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Abstract

In the standard model, isospin is not defined for all elementary
particles nor is it conserved in all interactions. A study of the isospin
subalgebra in the author’s U(3, 2) theory of matter shows that the
standard model assigned the wrong isospin values to many elemen-
tary particles. The redefined isospin is defined for all particles and is
conserved in all interactions. This leads to a new interpretation of the
isospin algebra as a model of pion exchange between protons in the
nucleus.

PACS: 12.60.-i Models of particles and fields beyond the standard
model

1 Introduction

In his analysis of the structure of the atomic nucleus Heisenberg [7] intro-
duced a new symmetry into physics. Since this symmetry has the same
structure as the spin algebra su(2), it has been called isotopic spin, isobaric
spin and more recently, just isospin. Let p+ denote a proton and n denote
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a neutron. The isospin algebra consists of three linear operators: τ−, τ+, τ3
defined by:

τ+ : p+ → n

τ− : n→ p+

τ3 = [τ−, τ+]

In the standard treatment, the proton is represented by the state

p+ =

(
1
0

)

and the neutron is represented by the state

n =

(
0
1

)

The standard representation of the linear operators is:

τ− =

(
0 0
1 0

)

τ+ =

(
0 1
0 0

)

τ3 =

(
1 0
0 −1

)

In the standard model, the Lie algebra acts on the elementary particles as
states in a Hilbert space. In the model of matter introduced by the author [16,
17], the elementary particles are modeled as operators (vertical vector fields
on a principle fiber bundle over a complex space-time) which form the Lie
algebra and their interactions are modeled by the Lie bracket (commutator)
when a change in particle type is involved or as a tensor product when there
is no change in particle type. The matter matrix [17] is given by:

γ1 ν H e−

ν̄ γ2 n π−

H̄ n̄ γ3 p−

e+ π+ p+ γ4
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Thus a proton is represented by the matrix:

p+ =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0


and the neutron is represented by the matrix:

n =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0


The eigenvalue of γ1 is the lepton number. We will call the eigenvalue

of γ2 the meson number. The eigenvalue of −γ3 yields the baryon number.
γ4 represents a photon and its eigenvalue gives the electric charges of the
particle. Thus: [

γ4, p
+
]

= p+[
γ4, p

−
]

= −p−

The four γi generate quantum numbers which define superselection rules
and which partition the elementary particles into 12 superselection sectors.
They also define four forces: γ1 mediates the weak force; γ2 is related to the
spin-spin interaction; γ3 mediates the strong force and γ4, the electromagnetic
force. For two particles, A and B, the same quantum numbers are obtained
from the bracket [A,B] as from the tensor product A ⊗ B; the bracket is
used when a change in particle type is involved and the tensor product is
used when there is no change in particle type. The tensor force: A⊗B is an
exchange force: A⊗B = [[A, γI ], B] = [A, [γI , B]].

These numbers are also related to the statistics of the particle: the eigen-
value of 1

2
(γ1 − γ2 + γ3 − γ4) is 0 for Bosons and ±1 for Fermions.

Since the Lie bracket determines the interaction, this is a realization of
Yang’s dictum: ‘symmetry dictates interaction’ [26]. We might equally invert
the statement and say that ‘interaction dictates symmetry’. But if both
statements are true, then symmetry is the interaction.

The above commutation relations, which actually work, should be con-
trasted with those given in the axiomatic approach to QFT, according to
Haag [6]:
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The commutation relations between different fields at space-
time distances are usually assumed to be: all Fermi fields anti-
commute with each other, all Bose fields commute, any Bose field
commutes with any Fermi field.

Thus the fundamental axioms of QFT need to be modified, all of particle
physics can be done with commutators, anti-commutators are not necessary.

Heisenberg [7] introduced isospin with the idea that the proton and the
neutron were two different states of the same particle, the nucleon. However,
that is not true in the present model. The neutron and proton are distinct
particles. Yet there is an important lesson to be learned from the isospin
operators.

In the complete theory, the particles are represented by a wave function
times a Lie algebra generator. Thus p+ would be replaced by ψp+∂p+ where
ψp+ is a wave function and ∂p+ is a differential operator representation of
the Lie algebra element. The present simpler notation is sufficient for the
purposes of this paper. In the standard model, these would be a quantized
Dirac four-component spinor operator. As shown in [18] the two descriptions
are not inconsistent.

There is no need for anti-commutators, since the roles of fermions and
bosons are properly preserved automatically with the interaction modeled by
commutators. These operator representations of the particles are essentially
a reinterpretation of the standard creation and annihilation operators where
p+ creates a proton (here it is a proton) and p− annihilates a proton (here it
is an antiproton). Then in this model,[

π+, n
]

= p+

[
π−, p+

]
= n

Thus the π+ replaces the τ+ and the π− replaces the τ−. The bracket of
π+ and π− should then play the role of τ3.[

π+, π−
]

= γ4 − γ2

[γ4 − γ2, n] = −n

[γ4 − γ2, p
+] = p+
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Showing that γ4 − γ2 generates the quantum numbers and thus replaces
the τ3. Then we have:

[γ4 − γ2, π
+] = 2π+

[γ4 − γ2, π
−] = −2π−

Since we are no longer treating the proton and the neutron as different
states of the same particle, the term isospin is no longer appropriate. The
corresponding symmetry in the model under discussion is generated by the
pion and anti-pion, thus the term pi-sospin seems more appropriate. The
introduction of new terminology will also help us clarify issues which arise
when comparing the present model of matter to the old theory. The proton
then has pi-sospin +1, the neutron has pi-sospin -1, π+ has pi-sospin +2 and
the π− has pi-sospin -2. The isospin (I3) of these particles is one half the
pi-sospin. This is required to obtain eigenvalues of 1, 0 and -1 for each γi.
We need the eigenvalues to be integral values of the charges.

In the standard model, according to Perkins [22]:

For the strange particles, note first that the Λ-hyperon has no
charged counterpart, implying IΛ = 0.. . . The values of I and IΛ
involved in decay are as follows:

Λ → p + π−

I 0 1
2

1
I3 0 1

2
−1

This is a weak decay process and neither I nor I3 are conserved
on the two sides of the equation.

In the picture presented in [16, 17], the Λ was shown to be an excited
neutron and consequently has the same pi-sospin as the neutron, -1, and the
“pi-sospin” is conserved in all interactions.

Perkins [22] goes on to argue that the K+-meson has I3 = +1
2
, however

in [17] the K+-meson is shown to be an excited state of the π+ and has the
same pi-sospin as the π+, namely 2.
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2 Pi-sospin of the fundamental particles

We have computed the pi-sospin of the proton, the neutron, the pion and
their anti-particles. Pi-sospin and isospin agree (up to the factor of 2) on
those particles. Now we turn to the other particles in the matter matrix.
Isospin and strangeness are only defined for particles which partake in the
strong interaction; pi-sospin is defined for all particles. Isospin is not con-
served in electromagnetic or weak interactions; pi-sospin is conserved in all
interactions.

In 1956, Yasuhisa Murai [20] saw the need for such a redefinition of what
was then called “isobaric spin”:

As the attempts at the classification of heavy particles are usu-
ally based upon the extension of charge independence, they are
powerless in characterizing the decay interaction of heavy mesons
into leptons, the concept of isobaric spin not being applicable to
the lepton family. It will be a clue for future theory to search a
formalism which replaces that of isobaric spin and is applicable
both to baryons and leptons.

Such a theory is at hand and the numbers are easily calculated:

[γ4 − γ2, ν] = ν

[γ4 − γ2, ν̄] = −ν̄
Thus, the neutrino has pi-sospin 1.

[γ4 − γ2, H] = 0[
γ4 − γ2, H̄

]
= 0

The Hydrogen atom has pi-sospin 0.[
γ4 − γ2, e

−
]

= −e−[
γ4 − γ2, e

+
]

= e+

The electron has pi-sospin -1.
In their 1963 paper de Broglie, Bohm et al [1] ascribed “isobaric spins

and strangeness to leptons” but their numbers are not in agreement with the
values assigned here.
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3 Pi-sospin of the strange particles

The calculation of the pi-sospin of the proton, the neutron and the pion
was an important prelude to computing the pi-sospin of the strange particles
since all particles are built from these building blocks.

The strange particles (and their analysis using the quantum numbers from
[17]) are:

K0 has pi-sospin 0 but it was assigned an isospin (I3) value of −1
2
.

K+ is an excited state of π+ and hence has the same pi-sospin as the π+,
2; but it was assigned an isospin of 1

2
.

K− is an excited state of π− and hence has the same pi-sospin as the π−,
-2 ; but it was assigned an isospin of −1

2
.

Λ0 is an excited state of the neutron and hence possesses the same pi-
sospin as the neutron, −1 ; but it was assigned isospin 0.

Σ+ is an excited state of the proton and hence has the same pi-sospin as
the proton, 1; but it was assigned isospin 1 (the isospin value should be half
the pi-sospin).

Σ0 is an excited state of the neutron and hence has the same pi-sospin as
the neutron, -1; but it was assigned isospin 0.

As shown in [17] Σ−, Ξ− and Ω− all have the same algebraic factor as

n⊗ π− ≡ π− ⊗ p+ ⊗ π−

and hence their pi-sospin is 2 times the pi-sospin of the π− plus the pi-sospin
of p+ which is 2(-2) + 1 = -3. However, the Σ− was assigned isospin -1; the
Ξ− was assigned isospin −1

2
and the Ω− was assigned isospin 0.

Many more examples could be given, but these clearly show that the
isospin values assigned to numerous elementary particles in the standard
model are wrong. Isospin is not conserved in the electromagnetic and weak
interactions because the particles have been assigned the wrong isospin val-
ues. Strangeness is defined in terms of isospin, making the assignment of
strangness numbers problematic.

Since the pi-sospin algebra is generated by interaction with pions and
exponentiating a pion does not make sense, it seems that only the Lie algebra
structure is meaningful and there is no corresponding Lie group directly
involved with elementary particle interactions. This idea has been around
for a long time, for instance, the footnote on page 24 of Lipkin [14]):

One may note here that the continuous group of isospin trans-
formations is very peculiar since they transform physical neutron
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states into states which contain linear combinations of neutrons
and protons. Such linear combinations are never observed be-
cause of charge conservation and it has been suggested that such
states do not exist in the Hilbert space describing physical states
because of superselection rules. It is therefore perhaps satisfy-
ing that all of the useful isospin results can be obtained directly
from the Lie algebra which involves only physical operators act-
ing upon physical states and that the unphysical Lie group of
continuous transformations is not required in order to obtain any
of these results.

The implications of these results are immense: Noether’s theorem de-
mands a continuous group action for each conserved quantity in a Lagrangian
Field theory. Since we have conserved quantities (charge, baryon num-
ber, lepton number and meson number) without a corresponding continu-
ous group action, we cannot be working with a Lagrangian Field Theory.
However, according to Bryce DeWitt:

The very first and most fundamental assumption of the quantum
theory is that every isolated dynamical system is describable by
a characteristic action functional S.

If DeWitt is correct, the very foundation of quantum theory comes into
question.

The setting required is that suggested by Sternberg [24]:

. . . the stage setting for dynamics will be a general symplectic
manifold. . . It is only with the introduction of such spaces into
mechanics that one can find the classical formulations of such
notions as spin. In admitting these types of mechanical systems,
one must reject the Lagrangian and, therefore, the variational for-
mulation of mechanics, but substitute for it a formulation which
is more in character with symplectic geometry.

In the present case, the symplectic manifold is U(3, 2)/U(3, 1)×U(1). The
conserved quantities will not be generated via Noether’s Theorem (since there
is no Lagrangian) but rather by eigenvalue equations involving the Cartan
subalgebra and the generalized Casimir operators of U(3, 2). Fortunately
this program actually yields more conserved quantities.
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4 Assignment of Quantum Numbers

The standard approach to the assignment of quantum numbers, according to
Roman [23]:

The principles according to which we shall assign isospin to the
various particles are the following. If we have a group of particles
with very nearly the same mass and other properties, then we
shall consider them as components of an “isobaric multiplet”. If
the number of members is (2t + 1), then t is the isospin of the
multiplet.

Assignment of isospin in this manner has led to a quantum number which
is not defined for all particles and is not conserved in electromagnetic or weak
interactions. A truly conserved quantity must be defined for all particles and
must be conserved in all interactions. Thus, the standard assignments of
isospin and strangeness quantum numbers are not acceptable, which leads
us to reject the standard way of classifying elementary particles as multi-
plets in representation spaces of a group. The representations are still with
us, however, as the wave functions of the particles will prove to be in the
eigenfunction representation of u(3, 2).

U(3, 2) is a noncompact group and noncompact groups were not consid-
ered in the multipet picture because unitary representations of noncompact
groups are infinite dimensional and would lead to an infinite number of par-
ticles with the same mass. That problem does not exist in the present model.

Heisenberg [7] concluded that the proton and the neutron interacted by
an exchange force. Yukawa [27] later proposed that the neutron and the
proton in a nucleus were exchanging the particles now known as pions.

We interpret the pi-sospin relations to mean that what appears to be a
n- p+ system is in reality two protons exchanging a real (not virtual) π−:

n⊗ p+ ≡ p+ ⊗ π− ⊗ p+

This is close in spirit to the result Heisenberg expected: the exchange
of a “spinless electron obeying Bose statistics”, although he thought that a
positively charged particle was being exchanged.

According to Landau and Smorodinsky [12]:

The existence of exchange forces is related to the high degree
of similarity between the proton and neutron—it is believed that
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when these particles are in close proximity a light charged particle
is transferred from the proton to the neutron (or from the neutron
to the proton), thereby changing the charge states. The existence
of these charged particles is now unquestioned: these are the so-
called π-mesons. . .

Thus the nuclear pion hypothesis is an old idea, replacing the earlier
nuclear electron hypothesis [25].

In the standard model, the (nn) and (pp) forces are assumed to be the
same in spite of what Evans [5] calls the

. . . one piece of negative evidence, the nonexistence of a stable
di-neutron.

He fails to mention the nonexistence of a stable di-proton.
The present hypothesis, that there are no neutrons in the nucleus rather

the neutrons dissociate into a pion and a proton also goes against the stan-
dard hypothesis as stated by Evans [5]:

We assume throughout that if a neutron, proton, electron,
neutrino, or meson enters a nucleus, the particle retains its iden-
tity and extra-nuclear characteristics of spin, statistics, magnetic
moment, and rest mass.

Li and Machleidt [13] presented evidence against the charge symmetry of
the strong nuclear force. Kudryavtsev et al [10] observed “charge-symmetry
violation in pion scattering from three-body nuclei.”

In the present model, the strong force in a (pn) is due to the exchange of a
real pion between two protons, in a (pp) system there are no pions, hence no
strong force. In an (nn) there would be two protons exchanging two pions.
Then there is no charge-symmetry in nuclear reactions.

Roman [23] notes

. . . the Λ is in many respects very similar to the neutron (for
instance, it can replace a neutron in an atomic nucleus).

But rather than accept the obvious, that a Λ is an excited state of a
neutron, it was identified as an isospin singlet. This is an obvious prejudice
towards accepting the model in spite of the evidence.

Jauch and Rohrlich [9] observed:
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. . . the muon is known from its magnetic moment to be correctly
described as a “heavy electron”. . . (pp.536-37)

Niels Bohr [2] observed that the goal of science is “the gradual removal
of prejudices.” In a similar analysis, Paul Dirac [3] wrote:

When one looks back over the development of physics, one sees
that it can be pictured as a rather steady development with many
small steps and superposed on that a number of big jumps. . . These
big jumps usually consist in overcoming a prejudice. . . And then
a physicist. . . has to replace this prejudice by something more
precise, and leading to some entirely new conception of nature.

Lubkin [19] presented “a broad proof of the validity of superselection
rules for all additive conserved quantities” but then not believing in the
mathematics, went on to refute his own argument. This is a rare case where
the prejudice is clearly revealed and Lubkin himself called this refutation
“the dodge of vection V”.

One’s own prejudices are usually harder to identify and even harder to
overcome. Indeed, these calculations could have been done in [16] but were
not since it seemed that isospin was irrelevant in the new model of matter
since the proton and neutron were not different states of the same particle.
One of the requirements often set for a unification group is that it be simple
[15]. It became necessary to abandon that requirement in order to obtain the
five γi acting individually. Overcoming a prejudice is really just questioning
what one has been taught, a necessary requirement for progress.

Prejudices are often reflected in the attitude: “We understand that al-
ready, we don’t need to re-examine it. Why question something which ev-
eryone believes is correct?”

Yuval Ne’eman [21] answered that sort of thinking when he wrote:

Between 1955 and 1971 the ‘consensus’ in our field erred badly.
In the USA, especially in the West, Relativistic Quantum Field
Theory was considered as “plain wrong” and useless. It was only
because Holland and the USSR were outside the direct influence
of that consensus that work continued on field theory and finally
won. Beware of the consensus!

Now the consensus is Relativistic Quantum Field Theory and the Stan-
dard Model. Beware of the consensus!
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5 The Pion Subalgebra

We will use the term “pion subalgebra” to mean the subalgebra generated
by the pion and antipion. Similar terminology applies to the other particles.
We begin with the actions of the pion and the antipion we have already
discussed:

[π+, n] = p+

[π−, p+] = n

and the corresponding antiparticle transformation:

[π−, n] = p−

[π+, p−] = n

Which means that n dissociates into π− ⊗ p+ and π− becomes an inter-
mediary between two p+:

n⊗ p+ ≡ p+ ⊗ π− ⊗ p+.

This is the nuclear “exchange force” except that now it is between protons
rather than between protons and neutrons. It seems appropriate to speak
of the protons exchanging a pion, since the pion is so much lighter than
the protons. The concept requires some modification when the intermediary
particle is much heavier that the particles it holds together. The actions on
the other particles are given by:

[π+, e−] = −ν

[π−, ν] = −e−

We next look at the corresponding antiparticle transformation:

[π−, e+] = ν

[π+, ν] = e+

Which we interpret to mean that the e− ‘dissociates’ into π−⊗ν and thus
the π− becomes an intermediary between two ν:

ν ⊗ e− ≡ ν ⊗ π− ⊗ ν

Clearly, for this to work, it must involve a heavy electron, the muon, µ−.
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6 The Electron Subalgebra

The corresponding actions of the electron and the positron on H and p+ is:

[e+, H] = p+

[e−, p+] = H

and the corresponding antiparticle transformation:

[e−, H] = −p−

[e+, p−] = −H
Which means that H dissociates into e− ⊗ p+ and e− becomes an inter-

mediary between two p+:

H ⊗ p+ ≡ p+ ⊗ e− ⊗ p+.

This is the familar “exchange force” between atoms. It seems appropriate
to speak of the protons exchanging an electron, since the electron is so much
lighter than the protons. Then the actions on the other particles are given
by:

[e+, ν] = π+

[e−, π+] = ν

We next look at the corresponding antiparticle transformation:

[e+, π−] = −ν

[e−, ν] = π−

Which we interpret to mean that the π− dissociates into e−⊗ ν and thus
the e− becomes an intermediary between two ν:

ν ⊗ π− ≡ ν ⊗ e− ⊗ ν

Now we note that

[e−, e+] = γ1 − γ4

At this point we could compute the spectrum of γ1 − γ4 and call it the
electro-spin, in fact we could do the same for all the elementary particles and
obtain the proto-spin, the Hydro-spin, and the nu-spin, but why? We have
established that the spectra of γ1,γ2,γ3 and γ4 are fundamental and all the
other linear combinations are secondary.
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7 The Proton Subalgebra

The actions of the proton and the anti-proton are given by:

[p−, n] = −π−

[p+, π−] = −n

We next look at the corresponding antiparticle transformation:

[p−, π+] = −n

[p+, n] = π+

Which we interpret to mean that the n dissociates into p+ ⊗ π− and the
p+ is the intermediary between two π−:

n⊗ π− ≡ π− ⊗ p+ ⊗ π−

Here, where the intermediary proton is much more massive than the pions,
the terminology of “exchange force” seems inappropriate.

The action on the other particles:

[p+, e−] = −H

[p−, H] = −e−

and the corresponding antiparticle transformations:

[p−, e+] = −H

[p+, H] = −e+

Which means that the H dissociates into p+ ⊗ e− and the p+ becomes
the intermediary between two e−:

H ⊗ e− ≡ e− ⊗ p+ ⊗ e−
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8 The Neutron Subalgebra

The action of the neutron and anti-neutron on positively charged particles
is:

[n, π+] = −p+

[n, p+] = π+

We next look at the corresponding antiparticle transformations:

[n, p−] = −π−

[n, π−] = p−

Which we interpret to mean that n is the intermediary between two π+.

p+ ⊗ π+ ≡ π+ ⊗ n⊗ π+

The n⊗ π+ corresponds to a heavy proton.
Then the action on the other particles:

[n, ν] = −H

[n,H] = −ν

and its antiparticle transformation

[n, ν] = H

[n,H] = ν

Which means that n is the intermediary between two ν:

H ⊗ ν ≡ ν ⊗ n⊗ ν.

9 The Neutrino Subalgebra

The action of the neutrino and anti-neutrino on the negatively charged par-
ticles is:

[ν, π−] = e−

[ν, e−] = π−
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We next look at the corresponding antiparticle transformation:

[ν, e+] = π+

[ν, π+] = −e+

Which we interpret to mean that the π− dissociates into ν ⊗ e− and the ν
becomes the intermediary between two e−.

e− ⊗ π− ≡ e− ⊗ ν ⊗ e−

Then the action on the neutral particles:

[ν, n] = H

[ν,H] = n

and its antiparticle transformation

[ν, n] = −H

[ν,H] = −n
Which means that ν is the intermediary between two H or that the ν is

the intermediary between two n:

H ⊗ n ≡ n⊗ ν ⊗ n

or
H ⊗ n ≡ H ⊗ ν ⊗H

This says that the ν plays a role in atomic bonding while the ν plays a role
in nuclear bonding. Neither of which is hinted at in the standard model. This
interaction could provide a mechanism for fusion, starting with a hydrogen
molecule which dissociates into two Hydrogen atoms:H⊗H then a neutrino-
antineutrino pair is produced from kinetic energy with the ν escaping and
the ν bonding

H ⊗ ν ⊗H
which then transitions to

H ⊗ n
This interaction could take place at relatively low energies, requiring just
enough thermal energy to change the electron in the hydrogen atom into a
muon (a heavy electron in our picture).
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10 The Hydrogen Subalgebra

The action of Hydrogen and anti-Hydrogen on negatively charged particles
is:

[H, p−] = e−

[H, e−] = p−

We next look at the corresponding antiparticle transformation:

[H, e+] = −p+

[H, p+] = −e+

Which we interpret to mean that H is the intermediary between two e+.

e+ ⊗ p+ ≡ e+ ⊗H ⊗ e+

H ⊗ e+ would correspond to a heavy p+.
Then the action on the other particles:

[H,n] = ν

[H, ν] = n

and its antiparticle transformation

[H, ν] = −n

[H,n] = ν

Which means that H is the intermediary between two ν:

ν ⊗ n ≡ ν ⊗H ⊗ ν

11 Completing the Subalgebras

For each subalgebra, we have two of the generators, we need to find the
others:

[p−, p+] = γ3 − γ4

[π−, π+] = γ2 − γ4
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[e−, e+] = γ1 − γ4

[ν, ν] = γ1 − γ2

[n, n] = γ2 − γ3

[H,H] = γ1 − γ3

In the standard approach, one defines the isospin generators τ3 and τ1 =
(τ+ + τ−) and τ2 = −i(τ+ − τ−). This leads to the physicist’s version of
su(2). Often, these operators are normalized with factors of

√
2. For our

purposes, that is neither necessary nor desirable.
Following this standard construction, with τ+ replaced by:

π+ =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0


and τ− replaced by:

π− =


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0


we obtain:

τ1 = (π− − π+)

τ2 = i(π− + π+)

τ3 = [τ1, τ2]

[π+, π−] = γ2 − γ4

=


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 −1


This linear combination led to the physicist’s version of su(2), which is

isomorphic to so(3). Recall that physicists take the mathematician’s ver-
sion of the Lie algebra and multiply by i. There are other possible linear
combinations of the π+ and π−.
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The mathematician’s version of su(2) is obtained with:

σ1 = (π− − π+)

σ2 = i(π− + π+)

σ3 = [σ1, σ2]

While another linear combination:

ρ1 = (π− + π+)

ρ2 = i(π− − π+)

ρ3 = [ρ1, ρ2]

gives the mathematician’s version of su(1, 1). This last combination corre-
sponds to the u(3, 2) generator.

Note that in order to obtain su(3, 2) as suggested by the author, the
electrically charged particles must lead to a noncompact su(1, 1) subalgebra
while the electrically neutral particles lead to a compact su(2) subalgebra.
This is appropriate since the description of electromagnetism and gravity
require the Lorentz group which is noncompact. This could possibly be
an explanation of why the electromagnetic and gravitational interactions
are long range (noncompact) while the other interactions are short range
(compact).

12 Conclusions

All the analogues of pi-sospin are derived from the difference of two γi. It
is the five γi which generate the quantum numbers and which govern the
interactions. The fifth, γ5, which was not discussed in this article, is the
graviton.

Quang Ho-Kim and Pham Xuan Yem [8] state:

Isospin is conserved in the strong interactions, but not in the
electromagnetic and weak interactions. We give a brief discussion
of how and where the symmetry is violated; the missing ‘why’
should be found in a future interaction model.
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The interaction model discussed here has offered an explanation of the
missing ‘why’. Isospin is not conserved because it is not defined for all par-
ticles and the wrong values of isospin were assigned to many particles on
the basis of an erroneous model. Replacing isospin by pi-sospin has led to
a quantity which is conserved and which is defined for all particles. How-
ever, pi-sospin is defined in terms of other more fundamental operators in
the model and is therefore not fundamental. So, the explanation of isospin
violation has shown that the concept does not lead to new quantum numbers
and isospin is therefore not fundamental.

In standard QFT, interactions are supposedly due to the exchange of
Bosons. The idea of exchange forces was borrowed from the ideas of chem-
ical bonds which are due to the exchange of electrons, which are Fermions.
The model introduced here shows that other Fermions are also involved in
exchange forces.

Kursunoglu [11] suggested that

. . . the pions π+ and π− are deeply bound states of two orbitons,
viz.,

π+ = (e+νe) π− = (e−νe)

Kursunoglu also suggested that “. . . a neutron is a deeply bound state of
p, e, νe.” The advance made here is to replace the suggestive parenthesis by
the geometric Lie bracket.
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