[22] **viXra:1701.0690 [pdf]**
*submitted on 2017-01-31 11:15:04*

**Authors:** George Rajna

**Comments:** 15 Pages.

The LHCb experiment has found hints of what could be a new piece of the jigsaw puzzle of the missing antimatter in our universe. [11] In a stringent test of a fundamental property of the standard model of particle physics, known as CPT symmetry, researchers from the RIKEN-led BASE collaboration at CERN have made the most precise measurements so far of the charge-to-mass ratio of protons and their antimatter counterparts, antiprotons. [10] The puzzle comes from experiments that aimed to determine how quarks, the building blocks of the proton, are arranged inside that particle. That information is locked inside a quantity that scientists refer to as the proton's electric form factor. The electric form factor describes the spatial distribution of the quarks inside the proton by mapping the charge that the quarks carry. [9] Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice QCD gives the same results as the diffraction patterns of the electromagnetic oscillators, explaining the color confinement and the asymptotic freedom of the Strong Interactions.

**Category:** High Energy Particle Physics

[21] **viXra:1701.0686 [pdf]**
*submitted on 2017-01-31 05:09:00*

**Authors:** Thomas Preusser

**Comments:** 10 Pages.

In mid-2016 scientists at the Large Hadron Collider (LHC) announced that a possible new subatomic particle beyond the Higgs in mass/energy at 750 GeV/c2 went statistically unconfirmed at new higher collider energies. This paper offers new theoretical concepts predicting a gluon-like dark matter subatomic particle, called the netwon, at 750 GeV/c2. Since dark matter is “dark”, it is detected even more from inference than from actual observation. Moreover, particles with fractional “network charge”, a new theoretical concept developed in this paper, seem observationally troublesome because of variability. This includes neutrinos, gluons, and the new 750 GeV/c2 particle. The new Electron-Ion Collider (EIC) is proposed in part to deal with these troublesome variabilities. Therefore the hunt at 750 GeV/c2 at the LHC should continue, but modified with this new theoretical basis to be more inferential.

**Category:** High Energy Particle Physics

[20] **viXra:1701.0662 [pdf]**
*submitted on 2017-01-29 11:15:37*

**Authors:** Lamont Williams

**Comments:** 19 Pages.

The hierarchy problem — the problem of why gravity is far weaker than electromagnetism — is one of the greatest problems in physics. In this study, it is hypothesized that the disparity between the forces stems from their having an inverse, or seesaw-like, relationship — with one strength value naturally being high when the other
value is low. In accordance with this seesaw-like relationship, it is further hypothesized
that, as energy is increased, the strength of electromagnetism falls while the strength of
gravity rises. The author suggests that theory and observation indicating a rise in electromagnetic strength with increasing energy are not accounting for gravity’s contribution to the calculated and measured coupling. It is shown that removing this
contribution exposes the inverse relationship between the forces and, importantly, the lowering of electromagnetism’s strength over the increasing energy levels. Taken together, the concepts presented here may help in solving the hierarchy problem. This, in turn, may point the way to combining gravity and electromagnetism into a single framework and ultimately unifying general relativity and quantum mechanics.

**Category:** High Energy Particle Physics

[19] **viXra:1701.0635 [pdf]**
*submitted on 2017-01-27 09:05:04*

**Authors:** George Rajna

**Comments:** 15 Pages.

Researchers from Ludwig-Maximilians-Universitaet (LMU) Munich have, for the first time, measured the lifetime of an excited state in the nucleus of an unstable element. This is a major step toward a nuclear clock that could keep even better time than today's best atomic timekeepers. [12] The work elucidates the interplay between collective and single-particle excitations in nuclei and proposes a quantitative theoretical explanation. It has as such great potential to advance our understanding of nuclear structure. [11] When two protons approaching each other pass close enough together, they can " feel " each other, similar to the way that two magnets can be drawn closely together without necessarily sticking together. According to the Standard Model, at this grazing distance, the protons can produce a pair of W bosons. [10] The fact that the neutron is slightly more massive than the proton is the reason why atomic nuclei have exactly those properties that make our world and ultimately our existence possible. Eighty years after the discovery of the neutron, a team of physicists from France, Germany, and Hungary headed by Zoltán Fodor, a researcher from Wuppertal, has finally calculated the tiny neutron-proton mass difference. [9] Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice QCD gives the same results as the diffraction patterns of the electromagnetic oscillators, explaining the color confinement and the asymptotic freedom of the Strong Interactions.

**Category:** High Energy Particle Physics

[18] **viXra:1701.0567 [pdf]**
*replaced on 2017-02-18 16:22:14*

**Authors:** Peter Cameron, Michaele Suisse

**Comments:** 15 Pages.

We present a wavefunction comprised of the eight fundamental geometric objects of a minimally complete Pauli algebra of 3D space - point, line, plane, and volume elements - endowed with electromagnetic fields. Interactions are modeled as geometric products of wavefunctions, generating a 4D Dirac algebra of flat Minkowski spacetime. The resulting model is naturally gauge invariant, finite, and confined. With regard to the U1 x SU2 x SU3 gauge group at the core of the Standard Model, natural finiteness and gauge invariance are benign. However, reflections from wavefunction geometric impedance mismatches yields natural confinement to the Compton wavelength, providing a new perspective on both weak and strong nuclear forces.

**Category:** High Energy Particle Physics

[17] **viXra:1701.0558 [pdf]**
*submitted on 2017-01-21 04:56:54*

**Authors:** Thomas Preusser

**Comments:** 6 Pages.

In 2015 scientists at the Large Hadron Collider (LHC) announced the first ever statistically significant observation of a “pentaquark” subatomic particle (R. Aaij, LHCb collaboration, Phys Rev Lett 115, 072001, 12 August 2015). Such a “pentaquark” subatomic particle is allowed within the framework of quantum chromodynamics (QCD) theory which encompasses quark and gluon strong binding interactions. The “pentaquark” is an up-down-up-charm-anti-charm quark combination, i.e. five quarks, hence the name “pentaquark”. The hundreds of papers following pentaquark discovery mostly try to extend current QCD mathematics to explain the pentaquark. These explanations fall short of dealing with the networked processes of the pentaquark. This paper comes at the pentaquark from a higher level networked complex adaptive systems perspective. Ultimately this involves a new theory, General Projective Relativity (GPR), which is based on probabilistic computational entanglement in a projection geometry that goes beyond holographic and ultimately offers promise in furthering scientific knowledge across a wide spectrum including dark matter and dark energy.

**Category:** High Energy Particle Physics

[16] **viXra:1701.0546 [pdf]**
*submitted on 2017-01-19 12:04:24*

**Authors:** George Rajna

**Comments:** 22 Pages.

Symmetry is the essential basis of nature, which gives rise to conservation laws. In comparison, the breaking of the symmetry is also indispensable for many phase transitions and nonreciprocal processes. Among various symmetry breaking phenomena, spontaneous symmetry breaking lies at the heart of many fascinating and fundamental properties of nature. [16] One of the biggest challenges in physics is to understand why everything we see in our universe seems to be formed only of matter, whereas the Big Bang should have created equal amounts of matter and antimatter. CERN's LHCb experiment is one of the best hopes for physicists looking to solve this longstanding mystery. [15] Imperial physicists have discovered how to create matter from light-a feat thought impossible when the idea was first theorized 80 years ago. [14] How can the LHC experiments prove that they have produced dark matter? They can't… not alone, anyway. [13] The race for the discovery of dark matter is on. Several experiments worldwide are searching for the mysterious substance and pushing the limits on the properties it may have. [12] Dark energy is a mysterious force that pervades all space, acting as a "push" to accelerate the universe's expansion. Despite being 70 percent of the universe, dark energy was only discovered in 1998 by two teams observing Type Ia supernovae. A Type 1a supernova is a cataclysmic explosion of a white dwarf star. The best way of measuring dark energy just got better, thanks to a new study of Type Ia supernovae. [11] Newly published research reveals that dark matter is being swallowed up by dark energy, offering novel insight into the nature of dark matter and dark energy and what the future of our Universe might be. [10] The gravitational force attracting the matter, causing concentration of the matter in a small space and leaving much space with low matter concentration: dark matter and energy. There is an asymmetry between the mass of the electric charges, for example proton and electron, can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy distribution is asymmetric around the maximum intensity, where the annihilation of matter and antimatter is a high probability event. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

**Category:** High Energy Particle Physics

[15] **viXra:1701.0538 [pdf]**
*submitted on 2017-01-19 02:17:57*

**Authors:** George Rajna

**Comments:** 12 Pages.

Usha Mallik and her team used a grant from the U.S. Department of Energy to help build a sub-detector at the Large Hadron Collider, the world's largest and most powerful particle accelerator, located in Switzerland. They're running experiments on the sub-detector to search for a pair of bottom quarks—subatomic yin-and-yang particles that should be produced about 60 percent of the time a Higgs boson decays. [8]
A new way of measuring how the Higgs boson couples to other fundamental particles has been proposed by physicists in France, Israel and the US. Their technique would involve comparing the spectra of several different isotopes of the same atom to see how the Higgs force between the atom's electrons and its nucleus affects the atomic energy levels. [7]
The magnetic induction creates a negative electric field, causing an electromagnetic inertia responsible for the relativistic mass change; it is the mysterious Higgs Field giving mass to the particles. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate by the diffraction patterns. The accelerating charges explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron’s spin also, building the bridge between the Classical and Relativistic Quantum Theories. The self maintained electric potential of the accelerating charges equivalent with the General Relativity space-time curvature, and since it is true on the quantum level also, gives the base of the Quantum Gravity. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.

**Category:** High Energy Particle Physics

[14] **viXra:1701.0532 [pdf]**
*submitted on 2017-01-18 07:32:42*

**Authors:** George Rajna

**Comments:** 17 Pages.

One of the deepest mysteries of physics today is why we seem to live in a world composed only of matter, while the Big Bang should have created equal amounts of matter and antimatter. [13] A precise measurement of absolute beam intensity is a key parameter to monitor any losses in a beam and to calibrate the absolute number of particles delivered to the experiments. [12] In a paper published today in the journal Science, the ASACUSA experiment at CERN reported new precision measurement of the mass of the antiproton relative to that of the electron. [11] When two protons approaching each other pass close enough together, they can " feel " each other, similar to the way that two magnets can be drawn closely together without necessarily sticking together. According to the Standard Model, at this grazing distance, the protons can produce a pair of W bosons. [10] The fact that the neutron is slightly more massive than the proton is the reason why atomic nuclei have exactly those properties that make our world and ultimately our existence possible. Eighty years after the discovery of the neutron, a team of physicists from France, Germany, and Hungary headed by Zoltán Fodor, a researcher from Wuppertal, has finally calculated the tiny neutron-proton mass difference. [9] Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice QCD gives the same results as the diffraction patterns of the electromagnetic oscillators, explaining the color confinement and the asymptotic freedom of the Strong Interactions.

**Category:** High Energy Particle Physics

[13] **viXra:1701.0496 [pdf]**
*replaced on 2017-04-16 22:29:29*

**Authors:** Frank Dodd Tony Smith Jr

**Comments:** 22 Pages.

This paper is intended to be a only rough semi-popular overview of how the 240 Root Vectors of E8 can be used to construct a useful Lagrangian describing Gravity and Dark Energy plus the Standard Model. For details and references, see viXra/1602.0319. The 240 Root Vectors of E8 represent the physical forces, particles, and spacetime that make up the construction of a realistic Lagrangian describing the Octonionic Inflation Era followed by a Quaternionic M4 x CP2 Kaluza-Klein Era in which the HIggs emerges by the Mayer mechanism and 2nd and 3rd Generation Fermions appear. By generalizations of the Nambu-Jona-Lasinio models, the Higgs is seen to be a Truth Quark-AntiQuark Condensate giving 3 Mass States of the Higgs and 3 Mass States of the Truth Quark. My analysis of Fermilab and LHC observation data indicates that Fermilab has observed the 3 Truth Quark Mass States and LHC has observed the 3 Higgs Mass States. The Lagrangian, which is fundamentally classical, is constructed from E8 only and E8 lives in Cl(16) = Cl(8) x Cl(8) which corresponds to two copies of an E8 Lattice. A seperate paper discusses using a third copy of an E8 Lattice in connection with construction of a realistic Algebraic Quantum Field Theory related to the Leech Lattice. Version 3 (v3) includes CMS analysis of 35.9 /fb of data in the H -> ZZ* -> 4l channel of the 2016 Run of the LHC at 13 TeV. Version 4 (v4) corrects author name and adds comparison of Consensus 1-state model with E8 3-state model with respect to Higgs-Tquark Phase Diagram. Versions 5 and 6 (v5 and v6) add details of CMS histogram and references to details of Nambu-Jona-Lasinio type calculations by Hashimoto, Tanabashi, and Yamawaki.

**Category:** High Energy Particle Physics

[12] **viXra:1701.0495 [pdf]**
*replaced on 2017-05-21 13:10:23*

**Authors:** Frank Dodd Tony Smith Jr

**Comments:** 32 Pages.

This paper is intended to be a only rough semi-popular overview of how the 240 Root Vectors of E8 can be used to construct a useful Lagrangian and Algebraic Quantum Field Theory (AQFT) in which the Bohm Quantum Potential emerges from a 26D String Theory with Strings = World-Lines = Path Integral Paths and the Massless Spin 2 State interpreted as the Bohm Quantum Potential. For details and references, see viXra/1602.0319. The 240 Root Vectors of E8 represent the physical forces, particles, and spacetime that make up the construction of a realistic Lagrangian describing the Octonionic Inflation Era. The Octonionic Lagrangian can be embedded into a Cl(1,25) Clifford Algebra which with 8-Periodicity gives an AQFT. The Massless Spin 2 State of 26D String Theory gives the Bohm Quantum Potential. The Quantum Code of the AQFT is the Tensor Product Quantum Reed-Muller code. A Single Cell of the 26D String Theory model has the symmetry of the Monster Group. Quantum Processes produce Schwinger Sources with size about 10^(-24) cm. Microtubule Structure related to E8 and Clifford Algebra enable Penrose-Hameroff Quantum Consciousness. E8 and Cl(8) may have been encoded in the Great Pyramid. A seperate paper discusses using the Quaternionic M4 x CP2 Kaluza-Klein version of the Lagrangian to produce the Higgs and 2nd and 3rd Generation Fermions and a Higgs - Truth Quark System with 3 Mass States for Higgs and Truth Quark.

**Category:** High Energy Particle Physics

[11] **viXra:1701.0491 [pdf]**
*replaced on 2017-01-17 04:56:58*

**Authors:** Luke Kenneth Casson Leighton

**Comments:** 7 Pages.

This paper continues prior work based on the insight
that Rishon ultracoloured triplets (electron, up, neutrino in left and
right forms) might simply be elliptically-polarised "mobius light". The
important first step is therefore to identify the twelve (24 including
both left and right handed forms) phases, the correct topology, and then
to peform transformations (mirroring, rotation, time-reversal) to double-check
which "particles" are identical to each other and which are anti-particle
opposites.
Ultimately, a brute-force systematic analysis will allow a formal
mathematical group to be dropped seamlessly on top of the twelve (24)
particles.

**Category:** High Energy Particle Physics

[10] **viXra:1701.0473 [pdf]**
*submitted on 2017-01-12 12:04:19*

**Authors:** Nikola Perkovic

**Comments:** 4 Pages.

The paper will make new claims regarding the fine structure constant. The specific value of the electromagnetic coupling constant, that is the fine structure constant, will be explained as a consequence of mass energy equivalence. Special Relativity and Quantum Electrodynamics will be used to attain the mass energy equivalence equation and after which a new, quantized equation of mass energy equivalence will be postulated and tested. A new way will be presented to determine the mass of neutrons by using the strong nuclear coupling constant and protons by using the fine structure constant.

**Category:** High Energy Particle Physics

[9] **viXra:1701.0378 [pdf]**
*submitted on 2017-01-10 08:44:47*

**Authors:** George Rajna

**Comments:** 20 Pages.

Controlled direct acceleration of electrons in very strong laser fields can offer a path towards ultra-compact accelerators. [13] In an electron microscope, electrons are emitted by pointy metal tips, so they can be steered and controlled with high precision. Recently, such metal tips have also been used as high precision electron sources for generating X-rays. [12] In some chemical reactions both electrons and protons move together. When they transfer, they can move concertedly or in separate steps. Light-induced reactions of this sort are particularly relevant to biological systems, such as Photosystem II where plants use photons from the sun to convert water into oxygen. [11] EPFL researchers have found that water molecules are 10,000 times more sensitive to ions than previously thought. [10] Working with colleagues at the Harvard-MIT Center for Ultracold Atoms, a group led by Harvard Professor of Physics Mikhail Lukin and MIT Professor of Physics Vladan Vuletic have managed to coax photons into binding together to form molecules – a state of matter that, until recently, had been purely theoretical. The work is described in a September 25 paper in Nature. New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.

**Category:** High Energy Particle Physics

[8] **viXra:1701.0316 [pdf]**
*replaced on 2017-01-08 06:47:33*

**Authors:** Luke Kenneth Casson Leighton

**Comments:** 7 Pages.

In a prior paper ultracolour was added back
in to the Extended Rishon Model, and the I-Frame structure explored
using the proton as an example. Bearing in mind that because
Maxwell's equations have to be obeyed, the Rishons have to have
actual phase, position, momentum and velocity. The only pattern
of motion that fitted the stringent requirements was if the Rishons
circulated on mobius strips. Fascinatingly and very
excitingly, exactly such a
previously-theoretical elliptically-transverse mobius
topology of light
has been experimentally confirmed last year.
The next logical task of writing out Rishon triplets in a circle as actual
starting phases of the elliptically polarized mobius-walking light
has proven to be a huge breakthrough, providing startling
insight with massive implications such as implying
the existence of two previously
undiscovered quarks very similar to up and down (provisionally nicknamed
over and under), logically and naturally confirming that "decay" is
just a "phase transform", and generally being really rather disruptive
to both the Standard Model and the Extended Rishon Model.
A huge task is therefore ahead, to revisit the available data on particle
decays and masses (bear in mind that the Standard Model's statistical
inference confirmation techniques assume the up and over, and down and
under, to be the same particles), so this paper endeavours to
lay some groundwork and ask pertinent questions.

**Category:** High Energy Particle Physics

[7] **viXra:1701.0308 [pdf]**
*submitted on 2017-01-06 11:40:42*

**Authors:** Vito R. D'Angelo

**Comments:** 4 Pages.

The construction of the Planckian hierarchal schematic, comprised of four very well-known Planck constants, i.e., h,(h-bar), lp, and tp. The reintroduction of a forgotten constant, 1/2 of (h-bar). The postulation of a new Planck constant - the Planck circumference, symbol (P), where the Planck length is its diameter. The natural outcome of pi as the ratio of the Planck length and Planck circumference. Also, the initialization of the ratio of 1/2(h-bar) and the Planck circumference, with a value of 1.038499006, referred to, as the ratio of attribute. The crux of the paper is to show that the dimensionless ratios of the Planckian schematic (i.e., 2, 1.038499006, pi and 299792458) can be utilized to enumerate the Planck momentum, Planck mass and Planck energy constants.

**Category:** High Energy Particle Physics

[6] **viXra:1701.0290 [pdf]**
*submitted on 2017-01-04 22:51:17*

**Authors:** Luke Kenneth Casson Leighton

**Comments:** 7 Pages.

Colour (R,G,B) seems to be fashionable in particle physics theories,
where it may be interpreted to be phase. In the context of the
Extended Rishon Model, where we interpret particles to comprise photons
in phase-harmonic braid-ordered inter-dependence, Colour takes on a
very specific relevance and meaning, not least because Maxwell's
equations have to be obeyed literally and undeniably, and phase is
an absolutely critical part of Maxwell's equations.
A number of potential candidate layouts are explored, including taking
Sundance O Bilson-Thompson's topological braid-order
literally. Ultimately though, the only thing that
worked out that still respected the rules of the Extended Rishon
Model
was to place the Rishons on a mobius strip, mirroring
Williamson's toroidal pattern, which, with
its back-to-back two-cycle rotation, reminds us of Qiu-Hong Hu's
Hubius Helix. The layout of the 2nd level
I-Frame is therefore explored, using the proton as a candidate.

**Category:** High Energy Particle Physics

[5] **viXra:1701.0285 [pdf]**
*submitted on 2017-01-05 06:40:05*

**Authors:** George Rajna

**Comments:** 16 Pages.

Thanks to a new development in nuclear physics theory, scientists exploring expanding fireballs that mimic the early universe have new signs to look for as they map out the transition from primordial plasma to matter as we know it. [11] Now, powerful supercomputer simulations of colliding atomic nuclei, conducted by an international team of researchers including a Berkeley Lab physicist, provide new insights about the twisting, whirlpool-like structure of this soup and what's at work inside of it, and also lights a path to how experiments could confirm these characteristics. [10] The drop of plasma was created in the Large Hadron Collider (LHC). It is made up of two types of subatomic particles: quarks and gluons. Quarks are the building blocks of particles like protons and neutrons, while gluons are in charge of the strong interaction force between quarks. The new quark-gluon plasma is the hottest liquid that has ever been created in a laboratory at 4 trillion C (7 trillion F). Fitting for a plasma like the one at the birth of the universe. [9] Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice QCD gives the same results as the diffraction patterns of the electromagnetic oscillators, explaining the color confinement and the asymptotic freedom of the Strong Interactions.

**Category:** High Energy Particle Physics

[4] **viXra:1701.0282 [pdf]**
*submitted on 2017-01-04 10:17:30*

**Authors:** George Rajna

**Comments:** 27 Pages.

In the proposed model, the universe contains multiple sectors, each of which is governed by its own version of the Standard Model with its own Higgs vacuum expectation value. The sector with the smallest non-zero vacuum expectation value contains our copy of the Standard Model. [18] Physicists have come up with a new model that they say solves five of the biggest unanswered questions in modern physics, explaining the weirdness of dark matter, neutrino oscillations, baryogenesis, cosmic inflation, and the strong CP problem all at once. [17] The universe is unbalanced. Gravity is tremendously weak. But the weak force, which allows particles to interact and transform, is enormously strong. The mass of the Higgs boson is suspiciously petite. And the catalog of the makeup of the cosmos? Ninety-six percent incomplete. [16] One of the biggest challenges in physics is to understand why everything we see in our universe seems to be formed only of matter, whereas the Big Bang should have created equal amounts of matter and antimatter. CERN's LHCb experiment is one of the best hopes for physicists looking to solve this longstanding mystery. [15] Imperial physicists have discovered how to create matter from light-a feat thought impossible when the idea was first theorized 80 years ago. [14] How can the LHC experiments prove that they have produced dark matter? They can't… not alone, anyway. [13] The race for the discovery of dark matter is on. Several experiments worldwide are searching for the mysterious substance and pushing the limits on the properties it may have. [12] Dark energy is a mysterious force that pervades all space, acting as a "push" to accelerate the universe's expansion. Despite being 70 percent of the universe, dark energy was only discovered in 1998 by two teams observing Type Ia supernovae. A Type 1a supernova is a cataclysmic explosion of a white dwarf star. The best way of measuring dark energy just got better, thanks to a new study of Type Ia supernovae. [11] Newly published research reveals that dark matter is being swallowed up by dark energy, offering novel insight into the nature of dark matter and dark energy and what the future of our Universe might be. [10] The gravitational force attracting the matter, causing concentration of the matter in a small space and leaving much space with low matter concentration: dark matter and energy. There is an asymmetry between the mass of the electric charges, for example proton and electron, can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy distribution is asymmetric around the maximum intensity, where the annihilation of matter and antimatter is a high probability event. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

**Category:** High Energy Particle Physics

[3] **viXra:1701.0016 [pdf]**
*replaced on 2017-01-03 08:04:26*

**Authors:** Luke Kenneth Casson Leighton

**Comments:** 19 Pages.

This document is in eect a journal of the past thirty years of exploring particle
physics, with a special focus on the electron. With the exception of this abstract, a
rst person dialog has been unusually chosen after discovering that it can be more
eective in communicating certain logical reasoning chains of thought. The story
begins in 1986 with the rediscovery of the Rishon Model, later expanded in 2012,
followed by an exploration of possible meaning as to why the four Rishons would
exist at all, and why they would exist as triplets: what possible physical underlying
mechanism would give us "Rishons"? The following hypothesis is therefore put
forward:
All evidence explored so far supports the hypothesis that all particles are made
of phased-array photons in a tight and innitely-cyclic recurring loop, in a self-
contained non-radiating E.M eld that obeys nothing more than Maxwell's Equa-
tions (applied from rst principles), with the addition that particles that are not
nonradiating are going to be unstable to some degree (i.e. will undergo "decay").
Rishons themselves are not actual particles per se but simply represent the phase
and braiding order of the constituent photons.
A number of researchers have explored parts of this eld, but have not pulled
all of the pieces together.

**Category:** High Energy Particle Physics

[2] **viXra:1701.0007 [pdf]**
*submitted on 2017-01-01 21:36:01*

**Authors:** John R. Springer

**Comments:** 17 Pages.

A new model of particle structure is presented for the lowest stable hadrons and leptons which shows first: the complete internal quark/gluon structure of the proton, neutron, eta, neutral kaon, and neutral pion mesons and (surprisingly) the muon. It can be extended to include without gluons: the electron, neutrinos, and even the photon.
Second, it shows the origin of mass. While mass cannot be assigned to individual quarks which do not exist alone, it can be assigned in totality to a small number of gluons of positive and negative associated mass (±14me). This makes the basic unit of mass the electron mass.
Third, it shows that mixing of internal quark states (like the neutral kaon) is common in all particles. In fact, it shows the source of mixing, entanglement, and oscillations.
The key to this discovery is the finding that quarks do not exist as single isolated quark-antiquark pairs but only as triads and antitriads. Quark-antiquark pairing does occur but only within a quark triad-antitriad pair. With these claims, a thorough analysis of particle properties, especially mass, yields the precise structure and mass of internal structures; essentially a small number (possibly a string or helix) of quark triad-antitriad pairs. The proton and neutron, in addition, each contain one unpaired triad- uud and ddu respectively. Proof for the model is presented which involves a quark structure for the muon and its subsequent decay.

**Category:** High Energy Particle Physics

[1] **viXra:1701.0006 [pdf]**
*replaced on 2017-01-17 11:32:58*

**Authors:** Luke Kenneth Casson Leighton

**Comments:** 4 Pages.

The de Vries formula, discovered in 2004, is undeniably accurate to current experimental and theoretical measurements (3.1e-10 to within CODATA 2014's value, currently 2.3e-10 relative uncertainty). Its Kolmogorov Complexity is extremely low, and it is as elegant as Euler's Identity formula. Having been discovered by a Silicon Design Engineer, no explanation was offered except for the hint that it is based on the well-recognised first approximation for g/2: 1 + alpha / 2pi. Purely taking the occurence of the fine structure constant in the electron: in light of G Poelz and Dr Mills' work, as well as the Ring Model of the early 1900s, this paper offers a tentative explanation for alpha as being a careful dynamic balanced inter-relationship between each radiated loop as emitted from whatever constitutes the "source" of the energy at the heart of the electron. Mills and the original Ring Model use the word "nonradiating" which is is believed to be absolutely critical.

**Category:** High Energy Particle Physics