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Abstract

It is shown that the value of α = (1/137.036...) can be derived from first physical principles by modeling
the renormalized charge differences in QED, between three prescribed scales, with the definite integrals of the
ground state probability density of the Hydrogen atom. This requires choosing the three fundamental scales
to be the Bohr radius, the Compton wavelength and the Rydberg scale, whose ratios among themselves
are related to α. The derivation is also compatible with the observed Astropysical variations of the fine
structure constant which results from the cosmological expansion of the Universe. Concluding remarks
pertaining Diophantine equations, number theory and physical constants are made.
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1. Introduction

For many years there have been many attempts to find a theoretical basis for the values of the coupling
constants of the four forces in Nature and the masses of the fundamental particles. To our knowledge
the first person who presented a formula for the electromagnetic coupling constant was the mathematician
Wyler [1] . Smith later [2] has derived the values of all the couplings and masses of fundamental particles
with remarkable precision using hyper-diamond lattices based on discrete Clifford algebras. In particular he
reproduced Wylers heuristic formula for the fine structure constant :

α =
8πV (D5)1/4

V (S4)V (Shilov5)
=

9
8π4

(
π5

245!
)1/4 =

1
137.03608245

(1)

which agrees with the observed value of the fine structure constant in five-parts in ten-million
We have used in (1) the following numerical values for the volumes of the respective spaces : The

volume of the 5-dim bounded homogeneous complex domain D5 was calculated by Hua to be π5/245! [2] .
The volume of the four-sphere S4 is 8π2/3 and the volume of the Shilov boundary (of the five-dim complex
domain) Shilov5 whose topology is RP 1 × S4 is 8π3/3.

Most recently Smilga [3] has obtained Wyler and Smith’s results based on the conformal group SO(3, 2).
Beck [4], as well, has been able to derive the values of all the Standard Model parameters, including neutrino
masses, based on a deterministic chaotic model using Kaneko coupled-map lattices in two-dimensions, the so-
called Chaotic Strings , which is the stringy version of the Higgs fields. Goldfain [ 6 ] recently has proposed
a derivation based on an anomalous fractal difusion problem. For further references on the numerical
calculations of α over the years we refer to [9] .

In this letter we will show how to obtain the value of α from a straightforward QM model of the
Hydrogen atom and argue why our derivation is also compatible with the alleged Astrophysical variations
of the fine structure constant, with the cosmological evolution of the universe [ 7 ] .

2. Hydrogen Atom and the Fine Structure Constant

The reader might be inclined to say that all this is just a fruitless task because charges get renormalized
in QFT. On the contrary, we will show precisely why the scaling behaviour of the charge, at the Rydberg,
Bohr, and the Comptonscales , in powers of α, is what determines the value of α.

1



In QED, to first loop order, it is well known that the behavour of the renormalized electric-charge with
distance r < rB goes as follows :

1
e2(r)

− 1
e2(rB)

= − 1
6π2

ln(rB/r) ⇒

e2(r) = e2(rB)[1− (e2(rB)/6π2)ln(rB/r)]−1. (2)

where e2(rB) is the fiducial the value of α = e2/h̄c at the Bohr radius, in units of h̄ = c = 1, that we
wish to determine. The above equations only yields the charge differences in terms of the scaling ratio of
distances, but does not determine the value of e2(rB).

One explanation for the behaviour of the renormalization of charge with scale, at one loop, is based
on an analogy with the vacuum polarization effects induced by the negative bare charge. A sea of virtual
electron-positron pairs, electric dipoles , will surround the bare charge and screen it with distance, since the
positively charged pole points towards the center, and the negatively charged pole points radially outwards.
We will propose in this letter an alternative and different interpretation of the scale dependence of the
renormalized charge. We shall model such scale variations of the renormalized electric charge as those due to
an effective electronic probability cloud surrounding the charge, similar to the probability density cloud of an
electron revolving around the Hydrogen nucleus and subjected to the standard Coulomb potential. We wish
to emphasize that we are not studying the vacuum polarization and self energy effects of QED on a bound
system of electrons and protons. This would require complicated techniques of QED, like the introduction
of the Uehling potential and the solution of the Dirac equation, etc....

Since one-loop effects in QFT can be understood as a semiclassical approximation, beyond the tree level
results ( classical fields) , it is not unreasonable to model the one-loop effects within a pure QM framework.
Simply put, by having a varying charge e(r), one may define the charge density as just the derivative
ρ(r) = de(r)/dr . We cannot, of course, equate the charge density distribution ρ(r) derived from eq-(2), with
the probability density, let us say, of the ground state of the Hydrogen atom, since their functional forms
are clearly very different from each other.

Instead, we will equate the difference between the values of the renormalized charge, at two different
points r1, r2, with the definite integral of the electron-cloud probability density, associated with the ground
state of the Hydrogen atom, between those two points r1, r2; i.e. the expressions for ρ(r) and 4πr2ψ2(r)
differ clearly, however the definite integrals between two prescribed points can be made equal. For this
reason, we shall focus on two definite integrals , one of which involves the two fundamental scales that
delineate the regime of the QM world with the one of relativistic QM ( QFT ), which are the Bohr radius
rB and the Compton wavelength of the electron rC respectively . Since one does not know a priori the
value of the electric charge e one does not know the values of the Bohr radius, per se. Nevertheless, it
is solely in the ratios of scales that we shall focus our attention on. We know that there are 4 scales :
the Rydberg length, the Bohr radius, the Compton wave length and the classical electron radius, whose
respective ratios scale relatively to each other with powers of α itself ! . This is all one needs to know to
derive the explicit functional form of a trascendental equation whose solution determines the sought-after
values of α = 1/137.036....

Hence, upon equating the charge difference, between the two prescribed points, with the probability
integral between the rC and the rB limits, up to an overall numerical factor λ, gives for the integral I1 :

e(re)− e(rB) = I1 = eλ

∫ rB

re

4πr2ψ2(r)dr. (3)

where we have introduced a factor of charge e in the r.h.s to match dimensions , and convert an ordinary
probability to a charge density. One has to rescale all the quantities in units of the Bohr radius in order
to work with dimensionless variables in the definite integral. Doing so for the normalized Hydrogen atom
ground state:

ψ2(x) =
1
π
exp[−2x]. (4)

with x = r/rB , gives for the charge difference :
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e(rC)− e(rB) = e(rB)[1− (e2(rB)/6π2)ln(rB/re)]−1/2 − e(rB) =

eλ

∫ rB/rB

rC/rB

4π(r/rB)2
1
π
exp [−2r/rB]d(r/rB). (5)

setting e = e(rB) allows to cancel out the e factors on both sides of the equation ( 5 ) giving a relationship
between α|ln α| , the integral I1, and the numerical constant λ , after recalling that the ratio of the upper
and lower limits is related to α itself :

rC

rB
= (α)1. (6)

. The ratio of the Rydberg scale R with the Bohr radius is also related to α and is given by
(R/rB) = (1/α) > 1 .
After straightforward algebra in ( 5 ) one arrives at the first relation :

α|ln α| = 6π2[1− (1 + λI(n = 1))−2]. (6)

In general, evaluating the integral I(n) between rn = rB(α)n and rB gives the most general relation of
the form :

α|ln α| = F (n, λ, α)

where

F = F (n, λ, α) ≡ 6π2

n
[1− (1 + λI(n))−2]. (7)

i.e. the solutions to the trascendental equations of the type :

α|ln α| = F (α). (8)

for a family of functions F (α), will furnish all the plausible values of α. Whereas, it is the physical constraints
imposed by the scaling relations of the 3 scales : the Bohr radius, the Compton wavelength and the Rydberg
scale, that will fix the value of α = 1/137 uniquely.

The family of functions F (n, λ, α) have important properties . F can be viewed as an infinity family of
functions of n parametrized by the values of λ and α. We should stress that n is in general a real variable,
not necessary an integer. When n = 0, I(n = 0) = 0, since the upper and lower limits coincide. Thus, for
finite positive λ, one has from eq-(7 ) that F (n = 0) = 0/0 = undetermined, so a straightforward use of L’
Hopital’s rule yields for the magnitude of F at the origin n = 0 :

|F (n = 0;λ, α)| = 12π2λ|ln α|exp[−2]. (9)

Thus we arrive at the first important result of this work, upon equating : |F (n = 0)| with α|ln α| one
immediately deduces that :

λ0 = λ(n = 0;α) =
αexp[2]
12π2

. (10)

We should emphasize that we are not choosing this value of λ(n = 0) ad-hoc ! , on the contrary, it is
fully determined by using L’ Hopital’s rule in the definition of the generalized function F , for the limiting
case n = 0 , and which in turn, is furnished by the ground state wave function of the Hydrogen atom.

Another interpretation of the family of functions F (n, λ, α) may be understood as follows. Given the
function f(α) ≡ α|ln α| , there exist an uncountably-infinite number of functions g = g(α) such that their
intersections with f(α) = g(α) occurs at αo = 1/137,

f = αo|ln αo| = g(αo) = 0.0359048. (11)

Among this uncountably-infinite number of functions g(α) we are going to prove that there exists at
least wo functions :
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F2 = F (n = −1;λ2;α).

F1 = F (n = 1;λ1;α). (12)

whose intersection with f(α) = F1 = F2 occurs at αo = 1/137. The latter three functions correspond
precisely to the lower limits related to the Bohr ( n = 0 ) , Compton ( n = 1 ) and Rydberg scale ( n = - 1
), respectively.

Now we must turn to find a solution to the system of equations (11,12); i.e. we must find the triple
intersection point of the 3 functions f(α);F0;F1. The unknowns are α;λ1, λ2, . From the equations : f = F1

and f = F2 one infers that F1 = F2 , which is really one independent equation for the 3 unknowns, (α;λ1;λ2).
Since one is only interested in finding the ratios of the lambdas z = λ2/λ1 , this reduces the problem further
from 3 to only 2 unknowns z;α and one single equation only. However, the single independent trascendental
equation is still under-determined.

How do we solve this problem ? Imposing more equations does not help because this would be tanta-
mount of introducing more unknowns λ3;λ4... as we go along. Imposing a normalization of the integral ρ(r)
equal to unity , like it was proposed in [6 ] , will not do the job either because there are infinities in the inte-
gral due to the charge singularities of eq-( 2 ) at the Landau pole , ro > 0, when 1 = (e(rB)2/6π2)ln (rB/ro),
signaling a breakdown of the theory.

Our only postulate to solve the single under-determined trascendental equation, is that the values of
the lambda ratio z = (λ2/λ1) are determined by a more fundamental theory at the Planck scale ( unified
field theory, quantum gravity, strings.. ), and once the ratio z is fixed by the fundamental theory, then one
can proceed to go ahead and solve for the observed value, today, of αo.

We will show why the lambda ratios, as observed today, are very close to the values :

λ2 : λ0 : λ1 = 1 : 1 : 2 (13)

The reasons why we believe that these ratios of lambdas 1 : 1 : 2 don’t involve any ” fudge ” factors
whatsoever, but instead may have deep cosmological implications, is because in recent years there has been
mounting evidence for the validity of the old ideas of Dirac and Eddington concerning the Astrophysical
variations of the fundamental constants in Nature with the cosmological evolution of the universe. Different
values of the lambda ratios ( as the universe evolves ) will furnish different trascendental equations, and
consequently, different values of α .

A plausible explanation of the cosmological variations of the fine structure constant, based on the
maximal acceleration relativity principle in phase spaces, associated with the existence of a minimal Planck
scale [5] , and the accelerated expansion of the Universe, was given in [8] . The variations of α in [8 ] were
due to the maximal-acceleration relativistic corrections to the spacetime metric which involved an effective
conformal factor, resulting from the existence of a maximal acceleration : a = c2/LP , where LP is the
minimal distance = Planck length.

It was shown why this effective conformal factor in the accelerated expansion of the universe = scale
size of universe = cosmological clock = redshift factor, is what determines the cosmological evolution of α
and, consequently, the ratio z = (λ2/λ1) , as seen today zo, is different than its value in the distant past.
Therefore it is no surprise that the scaling lambda factors appearing in front of the integrals, involving the
ground state wavefunction of the Hydrogen atom, capture the effects of the conformal scaling factor of the
spacetime metric. We believe that it is for this reason that the value of α, as observed today, happens to be
given by 1/137.036..., measured at the Bohr radius scale .

If the fundamental constants of Nature evolve with the cosmological clock, not unlike the Renormaliza-
tion group [8 ], all boils down once again to the values of the cosmological constant ( vacuum energy ). The
ratio of the lambda, parameters ( today ) z = zo should be fixed by the values of the cosmological constant.
According to Nottale [5], the cosmological constant is is not a constant, but also flows with the universe’s
expansion = cosmological clock of the universe. For this reason, the lambda ratio z also flows with the
cosmological clock. ( we shouldn’t confuse the notaion of z with the cosmological redshift ).

Having argued in favour of support of the variation of the fundamental constants with the cosmolog-
ical evolution of the Universe, Mach principle, one begins by evaluating the integral I(n = 1) in (5), in
dimensionless form :
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I =
∫

4πx2 exp[−2x]
π

dx = −(2x2 + 2x+ 1)exp[−2x]. (14)

between the Bohr radius x = 1 and the the Compton scale x = α1 which gives I(n = 1;α) ∼ 0.3224−4α2,
when α << 1.

This integral leads to the trascendental equation

α|ln α| = 6π2[1− (1 + λ1I(n = 1))−2] ∼
12π2λ1I(n = 1). (15)

to a first oder approximation, after having performed a Taylor expansion of the binomial term in the r.h.s (
15 ), (1 + z)−2 = 1− 2z + ... . Evaluating the integral I(n = 1) for small values of α << 1 yields, finally :

α|ln α| ∼ 12π2λ1I(n = 1;α) ∼ 12π2λ1(0.3224− 4α2) (16)

Turning now to the calculations with the Rydberg scale ( n = - 1 ), after performing the binomial
expansion and upon evaluating the integral, it gives :

α|ln α| = F (n = −1;λ2;α) = (
6π2

(−1)) [1− (1 + λ2I(n = −1))−2] ∼

12π2λ2(−I(n = −1)). (17)

The minus sign is compatible with the fact that we are evaluating the integral between the Rydberg scale
and the Bohr radius , R/rB = α−1 > 1 , which accounts for an extra minus sign, whence −I(n = −1) > 0.
After evaluating the magnitude of this integral it yields, for small values of α, α−1 = large, the value of
5exp[−2], giving the other relation :

α|ln α| ∼ 12π2λ2 |I(n = −1;α)| ∼
(12π2λ2) (5exp[−2]). (18)

¿From eqs-( 16, 18 ) we obtain finally the trascendental equations that governed the values of α :

(12π2λ2) 5exp[−2] = α |ln α| = (12π2λ1) (0.3224− 4α2). 19)

We recall that λ0 = (αexp[2]/12π2) is a well known expression derived explicitly above ( 10 ) by using
L’ Hopital’s rule. Upon dividing and multiplying simultaneously the above equation (19 ) by λ0, and after
substituting its known expression in terms of α into ( 19 ) we get finally :

5 (
λ2

λ0
) α = α|ln α| =

(αexp[2]) (
λ1

λ0
) (0.3224− 4α2). (20a)

¿From eq-( 20 a ) one obtains the single equation in terms of the ratio z = (λ2/λ1) :

5 (
λ2

λ1
) α = 5zα = (α exp[2]) (0.3224− 4α2). (20b)

In order to find the triple intersection point of the 3 functions of α appearing in eq-(20a) , which is
equivalent to finding out the solution of the single eq-(20b), one must know the values ( today ) of the ratios
of the lambdas. The choice given by eq-( 13 ) :

λ2 : λ0 : λ1 = 1 : 1 : 2. (21)

yields in eq-( 20 a) :
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5α = α|ln α| = 2 (α exp[2]) (0.3224− 4α2). (22)

which implies then that the z appearing in eq- ( 20b) must be z = 1/2
To check that the last expression (22) is indeed consistent with the nontrivial value of αo = 1/137,

since α = 0 is a trivial solution that is disregarded, it is a simple matter to see that the middle term gives
αo|ln αo| = 0.03590... ; the last term gives 0.03474 and the first term gives 0.0365. Hence one gets for
αo = 1/137 in ( 22 ), the sequence of decreasing numbers :

0.0365 > 0.0359 > 0.0347. (23)

An more precise match in ( 23 ) would require that the ratios of the lambdas should have been close to
:

λ2 : λ0 : λ1 = 0.984 : 1 : 2.066⇒ z = 0.476 ∼ 0.5 (24)

which are not so different from the ratios given already in ( 13, 21 ). Of course, we could tune these ratios
to any number of digits if desired. The point we will raise at the end is why these ratios are so close to pure
integers ! Plugging a value of 1/137.036... < 1/137 into (22 ) gives even better results since it narrows
down the intervals between the upper and lower bounds of α|ln α| given by eq-(23).

What is important is that the functional form of all the functions involved in the trascendental equations
(20a, 20b ) remains unchanged, since its functional form is fixed by evaluating the integrals associated with
the ground state of the Hydrogen atom. It is only the numerical scaling factors given by the lambdas
which change. An even more precise evaluation of α(today) requires, of course, to solve the full-fledged
trascendental equations ( 15, 17), maintaining the unknown value of α in the evaluation of all the integrals,
and not to perform a Taylor ( binomial ) expansion, nor to insert the known values of 1/137 inside the
integrals.

Therefore, we have shown that this numerical calculation corroborates very satisfactory that upon
selecting the limits of the integrals to coincide precisely with the Compton wavelength; the Bohr radius, and
the Rydberg scale, and by choosing the ratios (today) given aproximately by eqs-( 24 ), it yields a correct
value for the fine structure constant (as observed today ) and measured at the Bohr radius scale (as observed
today ) since its value may also change as a result of the variation of the fundamental constants in Nature :

rB =
h̄

mc

h̄c

e2
=

h̄2

me2
. (25)

To conclude, we have shown that indeed the value of α = (1/137.036...) can be consistently derived from
first physical principles by modeling the renormalized charge differences between 3 prescribed scales with
the definite integrals of the ground state probability density of the Hydrogen atom. This requires choosing
the 3 fundamental scales to be the Bohr radius, the Compton wavelength and the Rydberg scale, whose
ratios among themselves are related to α, and by setting the ratios ( today ) of the lambda parameters to
be those given aproximately by 1 : 1 : 2, and more closely by 0.984 : 1 : 2.066. This procedure allows one to
find the value for αo = (1/137.036...) as observed today ( at the Bohr scale ).

We also may notice that it was not neccesary to go through the complicated procedure of [6] based on
an anomalous fractal diffusion equation using Uehling’s potential; introducing and fixing explicitly certain
numerical parameters, making assumptions about an Ising model to fix an exponent, etc.... However, this is
not to say that the procedure in [6] does not have some validity, and that there couldn’t be an underlying
fractional dynamical ( fractal spacetime ) description of the electron that allows to determine the value of α
[5 ] . For this reason, we believe that these ideas shouldn’t be disregarded.

We have shown that a simple model of the Hydrogen atom, after invoking the scaling relations of the
Compton, Bohr, Rydberg scales, based on α itself, was all that was needed to determine α ( today ), once
the ratios of the lambdas were set aproximately to 1 : 1 : 2, To our knowledge, the approach of Smith [2]
is the most elegant because it is based on just the mere definition of charge, as a probability to emit a
photon, and invokes a minimum number of steps. However, it does not raise the issue of the variations of
the fundamental constants with the evolution of te Universe, because at the time there was no Astrophysical
data to support it.
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3. Concluding Remarks
To conclude we must point out that we believe there is the deep connection between number theory,

Diophantine equations and physical constants.
•We have seen that the geometrical expression for α given by eq-( 1 ) is explicitly related to the number π

(as Feynman postulated long ago). We can interpret this π dependence resulting from the spherical symmetry
of the ground state of the Hyrogen atom. As well as a dependence on the logarithm function as a result of
scaling.

• We mentioned above why the ratios of the lambdas was very close to 1 : 1 : 2 , which are pure integers,
and why the integrals involved n = −1 ( Rydberg scale ) ; n = 0 ( Bohr radius ) and n = 1 ( Compton
scale ) were also related to integers. From the number theory perspective we just have in eqs-( 11, 12 ) a
generalized system of Diophantine-like equations, when we choose the domain of integrations to fall between
the limits rn = αn , n = integer, ( postive, negative ) and the Bohr radius .

The generalized system of Diophantine-like equations ( trascendental ) given in ( 11, 12 ) are :

α|ln α| = F (n;m;α). where m =
λn

λ0
. (26)

where λ0 is the well known parameter given by eq-(10 ) after using L’Hopital’s rule.
The solutions, roots, of these equations (26 ) can be written symbolically as : α = α(n;m) that depend

solely on the two parameters n,m ( say integers ) and where the form α(n,m) is some very complicated
expression, not analytical in general. The reason we mention all this is because Gilson [9] has found an
empirical solution for α that depends precisely on two parameters ( integers ) : N1, N2 :

α = α(N1, N2) = N2 cos (π/N1)
tan (π/N1N2)

π
. (27)

The scaling variable N2 in ( 27 ) plays the similar role as our scaling variable λn, in units of the λ0 ;
i.e, to our m variable, the ratios of lambdas. Whereas, the variable N2 plays the same role as our exponent
n, appearing in powers of α, that determines the limits of integration.

In fact, Gilson [ 9 ] found out that for the values of the primes : N1 = 137 ( in essence the inverse of
the fine structure constant ) , and N2 = 29, the above formula gives :

α = α(137; 29) = 29 cos(π/137)
tan(π/137× 29)

π
= 0.00729735253186..... (28)

which matches extremely well the latest CODATA recommended experimental value for this quantity with
the uncertainty of ±27 range centered on the last two digits : 0.007297352533(27). Numerical coincidence
or design ?

• Mersenne primes have been known long ago, in the Pierre Noyes program of Bit-Strings physics, to
reproduce the counting number 137 from the following iterated sequence of Mersenne primes :

22 − 1 = 3. 23 − 1 = 7. 27 − 1 = 127. 3 + 7 + 127 = 137. (29)

Dyson interpreted 137 as the maximum number of virtual electron-positron pairs which signal a break-
down of the QED power series perturbation expansion. The next iterated Mersenne prime is huge 2127−1 =
prime. It is unknown if this iterated sequence produces further Mersenne primes. This iterated hierarchy in
binary powers is consitent with Smith’s derivation [ 2 ] of the fundamental constants based on hyper-diamond
lattices and ( discrete ) Clifford algebras. A Clifford algebra Cl ( N ) has 2N basis elements.

We believe that this is not senseless numerology but there is no doubt that number theory must be at
the very core of the values of the physical constants. For references on the website on alpha see [9], and for
the growing importance of the interplay between number theory and physics see [10 ]
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