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Abstract

Two different derivations of the observed vacuum energy density are presented.
One is based on a class of proper and novel generalizations of the (Anti) de Sitter
solutions in terms of a family of radial functions R(r) that provides an explicit for-
mula for the cosmological constant along with a natural explanation of the ultravio-
let/infrared ( UV/IR) entanglement required to solve this problem. A nonvanishing
value of the vacuum energy density of the order of 10−123M4

Planck is derived in agree-
ment with the experimental observations. A correct lower estimate of the mass of
the observable universe related to the Dirac-Eddington’s large number N = 1080

is also obtained. The presence of the radial function R(r) is instrumental to un-
derstand why the cosmological constant is not zero and why it is so tiny. Finally,
we rigorously prove why the proper use of Weyl’s Geometry within the context of
Friedman-Lemaitre-Robertson-Walker cosmological models can account for both the
origins and the value of the observed vacuum energy density ( dark energy ). The
source of dark energy is just the dilaton-like Jordan-Brans-Dicke scalar field that is
required to implement Weyl invariance of the most simple of all possible actions.
The full theory involving the dynamics of Weyl’s gauge field Aµ is very rich and
may explain the anomalous Pioneer acceleration and the temporal variations ( over
cosmological scales ) of the fundamental constants resulting from the expansion of
the Universe. This is consistent with Dirac’s old idea of the plausible variation of
the physical constants but with the advantage that it is not necessary to invoke
extra dimensions.

1Dedicated to the loving memory of Rachael Bowers
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1 Introduction : Schwarzschild versus Hilbert :

Why a Point-Mass has Area

We begin by writing down the class of static spherically symmetric (SSS) vacuum solu-
tions of Einstein’s equations studied by Abrams [5] (where there are NO mass sources
anywhere) given by a infinite family of solutions parametrized by a family of admissible
radial functions R(r)

(ds)2 = g00 (dt)2 − grr (dr)2 − (R(r))2 (dΩ)2 (1.1)

the solid angle infinitesimal element is

(dΩ)2 = sin2(φ)(dθ)2 + (dφ)2. (1.2)

and
g00 = (1− α

R(r)
)

grr = (1− α

R(r)
)−1 (

dR(r)

dr
)2. (1.3)

where α is an arbitrary constant that happens to have dimensions of mass when c = G = 1
( but there are no masses at all in this vacuum case )

Notice that the static spherically symmetric (SSS) vacuum solutions of Einstein’s
equations, with and without a cosmological constant, do not determine the form of the
radial function R(r). R(r) can be chosen to be an infinite family of functions like

R(r) = r + α; R(r) = [r3 + α3]1/3; R(r) = [rn + αn]1/n; R(r) =
α

1− e−α/r
. (1.4)

found by Brouillin [3] , Schwarzschild [2], Crothers [7], and Fiziev-Manev [17] respectively
obeying the conditions that

R(r = 0) = α; and when r >> α ⇒ R(r) → r (1.5)

Numerous authors have corroborated over the years through lengthy but straightfor-
ward calculations [5], [6], [7], [8], [9] , [17], that there exist an infinite class of solutions
to the vacuum SSS Einstein’s equations Rµν = R = 0 for an arbitrary family of radial
functions R(r). In particular, for functions of the type displayed above ( but the curvature
Riemnan tensor Rµ

νρσ 6= 0 ).
The most salient feature of these solutions eqs-(1.1-1.3) for the radial functions in eq-

(1.4) is that at r = 0 one has R(r = 0) = α such that g00(r = 0) = 0 ! . Therefore, there
is no horizon. For the historical implications of these truly horizonless SSS solutions
of Einstein’s equations see [5] and the book by [6]. The solutions for a mass point that
we have been all accustomed to were those given by Hilbert-Droste-Weyl [4] and can be
recovered from eqs-(1.1-1.4) by setting R(r) = r. The genuine and original Schwarzshild
solution in 1916 was based on R3 = r3 + (2M)3 ( upon equating α = 2M ) and not
based in setting R = r. The cubic form of the radial function yields upon differentiation
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4πR2dR = 4πr2dr, so the spatial measure coincides with the ordinary spatial measure in
flat spaces in spherical coordinates. However, this does not mean that R = r ! as the
Hilbert solution imposes. The consequences of the use of R(r) 6= 0 are enormous as we
shall prove next.

There are many physical differences among the Hilbert and Schwarzchild solu-
tions, in particular in the global properties. The Schwarzchild solution is not a radial
reparametrization of the Hilbert solution as erroneously argued in the physics circles. In
particular, because the radial function R3 = |r|3 + (2M)3 can never zero. The absolute
value |r| properly accounts for the field of a point mass source. Thus, the lower bound of
R is given by 2M , and R cannot be zero for a nonvanishing point mass source.

The Fronsdal-Kruskal-Szekeres analytical continuation of the Hilbert solution for r <
2M yields a spacelike singularity at r = 0 and the roles of t and r are interchanged
when one crosses r = 2M ; so the interior region r < 2M is no longer static. The
Schwarzchild solution is static for r < 2M ; there are no horizons at r = 2M and there
is a timelike singularity at r = 0, the true location of the point mass source. Notice that
when r >> 2M the Schwarzchild solution reduces to the Hilbert solution and one has the
correct Newtonian limt.

A large number of people have fallen for the erroneous claims circulating in physics
circles that the original and genuine Schwarzschild solution is just a radial reparametriza-
tion of the Hilbert solution. This is not true at all. The Topology of the solution forbids
it. R(r) can never be zero. It has a lower bound given by 2M . The source of the mis-
conception ( which has propagated for 90 years ) was due to the fact that in the genuine
and original Schwarzschild solution, despite that r = 0 has the topology of a point, it
does not have zero area ! due to the metric and curvature singularity resulting from the
presence of the point mass source at that location. It has zero volume but a non-zero
area. Therefore, there is no interior region to the point r = 0 since it ”encloses” a zero
volume. The location r = 0 is a true boundary of spacetime.

When one correctly uses the radial function found by Schwarzschild R3 = r3 + (2M)3

one has upon differentiation 4πR2dR = 4πr2dr. Since dR is not equal to dr then the
proper area 4πR2 is not equal to 4πr2 . The proper area at the point r = 0 is given by
4πR2(r = 0) = 4π(2M)2 which is not equal to zero. Thus, the point r = 0 ( location of the
point mass source ) does have an area 4π(2M)2 and this misled people into thinking that
an event horizon exits of area 4π(2M)2 at the location r = 2M , when there isn’t an event
horizon at all in that location. The area 4π(2M)2 is the one associated with the point
mass source at r = 0 and not to an event horizon at r = 2M . Since such area 4π(2M)2

associated with the point r = 0 ”encloses” a zero volume, there is no interior region to
the point r = 0. To understand how a point can have a geometrical area enclosing a zero
volume, due to the singularity at r = 0, let us write the 4-dim space-time measure ( after
integrating over the angles )

4πR2dRdt = 4πR2 (|gRR|1/2dR) (|gtt|1/2dt) = 4πr2 dr dt

because gRRgtt = −1 and R2dR = r2dr when the radial function is R3 = r3 + (2M)3

. The ”proper” radius infinitesimal displacement is |gRR|1/2dR and the ”proper” time
infinitesimal displacement is (|gtt|1/2dt); hence 4πR2 can be seen as a ”proper” area which
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must not be confused with the expression for the area A(r) = (4πr2)(|gRR|)1/2 which is
derived next.

To derive the expression for the area in the spherically static symmetric solution, we
will recur to the relation dV (r) = A(r)dr , where the 3-dim spatial infinitesimal volume
element dV is given in terms of the square-root of the absolute value of the determinant
of the spatial 3-metric. Thus, the volume infinitesimal is

dV = [ |gRR gθθ gφφ| ]1/2 (dR dθ dφ) =

[ | (1−2M/R)−1 R2 R2sin2φ | ]1/2 (dR dθ dφ) = (1−2M/R)−1/2 R2 sinφ (dR dθ dφ). ()

Integrating w.r.t the angles gives

dV =
4πR2dR

(1− 2M/R)1/2

Since the Schwarzschild solution R3 = r3+(2M)3 upon differentiation yields R2dR = r2dr,
then the last relation becomes

dV =
4πR2dR

(1− 2M/R)1/2
=

4πr2dr

(1− 2M/R(r))1/2
= A(r)dr = dV (r)

and from which we arrive, by just factoring out the dr piece, at the area :

A(r) =
4πr2

(1− 2M/R(r))1/2

the value A(r = 0) = 0/0 is undetermined since when R3 = r3 + (2M)3 we have R(r =
0) = 2M . After performing L’Hopital’s rule twice we end up with the original expression
times a numerical factor.

The area of a point is not zero because the metric is singular at r = 0. There is a
coordinate metric-singularity and a physical scalar-curvature delta-function ( timelike )
singularity at r = 0. As explained by Abrams [5], the value of A(r = 0) was fixed by
Schwarzschild to be given by

A(r = 0) =
4πr2

(1− 2M/R(r))1/2
=

0

0
= 4πR2(r = 0) = 4π(2M)2

This choice is also tantamount of fixing the value of

√
grr =

dR

dr

√
gRR =

r2

R2
√

1− 2M/R
. ()

to be equal to 1 at r = 0. The volume however is

V (r = 0) =
∫ r=0

r=0

4πr2

(1− 2M/R(r))1/2
dr = 0.

Also we can verify that the integral
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V =
∫ r

r=0
4πr2dr =

4π

3
r3 =

4π

3
[R3 − (2M)3] =

∫ R

2M
4πR2dR. ()

Hence V(r = 0) = 0 consistent with the fact that R(r = 0) = 2M .
Therefore, the most important result is that due to the metric and curvature singularity

at r = 0 a point mass source at r = 0 can have a non-zero area directly related to its
mass squared !!!! The volume is indeed zero, but not the area, hence we have an infinite
(mass/volume) density ( a singularity at r = 0 ). It is very important to emphasize that
because Schwarzschild imposed the boundary condition at r = 0 ( since r = 0 is the true
boundary of spacetime ) given by A(r = 0) = 4πR2(r = 0) = 4π(2M)2, this does not
mean that for all values of r one can naively equate A(r) with 4πR2 !!! One can have an
infinite family of totally different functions whose value at r = 0 may coincide. However,
this does not mean that the values of the functions are identical for all values of r.

We should not forget what is the global topology of the solution. The topology in
the R-picture of the genuine Schwarzschild solution is that a of spherical shell extending
from R = 2M to R = infinity. We truly have a void in the R-picture in the region from
R = 0 to R = 2M because R has a lower bound given by 2M . R can never be zero.
Therefore, it is meaningless trying to fill in this void via a Fronsdal-Szekeres-Kruskal
analytical continuation when the topology does not allow us to do this. The spacetime is
not simply connected. The void region of 0 < R < 2M is empty space. There is no such a
thing as a spacetime ”living” in that region ! and into which we can perform a so-called
analytical continuation. The Topology of the genuine Schwarzschild solution forbids it.
Since the point mass at r = 0 has zero volume it is devoid of an interior into which one
can analytically continue the solutions.

To sum up : Hilbert’s solution is not diffeomorphic to the genuine Schwarzschild
solution. The area associated with the mass-point source at r = 0 is not zero; the area at
r = 0 is 4π(2M)2, but the volume V (r = 0) = 0. The point mass source at r = 0 can have
a geometrical area 4π(2M)2 enclosing a zero volume due to the spacetime singularity at
r = 0. This has been the source of the confusion in the past 90 years that misled people
into thinking there is an event horizon at r = 2M enclosing the singularity r = 0. One
cannot analytically continue into the interior of a point, because there is NO spacetime
interior beyond r = 0, since the volume enclosed by the area of the point mass at r = 0 is
zero, and r = 0 is both the timelike singularity as well as the true boundary of spacetime.

A point mass source located at r = 0, with zero volume, has an infinite density (
because the volume is zero ) that will tear and rip apart the Fabric of Spacetime leaving
behind a void of spacetime and a rim of finite area 4π(2M)2. There is no spacetime
beyond the rim, it has been ripped and blown apart. This is why there is no volume
enclosed by the finite area. The volume of the spacetime void is zero. . The boundary of
spacetime is reached ar r = 0. There is a timelike delta function singularity of the scalar
curvature [16]

R = −(2M/R2(dR/dr))δ(r) = −(2M/r2)δ(r). ()

and a metric singularity gRR(r = 0) = ∞ and gtt(r = 0) = 0 ( time freezes, the arrow of
time ceases to flow at r = 0 ).
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In [16] we studied the many subtleties behind the introduction of a true point-mass
source at r = 0 ( that couples to the vacuum field ) and the physical consequences of the
delta function singularity (of the scalar curvature) at the location of the point mass source
r = 0. Those solutions were obtained from the vacuum SSS solutions simply by replacing
r for |r| and α for 2M . For instance, the Laplacian in spherical coordinates in flat space
of 1/|r| is equal to −(1/r2)δ(r), but the Laplacian of 1/r is zero. Thus, to account for the
presence of a true mass-point source at r = 0 one must use solutions depending on the
modulus |r| instead of r. The scalar curvature was R = −[2M/R2(dR/dr)]δ(r) [16] . It is
interesting that for the Hilbert R = r and Schwarzschild solutions R3 = r3 + (2M)3, the
scalar curvature is the same R = −(2M/r2)δ(r) and also the spatial measures 4πR2dR =
4πr2dr. This deserves further investigation.

A different and detailed treatment of point masses, point charges, delta function
sources and the physical implications of the many different choices of the radial func-
tions R(r) in General Relativity has been given by Fiziev [17]. A thorough mathematical
analysis on the theory of ( tensor-valued ) distributions and delta function singularities in
nonlinear theories ( like General Relativity ) based on Colombeau’s theory of nonlinear
distributions can be found in [12].

After this very brief historical preamble, lets focus next on the study of the static
spherically symmetric (SSS) solutions with a nonvanishing cosmological constant based
on the introduction of an admissible family of radial functions R(r).

2 One resolution of the Cosmological Constant prob-

lem

In this main section we shall study some of the most pertinent cosmological implications
of introducing radial functions R(r) 6= r in the static form of the ( Anti ) de Sitter-
Schwarzschild solutions given by

g00 = ( 1− 2M

R(|r|)
−λ R(|r|)2 ). grr = −( 1− 2M

R(|r|)
−λ R(|r|)2 )−1 (dR(|r|)/dr)2 (2.1)

The angular part is given as usual in terms of the solid angle by −(R(|r|))2(dΩ)2. We
choose the parameter λ = Λ/3 where Λ is the cosmological constant. The λ < 0 case
corresponds to Anti de Sitter-Schwarzschild solution and λ > 0 corresponds to the de
Sitter-Schwarzschild solution. The physical interpretation of these solutions is that they
correspond to ”black holes” in curved backgrounds that are not asymptotically flat. For
very small values of R one recovers the ordinary Schwarzschild solution. For very large
values of R one recovers asymptotically the ( Anti ) de Sitter backgrounds of constant
scalar curvature.

The solutions we are interested correspond to the case M = 0 and given in terms of
the radial functions R(r) which are the most general SSS solutions to Einstein’s equations
with a cosmological constant. These solutions were studied earlier by [7] but unfortunate
his analysis was erroneous and his conclusions are invalid. We will show below that
there are nontrivial solutions with a nonvanishing cosmological constant ( contrary to
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the assertions made in [7] ) λ when the correct family of admisisble radial functions R(r)
are introduced.

We must emphasize that the novel derivation below of the cosmological constant is
not based on the vacuum fluctuations models of [19]; [20]; nor on the Scale Relativity
Theory [25]; nor on the schemes based on a two-measure theory [27]; the holographic
renormalization group program, quintessence, non-critical strings [22] etc.... nor with
an ad hoc introduction of the Hubble distance. This derivation is based on an entirely
different physical reason than all of the others described so far (to our knowledge) ; i.e
. it is based solely on the physical implications of the radial function R(r) of eq-(2.1). It
is warranted to study the connection ( if any ) among our derivation of the cosmological
constant with all of the prior calculations, for example, [19], [25], [20].

It is important, of course, to find a physical explanation of the origins of the cosmo-
logical besides computing its observed value. This was attained in [15] without imposing
any assumptions whatsoever on the calculations as it is done in the literature by showing
why an Einstein-Hilbert action with the correct value of the cosmological constant (plus
Gauss-Bonnet terms) can be obtained from the vacuum state of a BF-Chern-Simons-
Higgs theory based on the (Anti) de Sitter group, after the ( Anti ) de Sitter symmetry
is broken to the Lorentz one.

We will show why its connection with the Hubble constant is not ad hoc at all ; on
the contrary it explains why the Hubble constant ( the Hubble horizon ) has to appear
in the derivation. It also implements naturally the UV/IR (ultra-violet/infrared ) entan-
glement, (without postulating it ad hoc ) necessary to derive the cosmological constant
and we provide a lower bound for the mass of the observable universe. To sum up, to our
knowledge, the crux of the derivation below does not rely whatsoever on any of the other
prior derivations employed to derive the value of the cosmological constant.

One particular expression for the radial function in the de Sitter-Schwarzschild (λ > 0)
case is

1

R2 − (2M)2
=

1

r2
+ λ. (2.2)

since r2 = |r|2 there is no need to explicitly write the modulus sign in (2.2) and in the
discussion below. When λ = 0 one recovers R2 = r2 + (2M)2 as before in the pure
Schwarzschild case given by a family of admissible radial functions obeying R(r = 0) =
2M and asymptotically tending to R ∼ r for large values of r compared to 2M .

When M = 0 one recovers the pure de Sitter case and the radial function becomes

1

R2
=

1

r2
+ λ. (2.3a)

In this case, one encounters the reciprocal situation ( the ”dual” picture ) of the
Schwarzschild solutions : ( i ) when r tends to zero ( instead of r = ∞ ) the radial
function behaves R(r → 0) → r ; in particular R(r = 0) = 0 and (ii) when r = ∞ (

instead of r = 0 ) the value of R(r = ∞) = RHorizon =
√

1
λ

and one reaches the location

of the horizon given by the condition g00[R(r = ∞)] = 0.
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It is very important to emphasize that for other choices of admissible radial functions
other than eq-(2.3a) they must obey similar boundary conditions at r = 0 and r = ∞ as

the conditions described above : R(r = 0) = 0 and R(r = ∞) = RHorizon =
√

1
λ
. The

family of admissible radial functions obeying the required boundary conditions at r = 0
and r = ∞ are of the form

(
1

R2
) = [ (

1

r2
)n + (λ)n ]1/n. n > 0. (2.3b)

The correct proper radius Rp(r) ( an invariant quantity under radial reparametriza-
tions ) is given by the integral

Rp(r) =
∫ dR√

1− λ R2
=

1√
λ

arcsin [ R(r)
√

λ ] ⇒

Rp(r = 0) = 0 since R(r = 0) = 0; and Rp(r = ∞) =
π

2

1√
λ

=
π

2
RHorizon. (2.4)

Therefore, the pure de Sitter case has a well behaved proper radius Rp(r). When M 6= 0
one has for the de Sitter-Schwarzcshild case

g00(r∗) = 0 ⇒ 1− 2M

R(r∗)
− λ R(r∗)

2 = 0 (2.5)

a cubic equation whose solutions R∗ will restrict the values of the radial function R∗ =
R(r∗) at r = r∗ 6= ∞ , in terms of the mass parameters M and the cosmological constant
Λ = 8πGρvacuum . The cubic equation was solved exactly in [16].

In the pure de Sitter case the condition

g00(r = ∞) = 0 ⇒ 1− λ R(r = ∞)2 = 0 (2.6)

has a real valued solution

R(r = ∞) =

√
1

λ
= RHorizon. (2.7)

and the correct order of magnitude of the observed cosmological constant can be derived
from eq-(2.7) by equating R(r = ∞) = RHorizon = Hubble Horizon Radius as seen today
of the order of 1061 LPlanck and setting G = L2

Planck ( h̄ = c = 1 units) in

8π G ρvacuum = Λ = 3λ =
3

R(r = ∞)2
=

3

R2
H

⇒

ρvacuum =
3

8π

1

L2
P

1

R2
H

=
3

8π

1

L4
P

(
LP

RH

)2 ∼ 10−123 (MPlanck)
4. when RH ∼ 1061LP .

(2.8)
which agrees with the experimental observations. Notice the importance of using the
radial function R = R(r) in eqs-(2.6, 2.8). Had one used R = r in eq-(2.6) one would
have obtained a zero value for the cosmological constant when r = ∞ ! Thus, the presence
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of the radial function R(r) is essential to understand why the cosmological constant is
not zero and why it is so tiny !

We continue with a relevant analysis of the UV/IR ( ultraviolet-infrared ) entangle-
ment involving the interaction of small-large scales within the context of the cosmological
constant problem. The transformation

r → 1

λr
; λ 6= 0. (2.9)

exchanges small distances with large distances and vice versa, reminiscent of the T -
duality in string theory compactifications, and leads to a dual radial function of the form

1

R̃2
= (λr)2 + λ. (2.10a)

where now one has the reciprocal ( ”dual” ) behaviour as that of eq-(2.7)

R̃(r = ∞) = 0; R̃(r = 0) =
1√
λ

. (2.10b)

and the horizon condition g00(RHorizon) = 0 is now attained at r = 0 ( due to the small-
large scales exchange)

g00(r = 0) = 0 ⇒ 1− λ R̃(r = 0)2 = 0 ⇒ R̃(r = 0) =
√

1/λ = RHorizon. (2.11)

and once again we get the same result as in (2.8).
It is clear now why if one had written R̃(r) = r in eq-(2.11) and introduced the Planck

scale as an ultraviolet cutoff, instead of setting r = 0, one would have obtained an answer
in eq-(2.11) that is off by 122 orders of magnitude ! ( which is the cosmological constant
problem ) . What the dual radial function R̃(r) achieves in eqs-(2.10a, 2.11) is to map the
extreme ultraviolet ( UV ) region r = 0 onto the infrared ( IR ) region R̃(r = 0) = RHubble.
Hence, the presence of the dual radial function R̃(r) implements the necessary UV/ IR
entanglement associated with the resolution of the cosmological constant problem.

The reason one can invoke the use of the dual radial function R̃(r), as well as R(r), is
because there is an infinite family of admissible radial functions associated with the SSS
solutions to Einstein’s equations with a comological constant Λ = 3λ, given by eq-(2.1)
when M = 0. The choice R(r) = r yields the familiar solution we have been accustomed
to all these years. However, as we have shown, the correct choice of the admissible radial
functions displayed in eqs-(2.3a, 2.10a) is what allows us to obtain the correct value of the
vacuum energy density consistent with the astrophysical observations ! In the same vein,
the genuine and original Schwarzschild solution that truly describes the gravitational field
due to a point mass source at r = 0 required Schwarschild to choose R = [r3 + (2M)3]1/3.
The Hilbert choice R = r has been shown to be incorrect by [5], [6], [18], [17] among
many others ( it does not describe the gravitational field of a mass point at r = 0 and
does not provide a consistent arrow of time [18] ).

In [15], where no assumptions whatsoever were made, we have shown why AdS4 gravity
with a topological term; i.e. an Einstein-Hilbert action with a cosmological constant plus
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Gauss-Bonnet terms can be obtained from the vacuum state of a BF-Chern-Simons-Higgs
theory without introducing by hand the zero torsion condition imposed in the MacDowell-
Mansouri-Chamsedine-West construction. One of the most salient features of [15] was
that a geometric mean relationship was derived ( from scratch, instead of postulating
it ) among the vacuum energy density ρ , the Planck area L2

P and the AdS4 throat size
squared R2 given by ρ = (LP )−2 R−2. Upon setting the throat size to coincide with the
Hubble scale RH ∼ 1061LP ( since the throat size of de Sitter and Anti de Sitter is the
same ) one obtains the observed value of the vacuum energy density ρ = L−2

PlanckR
−2
H =

L−4
P (LP /RH)2 ∼ 10−122(MPlanck)

4.
For example, the calculation based on the model of vacuum fluctuations of a scalar

field by [19] relies on several assumptions and leads to a numerical result that coincides
with the Casimir energy density (1/R4

H) (associated with an infrared scale RHubble) times
an overall numerical factor related to the sum over all the radial modes

∑N
1 n . So the

ρvacuum ∼ (1/R4
Hubble)

∑N
1 n ∼ 1

2
(N2/R4

Hubble). The value of N was set to be of the order
of RH/LP . This is consistent with the Scale Relativity theory [25] and its connection
to Yang’s Noncommutative spacetimes and QM in Clifford spaces [14], where there are
both an UV and IR cutoffs related to the Planck LP and Hubble scale RH , respectively.
Therefore, there is a maximum h̄/LP and minimum h̄/RH momentum which determines
the value of the maximum mode number N in the sum

∑N
1 n given by N = (RH/LP ).

Hence, the ρvacuum ∼ (N2/R4
Hubble) = L−2

P R−2
H ∼ 10−122M4

P , when RH ∼ 1061LP .
It is poignant to mention that related to the issue of T -duality ( the UV/IR entangle-

ment displayed by the radial function R(r) and its dual R̃(r) above) the analog of S-duality
for linearized gravity in 4D was developed by [23] where the strong-weak coupling duality
is an exact symmetry which implies a small-large duality for the cosmological constant. A
quantization of the cosmological constant was another implication of a duality symmetry
[23]. This interplay between S and T dualities has to be investigated further.

To finalize this letter we should add that an estimate of a lower mass bound of the
Universe can also be attained as follows : in [16] the solutions of the cubic equation in
the Anti de Sittter-Schwarzcshild case that determined the location of the horizon were

R∗ = [
M

λ
+

√
M2

λ2
+

1

27λ3
]1/3 + [

M

λ
−

√
M2

λ2
+

1

27λ3
]1/3 > 0. (2.12)

The two complex roots were disregarded and there are no double roots in the AdS case
because M2

λ2 + 1
27λ3 6= 0. It is very important to emphasize that one has already taken into

account the fact λAdS = −λdS in the root of eq-(2.12). Therefore in eq-(2.12), and all the
expressions that follow, when we write λ it should be understood as |λ| and hence it is a
positive quantity. The radial function R(r) in the Anti de Sitter case must differ from
the de Sitter case and is obtained from eq-(2.2) by replacing λ → −λ

1

R2 − (2M)2
=

1

r2
− λ ⇒ R(r = 0) = 2M ; R(r = ∞) =

√
(2M)2 − 1

λ
< 2M. (2.13)

and it leads to the inequality 2M > R∗ > R(r = ∞) because it is a decreasing function
of r and which can be recast explicitly as
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2M > [
M

λ
+

√
M2

λ2
+

1

27λ3
]1/3 + [

M

λ
−

√
M2

λ2
+

1

27λ3
]1/3 >

√
(2M)2 − 1

λ
≥ 0 (2.14)

The implementation of the UV/IR entanglement map r → 1/λr in eq-(2.13) yields
the dual version of the radial function R̃(r)

1

R̃2 − (2M)2
= (λr)2 − λ ⇒ R̃(r = ∞) = 2M ; R̃(r = 0) =

√
(2M)2 − 1

λ
< 2M.

(2.15)
which is an increasing function of r, instead of a decreasing function like R(r) in eq-(2.13).

From eq-(2.14) one can infer from the condition√
(2M)2 − 1

λ
= real − valued ⇒ 2M ≥ 1√

λ
. (2.16)

Hence, if one were to equate the quantity 2M = 1√
λ

= RHubble with the net mass of the
galaxies, stars, ....inside that region of the observable universe enclosed by the Hubble
radius RH , and take a value of RHubble ∼ 1061LPlanck, one would have in the appropriate
units the following

2M ∼ 1061 MPlanck ∼ 1080 mproton. (2.17)

that agrees with the Dirac-Eddington large number coincidences

N = 1080 ∼ (
Fe

FG

)2 ∼ (
RHubble

re

)2. (2.18)

where Fe = e2/r is the electrostatic force between an electron and a proton; FG =
Gmemp/r

2 is the corresponding gravitational force and re = e2/me ∼ 10−13cm is the
classical electron radius in natural units of h̄ = c = 1. Of course, this is not to say
that the AdS-Schwarzchild case is the same as the Friedman-Robertson-Walker model,
but only that one could equate the net mass ( inside RH ) of the latter with the 2M
parameter of the former to get an estimate of the lower bound of the mass of the observable
universe. To match the observational data requires further work since it is more likely
that 2M > 1√

λ
= RHubble due to the presence of dark matter. Recently, the authors [24]

have studied the finite-action solutions ( square integrable ) of the Klein-Gordon equation
on Lorentzian manifolds ( Friedman type and de Sitter ) and have found a discrete mass
spectrum that could help answer why elementary particles have a discrete spectrum. Thus
this interplay between cosmology and particle physics needs to be explored further.

By inspection one can verify that the lower bound 2M = 1√
λ

obeys the condition

given by eq-(2.14). The latter becomes

2M =
1√
λ

> R∗ = ( [
1

2
+

√
31

108
]1/3 + [

1

2
−

√
31

108
]1/3 )

1√
λ

= 0.6823
1√
λ

. (2.19)
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It is clear that a lot of work and re-thinking remains to be done pertaining the proper
use of the radial functions R(r) in the class of SSS solutions to Einstein’s equations with
and without a cosmological constant. The fact that we were able to obtain the correct
magnitude of the observed cosmological constant and the correct lower estimate of the
mass of the universe related to the Dirac-Eddington’s large number N = 1080 is a positive
sign that one should use the solutions displayed in this work based on a suitable class
of radial functions R(r) rather than the naive choice R = r we have been familiar with
during all these decades ! The presence of the radial function R(r) was instrumental to
understand why the cosmological constant is not zero and why it is so tiny.

3 On Weyl Geometry, Dark Energy and Temporal

variations of the Physical Constants

Weyl’s geometry main feature is that the norm of vectors under parallel infinitesimal
displacement going from xµ to xµ + dxµ change as follows :

δ||V || ∼ ||V ||Aµdxµ

where Aµ is the Weyl gauge field of scale calibrations that behaves as a connection under
Weyl transformations :

A′
µ = Aµ − ∂µ Ω(x). gµν → e2Ω gµν . (3.1)

involving the Weyl scaling parameter Ω(xµ) .
The Weyl covariant derivative operator is Dµ = ∇µ+Aµ; where the derivative operator

∇µ = ∂µ + Γµ involves a connection Γµ which is comprised of the ordinary Christoffel
symbols plus extra Aµ terms in order for the metric to obey the condition Dµ(gνρ) = 0.

The Weyl covariant derivative acting on a scalar φ of Weyl weight ω(φ) = −1 is defined
by

Dµφ = ∂µ φ + ω(φ)Aµ φ = ∂µ φ − Aµ φ. (3.2)

The Weyl scalar curvature in D dimensions and signature (+,−,−,−....) is

RWeyl = RRiemann − (D − 1)(D − 2)AµA
µ + 2(D − 1)∇µA

µ. (3.3)

For a signature of (−, +, +, +, ....) there is a sign change in the second and third terms
due to a sign change of RRiemann.

The Jordan-Brans-Dicke action is

S = −
∫

d4x
√
|g| [ φ2 RWeyl ]. (3.4)

Under Weyl scalings,

RWeyl → e−2Ω RWeyl; φ2 → e−2Ω φ2. (3.5)
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to compensate for the Weyl scaling ( in 4D ) of the measure
√
|g| → e4Ω

√
|g| in order to

render the action (3.4) Weyl invariant.
When the Weyl integrability condition is imposed Fµν = ∂µAν − ∂νAµ = 0 ⇒ Aµ =

∂µΩ, the Weyl gauge field Aµ does not have dynamical degrees of freedom; it is pure gauge
and barring global topological obstructions, one can choose the gauge in eq-(3.4)

Aµ = 0; φ2
0 =

1

16πGN

= constant. (3.6)

such that the action (3.4) reduces to the standard Einstein-Hilbert action of Riemannian
geometry

S = − 1

16πGN

∫
d4x

√
|g| [RRiemann(g)]. (3.7)

The Weyl integrability condition Fµν = 0 means physically that if we parallel transport
a vector under a closed loop, as we come back to the starting point, the norm of the vector
has not changed; i.e, the rate at which a clock ticks does not change after being transported
along a closed loop back to the initial point; and if we transport a clock from A to B
along different paths, the clocks will tick at the same rate upon arrival at the same point
B. This will ensure, for example, that the observed spectral lines of identical atoms will
not change when the atoms arrive at the laboratory after taking different paths ( histories
) from their coincident starting point. If Fµν 6= 0 Weyl geometry may be responsible for
the alleged variations of the physical constants in recent Cosmological observations. A
study of the Pioneer anomaly based on Weyl geometry was made by [28]. The literature
is quite extensive on this topic.

Our starting action is

S = SWeyl(gµν , Aµ) + S(φ).. (3.8)

with
SWeyl(gµν , Aµ) = −

∫
d4x

√
|g| φ2 [ RWeyl(gµν , Aµ) ]. (3.9)

where we define φ2 = (1/16πG). The Newtonian coupling G is spacetime dependent in
general and has Weyl weight of 2.

The term S(φ) involving the Jordan-Brans-Dicke scalar φ is

Sφ =
∫

d4x
√
|g| [

1

2
gµν (Dµφ)(Dνφ) − V (φ) ]. (3.10)

where Dµφ = ∂µφ− Aµφ.
The FRW metric is

ds2 = dt2 − a2(t) (
dr2

1− k(r/R0)2
+ r2(dΩ)2). (3.11)

where k = 0 for a 3-dim spatially flat region; k = ±1 for regions of positive and negative
constant spatial curvature, respectively. The de Sitter metric belongs to a special class
of FRW metrics and it admits different forms depending on the coordinates chosen. In
particular when a(t) = cosh(H0t) = cosh(t/R0); k = 1, the de Sitter metric is

13



ds2 = dt2 − cosh2(H0t) (
dr2

1− k(r/R0)2
+ r2(dΩ)2) =

ds2 = cosh2(H0t) [
dt2

cosh2(H0t)
− (

dr2

1− k(r/R0)2
+ r2(dΩ)2) ] (3.12)

and which can also be recast in terms of the conformal factor a2(τ) and the conformal
time τ , respectively,

a2(τ) = cosh2(H0t) = cosh2(t/R0); (dτ)2 =
dt2

cosh2(H0t)

as

ds2 = a2(τ) dη2 = a2(τ) [dτ 2 − (
dr2

1− k(r/R0)2
+ r2(dΩ)2) ] =

a2(τ) [ dτ 2 − R2
0(dΩ3)

2 ] = a2(τ) [ dτ 2 − R2
0 dχ2 −R2

0 sin2χ (dΩ)2 ]. (3.13)

where Ω is the two-dim solid angle corresponding to the sphere S2 and Ω3 is the 3-dim
solid angle corresponding to the 3-sphere S3 . The third angle coordinate χ ( besides θ, φ
) of the S3 is defined by sin(χ) = (r/R0).

When a(t) = cosh(H0t) = cosh(t/Ro), the 4D spacetime Riemannian scalar curvature
RRiemann for k = 1 can be shown to be constant despite the temporal dependence of a(t)
:

RRiemann = − 6 [ (
(d2a/dt2)

a
) + (

(da/dt)

a
)2 +

1

a2R2
0

] =

−6 [ H2
0 + H2

0 tanh2(H0t) +
H2

0

cosh2(H0t)
] = −12 H2

0 . (3.14a)

notice that the negative sign of RRiemann was due to the chosen signature. The following
identities of hyperbolic functions are employed :

1 + tanh2(H0t) +
1

cosh2(H0t)
=

cosh2(H0t) + sinh2(H0t) + 1

cosh2(H0t)
=

2cosh2(H0t)

cosh2(H0t)
= 2.

(3.14b)

cosh2(H0t)− sinh2(H0t) = 1. tanh2(H0t) +
1

cosh2(H0t)
= 1. (3.14c)

de Sitter space is geometrically a 4-dim hyperboloid embedded in 5D and can be seen as
being the 3+1 dimensional world-volume spanned by the motion of a 3-brane of topology
S3 in a flat target 5D embedding spacetime background.

The Friedman-Einstein-Weyl equations in the gauge Aµ = (0, 0, 0, 0) (in units of c = 1)
:

Gµν = 8πG Tµν ; φ2 =
1

16π G
. Tµν = − 2√

|g|
δSmatter

δgµν
. (3.15)
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read

3(
(da/dt)

a
)2 + (

3k

a2R2
0

) = 8πG(t)ρ. (3.16)

and

−2 (
(d2a/dt2)

a
)− (

(da/dt)

a
)2 − (

k

a2R2
0

) = 8πG(t) p. (3.17)

Eqs-(3.16-3.17) are the ones one must use.
If one had partially fixed the gauge Aµ = (At, 0, 0, 0) and try to identify the Hubble

variable H(t) with At = H(t) like the author [28] did these equations would have been

3(
(da/dt)

a
)2 + (

3k

a2R2
0

) =

− 9( At(x) At(x) − 1√
|g|

∂t(
√
|g|At) ) + 8πG(t)ρ. (3.18a)

and

−2 (
(d2a/dt2)

a
)− (

(da/dt)

a
)2 − (

k

a2R2
0

) =

3 ( At(x) At(x)− 1√
|g|

∂t(
√
|g|At) ) + 8πG(t) p. (3.18b)

Notice the presence of a crucial and net factor of 9 in eq-( 3.18a) due to the contribution
of the variation of the

√
ggttAtAt... terms w.r.t the gtt metric component, compared to

the factor of 3 in eq- (3.18b) because Ai = 0. One can infer from eqs-(3.18) that

(
(da/dt)

a
)2 = H2(t) = − (

k

a2R2
0

) − 3( At(x) At(x) − 1√
|g|

∂t(
√
|g|At) ) +

8πG(t)

3
ρ. (3.19a)

and

− (
(d2a/dt2)

a
) = − ( H2(t) +

dH

dt
) =

4πG(t)

3
(ρ + 3p). (3.19b)

The density and pressure terms associated with the scalar field φ are given by eqs-(
3.20-3.21) below . φ must be chosen to depend solely on time , φ(t), because this is
the relevant case suitable for the FRW cosmologies due to the fact that the geometry is
spatially homogeneous and isotropic .

The gauge choice condition imposed by [28] : At = H(t); Ai = 0, i = 1, 2, 3 is
compatible with the spatial isotropy and homogeneity of the FRW models. However,
despite that a non-zero value At was chosen by [28] there is a residual symmetry that is
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still available to gauge At to zero. As mentioned earlier, Weyl’s integrability condition
Fµν = 0 physically means that Aµ is pure gauge, a total derivative, whence it does not
have true dynamical degrees of freedom and all of its components can be gauged to zero
Aµ = (0, 0, 0, 0).

However, if one partially fixes the gauge At = H(t); Ai = 0 like it was done in [28], one
arrives at a caveat that was overlooked by [28] . One would arrive at a deep contradiction
and inconsistency between the left hand side (l.h.s) and the right hand side (r.h.s) of
the Friedman-Einstein-Weyl equations ( for example in eq-(3.19b) ) in the partially fixed
gauge At = H(t) because the l.h.s does not transform homogeneously under Weyl scalings,
whereas the r.h.s does; if the quantities ρ and p were to transform properly under Weyl
scalings, homogeneously, this behaviour would be incompatible with the transformation
properties of the At = H(t) terms appearing in the l.h.s of eqs-(3.19b). This is also
related to the mistake when one tries to constrain further the scalar field by equating
φ(t)/φo = a(t) .

In order to reconcile this incompatibility between the inhomogeneous transformation
properties of the l.h.s of eq-(3.19b) with the homogeneous transformation properties of
the r.h.s of (3.19b), one must fix the gauge Aµ = 0 fully in the Einstein-Friedman-Weyl
equations as shown in eqs-(3.16-3.17). The latter equations are the physically relevant
and not eqs-(3.18-3.19). One may be inclined to say : if one is going to fix the gauge
Aµ = 0 anyway, then what is the role of Weyl’s geometry and symmetry in all of this ?
We will show below why despite fixing the gauge Aµ = 0 one cannot forget the constraint
which arises from the variations of the action w.r.t the Weyl’s field Aµ ! This constraint
holds the key.

The definition T µ
µ = diag (ρ,−p,−p,−p) furnishes the density and pressure term corre-

sponding to the scalar φ field that must be written explicitly in a Weyl covariant fashion
:

ρφ =
1

2
(∂t φ− At φ)2 + V (φ). pφ =

1

2
(∂t φ− At φ)2 − V (φ). (3.20)

ρ + 3p = (∂t φ− At φ)2 − 2V (φ). (3.21)

In addition, the Jordan-Brans-Dicke scalar φ must obey the generalized Klein-Gordon
equations of motion

( DµD
µ + 2RWeyl ) φ + (

dV

dφ
) = 0 (3.22)

combined with the constraint equation obtained from the variation of the action w.r.t to
the Aµ field :

δS

δAµ
= 6 (Aµφ

2 + ∂µ(φ2)) +
1

2
(Aµφ

2 − ∂µ(φ)2 ) = 0. (3.23)

The last constraint equation in the gauge Aµ = 0 forces ∂µφ = ∂t φ(t) = 0 ⇒ φ(t) =
φo = constant. Consequently G ∼ φ−2 is also constrained to a constant GN and one may
set 16π GN φ2

o = 1, where GN is the observed Newtonian constant today.
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Furthermore, one may write in the gauge Aµ = 0, that Dµ φ = Dt φ(t) = ∂t φ−At φ =
∂t φ = 0 so that DµDµφ = 0 will be used in the generalized Klein-Grdon equation. Notice,
however, that the condition φ = φo = constant is a consequence of the constraint equation
(3.23), in the gauge Aµ = 0, resulting from the variation of the action w.r.t the Aµ field,
and not as a result of having gauged the scalar φ to a constant φo by choosing for gauge
parameter Ω the field-dependent quantity Ω = ln (φ/φo) :

φ → φ′ = e−Ω φ = φo ⇒ e−Ω =
φo

φ
. (3.24)

It is of paramount importance to learn that this is not the case : the condition φ = φo

is a direct consequence of the constraint equation (3.23), in the gauge Aµ = 0, and not
as a result of gauging φ to a constant φo. For this reason it is erroneous to relate the
scaling parameter a(t) = eΩ to the field φ by ( erroneously ) writing a(t) = φ/φo. One
must have a(t) 6= φ/φo because a(t) and φ are not related this way. They are related via
the Einstein-Friedmann-Weyl equations (3.16-3.17) in the Aµ = (0, 0, 0, 0) gauge.

To sum up, by plugging in the result derived from the constraint eq-(3.23), in the gauge
Aµ = 0, Dµφ = Dt φ(t) = ∂t φ − At φ = ∂t φ = 0, into the generalized Klein-Gordon
equation leads to :

− (RWeyl ) φ − 1

2
(
dV

dφ
) = 0. (3.25)

where the derivative (dV/dφ) is evaluated at the constant field configuration φ = φo. One
must differentiate V (φ) w.r.t the scalar φ first, and only afterwards, one may set φ = φo !

The key reason why Weyl’s geometry and symmetry is essential to explain the origins
of a non−vanishing vacuum energy ( dark energy ) can be seen now by simple inspection
of the defining relations of the ρ and p terms associated with the scalar φ. When φ is
constrained by eq-(3.23) in the gauge Aµ = 0 to obey Dµφ = Dtφ(t) = (∂t−At)φ = ∂t φ =
0 , one finds from the defining eqs- (3.20-3.21 ) the crucial relationship ρ + 3p = −2V (φ)
to be used in the Einstein-Friedman-Weyl equations.

The latter relation is the key to derive the vacuum energy density in terms of V (φ = φo)
!., because such relation resembles the dark energy relation ρDE + 3pDE = −2ρDE when
the equation of state is pDE = −ρDE. Had one not had the constraint condition Dµφ =
Dt φ(t) = (∂t − At)φ = ∂t φ = 0, in the gauge Aµ = 0, enforcing φ = φo, one would not
have been able to deduce the crucial condition ρ(φ = φo) = − p(φ = φo) = V (φ = φo)
that will furnish the observed vacuum energy density today !

We will find now solutions of the Einstein-Friedman-Weyl equations in the gauge
Aµ = (0, 0, 0, 0) after having explained why Aµ can (and must) be gauged to zero and
why the scaling parameter a(t) must not be equated with the ratio φ/φo. There are two
relevant cases that pop up immediately :
• Case 1 is the trivial case corresponding to a static flat Minkowski spacetime :

a(t) = 1; Aµ = (0, 0, 0, 0); k = 0; RWeyl = RRiemann = 0; V (φ) ≡ 0. (3.26)
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that solves trivially the Einstein-Friedmann-Weyl equations. This case corresponds to a
vanishing vacuum energy since V (φ) ≡ 0 ( flat potential).
• Case 2 : The most relevant case corresponding to de Sitter space :

a(t) = eHot; Aµ = (0, 0, 0, 0); k = 0; RWeyl = RRiemann = −12 H2
0 ;

where we will show that the potential is

V (φ) = 12H2
0φ

2 + Vo. (3.27)

one learns in this case that V (φ = φo) 6= 0 since this non-vanishing value is precisely the
one that shall furnish the observed vacuum energy density today !!! ( as we will see below
) .

We shall begin by solving the Einstein-Friedman-Weyl equations eq-(3.16-3.17) in the
gauge Aµ = (0, 0, 0, 0) for a spatially flat universe k = 0 and a(t) = eH0t, corresponding
to de Sitter metric :

ds2 = dt2 − e2Hot (dr2 + r2(dΩ)2). (3.28)

the Riemannian scalar curvature when k = 0 is

RRiemann = − 6 [ (
(d2a/dt2)

a
) + (

(da/dt)

a
)2 ] = −12 H2

0 (3.29)

( the negative sign is due to the chosen signature +,−,−,− ).
To scalar Weyl curvature RWeyl in the gauge Aµ = (0, 0, 0, 0) is the same as the

Riemannian one RWeyl = RRiemann = −12 H2
0 . Inserting the condition Dµφ = Dtφ(t) =

(∂tφ − Atφ) = ∂t φ = 0, in the gauge Aµ = 0, the generalized Klein-Gordon equation
(3.22) will be satisfied if, and only if, the potential density V (φ) is chosen to satisfy

( 12 H2
0 ) φ =

1

2
(
dV

dφ
) ⇒ V (φ) = 12 H2

0 φ2 + Vo (3.30)

As stated earlier, one must firstly differentiate w.r.t the scalar φ , and only afterwards,
one may set φ = φo. V (φ) has a Weyl weight equal to −4 under Weyl scalings in order
to ensure that the full action is Weyl invariant. H2

0 and φ2
o have both a Weyl weight of

−2, despite being constants, because as one performs a Weyl scaling of these quantities
( a change of a scales) they will acquire then a spacetime dependence. H2

0 is a masslike
parameter, one may interpret H2

0 ( up to numerical factors ) as the ”mass” squared of the
Jordan-Brans-Dicke scalar. We will see soon why the integration constant Vo plays the
role of the ”cosmological constant”.

An important remark is in order. Even if we included other forms of matter in the
Einstein-Fredmann-Weyl equations, in the very large t regime, their contributions will be
washed away due to their scaling behaviour. We know that ordinary matter ( p = 0 );
dark matter ( pDM = wρDM with −1 < w < 0 ) and radiation terms ( prad = 1

3
ρrad ) are

all washed away due to their scaling behaviour :

ρmatter ∼ R(t)−3. ρradiation ∼ R(t)−4. ρDM ∼ R(t)−3(1+w). (3.31)
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where R(t) = a(t)R0. The dark energy density remains constant with scale since w = −1
and the scaling exponent is zero, ρDE ∼ R0 = costant. For this reason it is the only
contributing factor at very large times.

Now we are ready to show that eqs-(3.16-3.17) are indeed satisfied when a(t) =
eH0t; k = 0; Aµ = 0; φ = φo 6= 0. Eq-(3.17), due to the condition ρ + 3p = −2V (φ) and
after imposing the crucial condition φ(t) = φo (resulting from the constraint eq-(3.23) in
the Aµ = 0 gauge ) gives :

− (
(d2a/dt2)

a
) = −H2

0 =
4πGN

3
(ρ + 3p) =

− (
8π GN V (φ = φo)

3
) = − (

8π GN 12 H2
0 φ2

o

3
) − 8πGN Vo

3
. (3.32)

Eq-(3.16) ( with k = 0 ) is just the same as eq-(3.17) but with an overall change of sign
because ρ(φ = φo) = V (φ = φo). Using the definition 16π GN φ2

o = 1 in (3.32) one gets

−H2
0 = − (

8π GN 12 H2
0 φ2

o

3
) − 8π GN Vo

3
= −2 H2

0 − 8π GN Vo

3
⇒

−8π GN Vo

3
= H2

0 ⇒ − 8π GN Vo = 3 H2
0 (3.33)

Therefore, we may identify the term − Vo with the vacuum energy density so the quantity
3H2

0 = −8π GN Vo = Λ is nothing but the cosmological constant. It is not surprising
at all to obtain Λ = 3 H2

0 in de Sitter space ! . One knew it long ago. What is most
relevant about eq-(3.33) is that the observed vacuum energy density is minus the constant
of integration Vo corresponding to the potential density V (φ) = 12H2φ2 +Vo !. Hence one
has from the last term of eq-(3.33) :

−Vo = ρvacuum =
3H2

0

8π GN

. (3.34)

and finally, when we set H2
0 = (1/R2

0) = (1/R2
Hubble) and GN = L2

Planck in the last term
of eq-(3.34), as announced, the vacuum density ρvacuum observed today is precisely given
by :

−Vo = ρvacuum =
3H2

0

8π GN

=
3

8π
(LPlanck)

−2 (RHubble)
−2 =

3

8π
(

1

LPlanck

)4 (
LPlanck

RHubble

)2 ∼ 10−123 (MPlanck)
4. (3.35)

This completes our third derivation of the vacuum energy density given by the formula
(3.34-3.35). The first derivation was attained in [15]. The second derivation in section 2
and the third derivation in this last section.

Concluding this analysis of the Einstein-Friedman-Weyl eqs-(3.16-3.17) : By invoking
the principle of Weyl scaling symmetry in the context of Weyl’s geometry; when k = 0
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( spatially flat Universe ), a(t) = eH0t ( de Sitter inflationary phase ) ; Ho = Hubble
constant today; φ(t) = φo = constant, such 16πGN φ2

o = 1, one finds that

V (φ = φo) = 12 H2
0 φ2

o + Vo = 2ρvacuum − ρvacuum = ρvacuum =

6H2
0φ

2
o =

3H2
0

8π GN

∼ 10−123 M4
Planck. (3.36)

is precisely the observed vacuum energy density ( 3.34) . Therefore, the observed vacuum
energy density is intrinsically and inexorably linked to the potential density V (φ = φo)
corresponding to the Jordan-Brans-Dicke scalar φ required to build Weyl invariant actions
and evaluated at the special point φ2

o = (1/16πGN).
There is the trivial solution to the Einstein-Friedman-Weyl equations given by

k = 0 (flat); RWeyl = RRiemann = 0; a(t) = 1; Aµ = 0; V (φ) ≡ 0 (3.37)

and the relationship between Λ and V (φ) when a(t) = 1 is

0 = − (
8πGN V (φ)

3
) +

Λ

3
⇒ Λ = 0; since V (φ) ≡ 0. (3.38)

As expected, in this trivial flat universe with a zero flat potential one must have Λ = 0. For
this reason, the other nontrivial solution for an ever expanding accelerating universe
( consistent with observations) is so promising because it incorporates the presence of
the Hubble Scale into the expression for the observed vacuum energy density via the
Jordan-Brans-Dicke scalar field φ needed to implement Weyl invariance of the action. It
is warranted to study the connection between this Weyl geometric approach versus the
Scale Relativity Theory [25] and the Extended Relativity Theory in Clifford spaces [26]
where there is scale motion without the need to introduce a Weyl gauge field.

Concluding, Weyl’s scaling symmetry principle permits us to explain why the observed
value of the vacuum energy density ρvacuum is precisely given by the expression (3.35).
This completes our third derivation of the vacuum energy density. The first derivation
was attained in [15] while the second derivation was attained in section 2 .

In order to introduce true dynamics to the Weyl gauge field, one must add the kinetic
term for the Weyl gauge field FµνF

µν . In this case, the integrability condition Fµν =
∂µAν − ∂νAµ = 0 is no longer obeyed in general and the rate at which clocks tick may
depend on their worldline history. This could induce a variation of the physical constants
( even dimensionless constants like the fine structure constant α = 1/137 ). For instance,
as the size of the universe grows, ( a(t) = eH0t increases with time) the variable speed
of light, Newtonian coupling and cosmological constant , may vary according to the law
[G(t)/c4(t) Λ(t)] ∼ (1/ρvacuum) if the vacuum energy density ρvacuum would remain
constant. Many authors have speculated about this last behaviour among c, G, Λ

The most general Lagrangian involving dynamics for Aµ is

L = −φ2RWeyl(gµν , Aµ, Λ)− 1

4
FµνF

µν + gµν(Dµφ)(Dνφ)− V (φ) + Lmatter + ..... (3.37)
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The Lmatter must involve the full fledged Weyl gauge covariant derivatives acting on
scalar and spinor fields contrary to the Cheng-Weyl models of [29] where there is no Weyl
gauge field in the derivatives. Lradiation terms may be included involving the Maxwell
field Aµ which must not be confused with the Weyl gauge field Aµ. Once could also add
Yang-Mills fields Aa

µ and kinetic and potential terms for the Higgs scalars as well. The
simplest scenario, of course, was the one given in this section.

There are many differences among our approach and that of [29]. The Cheng-Weyl
approach [29] to account for dark energy and matter ( including phantom ) does not
use the Weyl scalar curvature with a variable Newtonian coupling 16π G = φ−2 for the
gravitational part of the action, but the ordinary Riemannian scalar curvature with the
standard Newtonian gravitational constant . One does not use Weyl covariant derivatives
in the matter terms. The Weyl covariant derivative is only used in the kinetic (Dµφ)2

terms for the Jordan-Brans-Dicke scalar φ . And the authors [29] introduced a triplet
of Cheng-Weyl gauge fields A1

µ, A
2
µ, A

3
µ whereas here we have only one Aµ. Weyl invari-

ance has been used in [27] to construct Weyl-Conformally Invariant Light-Like p-Brane
Theories with numerous applications in Astrophysics, Cosmology, Particle Physics Model
Building, String theory,.....

To end this work, we just point out the known fact that the electron neutrino mass
mν ∼ 10−3 eV is of the same order as (mν)

4 ∼ 10−123 M4
Planck and that the SUSY

breaking scale in many models is postulated to be given by a geometric mean relation :
m2

SUSY = mν MPlanck ∼ (5 TeV )2. We hope that the contents of this work will help us
elucidate further the connection between the microscopic and macroscopic world.
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