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Abstract

Two different derivations of the observed vacuum energy density are presented.
One is based on a class of proper and novel generalizations of the (Anti) de Sit-
ter solutions in terms of a family of radial functions R(r) that provides an ex-
plicit formula for the cosmological constant along with a natural explanation of
the ultraviolet/infrared ( UV/IR) entanglement required to solve this problem. A
nonvanishing value of the vacuum energy density of the order of 10−123M4

Planck

is derived in agreement with the experimental observations. A correct lower esti-
mate of the mass of the observable universe related to the Dirac-Eddington-Weyl’s
large number N = 1080 is also obtained. The presence of the radial function R(r)
is instrumental to understand why the cosmological constant is not zero and why
it is so tiny and provides a natural derivation of the Pioneer’s anomaly. Finally,
we rigorously prove why the proper use of Weyl’s Geometry within the context of
Friedman-Lemaitre-Robertson-Walker cosmological models can account for both the
origins and the value of the observed vacuum energy density ( dark energy ). The
source of dark energy is just the dilaton-like Jordan-Brans-Dicke scalar field that is
required to implement Weyl invariance of the most simple of all possible actions.
The full theory involving the dynamics of Weyl’s gauge field Aµ is very rich and
may explain also the anomalous Pioneer acceleration and the temporal variations (
over cosmological scales ) of the fundamental constants resulting from the expansion
of the Universe. This is consistent with Dirac’s old idea of the plausible variation
of the physical constants but with the advantage that it is not necessary to invoke
extra dimensions.

1Dedicated to the loving memory of Rachael Bowers
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1 SCHWARZSCHILD VERSUS HILBERT : WHY

A POINT-MASS HAS PROPER AREA

We begin by writing down the class of static spherically symmetric (SSS) vacuum solu-
tions of Einstein’s equations studied by Abrams [5] (where there are NO mass sources
anywhere) given by a infinite family of solutions parametrized by a family of admissible
radial functions R(r)

(ds)2 = g00 (dt)2 − gRR (dR)2 −R2 (dΩ)2 =

g00 (dt)2 − gRR (
dR

dr
)2 (dr)2 −R2 (dΩ)2 = g00 (dt)2 − grr (dr)2 − (R(r))2 (dΩ)2 (1.1)

where the solid angle infinitesimal element is

(dΩ)2 = sin2(φ)(dθ)2 + (dφ)2. (1.2)

and

g00 = (1− α

R(r)
) ; gRR =

1

g00

=
1

1− α/R
.

grr = gRR (dR/dr)2 = (1− α

R(r)
)−1 (

dR(r)

dr
)2. (1.3)

where α is an arbitrary constant that happens to have dimensions of mass when c = G = 1
( but there are no masses at all in this vacuum case ). When a point mass source is
introduced at the location r = 0 one must set α = 2M and replace r for |r| [16].

Notice that the static spherically symmetric (SSS) vacuum solutions of Einstein’s
equations, with and without a cosmological constant, do not determine the form of the
radial function R(r). In Appendix A and B we prove why R(r) is an arbitrary function.
In particular it can can be chosen to be an infinite family of functions like

R(r) = r + α; R(r) = [r3 + α3]1/3; R(r) = [rn + αn]1/n; R(r) =
α

1− e−α/r
. (1.4)

found by Brillouin [3] , Schwarzschild [2], Crothers [7], and Fiziev-Manev [18] respectively
obeying the conditions that

R(r = 0) = α; and when r >> α ⇒ R(r) → r (1.5)

Numerous authors have corroborated over the years through lengthy but straightfor-
ward calculations [5], [6], [7], [8], [9] , [18], that there exist an infinite class of solutions
to the vacuum SSS Einstein’s equations Rµν = R = 0 for an arbitrary family of radial
functions R(r). In particular, for functions of the type displayed above ( but the curvature
Riemnan tensor Rµ

νρσ 6= 0 ).
The most salient feature of these solutions eqs-(1.1-1.3) for the radial functions in

eq-(1.4) is that at r = 0 one has R(r = 0) = α such that g00(r = 0) = 0 . Therefore, there
is no horizon. For the historical implications of these truly horizonless SSS solutions
of Einstein’s equations see [5] and the book by [6]. The solutions for a mass point that
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we have been all accustomed to were those given by Hilbert-Droste-Weyl [4] and can be
recovered from eqs-(1.1-1.4) by setting R(r) = r. The genuine and original Schwarzshild
solution in 1916 was based on R3 = r3 + (2M)3 ( upon equating α = 2M ) and not
based in setting R = r. The cubic form of the radial function yields upon differentiation
4πR2dR = 4πr2dr, so the spatial measure coincides with the ordinary spatial measure
in flat spaces in spherical coordinates. However, this does not mean that R = r as the
Hilbert solution imposes. The consequences of the use of R(r) 6= 0 are enormous as we
shall prove next.

There are many physical differences among the Hilbert and Schwarzchild solu-
tions, in particular in the global properties. The Schwarzchild solution is not a radial
reparametrization of the Hilbert solution as erroneously argued in the physics circles. In
particular, because the radial function R3 = |r|3 + (2M)3 can never zero. The absolute
value |r| properly accounts for the field of a point mass source. Thus, the lower bound of
R is given by 2M , and R cannot be zero for a nonvanishing point mass source.

The Fronsdal-Kruskal-Szekeres analytical continuation of the Hilbert solution for r <
2M yields a spacelike singularity at r = 0 and the roles of t and r are interchanged
when one crosses r = 2M ; so the interior region r < 2M is no longer static. The
Schwarzchild solution is static for r < 2M ; there are no horizons at r = 2M and there
is a timelike singularity at r = 0, the true location of the point mass source. Notice that
when r >> 2M the Schwarzchild solution reduces to the Hilbert solution and one has the
correct Newtonian limt.

A large number of people have fallen for the erroneous claims circulating in physics
circles that the original and genuine Schwarzschild solution is just a radial reparametriza-
tion of the Hilbert solution. This is not true at all. The Topology of the solution forbids
it. R(r) can never be zero. It has a lower bound given by 2M . The source of the miscon-
ception ( which has propagated for 90 years ) was due to the fact that in the genuine and
original Schwarzschild solution, despite that r = 0 has the topology of a point, it does not
have zero area due to the curvature singularity resulting from the presence of the point
mass source at that location. It has zero volume but a non-zero area. Therefore, there
is no interior region to the point r = 0 since it ”encloses” a zero volume. The location
r = 0 is a true boundary of spacetime.

When one correctly uses the radial function found by Schwarzschild R3 = r3 + (2M)3

one has upon differentiation 4πR2dR = 4πr2dr. Since dR is not equal to dr then the
proper area 4πR2 is not equal to 4πr2 . The proper area at the point r = 0 is given by
4πR2(r = 0) = 4π(2M)2 which is not equal to zero. Thus, the point r = 0 ( location of the
point mass source ) does have an area 4π(2M)2 and this misled people into thinking that
an event horizon exits of area 4π(2M)2 at the location r = 2M , when there isn’t an event
horizon at all in that location. The area 4π(2M)2 is the one associated with the point
mass source at r = 0 and not to an event horizon at r = 2M . Since such area 4π(2M)2

associated with the point r = 0 ”encloses” a zero volume, there is no interior region to
the point r = 0. To understand how a point can have a geometrical area enclosing a zero
volume, due to the singularity at r = 0, let us write the 4-dim space-time measure ( after
integrating over the angles )
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4πR2dRdt = 4πR2 (|gRR|1/2dR) (|gtt|1/2dt) = 4πr2 dr dt. (1.6)

because gRRgtt = −1 and R2dR = r2dr when the radial function is R3 = r3 +(2M)3 . The
proper radius infinitesimal displacement is |gRR|1/2dR and the proper time infinitesimal
displacement is (|gtt|1/2dt); hence 4πR2 can be seen as a proper area which must not be
confused with the expression for the spatial area A(r) = (4πr2)(|gRR|)1/2 which is derived
next.

To derive the expression for the area in the spherically static symmetric solution, we
will recur to the relation dV (r) = A(r)dr , where the 3-dim spatial infinitesimal volume
element dV is given in terms of the square-root of the absolute value of the determinant
of the spatial 3-metric. Thus, the volume infinitesimal is

dV = [ |gRR gθθ gφφ| ]1/2 (dR dθ dφ) =

[ | (1− 2M/R)−1 R2 R2sin2φ | ]1/2 (dR dθ dφ) = (1− 2M/R)−1/2 R2 sinφ (dR dθ dφ).
(1.7)

Integrating w.r.t the angles gives

dV =
4πR2dR

(1− 2M/R)1/2
. (1.8)

Since the Schwarzschild solution R3 = r3+(2M)3 upon differentiation yields R2dR = r2dr,
then the last relation becomes

dV =
4πR2dR

(1− 2M/R)1/2
=

4πr2dr

(1− 2M/R(r))1/2
= A(r)dr = dV (r). (1.9)

and from which we arrive, by just factoring out the dr piece, at the area :

A(r) =
4πr2

(1− 2M/R(r))1/2
, (1.10)

the value A(r = 0) = 0/0 is undetermined since when R3 = r3 + (2M)3 we have R(r =
0) = 2M . After performing L’Hopital’s rule twice, using dR/dr = r2/R2, and stetting
r = 0 we still end up with 0/0. Performing a Taylor expansion for small r yields for the
radial function

R(r) ∼ 2M [ 1 +
1

3

r3

(2M)3
+ .... ]. (1.11)

so that

A(r = 0) =
4πr2

(1− 2M/R(r))1/2
∼ (4π)

√
3 (2M)3/2 r1/2 = 0. (1.12)

therefore the spatial area at A(r = 0) = 0 is not equal to the proper area at 4πR2(r = 0) =
4π(2M)2. The scaling behaviour of the spatial area r1/2 ( instead of r2 ) suggests that the
geometry nearby the location of the point-mass source may be fractal. The proper area of
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a point-mass at r = 0 is not zero because there is a physical scalar-curvature delta-function
( timelike ) singularity at r = 0 and the component gRR(R(r = 0)) = gRR(R = 2M) = ∞.

Notice that due to the fact that (dR/dr)2 goes to zero faster than 1/gRR = 1−2M/R,
this means that grr(r = 0) = gRR(dR/dr)2 → 0 instead of ∞. However, a completely
different result for the spatial area and grr would be obtained had one used a radial
function of the form given by [17] with the correct behaviour at r = 0 and r = ∞ given
by R(r = 0) = 2M and R(r →∞) ∼ r, respectively :

R + 2M ln (
R− 2M

2M
) = 2M ln [ sinh

r

2M
] ⇒ dR

dr
=

1− 2M/R

tanh r/2M
. (1.13)

such that for very small values of r on has

R(r → 0) → 2M [1 + sinh
r

2M
];

dR

dr
(r → 0) → 1 (1.14)

Hence, the spatial area for this choice of R(r) at r = 0 is the opposite as before :

A(r → 0) =
4πR2 (dR/dr)(r = 0)√

1− 2M/R(r = 0)
→∞ !. (1.15)

and grr(r = 0) = gRR(dR/dr)2 →∞. Thus, the spatial area and grr now diverge at r = 0
instead of being zero.

Once again, the fact that one gets different answers for the spatial areas and grr de-
pending on the choices of the radial functions R(r) is reminiscent of fractal geometry
where the length, areas, volumes.....depend on the resolutions of the rulers used to mea-
sure them. In our case we may say that the different radial functions R(r) play the role
of different ”rulers”. In fact, one can always rewrite R(r) = (R(r)/r) r = λ(r) r where
λ(r) is the space dependent scaling factor. Thus, different choices of the scaling factors
λ(r) will furnish different answers as expected. For a rigorous study of how spacetime
resolutions affect the physics at small scales see the work of [26], [27].

Despite the fact that one can have an infinite number of metrics with arbitrary radial
functions R(r) with the desired behaviour at r = 0 and r = ∞ and different results
for the values of the spatial area and grr the relevant invariant physical quantity is the
Einstein-Hilbert action. In particular we will show that the Euclidean action after a
compactification of the temporal interval yields an invariant quantity which is precisely
equal to the ”black hole” entropy in Planck area units. The invariant area is the proper
area at r = 0 given by 4πR(r = 0)2 = 4π(2M)2 . We shall see that the source of
entropy is due entirely to the scalar curvature delta function singularity at the location
of the point mass source given by R = −[2M/R2(dR/dr)]δ(r) [16] after using the 4-dim
measure 4πR2 |gRR|1/2dR |gtt|1/2dt = 4πR2dRdt in the Euclidean Einstein-Hilbert action.

A point mass source located at r = 0, with zero volume, has an infinite density (
because the volume is zero ) such that there is delta function singularity of the scalar
curvature [16]

R = − 2M

R2(dR/dr)
δ(r) = − 2M

r2
δ(r); when R3 = r3 + (2M)3. (1.16)
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there is a metric singularity at the location r = 0 of the point-mass source gRR(r = 0) =
∞, and gtt(r = 0) = 0 ( time freezes, the arrow of time ceases to flow at r = 0 ). The
Euclideanized Einstein-Hilbert action associated with the scalar curvature delta function
in eq-1.18) as a result of the condition 4πR2dR = 4πr2dr, is

SE = − 1

16πG

∫
( − 2M

r2
δ(r) ) (4πr2 dr dt) =

4πM2

L2
Planck

=

4π (2M)2

4 L2
Planck

=
4π R2 (r = 0)

4 L2
Planck

=
Area (r = 0)

4 L2
Planck

. (1.17)

where the Euclidean time coordinate interval 2πtE is defined in terms of the Hawking
temperature TH and Boltzman constant kB as 2πtE = (1/kBTH) = 8πGM . It is interest-
ing that the Euclidean action (1.17) is the same as the ”black hole” entropy in Planck area
units. The source of entropy is due entirely to the scalar curvature delta function singu-
larity at the location of the point mass source. This result (1.17) remains the same (it is
an invariant) for other arbitrary and different choices of the radial function R(r) as long
as R(r = 0) = 2M by using R = −[2M/R2(dR/dr)]δ(r) and for the 4-dim measure the
result 4πR2|gRR|1/2dR |gtt|1/2dt = 4πR2dRdt. Furthermore, this result that the Euclidean
action is equal to the entropy in Planck units can be generalized to higher dimensions
upon recurring to Schwarzschild-like metrics in higher dimensions displayed in Appendix
A.

The volume, when R3 = r3 + (2M)3, is

V (r = 0) =
∫ r=0

r=0

4πr2

(1− 2M/R(r))1/2
dr = 0. (1.18)

Also we can verify that the integral

V =
∫ r

r=0
4πr2dr =

4π

3
r3 =

4π

3
[R3 − (2M)3] =

∫ R

2M
4πR2dR. (1.19)

Hence V(r = 0) = 0 consistent with the fact that R(r = 0) = 2M . The same result
applies for any arbitrary radial function R(r).

Therefore, the most important result is that due to the curvature singularity at r = 0
a point mass source at r = 0 can have a non-zero proper area 4π(2M)2 directly related
to its mass squared. The volume is indeed zero, but not the proper area, hence we
have an infinite (mass/volume) density ( a singularity at r = 0 ). We should not forget
what is the global topology of the solution. The topology in the R-picture of the genuine
Schwarzschild solution is that a of spherical shell extending from R = 2M to R = infinity.
We truly have a void in the R-picture in the region from R = 0 to R = 2M because R has
a lower bound given by 2M . R can never be zero. Therefore, it is meaningless trying to
fill in this void via a Fronsdal-Szekeres-Kruskal analytical continuation when the topology
does not allow us to do this. The spacetime is not simply connected. The void region of
0 < R < 2M is empty space. There is no such a thing as a spacetime ”living” in that
region and into which we can perform a so-called analytical continuation. The Topology
of the genuine Schwarzschild solution forbids it. Since the point mass at r = 0 has zero
volume it is devoid of an interior into which one can analytically continue the solutions.
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To sum up : Hilbert’s solution is not diffeomorphic to the genuine Schwarzschild
solution. The proper area associated with the mass-point source at r = 0 is not zero; the
proper area at r = 0 is 4π(2M)2, but the volume V (r = 0) = 0. The point mass source at
r = 0 can have a geometrical area 4π(2M)2 enclosing a zero volume due to the spacetime
singularity at r = 0. This has been the source of the confusion in the past 90 years that
misled people into thinking there is an event horizon at r = 2M enclosing the singularity
r = 0. One cannot analytically continue into the interior of a point, because there is NO
spacetime interior beyond r = 0, since the volume enclosed by the area of the point mass
at r = 0 is zero, and r = 0 is both the timelike singularity as well as the true boundary
of spacetime.

In [16] we studied the many subtleties behind the introduction of a true point-mass
source at r = 0 ( that couples to the vacuum field ) and the physical consequences of the
delta function singularity (of the scalar curvature) at the location of the point mass source
r = 0. Those solutions were obtained from the vacuum SSS solutions simply by replacing
r for |r| and α for 2M . For instance, the Laplacian in spherical coordinates in flat space
of 1/|r| is equal to −(1/r2)δ(r), but the Laplacian of 1/r is zero. Thus, to account for the
presence of a true mass-point source at r = 0 one must use solutions depending on the
modulus |r| instead of r. The scalar curvature was R = −[2M/R2(dR/dr)]δ(r) [16] . It is
interesting that for the Hilbert R = r and Schwarzschild solutions R3 = r3 + (2M)3, the
scalar curvature is the same R = −(2M/r2)δ(r) and also the spatial measures 4πR2dR =
4πr2dr. This deserves further investigation.

A different and detailed treatment of point masses, point charges, delta function
sources and the physical implications of the many different choices of the radial func-
tions R(r) in General Relativity has been given by Fiziev [18]. A thorough mathematical
analysis on the theory of tensor-valued distributions and delta function singularities in
nonlinear theories ( like General Relativity ) based on Colombeau’s theory of nonlinear
distributions can be found in [12] since the standard Schwarz theory of linear distribu-
tions is not valid. After this historical preamble, lets focus next on the study of the static
spherically symmetric (SSS) solutions with a nonvanishing cosmological constant based
on the introduction of an admissible family of radial functions R(r).

2 ONE RESOLUTION OF THE COSMOLOGICAL

CONSTANT PROBLEM AND THE PIONEER

ANOMALY

2.1 Generalized de Sitter and Anti de Sitter Metrics

We begin with the generalized de Sitter and Anti de Sitter metrics that will help us
understand the nature of the infrared cutoff required to solve the cosmological constant
problem. In Appendix B we prove why the most general static form of the ( Anti ) de
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Sitter-Schwarzschild solutions are given in terms of an arbitrary radial function by

g00 = ( 1− 2M

R(|r|)
−λ R(|r|)2 ). grr = −( 1− 2M

R(|r|)
−λ R(|r|)2 )−1 (dR(|r|)/dr)2 (2.1)

The angular part is given as usual in terms of the solid angle by −(R(|r|))2(dΩ)2. We
choose the parameter λ = Λ/3 where Λ is the cosmological constant. The λ < 0 case
corresponds to Anti de Sitter-Schwarzschild solution and λ > 0 corresponds to the de
Sitter-Schwarzschild solution. The physical interpretation of these solutions is that they
correspond to ”black holes” in curved backgrounds that are not asymptotically flat. For
very small values of R one recovers the ordinary Schwarzschild solution. For very large
values of R one recovers asymptotically the ( Anti ) de Sitter backgrounds of constant
scalar curvature.

The solutions we are interested correspond to the case M = 0 and given in terms of
the radial functions R(r) which are the most general SSS solutions to Einstein’s equations
with a cosmological constant. These solutions were studied earlier by [7] but unfortunate
his analysis was erroneous and his conclusions are invalid. We will show below that
there are nontrivial solutions with a nonvanishing cosmological constant ( contrary to
the assertions made in [7] ) λ when the correct family of admisisble radial functions R(r)
are introduced.

We must emphasize that the novel derivation below of the cosmological constant is
not based on the vacuum fluctuations models of [20]; [21]; nor on the Scale Relativity
Theory [26]; nor on the schemes based on a two-measure theory [32]; the holographic
renormalization group program, quintessence, non-critical strings [23] etc.... nor with
an ad hoc introduction of the Hubble distance. This derivation is based on an entirely
different physical reason than all of the others described so far (to our knowledge) ; i.e
. it is based solely on the physical implications of the radial function R(r) of eq-(2.1). It
is warranted to study the connection ( if any ) among our derivation of the cosmological
constant with all of the prior calculations, for example, [20], [26], [21].

It is important, of course, to find a physical explanation of the origins of the cosmo-
logical constant besides computing its observed value. This was attained in [15] without
imposing any assumptions whatsoever on the calculations as it is done in the literature
by showing why an Einstein-Hilbert action with the correct value of the cosmological
constant (plus Gauss-Bonnet terms) can be obtained from the vacuum state of a BF-
Chern-Simons-Higgs theory based on the (Anti) de Sitter group, after the ( Anti ) de
Sitter symmetry is broken to the Lorentz one.

We will show why its connection with the Hubble constant is not ad hoc at all ; on
the contrary it explains why the Hubble constant ( the Hubble horizon ) has to appear
in the derivation. It also implements naturally the UV/IR (ultra-violet/infrared ) entan-
glement, (without postulating it ad hoc ) necessary to derive the cosmological constant
and we provide a lower bound for the mass of the observable universe. To sum up, to our
knowledge, the crux of the derivation below does not rely whatsoever on any of the other
prior derivations employed to derive the value of the cosmological constant.

One particular expression for the radial function in the de Sitter-Schwarzschild (λ > 0)
case is
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1

R2 − (2M)2
=

1

r2
+ λ. (2.2)

since r2 = |r|2 there is no need to explicitly write the modulus sign in (2.2) and in the
discussion below. When λ = 0 one recovers R2 = r2 +(2M)2 that has a similar behaviour
at r = 0 and r = ∞ as the pure Schwarzschild case given by R3 = r3 + (2M)3; i.e.
R(r = 0) = 2M and R(r →∞) ∼ r respectively. When M = 0 one recovers the pure de
Sitter case and the radial function becomes

1

R2
=

1

r2
+ λ. (2.3a)

In this case, one encounters the reciprocal situation ( the ”dual” picture ) of the
Schwarzschild solutions : ( i ) when r tends to zero ( instead of r = ∞ ) the radial
function behaves R(r → 0) → r ; in particular R(r = 0) = 0 and (ii) when r = ∞ (

instead of r = 0 ) the value of R(r = ∞) = RHorizon =
√

1
λ

and one reaches the location

of the horizon given by the condition g00[R(r = ∞)] = 0.
It is very important to emphasize that for other choices of admissible radial functions

other than eq-(2.3a) they must obey similar boundary conditions at r = 0 and r = ∞ as

the conditions described above : R(r = 0) = 0 and R(r = ∞) = RHorizon =
√

1
λ
. The

family of admissible radial functions obeying the required boundary conditions at r = 0
and r = ∞ are of the form

(
1

R2
) = [ (

1

r2
)n + (λ)n ]1/n. n > 0. (2.3b)

The correct proper radius Rp(r) ( an invariant quantity under radial reparametriza-
tions ) is given by the integral

Rp(r) =
∫ dR√

1− λ R2
=

1√
λ

arcsin [ R(r)
√

λ ] ⇒

Rp(r = 0) = 0 since R(r = 0) = 0; and Rp(r = ∞) =
π

2

1√
λ

=
π

2
RHorizon. (2.4)

Therefore, the pure de Sitter case has a well behaved proper radius Rp(r). When M 6= 0
one has for the de Sitter-Schwarzcshild case

g00(r∗) = 0 ⇒ 1− 2M

R(r∗)
− λ R(r∗)

2 = 0 (2.5)

a cubic equation whose solutions R∗ will restrict the values of the radial function R∗ =
R(r∗) at r = r∗ 6= ∞ , in terms of the mass parameters M and the cosmological constant
Λ = 8πGρvacuum . The cubic equation was solved exactly in [16].

In the pure de Sitter case the condition

g00(r = ∞) = 0 ⇒ 1− λ R(r = ∞)2 = 0 (2.6)
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has a real valued solution

R(r = ∞) =

√
1

λ
= RHorizon. (2.7)

and the correct order of magnitude of the observed cosmological constant can be derived
from eq-(2.7) by equating R(r = ∞) = RHorizon = Hubble Horizon radius as seen today
since the Hubble radius is constant in the late time pure inflationary de Sitter phase of
the evolution of the universe because the Hubble parameter is constant Ho. Eq-(2.1) is
the static form of the generalized de Sitter ( Anti de Sitter ) metric associated with a
constant Hubble parameter. Therefore, by setting the Hubble radius to be of the order
of 1061 LPlanck and by setting G = L2

Planck ( h̄ = c = 1 units) in

8π G ρvacuum = Λ = 3λ =
3

R(r = ∞)2
=

3

R2
H

⇒

ρvacuum =
3

8π

1

L2
P

1

R2
H

=
3

8π

1

L4
P

(
LP

RH

)2 ∼ 10−123 (MPlanck)
4. when RH ∼ 1061LP .

(2.8)
we obtain a result which agrees with the experimental observations. Notice the importance
of using the radial function R = R(r) in eqs-(2.6, 2.8). Had one used R = r in eq-(2.6)
one would have obtained a zero value for the cosmological constant when r = ∞ . Thus,
the presence of the radial function R(r) is essential to understand why the cosmological
constant is not zero and why it is so tiny . In the next section we shall study the case of
a time dependent Hubble parameter H(t) = 1

a
(da/dt) = Ho tanh (H0t) corresponding to

the scaling function a(t) = cosh (H0t) and which tends to a constant H0 in the asymptotic
late time limit H(t →∞) → H0. We shall study also the pure inflationary de Sitter phase
associated with a constant Hubble parameter H0 corresponding to a(t) = eH0t.

We continue with a relevant analysis of the UV/IR ( ultraviolet-infrared ) entangle-
ment involving the interaction of small-large scales within the context of the cosmological
constant problem. The transformation

r → 1

λr
; λ 6= 0. (2.9)

exchanges small distances with large distances and vice versa, reminiscent of the T -
duality in string theory compactifications, and leads to a dual radial function of the form

1

R̃2
= (λr)2 + λ. (2.10a)

where now one has the reciprocal ( ”dual” ) behaviour as that of eq-(2.7)

R̃(r = ∞) = 0; R̃(r = 0) =
1√
λ

. (2.10b)

and the horizon condition g00(RHorizon) = 0 is now attained at r = 0 ( due to the small-
large scales exchange)

g00(r = 0) = 0 ⇒ 1− λ R̃(r = 0)2 = 0 ⇒ R̃(r = 0) =
√

1/λ = RHorizon. (2.11)
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and once again we get the same result as in (2.8).
It is clear now why if one had written R̃(r) = r in eq-(2.11) and introduced the Planck

scale as an ultraviolet cutoff, instead of setting r = 0, one would have obtained an answer
in eq-(2.11) that is off by 122 orders of magnitude (which is the cosmological constant
problem) . What the dual radial function R̃(r) achieves in eqs-(2.10a, 2.11) is to map the
extreme ultraviolet ( UV ) region r = 0 onto the infrared ( IR ) region R̃(r = 0) = RHubble.
Hence, the presence of the dual radial function R̃(r) implements the necessary UV/ IR
entanglement associated with the resolution of the cosmological constant problem.

The reason one can invoke the use of the dual radial function R̃(r), as well as R(r), is
because there is an infinite family of admissible radial functions associated with the SSS
solutions to Einstein’s equations with a comological constant Λ = 3λ, given by eq-(2.1)
when M = 0. The choice R(r) = r yields the familiar solution we have been accustomed
to all these years. However, as we have shown, the correct choice of the admissible radial
functions displayed in eqs-(2.3a, 2.10a) is what allows us to obtain the correct value of the
vacuum energy density consistent with the astrophysical observations ! In the same vein,
the genuine and original Schwarzschild solution that truly describes the gravitational field
due to a point mass source at r = 0 required Schwarschild to choose R = [r3 + (2M)3]1/3.
The Hilbert choice R = r has been shown to be incorrect by [5], [6], [19], [18] among
many others ( it does not describe the gravitational field of a mass point at r = 0 and
does not provide a consistent arrow of time [19] ).

In [15], where no assumptions whatsoever were made, we have shown why AdS4 gravity
with a topological term; i.e. an Einstein-Hilbert action with a cosmological constant plus
Gauss-Bonnet terms can be obtained from the vacuum state of a BF-Chern-Simons-Higgs
theory without introducing by hand the zero torsion condition imposed in the MacDowell-
Mansouri-Chamsedine-West construction. One of the most salient features of [15] was
that a geometric mean relationship was derived ( from scratch, instead of postulating
it ) among the vacuum energy density ρ , the Planck area L2

P and the AdS4 throat size
squared R2 given by ρ = (LP )−2 R−2. Upon setting the throat size to coincide with the
Hubble scale RH ∼ 1061LP ( since the throat size of de Sitter and Anti de Sitter is the
same ) one obtains the observed value of the vacuum energy density ρ = L−2

PlanckR
−2
H =

L−4
P (LP /RH)2 ∼ 10−122(MPlanck)

4.
For example, the calculation based on the model of vacuum fluctuations of a scalar

field by [20] relies on several assumptions and leads to a numerical result that coincides
with the Casimir energy density (1/R4

H) (associated with an infrared scale RHubble) times
an overall numerical factor related to the sum over all the radial modes

∑N
1 n . So the

ρvacuum ∼ (1/R4
Hubble)

∑N
1 n ∼ 1

2
(N2/R4

Hubble). The value of N was set to be of the order
of RH/LP . This is consistent with the Scale Relativity theory [26] and its connection
to Yang’s Noncommutative spacetimes and QM in Clifford spaces [14], where there are
both an UV and IR cutoffs related to the Planck LP and Hubble scale RH , respectively.
Therefore, there is a maximum h̄/LP and minimum h̄/RH momentum which determines
the value of the maximum mode number N in the sum

∑N
1 n given by N = (RH/LP ).

Hence, the ρvacuum ∼ (N2/R4
Hubble) = L−2

P R−2
H ∼ 10−122M4

P , when RH ∼ 1061LP .
It is poignant to mention that related to the issue of T -duality ( the UV/IR entangle-

ment displayed by the radial function R(r) and its dual R̃(r) above) the analog of S-duality
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for linearized gravity in 4D was developed by [24] where the strong-weak coupling duality
is an exact symmetry which implies a small-large duality for the cosmological constant. A
quantization of the cosmological constant was another implication of a duality symmetry
[24]. This interplay between S and T dualities has to be investigated further.

2.2 An estimate of the Mass of the Universe and Dirac-
Eddington-Weyl Large Numbers Coincidences

To finalize this section we should add that an estimate of a lower mass bound of the
Universe can also be attained from studying the location of the horizon corresponding to
the Anti de Sitter-Schwarzschild generalized metric solutions of eq-(2.1) .

The cubic equation that sets the location R∗ of the horizon in the Anti de Sitter case
g00(R = R∗) = 0 is given by

g00(r∗) = 0 ⇒ 1− 2M

R(r∗)
+ λ R(r∗)

2 = 0 (2.12)

and whose unique real positive solution is [16] :

R1 = [
M

λ
+

√
M2

λ2
+

1

27λ3
]1/3 + [

M

λ
−

√
M2

λ2
+

1

27λ3
]1/3 > 0. (2.13)

We must disregard the two complex roots. There are no double roots in the AdS case
because

M2

λ2
+

1

27λ3
6= 0. (2.14)

It is very important to emphasize that one has already taken into account the fact
λAdS = −λdS in the root of eq-(2.13). Therefore in eq-(2.13), and all the expressions that
follow, when we write λ it should be understood as |λ| and hence it is a positive quantity.
The radial function R(r) in the Anti de Sitter case must differ from the de Sitter case
and is obtained from eq-(2.2) by replacing λ → −λ

1

R2 − (2M)2
=

1

r2
− λ ⇒ R(r = 0) = 2M ; R(r = ∞) =

√
(2M)2 − 1

λ
< 2M. (2.15)

and it leads to the inequality 2M > R∗ > R(r = ∞) because it is a decreasing function
of r and which can be recast explicitly as

2M > [
M

λ
+

√
M2

λ2
+

1

27λ3
]1/3 + [

M

λ
−

√
M2

λ2
+

1

27λ3
]1/3 >

√
(2M)2 − 1

λ
≥ 0 (2.16)

The implementation of the UV/IR entanglement map r → 1/λr in eq-(2.15) yields
the dual version of the radial function R̃(r)

12



1

R̃2 − (2M)2
= (λr)2 − λ ⇒ R̃(r = ∞) = 2M ; R̃(r = 0) =

√
(2M)2 − 1

λ
< 2M.

(2.17)
which is an increasing function of r, instead of a decreasing function like R(r) in eq-(2.15).

From eq-(2.17) one can infer from the condition√
(2M)2 − 1

λ
= real − valued ⇒ 2M ≥ 1√

λ
. (2.18)

Hence, if one were to equate the quantity 2M = 1√
λ

= RHubble with the net mass of the
galaxies, stars, ....inside that region of the observable universe enclosed by the Hubble
radius RH , and take a value of RHubble ∼ 1061LPlanck, one would have in the appropriate
units the following

2M ∼ 1061 MPlanck ∼ 1080 mproton. (2.19)

that agrees with the Dirac-Eddington-Weyl large number coincidences

N = 1080 ∼ (
Fe

FG

)2 ∼ (
RHubble

re

)2. (2.20)

where Fe = e2/r is the electrostatic force between an electron and a proton; FG =
Gmemp/r

2 is the corresponding gravitational force and re = e2/me ∼ 10−13cm is the
classical electron radius in natural units of h̄ = c = 1. Of course, this is not to say
that the AdS-Schwarzchild case is the same as the Friedman-Robertson-Walker model,
but only that one could equate the net mass ( inside RH ) of the latter with the 2M
parameter of the former to get an estimate of the lower bound of the mass of the observable
universe. To match the observational data requires further work since it is more likely
that 2M > 1√

λ
= RHubble due to the presence of dark matter. Recently, the authors [25]

have studied the finite-action solutions ( square integrable ) of the Klein-Gordon equation
on Lorentzian manifolds ( Friedman type and de Sitter ) and have found a discrete mass
spectrum that could help answer why elementary particles have a discrete spectrum. Thus
this interplay between cosmology and particle physics needs to be explored further.

By inspection one can verify that the lower bound 2M = 1√
λ

obeys the condition

given by eq-(2.18). The latter becomes

2M =
1√
λ

> R∗ = ( [
1

2
+

√
31

108
]1/3 + [

1

2
−

√
31

108
]1/3 )

1√
λ

= 0.6823
1√
λ

. (2.21)

It is clear that a lot of work and re-thinking remains to be done pertaining the proper
use of the radial functions R(r) in the class of SSS solutions to Einstein’s equations with
and without a cosmological constant. The fact that we were able to obtain the correct
magnitude of the observed cosmological constant and the correct lower estimate of the
mass of the universe related to the Dirac-Eddington’s large number N = 1080 is a positive
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sign that one should use the solutions displayed in this work based on a suitable class
of radial functions R(r) rather than the naive choice R = r we have been familiar with
during all these decades . The presence of the radial function R(r) was instrumental to
understand why the cosmological constant is not zero and why it is so tiny.

2.3 The Pioneer Anomaly, Mach’s Principle and Modified New-
tonian Dynamics

To finalize this section we will present a derivation of the anomalous Pioneer acceleration
based on a very specific choice of the radial function R(r) corresponding to the ( Anti )
de Sitter-Schwarzschild generalized solutions given in eq-(2.1). We will choose the specific
radial function to be of the form (after reintroducing the Newtonian coupling GN which
was set to unity)

1

R− (2GNM)
=

1

r
+
√

λ ⇒ R = (2GN M) +
r

1 +
√

λ r
. (2.22a)

1

R− (2GNM)
=

1

r
−
√

λ ⇒ R = (2GN M) +
r

1−
√

λ r
. (2.22b)

Let us choose the plus sign in front of the square root +
√

λ (2.22a ) first and then
we will focus on the negative sign of the square root −

√
λ in eq-(2.22b). For distances

r of the order of the solar system that are much smaller than the cosmological scales
λ R(r)2 << 1 we can approximate the metric component in eq-(2.1) by :

gtt = − (1− 2 GN M

R(r)
− λ R(r)2) ∼ − (1− 2 GN M

R(r)
). (2.23)

and in the weak field approximation when M is of the order of the solar mass ( solar
system ) the modified Newtonian potential VN can be read from the condition

gtt ∼ −(1 + 2VN) ⇒ VN = − GN M

R(r)
. (2.24)

and the force per unit mass, acceleration, is then :

a =
F

m
= − ∂VN

∂r
= − GN M

R(r)2
[
1 +

√
λ r −

√
λ r

(1 +
√

λ r)2
] = − GN M

R(r)2
[

1

(1 +
√

λ r)2
]. (2.25)

By approximating R(r)2 ∼ r2 and performing a binomial ( Taylor ) expansion leads to

a ∼ − GN M

r2
(1 +

√
λ r)−2 ∼ − GN M

r2
(1 − 2

√
λ r + ......). (2.26)

Thus the first order corrections to the Newtonian acceleration in powers of
√

λ r are :
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∆ a = +
2 GN M

r2

√
λ r = = +

2 GN M

r2

r

RHubble

= +
2 GN M

r RHubble

. (2.27)

The positive sign means that the corrections point outwards away from the sun. This
is because we chose the radial function given by eq-(2.22a). The choice of the negative
sign of the square root in eq-(2.22b) would have reversed the signs and one would have
obtained corrections pointing towards the sun.

∆ a = − 2 GN M

r2

√
λ r = = − 2 GN M

r2

r

RHubble

= − 2 GN M

r RHubble

. (2.28)

and the factional corrections relative to the standard Newtonian acceleration −GNM/r2

are

|∆a

a
| = 2 r

RHubble

∼ c
T ime of flight

Hubble Scale
(2.29)

where the time of flight of the photons in their return trip from the earth to the spacecraft
and back is of the order of T = 2r/c.

Let us set the scale r and speed v of the spacecraft to be such that

1

2
mPioneer v2 =

GN M mPioneer

r
⇒ v2 =

2 GN M

r
. (2.30)

meaning that its speed at the location r is of the same order as its escape velocity that
allows the spacecraft to leave the gravitational bounds of the solar system. Therefore, by
plugging-in the value of v2 = (2GNM/r) into eq-(2.27) we get the anomalous corrections
to the Pioneer spacecraft acceleration

∆a ∼ +
2 GN M

r RHubble

= +
v2

RHubble

. (2.31a)

The positive sign means that it points away from the sun. The choice of the negative
sign in front of the square root in eq-(2.22b) yields a change in sign :

∆a ∼ − 2 GN M

r RHubble

= − v2

RHubble

. (2.31b)

and the corrections to the acceleration point towards the sun which is what is observed,
there is an anomalous Doppler blueshift which was first predicted by [42] ( to our knowl-
edge ). Had we used a different expression for the radial function, like that in eq-(2.2),
one would have obtained a different result

when R(r) =

√
(2GNM)2 +

r2

1± λ r2
⇒ ∆a ∼ ± 2GN M

R2
Hubble

. (2.32)

and a fractional change of
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|∆a

a
| = 2 r2

R2
Hubble

. (2.33)

To finalize we may invoke Mach’s principle [39] [41] by equating the rest mass (energy)
of the Pioneer spacecraft mPioneer to the gravitational potential energy it experiences due
to the net mass MU of the universe at a scale RHubble

mPioneerc
2 =

GN MUniverse mPioneer

RHubble

⇒ aP =
c2

RHubble

=
GN MUniverse

R2
Hubble

. (3.34)

that has the same order of magnitude as the observed value for the anomalous Pioneer
acceleration. At the end of the next section we will revisit the anomalous Pioneer accel-
eration within the framework of Weyl’s geometry.

3 WEYL GEOMETRY SOLVES THE RIDDLE OF

DARK ENERGY

The problem of dark energy is one of the most challenging problems facing us today, see
[21], [23] for a review. In this section we will show how Weyl’s geometry (and its scaling
symmetry) is instrumental to solve this dark energy riddle. Before starting we must
emphasize that our procedure is quite different than previous proposals [29] to explain
dark matter ( instead of dark energy ) in terms of Brans-Dicke gravity. It is not only
necessary to include the Jordan-Brans-Dicke scalar field φ but it is essential to have a
Weyl geometric extension and generalization of Riemannian geometry ( ordinary gravity
). It will be shown why the scalar φ has a nontrivial energy density despite having trivial
dynamics due entirely to its potential energy density V (φ = φo) and which is precisely
equal to the observed vacuum energy density of the order of 10−123M4

Planck. For other
approaches to solve the riddle of dark energy and dark matter based on modifications of
gravity by starting with Lagrangians of the type f(R) see [31] and references therein.

Weyl’s geometry main feature is that the norm of vectors under parallel infinitesimal
displacement going from xµ to xµ + dxµ change as follows :

δ||V || ∼ ||V ||Aµdxµ

where Aµ is the Weyl gauge field of scale calibrations that behaves as a connection under
Weyl transformations :

A′
µ = Aµ − ∂µ Ω(x). gµν → e2Ω gµν . (3.1)

involving the Weyl scaling parameter Ω(xµ) .
The Weyl covariant derivative operator acting on a tensor T is defined by DµT =

( ∇µ + ω(T ) Aµ)T; where ω(T) is the Weyl weight of the tensor T and the derivative
operator ∇µ = ∂µ + Γµ involves a connection Γµ which is comprised of the ordinary
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Christoffel symbols plus extra Aµ terms in order for the metric to obey the condition
Dµ(gνρ) = 0. The Weyl weight of the metric gνρ is 2. The meaning of Dµ(gνρ) = 0 is that
the angle formed by two vectors remains the same under parallel transport despite that
their lengths may change. This also occurs in conformal mappings of the complex plane.

The Weyl covariant derivative acting on a scalar φ of Weyl weight ω(φ) = −1 is defined
by

Dµφ = ∂µ φ + ω(φ)Aµ φ = ∂µ φ − Aµ φ. (3.2)

The Weyl scalar curvature in D dimensions and signature (+,−,−,−....) is

RWeyl = RRiemann − (D − 1)(D − 2)AµA
µ + 2(D − 1)∇µA

µ. (3.3)

For a signature of (−, +, +, +, ....) there is a sign change in the second and third terms
due to a sign change of RRiemann.

The Jordan-Brans-Dicke action is

S = −
∫

d4x
√
|g| [ φ2 RWeyl ]. (3.4)

Under Weyl scalings,

RWeyl → e−2Ω RWeyl; φ2 → e−2Ω φ2. (3.5)

to compensate for the Weyl scaling ( in 4D ) of the measure
√
|g| → e4Ω

√
|g| in order to

render the action (3.4) Weyl invariant.
When the Weyl integrability condition is imposed Fµν = ∂µAν − ∂νAµ = 0 ⇒ Aµ =

∂µΩ, the Weyl gauge field Aµ does not have dynamical degrees of freedom; it is pure gauge
and barring global topological obstructions, one can choose the gauge in eq-(3.4)

Aµ = 0; φ2
0 =

1

16πGN

= constant. (3.6)

such that the action (3.4) reduces to the standard Einstein-Hilbert action of Riemannian
geometry

S = − 1

16πGN

∫
d4x

√
|g| [RRiemann(g)]. (3.7)

The Weyl integrability condition Fµν = 0 means physically that if we parallel transport
a vector under a closed loop, as we come back to the starting point, the norm of the vector
has not changed; i.e, the rate at which a clock ticks does not change after being transported
along a closed loop back to the initial point; and if we transport a clock from A to B
along different paths, the clocks will tick at the same rate upon arrival at the same point
B. This will ensure, for example, that the observed spectral lines of identical atoms will
not change when the atoms arrive at the laboratory after taking different paths ( histories
) from their coincident starting point. If Fµν 6= 0 Weyl geometry may be responsible for
the alleged variations of the physical constants in recent Cosmological observations.

Our starting action is

S = SWeyl(gµν , Aµ) + S(φ).. (3.8)
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with
SWeyl(gµν , Aµ) = −

∫
d4x

√
|g| φ2 [ RWeyl(gµν , Aµ) ]. (3.9)

where we define φ2 = (1/16πG). The Newtonian coupling G is spacetime dependent in
general and has Weyl weight equal to 2. A different approach to the problem of dark
energy where the Newtonian coupling is time dependent has been undertaken by [35].

The term S(φ) involving the Jordan-Brans-Dicke scalar φ is

Sφ =
∫

d4x
√
|g| [

1

2
gµν (Dµφ)(Dνφ) − V (φ) ]. (3.10)

where Dµφ = ∂µφ− Aµφ.
The FRW metric is

ds2 = dt2 − a2(t) (
dr2

1− k(r/R0)2
+ r2(dΩ)2). (3.11)

where k = 0 for a 3-dim spatially flat region; k = ±1 for regions of positive and negative
constant spatial curvature, respectively. The de Sitter metric belongs to a special class
of FRW metrics and it admits different forms depending on the coordinates chosen. In
particular when a(t) = cosh(H0t) = cosh(t/R0); k = 1, the de Sitter metric is

ds2 = dt2 − cosh2(H0t) (
dr2

1− (r/R0)2
+ r2(dΩ)2) =

ds2 = cosh2(H0t) [
dt2

cosh2(H0t)
− (

dr2

1− (r/R0)2
+ r2(dΩ)2) ] (3.12)

and which can also be recast in terms of the conformal factor a2(τ) and the conformal
time τ , respectively,

a2(τ) = cosh2(H0t) = cosh2(t/R0); (dτ)2 =
dt2

cosh2(H0t)

as

ds2 = a2(τ) dη2 = a2(τ) [dτ 2 − (
dr2

1− (r/R0)2
+ r2(dΩ)2) ] =

a2(τ) [ dτ 2 − R2
0(dΩ3)

2 ] = a2(τ) [ dτ 2 − R2
0 dχ2 −R2

0 sin2χ (dΩ)2 ]. (3.13)

where Ω is the two-dim solid angle corresponding to the sphere S2 and Ω3 is the 3-dim
solid angle corresponding to the 3-sphere S3 . The third angle coordinate χ ( besides θ, φ
) of the S3 is defined by sin(χ) = (r/R0).

When a(t) = cosh(H0t) = cosh(t/Ro), the 4D spacetime Riemannian scalar curvature
RRiemann for k = 1 can be shown to be constant despite the temporal dependence of a(t)
:

RRiemann = − 6 [ (
(d2a/dt2)

a
) + (

(da/dt)

a
)2 +

1

a2R2
0

] =
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−6 [ H2
0 + H2

0 tanh2(H0t) +
H2

0

cosh2(H0t)
] = −12 H2

0 . (3.14a)

notice that the negative sign of RRiemann was due to the chosen signature. The following
identities of hyperbolic functions are employed :

1 + tanh2(H0t) +
1

cosh2(H0t)
=

cosh2(H0t) + sinh2(H0t) + 1

cosh2(H0t)
=

2cosh2(H0t)

cosh2(H0t)
= 2.

(3.14b)

cosh2(H0t)− sinh2(H0t) = 1. tanh2(H0t) +
1

cosh2(H0t)
= 1. (3.14c)

de Sitter space is geometrically a 4-dim hyperboloid embedded in 5D and can be seen
as being the 3 + 1 dimensional world-volume spanned by the motion of a 3-brane of
topology S3 in a flat target 5D embedding spacetime background. We should emphasize
as well that the Hubble parameter H(t) = 1

a
(da/dt) = Ho tanh (H0t) is time dependent

when a(t) = cosh (H0t) and tends to a constant H0 in the asymptotic late time limit
H(t → ∞) → H0. We shall study this case and the pure inflationary de Sitter phase
associated with a constant Hubble parameter H0 corresponding to a(t) = eH0t.

The Friedman-Einstein-Weyl equations in the gauge Aµ = (0, 0, 0, 0) (in units of c = 1)
:

Gµν = 8πG Tµν ; φ2 =
1

16π G
. Tµν = − 2√

|g|
δSmatter

δgµν
. (3.15)

read

3(
(da/dt)

a
)2 + (

3k

a2R2
0

) = 8πG(t)ρ. (3.16)

and

−2 (
(d2a/dt2)

a
)− (

(da/dt)

a
)2 − (

k

a2R2
0

) = 8πG(t) p. (3.17a)

From eqs-(3.16-3.17a) one can infer the important relation :

− (
(d2a/dt2)

a
) =

4πG(t)

3
(ρ + 3p). (3.17b)

Eqs-(3.16-3.17) are the ones one must use.
If one had partially fixed the gauge Aµ = (At, 0, 0, 0) and try to identify the Hubble

variable H(t) with At = H(t) like the author [33] did these equations would have been

3(
(da/dt)

a
)2 + (

3k

a2R2
0

) =

− 9( At(x) At(x) − 1√
|g|

∂t(
√
|g|At) ) + 8πG(t)ρ. (3.18a)
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and

−2 (
(d2a/dt2)

a
)− (

(da/dt)

a
)2 − (

k

a2R2
0

) =

3 ( At(x) At(x)− 1√
|g|

∂t(
√
|g|At) ) + 8πG(t) p. (3.18b)

Notice the presence of a crucial and net factor of 9 in eq-( 3.18a) due to the contribution
of the variation of the

√
ggttAtAt... terms w.r.t the gtt metric component, compared to

the factor of 3 in eq- (3.18b) because Ai = 0. One can infer from eqs-(3.18) that

(
(da/dt)

a
)2 = H2(t) = − (

k

a2R2
0

) − 3( At(x) At(x) − 1√
|g|

∂t(
√
|g|At) ) +

8πG(t)

3
ρ. (3.19a)

and

− (
(d2a/dt2)

a
) = − ( H2(t) +

dH

dt
) =

4πG(t)

3
(ρ + 3p). (3.19b)

The density and pressure terms associated with the scalar field φ are given by eqs-( 3.24)
below . The scalar φ must be chosen to depend solely on time , φ(t), because this is
the relevant case suitable for the FRW cosmologies due to the fact that the geometry is
spatially homogeneous and isotropic .

The gauge choice condition imposed by [33] : At = H(t); Ai = 0, i = 1, 2, 3 is
compatible with the spatial isotropy and homogeneity of the FRW models. However,
despite that a non-zero value At was chosen by [33] there is a residual symmetry that is
still available to gauge At to zero. As mentioned earlier, Weyl’s integrability condition
Fµν = 0 when the Weyl gauge field Aµ is both closed Fµν = 0 and exact ( a total
derivative ) physically means that Aµ is pure gauge, a total derivative, whence it does not
have true dynamical degrees of freedom and all of its components can be gauged to zero
Aµ = (0, 0, 0, 0) barring global topological obstructions.

However, if one partially fixes the gauge At = H(t); Ai = 0 like it was done in [33], one
arrives at a caveat that was overlooked by [33] . One would arrive at a deep contradiction
and inconsistency between the left hand side (l.h.s) and the right hand side (r.h.s) of
the Friedman-Einstein-Weyl equations ( for example in eq-(3.19b) ) in the partially fixed
gauge At = H(t) because the l.h.s does not transform homogeneously under Weyl scalings,
whereas the r.h.s does; if the quantities ρ and p were to transform properly under Weyl
scalings, homogeneously, this behaviour would be incompatible with the transformation
properties of the At = H(t) terms appearing in the l.h.s of eqs-(3.19b).

In order to reconcile this incompatibility between the inhomogeneous transformation
properties of the l.h.s of eq-(3.19b) with the homogeneous transformation properties of
the r.h.s of (3.19b), one must fix the gauge Aµ = 0 fully in the Einstein-Friedman-Weyl
equations as shown in eqs-(3.16-3.17). The latter equations are the physically relevant
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and not eqs-(3.18-3.19). One may be inclined to say : if one is going to fix the gauge
Aµ = 0 anyway, then what is the role of Weyl’s geometry and symmetry in all of this ?
We will show below why despite fixing the gauge Aµ = 0 one cannot forget the constraint
which arises from the variations of the action w.r.t the Weyl’s field Aµ ! This constraint
holds the key to see why the density and pressure associated with the scalar φ obey the
sought after relation ρ(φ) = −p(φ) ( which is the hallmark of dark energy ) as we intend
to prove next.

The Jordan-Brans-Dicke scalar φ must obey the generalized Klein-Gordon equations
of motion

( DµD
µ + 2RWeyl ) φ + (

dV

dφ
) = 0 (3.20)

notice that because the Weyl covariant derivatives obey the condition Dµ(gνρ) = 0 ⇒
Dµ(

√
|g|) = 0 there are no terms of the form (Dµ

√
|g|)(Dµφ) in the generalized Klein-

Gordon equation like it would occur in ordinary Riemannian geometry (∂µ

√
|g|)(∂µφ) 6= 0.

In addition, we have the crucial constraint equation obtained from the variation of the
action w.r.t to the Aµ field :

δS

δAµ
= 0 ⇒ 6 (Aµφ

2 + ∂µ(φ2)) +
1

2
(Aµφ

2 − ∂µ(φ)2 ) = 0. (3.21)

The last constraint equation in the gauge Aµ = 0, then forces ∂µφ = 0, ⇒ φ = φo =
constant. Consequently G ∼ φ−2 is also constrained to a constant GN and one may set
16π GN φ2

o = 1, where GN is the observed Newtonian constant today.
Furthermore, in the gauge Aµ = 0, due to the constraint eq-(3.21), one can infer

that Dµφ = 0, ⇒ DµDµφ = 0 because Dt φ(t) = ∂t φ − At φ = ∂t φ = 0, and
Diφ(t) = −Aiφ(t) = 0. These results will be used in the generalized Klein-Gordon
equation.

To sum up, the solution to the constraint equation (3.21) in the gauge Aµ = (0, 0, 0, 0)
leads to the result ∂µφ = 0, which in turn, is equivalent to

Dt φ(t) = (∂t − At)φ = ∂t φ(t) = 0; Di φ(t) = −Aiφ(t) = 0; (3.22)

φ = φo = constant =

√
1

16π GN

. (3.23)

Therefore, the stress energy tensor T µ
µ = diag (ρ,−p,−p,−p) corresponding to the con-

stant scalar field configuration φ(t) = φo, in the Aµ = 0 gauge, becomes :

ρφ =
1

2
(∂t φ−At φ)2 + V (φ) = V (φ); pφ =

1

2
(∂t φ−At φ)2 − V (φ) = −V (φ). (3.24)

ρ + 3p = 2 (∂t φ− At φ)2 − 2V (φ) = −2V (φ). (3.25)

Thus, after imposing the result ∂µφ = ∂t φ(t) = 0, derived from eq-(3.21), in the
gauge Aµ = 0, the above ρ and p terms (3.24) become ρ(φ) = V (φ) = −p(φ) such that

21



ρ + 3p = −2V (φ) ( that will be used in the Einstein-Friedman-Weyl equations (3.17b)
). This is the key reason why Weyl’s geometry and symmetry is essential to explain
the origins of a non − vanishing vacuum energy ( dark energy ). The latter relation
ρ(φ) = V (φ) = −p(φ) is the key to derive the vacuum energy density in terms of V (φ = φo)
!., because such relation resembles the dark energy relation pDE = −ρDE. Had one not
had the constraint condition Dt φ(t) = (∂t−At)φ = ∂t φ = 0, and Diφ(t) = −Aiφ(t) = 0,
in the gauge Aµ = 0, enforcing φ = φo, one would not have been able to deduce the
crucial condition ρ(φ = φo) = − p(φ = φo) = V (φ = φo) that will furnish the observed
vacuum energy density today.

We will find now solutions of the Einstein-Friedman-Weyl equations in the gauge
Aµ = (0, 0, 0, 0) after having explained why Aµ can (and must) be gauged to zero. There
are three relevant cases that pop up immediately :
• Case 1 is the trivial case corresponding to a static flat Minkowski spacetime :

a(t) = 1; Aµ = (0, 0, 0, 0); k = 0; RWeyl = RRiemann = 0; V (φ) ≡ 0. (3.26)

that solves trivially the Einstein-Friedmann-Weyl equations. This case corresponds to a
vanishing vacuum energy since V (φ) ≡ 0 ( flat potential).
• Case 2 : is the one corresponding to the late time pure inflationary de Sitter space

( where only one− half of de Sitter space is covered ) :

a(t) = eHot; Aµ = (0, 0, 0, 0); k = 0; RWeyl = RRiemann = −12 H2
0 ;

where we will show that the potential is

V (φ) = 12H2
0φ

2 + Vo. (3.27)

one learns in this case that V (φ = φo) 6= 0 since this non-vanishing value is precisely the
one that shall furnish the observed vacuum energy density today ( as we will see below )
.
• Case 3 : belonging to a different parametrization of de Sitter space ( all of the de

Sitter space is covered in this case ) when k = 1 (spatially closed universe of constant
positive spatial curvature ) and a time dependent Hubble parameter H(t) = 1

a
(da/dt) =

H0 tanh (H0t) such that H(t →∞) → H0 :

a(t) = cosh[Hot]; Aµ = (0, 0, 0, 0); k = 1; RWeyl = RRiemann = −12 H2
0 ;

with the same potential V (φ) = 12H2
0φ

2 + Vo.
We shall begin by solving the Einstein-Friedman-Weyl equations eq-(3.16-3.17) in the

gauge Aµ = (0, 0, 0, 0) for a spatially flat universe k = 0 and a(t) = eH0t, corresponding
to the inflationary de Sitter metric :

ds2 = dt2 − e2Hot (dr2 + r2(dΩ)2). (3.28)

the Riemannian scalar curvature when k = 0 is

RRiemann = − 6 [ (
(d2a/dt2)

a
) + (

(da/dt)

a
)2 ] = −12 H2

0 (3.29)
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( the negative sign is due to the chosen signature +,−,−,− ).
To scalar Weyl curvature RWeyl in the gauge Aµ = (0, 0, 0, 0) is the same as the

Riemannian one RWeyl = RRiemann = −12 H2
0 . Inserting the condition Dµφ = Dtφ(t) =

(∂tφ − Atφ) = ∂t φ = 0, in the gauge Aµ = 0, the generalized Klein-Gordon equation
(3.20) will be satisfied if, and only if, the potential density V (φ) is chosen to satisfy

( 12 H2
0 ) φ =

1

2
(
dV

dφ
) ⇒ V (φ) = 12 H2

0 φ2 + Vo (3.30)

As stated earlier, one must firstly differentiate w.r.t the scalar φ , and only afterwards,
one may set φ = φo. V (φ) has a Weyl weight equal to −4 under Weyl scalings in order
to ensure that the full action is Weyl invariant. H2

0 and φ2
o have both a Weyl weight of

−2, despite being constants, because as one performs a Weyl scaling of these quantities
( a change of a scales) they will acquire then a spacetime dependence. H2

0 is a masslike
parameter, one may interpret H2

0 ( up to numerical factors ) as the ”mass” squared of the
Jordan-Brans-Dicke scalar. We will see soon why the integration constant Vo plays the
role of the ”cosmological constant”.

An important remark is in order. Even if we included other forms of matter in the
Einstein-Fredmann-Weyl equations, in the very large t regime, their contributions will be
washed away due to their scaling behaviour. We know that ordinary matter ( p = 0 );
dark matter ( pDM = wρDM with −1 < w < 0 ) and radiation terms ( prad = 1

3
ρrad ) are

all washed away due to their scaling behaviour :

ρmatter ∼ R(t)−3. ρradiation ∼ R(t)−4. ρDM ∼ R(t)−3(1+w). (3.31)

where R(t) = a(t)R0. The dark energy density remains constant with scale since w = −1
and the scaling exponent is zero, ρDE ∼ R0 = costant. For this reason it is the only
contributing factor at very large times.

Now we are ready to show that eqs-(3.16-3.17) are indeed satisfied when a(t) =
eH0t; k = 0; Aµ = 0; φ = φo 6= 0. Eq-(3.17b), due to the conditions ρ + 3p = −2V (φ)
and φ(t) = φo (resulting from the constraint eq-(3.21) in the Aµ = 0 gauge ) gives :

− (
(d2a/dt2)

a
) = −H2

0 =
4πGN

3
(ρ + 3p) =

− (
8π GN V (φ = φo)

3
) = − (

8π GN 12 H2
0 φ2

o

3
) − 8πGN Vo

3
. (3.32)

Eq-(3.16) ( with k = 0 ) is just the same as eq-(3.17b) but with an overall change of sign
because ρ(φ = φo) = V (φ = φo). Using the definition 16π GN φ2

o = 1 in (3.32) one gets

−H2
0 = − (

8π GN 12 H2
0 φ2

o

3
) − 8π GN Vo

3
= −2 H2

0 − 8π GN Vo

3
⇒

−8π GN Vo

3
= H2

0 ⇒ − 8π GN Vo = 3 H2
0 (3.33)

Therefore, we may identify the term − Vo with the vacuum energy density so the quantity
3H2

0 = −8π GN Vo = Λ is nothing but the cosmological constant. It is not surprising at
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all to obtain Λ = 3 H2
0 in de Sitter space . One knew it long ago. What is most relevant

about eq-(3.33) is that the observed vacuum energy density is minus the constant of
integration Vo corresponding to the potential density V (φ) = 12H2φ2 + Vo !. Hence one
has from the last term of eq-(3.33) :

−Vo = ρvacuum =
3H2

0

8π GN

. (3.34)

and finally, when we set H2
0 = (1/R2

0) = (1/R2
Hubble) and GN = L2

Planck in the last term
of eq-(3.34), as announced, the vacuum density ρvacuum observed today is precisely given
by :

−Vo = ρvacuum =
3H2

0

8π GN

=
3

8π
(LPlanck)

−2 (RHubble)
−2 =

3

8π
(

1

LPlanck

)4 (
LPlanck

RHubble

)2 ∼ 10−123 (MPlanck)
4. (3.35)

This completes our third derivation of the vacuum energy density given by the formula
(3.34-3.35). The first derivation was attained in [15]. The second derivation in section 2
and the third derivation in this last section.

Concluding this analysis of the Einstein-Friedman-Weyl eqs-(3.16-3.17) : By invoking
the principle of Weyl scaling symmetry in the context of Weyl’s geometry; when k = 0
( spatially flat Universe ), a(t) = eH0t ( de Sitter inflationary phase ) ; Ho = Hubble
constant today; φ(t) = φo = constant, such 16πGN φ2

o = 1, one finds that

V (φ = φo) = 12 H2
0 φ2

o + Vo = 2ρvacuum − ρvacuum = ρvacuum =

6H2
0φ

2
o =

3H2
0

8π GN

∼ 10−123 M4
Planck. (3.36)

is precisely the observed vacuum energy density ( 3.34) . Therefore, the observed vacuum
energy density is intrinsically and inexorably linked to the potential density V (φ = φo)
corresponding to the Jordan-Brans-Dicke scalar φ required to build Weyl invariant actions
and evaluated at the special point φ2

o = (1/16πGN).
There is the trivial solution to the Einstein-Friedman-Weyl equations given by

k = 0 (flat); RWeyl = RRiemann = 0; a(t) = 1; Aµ = 0; V (φ) ≡ 0 (3.37)

and the relationship between Λ and V (φ) when a(t) = 1 is inferred from

0 = − (
8πGN V (φ)

3
), since V (φ) ≡ 0. (3.38)

As expected, in this trivial flat universe with a zero flat potential one must have Λ = 0.
It is straightforward to verify due to the identity tanh2(H0t) + 1/cosh2(H0t) = 1

that the case of a time dependent Hubble parameter H(t) = H0 tanh (H0t) when
k = 1; a(t) = cosh[H0t] and RWeyl = −12H2

0 as derived in eqs-(3.14) also solves
the Einstein-Friedman-Weyl equations in the gauge Aµ = 0 for the same potential
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V (φ) = 12H2
0φ

2 + Vo when φ(t) = φo. For this reason, these nontrivial solutions for
an ever expanding accelerating universe ( consistent with observations) is so promising
because it incorporates the presence of the Hubble and Planck scales into the expression
for the observed vacuum energy density via the Jordan-Brans-Dicke scalar field φ needed
to implement Weyl invariance of the action. It is warranted to study the connection
between this Weyl geometric approach versus the Scale Relativity Theory [26] and the
Extended Relativity Theory in Clifford spaces [28] where there is scale motion without
the need to introduce a Weyl gauge field.

Concluding, Weyl’s scaling symmetry principle permits us to explain why the observed
value of the vacuum energy density ρvacuum is precisely given by the expression (3.35).
This completes our third derivation of the vacuum energy density. The first derivation
was attained in [15] while the second derivation was attained in section 2.

In order to introduce true dynamics to the Weyl gauge field, one must add the kinetic
term for the Weyl gauge field FµνF

µν . In this case, the integrability condition Fµν =
∂µAν − ∂νAµ = 0 is no longer obeyed in general and the rate at which clocks tick may
depend on their worldline history. This could induce a variation of the physical constants
( even dimensionless constants like the fine structure constant α = 1/137 ). For instance,
as the size of the universe grows, ( a(t) = eH0t increases with time) the variable speed
of light, Newtonian coupling and cosmological constant , may vary according to the law
[G(t)/c4(t) Λ(t)] ∼ (1/ρvacuum) if the vacuum energy density ρvacuum would remain
constant. Many authors have speculated about this last behaviour among c, G, Λ.

The most general Lagrangian involving dynamics for Aµ is

L = −φ2RWeyl(gµν , Aµ) +
1

4
FµνF

µν +
1

2
gµν(Dµφ)(Dνφ)− V (φ) + Lmatter + ..... (3.39)

The Lmatter must involve the full fledged Weyl gauge covariant derivatives acting on
scalar and spinor fields contrary to the Cheng-Weyl models of [36] where there is no Weyl
gauge field in the derivatives. Lradiation terms may be included involving the Maxwell
field Aµ which must not be confused with the Weyl gauge field Aµ. Once could also add
Yang-Mills fields Aa

µ and kinetic and potential terms for the Higgs scalars as well.
The simplest scenario, of course, was the one given at the beginning of this section

when the Weyl field Aµ was both closed Fµν = 0 and exact ( a total derivative ) that al-
lowed us to gauge it to zero barring global topological obstructions. The latter topological
obstructions deserved to be investigated further. Thus the simplest modifications to the
equations studied in this section are obtained when Aµ cannot be gauged to zero globally
due to topological obstructions. Therefore, by setting Aµ = ( At(t) 6= 0, 0, 0, 0) and
reminding the reader that one cannot equate the Hubble parameter H(t) = a−1(da/dt)
to the temporal component At(t) yields the modified Friedmann-Einstein-Weyl equations

3(
(da/dt)

a
)2 + (

3k

a2R2
0

) = − 9( At(x) At(x) − 1√
|g|

∂t(
√
|g|At) ) + 8πG(t)ρ =

− 9( At(x) At(x) − 1√
|g|

∂t(
√
|g|At) ) +

1

2φ2
[

1

2
(∂t φ− At φ)2 + V (φ) ]. (3.40a)
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−2 (
(d2a/dt2)

a
)−(

(da/dt)

a
)2 − (

k

a2R2
0

) = 3 ( At(x) At(x)− 1√
|g|

∂t(
√
|g|At) ) + 8πG(t) p =

3 ( At(x) At(x)− 1√
|g|

∂t(
√
|g|At) ) +

1

2φ2
[

1

2
(∂t φ− At φ)2 − V (φ) ]. (3.40b)

δS

δAµ
= 0 ⇒ 6 (Aµ φ2 + ∂µ(φ2)) +

1

2
(Aµ φ2 − ∂µ(φ)2 ) =

6 (At φ2 + ∂t(φ
2)) +

1

2
(At φ2 − ∂t(φ)2 ) = 0; At(t) 6= 0. (3.40c)

( Dµ Dµ + 2RWeyl ) φ + (
dV

dφ
) = ( Dt Dt + 2RWeyl ) φ + (

dV

dφ
) = 0 (3.40d)

leading to a system of four differential equations to solve for the four unknown functions
a(t), φ(t), At(t) and the potential V (φ).

One may add ordinary matter terms ( pressureless matter ) and radiation terms to
the right hand side of eqs-(3.40a, 3.40b) of the form ρm = ρm

o (R0/R)−3 = ρm
o a(t)−3 and

ρrad = ρrad
o (R0/R)−4 = ρrad

o a(t)−4, prad = 1
3
ρrad, respectively. Upon doing so one needs

to know what are the values of the constants ρm
o ; ρrad

o based on the present estimates of
the cosmological density parameters in order to solve for the system of four differential
equations (3.40). What is to be expected is that in the late times regime one should
reproduce the prior solutions when k = 0 given by At(t → ∞) → 0; φ(t → ∞) →
φo; a(t → ∞) → eHot; V (φ) → 12H2

0φ
2 + Vo. And when k = 1; a(t) → cosh(H0t). It is

a nontrivial task to solve the system of equations (3.40) with and without adding matter
and radiation terms. The most general cosmological scenario is when the homogeneity
and isotropy of spacetime is broken. In this case one will have a full fledge spacetime
dependence on all the physical quantities gµν(x

ρ), Aµ(xρ), φ(xρ) ( a spacetime dependent
Newtonian coupling ). This most general case scenario warrants further investigation to
explore the early stages of the Universe.

There are many differences among our approach and that of [36]. The Cheng-Weyl
approach [36] to account for dark energy and matter ( including phantom ) does not
use the Weyl scalar curvature with a variable Newtonian coupling 16π G = φ−2 for the
gravitational part of the action, but the ordinary Riemannian scalar curvature with the
standard Newtonian gravitational constant . One does not use Weyl covariant derivatives
in the matter terms. The Weyl covariant derivative is only used in the kinetic (Dµφ)2

terms for the Jordan-Brans-Dicke scalar φ . And the authors [36] introduced a triplet
of Cheng-Weyl gauge fields A1

µ, A
2
µ, A

3
µ whereas here we have only one Aµ. The role

of conformal transformations in accelerated cosmologies has bee studied by [30]. Weyl
invariance has been used in [32] to construct Weyl-Conformally Invariant Light-Like p-
Brane Theories with numerous applications in Astrophysics, Cosmology, Particle Physics
Model Building, String theory,..... Concerning Weyl geometry and matter creation in
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the universe see the work of [34]. A thorough study of the unification of geometric and
random structures in Physics within the framework of Riemann-Cartan-Weyl spacetimes
has been performed by [37]. The role of scaling in cosmology and the arrow of time to
explain the large number coincidences was discussed by [38].

Finally, a study of the Pioneer anomaly was made by [33] based on Weyl’s geome-
try ( due to the Weyl gauge field modifications to the connection ) corrections for the
low velocity orbits where he showed that the low velocity effect of the expanding space
cosmology on the spacecraft is :

d2xµ

dt2
∼ − gµν ∂ VNewton

∂xν
− 2H0

dxµ

dt
. (4.41)

thus it consists of an acceleration proportional ( but opposite in sign ) to the velocity with
a factor depending on the Hubble parameter H0. Despite the problem described earlier
with the identification of the At component of the Weyl gauge potential Aµ = (At, 0, 0, 0)
with the Hubble parameter H(t) this result deserves further investigation. The literature
on many different approaches to the Pioneer anomaly is extensive, see for example [39],
[40], [41], [35], [42].

To end this work, we just point out the known fact that the electron neutrino mass
mν ∼ 10−3 eV is of the same order as (mν)

4 ∼ 10−123 M4
Planck and that the SUSY breaking

scale in many models is given by a geometric mean relation : m2
SUSY = mν MPlanck ∼

(5 TeV )2. We hope that the contents of this work will help us elucidate further the
connection between the microscopic and macroscopic world.
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APPENDIX A : SCHWARZSCHILD-LIKE SOLUTIONS IN D ≥ 4

Let us start with the line element [17]

ds2 = −eµ(r)(dt)2 + eν(r)(dr)2 + R2(r)g̃ijdξidξj. (A.1)

Here, the metric g̃ij corresponds to a homogeneous space and i, j = 3, 4, ..., D − 2. The
only nonvanishing Christoffel symbols are

Γ1
21 = 1

2
µ′, Γ2

22 = 1
2
ν ′, Γ2

11 = 1
2
µ′′eµ−ν ,

Γ2
ij = −e−νRR′g̃ij, Γi

2j = R′

R
δi
j, Γi

jk = Γ̃i
jk,

(A.2)

and the only nonvanishing Riemann tensor are

R1
212 = −1

2
µ′′ − 1

4
µ′2 + 1

4
ν ′µ′, R1

i1j = −1
2
µ′e−νRR′g̃ij,

R2
121 = eµ−ν(1

2
µ′′ + 1

4
µ′2 − 1

4
ν ′µ′), R2

i2j = e−ν(1
2
ν ′RR′ −RR′′)g̃ij,

Ri
jkl = R̃i

jkl −R′2e−ν(δi
kg̃jl − δi

l g̃jk).

(A.3)

The field equations are

R11 = eµ−ν(
1

2
µ′′ +

1

4
µ′2 − 1

4
µ′ν ′ +

(D − 2)

2
µ′

R′

R
) = 0, (A.4)

R22 = −1

2
µ′′ − 1

4
µ′2 +

1

4
µ′ν ′ + (D − 2)(

1

2
ν ′

R′

R
− R′′

R
) = 0, (A.5)

and

Rij = e−ν(
1

2
(ν ′ − µ′)RR′ −RR′′ − (D − 3)R′2)g̃ij + k(D − 3)g̃ij = 0, (A.6)

where k = ±1, depending if g̃ij refers to positive or negative curvature. From the combi-
nation e−µ+νR11 + R22 = 0 we get

µ′ + ν ′ =
2R′′

R′ . (A.7)

The solution of this equation is

µ + ν = ln R′2 + a, (A.8)

where a is a constant.
Substituting (A.7) into the equation (A.6) we find

e−ν(ν ′RR′ − 2RR′′ − (D − 3)R′2 = −k(D − 3) (A.9)
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or

γ′RR′ + 2γRR′′ + (D − 3)γR′2 = k(D − 3), (A.10)

where

γ = e−ν . (A.11)

The solution of (A.10) for an ordinary D-dim spacetime ( one temporal dimension )
corresponding to a D − 2-dim sphere for the homogeneous space can be written as

γ = (1− 8πGDM

(D − 3)ΩD−2RD−3
) (

dR

dr
)−2 ⇒

grr = eν = (1− 8πGDM

(D − 3)ΩD−2RD−3
)−1 (

dR

dr
)2. (A.12)

where ΩD−2 is the appropriate solid angle in D−2-dim and GD is the D-dim gravitational
constant whose units are (length)D−2. Thus GDM has units of (length)D−3 as it should.
When D = 4 as a result that the 2-dim solid angle is Ω2 = 4π one recovers from eq-(A.12)
the 4-dim Schwarzchild solution. The solution in eq-(A.12) is consistent with Gauss law
and Poisson’s equation in D − 1 spatial dimensions obtained in the Newtonian limit.

For the most general case of the D − 2-dim homogeneous space we should write

−ν = ln(k − βDGDM

(D − 3)RD−3
)− 2 ln R′. (A.13)

where βD is a constant. Thus, according to (A.8) we get

µ = ln(k − βDGDM

(D − 3)RD−3
) + constant. (A.14)

we can set the constant to zero, and this means the line element (A.1) can be written as

ds2 = −(k − βDGDM

(D − 3)RD−3
)(dt)2 +

(dR/dr)2

(k − βDGDM
(D−3)RD−3 )

(dr)2 + R2(r)g̃ijdξidξj. (A.15)

One can verify, taking for instance (A.5), that the equations (A.4)-(A.6) do not determine
the form R(r). It can be arbitrary. It is also interesting to observe that the only effect
of the homogeneous metric g̃ij is reflected in the k = ±1 parameter, associated with a
positive ( negative ) constant scalar curvature of the homogeneous D − 2-dim space.
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APPENDIX B : GENERALIZED (ANTI) de SITTER-SCHWARZSCHILD SOLUTIONS

We wish to solve now the 4-dim Einstein’s equations with a cosmological constant

Rµν = Λ gµν = 3λ gµν . (B.1)

we will write the same ansatz for the metric

ds2 = −eµ(r)(dt)2 + eν(r)(dr)2 + R(r)2 (dΩ)2. (B.2)

and write now

R11 = eµ−ν(
1

2
µ′′ +

1

4
µ′2 − 1

4
µ′ν ′ +

(D − 2)

2
µ′

R′

R
) = 3λ g11. (B.3)

R22 = −1

2
µ′′ − 1

4
µ′2 +

1

4
µ′ν ′ + (D − 2)(

1

2
ν ′

R′

R
− R′′

R
) = 3λ g22 (B.4)

and

Rij = e−ν(
1

2
(ν ′ − µ′)RR′ −RR′′ − (D − 3)R′2) gij + (D − 3) gij = 3λ gij (B.5)

One can verify that in the D = 4 case when the mass parameter M = 0 the solutions
of the above equations corresponding to the metric eq-(B.2) are :

gtt = −eµ(r) = − (1− λ R2(r)) ; grr = eν(r) =
(dR/dr)2

1− λ R2(r)
(B.6)

where R(r) is an arbitrary radial function.
By inserting the following expressions

dµ

dr
= −2λR(dR/dr)

1− λR2
;

dν

dr
=

2(d2R/dr2)

(dR/dr)
+

2λR(dR/dr)

1− λR2
. (B.7)

d2µ

dr2
= − 4λ2R2(dR/dr)2 + (1− λR2) [ 2λ(dR/dr)2 + 2λR(d2R/dr2) ]

(1− λR2)2
. (B.8)

dµ

dr

dν

dr
= − 2λR(dR/dr)

1− λR2
[ 2

(d2R/dr2)

(dR/dr)
+

2λR(dR/dr)

1− λR2
]. (B.9)

(
dµ

dr
)2 =

4λ2R2(dR/dr)2

(1− λR2)2
. (B.10)

eµ−ν =
(1− λR2)2

(dR/dr)2
. (B.11)
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we can verify that eqs-(B.3, B.4, B.5) are indeed satisfied for any arbitrary radial function
R(r). For example, after plugging in the values of eqs-(B.7-B.11) into eq-(B.3) one gets
when D = 4 :

− [
1− λ R2

(dR/dr)2
] [ λ (dR/dr)2 + λ R (d2R/dr2) ] − 2λ2 R2 (dR/dr)2

(dR/dr)2
+

[
1− λR2

(dR/dr)2
] [λR (d2R/dr2)] +

2λ2 R2 (dR/dr)2

(dR/dr)2
− 2λ (dR/dr)2 (1− λR2)

(dR/dr)2
=

−3λ (1− λR2) = Λ gtt. (B.12)

Similary, eqs-(B.4,B.5) are also satisfied
When the mass parameter M 6= 0 we can also verify that the solutions

eµ(r) = 1− 2M

R
− λ R2(r); eν(r) =

(dR/dr)2

1− (2M/R)− λR2(r)
(B.13)

obey eqs-(B.3, B.4, B.5) as well for an arbitrary radial function R(r). Furthermore, one
can extend these generalized de Sitter-Schwarzcshild solutions to higher dimensions D > 4
as well.
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