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Abstract

A novel Chern-Simons E8 gauge theory of Gravity in D = 15 based on an octic E8 invariant expression
in D = 16 (recently constructed by Cederwall and Palmkvist) is developed. A grand unification model of
gravity with the other forces is very plausible within the framework of a supersymmetric extension (to
incorporate spacetime fermions) of this Chern-Simons E8 gauge theory. We review the construction showing
why the ordinary 11D Chern-Simons Gravity theory (based on the Anti de Sitter group) can be embedded
into a Clifford-algebra valued gauge theory and that an E8 Yang-Mills field theory is a small sector of a
Clifford (16) algebra gauge theory. An E8 gauge bundle formulation was instrumental in the understanding
the topological part of the 11-dim M -theory partition function. The nature of this 11-dim E8 gauge theory
remains unknown. We hope that the Chern-Simons E8 gauge theory of Gravity in D = 15 advanced in this
work may shed some light into solving this problem after a dimensional reduction.

1 INTRODUCTION

Exceptional, Jordan, Division and Clifford algebras are deeply related and essential tools in many
aspects in Physics [3,5,8,9,14,15,16,17,18,19,20]. Ever since the discovery [1] that 11D supergravity, when
dimensionally reduced to an n-dim torus led to maximal supergravity theories with hidden exceptional
symmetries En for n ≤ 8, it has prompted intensive research to explain the higher dimensional origins of
these hidden exceptional En symmetries [2, 6] . More recently, there has been a lot of interest in the infinite-
dim hyperbolic Kac-Moody E10 and non-linearly realized E11 algebras arising in the asymptotic chaotic
oscillatory solutions of Supergravity fields close to cosmological singularities [1,2].

The classification of symmetric spaces associated with the scalars of N extended Supergravity theories,
emerging from compactifications of 11D supergravity to lower dimensions, and the construction of the U -
duality groups as spectrum-generating symmetries for four-dimensional BPS black-holes [6] also involved
exceptional symmetries associated with the exceptional magic Jordan algebras J3[R,C, H, O]. The discovery
of the anomaly free 10-dim heterotic string for the algebra E8×E8 was another hallmark of the importance
of Exceptional Lie groups in Physics.

The E8 group was proposed long ago [24] as a candidate for a grand unification model building in
D = 4. An extensive review of the E6 grand unified models may be found in [26]. The supersymmetric
E8 model has more recently been studied as a fermion family and grand unification model [25] under the
assumption that there is a vacuum gluino condensate but this condensate is not accompanied by a dynamical
generation of a mass gap in the pure E8 gauge sector. Clifford algebras and E8 are key ingredients in Smith’s
D4 −D5 − E6 − E7 − E8 grand unified model in D = 8 [6].

An E8 gauge bundle was instrumental in the understanding the topological part of the M -theory parti-
tion function [27, 32]. A mysterious E8 bundle which restricts from 12-dim to the 11-dim bulk of M theory
can be compatible with 11-dim supersymmetry. The nature of this 11-dim E8 gauge theory remains un-
known. We hope that the Chern-Simons E8 gauge theory of gravity in D = 15 advanced in this work may
shed some light into solving this question.

E8 Yang-Mills theory can naturally be embedded into a Cl(16) algebra Gauge Theory [33] and the
11D Chern-Simons (Super) Gravity [4] is a very small sector of a more fundamental polyvector-valued gauge
theory in Clifford spaces. Polyvector-valued Supersymmetries [11] in Clifford-spaces [3] turned out to be more
fundamental than the supersymmetries associated with M,F theory superalgebras [7,10]. For this reason
we believe that Clifford structures may shed some light into the origins behind the hidden E8 symmetry of
11D Supergravity and reveal more important features underlying M,F theory.
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The main purpose of this work is to develop a Chern-Simons E8 gauge theory of Gravity in D = 15
based on an octic E8 invariant expression in D = 16 recently constructed by [23], and to propose a grand
unification of gravity with all the other forces within the framework of a Supersymmetric extension (to
incorporate spacetime fermions ) of the Chern-Simons E8 gauge theory. Our octic E8 invariant action has
37 terms and contains : (i) the Lanczos-Lovelock Gravitational action associated with the 15-dim boundary
∂M16 of the 16-dim manifold. ; (ii) 5 terms with the same structure as the Pontryagin p4(F IJ) 16-form
associated with the SO(16) spin connection ΩIJ

µ where the indices I, J run from 1, 2, ...., 16; (iii) the fourth
power of the standard quadratic E8 invariant [I2]4 ; (iv) plus 30 additional terms involving powers of the
E8-valued F IJ

µν and Fα
µν field-strength (2-forms).

In the final section we explain how a Clifford algebra gauge theory (that includes the Chern-Simons
gravity action) can itself be embedded into a more fundamental polyvector-valued gauge theory in Clifford
spaces involving tensorial coordinates xµ1µ2 , xµ1µ2µ3 , .... in addition to antisymmetric tensor gauge fields
Aµ1µ2 , Aµ1µ2µ3 , .... . The polyvector-valued supersymmetric extension of this polyvector valued bosonic gauge
theory in Clifford spaces may reveal more important features of a Clifford-algebraic structure underlying
M,F, S theory in D = 11, 12, 13 dimensions. An overview of the basic features of the Extended Relativity
in Clifford spaces can be found in [3] and a polyvector valued generalized supersymmety algebra in Clfford
spaces was presented in [11].

2. A CHERN-SIMONS E8 GAUGE THEORY OF GRAVITY

2.1 E8 Yang-Mills in D = 4 and Clifford-algebra-valued gauge theories

It is well known among the experts that the E8 algebra admits the SO(16) decomposition 248 →
120 ⊕ 128. The E8 admits also a SL(8, R) decomposition [6]. Due to the triality property , the SO(8)
admits the vector 8v and spinor representations 8s,8c. After a triality rotation, the SO(16) vector and
spinor representations decompose as [6]

16→ 8s ⊕ 8c. (2.1a)

128s → 8v ⊕ 56v ⊕ 1⊕ 28⊕ 35v. (2.1b)

128c → 8s ⊕ 56s ⊕ 8c ⊕ 56c. (2.1c)

To connect with (real) Clifford algebras [8], i.e. how to fit E8 into a Clifford structure , start with the
248-dim fundamental representation E8 that admits a SO(16) decomposition given by the 120-dim bivector
representation plus the 128-dim chiral-spinor representations of SO(16). From the modulo 8 periodicity of
Clifford algebras over the reals one has Cl(16) = Cl(2 × 8) = Cl(8) ⊗ Cl(8), meaning, roughly, that the
216 = 256 × 256 Cl(16)-algebra matrices can be obtained effectively by replacing each single one of the
entries of the 28 = 256 = 16× 16 Cl(8)-algebra matrices by the 16× 16 matrices of the second copy of the
Cl(8) algebra. In particular, 120 = 1× 28 + 8× 8 + 28× 1 and 128 = 8 + 56 + 8 + 56 , hence the 248-dim E8

algebra decomposes into a 120 + 128 dim structure such that E8 can be represented indeed within a tensor
product of Cl(8) algebras.

At the E8 Lie algebra level, the E8 gauge connection decomposes into the SO(16) vector I, J = 1, 2, ...16
and (chiral) spinor A = 1, 2, ...128 indices as follows

Aµ = AIJ
µ XIJ +AA

µ YA. XIJ = −XJI . I, J = 1, 2, 3, ...., 16. A = 1, 2, ....., 128. (2.3)

where XIJ , YA are the E8 generators. The Clifford algebra (Cl(8) ⊗ Cl(8) ) structure behind the SO(16)
decomposition of the E8 gauge field AIJ

µ XIJ +AA
µ YA can be deduced from the expansion of the generators

XIJ , YA in terms of the Cl(16) algebra generators. The Cl(16) bivector basis admits the decomposition

XIJ = aIJ
ij (γij ⊗ 1) + bIJ

ij (1⊗ γij) + cIJ
ij (γi ⊗ γj). (2.4)

where γi, are the Clifford algebra generators of the Cl(8) algebra present in Cl(16) = Cl(8)⊗Cl(8); 1 is the
unit Cl(8) algebra element that can be represented by a unit 16× 16 diagonal matrix. The tensor products
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⊗ of the 16× 16 Cl(8)-algebra matrices, like γi ⊗ 1, γi ⊗ γj , ...... furnish a 256× 256 Cl(16)-algebra matrix,
as expected. Therefore, the decomposition in (2.4) yields the 28 + 28 + 8× 8 = 56 + 64 = 120-dim bivector
representation of SO(16); i.e. for each fixed values of IJ there are 120 terms in the r.h.s of (2.4), that match
the number of independent components of the E8 generators XIJ = −XJI , given by 1

2 (16×15) = 120 . The
decomposition of YA is more subtle. A spinor Ψ in 16D has 28 = 256 components and can be decomposed
into a 128 component left-handed spinor ΨA and a 128 component right-handed spinor ΨȦ; The 256 spinor
indices are α = A, Ȧ; β = B, Ḃ, ...... with A,B = 1, 2, ....128 and Ȧ.Ḃ = 1, 2, ..., 128, respectively.

Spinors are elements of right (left) ideals of the Cl(16) algebra and admit the expansion Ψ = Ψαξα in a
256-dim spinor basis ξα which in turn can be expanded as sums of Clifford polyvectors of mixed grade; i.e.
into a sum of scalars, vectors, bivectors, trivectors, .....Minimal left/right ideals elements of Clifford algebras
may be systematically constructed by means of idempotents e2 = e such that the geometric product of
Cl(p, q)e generates the ideal [22] .

The commutation relations of E8 are [6]

[XIJ , XKL] = 4 ( δIK XLJ − δIL XKJ + δJK XIL − δJL XIK ).

[XIJ , Y α] = −1
2

Γαβ
IJ Yβ ; [Y α, Y β ] =

1
4

Γαβ
IJ XIJ , Γαβ

IJ = [ΓI ,ΓJ ]αβ . (2.10)

The combined E8 indices are denoted by A ≡ [IJ ], α ( 120 + 128 = 248 indices in total ) that yield the
Killing metric and the structure constants

ηAB =
1
60

Tr TATB = − 1
60

fACD fBCD (2.11a)

.

f IJ,KL,MN = −8δIK δLJ
MN + permutations; f IJ

αβ = −1
2
ΓIJ

αβ ; ηIJKL = − 1
60

f IJ
CD fKL,CD (2.11b)

We shall proceed with the Cl(16) gauge theory that encodes the exceptional Lie algebra E8 symmetry from
the start. The E8 gauge theory in D = 4 is based on the E8-valued field strengths

F IJ
µν XIJ = (∂µAIJ

ν − ∂νAIJ
µ ) XIJ +AKL

µ AMN
ν [XKL, XMN ] +Aα

µ Aβ
ν [Yα, Yβ ]. (2.12)

FA
µνYα = (∂µAα

ν − ∂νAα
µ) Yα +Aα

µ AIJ
ν [Yα, XIJ ]. (2.13)

The E8 actions are

STopological[E8] =
∫

d4x
1
60

Tr [ FAµν FBρτ TATB ] εµνρτ =
∫

d4x FAµν FBρτ ηAB εµνρτ =

∫
d4x [ F IJ

µν FKL
ρτ ηIJKL + Fα

µνF β
ρτ ηαβ + 2F IJ

µν F β
ρτ ηIJβ ] εµνρτ . (2.14)

where εµνρτ is the covariantized permutation symbol and

SY M [E8] =
∫

d4x
√

g
1
60

Tr [ FAµν FBρτ TATB ] gµρgντ =
∫

d4x
√

g FAµν FBρτ ηAB gµρgντ =

∫
d4x

√
g [ F IJ

µν FKL
ρτ ηIJKL + Fα

µνF β
ρτ ηαβ + 2F IJ

µν F β
ρτ ηIJβ ] gµρgντ . (2.15)

The above E8 actions (are part of ) can be embedded onto more general Cl(16) actions with a much larger
number of terms given by

STopological[Cl(16)] =
∫

d4x < FMµν FNρτ ΓMΓN > εµνρτ =
∫

d4x FMµν FNρτ GMN εµνρτ . (2.16)
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and

SY M [Cl(16)] =
∫

d4x
√

g < FMµν FNρτ ΓMΓN > gµρgντ =
∫

d4x
√

g FMµν FNρτ GMN gµρgντ . (2.17)

where < ΓMΓN > = GMN 1 denotes the scalar part of the Clifford geometric product of the gammas.
Notice that there are a total of 65536 terms in

FMµν FNρτ GMN = FµνFρτ + F I
µνF I

ρτ + F I1I2
µν F I1I2

ρτ + .......... + F I1I2.......I16
µν F I1I2......I16

ρτ . (2.18)

where the indices run as I = 1, 2, .....16. The Clifford algebra Cl(16) has the graded structure ( scalars,
bivectors, trivectors,....., pseudoscalar ) given by

1 16 120 560 1820 4368 8008 11440 12870

11440 8008 4368 1820 560 120 16 1. (2.19)

consistent with the dimension of the Cl(16) algebra 216 = 256× 256 = 65536.
The possibility that one can acommodate another copy of the E8 algebra within the Cl(16) algebraic

structure warrants further investigation by working with the duals of the bivectors XIJ and recurring to the
remaining YȦ generators. The motivation is to understand the full symmetry of the E8×E8 heterotic string
from this Clifford algebraic perspective. A clear embedding is, of course, the following

E8 × E8 ⊂ Cl(8)⊗ Cl(8)⊗ Cl(8)⊗ Cl(8) ⊂ Cl(16)⊗ Cl(16) = Cl(32). (2.20)

where SO(32) ⊂ Cl(32) and SO(32) is also an anomaly free group of the heterotic string that has the same
dimension and rank as E8 × E8.

2.2. An E8 gauge theory of Gravity based on an Octic Invariant

The action that defines a Chern-Simons E8 gauge theory of Gravity in 15-dim is

S =
∫
M16

< F F ...... F >E8 =
∫
M16

(FM1 ∧ FM2 ∧ ...... ∧ FM8) ΥM1M2M3....M8 =

∫
∂M16

L(15)
CS (A,F) (2.20)

The E8 Lie-algebra valued 16-form < F 8 > is closed : d (< FM1TM1 ∧FM2TM2 ∧ ..... ∧FM8TM8 >) = 0
and locally can always be written as an exact form in terms of an E8-valued Chern-Simons 15-form as
I16 = dL(15)

CS (A,F). For instance, when M16 = S16 the 15-dim boundary integral (2.20) is evaluated in
the two coordinate patches of the equator S15 = ∂M16 of S16 leading to the integral of tr(g−1dg)15 (up to
numerical factors ) when the gauge potential A is written locally as A = g−1dg and g belongs to the E8

Lie-algebra. The integral is characterized by the elements of the homotopy group π15(E8). S16 can also be
represented in terms of quaternionic and octonionic projectives spaces as HP 4, OP 2 respectively.

In order to evaluate the operation < ....... >E8 in the action it involves the existence of an octic E8 group
invariant tensor ΥM1M2....M8 that was recently constructed by Cederwall and Palmkvist [23] using the Math-
ematica package GAMMA based on the full machinery of the Fierz identities. The entire octic E8 invariant
contains powers of the SO(16) bivector XIJ and spinorial Y α generators X8, X6Y 2, X4Y 4, X2Y 6, Y 8. The
corresponding number of terms is 6, 11, 12, 5, 2 respectively giving a total of 36 terms for the octic E8 invari-
ant involving 36 numerical coefficients multiplying the corresponding powers of the E8 generators. There is
an extra term ( giving a total of 37 terms ) with an arbitrary constant multiplying the fourth power of the
quadratic invariant I2 = − 1

2 tr[ (F IJ
µν XJ)2 + (Fα

µνYα)2 ].
The Euler-density in 16D corresponds to the Pfaffian associated with the 16× 16 antisymmetric matrix

F IJ where the components F IJ can be read from eq-(2.12). The Euler (Born-Infled) action density is

Pfaffian(F) ≡
√

det F = LEuler = F I1J1 F I2J2 F I3J3 ........ F I8J8 εI1J1I2J2...I8J8 . (2.21)
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such that the exterior derivative of the gravitational 15-dim Lanczos-Lovelock (LL) action L(15)
LL corresponding

to the 15-dim boundary Σ = ∂M16 yields the Euler-density 16-form d LLL = LEuler. Upon inserting the
spacetime indices µ1, µ2, .....µ16, the Euler characteristic class invariant e(TM) of the SO(16) tangent bundle
associated with M16 is given by

SEuler =
∫
M16

εµ1µ2.....µ16 F I1J1
µ1µ2

F I2J2
µ3µ4

........ F I8J8
µ15µ16

εI1J1I2J2...I8J8 =
∫
M16

dL(15)
LL =

∫
Σ=∂M16

L(15)
LL .

(2.22)
Despite the higher powers of the curvature ( after eliminating the spin connection ωab

µ in terms of the

ea
µ field ) the L(15)

Lovelock furnishes equations of motion for the ea
µ field containing at most derivatives of second

order, and not higher, due to the Topological property of the Lovelock terms

d (L(15)
Lovelock) = εa1a2.....a16(R

a1a2 +
ea1ea2

l2
)......(Ra13a14 +

ea13ea14

l2
) T a15 = Euler density in 16D. (2.23)

The exterior derivative of the Lovelock terms can be rewritten compactly as

d (L15
Lovelock) = εI1I2....I16F

I1I2 ......F I15I16 (2.24)

where F I1I2 is the curvature field strength associated with the SO(14, 2) connection ΩI1I2
µ in 16D and which

can be decomposed in terms of the fields ea
µ, ωab

µ , a, b = 1, 2, ...., 15 by identifying ΩaD
µ = 1

l e
a
µ and Ωab

µ = ωab
µ

so that the Torsion and Lorenz curvature 2-forms are

T a(ω, e) = F aD = dΩaD + Ωa
b ∧ ΩbD =

1
l
(dea − ωa

b ∧ eb).

F ab = (dΩab + Ωa
c ∧ Ωcb) + (Ωa

D ∧ ΩDb) = Rab(ω) +
1
l2

ea ∧ eb. Rab(ω) = dωab + ωa
c ∧ ωcb (2.25)

where a length parameter l must be introduced to match dimensions since the connection has units of 1/l.
This l parameter is related to the cosmological constant.

Another invariant is the L15
CS(ΩIJ

µ ) Chern-Simons 15-form associated with the SO(16) spin connection
whose exterior derivative

d (LCS)(ΩIJ
µ ) = F I1

I2
F I2

I3
.......F I7

I8
F I8

I1
⇒

∫
∂M16

(LCS)(ΩIJ
µ ) =

∫
M16

F I1
I2

F I2
I3

.......F I7
I8

F I8
I1

(2.26)

is one of the 5 terms contained in the definition of the Pontryagin p4(F IJ) invariant 16-form (up to numerical
factors) for the SO(14, 2) gauge connection in 16D. As mentioned above, the SO(14, 2) connection ΩIJ

µ can
be broken into the ea

µ field which gauges translations along the 15-dim boundary ∂M16 and the SO(14, 1)
spin connection ωab

µ which gauges the Lorentz group SO(14, 1) associated with the tangent space of the
15-dim boundary ∂M16 and such that the net number of components is 15+ 1

2 (15×14) = 120 = 1
2 (16×15).

The relevant 5 terms contained in the octic E8 invariant found by [23] and related to the 5 terms
comprising the Pontryagin p4(F IJ) invariant 16-form ( but with different numerical factors ) are of the form

tr [ (F IJXIJ)8 ] ⇒ εµ1µ2.....µ16 F I1I2
µ1µ2

F I2I3
µ3µ4

F I3I4
µ5µ6

F I4I5
µ7µ8

F I5I6
µ9µ10

F I6I7
µ11µ12

F I7I8
µ13µ14

F I8I1
µ15µ16

. (2.27)

which is the same term as (2.26), plus the other terms of the Pontryagin p4(F IJ) invariant 16-form given by

tr [ (F IJXIJ)2 ]4 ⇒ εµ1µ2.....µ16 (F I1I2
µ1µ2

F I2I1
µ3µ4

) (F J1J2
µ5µ6

F J2J1
µ7µ8

) (FK1K2
µ9µ10

FK2K1
µ11µ12

) (FL1L2
µ13µ14

FL2L1
µ15µ16

). (2.28)

tr [ (F IJXIJ)4 ]2 ⇒ εµ1µ2.....µ16 (F I1I2
µ1µ2

F I2I3
µ3µ4

F I3I4
µ5µ6

F I4I1
µ7µ8

) (F J1J2
µ9µ10

F J2J3
µ11µ12

F J3J4
µ13µ14

F J4J1
µ15µ16

). (2.29)

5



and similar expressions for the remaining two terms

tr [ (F IJXIJ)6 ] tr [ (F IJXIJ)2 ], tr [ (F IJXIJ)4 ] tr [ (F IJXIJ)2 ]2.

The terms involving the fermionic generators Fα
µν (where the components Fα

µν are given by eq-(2.13) )
in the octic E8 invariant are

tr [ (FαYα)8 ] ⇒ εµ1µ2.....µ16 εI1I2.....I16 (Fα1
µ1µ2

Γα1β1
I1I2I3I4

F β1
µ3µ4

) ....... (Fα4
µ13µ14

Γα4β4
I13I14I15I16

F β4
µ15µ16

). (2.30)

tr [ (FαYα)2 ]4 ⇒ εµ1µ2.....µ16 (Fα1
µ1µ2

Fα1
µ3µ4

) ....... (Fα4
µ13µ14

Fα4
µ15µ16

). (2.31)

etc...........
The terms involving both fermionic and bivector generators in the octic E8 invariant are

tr [ (F IJXIJ)6 (FαYα)2 ] ⇒

εµ1µ2.....µ16 (F I1J1
µ1µ2

F I2J2
µ3µ4

........ F I6J6
µ11µ12

) (Fα
µ13µ14

Γαβ
I1J1I2J2.....I6J6

F β
µ15µ16

). (2.32)

tr [ (F IJXIJ)4 (FαYα)4 ] ⇒

εµ1µ2.....µ16 (F I1J1
µ1µ2

F I2J2
µ3µ4

F I3J4
µ5µ6

F I4J4
µ7µ8

) (Fα1
µ9µ10

Γα1β1
I1J1I2J2

F β1
µ11µ12

) (Fα2
µ13µ14

Γα2β2
I3J3I4J4

F β2
µ15µ16

); (2.33)

εµ1µ2.....µ16 (F I1J1
µ1µ2

F I2J2
µ3µ4

F I3J4
µ5µ6

F I4J4
µ7µ8

) (Fα1
µ9µ10

Γα1β1
I1J1I2J2I3J3I4J4

F β1
µ11µ12

) (Fα2
µ13µ14

Fα2
µ15µ16

); (2.34)

etc......

tr [ (F IJXIJ)6 ] tr [ (FαYα)2 ] ⇒

εµ1µ2.....µ16 (F I1I2
µ1µ2

F I2I3
µ3µ4

F I3I4
µ5µ6

F I4I5
µ7µ8

F I5I6
µ9µ10

F I6I1
µ11µ12

) (Fα1
µ13µ14

Fα1
µ15µ16

). (2.35)

tr [ (F IJXIJ)4 ] tr [ (FαYα)4 ] ⇒

εµ1µ2.....µ16 (F I1I2
µ1µ2

F I2I3
µ3µ4

F I3I4
µ5µ6

F I4I1
µ7µ8

) (Fα1
µ9µ10

Γα1β1
J1J2J3J4

F β1
µ11µ12

) (Fα2
µ13µ14

Γα2β2
J3J4J1J2

F β2
µ15µ16

). (2.36)

tr [ (F IJXIJ)2 ] tr [ (FαYα)6 ] ⇒

εµ1µ2.....µ16 (F I1I2
µ1µ2

F I2I1
µ3µ4

) (Fα1
µ5µ6

Γα1β1
J1J2J3J4

F β1
µ7µ8

) (Fα2
µ9µ10

Γα2β2
J3J4J5J6

F β2
µ11µ12

)(Fα3
µ13µ14

Γα3β3
J5J6J1J2

F β3
µ15µ16

).
(2.37)

etc.....
Therefore, the E8 invariant octic action in 16D given by eq-(2.20) with 36 + 1 = 37 terms contains :

(i) the Lanczos-Lovelock gravitational action (2.22,2.23) associated with the 15-dim boundary ∂M16; (ii) 5
terms with the same structure as the Pontryagin p4(F IJ) 16-form associated with the SO(16) spin connection
ΩIJ

µ ; (iii) the fourth power of the quadratic invariant [I2]4 ; (iv) plus 30 additional terms involving powers
of the E8-valued F IJ

µν and Fα
µν field-strength (2-forms) as shown in eqs-(2.27-2.37).

The impending project is the supersymmetric version of the octic E8 invariant action (2.20). A vec-
tor supermultiplet [24, 25] involves Am

µ , λm with 248 spacetime fermions λm in the fundamental 248-dim
representation of E8 (m = 1, 2, ....248) and 248 spacetime vectors (gluons) Am

µ in the 248-dim adjoint rep-
resentation. The fermions are the gluinos in this very special case because the 248-dim fundamental and
248-dim adjoint representations of the exceptional E8 group coincide. The exceptional group E8 is unique in
this respect. In ordinary supersymmetric Yang-Mills the superpartners of the fermions are scalars, however,
in the supersymmetric E8 Yang-Mills case, the fermions λm (gluinos) and the vectors Am

µ (gluons) comprise
the vector supermultiplet. For a thorough discussion of the unique phenomenological features of the E8
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group as a candidate for a (supersymmetric) grand unification model of all fermion families in D = 4 see
[24,25]. An extensive review of the E6 grand unified models may be found in [26].

A Generalized Yang-Mills action in D = 16 involving the E8-valued 2-form field strength F = F IJXIJ +
FαYα is

SGY M (E8) =
∫
M16

tr [ ( F ∧ F ∧ F ∧ F ) ∧ ∗( F ∧ F ∧ F ∧ F ) ]. (2.38)

The analog of a theta term in D = 16 is

Stheta(E8) =
∫
M16

tr [ F8 ]. (2.39)

Self dual configurations, E8 instantons in D = 16 obey G(8) = ∗G(8) and turn the action (2.38) into (2.39)
when the self dual 8-form is defined by G(8) = F ∧ F ∧ F ∧ F.

Related to the construction of instantons in higher dimensions, a SO(8) × SO(7) ⊂ SO(16) invariant
self-duality equation for a 3-form in D = 16 was studied by [29] who built Topological QFT on 8-dim
manifolds with holonomy group smaller than or equal to Spin(7) after a dimensional reduction from D = 16
to D = 8. A further dimensonal reduction to D = 4 furnished new supersymmetric theories in D = 4. The
inclusion of gravitational interactions in D = 8 allowed the construction of a D = 8 Topological Gravity and
its correspondence with Supergravity via an octonionic self duality equation for the spin connection [29].

A topologically non-trivial gauging of N = 16 Supergravity in D = 3 based on an N = 16 super-
symmetric 3-dim non-linear sigma model valued on the exceptional coset E8/SO(16) ( 128-dimensional )
including a combination of a BF and Chern-Simons term for an SO(16) gauge field was provided by [30] .
It remains an open problem to see if the supersymmetric version of the octic E8 invariant action (2.20) upon
dimensional reduction to D = 3 bears a relationship to the topological gauging of N = 16 Supergravity in
D = 3. The 128 scalars parametrizing the coset E8/S0(16) fit into 16 copies of 128 scalars resulting from
the decomposition of the E8-valued gauge field Aα

µYα , µ = 1, 2, ....16 and α = 1, 2, ....128 where Yα are the
the SO(16) chiral spinorial generators of the E8 algebra.

Another dimensional reduction that is warranted to study is from D = 16 to D = 11 because D = 11
Supergravity with a local SO(16) invariance permits the bosonic fields to be assigned to a representation
of E8 [31] . The D = 11 Supergravity 4-form determines an E8 gauge bundle which was instrumental in
understanding the topological part of the M -theory partition function [27, 32]. A mysterious E8 bundle
which restricts from 12-dim to the 11-dim bulk of M theory can be compatible with 11-dim supersymmetry.
When M theory is compactified on a manifold with boundary the anomalies caused by the chiral gauginos
and gravitinos on each 10-dim boundary component cancels the anomalies in the 11-dim bulk if each 10-
dim boundary component supports 248 vector multiplets transforming in the adjoint representation of E8.
The Casimir effect between the M -theory analog of a D-brane /anti-D-brane system exhibiting an E8 ×E8

symmetry living at the 10-dim boundaries of the 11-dim bulk has been studied by [28]. The nature of this
bulk 11-dim E8 gauge theory remains unknown. We hope that the Chern-Simons E8 gauge theory of gravity
in D = 15 advanced in this work may shed some light into solving this question. Another interpretation
is to view the 10-dim boundary component of the 11-dim bulk of M -theory as a topological defect in 12-
dimensions.

The action for D = 4 Einstein Gravity has been attained from a generalized dimensional reduction of a
Chern-Simons gravity action in higher D = 2n+1 dimensions by [34], hence we may follow such generalized
dimensional reduction of our D = 15 Lanczos-Lovelock gravitational action (2.22, 2.23) to lower dimensions.
For example, the reduction of the D = 6 action ( integral of the Euler density in D = 6 )∫

M6
d (L(5)

Lovelock) =
∫
M6

εa1a2.....a6 (Ra1a2 +
ea1ea2

l2
) (Ra3a4 +

ea3ea4

l2
) T a5 . (2.40)

to D = 4 leads to the standard action for Einstein gravity with the cosmological constant ( 1/l2) ) plus the
Gauss-Bonnet topological invariant in D = 4 that coincides with the MacDowell-Mansouri-Chamseddine-
West (Anti de Sitter group ) SO(3, 2) gauge formulation of Gravity :∫

M4
εa1a2a3a4 (Ra1a2 +

ea1ea2

l2
) (Ra3a4 +

ea3ea4

l2
). (2.41)
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D = 4 Einstein gravity was shown by [35] to arise from a 6-dim gauge theory of the conformal group
SO(4, 2) where the four-dim spacetime was interpreted as a 4-dim Topological Defect in D = 6 and obtained
from a topological dimensional reduction of the Euler density in D = 6 (2.40). In view of these latest findings
of how to perform generalized and topological dimensional reductions [ 34] , [35], it is no longer implausible
to propose a grand unification of gravity with all the other forces within the framework of a Supersymmetric
extension ( to incorporate the 248 spacetime fermions λm ) of our Chern-Simons E8 gauge theory in D = 15
based on the octic E8 invariant action (2.20) after a judicious dimensional reduction. Working in particular
with S16 and whose equator is S15 is very appealing since it allows to accomodate quaternions and octonions
into the picture HP 4 ∼ OP 2 ∼ S16; HP 2 ∼ OP 1 ∼ S8 and HP 1 ∼ S4. The four non-associative (not Lie)
superconformal algebras with N = 5, 6, 7, 8 supersymmetries all share interesting properties with the Cayley
(octonions), covariant derivation of spinors on round and squashed S7 and torsion on supercoset manifolds
[36].

To finalize this section we simply recall that in odd dimensions D = 2n − 1, the Lanczos-Lovelock
gravitational Lagrangian is

LD
Lovelock =

n−1∑
p=0

ap Lp(D). ap = κ
(±1)p+1l2p−D

(D − 2p)
Cn−1

p ; p = 1, 2, ....., n− 1 (2.42)

Cn−1
p is the binomial coefficient. The constants κ, l are related to the Newton’s constant G and to the

cosmological constant Λ through κ−1 = 2(D − 2)ΩD−2G where ΩD−2 is the area of the D − 2-dim unit
sphere and Λ = ±(D − 1)(D − 2)/2l2 for de Sitter ( Anti de Sitter ) spaces [4] .

The terms inside the summand of (2.42) are

Lp(D) = εa1a2.......aD
Ra1a2Ra3a4 ....Ra2p−1a2p ea2p+1 .......eaD (2.43)

where we have omitted the space-time indices µ1, µ2, ......... Despite the higher powers of the curvature ( after
eliminating the spin connection ωab

µ in terms of the ea
µ field ) the LD

Lovelock furnishes equations of motion for
the ea

µ field containing at most derivatives of second order, and not higher, due to the Topological property
of the Lovelock terms

d (L2n−1
Lovelock) = εa1a2.....a2n

(Ra1a2 +
ea1ea2

l2
)......(Ra2n−3a2n−2 +

ea2n−3ea2n−2

l2
) T a2n−1 = Euler density (2.44)

Therefore, the exterior derivative of the Lovelock terms can be rewritten compactly as

d (L2n−1
Lovelock) = εI1I2....I2nF I1I2 ......F I2n−1I2n (2.45)

where F I1I2 is the curvature field strength associated with the SO(2n − 2, 2) connection ΩI1I2
µ in 2n-dim

and which can be decomposed in terms of the fields ea
µ, ωab

µ , a, b = 1, 2, ...., 2n − 1 as shown in eqs-(2.24,
2.25) . Gauge theories based on the Anti de Sitter group allowed us to derive the vacuum energy density
of Anti de Sitter space (de Sitter ) as the geometric mean between an upper and lower scale [17] based on
a BF-Chern-Simons-Higgs theory. Upon setting the lower scale to the Planck scale LP and the upper scale
to the Hubble radius (today) RH , it yields the observed value of the cosmological constant ρ = L−2

P R−2
H =

L−4
P (LP /RH)2 ∼ 10−120M4

Planck.

3. ON CHERN-SIMONS-CLIFFORD GRAVITY

We end this work by reviewing Chern-Simons gravitational actions in Clifford spaces [33] in order to point
its relevance to future research related to E8 gauge theores of gravity. The 11D Chern-Simons Supergravity
action is based on the smallest Anti de Sitter OSp(32|1) superalgebra. The Anti de Sitter group SO(10, 2)
must be embedded into a larger group Sp(32, R) to accomodate the fermionic degrees of freedom associated
with the superalgebra OSp(32|1). The bosonic sector involves the connection [4]

Aµ = Aa
µΓa + Aab

µ Γab + Aa1a2....a5
µ Γa1a2....a5 = ea

µΓa + ωab
µ Γab + Aa1a2....a5

µ Γa1a2....a5 (3.1)
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with 11 + 55 + 462 = 528 generators. A Hermitian complex 32 × 32 matrix has a total of 32 + 2( 32×31
2 ) =

992 + 32 = 1024 = 322 = 210 independent real components (parameters), the same number as the real
parameters of the anti-symmetric and symmetric real 32× 32 matrices, respectively, 496 + 528 = 1024. The
dimension of Sp(32) = (1/2)(32 × 33) = 528. Notice that 210 = 1024 is also the number of independent
generators of the Cl(11) algebra since out of the 211 generators, only half of them 210, are truly independent
due to the duality conditions valid in odd dimensions only :

εa1a2.....a2n+1Γa1 ∧ Γa2 ∧ ..... ∧ Γap
∼ Γap+1 ∧ Γap+2 ∧ ..... ∧ Γa2n+1 . (3.2)

This counting of components is the underlying reason why the Cl(11) algebra appears in this section. The
generators of the Cl(11) algebra {Γa,Γb} = 2ηab1 and the unit element 1 generate the Clifford polyvectors
(including a scalar, pseudoscalar ) of different grading

ΓA = 1, Γa, Γa1 ∧ Γa2 , Γa1 ∧ Γa2 ∧ Γa3 , ......., Γa1 ∧ Γa2 ∧ ........ ∧ Γa11 . (3.3)

obeying the conditions (3.2). The commutation relations (see eqs-(3.4) below) involving the generators
Γa,Γab,Γa1a2....a5 do in fact close due to the duality conditions (3.2). The Cl(11) algebra commutators, up
to numerical factors, are

[Γa,Γb] = Γab. [Γa,Γbc] = 2ηabΓc − 2ηacΓb (3.4a)

[Γa1a2 ,Γb1b2 ] = −ηa1b1Γa2b2 + ηa1b2Γa2b1 − .... (3.4b)

[Γa1a2a3 ,Γb1b2b3 ] = Γa1a2a3b1b2b3 − (ηa1b1a2b2Γa3b3 + ....). (3.4c)

[Γa1a2a3a4 ,Γb1b2b3b4 ] = −(ηa1b1Γa2a3a4b2b3b4 + ....)− (ηa1b1a2b2a3b3Γa4b4 + ....). (3.4d)

[Γa1a2 ,Γb1b2b3b4 ] = −ηa1b1Γa2b2b3b4 + .... (3.4e)

[Γa1 ,Γb1b2b3 ] = Γa1b1b2b3 . [Γa1a2 ,Γb1b2b3 ] = −2ηa1b1Γa2b2b3 + .... (3.4f)

[Γa1 ,Γb1b2b3b4 ] = −ηa1b1Γb2b3b4 + ..... (3.4g)

[Γa1a2....a5 ,Γb1b2....b5 ] = Γa1a2...a5b1b2....b5 + (ηa1b1a2b2Γa3a4a5b3b4b5 + .....) + (ηa1b1a2b2a3b3a4b4Γa5b5 + .....) =

εa1a2...a5b1b2....b5c Γc + (ηa1b1a2b2εa3a4a5b3b4b5c1c2.....c5Γc1c2....c5 + .....) + (ηa1b1a2b2a3b3a4b4Γa5b5 + .....). (3.4h)

etc....... with

ηa1b1a2b2 = ηa1b1ηa2b2 − ηa2b1ηa1b2 (3.5a)

ηa1b1a2b2a3b3 = ηa1b1ηa2b2ηa3b3 − ηa1b2ηa2b1ηa3b3 + ....... (3.5b)

ηa1b1a2b2......anbn =
1
n!

εi1i2......in
εj1j2......jn

ηai1bj1
ηai2bj2

......... ηain bjn
. (3.5c)

The Cl(11) algebra gauge field is

Aµ = AA
µ = Aµ1 +Aa

µΓa +Aa1a2
µ Γa1a2 +Aa1a2a3

µ Γa1a2a3 + ......... +Aa1a2....a11
µ Γa1a2.......a11 . (3.6)

and the Cl(11)-algebra-valued field strength

FA
µν ΓA = ∂[µAν] 1 + [ ∂[µAa

ν] + Ab2
[µAb1a

ν] ηb1b2 + ..... ] Γa +
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[ ∂[µAab
ν] + Aa

[µAb
ν] −Aa1a

[µ Ab1b
ν] ηa1b1 −Aa1a2a

[µ Ab1b2b
ν] ηa1b1a2b2 −Aa1a2a3a

[µ Aa1b2b3b
ν] ηa1b1a2b2a3b3 + ..... ] Γab +

[ ∂[µAabc
ν] + Aa1a

[µ Ab1bc
ν] ηa1b1 + ...... ] Γabc + [ ∂[µAabcd

ν] −Aa1a
[µ Ab1bcd

ν] ηa1b1 + ...... ] Γabcd + .........

[ ∂[µAa1a2....a5b1b2.....b5
ν] + Aa1a2...a5

[µ Ab1b2....b5
ν] + ...... ] Γa1a2....a5b1b2.....b5 + .... (3.7)

The Chern-Simons actions corresponding to the Clifford group rely on Stokes theorem∫
M12

d (LClifford) =
∫

∂M12=Σ11
(LClifford). (3.8)

which in our case reads

d (LClifford) =< F ∧ F ∧ .......... ∧ F > = < FA1 ∧ FA2 ∧ ......... ∧ FA6 ΓA1ΓA2 ....ΓA6 > (3.9)

where the bracket < ...... > means taking the scalar part of the Clifford geometric product among the gammas.
It involves products of the dABC , fABC structure constants corresponding to the ( anti ) commutators
{ΓA,ΓB} = dABCΓC and [ΓA,ΓB ] = fABCΓC .

One of the main results of [33] was that the Cl(11) algebra based action (3.9) contains a vast number
of terms among which is the Chern-Simons action of [4] L11

CS(e, ω, A5)

LClifford(AA
µ ΓA) = L11

CS(ω, e, A5) + EXTRA TERMS. (3.10)

SCS(ω, e, A5) =
∫

∂M12
L11

CS =
∫

Σ11
L11

CS . (3.11)

The Cl(11) algebra based action (3.9, 3.10) can in turn be embedded into a more general expression
in C-space (Clifford Space) which is a generalized tensorial spacetime of coordinates X = σ, xµ, xµν , xµνρ....
[3] involving a scalar Φ(X) and antisymetric tensor gauge fields Aµ(X), Aµν(X), Aµνρ(X)..... of higher rank
(higher spin theories) [13]. The most general action onto which the action (3.9,3.10) itself can be embedded
requires a tensorial gauge field theory [13] (Generalized Yang-Mills theories) and an integration w.r.t all the
Clifford-valued coordinates X = XMΓM corresponding to the 2D-dim C-space associated with the underlying
Cl(2n)-algebra in D = 2n dimensions

S =
∫

[d2n

X] < (F ∧ F ∧ ..... ∧ F) > . [d2n

X] = (dσ)(dxµ)(dxµν)(dxµνρ)...... (3.12)

A different sort of Generalized Yang-Mills theories have been studied by [12] without the Clifford algebraic
structure. Given a Lie algebra G like E8 with generators Ta for a = 1, 2, 3, ....dim G, it has for commutators
[Ta, Tb] = fc

abTc and whose structure constants fabc are fully antisymmetric in their indices. The Lie-algebra
valued one-form is A = (Aa

M (X)Ta)dXM and its generalized Lie-algebra valued field strength

F = [F c
MN (X) Tc] dXM ∧ dXN =

[ ∂[MAc
N ](X)Tc + g Aa

M (X)Ab
N (X) fc

ab Tc ] dXM ∧ dXN . (3.13)

has for components
F c

[ [µ1µ2...µm] [ν1ν2.....νn] ] =

∂x[µ1µ2...µm] Ac
[ν1ν2....νn] − ∂x[ν1ν2...νn] Ac

[µ1µ2....µm] + g Aa
[µ1µ2...µm] Ab

[ν1ν2....νn] fc
ab . (3.14)

The remaining components are of the form

F c
[0N ] = F c

[ 0 [ν1ν2.....νn] ] = ∂σ Ac
[ν1ν2....νn] − ∂x[ν1ν2...νn] Ac

0 + g Aa
0 Ab

[ν1ν2....νn] fc
ab . (3.15)

where Ac
0 is the Clifford-scalar part Φ(X) of the Lie-algebra valued Clifford-polyvector and in general we

must consider the m = n and m 6= n cases resulting from the mixing of different grades ( ranks ). The
antisymmetry with respect the collective indices MN is explicit.
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In order to raise, lower and contract polyvector indices in C-space it requires a generalized metric GMN .
In flat C-space it is defined by the components :

Gµν = ηµν . Gµ1µ2 ν1ν2 = ηµ1ν1 ηµ2ν2 − ηµ1ν2 ηµ2ν1 etc.. (4.5)

in addition to the scalar-scalar component Gσσ = 1. It can be recast as :

Gµ1µ2....µm ν1ν2....νm = det GµIνJ =
1
m!

εi1i2...imεj1j2....jmηµi1νj1 ηµi2νj2 ......ηµim νjm . (3.16)

where GµIνJ is an m×m matrix whose entries are ηµiνj for i, j = 1, 2, 3, ......m ≤ D and µ, ν = 1, 2, 3, ......D.
As a result of the expression for the flat C-space metric, given by sums of antisymmetrized products of

ηµν , the Clifford-space generalized Yang-Mills action is of the form

SY M = −1
2

∫
[DX]

∑
trace [ F a

[ [µ1µ2...µm] [ν1ν2.....νm] ] F [ [µ1µ2...µm] [ν1ν2......νm] ] b TaTb ] +

−1
2

∫
[DX]

∑
trace [ F a

[ 0 [ν1ν2.....νm] ] F [ [ 0 [ν1ν2......νm] ] b TaTb ] (3.17)

where the C-space 2D-dim measure associated with a Clifford algebra in D-dim is

[DX] = [dσ] [Π dxµ] [Π dxµ1µ2 ] [Π dxµ1µ2µ3 ].... [dxµ1µ2.....µd ] (3.18)

and the indices are ordered as µ1 < µ2 < µ3....... < µm, etc...
The action (3.17) is invariant under the infinitesimal gauge transformations

δξ Ac
M = ∂Mξc + gfc

ab Aa
Mξb; δξ Ac

µ1µ2....µn
= ∂xµ1µ2....µn

ξc + gfc
ab Aa

µ1µ2....µn
ξb. (3.19)

associated with a Lie-algebra valued Clifford-scalar parameter ξ(X) = ξa(X)Ta.
In [3] it was explained why another alternative to define the transformations in C-space was by writing

the generators of polyrotations as R = exp (ΩAB [EA, EB ]) where the commutator [EA, EB ] = FC
ABEC

is the C-space analog of the i[γµ, γν ] commutator which is the generator of the Lorentz algebra, and the
parameters ΩAB are the C-space analogs of the rotation/boots parameters. This last alternative seems to
be more physical because a polyrotation should map the EA direction into the EB direction in C-spaces,
hence the meaning of the generator [EA, EB ] which is the generalization of the ordinary i[γµ, γν ] Lorentz
generator.

Therefore, when we recast the generators of polyrotations as JAB = [ΓA,ΓB ], an action of the form

S(Cspace) =
∫

[DX] FA1B1
M1N1

FA2B2
M2N2

...... F
A2d−1B2d−1

M2d−1N2d−1
εA1B1A2B2......A2d−1B2d−1 εM1N1M2N2.....M2d−1N2d−1 .

(3.20)
is the natural generalization of the Euler density types of the D-dim ( D = 2n) actions in C-space. In
particular, when D = 16, the action (4.10) is the C-space generalization of the action (2.22).

This action S(Cspace) (3.20) is more general than the action SClifford(AA
µ ΓA) of eq-(3.10), and which in

turn, is more general than the Chern-Simons gravitational action SCS(ω, e, A5) given by eq-(3.12). Therefore,
we have the inclusions

SCS(ω, e, A5) ⊂ SCl(11) [ AA
µ (xµ) ΓA ] ⊂ S(Cspace) [ AAB

M (σ, xµ, xµ1µ2 , xµ1µ2µ3 , ....) JAB ]. (3.21)

and similarly one would expect the Cl(16) algebra gauge theory case in C-spaces to includes the E8 Chern-
Simons gauge theory formulated in the previous section

SCS(A,F) ⊂ SCl(16) [ AA
µ (xµ) ΓA ] ⊂ S(Cspace) [ AAB

M (σ, xµ, xµ1µ2 , xµ1µ2µ3 , ....) JAB ]. (3.22)
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which should be very relevant in future developments of M,F theory upon the introduction of Polyvector-
valued Supersymmetries in C-spaces [11] . These generalized supersymmetries deserve to be investigated
further since they are more fundamental than the supersymmetries associated with M,F theory superal-
gebras and also span well beyond the N -extended Supersymmetric Field Theories involving super-algebras,
like OSp(32|N) for example, which are related to a SO(N) gauge theory coupled to matter fermions (be-
sides the gravitinos). It is these Polyvector-valued Supersymmetries in C-spaces [11] that will permit the
supersymmetrization of the most general action in C-spaces S(Cspace) given by (3.20).

Finally, the results of this work may shed some light into the origins behind the hidden E8 symmetry of
11D Supergravity , the hyperbolic Kac-Moody algebra E10 and the non-linearly realized E11 algebra related
to Chaos in M theory and oscillatory solutions close to cosmological singularities [1,2,6].
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