Mind Science

1705 Submissions

[4] viXra:1705.0403 [pdf] submitted on 2017-05-28 08:09:56

Duf1220 Homo Sapiens and Neanderthal Fractal Periods Architectures Breakthrough

Authors: Jean claude perez
Comments: 32 Pages.

DUF1220 proteins regions show the largest Homosapiens lineage-specific increase in copy number of any protein- coding region in the human genome and map principally to 1q21.1, and partially also in 1p. DUF1220 deletions and reciprocal duplications have been associated with microcephaly and macrocephaly, respectively. In Colorado University Dr Sikela team established that human genome sequences encoding DUF1220, show a dramatically elevated copy number in the human lineage and variation in DUF1220 copy number has been linked to both brain size in humans and brain evolution among primates. Remarkably, dosage variations involving DUF1220 sequences have now been linked to human brain expansion, autism severity, total IQ, and cognitive and mathematical aptitude scores. We analyzed in chromosome 1q a large region of 218 contiguous DUF1220 as well as in the chromosome 1p five other regions of DUF1220 smaller, then a total of 245 DUF1220 proteins. We supplemented by analyzing 16 RNAs of NBPF genes containing these DUF1220 and also 3 representative NBPF genes from Neanderthal genome. Finally the method is extended ananlysing the long 1q21 region from 7 other close primates like Neanderthal, great apes : chimp, gorilla, orangutan and monkeys : macaque, marmoset, vervet. This remarkable property is confirmed by comparing these primates to other mammals such as mice, rabbit, cow, dolphin and Elephant. We then show four classes of multi-periodic fractal structures for all 19 DUF1220 regions and 19 NBPF genes studied cases. The analysis of these spectra of fractal periods2 reveals a simple linear interdependence, hierarchization and unification between the numerical sequences of each of these 4 spectra and the sequences of Fibonacci and Lucas. Given the evidence of this numerical relationship, we suggest that this discovery may be one of the major causes of a cognitive development of man superior to that of the great primates
Category: Mind Science

[3] viXra:1705.0388 [pdf] submitted on 2017-05-26 07:04:00

On the Analysis of Heart Rate Variability in Frequency Domain

Authors: Sergio Conte, Elio Conte
Comments: 1 Page.

we define the basic foundations of a method for frequency domain analysis of time series biosignals of physiological and psycho-physiological interest in medicine and biology.
Category: Mind Science

[2] viXra:1705.0328 [pdf] submitted on 2017-05-21 13:47:48

Consciousness and Quantum Entanglement

Authors: George Rajna
Comments: 39 Pages.

New research proposes a way to test whether quantum entanglement is affected by consciousness. [26] Using atomic-scale quantum defects in diamonds known as nitrogen-vacancy (NV) centers to detect the magnetic field generated by neural signals, scientists working in the lab of Ronald Walsworth, a faculty member in Harvard's Center for Brain Science and Physics Department, demonstrated a noninvasive technique that can image the activity of neurons. [25] Neuroscience and artificial intelligence experts from Rice University and Baylor College of Medicine have taken inspiration from the human brain in creating a new "deep learning" method that enables computers to learn about the visual world largely on their own, much as human babies do. [24]
Category: Mind Science

[1] viXra:1705.0022 [pdf] submitted on 2017-05-02 09:06:08

Neuralink Wire your Brain to the Internet

Authors: George Rajna
Comments: 41 Pages.

Neuralink – which is "developing ultra high bandwidth brain-machine interfaces to connect humans and computers" – is probably a bad idea. If you understand the science behind it, and that's what you wanted to hear, you can stop reading. [26] But now there is a technology that enables us to "read the mind" with growing accuracy: functional magnetic resonance imaging (fMRI). [25] Advances in microscopy techniques have often triggered important discoveries in the field of neuroscience, enabling vital insights in understanding the brain and promising new treatments for neurodegenerative diseases such as Alzheimer's and Parkinson's. [24] What is the relationship of consciousness to the neurological activity of the brain? Does the brain behave differently when a person is fully conscious, when they are asleep, or when they are undergoing an epileptic seizure? [23] Consciousness appears to arise naturally as a result of a brain maximizing its information content. So says a group of scientists in Canada and France, which has studied how the electrical activity in people's brains varies according to individuals' conscious states. The researchers find that normal waking states are associated with maximum values of what they call a brain's "entropy". [22] New research published in the New Journal of Physics tries to decompose the structural layers of the cortical network to different hierarchies enabling to identify the network's nucleus, from which our consciousness could emerge. [21] Where in your brain do you exist? Is your awareness of the world around you and of yourself as an individual the result of specific, focused changes in your brain, or does that awareness come from a broad network of neural activity? How does your brain produce awareness? [20] In the future, level-tuned neurons may help enable neuromorphic computing systems to perform tasks that traditional computers cannot, such as learning from their environment, pattern recognition, and knowledge extraction from big data sources. [19] IBM scientists have created randomly spiking neurons using phase-change materials to store and process data. This demonstration marks a significant step forward in the development of energy-efficient, ultra-dense integrated neuromorphic technologies for applications in cognitive computing. [18] An ion trap with four segmented blade electrodes used to trap a linear chain of atomic ions for quantum information processing. Each ion is addressed optically for individual control and readout using the high optical access of the trap. [17] To date, researchers have realised qubits in the form of individual electrons (aktuell.ruhr-uni-bochum.de/pm2012/pm00090.html.en). However, this led to interferences and rendered the information carriers difficult to programme and read. The group has solved this problem by utilising electron holes as qubits, rather than electrons. [16] Physicists from MIPT and the Russian Quantum Center have developed an easier method to create a universal quantum computer using multilevel quantum systems (qudits), each one of which is able to work with multiple "conventional" quantum elements – qubits. [15] Precise atom implants in silicon provide a first step toward practical quantum computers. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Mind Science