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Gravitational Schrödinger 
equation from Ginzburg-
Landau equation, and its 

noncommutative spacetime 
coordinate representation 

V. Christianto, vxianto@yahoo.com 

Despite known analogy between condensed matter physics 
and various cosmological phenomena, a neat linkage between 
low-energy superfluid and celestial quantization is not yet 
widely accepted in literature. In the present article we argue 
that gravitational Schrödinger equation could be derived from 
time-dependent Ginzburg-Landau (or Gross-Pitaevskii) that is 
commonly used to describe superfluid dynamics. The solution 
for celestial quantization takes the same form with Nottale 
equation. Provided this proposed solution corresponds to the 
facts, and then it could be used as alternative solution to 
predict celestial orbits from quantized superfluid vortice 
dynamics. Furthermore, we also discuss a representation of the 
wavefunction solution using noncommutative spacetime 
coordinate. Some implications of this solution were discussed 
particularly in the context  of offering a plausible explanation 
of the physical origin of quantization of motion of celestial 
objects. 

Keywords: superfluidity, Bose-Einstein condensate, vortices, 
gravitation, celestial quantization 
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Introduction 
There has been a growing interest in some recent literatures to 
consider gravity as scalar field from boson condensation [1]. This 
conjecture corresponds to recent proposals suggesting that there is 
neat linkage between condensed matter physics and various 
cosmological phenomena [2,3]. In this regard, it is worth noting 
here that some authors have described celestial quantization from 
the viewpoint of gravitational Schrödinger-type wave equation [4]. 
Considering that known analogy between condensed matter 
physics and various cosmological phenomena, then it seems also 
plausible to describe such a celestial quantization from the 
viewpoint of condensed-matter physics, for instance using Gross-   
Pitaevskii (GP) or Ginzburg-Landau wave equation.   
      In the present article, we derived gravitational Schrödinger-type 
wave equation from various equations known in condensed matter 
physics, including Gross-Pitaevskii (GP) equation and also time-
dependent Ginzburg-Landau (TDGL) wave equation. This method 
could be regarded as ‘inverse’ way from method discussed in 
Berger’s article [5], suggesting that it is possible to extend 
Schrödinger equation to TDGL using De Broglie potential. 
Provided this neat linkage from TDGL/GPE and Schrödinger 
equation is verified by observation, then it seems to support a 
previous conjecture of a plausible linkage between celestial 
quantization and quantized vortices [4]. And then we discuss some 
issues related to describing cosmological phenomena in terms of 
diffusion theory of gravitational Schrödinger-type equation, though 
this issue has been discussed in the preceding articles [3,8,9]. 
Furthermore, following our argument that it is possible to find 
noncommutative representation of the wavefunction [4], and then 
we will discuss a plausible interpretation of the gravitational 
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Schrödinger equation in terms of noncommutative spacetime 
coordinate. This extension to noncommutative coordinate perhaps 
will be found useful for further research. And if this proposition 
corresponds to the astrophysical facts, then it can be used to 
explain the origin of quantization in astrophysics [7][8]. 

An alternative method to find solution of 
gravitational Schrödinger-type equations 
The present author acknowledged that the proposed method on 
relating cosmological phenomena with condensed-matter/low-energy 
physics has not been widely accepted yet, though some of these 
approaches have been used to predict phenomena corresponding to 
neutron stars [12,39]. Furthermore, there is also a deeper question 
concerning the appropriateness of using and solving gravitational 
Schrödinger-type equations for depicting cosmological phenomena, 
beyond what is called as Wheeler-DeWitt (WDW) equation. It should 
be noted here that our derivation method is somewhat different from 
Neto et al.’s approach [14], because we use Legendre polynomials 
approach. 

  Now we are going to find solution of the most basic form of 
Schrödinger-type equation using Legendre polynomials, from which 
we will obtain the same expression with known Nottale’s quantization 
equation [11]. We start with noting that Schrödinger equation is 
derived from a wave of the form: 

λπα /2sin. x=Ψ               (1) 
By deriving twice equation (1), then we get the most basic form of 

Schrödinger equation: 
0./ 22 =Ψ+Ψ Adxd               (2) 

where for planetary orbits, it can be shown [13, 5] that we get: 
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 ).2/(//4 2222 KEmvA ωωλπ ===                             (3) 
Solution of equation (2) is given by: 

 )2/exp(.)2/exp(.1 ρρχ −+= CC            (4) 

But we shall reject the first term because it will result in infinity 
for large distance (ρ>>0). This suggests solution of the form [14]: 

  )2/exp().( ρρχ −= F              (5) 
Substituting (5) into (2), we get: 
 0.// 22 =+− FAddFdFd ρρ                                      (6)  
Now we shall find the series solution to (6) and put: 
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The lower limit of this summation is p=1 rather than p=0, 
otherwise F and therefore χ would not be zero at ρ=0. Thus [14]: 
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By inserting these equations (7), (8), (9), and (10) into equation 
(6), and observing that each power of ρ mush vanish, and by 
inserting our defiition of variable A from equation (3) and 
inserting the kinetic energy definition rGMmKE 2/= , and then 
we could find the expression for orbital radii which is similar to 
Nottale’s equation [11]: 

22 /. oo vGMnr =                                                                      (11) 
Therefore we observed that a solution using Legendre polynomials 
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yields the same expression with Nottale’s quantization equation [11]. 
It is also obvious that some assumptions must be invoked in order to 
find the proper asymptotic solution.   

On celestial quantization from GPE and TDGL 
In a preceding article we provided simplified derivation of equation of 
quantization of planetary orbit distance based on Bohr-Sommerfeld 
hypothesis of quantization of angular momentum [4], which could be 
considered as ‘retro’ version of Bohr-Sommerfeld quantization 
method in microphysics. As shown above, similar quantization result 
can be derived from generalized Schrödinger-Newton equation 
suggested by L. Nottale [11].  
      But this Schrödinger-type wave equation does not exactly 
correspond to the superfluid theory or condensed matter, therefore in 
the present article we will derive Schrödinger-type wave equation 
based on GP/TDGL equation, which is commonly used to describe 
superfluid medium [3]. It will be shown that the previous solution 
(11) based on gravitational Schrödinger-type equation is only an 
approximation of a more general GP/TDGL equation, becauses it 
neglects nonlinear effects like temperature dependent or screening 
potential. This conjecture of quantum vortice dynamics also 
corresponds to hypothesis by Winterberg of superfluid phonon-roton 
as Planckian quantum vacuum aether [9]. 

First, we will discuss how to get Schrödinger-type equation from 
GP equation, and then from TDGL. At subsequent section we will 
discuss other nonlinear Schrödinger-type equation from Chern-
Simons theory. 

a. Gross-Pitaevskii equation (GPE) 
As we know, superfluid medium is usually described using GP 

equation, or sometimes known as nonlinear Landau-Ginzburg 
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equation or nonlinear Schrödinger equation (NLSE) [12,2]. In the GP 
theory the ground state and weakly excited states of a Bose gas are 
described by the condensate wave function ψ=a.exp(iφ) which is a 
solution of the nonlinear Schrödinger equation [6]: 

ψψψψ 222 ||.2//. Vmti +∇−=∂∂ hh                                        (12) 
where V is the amplitude of two-particle interaction.  

It has been argued [6], that two-fluid hydrodynamics relations can 
be derived from the hydrodynamics of an ideal fluid in presence of 
thermally excited sound waves, i.e. phonon scattering by a vortex line. 
In order to obtain a complete system of equations of the two-fluid 
theory, one should take into consideration phonon-phonon interaction, 
which is essential for the phonon distribution function being close to 
the equilibrium Planck distribution. It was shown in [1], that this 
sound wave of boson condensate system consists of phonons with 

sound velocity of ./")(/2 µρπµρ =∂∂= Pcs    
Furthermore, the phonon scattering by a vortex line is analogous to 

the so-called Aharonov effect for electrons scattered by a magnetic-
flux tube, which analogy becomes more evident if one rewrites the 
sound equation [6] in presence of the vortex as: 

( ) 0/
22 =+∇−− φφ sv cvkik

rr
                                                         (13) 

But the stationery Schrödinger equation for an electron in presence 
of the magnetic flux confined to a thin tube is given by [6]: 

( ) )(/.2/1)(
2

rcAeimrE
rrr

h
r ψψ −∇−=                                           (14)         

Here ψ is the electron wave function with energy E and the 
electromagnetic vector potential is connected with the magnetic flux φ 
by the relation similar to that for the velocity vv

r
 around the vortex 

line [6]: 
[ ] 22/ˆ. rrxzA πrr

Φ=                                                                         (15) 
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In other words, we have outlined a logical mapping [6]: (i)  from 
GP (NLSE) equation to the two-fluid hydrodynamics; (ii) from 
hydrodynamics to the phonon scattering equation; (iii) from phonon 
scattering to electron scattered by magnetic- flux tube, and (iv) from 
electron scattering back to the stationery Schrödinger equation. Now 
it is worthnoting here, that there is exact solution of Aharonov effect 
for electrons obtained by the partial wave expansion. To find the 
solution of equation (14), partial-wave amplitudes ψ l should satisfy 
equations in the cylindrical system of coordinates (r,ϕ) [6]: 

0./.)1(/./1/ 22222 =+−−+ llll krdrdrdrd ψψγψψ                (16) 
where 

mkE 2/22h=                                                                                (17) 
or 

222 /1/.2 λ== hKEmk                                                                (18) 
where KE, λ,h  denotes the kinetic energy of the system, Planck 
constant and wavelength, respectively. From this equation (16), then 
we shall find a solution, which at large distances has an asymptotic 
character expressed in exponential form of ψ=α.exp(β), which is 
typical solution of Schrödinger-type equation; where α and β  are 
functions of some constants. 

Because equation (16) is an ordinary differential equation in planar 
cylindrical system of coordinates, we consider that this equation 
corresponds to the celestial quantization if we insert proper values of 
Newtonian equation [4]. Therefore in the subsequent derivation we 
will not follow the standard partial wave analysis method as described 
in [6], but instead we will use a method to find solution of ordinary 
differential equation of Schrödinger equation: a=n2.GM/vo

2, which is 
in accordance with Nottale’s solution [11]. Here a, n, G, M, vo, 
represents semimajor axes, quantum number (n=1,2,3,…), Newton 
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gravitation constant, mass of nucleus of gravitation field, and specific 
velocity, respectively.  

Solution of equation (16) is given by ψ l(r,ϕ)= R(r).F(φ). Inserting 
this relation into (16), and separating the F(φ) terms, then we get the 
ground state expression of the system (m2=0 case):  

0]./)1[()/.(/1/ 22222 =+−−+ RkrdrdRrdrRd γ                    (19) 
The solution for R(r) is given by : 

][)( .. rr eerR αα += −                                                                     (19a) 
In order to get the sought-after asymptotic solution for equation 

(16), we only use the negative expression of R(r), otherwise the 
solution will diverge to infinity at large distance r:    

rerR .)( α−=                                                                                    (20) 
Therefore 

redrrdR ../)( αα −−=                                                                     (21) 
redrrRd .222 ./)( αα −=                                                                  (22) 

Inserting (19a)-(22) into equation (19) and eliminating the 
exponential term re .α− , yield: 

})1(.{/1 22222 krrr −−+= γαα                                                  (23) 
Because equation (23) must be right for any value of r, then the 

right hand side of equation (23) between the {} brackets must equal to 
zero: 

0)1( 222 =−−+ krr γα                                                                (24) 
Maple solution for equation (24) is included in the Appendix 

section, which yields for γ :  
22221 rkrr +−±= ααγ                                                            (25) 

The remaining part is similar to equation (10)-(11), by inserting 
kinetic energy definition for gravitational potential.  
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Therefore we conclude that the right term between the {} brackets 
yields a secondary effect to the equation of celestial quantization, 
except for some condition where this extra term vanishes. To this 
author’s knowledge, this secondary effect has never been derived 
before; neither in Nottale [11], nor Neto et al. [13]. In our method, the 
secondary effect comes directly from the partial wave analysis 
expression of GP equation.  

Therefore we obtain a generalised form of the equation of celestial 
quantization [11], which has taken into consideration the secondary 
interaction effect of GPE. The expected value for γ can be estimated 
by equating the right term between the {} brackets to one.1 However, 
it is not too clear in what kind of conditions this right term in the 
bracket will disappear, therefore we are going to discuss another 
approach for deriving gravitational Schrödinger-type equation, i.e. 
using TDGL (time-dependent Ginzburg-Landau equation).  

b. Time-dependent Ginzburg-Landau equation (TDGL) 
It is known that Ginzburg-Landau (TDGL) equation is more 

consistent with known analogy between superfluidity and 
cosmological phenomena [2][3], and TDGL could also describe 
vortex nucleation in rotating superfluid [19]. According to Gross, 
Pitaevskii, Ginzburg, wavefunction of N bosons of a reduced mass 
m* can be described as [20]:  

 tim ∂∂=+∇− /.*).2/( 222 ψψψκψ hh            (26) 

     It is worthnoting here that this equation is quite similar to Jones’ 
nonlinear Schrödinger equation to describe gravitational systems 
[21]. For some conditions, it is possible to replace the potential 
energy term in equation (26) by Hulthen potential. This 
substitution yields: 
 tiVm Hulthen ∂∂=+∇− /..*).2/( 22 ψψψ hh                    (27) 

where 
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 )1/(..2 rr
Hulthen eeZeV δδδ −− −−=          (28) 

This equation (27) has a pair of exact solutions. It could be 
shown that for small values of δ , the Hulthen potential (28) 
approximates the effective Coulomb potential, in particular for 
large radius: 

   )2/().1(/ 222 mrreV eff
Coulomb hll ++−=         (29) 

Inserting (29) into equation (27) yields: 
[ ] timrrem ∂∂=++−+∇− /..)2/().1(/*2/ 22222 ψψψ hhllh        (30) 

While this equation is interesting to describe neutron model, 
calculation shows that introducing this Hulthen effect (28) into 
gravitational equation will yield different result only at the order of 
10-39 m compared to prediction using equation (11), which is of 
course negligible. Therefore, we conclude that for most celestial 
quantization problems the result of TDGL with Hulthen potential (28) 
is essentially the same with the result derived from equation (11).  

Some implications to cosmology model  
The approach described in the previous section using arguments 

based on condensed matter physics also implies that the linear and 
point-like topological defects also induce an effective metric, which 
can be interesting for the theory of gravitation. In this regards, the 
vortex can be considered as cosmic spinning string.2 

Another question can be asked here, i.e. to how extent GP equation 
could be regarded as exact representation of cosmological 
phenomena, because there are arguments suggesting that GP equation 
is only an approximation [23]. For instance, Castro et al. [22] argued 
that GP equation of NLSE has some weakness, i.e. it does not meet 
Weinberg homogeneity condition.  

Therefore, it becomes obvious that there is also a typical question 
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concerning whether such Schrödinger-type wave function expression 
corresponds to vortices description in hydrodynamics. In this regard, 
it seems worth here to consider a more rigorous approach based on 
Chern-Simons hydrodynamics. Pashaev & Lee [24] reformulated the 
case of Abelian Chern-Simons gauge field interacting with Nonlinear 
Schrodinger field as planar Madelung fluid. In this regard, the Chern-
Simons Gauss law has simple physical meaning of creation of the 
local vorticity for the fluid flow; which appears very similar to 
Kiehn’s derivation using Navier-Stokes argument [17,27]. Then 
Pashaev & Lee [24] obtained the following nonlinear wave equation: 

)/..(2/)1(2/ 22
0 ΨΨΨ∆−=Ψ−Ψ+Ψ mUmDiD h                 (31) 

where 

00 ./ AcD ∈∂+=                                                                            (32) 
AcD ./∈∇+=                                                                              (33) 

Then in terms of a new wave function 
)/exp(. hiSρχ =                                                                       (34) 

they recovered the standard linear Schrödinger equation: 
02/.2

0 =−+ χχχ UmDDi hh            (35) 

Thus they concluded that for 0≠h equation (34) is gauge 
equivalent to the Schrödinger equation, while for 0=h  it reduces to 
nonlinear wave equation of classical mechanics. The semiclassical 
limit has been applied to defocusing NLSE [24]: 

022/.
22 =+∆+∂ χχχχ gmi t hh            (36) 

which provides an analytical tool to describe shockwave in nonlinear 
optics and vortices in superfluid. In the formal semiclassical limit 

0→h (before shocks), one neglects the quantum potential and fluid 
becomes the Euler system. Introducing the local velocity field: 

]./.[/1 AceSmV +∇=                                                                  (37) 
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And then they obtained a hydrodynamical model defined by two 
equations: 

mmgVVtV /)/.2/2()(/ 2 ρρρ ∆−−−∇=∇+∂∂ h              (38) 

)/( 22 cmexV κρ=∇                                                                      (39) 
Therefore we concluded that a more rigorous representation of 

quantum fluid admits vortice configuration. It is perhaps interesting to 
remark here, that these equations differ appreciably from Nottale’s 
basic Euler-Newton equations [11]: 

)()./.( QVVVtm +−=∇+∂∂ φ                                             (40) 
 0)(/ =+∂∂ Vdivt ρρ                                                            (41) 
 ρπφ G4−=∆                                                                         (42) 

which of course neglect vortice configuration.  
      Upon generalizing the solution derived above, we could expect to 
see some plausible consequences in cosmology. For instance, that (i) 
there should be a kind of Magnus-Iordanskii type force observed in 
astrophysical phenomena, and (ii) that there should be hollow tubes 
inside the center of spinning large celestial bodies, for instance in the 
Sun and also large planets, including this Earth;3 (iii) the universe is 
also very likely to rotate, in accord with recent observation by 
Nodland & Ralston [25];4 (iv) the notion of gravitational constant 
could be related to cosmological temperature [3]; and (v) there exists 
ergoregions in the rotating centers of celestial objects where phonon 
particles are continuously created [26]. This phenomenon of phonon 
creation in the ergoregions may offer a rational basis of the observed 
continuous expansion of the universe. However, it shall be noted here 
that all of these plausible consequences to cosmology require further 
research. 

Furthermore, some recent observations have concluded that our 
universe has fractality property. For clarity, the number of galaxies 
N(r) within a sphere of radius r, centered on any galaxy, is not 
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proportional to r3 as would be expected of a homogeneous 
distribution. Instead N(r) is proportional to rD, where D is 
approximately equal to 2, which is symptomatic to distribution with 
fractal dimension D. It is interesting to note, for D=2, the 
cosmological gravitational redshift gives the linear distance-redshift 
relation and becomes an observable phenomenon [28]. This property 
is indicated by its Hausdorff dimension, which can be computed to be 
within the range of 1.6 ~ 2.0 up to the scale of 200 Mpc. Furthermore, 
transition to homogeneity distribution has not been found yet. In this 
regard, P.W.Anderson et al. [29] also remarked: “These findings (of 
clustering and void formation) have become increasingly difficult to 
reconcile with standard cosmological theories, in which the approach 
to homogeneity at large-scales is central element.” It is worth noting 
here that perhaps this fractality property can be explained using boson 
condensate model with non- integer dimension. It has been argued that 
such a boson condensate system exhibits Hausdorff dimension dH~2 
[30]. There is also article arguing in favor of relating the fractal 
dimension with fluctuation graph [31]: 

2/2 α−=D   for α<2                                                                  (43) 
where α is the time decay exponent. Furthermore, it was shown 
recently that an extended version of GP equation admits self-similar 
solutions and also it corresponds to Hausdorff dimension dH~2 [23], 
which seems to confirm our hypothesis that there is exact 
correspondence between cosmological phenomena and condensed 
matter physics [1,2]. 

Therefore this Hausdorff dimension argument seems to be a 
plausible restriction for a good cosmology theoretical model: Any 
cosmology theory which cannot exhibit fractality property from its 
intrinsic parameters perhaps is not adequate to explain 
inhomogeneity of large scale structures in universe.  
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It is also worthnoting here, that an alternative argument in favor of 
cosmology with dH~2 has been considered recently by Roscoe [30], 
which corresponds to Mach principle. While his argument seems very 
encouraging and perhaps it is also deeply interwoven with arguments 
presented herein, it shall be noted that his argument suggests the 
universe must have a fractal dimension dH~2, while in the context of 
condensed matter physics it can fluctuates around 1.6~2.0 as observed 
[7]. Furthermore, by making an allusion to Newton’s argument, 
Roscoe also did not consider any physical origin of such fractal 
distribution of masses in the universe, except that it corresponds to the 
nature of quantum vacuum aether. Nonetheless, Roscoe’s conjecture 
on the presence of universal clock is very interesting.  

Furthermore, if the equation of quantization of celestial motion 
derived herein from GPE/TDGL equation corresponds to the 
observed astrophysical facts, then it implies that it seems possible 
now to conduct a set of laboratory experiments as replica of some 
cosmological objects [2], provided we take into consideration proper 
scale modeling (similitude) theories.   

Noncommutative spacetime representation  
In this section we are going to discuss an alternative representation of 
the abovementioned Schrödinger equation using noncommutative 
spacetime coordinate, based on Vancea [33]. According to Vancea, 
the stationary Schrödinger equation is constructed by analogy with 
the commutation case an has the following form [33]: 

)(.)(),( xExpxH Ψ=Ψ∗             (44) 
Here the wavefunction Ψ belongs to the noncommutative algebra, 

∗Α . If explicit form of Schrödinger equation is given by [33]: 
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Ψ=Ψ∗



 +∂− ∑

=

EVM
N

m
m

2

1

2.2/h            (45) 

where V(x) is an arbitrary function from ∗Α and M is the mass of 
particle. The star product in the kinetic term is equal to the 
commutative product. Therefore, following the commutative case, the 
coordinates xs for k=1,2,…,2N is a variable, and the coordinate xk for 
is fixed. Equation (45) could be rewritten in the form [33]: 
 [ ] )()(2/22 xExVM kk Ψ=Ψ∗+∂−h           (46) 
     Supposed that there are two solutions of the equation (45) denoted 
by kΨ and kΨ~ . Then they are linearly dependent, i.e. there are two 

nonzero complex numbers kc and kc~ , such that the following 
relations hold simultaneously   
 kkkk cc Ψ−=Ψ ~

./~           (47a) 

 kkkkkk cc Ψ∂−=Ψ∂ ~
./~             (47b) 

     Now, by introducing the quantum prepotential defined as in the 
commutative case by the following relation 

 [ ] kk
k

k F Ψ∂Ψ∂≡Ψ /
~

            (48) 
Then the relation between noncommutative coordinate xk and 
wavefunction has the following form; 
 [ ] ( )sk

kkk
kk xfFx −Ψ∗Ψ−Ψ= 2/

~
          (49) 

This result appears interesting because now our gravitational 
wavefunction (11) could be given spacetime coordinate 
representation. This would be interesting subject for further study of 
the connection between condensed matter wavefunction 
(GPE/TDGL) and spacetime metric.    
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Concluding remarks  
In the present article, we derived an alternative derivation of celestial 
quantization equation based on GPE/TDGL equation. It was shown 
that the obtained solution is also applicable to describe various 
phenomena in cosmology, including inhomogeneity and clustering 
formation. In this regard, fractality property emerges naturally from 
the theoretical model instead of invoked; and it corresponds to the 
observed value [7] of Hausdorff dimension ranging from 1.6~2.0 in 
universe up to the scale of 200 Mpc.  
      It could be expected therefore that in the near future there will be 
more rigorous approach to describe this fractality phenomena both in 
boson condensate and also in astrophysics, from which we can obtain 
a coherent picture of their interaction. Another interesting issue for 
future research in this regard, is extending the solution derived herein 
to include superfluid turbulence and also finding its implications in 
astrophysics.     

Acknowledgement 
Special thanks go to Profs. C. Castro, RM. Kiehn, M. Pitkanen, 

and E. Bakhoum for various insightful discussions. Thanks also to 
anonymous referee for sending a Maple solution for equation (24). 
 
 
1st draft: May 23rd, 2005. 



  17 

 
17 

References 
[1] Barcelo, C.,  et al., “Analogue gravity from Bose-Einstein condensates,” Class. 
Quantum Grav. 18 (2001) 1137-1156. Also M. Visser, gr-qc/0204062. 
[2] Zurek, W.H., “Cosmological experiments in superfluids and superconductors,” 
in Proc. Euroconference Formation and Interaction of Topological Defects, A.C. 
Davis & R.N. Brandenberger (eds.) Plenum  (1995). Also in cond-mat/9502119.  
See also G.E. Volovik, arXiv:gr-qc/0104046 (2001). 
[3] Volovik, G.E., arXiv:cond-mat/9806010 (1998). 
[4] Christianto, V., “Comparison of predictions of planetary quantization and 
implications of the Sedna finding,” Apeiron Vol. 11 No. 3, July-October (2004). 
Available at http://reachme.at/coolbit.   
[5]  Berger, J., arXiv:quant-ph/0309143 (2003). 
[6] Sonin, E., arXiv:cond-mat/0104221 (2001). 
[7] Combes, F., “Astrophysical fractals: Interstellar medium and galaxies,” 
arXiv:astro-ph/9906477 (1999). Also D. Chappell & J. Scallo, astro-ph/9707102; 
Y.V. Baryshev, astro-ph/9912074; A. Mittal & D. Lohiya, astro-ph/0104370.  
[8] Castro, C., et al., “Scale relativity in Cantorian space and average dimension of 
our world,” arXiv:hep-th/0004152 (2000). Also C. Castro, physics/0104016, hep-
th/0001134; C. Hill, hep-th/0210076. 
[9] Leubner, M.P., “A measure of gravitational entropy and structure formation,” 
arXiv:astro-ph/0111502 (2001). 
[10] Winterberg, F., “Planck mass rotons as cold dark matter and quintessence,” 
presented at the 9th Canadian Conf. on General Relativity and Relativistic 
Astrophysics, Edmonton, May 24 (2001); also in Z. Naturforsch 57a, 202-204 
(2002).  
[11] Nottale, L., G. Schumacher, & E.T. Lefevre, “Scale-relativity and quantization 
of exoplanet orbital semi-major axes,” Astron. Astrophys. 361 (2000) 379-387. Also 
Astron. Astrophys. 322 (1997) 1018; Astron. Astrophys. 327 (1997) 867-889; Chaos, 
Solitons and Fractals, 12, (Jan 2001) 1577; http://www.daec.obspm.fr/users/nottale. 
[12] Elgaroy, O. & F.V. DeBlassio, “Superfluid vortices in neutron stars,” 
arXiv:astro-ph/0102343 (2001).  
[13] Neto, M., et al., “An alternative approach to describe planetary systems through 
a Schrödinger-type diffusion equation,” arXiv:astro-ph/0205379 (Oct. 2002). See 



  18 

 
18 

also P. Coles, arXiv:astro-ph/0209576 (2002); Carter, gr-qc/9907039. 
[14] Rae, A., Quantum Mechanics. 2nd ed. ELBS. London (1985) 49-53. 
[15] Kiehn, R.M., “A topological perspective of cosmology,” http://www. 
cartan.pair.com/cosmos2.pdf (July 2003).  
[16] Quist, M., arXiv:cond-mat/0211424; G. Chapline, hep-th/9812129. 
[17] Kiehn, R.M., “An interpretation of the wave function as a cohomological 
measure of quantum vorticity,’ http://www22.pair.com/csdc/pdf/cologne.pdf (1989) 
[18] Kleinert, H., & A.J. Schakel, “Gauge-invariant critical exponents for the 
Ginzburg-Landau model,” arXiv:cond-mat/0209449 (2002). 
[19] Aranson, I., & V. Steinberg, arXiv:cond-mat/0104404 (2001). 
[20] Infeld, E., et al., arXiv:cond-mat/0104073 (2001). 
[21] Jones, K., “Newtonian quantum gravity,” arXiv:quant-ph/9507001 (1995) 38p. 
See also D. Vitali & P. Grigolini, quant-ph/9806092.   
[22] Castro, C., J. Mahecha, & B. Rodriguez, “Nonlinear QM as a fractal Brownian 
motion with complex diffusion constant,” arXiv:quant-ph/0202026v1 (2002). 
[23] Kolomeisky, E., et al., “Low-dimensional Bose liquids: beyond the Gross-
Pitaevskii approximation,” arXiv:cond-mat/0002282 (2000). 
[24] Pashaev, O., & J. Lee, arXiv:hep-th/0104258 (2001). 
[25] Kuhne, R., “On the cosmic rotation axis,” arXiv:astro -ph/9708109 (1997). 
[26] M. Kramer, L. Pitaevskii, et al., “Vortex nucleation and quadrupole 
deformation of a rotating Bose-Einstein condensate,” arXiv:cond-mat/0106524 
[27] Gibson, C., “Kolmogorov similarity hypothesis for scalar fields,” Proc. Roy. 
Soc. Lond. A 434 (1991), 149-164 (arXiv:astro-ph/9904269). See also C. Gibson, in 
Phys. Proc. in Lakes and Oceans, Coastal and Estuarine Studies 54 (1998) 363-376 
(arXiv:astro -ph/9904330); A. Khrennikov, quant-ph/0006016 (2000). 
[28] Baryshev, Y.V., et al., “Facts and ideas in modern cosmology,” Vistas in 
Astronomy Vol. 38 no. 4 (1994), preprint in arXiv:astro -ph/9503074.  
[29] Anderson, P.W., et al., “Fractal cosmology in an open universe,” Europhys. 
Lett. (), arXiv:astro -ph/0002054 (2000).  
[30] Kim, S-H, et al., “Condensate of a charged boson fluid at non-integer 
dimension,” arXiv:cond-mat/0204018 (2002). Also Kim, S-H, et al., cond-
mat/9908086 (1999); S. Nemirovskii, et al., cond-mat/0112068. 
[31]  Benenti, G., et al., “Quantum fractal fluctuations,”, arXiv:cond-mat/0104450 
(2001).  



  19 

 
19 

[32] Roscoe, D., “Gravitation in the fractal D=2 inertial universe: New 
phenomenology in spiral discs and a theoretical basis of MOND,” arXiv:astro-
ph/0306228 (2003). Also his earlier article in Apeiron 3, No. 3-4, July-October   
(1996). Also M.D. Thornley, astro-ph/9607041. 
[33] Vancea, I.V., arXiv:hep-th/03092142 (2003). 
  

Appendix 
Thanks to a note by anonymous referee, a Maple solution is included 
here to find solution of Schrodinger type radial equation from GPE 
(24). This solution indicates that for an exponential solution to 
present, this requires that extra term of GPE must vanish. 
 
> #Partial Wave analysis  

> restart; 
>  with (linalg):  
  
> R:=exp(-(alpha*r)); 
D1R:=diff(R,r);D2R:=diff(D1R,r);  

 := R ee
( )−α r

 

 := D1R −α ee
( )−α r

 

 := D2R α2 ee
( )−α r

 
Formulate the partial wave equation referenced from 
Sonin[6] 
 
> SCHEQ:=D2R+D1R/r-(1-g)^2*R/r^2+(k)^2*R; 

 := SCHEQ  −  −  + α2 ee
( )−α r α ee

( )−α r

r
( ) − 1 g 2 ee

( )−α r

r2 k2 ee
( )−α r  

> XX1:=factor(SCHEQ);  
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 := XX1
ee

( )−α r
( ) −  −  +  −  + α2 r2 α r 1 2 g g2 k2 r2

r2
 

For the assumed exponential solution to be true, 
the bracket must vanish. 
HENCE: the roots of the quadratic equation are: 
EITHER (solving for g) 
 
Ø GG:=solve(XX1,g);KK:=solve(XX1,k);AA:=solv

e(XX1,alpha); 
Ø  

 := GG , + 1  −  + α2 r2 α r k2 r2  − 1  −  + α2 r2 α r k2 r2
 

or (solving for k) 
 

 := KK ,
−  +  +  −  + α2 r2 α r 1 2 g g 2

r
−

−  +  +  −  + α2 r2 α r 1 2 g g2

r  
 
or (solving for alpha) 

 := AA ,
 + 

1
2

1
2

 −  +  − 5 8 g 4 g 2 4 k2 r2

r

 − 
1
2

1
2

 −  +  − 5 8 g 4 g2 4 k2 r2

r  
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End note: 
1 Another expression for γ was described in Ref. [37]:  

 TkTTaaAna Bch ././)./.(.216 3 ωπγ h=     

though it is not yet clear whether this expression could be directly used for 
cosmological phenomena.  
2 This author acknowledged Prof. C. Castro and Prof. C. Beck for suggesting 
that there is plausible correspondence between superfluid vortice model and 
(random) string theory. 
3 X. Song and P. Richards of Columbia University's Lamont-Doherty, 
http://www.ldeo.columbia.edu/song/pr/html.   
4 Also S. Carneiro, arXiv:gr-qc/0003096; Y.N. Obukhov, arXiv:astro-
ph/0008106. 


