Digital Signal Processing

1811 Submissions

[5] viXra:1811.0486 [pdf] submitted on 2018-11-28 10:03:03

Computing Faces an Energy Crunch

Authors: George Rajna
Comments: 72 Pages.

There's little doubt the information technology revolution has improved our lives. But unless we find a new form of electronic technology that uses less energy, computing will become limited by an "energy crunch" within decades. [43] Researchers at the Niels Bohr Institute, University of Copenhagen, have recently succeeded in boosting the storage time of quantum information, using a small glass container filled with room temperature atoms, taking an important step towards a secure quantum encoded distribution network. [42] New work by a team at the University of Bristol's Centre for Quantum Photonics has uncovered fundamental limits on the quantum operations which can be carried out with postselection. [41] The experimental investigation of ultracold quantum matter makes it possible to study quantum mechanical phenomena that are otherwise inaccessible. [40] The molecular switch is the fruit of a collaboration of members from the Departments of Experimental and Theoretical Physics at the University of Würzburg: Dr. Jens Kügel, a postdoc at the Department of Experimental Physics II, devised and ran the experiments. [39] A new test to spot where the ability to exploit the power of quantum mechanics has evolved in nature has been developed by physicists at the University of Warwick. [38] A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. [37] Researchers have demonstrated the first quantum light-emitting diode (LED) that emits single photons and entangled photon pairs with a wavelength of around 1550 nm, which lies within the standard telecommunications window. [36] JILA scientists have invented a new imaging technique that produces rapid, precise measurements of quantum behavior in an atomic clock in the form of near-instant visual art. [35] The unique platform, which is referred as a 4-D microscope, combines the sensitivity and high time-resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy. [34]
Category: Digital Signal Processing

[4] viXra:1811.0260 [pdf] submitted on 2018-11-17 22:12:25

Exploring Eclipse Mita in the Context of Embedded Systems/iot/bosch-XDK Iot Kit/ Jikes RVM a Simple Suggestion Using Research Virtual Machine Environment/iot/ Embedded Systems.

Authors: Nirmal Tej Kumar
Comments: 2 Pages. Short Communication & Technical Notes

Exploring Eclipse MITA in the context of Embedded Systems/IoT/Bosch-XDK IoT KIT/ Jikes RVM - A Simple Suggestion Using Research Virtual Machine Environment/IoT/ Embedded Systems.
Category: Digital Signal Processing

[3] viXra:1811.0126 [pdf] submitted on 2018-11-07 07:17:05

Improved Data Storage

Authors: George Rajna
Comments: 74 Pages.

A team of scientists has created the world's most powerful electromagnetic pulses in the terahertz range to control in fine detail how a data-storage material switches physical form. [46] Physicists at the University of Alberta in Canada have developed a new way to build quantum memories, a method for storing delicate quantum information encoded into pulses of light. [45] Now, an Australian research team has experimentally realised a crucial combination of these capabilities on a silicon chip, bringing the dream of a universal quantum computer closer to reality. [44] A theoretical concept to realize quantum information processing has been developed by Professor Guido Burkard and his team of physicists at the University of Konstanz. [43] As the number of hacks and security breaches rapidly climbs, scientists say there may be a way to make a truly unhackable network by using the laws of quantum physics. [42] This world-first nanophotonic device, just unveiled in Nature Communications, encodes more data and processes it much faster than conventional fiber optics by using a special form of 'twisted' light. [41] Purdue University researchers created a new technique that would increase the secret bit rate 100-fold, to over 35 million photons per second. [40] Physicists at The City College of New York have used atomically thin two-dimensional materials to realize an array of quantum emitters operating at room temperature that can be integrated into next generation quantum communication systems. [39] Research in the quantum optics lab of Prof. Barak Dayan in the Weizmann Institute of Science may be bringing the development of such computers one step closer by providing the "quantum gates" that are required for communication within and between such quantum computers. [38]
Category: Digital Signal Processing

[2] viXra:1811.0118 [pdf] submitted on 2018-11-07 11:04:11

Health Data Under Lock and Key

Authors: George Rajna
Comments: 76 Pages.

Researchers from the Collaborative Research Center CROSSING at Technische Universität Darmstadt (Germany) have developed a solution that will ensure decades of safe storage for sensitive health data in a joint project with Japanese and Canadian partners. [47] A team of scientists has created the world's most powerful electromagnetic pulses in the terahertz range to control in fine detail how a data-storage material switches physical form. [46] Physicists at the University of Alberta in Canada have developed a new way to build quantum memories, a method for storing delicate quantum information encoded into pulses of light. [45] Now, an Australian research team has experimentally realised a crucial combination of these capabilities on a silicon chip, bringing the dream of a universal quantum computer closer to reality. [44] A theoretical concept to realize quantum information processing has been developed by Professor Guido Burkard and his team of physicists at the University of Konstanz. [43] As the number of hacks and security breaches rapidly climbs, scientists say there may be a way to make a truly unhackable network by using the laws of quantum physics. [42]
Category: Digital Signal Processing

[1] viXra:1811.0061 [pdf] submitted on 2018-11-04 13:04:17

Big Data Flow Adjustment Using Knapsack Problem

Authors: Eyman Yosef, A. A. Salama, M. Elsayed Wahed2
Comments: 10 Pages.

The advancements of mobile devices, public networks and the Internet of creature huge amounts of complex data, both construct & unstructured are being captured in trust to allow organizations to produce better business decisions as data is now pivotal for an organizations success. These enormous amounts of data are referred to as Big Data , which enables a competitive advantage over rivals when processed and analyzed appropriately. However Big Data Analytics has a few concerns including Management of Data, Privacy & Security, getting optimal path for transport data, and Data Representation. However, the structure of network does not completely match transportation demand, i.e. , there still exist a few bottlenecks in the network. This paper presents a new approach to get the optimal path of valuable data movement through a given network based on the knapsack problem. This paper will give value for each piece of data, it depends on the importance of this data (each piece of data defined by two arguments size and value), and the approach tries to find the optimal path from source to destination, a mathematical models are developed to adjust data flows between their shortest paths based on the 0 - 1 knapsack problem. We also take out computational experience using the commercial software Gurobi and a greedy algorithm (GA), respectively. The outcome indicates that the suggest models are active and workable. This paper introduced two different algorithms to study the shortest path problems: the first algorithm studies the shortest path problems when stochastic activates and activities does not depend on weights. The second algorithm studies the shortest path problems depends on weights.
Category: Digital Signal Processing