Number Theory

0901 Submissions

[2] viXra:0901.0003 [pdf] submitted on 14 Jan 2009

A Revision to Gödel's Incompleteness Theorem by Neutrosophy

Authors: Fu Yuhua, Fu Anjie
Comments: recovered from

According to Smarandache's neutrosophy, the Gödel's incompleteness theorem contains the truth, the falsehood, and the indeterminacy of a statement under consideration. It is shown in this paper that the proof of Gödel's incompleteness theorem is faulty, because all possible situations are not considered (such as the situation where from some axioms wrong results can be deducted, for example, from the axiom of choice the paradox of the doubling ball theorem can be deducted; and many kinds of indeterminate situations, for example, a proposition can be proved in 9999 cases, and only in 1 case it can be neither proved, nor disproved). With all possible situations being considered with Smarandache's neutrosophy, the Gödel's Incompleteness theorem is revised into the incompleteness axiom: Any proposition in any formal mathematical axiom system will represent, respectively, the truth (T), the falsehood (F), and the indeterminacy (I) of the statement under consideration, where T, I, F are standard or non-standard real subsets of ]-0, 1+[ . With all possible situations being considered, any possible paradox is no longer a paradox. Finally several famous paradoxes in history, as well as the so-called unified theory, ultimate theory and so on are discussed.
Category: Number Theory

[1] viXra:0901.0002 [pdf] submitted on 3 Jan 2009

The Chinese Remainder Theorem . Goldbach's Conjecture (A) . Hardy-Littewood's Conjecture (A)

Authors: Tong Xin Ping
Comments: recovered from

N = pi + (N-pi) = p+ (N-p). If p is congruent to N modulo pi, Then (N-p) is a composite integer, When i = 1, 2,..., r, if p and N are incongruent modulo pi, Then p and (N-p) are solutions of Goldbach's Conjecture (A); By Chinese Remainder Theorem we can calculate the primes and solutions of Goldbach's Conjecture (A) with different system of congruence; The (N-p) must have solution of Goldbach's Conjecture (A), The number of solutions of Goldbach's Conjecture (A) is increasing as N → ∞, and finding unknown particulars for Hardy-Littewood's Conjecture (A).
Category: Number Theory