Digital Signal Processing

1904 Submissions

[6] viXra:1904.0253 [pdf] submitted on 2019-04-13 11:44:21

Negative Capacitor Improve Computing

Authors: George Rajna
Comments: 79 Pages.

With a little physics ingenuity, scientists have designed a way to redistribute electricity on a small scale, potentially opening new avenues of research into more energy-efficient computing. [45] For the first time ever, an international team of researchers imaged the microscopic state of negative capacitance. [44] One of the leading candidates, spintronics, is based on the idea of carrying information via the spin of electrons. [43]
Category: Digital Signal Processing

[5] viXra:1904.0118 [pdf] submitted on 2019-04-05 08:42:48

Photons Trained for Optical Fiber

Authors: George Rajna
Comments: 51 Pages.

Researchers from the National University of Singapore (NUS) and Singtel, Asia's leading communications technology group, have demonstrated a technique that will help pairs of light particles smoothly navigate these networks, a breakthrough that will enable stronger cyber security. [36] Researchers of the Institute of Photonic Integration of the Eindhoven University of Technology (TU/e) have developed a 'hybrid technology' which shows the advantages of both light and magnetic hard drives. [35] Researchers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have developed a simple yet accurate method for finding defects in the latest generation of silicon carbide transistors. [34] In 2017, University of Utah physicist Valy Vardeny called perovskite a "miracle material" for an emerging field of next-generation electronics, called spintronics, and he's standing by that assertion. [33] Scientists at Tokyo Institute of Technology proposed new quasi-1-D materials for potential spintronic applications, an upcoming technology that exploits the spin of electrons. [32] They do this by using "excitons," electrically neutral quasiparticles that exist in insulators, semiconductors and in some liquids. [31] Researchers at ETH Zurich have now developed a method that makes it possible to couple such a spin qubit strongly to microwave photons. [30] Quantum dots that emit entangled photon pairs on demand could be used in quantum communication networks. [29] Researchers successfully integrated the systems-donor atoms and quantum dots. [28] A team of researchers including U of A engineering and physics faculty has developed a new method of detecting single photons, or light particles, using quantum dots. [27] Recent research from Kumamoto University in Japan has revealed that polyoxometalates (POMs), typically used for catalysis, electrochemistry, and photochemistry, may also be used in a technique for analyzing quantum dot (QD) photoluminescence (PL) emission mechanisms. [26]
Category: Digital Signal Processing

[4] viXra:1904.0067 [pdf] submitted on 2019-04-03 10:49:49

Proof of Participation Protocol

Authors: Egger Mielberg
Comments: 21 Pages.

We present an innovative approach to the design of a decentralized asynchronous protocol that will, first, let business of any kind realize any project that can be formalized on a “step-bystep” basis, second, allow its users to completely solve Byzantine problem with one or many contracts-related associative network (subnetwork), third, allow business to design, if needed, a strictly economy-based model that can be stable for a long period of time. The innovative approach is totally based on the technology of Smart Transaction [1]. The protocol is mainly focused on a practical realization of economical business contracts of any kind.
Category: Digital Signal Processing

[3] viXra:1904.0064 [pdf] submitted on 2019-04-03 11:02:18

Neurochain

Authors: Egger Mielberg
Comments: 12 Pages.

In a system where there are tons of information of different types it is always hard and frequently impossible to tie the effect to the cause. There is also a challenge to find relevant data quickly, especially in case of absence of classification algorithm that is capable of working with different fields of business and science in parallel. We propose a mechanism for building a network of associative chains that are decentralized to each other. The network allows its participants to build quickly an associative chain from “effect-tocause”. This feature of the network is extremely useful for identification of a scam activity. The mechanism is based on two technologies, “Smart Transactions” [1] and “Proof of Participation Protocol” [2].
Category: Digital Signal Processing

[2] viXra:1904.0040 [pdf] submitted on 2019-04-02 12:48:01

Amorphic Encryption

Authors: Egger Mielberg
Comments: 16 Pages.

As a symmetric as an asymmetric scheme requires a key (session or private) to be hidden. In this case, an attacker gets a chance and time for finding and decrypting it. As long as a secret has static attributes (length, type of characters, etc.) it will always be vulnerable for an attack. We propose a new concept of keyless encryption, “Amorphic scheme”, which is semantically secured and has “Perfect Secrecy” level. It allows a secret to be transmitted over any public channel with no public or private key to be generated and stored.
Category: Digital Signal Processing

[1] viXra:1904.0039 [pdf] submitted on 2019-04-02 12:50:41

Neuro-Amorphic Construction Algorithm (NACA)

Authors: Egger Mielberg
Comments: 12 Pages.

Under certain circumstances, determinism of a block cipher can lead to a disclosure of sensitive information about working mechanism of underlying machine. Unveiled restrictions of the mechanism can also give a possibility for an adversary to brute-force the cipher at a reasonable period of time. We propose a nondeterministic algorithm operating on variable-length groups of bits with dynamically varying parts of round ciphertext. We named it as “Neuron Cipher”. It does not use as public as private key. In compared with symmetric or asymmetric encryption, it has obvious practical advantages. Among them is a “Perfect Secrecy” [4].
Category: Digital Signal Processing