# Number Theory

## 1710 Submissions

 viXra:1710.0353 [pdf] submitted on 2017-10-30 19:15:50

### New and Interesting Mathematical Formulas

Authors: José de Jesús Camacho Medina

This article disseminates a series of new and interesting mathematical formulas, there are formulas of prime numbers, fibonacci sequence, square root and others as product of the investigations of the author since 2011.
Category: Number Theory

 viXra:1710.0348 [pdf] submitted on 2017-10-31 03:21:01

### Two Conjectures on Novak-Carmichael Numbers

Authors: Marius Coman

In this paper I make the following two conjectures on Novák-Carmichael numbers: (1) There exist an infinity of Novák-Carmichael numbers of the form (30n + p)*(30n + q) – p*q for any [p, q] distinct primes of the form 6k + 1; (2) There exist an infinity of Novák-Carmichael numbers of the form (30n + p)*(30n + q) - p*q for any [p, q] distinct primes of the form 6k – 1, where k > 1. See the sequence A124240 in OEIS for Novák-Carmichael numbers (numbers n such that a^n ≡ 1 (mod n) for every a coprime to n).
Category: Number Theory

 viXra:1710.0347 [pdf] submitted on 2017-10-31 03:23:06

### Three Conjectures on Novák-Carmichael Numbers

Authors: Marius Coman

In this paper I make the following three conjectures on Novák-Carmichael numbers: (1) There exist an infinity of Novák-Carmichael numbers of the form (6k + 1)*(12k + 1)*(18k + 1) – 1; (2) There exist an infinity of Novák-Carmichael numbers of the form (6k - 1)*(12k - 1)*(18k - 1) + 1; (3) There exist an infinity of Novák-Carmichael numbers C such that C + 1 is a Poulet number. See the sequence A124240 in OEIS for Novák-Carmichael numbers (numbers n such that a^n ≡ 1 (mod n) for every a coprime to n).
Category: Number Theory

 viXra:1710.0339 [pdf] submitted on 2017-10-31 19:02:00

### (JAMCS - Original Research Article - 28.10.2017) The "Vertical" Generalization of the Binary Goldbach's Conjecture as Applied on "Iterative" Primes with (Recursive) Prime Indexes (i-primeths) (Journal of Advances in Mathematics and Computer Science)

Authors: Andrei Lucian Dragoi

This article proposes a synthesized classification of some Goldbach-like conjectures, including those which are "stronger" than the Binary Goldbach's Conjecture (BGC) and launches a new generalization of BGC briefly called "the Vertical Binary Goldbach's Conjecture" (VBGC), which is essentially a meta-conjecture, as VBGC states an infinite number of conjectures stronger than BGC, which all apply on "iterative" primes with recursive prime indexes (i-primeths). VBGC was discovered by the author of this paper in 2007 and perfected (by computational verifications) until 2017 by using the arrays of matrices of Goldbach index-partitions, which are a useful tool in studying BGC by focusing on prime indexes. VBGC distinguishes as a very important conjecture of primes, with potential importance in the optimization of the BGC experimental verification (including other possible theoretical and practical applications in mathematics and physics) and a very special self-similar property of the primes set. Keywords: Primes with prime indexes; i-primeths; the Binary Goldbach Conjecture; Goldbach-like conjectures; the Vertical Binary Goldbach Conjecture. 2010 mathematics subject classification: 11N05 (Distribution of primes, URL: http://www.ams.org/msc/msc2010.html?t=11N05&btn=Current) OFFICIAL LINKS OF THIS PUBLISHED (OPEN) PEER-REVIEWED ARTICLE: http://www.sciencedomain.org/issue/3151 http://www.journalrepository.org/media/journals/JAMCS_69/2017/Oct/Andrei2522017JAMCS36895.pdf http://www.sciencedomain.org/review-history/21625 http://www.sciencedomain.org/metrics/21625
Category: Number Theory

 viXra:1710.0335 [pdf] submitted on 2017-10-29 21:39:34

### A Brief Investigation Into Two Sets of Elliptic Curves

Authors: Lulu Karami

This submission is more or less an amateur exposition on a specific elliptic curve, discussing counting points over finite fields as well as constructing an associated \$L\$-function and pinning down the affiliated special value \$L(E, 1)\$ for the elliptic curve \$E\$ primarily discussed throughout this piece. The techniques and tools presented can be carried over to infinitely many elliptic curves partitioned into two sets depending on 'twists' of two specific curves; one of which happens to be the curve previously, and vaguely, mentioned.
Category: Number Theory

 viXra:1710.0333 [pdf] submitted on 2017-10-30 05:47:22

### A Solution of the Fermat’s Last Theorem

Authors: José Francisco García Juliá

It is obtained a solution of the Fermat’s last theorem.
Category: Number Theory

 viXra:1710.0332 [pdf] submitted on 2017-10-30 07:53:11

### Three Limits

Authors: Edgar Valdebenito

This note presents three limits for 1/pi
Category: Number Theory

 viXra:1710.0331 [pdf] submitted on 2017-10-30 07:57:53

### Question 408: A Trigonometric Formula

Authors: Edgar Valdebenito

This note presents a simple formula for pi
Category: Number Theory

 viXra:1710.0263 [pdf] submitted on 2017-10-23 08:03:39

### Question 404: Three Formulas and Some Fractals

Authors: Edgar Valdebenito

This note presents three formulas involving pi and some fractals.
Category: Number Theory

 viXra:1710.0245 [pdf] submitted on 2017-10-22 16:36:56

### Mathematical Deterministic Reductionism

Authors: Paris Samuel Miles-Brenden

None.
Category: Number Theory

 viXra:1710.0242 [pdf] submitted on 2017-10-22 16:39:39

### Mathematical Modular Closure

Authors: Paris Samuel Miles-Brenden

None.
Category: Number Theory

 viXra:1710.0209 [pdf] submitted on 2017-10-18 15:14:30

### Prime Numbers as a Function of a Geometric Progression

Authors: Leif R. Uppström, Daniel Uppström

In mathematical literature it is asked for a computable function or efficient algorithm to find all, or at least a large subset, of the prime numbers. This paper shows that all primes can be characerised by their reciprocal period length L and its figure value R. These parameters are given for each prime after inversion to an infinitely repeated period and are used to group all primes into disjoint sets that arise as a function of a geometric progression. This theory suggests new ways to enumerate and find large primes.
Category: Number Theory

 viXra:1710.0205 [pdf] submitted on 2017-10-19 02:50:41

### An Approximation to the Prime Counting Function Through the Sum of Consecutive Prime Numbers

Authors: Juan Moreno Borrallo

In this paper it is proved that the sum of consecutive prime numbers under the square root of a given natural number is asymptotically equivalent to the prime counting function. Also, it is proved another asymptotic relationship between the sum of the first prime numbers up to the integer part of the square root of a given natural number and the prime counting function.
Category: Number Theory

 viXra:1710.0174 [pdf] submitted on 2017-10-17 01:35:25

### Theorem of Prime Pair Distribution

Authors: Choe Ryujin

Theorem of prime pair distribution
Category: Number Theory

 viXra:1710.0169 [pdf] submitted on 2017-10-17 09:44:37

### Prime Set Representation

Authors: Steven Shawcross
Comments: 9 Pages. A version of this paper is copyrighted by Steven Shawcross, 2003.

The integer 2 satisfies the divisibility definition of a prime number: it is only divisible by itself and 1. The integer 1 also satisfies this definition, and yet, mathematicians generally do not consider 1 a prime. Rather 1 merits a class of its own, belonging neither to the prime nor composite class. In divisibility theory, 2 does occupy a special subclass within the class of prime numbers: it is the only even prime. This paper introduces a theory of numbers called the Prime Set Representation Theory. This theory utilizes the odd primes and does not rely on the primeness of 2. In Prime Set Representation Theory, the odd primes are building blocks of the theory; all integers, including 2, have representations in terms of them. The import of the theory is not to dislodge the integer 2 from its solitary, even-prime status. The theory's efficacy is a better understanding of the distribution of primes, twin primes, and primes of the form x^2 + 1. A natural extension of the theory yields valid and strikingly direct approximation formulas for these prime classifications. The same theory furnishes a new and improved approximation to the number of Goldbach pairs associated with general even number 2n (the improvement is relative to Sylvester's formula for Goldbach pairs, but the formula performs well vis-à-vis the Hardy-Littlewood formulas in the ranges tested).
Category: Number Theory

 viXra:1710.0145 [pdf] replaced on 2017-12-30 12:01:50

### Visualizing Zeta(n>1) and Proving Its Irrationality

Authors: Timothy W. Jones
Comments: 17 Pages. Replaces use of Cantor's Diagonal Method with a set topological proof.

A number system is developed to visualize the terms and partials of zeta(n>1). This number system consists of radii that generate sectors. The sectors have areas corresponing to all rational numbers and can be added via a tail to head vector addition. Dots on the circles give an un-ambiguous cross reference to decimal systems in all bases. We show, in the proof section of this paper, first that all partials require decimal bases greater than the last denominator used in the partial, then that this can be used to make a sequence of nested intervals with rational endpoints. Using Cantor's Nested Interval theorem this gives the convergence point of zeta series and disallows rational values, thus proving the irrationality of zeta(n>1).
Category: Number Theory

 viXra:1710.0129 [pdf] submitted on 2017-10-11 11:54:50

### Statistical Relationships Involving Benford's Law, the Lognormal Distribution, and the Summation Theorem

Authors: Robert C. Hall

Regarding Benford's law, many believe that the statistical data sources follow a Benford's law probability density function(1/xLn(10))when, in actuality, it follows a Lognormal probability density function. The only data that strictly follows a Benford's law probability density function is an exponential function i.e. a number (base) raised to a power x. The other sets of data conform to a Lognormal distribution and, as the standard deviation approaches infinity, approximates a true Benford distribution. Also, the so called Summation theorem whereby the sum of the values with respect to the first digits is a uniform distribution only applies to an exponential function. The data derived from the aforementioned Lognormal distribution is more likely to conform to a Benford like distribution as the data seems to indicate.
Category: Number Theory

 viXra:1710.0113 [pdf] submitted on 2017-10-10 06:32:08

### Kurmet's First Theorem and Simple Proof Fermat's Last Theorem

Authors: Kurmet Sultan
Comments: 2 Pages. This is the Russian version of the manuscript.

The paper describes the First theorem of Kurmet and a simple proof of the Last theorem of Fermat, which was obtained on the basis of Kurmet's First Theorem.
Category: Number Theory

 viXra:1710.0112 [pdf] submitted on 2017-10-10 06:35:55

### Kurmet's Second Theorem and Simple Proof Catalan’s Conjecture

Authors: Kurmet Sultan
Comments: 2 Pages. This is the Russian version of the manuscript.

In this paper we describe the Second Theorem of Kurmet and give a simple proof of Catalan’s conjecture on the basis of Kurmet's Second Theorem.
Category: Number Theory

 viXra:1710.0109 [pdf] submitted on 2017-10-09 03:05:33

### FLT Proof N=4

Authors: Maik Becker-Sievert

Fermats Last Theorem n=4 One line proof
Category: Number Theory

 viXra:1710.0099 [pdf] submitted on 2017-10-10 01:50:30

### Proving the Erdös-Straus Conjecture from Infinite to Finite Equalities

Authors: Zhang Tianshu

We first classify all integers ≥2 into eight kinds, and that formulate each of seven kinds therein into a sum of three unit fractions. For remainder one kind, we classify it into three genera, and that formulate each of two genera therein into a sum of three unit fractions. For remainder one genus, we classify it into five sorts, and that formulate each of three sorts therein into a sum of three unit fractions. For remainder two sorts i.e. 4/(49+120c) and 4/(121+120c) with c≥0, we prove them by logical inference. But miss out 3587 concrete fractions to await computer programming to solve the problem that express each of them into a sum of three unit fractions.
Category: Number Theory

 viXra:1710.0048 [pdf] submitted on 2017-10-04 20:55:25

### Proof of Riemann Hypothesis

Authors: Choe Ryujin

Proof of Riemann hypothesis
Category: Number Theory

 viXra:1710.0042 [pdf] submitted on 2017-10-03 11:01:23

### Proof of the Twin Prime Conjecture

Authors: Dieter Sengschmitt

I can proof that there are infinitely many twin primes. The twin prime counting function π2(n), which gives the number of twin primes less than or equal to n for any natural number n, is for lim⁡n→∞ π2(n)= 2 C2 [π(n)]^2/n where π(n) is the prime counting function and C2 is the so-called twin prime constant with C2=0,6601618…
Category: Number Theory

 viXra:1710.0038 [pdf] submitted on 2017-10-03 16:37:46

### An Alternate Proof of the Prime Number Theorem

Authors: Robert C. Hall

An attempt is made to derive the probability density function of the sum of prime numbers, which is x/Ln(x). This does appear to be quite accurate in predicting the sum of prime numbers less than 100,000( within 0.124%). Given this assertion, an attempt is made to derive the probability density function of the distribution of the prime numbers themselves.
Category: Number Theory

 viXra:1710.0017 [pdf] submitted on 2017-10-02 02:24:57

### François Mendzina Essomba pi Formulas (3)

Authors: Mendzina Essomba Francois