High Energy Particle Physics

1805 Submissions

[12] viXra:1805.0347 [pdf] submitted on 2018-05-18 04:28:50

Measuring an Antineutrino's Energy

Authors: George Rajna
Comments: 60 Pages.

The MINERvA collaboration analyzed data from the interactions of an antineutrino—the antimatter partner of a neutrino—with a nucleus. [35] The inclusion of short-range interactions in models of neutrinoless double-beta decay could impact the interpretation of experimental searches for the elusive decay. [34] The occasional decay of neutrons into dark matter particles could solve a long-standing discrepancy in neutron decay experiments. [33] The U.S. Department of Energy has approved funding and start of construction for the SuperCDMS SNOLAB experiment, which will begin operations in the early 2020s to hunt for hypothetical dark matter particles called weakly interacting massive particles, or WIMPs. [32] Thanks to low-noise superconducting quantum amplifiers invented at the University of California, Berkeley, physicists are now embarking on the most sensitive search yet for axions, one of today's top candidates for dark matter. [31]
Category: High Energy Particle Physics

[11] viXra:1805.0317 [pdf] submitted on 2018-05-16 13:06:41

Pressure Inside Proton

Authors: George Rajna
Comments: 32 Pages.

The nuclear physicists found that the proton's building blocks, the quarks, are subjected to a pressure of 100 decillion Pascal (10 35) near the center of a proton, which is about 10 times greater than the pressure in the heart of a neutron star. [23] In experimental campaigns using the OMEGA EP laser at (MIT) researchers took radiographs of the shock front, similar to the X-ray radiology in hospitals with protons instead of X-rays. [22] Researchers generate proton beams using a combination of nanoparticles and laser light. [21] Devices based on light, rather than electrons, could revolutionize the speed and security of our future computers. However, one of the major challenges in today's physics is the design of photonic devices, able to transport and switch light through circuits in a stable way. [20] Researchers characterize the rotational jiggling of an optically levitated nanoparticle, showing how this motion could be cooled to its quantum ground state. [19] Researchers have created quantum states of light whose noise level has been " squeezed " to a record low. [18] An elliptical light beam in a nonlinear optical medium pumped by " twisted light " can rotate like an electron around a magnetic field. [17] Physicists from Trinity College Dublin's School of Physics and the CRANN Institute, Trinity College, have discovered a new form of light, which will impact our understanding of the fundamental nature of light. [16] Light from an optical fiber illuminates the metasurface, is scattered in four different directions, and the intensities are measured by the four detectors. From this measurement the state of polarization of light is detected. [15] Converting a single photon from one color, or frequency, to another is an essential tool in quantum communication, which harnesses the subtle correlations between the subatomic properties of photons (particles of light) to securely store and transmit information. Scientists at the National Institute of Standards and Technology (NIST) have now developed a miniaturized version of a frequency converter, using technology similar to that used to make computer chips. [14]
Category: High Energy Particle Physics

[10] viXra:1805.0315 [pdf] submitted on 2018-05-17 04:57:25

Neutrinoless Beta-Decay Puzzle

Authors: George Rajna
Comments: 58 Pages.

The inclusion of short-range interactions in models of neutrinoless double-beta decay could impact the interpretation of experimental searches for the elusive decay. [34] The occasional decay of neutrons into dark matter particles could solve a long-standing discrepancy in neutron decay experiments. [33] The U.S. Department of Energy has approved funding and start of construction for the SuperCDMS SNOLAB experiment, which will begin operations in the early 2020s to hunt for hypothetical dark matter particles called weakly interacting massive particles, or WIMPs. [32] Thanks to low-noise superconducting quantum amplifiers invented at the University of California, Berkeley, physicists are now embarking on the most sensitive search yet for axions, one of today's top candidates for dark matter. [31] The Axion Dark Matter Experiment (ADMX) at the University of Washington in Seattle has finally reached the sensitivity needed to detect axions if they make up dark matter, physicists report today in Physical Review Letters. [30] Now our new study – which hints that extremely light particles called neutrinos are likely to make up some of the dark matter – challenges our current understanding of its composition. [29] A new particle detector design proposed at the) could greatly broaden the search for dark matter—which makes up 85 percent of the total mass of the universe yet we don't know what it's made of—into an unexplored realm. [28] University of Houston scientists are helping to develop a technology that could hold the key to unraveling one of the great mysteries of science: what constitutes dark matter? [27] This week, scientists from around the world who gathered at the University of California, Los Angeles, at the Dark Matter 2018 Symposium learned of new results in the search for evidence of the elusive material in Weakly Interacting Massive Particles (WIMPs) by the DarkSide-50 detector. [26]
Category: High Energy Particle Physics

[9] viXra:1805.0297 [pdf] replaced on 2018-05-16 20:50:32

E8 Physics Straight Outta Africa

Authors: Frank Dodd Tony Smith Jr
Comments: 123 Pages.

E8 Physics of viXra 1804.0121 comes from Ancient Africa. Version 2 (v2) corrects particle identification of E8 Root Vectors in a diagram.
Category: High Energy Particle Physics

[8] viXra:1805.0221 [pdf] submitted on 2018-05-10 17:35:50

Purely Physical View of the Problem Restitutio ad Integrum

Authors: Mitin Victor Stepanovitch
Comments: 11 Pages. 1805.0206

Recovery to the whole from a purely physical point of view.
Category: High Energy Particle Physics

[7] viXra:1805.0206 [pdf] submitted on 2018-05-10 10:26:25

Purely Physical View of the Prolem Restitutio ad Integrum

Authors: Mitin Victor Stepanovitch
Comments: 11 Pages.

Recovery to the whole from a purely physical point of view.
Category: High Energy Particle Physics

[6] viXra:1805.0203 [pdf] submitted on 2018-05-10 11:24:07

Neutron Decay to Dark Matter

Authors: George Rajna
Comments: 59 Pages.

The occasional decay of neutrons into dark matter particles could solve a long-standing discrepancy in neutron decay experiments. [33] The U.S. Department of Energy has approved funding and start of construction for the SuperCDMS SNOLAB experiment, which will begin operations in the early 2020s to hunt for hypothetical dark matter particles called weakly interacting massive particles, or WIMPs. [32] Thanks to low-noise superconducting quantum amplifiers invented at the University of California, Berkeley, physicists are now embarking on the most sensitive search yet for axions, one of today's top candidates for dark matter. [31] The Axion Dark Matter Experiment (ADMX) at the University of Washington in Seattle has finally reached the sensitivity needed to detect axions if they make up dark matter, physicists report today in Physical Review Letters. [30]
Category: High Energy Particle Physics

[5] viXra:1805.0179 [pdf] submitted on 2018-05-10 02:22:22

Proton's Weak Charge

Authors: George Rajna
Comments: 55 Pages.

A new result from the Q-weak experiment at the Department of Energy's Thomas Jefferson National Accelerator Facility provides a precision test of the weak force, one of four fundamental forces in nature. [21] The most surprising result from beta decay is that nature is not ambidextrous, but is "left-handed." [20] This week, a group of scientists working on the MiniBooNE experiment at the Department of Energy's Fermilab reported a breakthrough: They were able to identify exactly-known-energy muon neutrinos hitting the atoms at the heart of their particle detector. [19] In a study published in Physical Review Letters, collaborators of the MAJORANA DEMONSTRATOR, an experiment led by the Department of Energy's Oak Ridge National Laboratory, have shown they can shield a sensitive, scalable 44-kilogram germanium detector array from background radioactivity. [18] The study has put the most stringent limits on the probability of a rare event—a neutrinoless double beta decay of tellurium-130 nuclei. This event can only occur if a neutrino can be its own antiparticle. [17] While these experiments seem miniature in comparison to others, they could reveal answers about neutrinos that have been hiding from physicists for decades. [16] In a paper published today in the European Physical Journal C, the ATLAS Collaboration reports the first high-precision measurement at the Large Hadron Collider (LHC) of the mass of the W boson. [15] A team of researchers at the University of Michigan has conducted a thought experiment regarding the nature of a universe that could support life without the weak force. [14] The international T2K Collaboration announces a first indication that the dominance of matter over antimatter may originate from the fact that neutrinos and antineutrinos behave differently during those oscillations. [13] Neutrinos are a challenge to study because their interactions with matter are so rare. Particularly elusive has been what's known as coherent elastic neutrino-nucleus scattering, which occurs when a neutrino bumps off the nucleus of an atom. [12]
Category: High Energy Particle Physics

[4] viXra:1805.0095 [pdf] submitted on 2018-05-04 03:43:12

Topological Skyrme Model and the Nucleus

Authors: Syed Afsar Abbas
Comments: 16 Pages.

We study the two-flavour topological Skyrme model with lagrangian L = L2 + L4 , and point out that, in spite of all the successes attibuted to it, as to the electric charges, it predicts Q(proton) = 1/2 and Q(neutron) = − 1/2 . This is in direct conflict with the experimental values of proton and neutron charges. This should be considered a failure of the Skyrme model. The Wess-Zumino anomaly term however, comes to its rescue and provides additional contribution which lead to the the correct charges for baryons as per the standard Gell-Mann- Nishijima expression. But as per conventional understanding, that the Skyrme model gives a conserved atomic mass number A=Z+N, is not fulfilled in the above picture. We suggest a new consistent scenario wherein on quantization, a dual description beyond the above model arises, and which provides a framework which is fully compatible with nuclear physics. This picture finds justfication with respect to the surprising 1949 succcessful calculation by Steinberger for the decay π0 → γγ.
Category: High Energy Particle Physics

[3] viXra:1805.0041 [pdf] replaced on 2018-05-19 22:16:41

Barut´s Lepton Mass Formula, Its Correction, and the Deduction of the Proton Mass.

Authors: Osvaldo F. Schilling
Comments: 6 Pages. More references are added.

In a PRL published in 1979 A.O.Barut proposed a lepton mass formula of the form m(n)= 3/(2 alpha)n^4 Me , where Me is the electron mass, alpha is the fine-structure constant and n is an integer, with increasing leptons masses obtained from the values for m(n) added in sequence of n to Me . Such model assumes the leptons excess mass m(n) comes from kinetic-magnetic energies and arises from a coupling between the electron magnetic moment and the resulting magnetic field. The formula is good for the muon, with n=1. However, we show that the n-dependence in this formula should be n^2 rather than n^4( the proposed fourth power is incorrect !). Such correction makes Barut´s model formula consistent with the energies obtained for the physically analogous superconducting loop case, treated theoretically by Byers and Yang, which scales as n^2. We apply the corrected formula and reobtain the mass for the tau-lepton, now corresponding to n=4 and not 2, and for n=3 a “proton” with m ≈ 945 Mev/c^2 mass.
Category: High Energy Particle Physics

[2] viXra:1805.0034 [pdf] submitted on 2018-05-02 07:45:05

Left Handed Nature

Authors: George Rajna
Comments: 54 Pages.

The most surprising result from beta decay is that nature is not ambidextrous, but is "left-handed." [20] This week, a group of scientists working on the MiniBooNE experiment at the Department of Energy's Fermilab reported a breakthrough: They were able to identify exactly-known-energy muon neutrinos hitting the atoms at the heart of their particle detector. [19] In a study published in Physical Review Letters, collaborators of the MAJORANA DEMONSTRATOR, an experiment led by the Department of Energy's Oak Ridge National Laboratory, have shown they can shield a sensitive, scalable 44-kilogram germanium detector array from background radioactivity. [18] The study has put the most stringent limits on the probability of a rare event—a neutrinoless double beta decay of tellurium-130 nuclei. This event can only occur if a neutrino can be its own antiparticle. [17] While these experiments seem miniature in comparison to others, they could reveal answers about neutrinos that have been hiding from physicists for decades. [16] In a paper published today in the European Physical Journal C, the ATLAS Collaboration reports the first high-precision measurement at the Large Hadron Collider (LHC) of the mass of the W boson. [15] A team of researchers at the University of Michigan has conducted a thought experiment regarding the nature of a universe that could support life without the weak force. [14] The international T2K Collaboration announces a first indication that the dominance of matter over antimatter may originate from the fact that neutrinos and antineutrinos behave differently during those oscillations. [13] Neutrinos are a challenge to study because their interactions with matter are so rare. Particularly elusive has been what's known as coherent elastic neutrino-nucleus scattering, which occurs when a neutrino bumps off the nucleus of an atom. [12] Lately, neutrinos – the tiny, nearly massless particles that many scientists study to better understand the fundamental workings of the universe – have been posing a problem for physicists. [11]
Category: High Energy Particle Physics

[1] viXra:1805.0029 [pdf] submitted on 2018-05-01 00:31:45

Quantum Machine Learning in High Energy Physics: the Future Prospects

Authors: Kapil K. Sharma
Comments: 06 Pages. Quantum machine learning, High Eenergy Physics, Quantum Information

This article reveals the future prospects of quantum machine learning in high energy physics (HEP). Particle identication, knowing their properties and characteristics is a challenging problem in experimental HEP. The key technique to solve these problems is pattern recognition, which is an important application of machine learning and unconditionally used for HEP problems. To execute pattern recognition task for track and vertex reconstruction, the particle physics community vastly use statistical machine learning methods. These methods vary from detector to detector geometry and magnetic led used in the experiment. Here in the present introductory article, we deliver the future possibilities for the lucid application of quantum machine learning in HEP, rather than focusing on deep mathematical structures of techniques arise in this domain.
Category: High Energy Particle Physics