Digital Signal Processing

1708 Submissions

[6] viXra:1708.0477 [pdf] submitted on 2017-08-31 05:50:19

Towards Soliton Computer Based on Solitary Wave Solution of Maxwell-Dirac Equation: a Plausible Alternative to Manakov System

Authors: Victor Christianto, Florentin Smarandache
Comments: 7 Pages. This paper has not been submitted to a journal. Your comments are welcome

In recent years, there are a number of proposals to consider collision-based soliton computer based on certain chemical reactions, namely Belousov-Zhabotinsky reaction, which leads to soliton solutions of coupled Nonlinear Schroedinger equations. They are called Manakov System. But it seems to us that such a soliton computer model can also be based on solitary wave solution of Maxwell-Dirac equation, which reduces to Choquard equation. And soliton solution of Choquard equation has been investigated by many researchers, therefore it seems more profound from physics perspective. However, we consider both schemes of soliton computer are equally possible. More researches are needed to verify our proposition.
Category: Digital Signal Processing

[5] viXra:1708.0468 [pdf] submitted on 2017-08-30 08:00:11

Store Data on Single Atom

Authors: George Rajna
Comments: 31 Pages.

The cutting edge of data storage research is working at the level of individual atoms and molecules, representing the ultimate limit of technological miniaturisation. [18] This is an important clue for our theoretical understanding of optically controlled magnetic data storage media. [17] A crystalline material that changes shape in response to light could form the heart of novel light-activated devices. [16] Now a team of Penn State electrical engineers have a way to simultaneously control diverse optical properties of dielectric waveguides by using a two-layer coating, each layer with a near zero thickness and weight. [15] Just like in normal road traffic, crossings are indispensable in optical signal processing. In order to avoid collisions, a clear traffic rule is required. A new method has now been developed at TU Wien to provide such a rule for light signals. [14] Researchers have developed a way to use commercial inkjet printers and readily available ink to print hidden images that are only visible when illuminated with appropriately polarized waves in the terahertz region of the electromagnetic spectrum. [13] That is, until now, thanks to the new solution devised at TU Wien: for the first time ever, permanent magnets can be produced using a 3D printer. This allows magnets to be produced in complex forms and precisely customised magnetic fields, required, for example, in magnetic sensors. [12] For physicists, loss of magnetisation in permanent magnets can be a real concern. In response, the Japanese company Sumitomo created the strongest available magnet—one offering ten times more magnetic energy than previous versions—in 1983. [11] New method of superstrong magnetic fields' generation proposed by Russian scientists in collaboration with foreign colleagues. [10] By showing that a phenomenon dubbed the "inverse spin Hall effect" works in several organic semiconductors-including carbon-60 buckyballs-University of Utah physicists changed magnetic "spin current" into electric current. The efficiency of this new power conversion method isn't yet known, but it might find use in future electronic devices including batteries, solar cells and computers. [9] Researchers from the Norwegian University of Science and Technology (NTNU) and the University of Cambridge in the UK have demonstrated that it is possible to directly generate an electric current in a magnetic material by rotating its magnetization. [8] This paper explains the magnetic effect of the electric current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the changing relativistic mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.
Category: Digital Signal Processing

[4] viXra:1708.0377 [pdf] submitted on 2017-08-27 06:46:29

High Frequency Chip

Authors: George Rajna
Comments: 37 Pages.

Novel, high-frequency electronic chip potentially capable of transmitting tens of gigabits of data per second—a rate that is orders of magnitude above the fastest internet speeds available today—has been developed by engineers at the University of California, Davis. [19] For the first time, researchers have sent a quantum-secured message containing more than one bit of information per photon through the air above a city. [18] In early July, Google announced that it will expand its commercially available cloud computing services to include quantum computing. A similar service has been available from IBM since May. [17] Quantum computing is described as "just around the corner", simply awaiting the engineering prowess and entrepreneurial spirit of the tech sector to realise its full potential. [16] For the first time, physicists have demonstrated that hyperentangled photons can be transmitted in free space, which they showed by sending many thousands of these photons between the rooftops of two buildings in Vienna. [15] Now in a new study, physicists have cloned quantum states and demonstrated that, because the clones are entangled, it's possible to precisely and simultaneously measure the complementary properties of the clones. [14] Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are sufficiently concentrated and cooled. [13] The concept of temperature is critical in describing many physical phenomena, such as the transition from one phase of matter to another. Turn the temperature knob and interesting things can happen. But other knobs might be just as important for some studying some phenomena. One such knob is chemical potential, a thermodynamic parameter first introduced in the nineteenth century scientists for keeping track of potential energy absorbed or emitted by a system during chemical reactions. [12] For the first time, physicists have performed an experiment confirming that thermodynamic processes are irreversible in a quantum system—meaning that, even on the quantum level, you can't put a broken egg back into its shell. The results have implications for understanding thermodynamics in quantum systems and, in turn, designing quantum computers and other quantum information technologies. [11]
Category: Digital Signal Processing

[3] viXra:1708.0295 [pdf] submitted on 2017-08-23 07:08:02

Magnetoelectric RAM

Authors: George Rajna
Comments: 34 Pages.

MIPT researchers teamed up with collaborators for a successful demonstration of magnetoelectric random access memory (MELRAM). [22] Concepts for information storage and logical processing based on magnetic domain walls have great potential for implementation in future information and communications technologies." [21] Research at the National Institute of Standards and Technology (NIST) suggests it also may be true in the microscopic world of computer memory, where a team of scientists may have found that subtlety solves some of the issues with a novel memory switch. [20] Los Alamos National Laboratory has produced the first known material capable of single-photon emission at room temperature and at telecommunications wavelengths. [19] In their paper published in Nature, the team demonstrates that photons can become an accessible and powerful quantum resource when generated in the form of colour-entangled quDits. [18] But in the latest issue of Physical Review Letters, MIT researchers describe a new technique for enabling photon-photon interactions at room temperature, using a silicon crystal with distinctive patterns etched into it. [17] Kater Murch's group at Washington University in St. Louis has been exploring these questions with an artificial atom called a qubit. [16] Researchers have studied how light can be used to observe the quantum nature of an electronic material. [15] An international team of researchers led by the National Physical Laboratory (NPL) and the University of Bern has revealed a new way to tune the functionality of next-generation molecular electronic devices using graphene. [14] Researchers at the Department of Physics, University of Jyväskylä, Finland, have created a theory that predicts the properties of nanomagnets manipulated with electric currents. This theory is useful for future quantum technologies. [13] Quantum magnetism, in which – unlike magnetism in macroscopic-scale materials, where electron spin orientation is random – atomic spins self-organize into one-dimensional rows that can be simulated using cold atoms.
Category: Digital Signal Processing

[2] viXra:1708.0207 [pdf] submitted on 2017-08-18 05:45:49

Error Concealment by Means of Motion Refinement and Regularized Bregman Divergence

Authors: Alessandra M. Coelho, Vania V. Estrela, Felipe P. do Carmo, Sandro R. Fernandes, V. V. Estrela, Vania Vieira Estrela
Comments: 8 Pages. Proceedings of the IDEAL 2012, Springer Verlag, 2012

This work addresses the problem of error concealment in video transmission systems over noisy channels employing Bregman divergences along with regularization. Error concealment intends to improve the effects of disturbances at the reception due to bit-errors or cell loss in packet networks. Bregman regularization gives accurate answers after just some iterations with fast convergence, better accuracy, and stability. This technique has an adaptive nature: the regularization functional is updated according to Bregman functions that change from iteration to iteration according to the nature of the neighborhood under study at iteration n. Numerical experiments show that high-quality regularization parameter estimates can be obtained. The convergence is sped up while turning the regularization parameter estimation less empiric, and more automatic.
Category: Digital Signal Processing

[1] viXra:1708.0094 [pdf] submitted on 2017-08-09 08:36:56

Flash Memory Successor

Authors: George Rajna
Comments: 31 Pages.

in the microscopic world of computer memory, where a team of scientists may have found that subtlety solves some of the issues with a novel memory switch. [20] Los Alamos National Laboratory has produced the first known material capable of single-photon emission at room temperature and at telecommunications wavelengths. [19] In their paper published in Nature, the team demonstrates that photons can become an accessible and powerful quantum resource when generated in the form of colour-entangled quDits. [18] But in the latest issue of Physical Review Letters, MIT researchers describe a new technique for enabling photon-photon interactions at room temperature, using a silicon crystal with distinctive patterns etched into it. [17] Kater Murch's group at Washington University in St. Louis has been exploring these questions with an artificial atom called a qubit. [16] Researchers have studied how light can be used to observe the quantum nature of an electronic material. [15] An international team of researchers led by the National Physical Laboratory (NPL) and the University of Bern has revealed a new way to tune the functionality of next-generation molecular electronic devices using graphene. [14] Researchers at the Department of Physics, University of Jyväskylä, Finland, have created a theory that predicts the properties of nanomagnets manipulated with electric currents. This theory is useful for future quantum technologies. [13] Quantum magnetism, in which – unlike magnetism in macroscopic-scale materials, where electron spin orientation is random – atomic spins self-organize into one-dimensional rows that can be simulated using cold atoms trapped along a physical structure that guides optical spectrum electromagnetic waves known as a photonic crystal waveguide. [12] Scientists have achieved the ultimate speed limit of the control of spins in a solid state magnetic material. The rise of the digital information era posed a daunting challenge to develop ever faster and smaller devices for data storage and processing.
Category: Digital Signal Processing