Number Theory

1510 Submissions

[12] viXra:1510.0519 [pdf] submitted on 2015-10-31 15:25:45

A Proof of Fermat Last Theorem

Authors: Abdelmajid Ben Hadj Salem
Comments: 2 Pages.

We give a proof of Pierre de Fermat's Last Theorem using that Beal Conjecture is true (A. Ben Hadj Salem, viXra.org, 2015).
Category: Number Theory

[11] viXra:1510.0493 [pdf] submitted on 2015-10-28 20:17:19

Generation of Chaos using Ramanujans Ternary Quadratic Form

Authors: Sai Venkatesh Balasubramanian
Comments: 8 Pages.

Ramanujan’s Ternary Quadratic Form represents a series of numbers that satisfy a tripartite quadratic relation. In the present work, we examine the sequence of numbers generated by such forms and other related forms obtained by varying the coefficients and exponents to other values. Chaotic characterization using standard techniques such as Lyapunov Exponents, Kolmogorov Entropy, Fractal Dimensions, Phase Portraits and Distance plots is performed. It is seen that the Ramanujans Form as well as the related forms, when expressed as time series exhibit chaotic ehaviour. Finally, we conclude by stating that the form to series mapping outlined in the present work enables the generation of chaotic signals without the need for excessive system complexity and memory, and we note that such chaotic signals can be used as the basis for carriers in secure communication systems.
Category: Number Theory

[10] viXra:1510.0491 [pdf] submitted on 2015-10-28 20:19:51

Non-Zero OEN Ternary Number System

Authors: Sai Venkatesh Balasubramanian
Comments: 3 Pages.

This paper discusses the origins, arithmetic operations and conversion operations involving a non-zero ternary number system, comprising of the numbers 1, 8 and 9. This number system, christened the “OEN number system”, presents itself as a strong contender for coding and encrypting applications due to the absence of zero, which makes it impossible to use conventional coding/ encrypting algorithms, thus providing a higher degree of security.
Category: Number Theory

[9] viXra:1510.0425 [pdf] submitted on 2015-10-27 15:46:51

Fermat's Last Theorem. a Detailed Explanation

Authors: Victor Sorokine
Comments: 3 Pages.

Preuve élémentaire du FLT en 15 lines ne comprend que quatre opérations: 1) 1 х 1 = 1, 2) a + 1 > a, 3) La solution de l'équation a+x=n est x=n-a, et une déclaration: 4) le système {A+B-C>0, A+B-C=0} est incompatible. Et TOUT! (I.e. : Si A, B, C sont naturels et A^n+B^n=C^n, alors A+B=C ! No errors!)
Category: Number Theory

[8] viXra:1510.0372 [pdf] submitted on 2015-10-23 19:12:53

Demostración de Que la Ecuación A^x+b^y=c^z Tiene Solucion en Numeros Enteros Positivos si A,b Y c, Poseen un Factor Primo Comun

Authors: Alfredo Olmos Hernández
Comments: 7 Pages.

Beal's conjecture is studied, which arises from investigations Andrew Beal, on Fermat's Last Theorem in 1993. Beal's conjecture, proposed to the equation a^x+b^y=c^z where A, B, C, x, y, z positive integers x, y, z> 2 so that the equation has a solution A, B, and C must have a common prime factor. Given the vain attempts to find a counterexample to the conjecture (which has been proven by the help of modular arithmetic, for all values of the six variables to a value of 1000) values for the six variables. To advance the theory of numbers. Given the relationship that has Beal's conjecture with Fermat's last theorem; it is considered important to number theory, demonstration of this conjecture. To solve Beal's conjecture, using Fermat's last theorem and the remainder theorem is proposed.
Category: Number Theory

[7] viXra:1510.0348 [pdf] submitted on 2015-10-21 13:19:24

Le Dernier Théorème de Fermat (Cas Principal :N Est un Nombre Premier)

Authors: Victor Sorokine
Comments: 1 Page.

Aucune conclusion, preuve élémentaire du DTF en 15 lignes ne comprend que quatre opérations arithmétiques: 1) 1 х 1 = 1, 2) a + 1 > a, 3) La solution de l'équation a+x=n est x=n-a, et une déclaration: 4) le système {A+B-C>0, A+B-C=0} est contradictoir. Et TOUT! P.S. 8000 personnes (et 2 professeurs d'université) ont regardé la preuve sur les forums de discussion. Personne n'a détecté une erreur.
Category: Number Theory

[6] viXra:1510.0100 [pdf] submitted on 2015-10-12 07:01:38

Two Formulae for Obtaining Primes Based on the Prime Decomposition of the Number 561

Authors: Marius Coman
Comments: 3 Pages.

In this paper I present two formulae which seems to conduct to primes or products of very few prime factors, both of them inspired by the prime decomposition of the first absolute Fermat pseudoprime, the number 561.
Category: Number Theory

[5] viXra:1510.0089 [pdf] replaced on 2015-10-15 20:36:26

Proof of Fermat's Last Theorem (Part II of III) A^n + B^n = C^n (n > 1 and Odd)

Authors: Mr Romdhane DHIFAOUI
Comments: 2 Pages.

Proof of Fermat's last theorem with conventional means.
Category: Number Theory

[4] viXra:1510.0088 [pdf] replaced on 2015-10-15 20:38:44

Proof of Fermat’s Last Theorem (Part III of III) A^n + B^n = C^n (n > 1 and Odd)

Authors: Mr Romdhane DHIFAOUI
Comments: 4 Pages.

Another form of Fermat's last theorem : I prove that the Fermat's last theorem consist in finding 3 integers (x, y, and z) such as 〖(x+z)〗^n +(〖y+z)〗^n = 〖(x+ y+z)〗^n From the Pythagorean triple we obtain a square equals the sum of three squares If c2 = a2 + b2, and where d is the complement of c to (a + b) was (c-d) 2 = (a-d) 2 + (b-d) 2 + d2. From each even integer we obtain at least a Pythagorean triple The surface of the Pythagorean triangle Any number s = ( w^(3 )- w )/4 is the surface of a Pythagorean triangle w^2+ 〖 (( w^2-1 )/2)〗^2=〖 (( w^2+1 )/2)〗^2
Category: Number Theory

[3] viXra:1510.0085 [pdf] replaced on 2015-10-15 20:34:15

Proof of Fermat's Last Theorem (Part I of III) A^n + B^n = C^n (n > 1 and Odd)

Authors: Mr Romdhane DHIFAOUI
Comments: 4 Pages.

Proof of Fermat's last theorem with conventional means.
Category: Number Theory

[2] viXra:1510.0066 [pdf] submitted on 2015-10-07 10:34:23

Beal's Conjecture, Elementary Proof

Authors: Carlos Giraldo Ospina
Comments: 10 Pages.

In this paper we prove FLT by making use of the generator of Pythagorean triples (GPT). The proof is so simple that any amateur or professional mathematician is able to tell whether it is correct or incorrect. Once we have proved FLT, we will give a proof of BC that is based on the proof of FLT.

In order to prove FLT, it is not necessary that the Pythagorean triples be primitive (GCD=1). This is because if the equation of FLT generated nonprimitive solutions, then there would exist primitive ones. Besides, if the mentioned equation generated primitive solutions, then we would be able to find nonprimitive ones. Actually, FLT is valid in the set of rational numbers because if there existed rational solutions, then we could use them to find integer solutions.
Category: Number Theory

[1] viXra:1510.0020 [pdf] replaced on 2016-02-12 10:47:25

Beal's Conjecture: A Complete Proof

Authors: Abdelmajid Ben Hadj Salem
Comments: 40 Pages. A new numerical example is added. Comments welcome. Submitted to Journal of Number Theory.

In 1997, Andrew Beal announced the following conjecture : Let A, B,C, m,n, and l be positive integers with m,n,l > 2. If A^m + B^n = C^l then A, B, and C have a common factor. We begin to construct the polynomial P(x)=(x-A^m)(x-B^n)(x+C^l)=x^3-px+q with p,q integers depending of A^m,B^n and C^l. We resolve x^3-px+q=0 and we obtain the three roots x_1,x_2,x_3 as functions of p,q and a parameter \theta. Since A^m,B^n,-C^l are the only roots of x^3-px+q=0, we discuss the conditions that x_1,x_2,x_3 are integers. Three numerical examples are given.
Category: Number Theory