c

c L
L

,                          (2.2) 

and the canonical total angular momentum tensor 
λµννµλλµν

ccc
TxJ Υ+= ][2                                                                                      (2.3) 

where 

νµλ

αν

µ
α

λλµν −=
∂∂

∂
δ−=Υ ][][ 2

)(
2 FA

A
A

c

c
L

,                                                             (2.4) 

is the canonical spin tensor.  
 Here ,  is the field strength tensor. The sense of its components is νµµν FF −= νβµα

αβ
µν ggFF =

3,2,1,...,,,,,,, 0
0 ===−=−==−= jieBBeBBBFBFEFEF ijk

ij
k

ijk
ij

kijij
ijij

ii
ii .            (2.5) 

For example,  
z

z
xy

xy
x

x
x

x BBFFEEFF −=−===== ,0
0 .                                               (2.6) 

The component  
AE×=−=−=−=Υ ijjijijiij

c
AEAEEAFA ][0][0 22                                          (2.7) 

is a volume density of spin. This means that  
dVdS ij

c

ij 0Υ=                                                                          (2.8) 

is spin of electromagnetic field inside the spatial element dV . The component  
kjikjiijk

c
BAFA ][][ 22 =−=Υ                                                             (2.9) 

is a flux density of spin in the direction of the  axis. For example,  kx
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y
y

x
xxzyyzxzyxxyz

c
BABABABABA +=−==Υ ][2 ,                                            (2.10) 

and 

zy
y

x
x

z
xyz

c

xy
z daBABAdadSdS )( +=Υ==                                                    (2.11) 

is z-component of spin passing through the surface element  per unit time.  zda
However, the canonical tensors (2.2), (2.4) are not electrodynamics tensors. They obviously contradict 

experiments. In particular,  is nonsymmetrical and has a wrong divergence:  λµ

c
T

σκ
κσ

λλµ
µ ∂∂=∂ FAT

c
.                                                               (2.12) 

We show in the next Sections that  contradicts experiments as well. For this purpose we apply the 

expression to a plane wave and to a standing wave.  

λµνΥ
c

 
III. PLANE WAVE 

 
Let a right-circularly polarized electromagnetic plane wave, which propagates in z-direction, takes the 

form 
)cos(),sin(),sin(),cos( tzBtzBtzEtzE yxyx −=−=−−=−=                             (3.1) 

(for short we set ). Because , we have  1=ω=k ∫−= dtEA

1,1),cos(),sin( 0 =Υ=Υ−=−= xyz

c

xy

c

yx tzAtzA .                                              (3.2) 

This result is adequate because the Poynting vector is 1=− xyyx BEBE , and the ratio of spin to energy, 
ω/1/ =US , holds. But a calculation of other components of the spin tensor yields 

)(sin 2 tzBA x
xzxy

c
−==Υ ,          .                                        (3.3) )(cos2 tzBA y

yyzx

c
−==Υ

This result is absurd, because it means that there are spin flux in the direction, which is transverse to the 
direction of the wave propagation. 

Let us take now the sum of the wave (3.1)  
)cos(),sin(),sin(),cos( 1111 tzBtzBtzEtzE yxyx −=−=−−=−= .                            (3.4) 

and a wave reflecting off a perfect conductive plane 0=z  
)cos(),sin(),sin(),cos( 2222 tzBtzBtzEtzE yxyx +=+−=+−=+−= .                            (3.5) 

The total field is 
tzEEE xxx sinsin221 =+= ,          ,                                      (3.6) tzEEE yyy cossin221 −=+=

tzBBB xxx sincos221 −=+= ,          .                                     (3.7) tzBBB yyy coscos221 =+=

Magnetic vector potential, according to ∫−= dtEA , is 

tzAtzA yx sinsin2,cossin2 == .                                                 (3.8) 
So, we can calculate components of the spin tensor: 

0,sin4 20 =Υ=Υ xyz

c

xy

c
z .                                                          (3.9) 

The result  is adequate because there is no spin flux to the conductive plane, but  raises 

a doubt because there is no cause of dividing electromagnetic spin into layers. As is known, energy density is 
constant: . 

0=Υ xyz

c
zxy

c

20 sin4=Υ

22/)( 22 =+ BE
Unfortunately, the calculation of other components of the spin tensor yields the absurd result as well 

tzBA x
xzxy

c
2sin2sin−==Υ ,       .                                   (3.10) tzBA y

yyzx

c
2sin2sin==Υ
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IV. A MAGNETIC ADDITION TO THE CANONICAL SPIN TENSOR 

 
The canonical spin tensor (2.4), (2.7) is obvious not symmetric in the sense of electric - magnetic 

symmetry. It represents only the electric field, dt∫−= EAE, . It calls forth the unsatisfactory result (3.9) for 

. So, it makes sense to symmetrize the spin tensor by adding a term 0xyΥ
νµλλµν ][

. ∗∗Π−=Υ F
mc

.                                                                         (4.1) 

The point is that the electrodynamics is asymmetric. Magnetic induction is closed, but magnetic field strength 
has electric current as a source: 

µµν
νµνλ jFF −=∂=∂ ,0][ .                                                          (4.2) 

So, a magnetic vector potential  exists, but, generally speaking, an electric vector potential does not exist. 
However, when currents are absent the symmetry is restored, and a possibility to introduce an electric 
multivector potential  appears. The electric multivector potential satisfies the equation 

νA

λµνΠ
λµλµν

ν F=Π∂ .                                                                       (4.3) 
A covariant pseudovector, dual relative to the multivector potential, 

λµν
κλµνκ Π=Π∗ e ,                                                                    (4.4) 

is an analog of the magnetic vector potential . We name it the electric vector potential. It is inserted into 
(4.1). Pseudotensor  is dual to the field strength tensor , 

κA
µν
∗F µνF

2/γδ
αβγδ

νβµαµν FeggF =∗ .                                                       (4.5) 
The sense of its components is 

k
ijkijii EeFBF −== ∗∗ ,0 .                                                       (4.6) 

For example,  
x

yzxx EFBF −== ∗∗ ,0 .                                                           (4.7) 
So, accordingly with (4.1), omitting  of , we have, ∗ Π

2/)(2/)(0][0

.
B×Π=Π−Π=Π−=Υ ∗

ijjijiij

mc
BBF .                              (4.8) 

kjiijk

mc
F ][

. ∗Π−=Υ .                                                            (4.9) 

For example, 
2/)(][

. y
y

x
xzyxxyz

mc
EEF Π+Π=Π−=Υ ∗ ,        .                 (4.10) 2/)(][

. x
x

z
zyxzzxy

mc
EEF Π+Π=Π−=Υ ∗

A relation between  and  can be readily obtained in the vector form as follows. If , then 
. If also , then 

Π F 0div =D
Π= curlD HD curl/ =∂∂ t t∂Π∂= /H , but we set BH = , so   

B=∂Π∂ t/ .                                                                     (4.11) 
We consider now a total spin tensor corresponding to the canonical spin tensor (2.4): 

νµλνµλλµνλµνλµν ][][

.
2/ ∗∗Π−−=Υ+Υ=Υ FFA

mcctot
.                                                  (4.12) 

For the plane wave (3.1) we have the same adequate result (3.2), 
1,1),sin(),cos( 0 =Υ=Υ−−=Π−=Π xyz

tot

xy

tot

yx tztz                                     (4.13) 

But the calculation of other components of the spin tensor yields the absurd result as well 
2/12/)( =Π+=Υ x

x
x

xzxy

tot
EBA ,      .                (4.14) 2/12/)( =Π+=Υ y

y
y

yyzx

tot
EBA

However, the magnetic part of spin tensor flattens the layers (3.3) of spin flux in the direction, which is 
transverse to the direction of the wave propagation. 
 For the standing wave (3.6) - (3.8) we have, instead of (3.8) - (3.10), 
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tztz yx sincos2,coscos2 =Π=Π .    .                  (4.15) 0,20 =Υ=Υ xyz

tot

xy

tot
0=Υ zxy

tot
0=Υ yzx

tot

The results are adequate because the energy density is , and the ratio of spin to energy, 22/)( 22 =+ BE
ω/1/ =US , holds. 

Thus the magnetic part of spin tensor flattens the spin layers and eliminates the transverse spin flux in 
the case of standing waves. This proves usefulness of adding the magnetic term (4.1) to the canonical spin 
tensor (2.4). Nevertheless the transverse spin flux in the case of plane waves proves that the canonical spin 
tensor is inadequate even with the magnetic addition. 
 

V. THE STANDARD TENSORS 
  

We must recognize that the canonical energy-momentum tensor (2.2), , is inadequate as well as the 

canonical spin tensor (2.4). It obviously contradicts experiments. It is not symmetric and has a wrong 
divergence 

λµ

c
T

σκ
κσ

λλµ
µ ∂∂=∂ FAT

c
.                                                    (5.1) 

And so, physicists are forced to modify the canonical tensors. Following [16, 17], physicists accomplish a 
Belinfante-Rosenfeld procedure. They add specific terms to the canonical tensors and arrive to the standard 
energy-momentum tensor , the standard total angular momentum tensor , and the standard spin tensor 

, which is zero, 

λµΘ λµν

st
J

λµνΥ
st

)(4/2/
~

µνλ
ν

αβ
αβ

λµµν
ν

λλµν
ν

λµλµ FAFFgFAT
cc

∂++−∂=Υ∂−=Θ , 

µνλνλµµνλλµνλµν FA
ccc

def

c
2

~
−=Υ+Υ−Υ=Υ ,                         (5.2) 

)( ]
~

[ νκµλ
κ

λµνλµν Υ∂−=
ccst

xJJ ,                                                                                             (5.3) 
νµλλµνλµν Θ−=Υ ][2xJ

stst
02 ][ =+Υ= νµλλµν FA

c
.                                                               (5.4) 

But the standard energy-momentum tensor  obviously contradicts experiments as well. It is not 
symmetric and has a wrong divergence  

λµΘ

σκ
κσ

λλµ
µ

λµ
µ ∂∂=∂=Θ∂ FAT

c
.                                                    (5.5) 

Tensor  is never used. The Maxwell tensor, Θ
4/σκ

σκ
λµ

σκ
µκλσλµ +−= FFggFFT ,                                        (5.6) 

is used in the electrodynamics instead of . For example, it is the Maxwell tensor that is used in the standard 
expression for the angular momentum of electromagnetic field (1.3),  

λµΘ

∫ α
ανµµν = dVTxJ

st

][2 ,   i.e.   ,                                                    (5.7) ∫ ××= dV
st

)( BErJ

rather than  ,  i.e.    .                                     (5.8) ∫ α
ανµµν

Θ
Θ= dVxJ ][2 ∫ −××=

Θ
dV)( jABErJ

The main defect of the standard tensors is the absence of spin, . Neither Eq. (5.7), nor Eq. (5.8) 

contains a spin term. In contrast to the canonical pair, , the standard pair, , is defective. 

Standard energy-momentum tensor is not accompanied by a spin tensor. 

0=Υ λµν

st
λµνλµ Υ

cc
T , 0, =ΥΘ λµνλµ

st

The absence of spin in the standard electrodynamics implies an absurd corollary: a circularly polarized 
plane wave has no angular momentum at all [1, 2, 6 – 8, 18, 19] because BE×  is parallel to the direction of 
propagation and Eq. (5.7) gives zero. But this corollary is in direct contradiction to quantum theory [20]. In 
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accordance with this absurdity, the author [8] uses mystical concepts of “angular momentum in an actual form” 
and “angular momentum in an potential form”. 
 Integral (1.3), (5.7) is zero in another important case. 0=

st
J  for the Beth experiment [12, 13] because 

. In the Beth experiment a beam of circularly polarized light exerted a torque on a doubly refracting 
plate, which changes the state of polarization of the light beam. But, it is evident that the Poynting vector equals 
to zero in the experiment because the passed beam is added with the reflected one [11]. Therefore the result of 
the Beth experiment cannot be understood in the frame of the standard electrodynamics without spin. So, we 
must add a concept of spin to the standard electrodynamics.  

0=×BE

 
VI. THE FICTITIOUS DIVISION OF THE ORBITAL ANGULAR MOMENTUM 

 
The absence of the standard spin tensor provokes physicists into a search of spin inside the orbital 

angular momentum (5.7). They try to decompose (5.7) into an “orbital” and “spin” parts (1.4), (1.5), 
SLBErJ +=××= ∫ dV

st
)( .                                                 (6.1) 

For this purpose  
AB ×∇= ,                                                                            (6.2) 

or 

FE ×∇= ,        ∫ π
∂

−=
r
dVt

4
B

F ,                                          (6.3) 

is substituted into (5.7) for an electromagnetic beam [2, 21, 22, 8]. As a result, Eq. (6.2) gives (1.5) 

∫ ∫ ×+∇×= dVdVAE i
i

st
)()( AErJ ,                                   (6.4) 

and Eq. (6.3) gives 

∫ ∫ ×+∇×= dVdVFB i
i

st
)()( BFrJ .                                    (6.5) 

But I think these decompositions do not give grounds to interpret the summands as orbital and spin components 
of the angular momentum of the beam.  

Firstly, neither  nor  are spin tensors.  AE× BF×
 Secondly, for a circularly polarized beam without an azimuth phase structure the contribution to the 
integral arises from the skin of the beam where E and B fields have a component parallel to the wave vector (the 
field lines are closed loops) and the mass-energy whirls around the bulk of the beam [2, 7]. It confirms the 
orbital character of the angular momentum. And I think that the transformation of the integral (6.1) over skin of 
the beam into an integral over bulk of the beam proves nothing. For example, consider an analogous 
integral  where j is an electric current density of a long solenoid. We have ∫ × dVjr

∫ ∫ ∫ ∫∫ =∂+∂−∂−∂=∂−∂=×∇×=× dVdVHrHrHrHrdVHrHrdVdV k
i

ik
i

ii
i

ki
i

kki
i

ik
i HHrjr 2])()([)()(  

The equality between the moment of electric current and an integral of H proves nothing. 
 

VII. TRUE ELECTRODYNAMICS SPIN TENSOR 
 
It was explained [11, 23, 24] that the Belinfante-Rosenfeld’s modification [16, 17] of the canonical pair 

(2.2), (2.4),  
4/αβ

αβ
λµµν

ν
λλµ FFgFAT

c
+−∂= ,         , νµλλµν ][2 FA

c
−=Υ

does not lead to true energy- momentum and spin tensors. We must change this standard procedure. We must 
use another addends. Our addends are 

µνλ
ν

λµ FAt ∂= ,       .                                                     (7.1) νµλλµν AAs ][2 ∂=
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The standard addends, 
νµλλµνµνλ

ν
λµ ][2),( FAsFAt

stst
=∂= , 

lead to the defective standard pair (5.2), (5.4)  
)(4/ µνλ

ν
αβ

αβ
λµµν

ν
λλµ FAFFgFA ∂++−∂=Θ ,        . 0=Υ λµν

st

Our addends (7.1) satisfy the equation 
λµν

ν
λµ st ∂=][2                                                                     (7.2) 

as well as the standard addends satisfy. But using our addends we get, instead of (5.2), (5.4), the Maxwell 
energy-momentum tensor 

4/αβ
αβ

λµµν
ν

λλµλµλµ FFgFFtTT
c

+−=+=                                        (7.3) 

and a tensor, which was proved to be a doubled electric part of the spin tensor 
]||[22 µνλλµνλµνλµν ∂=+Υ=Υ AAs

ce
.                                                 (7.4) 

This result was submitted to “JETP Letters” on May 12, 1998. But, this result was not final one. The true spin 
tensor must depend symmetrically on the magnetic vector potential  and on the electric vector potential αA αΠ  
(4.4). So the spin tensor of electromagnetic waves has the form 

][][ µνλµνλλµνλµνλµν Π∂Π+∂=Υ+Υ=Υ AA
me

,                                         (7.5) 

and the total angular momentum has the form 

∫ Υ+= ν
λµννµλλµ dVTxJ )2( ][ ,  or   ∫∫ Υ+××= dVdV ij0)( BErJ                         (7.6) 

instead of (1.3).  
A new spin tensor (7.5) was presented and applied in a series of works [25] and also at web sites 

http://www.sciprint.org, http://www.mai.ru/projects/mai_works/.  
When calculating this tensor, we must take account of . For the plane wave using  (3.2) 

and (4.13) yields 
zz

zzz g −∂=∂=∂

0,1,10 =Υ=Υ=Υ=Υ yzxzxyxyzxy .                                                 (7.7) 
For the standing wave using (3.8), (4.15) yields 

0,0,20 =Υ=Υ=Υ=Υ yzxzxyxyzxy ,                                                 (7.8) 
which was to be demonstrated. 
 

CONCLUSION, NOTES and ACKNOWLEDGEMENTS 
 
This paper conveys new physics. We briefly review existing works concerning electrodynamics spin and 

indicate that existing theory is insufficient to solve spin problems because spin tensor of modern 
electrodynamics is zero. Then we show how a change of the Belinfante-Rosenfeld procedure resolves the 
difficulty by introducing a true electrodynamics spin tensor. Our spin tensor, in particular, doubles a predicted 
angular momentum of a circularly polarized light beam without an azimuth phase structure and explains the 
Beth experiment. 

Unfortunately, materials of this paper were rejected more than 350 times by scientific journals. For 
example (I show an approximate number of the rejections in parentheses): JETP Lett. (8), JETP (13), TMP (10), 
UFN (9), RPJ (70), AJP (14), EJP (4), EPL (5), PRA (3), PRD (4), PRE (2), APP (5), FP (6), PLA (9), OC (2), 
JPA (4), JPB (1), JMP (4), JOPA (3), JMO (2), CJP (1), OL (1), NJP (2), MREJ (3), arXiv (70). In particular, 
PRA rejected a paper “Beth's experiment modification” submitted on Sun, 16 Nov 2003 06:36:00. 
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Unfortunately, Jan Tobochnik, the present-day Editor of AJP, rejected my papers more than 20 times. 
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