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Abstract

We rigorously prove why the proper use of Weyl’s Geometry within the context of
Friedman-Lemaitre-Robertson-Walker cosmological models can account for both the
origins and the value of the observed vacuum energy density ( dark energy ). The
source of dark energy is just the dilaton-like Jordan-Brans-Dicke scalar field that is
required to implement Weyl invariance of the most simple of all possible actions. A
nonvanishing value of the vacuum energy density of the order of 10−123M4

Planck is
derived in agreement with the experimental observations. The full theory involving
the dynamics of Weyl’s gauge field Aµ is very rich and may explain the anomalous
Pioneer acceleration and the temporal variations ( over cosmological scales ) of
the fundamental constants resulting from the expansion of the Universe. This is
consistent with Dirac’s old idea of the plausible variation of the physical constants
but with the advantage that it is not necessary to invoke extra dimensions.

The problem of dark energy is one of the most challenging problems facing us today,
see [1], [3] for a review. In this letter we will show how Weyl’s geometry (and its scaling
symmetry) is instrumental to solve this problem. Weyl’s geometry main feature is that the
norm of vectors under parallel infinitesimal displacement going from xµ to xµ+dxµ change
as follows δ||V || ∼ ||V ||Aµdxµ where Aµ is the Weyl gauge field of scale calibrations that
behaves as a connection under Weyl transformations :

A′
µ = Aµ − ∂µ Ω(x). gµν → e2Ω gµν . (1)

involving the Weyl scaling parameter Ω(xµ) .
The Weyl covariant derivative operator is Dµ = ∇µ+Aµ; where the derivative operator

∇µ = ∂µ + Γµ involves a connection Γµ which is comprised of the ordinary Christoffel
symbols plus extra Aµ terms in order for the metric to obey the condition Dµ(gνρ) = 0.

The Weyl covariant derivative acting on a scalar φ of Weyl weight ω(φ) = −1 is defined
by

Dµφ = ∂µ φ + ω(φ)Aµ φ = ∂µ φ − Aµ φ. (2)
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The Weyl scalar curvature in D dimensions and signature (+,−,−,−....) is

RWeyl = RRiemann − (D − 1)(D − 2)AµA
µ + 2(D − 1)∇µA

µ. (3)

For a signature of (−, +, +, +, ....) there is a sign change in the second and third terms
due to a sign change of RRiemann.

The Jordan-Brans-Dicke action involving the scalar φ and RWeyl is

S = −
∫

d4x
√
|g| [ φ2 RWeyl ]. (4)

Under Weyl scalings,

RWeyl → e−2Ω RWeyl; φ2 → e−2Ω φ2. (5)

to compensate for the Weyl scaling ( in 4D ) of the measure
√
|g| → e4Ω

√
|g| in order to

render the action (4) Weyl invariant.
When the Weyl integrability condition is imposed Fµν = ∂µAν − ∂νAµ = 0 ⇒ Aµ =

∂µΩ, the Weyl gauge field Aµ does not have dynamical degrees of freedom; it is pure gauge
and barring global topological obstructions, one can choose the gauge in eq-(4)

Aµ = 0; φ2
0 =

1

16πGN

= constant. (6)

such that the action (4) reduces to the standard Einstein-Hilbert action of Riemannian
geometry

S = − 1

16πGN

∫
d4x

√
|g| [RRiemann(g)]. (7)

The Weyl integrability condition Fµν = 0 means physically that if we parallel transport
a vector under a closed loop, as we come back to the starting point, the norm of the vector
has not changed; i.e, the rate at which a clock ticks does not change after being transported
along a closed loop back to the initial point; and if we transport a clock from A to B
along different paths, the clocks will tick at the same rate upon arrival at the same point
B. This will ensure, for example, that the observed spectral lines of identical atoms will
not change when the atoms arrive at the laboratory after taking different paths ( histories
) from their coincident starting point. If Fµν 6= 0 Weyl geometry may be responsible for
the alleged variations of the physical constants in recent Cosmological observations. A
study of the Pioneer anomaly based on Weyl geometry was made by [8]. The literature
is quite extensive on this topic.

Our starting action is

S = SWeyl(gµν , Aµ) + S(φ). (8)

with
SWeyl(gµν , Aµ) = −

∫
d4x

√
|g| φ2 [ RWeyl(gµν , Aµ) ]. (9)

where we define φ2 = (1/16πG). The Newtonian coupling G is spacetime dependent in
general and has a Weyl weight equal to 2. The term S(φ) involving the Jordan-Brans-
Dicke scalar φ is
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Sφ =
∫

d4x
√
|g| [

1

2
gµν (Dµφ)(Dνφ) − V (φ) ]. (10)

where Dµφ = ∂µφ− Aµφ. The FRW metric is

ds2 = dt2 − a2(t) (
dr2

1− k(r/R0)2
+ r2(dΩ)2). (11a)

where k = 0 for a 3-dim spatially flat region; k = ±1 for regions of positive and negative
constant spatial curvature, respectively. The de Sitter metric belongs to a special class
of FRW metrics and it admits different forms depending on the coordinates chosen. The
Friedman-Einstein-Weyl equations in the gauge Aµ = (0, 0, 0, 0) (in units of c = 1)

Gµν = 8πG Tµν ; φ2 =
1

16π G
. Tµν = − 2√

|g|
δSmatter

δgµν
. (11b)

read

3(
(da/dt)

a
)2 + (

3k

a2R2
0

) = 8πG(t)ρ. (12)

and

−2 (
(d2a/dt2)

a
)− (

(da/dt)

a
)2 − (

k

a2R2
0

) = 8πG(t) p. (13a)

From eqs-(12-13a) one can infer the important relation :

− (
(d2a/dt2)

a
) =

4πG(t)

3
(ρ + 3p). (13b)

Eqs-(12-13) are the ones one must use instead of the erroneous equations posed by [8] in
the partial gauge At = H(t), Ai = 0, i = 1, 2, 3 :

(
(da/dt)

a
)2 = H2(t) = − (

k

a2R2
0

) − 3( At(x) At(x) − 1√
|g|

∂t(
√
|g|At) ) +

8πG(t)

3
ρ. (14a)

and

− (
(d2a/dt2)

a
) = − ( H2(t) +

dH

dt
) =

4πG(t)

3
(ρ + 3p). (14b)

The density and pressure terms should be given in terms of Weyl covariant derivatives
of the scalar φ and the potential density V (φ). The scalar φ must be chosen to depend
solely on time , φ(t), because this is the relevant case suitable for the FRW cosmologies
due to the fact that the geometry is spatially homogeneous and isotropic . The gauge
choice condition imposed by [8] : At = H(t); Ai = 0, i = 1, 2, 3 is compatible with the
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spatial isotropy and homogeneity of the FRW models. However, despite that a non-zero
value At was chosen by [8] there is a residual symmetry that is still available to gauge
At to zero. As mentioned earlier, Weyl’s integrability condition Fµν = 0 physically means
that Aµ is pure gauge, a total derivative, whence it does not have true dynamical degrees
of freedom and all of its components can be gauged to zero Aµ = (0, 0, 0, 0).

However, if one partially fixes the gauge At = H(t); Ai = 0 like it was done in [8], one
arrives at a caveat that was overlooked by [8] . One would arrive at a deep contradiction
and inconsistency between the left hand side (l.h.s) and the right hand side (r.h.s) of
the Friedman-Einstein-Weyl equations ( for example in eq-(14b) ) in the partially fixed
gauge At = H(t) because the l.h.s does not transform homogeneously under Weyl scalings,
whereas the r.h.s does; if the quantities ρ and p were to transform properly under Weyl
scalings, homogeneously, this behaviour would be incompatible with the transformation
properties of the At = H(t) terms appearing in the l.h.s of eqs-(14b).

In order to reconcile this incompatibility between the inhomogeneous transformation
properties of the l.h.s of eq-(14b) with the homogeneous transformation properties of the
r.h.s of (14b), one must fix the gauge Aµ = 0 fully in the Einstein-Friedman-Weyl
equations as shown in eqs-(12-13). The latter equations are the physically relevant and
not eqs-(14). One may be inclined to say : if one is going to fix the gauge Aµ = 0 anyway,
then what is the role of Weyl’s geometry and symmetry in all of this ? We will show
below why despite fixing the gauge Aµ = 0 one cannot forget the constraint which arises
from the variations of the action w.r.t the Weyl’s field Aµ ! This constraint holds the key
to see why the density and pressure associated with the scalar φ obey the sought after
relation ρ(φ) = −p(φ) ( which is the hallmark of dark energy ) as we intend to prove next.

The Jordan-Brans-Dicke scalar φ must obey the generalized Klein-Gordon equations
of motion

( DµD
µ + 2RWeyl ) φ + (

dV

dφ
) = 0 (15)

combined with the crucial constraint equation obtained from the variation of the action
w.r.t to the Aµ field :

δS

δAµ
= 6 (Aµφ

2 + ∂µ(φ2)) +
1

2
(Aµφ

2 − ∂µ(φ)2 ) = 0. (16)

The last constraint equation in the gauge Aµ = 0, forces ∂µφ = 0 ⇒ φ = φo = constant.
Consequently G ∼ φ−2 is also constrained to a constant GN and one may set 16π GN φ2

o =
1, where GN is the observed Newtonian constant today.

Furthermore, in the gauge Aµ = 0, due to the constraint eq-(16), one can infer that
Dµφ = 0, ⇒ DµDµφ = 0 because Dt φ(t) = ∂t φ − At φ = ∂t φ = 0, and Diφ(t) =
−Aiφ(t) = 0. These results will be used in the generalized Klein-Gordon equation.

Therefore, the stress energy tensor T µ
µ = diag (ρ,−p,−p,−p) corresponding to the

constant scalar field configuration φ(t) = φo , in the Aµ = 0 gauge, becomes :

ρφ =
1

2
(∂t φ−At φ)2 + V (φ) = V (φ); pφ =

1

2
(∂t φ−At φ)2 − V (φ) = −V (φ). (17)
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ρ + 3p = 2 (∂t φ− At φ)2 − 2V (φ) = −2V (φ). (18)

This completes the proof why the above ρ and p terms, in the gauge Aµ = 0, become
ρ(φ) = V (φ) = −p(φ) such that ρ + 3p = −2V (φ) ( that will be used in the Einstein-
Friedman-Weyl equations (13b) ). This is the key reason why Weyl’s geometry and
symmetry is essential to explain the origins of a non− vanishing vacuum energy ( dark
energy ). The latter relation ρ(φ) = V (φ) = −p(φ) is the key to derive the vacuum energy
density in terms of V (φ = φo) !., because such relation resembles the dark energy relation
pDE = −ρDE. Had one not had the constraint condition Dt φ(t) = (∂t−At)φ = ∂t φ = 0,
and Diφ(t) = −Aiφ(t) = 0, in the gauge Aµ = 0, enforcing φ = φo, one would not have
been able to deduce the crucial condition ρ(φ = φo) = − p(φ = φo) = V (φ = φo) that
will furnish the observed vacuum energy density today !

We will find now solutions of the Einstein-Friedman-Weyl equations in the gauge
Aµ = (0, 0, 0, 0) after having explained why Aµ can (and must) be gauged to zero. The
most relevant case corresponding to de Sitter space :

a(t) = eHot; Aµ = (0, 0, 0, 0); k = 0; RWeyl = RRiemann = −12 H2
0 ; . (19)

where we will show that the potential is

V (φ) = 12H2
0φ

2 + Vo. (20)

one learns in this case that V (φ = φo) 6= 0 since this non-vanishing value is precisely the
one that shall furnish the observed vacuum energy density today !!! ( as we will see below
) . We shall begin by solving the Einstein-Friedman-Weyl equations eq-(12-13) in the
gauge Aµ = (0, 0, 0, 0) for a spatially flat universe k = 0 and a(t) = eH0t, corresponding
to de Sitter metric :

ds2 = dt2 − e2Hot (dr2 + r2(dΩ)2). (21)

the Riemannian scalar curvature when k = 0 is

RRiemann = − 6 [ (
(d2a/dt2)

a
) + (

(da/dt)

a
)2 ] = −12 H2

0 (22)

( the negative sign is due to the chosen signature +,−,−,− ).
To scalar Weyl curvature RWeyl in the gauge Aµ = (0, 0, 0, 0) is the same as the

Riemannian one RWeyl = RRiemann = −12 H2
0 . Inserting the condition Dµφ = Dtφ(t) =

(∂tφ − Atφ) = ∂t φ = 0, in the gauge Aµ = 0, the generalized Klein-Gordon equation
(3.20) will be satisfied if, and only if, the potential density V (φ) is chosen to satisfy

( 12 H2
0 ) φ =

1

2
(
dV

dφ
) ⇒ V (φ) = 12 H2

0 φ2 + Vo (23)

One must firstly differentiate w.r.t the scalar φ , and only afterwards, one may set φ = φo.
V (φ) has a Weyl weight equal to −4 under Weyl scalings in order to ensure that the full
action is Weyl invariant. H2

0 and φ2
o have both a Weyl weight of −2, despite being

constants, because as one performs a Weyl scaling of these quantities ( a change of a
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scales) they will acquire then a spacetime dependence. H2
0 is a masslike parameter, one

may interpret H2
0 ( up to numerical factors ) as the ”mass” squared of the Jordan-Brans-

Dicke scalar. We will see soon why the integration constant Vo plays the role of the
”cosmological constant”.

An important remark is in order. Even if we included other forms of matter in the
Einstein-Fredmann-Weyl equations, in the very large t regime, their contributions will be
washed away due to their scaling behaviour. We know that ordinary matter ( p = 0 );
dark matter ( pDM = wρDM with −1 < w < 0 ) and radiation terms ( prad = 1

3
ρrad ) are

all washed away due to their scaling behaviour :

ρmatter ∼ R(t)−3. ρradiation ∼ R(t)−4. ρDM ∼ R(t)−3(1+w). (24)

where R(t) = a(t)R0. The dark energy density remains constant with scale since w = −1
and the scaling exponent is zero, ρDE ∼ R0 = costant. For this reason it is the only
contributing factor at very large times.

Now we are ready to show that eqs-(12-13) are indeed satisfied when a(t) = eH0t; k =
0; Aµ = 0; φ = φo 6= 0. Eq-(13b), due to the conditions ρ + 3p = −2V (φ) and φ(t) = φo

(resulting from the constraint eq-(16) in the Aµ = 0 gauge ) gives :

− (
(d2a/dt2)

a
) = −H2

0 =
4πGN

3
(ρ + 3p) =

− (
8π GN V (φ = φo)

3
) = − (

8π GN 12 H2
0 φ2

o

3
) − 8πGN Vo

3
. (25)

Eq-(12) ( with k = 0 ) is just the same as eq-(13b) but with an overall change of sign
because ρ(φ = φo) = V (φ = φo). Using the definition 16π GN φ2

o = 1 in (25) one gets

−H2
0 = − (

8π GN 12 H2
0 φ2

o

3
) − 8π GN Vo

3
= −2 H2

0 −
8π GN Vo

3
⇒

−8π GN Vo

3
= H2

0 ⇒ − 8π GN Vo = 3 H2
0 (26)

Therefore, we may identify the term − Vo with the vacuum energy density so the quantity
3H2

0 = −8π GN Vo = Λ is nothing but the cosmological constant. It is not surprising
at all to obtain Λ = 3 H2

0 in de Sitter space ! . One knew it long ago. What is most
relevant about eq-(26) is that the observed vacuum energy density is minus the constant
of integration Vo corresponding to the potential density V (φ) = 12H2φ2 +Vo !. Hence one
has from the last term of eq-(26) :

−Vo = ρvacuum =
3H2

0

8π GN

. (27)

and finally, when we set H2
0 = (1/R2

0) = (1/R2
Hubble) and GN = L2

Planck in the last term of
eq-(26), as announced, the vacuum density ρvacuum observed today is precisely given by :

−Vo = ρvacuum =
3H2

0

8π GN

=
3

8π
(LPlanck)

−2 (RHubble)
−2 =
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3

8π
(

1

LPlanck

)4 (
LPlanck

RHubble

)2 ∼ 10−123 (MPlanck)
4. (28)

This completes our third derivation of the vacuum energy density given by the formula
(26-28). The first derivation was attained in [4], while the second derivation was attained
in section [5] .

Concluding this analysis of the Einstein-Friedman-Weyl eqs-(12-13) : By invoking the
principle of Weyl scaling symmetry in the context of Weyl’s geometry; when k = 0 (
spatially flat Universe ), a(t) = eH0t ( de Sitter inflationary phase ) ; Ho = Hubble
constant today; φ(t) = φo = constant, such 16πGN φ2

o = 1, one finds that

V (φ = φo) = 12 H2
0 φ2

o + Vo = 2ρvacuum − ρvacuum = ρvacuum =

6H2
0φ

2
o =

3H2
0

8π GN

∼ 10−123 M4
Planck. (29)

is precisely the observed vacuum energy density (28) . Therefore, the observed vacuum
energy density is intrinsically and inexorably linked to the potential density V (φ = φo)
corresponding to the Jordan-Brans-Dicke scalar φ required to build Weyl invariant actions
and evaluated at the special point φ2

o = (1/16πGN).
The case of an ever expanding accelerating universe ( consistent with observations)

is so promising because it incorporates the presence of the Hubble Scale and Planck
scale into the expression for the observed vacuum energy density via the Jordan-Brans-
Dicke scalar field φ needed to implement Weyl invariance of the action. Weyl’s scaling
symmetry principle permits us to explain why the observed value of the vacuum energy
density ρvacuum is precisely given by the expression (28-29).

In order to introduce true dynamics to the Weyl gauge field, one must add the kinetic
term for the Weyl gauge field FµνF

µν . In this case, the integrability condition Fµν =
∂µAν − ∂νAµ = 0 is no longer obeyed in general and the rate at which clocks tick may
depend on their worldline history. This could induce a variation of the physical constants
( even dimensionless constants like the fine structure constant α = 1/137 ). For instance,
as the size of the universe grows, ( a(t) = eH0t increases with time) the variable speed
of light, Newtonian coupling and cosmological constant , may vary according to the law
[G(t)/c4(t) Λ(t)] ∼ (1/ρvacuum) if the vacuum energy density ρvacuum would remain
constant. Many authors have speculated about this last behaviour among c, G, Λ

The most general Lagrangian involving dynamics for Aµ is

L = −φ2RWeyl(gµν , Aµ) +
1

4
FµνF

µν +
1

2
gµν(Dµφ)(Dνφ)− V (φ) + Lmatter + ..... (30)

The Lmatter must involve the full fledged Weyl gauge covariant derivatives acting on
scalar and spinor fields contrary to the Cheng-Weyl models of [9] where there is no Weyl
gauge field in the derivatives. Lradiation terms may be included involving the Maxwell
field Aµ which must not be confused with the Weyl gauge field Aµ. Once could also add
Yang-Mills fields Aa

µ and kinetic and potential terms for the Higgs scalars as well. The
simplest scenario, of course, was the one given in this section.
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There are many differences among our approach to explain the origins of dark energy
and that of [6], [2], [3], [1], [9], to cite a few. The Cheng-Weyl approach [9] to account
for dark energy and matter ( including phantom ) does not use the Weyl scalar curvature
with a variable Newtonian coupling 16π G = φ−2 for the gravitational part of the action,
but the ordinary Riemannian scalar curvature with the standard Newtonian gravitational
constant . Conformal transformations in accelerated cosmologies have been studied by
[10] but their approach is different than the Weyl geometric one presented here. Weyl
invariance has been used in [7] to construct Weyl-Conformally Invariant Light-Like p-
Brane Theories with numerous applications in Astrophysics, Cosmology, Particle Physics
Model Building, String theory,.....
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