Condensed Matter

1805 Submissions

[30] viXra:1805.0537 [pdf] submitted on 2018-05-30 11:31:58

Listen for Failure

Authors: George Rajna
Comments: 56 Pages.

In a pilot study, researchers from North Carolina State University and Haverford College have used naturally arising acoustic vibrations—or sound waves—to monitor the state of granular materials. [35] Scientists at the University of Alberta have applied a machine learning technique using artificial intelligence to perfect and automate atomic-scale manufacturing, something which has never been done before. [34] Chemist Dr. Lars Borchardt and his team at TU Dresden recently achieved a huge breakthrough in the synthesis of nanographenes. [33] Using graphene as a light-sensitive material for light detectors offers significant improvements with respect to materials being used nowadays. [32] The precision of measuring nanoscopic structures could be substantially improved, thanks to research involving the University of Warwick and QuantIC researchers at the University of Glasgow and Heriot Watt University into optical sensing. [31] Researchers at AMOLF and the University of Texas have circumvented this problem with a vibrating glass ring that interacts with light. They thus created a microscale circulator that directionally routes light on an optical chip without using magnets. [30] Researchers have discovered three distinct variants of magnetic domain walls in the helimagnet iron germanium (FeGe). [29] Magnetic materials that form helical structures—coiled shapes comparable to a spiral staircase or the double helix strands of a DNA molecule—occasionally exhibit exotic behavior that could improve information processing in hard drives and other digital devices. [28] In a new study, researchers have designed "invisible" magnetic sensors—sensors that are magnetically invisible so that they can still detect but do not distort the surrounding magnetic fields. [27]
Category: Condensed Matter

[29] viXra:1805.0511 [pdf] submitted on 2018-05-28 09:11:04

Elastic Diamonds

Authors: George Rajna
Comments: 21 Pages.

A recent study involving UNIST has determined that brittle diamonds can be bent and stretched elastically when made into ultrafine needles. [15] The researchers engineered diamond strings that can be tuned to quiet a qubit's environment and improve memory from tens to several hundred nanoseconds, enough time to do many operations on a quantum chip. [14] Intel has announced the design and fabrication of a 49-qubit superconducting quantum-processor chip at the Consumer Electronics Show in Las Vegas. To improve our understanding of the so-called quantum properties of materials, scientists at the TU Delft investigated thin slices of SrIrO3, a material that belongs to the family of complex oxides. [12] New research carried out by CQT researchers suggest that standard protocols that measure the dimensions of quantum systems may return incorrect numbers. [11] Is entanglement really necessary for describing the physical world, or is it possible to have some post-quantum theory without entanglement? [10] A trio of scientists who defied Einstein by proving the nonlocal nature of quantum entanglement will be honoured with the John Stewart Bell Prize from the University of Toronto (U of T). [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Condensed Matter

[28] viXra:1805.0493 [pdf] submitted on 2018-05-29 06:34:52

Graphene Ultrathin Spintronics

Authors: George Rajna
Comments: 30 Pages.

Researchers working at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) coupled graphene, a monolayer form of carbon, with thin layers of magnetic materials like cobalt and nickel to produce exotic behavior in electrons that could be useful for next-generation computing applications. [19] Particles can exchange their spin, and in this way spin currents can be formed in a material. [18] Researchers have shown that certain superconductors—materials that carry electrical current with zero resistance at very low temperatures—can also carry currents of 'spin'. [17] The first known superconductor in which spin-3/2 quasiparticles form Cooper pairs has been created by physicists in the US and New Zealand. [16] Now a team of researchers from the University of Maryland (UMD) Department of Physics together with collaborators has seen exotic superconductivity that relies on highly unusual electron interactions. [15]
Category: Condensed Matter

[27] viXra:1805.0491 [pdf] submitted on 2018-05-29 09:19:39

Chiral Superconductor Current

Authors: George Rajna
Comments: 32 Pages.

Together with their colleagues in Stockholm, theoretical physicists at Utrecht University have recently discovered that a unique effect occurs in chiral superconductors that should be easy to measure. [20] UBC researchers have captured an unprecedented glimpse into the birth of high-temperature superconductivity in cuprates, settling a scientific debate and uncovering new avenues to explore the potential of other unconventional superconductors. [19] A 2017 theory proposed by Rice University physicists to explain the contradictory behavior of an iron-based high-temperature superconductor is helping solve a puzzle in a different type of unconventional superconductor, the "heavy fermion" compound known as CeCu2Si2. [18] Researchers have shown that certain superconductors—materials that carry electrical current with zero resistance at very low temperatures—can also carry currents of 'spin'. [17] The first known superconductor in which spin-3/2 quasiparticles form Cooper pairs has been created by physicists in the US and New Zealand. [16] Now a team of researchers from the University of Maryland (UMD) Department of Physics together with collaborators has seen exotic superconductivity that relies on highly unusual electron interactions. [15] A group of researchers from institutions in Korea and the United States has determined how to employ a type of electron microscopy to cause regions within an iron-based superconductor to flip between superconducting and non-superconducting states. [14] In new research, scientists at the University of Minnesota used a first-of-its-kind device to demonstrate a way to control the direction of the photocurrent without deploying an electric voltage. [13] Brown University researchers have demonstrated for the first time a method of substantially changing the spatial coherence of light. [12] Researchers at the University of Central Florida have generated what is being deemed the fastest light pulse ever developed. [11] Physicists at Chalmers University of Technology and Free University of Brussels have now found a method to significantly enhance optical force. [10] Nature Communications today published research by a team comprising Scottish and South African researchers, demonstrating entanglement swapping and teleportation of orbital angular momentum 'patterns' of light. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Condensed Matter

[26] viXra:1805.0486 [pdf] submitted on 2018-05-27 10:55:38

Atomic-Scale Manufacturing

Authors: George Rajna
Comments: 55 Pages.

Scientists at the University of Alberta have applied a machine learning technique using artificial intelligence to perfect and automate atomic-scale manufacturing, something which has never been done before. [34] Chemist Dr. Lars Borchardt and his team at TU Dresden recently achieved a huge breakthrough in the synthesis of nanographenes. [33] Using graphene as a light-sensitive material for light detectors offers significant improvements with respect to materials being used nowadays. [32] The precision of measuring nanoscopic structures could be substantially improved, thanks to research involving the University of Warwick and QuantIC researchers at the University of Glasgow and Heriot Watt University into optical sensing. [31] Researchers at AMOLF and the University of Texas have circumvented this problem with a vibrating glass ring that interacts with light. They thus created a microscale circulator that directionally routes light on an optical chip without using magnets. [30] Researchers have discovered three distinct variants of magnetic domain walls in the helimagnet iron germanium (FeGe). [29] Magnetic materials that form helical structures—coiled shapes comparable to a spiral staircase or the double helix strands of a DNA molecule—occasionally exhibit exotic behavior that could improve information processing in hard drives and other digital devices. [28] In a new study, researchers have designed "invisible" magnetic sensors—sensors that are magnetically invisible so that they can still detect but do not distort the surrounding magnetic fields. [27] At Carnegie Mellon University, Materials Science and Engineering Professor Mike McHenry and his research group are developing metal amorphous nanocomposite materials (MANC), or magnetic materials whose nanocrystals have been grown out of an amorphous matrix to create a two phase magnetic material that exploits both the attractive magnetic inductions of the nanocrystals and the large electrical resistance of a metallic glass. [26] The search and manipulation of novel properties emerging from the quantum nature of matter could lead to next-generation electronics and quantum computers. [25]
Category: Condensed Matter

[25] viXra:1805.0479 [pdf] submitted on 2018-05-26 05:58:15

Zooming In and Out

Authors: George Rajna
Comments: 61 Pages.

Computer simulations are used to understand the properties of soft matter—such as liquids, polymers and biomolecules like DNA-which are too complicated to be described by equations. [37] "We put the optical microscope under a microscope to achieve accuracy near the atomic scale," said NIST's Samuel Stavis, who served as the project leader for these efforts. [36] Researchers have designed an interferometer that works with magnetic quasiparticles called magnons, rather than photons as in conventional interferometers. [35] A technique to manipulate electrons with light could bring quantum computing up to room temperature. [34] The USTC Microcavity Research Group in the Key Laboratory of Quantum Information has perfected a 4-port, all-optically controlled non-reciprocal multifunctional photonic device based on a magnetic-field-free optomechanical resonator. [33] To address this technology gap, a team of engineers from the National University of Singapore (NUS) has developed an innovative microchip, named BATLESS, that can continue to operate even when the battery runs out of energy. [32] Stanford researchers have developed a water-based battery that could provide a cheap way to store wind or solar energy generated when the sun is shining and wind is blowing so it can be fed back into the electric grid and be redistributed when demand is high. [31] Researchers at AMOLF and the University of Texas have circumvented this problem with a vibrating glass ring that interacts with light. They thus created a microscale circulator that directionally routes light on an optical chip without using magnets. [30] Researchers have discovered three distinct variants of magnetic domain walls in the helimagnet iron germanium (FeGe). [29] Magnetic materials that form helical structures—coiled shapes comparable to a spiral staircase or the double helix strands of a DNA molecule—occasionally exhibit exotic behavior that could improve information processing in hard drives and other digital devices. [28] In a new study, researchers have designed "invisible" magnetic sensors—sensors that are magnetically invisible so that they can still detect but do not distort the surrounding magnetic fields. [27]
Category: Condensed Matter

[24] viXra:1805.0477 [pdf] submitted on 2018-05-26 07:39:54

Mechanochemistry Solution

Authors: George Rajna
Comments: 52 Pages.

Mechanochemistry Solution Chemist Dr. Lars Borchardt and his team at TU Dresden recently achieved a huge breakthrough in the synthesis of nanographenes. [33] Using graphene as a light-sensitive material for light detectors offers significant improvements with respect to materials being used nowadays. [32] The precision of measuring nanoscopic structures could be substantially improved, thanks to research involving the University of Warwick and QuantIC researchers at the University of Glasgow and Heriot Watt University into optical sensing. [31] Researchers at AMOLF and the University of Texas have circumvented this problem with a vibrating glass ring that interacts with light. They thus created a microscale circulator that directionally routes light on an optical chip without using magnets. [30] Researchers have discovered three distinct variants of magnetic domain walls in the helimagnet iron germanium (FeGe). [29] Magnetic materials that form helical structures—coiled shapes comparable to a spiral staircase or the double helix strands of a DNA molecule—occasionally exhibit exotic behavior that could improve information processing in hard drives and other digital devices. [28] In a new study, researchers have designed "invisible" magnetic sensors—sensors that are magnetically invisible so that they can still detect but do not distort the surrounding magnetic fields. [27] At Carnegie Mellon University, Materials Science and Engineering Professor Mike McHenry and his research group are developing metal amorphous nanocomposite materials (MANC), or magnetic materials whose nanocrystals have been grown out of an amorphous matrix to create a two phase magnetic material that exploits both the attractive magnetic inductions of the nanocrystals and the large electrical resistance of a metallic glass. [26] The search and manipulation of novel properties emerging from the quantum nature of matter could lead to next-generation electronics and quantum computers. [25]
Category: Condensed Matter

[23] viXra:1805.0474 [pdf] submitted on 2018-05-26 09:01:00

Infrared Spectrum and Sites of Action of Sanguinari ne by Molecular Mechanics and ab Initio Methods

Authors: Ricardo Gobato, Alireza Heidari
Comments: 9 Pages. error: abstract xxx = 6-311G**

Alkaloids occupy an important position in chemistry and pharmacology. Among the various alkaloids, berberine and coralyne of the protoberberine group, sanguinarine of the benzophenanthridine group, and aristolol actam-b -d-glucoside of the aristolochia group have potential to form molecular complexes with nucleic acid structures and have attracted recent attention for their prospective clinical and pharmacological utility. Sanguinarine is an alkaloid studied in the treatment of cancer cell proliferation. Found in several plants, is used in traditional medicine from several countries with Mexico and India in the natural treatment of wounds, conjunctivitis and as hallucinogen. Is a toxic quaternary ammonium salt from the group of benzylisoquinoline alkaloids. It is extracted from some plants, including bloodroot (Sanguinaria canadensis), Mexican prickly poppy (Argemone mexicana Linn) Chelidonium majus and Macleaya cordata. It is also found in the root, stem and leaves of the opium poppy but not in the capsule. Sanguinarine is a toxin that kills animal cells through its action on the Na+-K+-ATPase transmembrane protein. Due to the diverse properties of this alkaloid, via computational methods was made using quantum chemistry to try to clarify some molecular properties that characterize its main sites of action as a drug. A study was made on a molecular structure of the sanguinarine, by Molecular Mechanics, PM3, Hartree-Fock, Density Functional Theory and Møller-Plesset. For calculations a cluster of six computers was used with Prescott-256 Celeron© D processors. The first principles calculations have been performed to study the equilibrium configuration of Sanguinarine molecule. Several physical properties have been calculated, including formation enthalpies, entropies, dipole moments, and the infrared emission/absorption spectrum. The results showed that the main site of molecular interaction was determined to be the hydrogen atoms. This has a strong antioxidant potential in its structure. It probably interacts with free radicals reducing their carcinogenic effect on cells. A study of the infrar ed spectrum complemented the paper. Absorption peaks in the infrared spectrum at 1000 cm-1, for calculation MP2/6-31G and, 1240 and 1450 cm-1 for B3LYP/6-311G ** were obtained. The MP2 and B3LYP methods showed good results for the infrared absorption spectrum. Although the base used in the MP2 method is less accurate, compared to the B3LYP whose base 6-311G** has more accurate and broader functionalities, they are approximately equal for frequency peaks located in the 1060.6 cm-1 and 991.1 cm-1 range.
Category: Condensed Matter

[22] viXra:1805.0460 [pdf] submitted on 2018-05-25 07:43:42

Magnetism on Vibrating Layers

Authors: George Rajna
Comments: 50 Pages.

A team of researchers, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has demonstrated the possibility to induce and control a magnetic response in a nonmagnetic layer material though selective excitation of specific vibration of the material. [30] A new material created by Oregon State University researchers is a key step toward the next generation of supercomputers. [29] Magnetic materials that form helical structures—coiled shapes comparable to a spiral staircase or the double helix strands of a DNA molecule—occasionally exhibit exotic behavior that could improve information processing in hard drives and other digital devices. [28] In a new study, researchers have designed "invisible" magnetic sensors—sensors that are magnetically invisible so that they can still detect but do not distort the surrounding magnetic fields. [27] At Carnegie Mellon University, Materials Science and Engineering Professor Mike McHenry and his research group are developing metal amorphous nanocomposite materials (MANC), or magnetic materials whose nanocrystals have been grown out of an amorphous matrix to create a two phase magnetic material that exploits both the attractive magnetic inductions of the nanocrystals and the large electrical resistance of a metallic glass. [26] The search and manipulation of novel properties emerging from the quantum nature of matter could lead to next-generation electronics and quantum computers. [25] A research team from Lab) has found the first evidence that a shaking motion in the structure of an atomically thin (2-D) material possesses a naturally occurring circular rotation. [24] Topological effects, such as those found in crystals whose surfaces conduct electricity while their bulk does not, have been an exciting topic of physics research in recent years and were the subject of the 2016 Nobel Prize in physics. [23] A new technique developed by MIT researchers reveals the inner details of photonic crystals, synthetic materials whose exotic optical properties are the subject of widespread research. [22]
Category: Condensed Matter

[21] viXra:1805.0452 [pdf] submitted on 2018-05-26 04:21:32

Smart Clothes

Authors: George Rajna
Comments: 51 Pages.

The fibers can detect even the slightest pressure and strain, and can withstand deformation of close to 500 percent before recovering their initial shape, all of which makes them perfect for applications in smart clothing and prostheses, and for creating artificial nerves for robots. [31] A team of researchers, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has demonstrated the possibility to induce and control a magnetic response in a nonmagnetic layer material though selective excitation of specific vibration of the material. [30] A new material created by Oregon State University researchers is a key step toward the next generation of supercomputers. [29] Magnetic materials that form helical structures—coiled shapes comparable to a spiral staircase or the double helix strands of a DNA molecule—occasionally exhibit exotic behavior that could improve information processing in hard drives and other digital devices. [28] In a new study, researchers have designed "invisible" magnetic sensors—sensors that are magnetically invisible so that they can still detect but do not distort the surrounding magnetic fields. [27] At Carnegie Mellon University, Materials Science and Engineering Professor Mike McHenry and his research group are developing metal amorphous nanocomposite materials (MANC), or magnetic materials whose nanocrystals have been grown out of an amorphous matrix to create a two phase magnetic material that exploits both the attractive magnetic inductions of the nanocrystals and the large electrical resistance of a metallic glass. [26] The search and manipulation of novel properties emerging from the quantum nature of matter could lead to next-generation electronics and quantum computers. [25] A research team from Lab) has found the first evidence that a shaking motion in the structure of an atomically thin (2-D) material possesses a naturally occurring circular rotation. [24]
Category: Condensed Matter

[20] viXra:1805.0440 [pdf] submitted on 2018-05-23 08:13:59

Microscope Under Microscope

Authors: George Rajna
Comments: 60 Pages.

"We put the optical microscope under a microscope to achieve accuracy near the atomic scale," said NIST's Samuel Stavis, who served as the project leader for these efforts. [36] Researchers have designed an interferometer that works with magnetic quasiparticles called magnons, rather than photons as in conventional interferometers. [35] A technique to manipulate electrons with light could bring quantum computing up to room temperature. [34] The USTC Microcavity Research Group in the Key Laboratory of Quantum Information has perfected a 4-port, all-optically controlled non-reciprocal multifunctional photonic device based on a magnetic-field-free optomechanical resonator. [33] To address this technology gap, a team of engineers from the National University of Singapore (NUS) has developed an innovative microchip, named BATLESS, that can continue to operate even when the battery runs out of energy. [32] Stanford researchers have developed a water-based battery that could provide a cheap way to store wind or solar energy generated when the sun is shining and wind is blowing so it can be fed back into the electric grid and be redistributed when demand is high. [31] Researchers at AMOLF and the University of Texas have circumvented this problem with a vibrating glass ring that interacts with light. They thus created a microscale circulator that directionally routes light on an optical chip without using magnets. [30] Researchers have discovered three distinct variants of magnetic domain walls in the helimagnet iron germanium (FeGe). [29] Magnetic materials that form helical structures—coiled shapes comparable to a spiral staircase or the double helix strands of a DNA molecule—occasionally exhibit exotic behavior that could improve information processing in hard drives and other digital devices. [28] In a new study, researchers have designed "invisible" magnetic sensors—sensors that are magnetically invisible so that they can still detect but do not distort the surrounding magnetic fields. [27]
Category: Condensed Matter

[19] viXra:1805.0364 [pdf] submitted on 2018-05-19 08:45:00

Diamond Spin-Off Tech

Authors: George Rajna
Comments: 25 Pages.

It may sound contradictory, but diamonds are the key to a new technique that could provide a very-low-cost alternative to multimillion-dollar medical imaging and drug-discovery devices. [12] Lead researcher Dr Jonathan Breeze, from Imperial's Department of Materials, said: "This breakthrough paves the way for the widespread adoption of masers and opens the door for a wide array of applications that we are keen to explore. We hope the maser will now enjoy as much success as the laser." [11] Japanese researchers have optimized the design of laboratory-grown, synthetic diamonds. [10] Nearly 75 years ago, Nobel Prize-winning physicist Erwin Schrödinger wondered if the mysterious world of quantum mechanics played a role in biology. A recent finding by Northwestern University's Prem Kumar adds further evidence that the answer might be yes. [9] A UNSW Australia-led team of researchers has discovered how algae that survive in very low levels of light are able to switch on and off a weird quantum phenomenon that occurs during photosynthesis. [8] This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modeled photoactive prebiotic kernel systems. [7] The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to understand the Quantum Biology.
Category: Condensed Matter

[18] viXra:1805.0363 [pdf] submitted on 2018-05-19 10:25:17

Supersonic Waves in Electronics

Authors: George Rajna
Comments: 60 Pages.

Researchers at the Department of Energy's Oak Ridge National Laboratory made the first observations of waves of atomic rearrangements, known as phasons, propagating supersonically through a vibrating crystal lattice—a discovery that may dramatically improve heat transport in insulators and enable new strategies for heat management in future electronics devices. [36] Researchers have designed an interferometer that works with magnetic quasiparticles called magnons, rather than photons as in conventional interferometers. [35] A technique to manipulate electrons with light could bring quantum computing up to room temperature. [34] The USTC Microcavity Research Group in the Key Laboratory of Quantum Information has perfected a 4-port, all-optically controlled non-reciprocal multifunctional photonic device based on a magnetic-field-free optomechanical resonator. [33] To address this technology gap, a team of engineers from the National University of Singapore (NUS) has developed an innovative microchip, named BATLESS, that can continue to operate even when the battery runs out of energy. [32] Stanford researchers have developed a water-based battery that could provide a cheap way to store wind or solar energy generated when the sun is shining and wind is blowing so it can be fed back into the electric grid and be redistributed when demand is high. [31] Researchers at AMOLF and the University of Texas have circumvented this problem with a vibrating glass ring that interacts with light. They thus created a microscale circulator that directionally routes light on an optical chip without using magnets. [30] Researchers have discovered three distinct variants of magnetic domain walls in the helimagnet iron germanium (FeGe). [29] Magnetic materials that form helical structures—coiled shapes comparable to a spiral staircase or the double helix strands of a DNA molecule—occasionally exhibit exotic behavior that could improve information processing in hard drives and other digital devices. [28] In a new study, researchers have designed "invisible" magnetic sensors—sensors that are magnetically invisible so that they can still detect but do not distort the surrounding magnetic fields. [27]
Category: Condensed Matter

[17] viXra:1805.0341 [pdf] submitted on 2018-05-18 10:58:45

Magnonic Interferometer

Authors: George Rajna
Comments: 57 Pages.

Researchers have designed an interferometer that works with magnetic quasiparticles called magnons, rather than photons as in conventional interferometers. [35] A technique to manipulate electrons with light could bring quantum computing up to room temperature. [34] The USTC Microcavity Research Group in the Key Laboratory of Quantum Information has perfected a 4-port, all-optically controlled non-reciprocal multifunctional photonic device based on a magnetic-field-free optomechanical resonator. [33] To address this technology gap, a team of engineers from the National University of Singapore (NUS) has developed an innovative microchip, named BATLESS, that can continue to operate even when the battery runs out of energy. [32] Stanford researchers have developed a water-based battery that could provide a cheap way to store wind or solar energy generated when the sun is shining and wind is blowing so it can be fed back into the electric grid and be redistributed when demand is high. [31] Researchers at AMOLF and the University of Texas have circumvented this problem with a vibrating glass ring that interacts with light. They thus created a microscale circulator that directionally routes light on an optical chip without using magnets. [30] Researchers have discovered three distinct variants of magnetic domain walls in the helimagnet iron germanium (FeGe). [29] Magnetic materials that form helical structures—coiled shapes comparable to a spiral staircase or the double helix strands of a DNA molecule—occasionally exhibit exotic behavior that could improve information processing in hard drives and other digital devices. [28] In a new study, researchers have designed "invisible" magnetic sensors—sensors that are magnetically invisible so that they can still detect but do not distort the surrounding magnetic fields. [27]
Category: Condensed Matter

[16] viXra:1805.0339 [pdf] submitted on 2018-05-18 14:22:46

Energy Spectra of Quantum Dots

Authors: Markus Johanssen
Comments: 2 Pages.

This is the energy spectra for quantum dot emissions
Category: Condensed Matter

[15] viXra:1805.0306 [pdf] submitted on 2018-05-15 12:59:56

Van der Waals Material

Authors: George Rajna
Comments: 40 Pages.

The unusual electronic and magnetic properties of van der Waals (vdW) materials, made up of many 'stacked' 2-D layers, offer potential for future electronics, including spintronics. [26] Researchers at the University of Tokyo used an efficient method to create chiral materials using circularly polarized light. [25] Yale physicists have uncovered hints of a time crystal—a form of matter that "ticks" when exposed to an electromagnetic pulse—in the last place they expected: a crystal you might find in a child's toy. [24] The research shows that concentrated electrolytes in solution affect hydrogen bonding, ion interactions, and coordination geometries in currently unpredictable ways. [23] An exotic state of matter that is dazzling scientists with its electrical properties, can also exhibit unusual optical properties, as shown in a theoretical study by researchers at A*STAR. [22] The breakthrough was made in the lab of Andrea Alù, director of the ASRC's Photonics Initiative. Alù and his colleagues from The City College of New York, University of Texas at Austin and Tel Aviv University were inspired by the seminal work of three British researchers who won the 2016 Noble Prize in Physics for their work, which teased out that particular properties of matter (such as electrical conductivity) can be preserved in certain materials despite continuous changes in the matter's form or shape. [21] Researchers at the University of Illinois at Urbana-Champaign have developed a new technology for switching heat flows 'on' or 'off'. [20] Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive paint. [19] A team of researchers with the University of California and SRI International has developed a new type of cooling device that is both portable and efficient. [18] Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution and energy balance in systems ranging from astrophysical objects to fusion plasmas. [17]
Category: Condensed Matter

[14] viXra:1805.0278 [pdf] submitted on 2018-05-13 10:06:51

Coupled Diffusion of Impurity Atoms and Point Defects in Silicon Crystals

Authors: O.I. Velichko
Comments: In English, 215 pages, 91 figures, 556 references, Contents and Preliminary

A theory describing the processes of atomic diffusion in a nonequilibrium state with nonuniform distributions of components in a defect-impurity system of silicon crystals is proposed. Based on this theory, partial diffusion models are constructed and simulation of a large number of experimental data is curried out. A comparison of the simulation results with the experiments confirms the correctness and importance of the theory developed. The book will useful for researchers, engineers, and advanced students in semiconductor physics, microelectronics, and nanoelectronics. Practical application of the theoretical ideas formulated in the book allows finding cheaper solutions in the manufacturing of semiconductor devices and integrated microcircuits.
Category: Condensed Matter

[13] viXra:1805.0263 [pdf] submitted on 2018-05-14 04:48:59

Photoexcited Graphene Puzzle

Authors: George Rajna
Comments: 52 Pages.

Using graphene as a light-sensitive material for light detectors offers significant improvements with respect to materials being used nowadays. [32] The precision of measuring nanoscopic structures could be substantially improved, thanks to research involving the University of Warwick and QuantIC researchers at the University of Glasgow and Heriot Watt University into optical sensing. [31] Researchers at AMOLF and the University of Texas have circumvented this problem with a vibrating glass ring that interacts with light. They thus created a microscale circulator that directionally routes light on an optical chip without using magnets. [30] Researchers have discovered three distinct variants of magnetic domain walls in the helimagnet iron germanium (FeGe). [29] Magnetic materials that form helical structures—coiled shapes comparable to a spiral staircase or the double helix strands of a DNA molecule—occasionally exhibit exotic behavior that could improve information processing in hard drives and other digital devices. [28] In a new study, researchers have designed "invisible" magnetic sensors—sensors that are magnetically invisible so that they can still detect but do not distort the surrounding magnetic fields. [27] At Carnegie Mellon University, Materials Science and Engineering Professor Mike McHenry and his research group are developing metal amorphous nanocomposite materials (MANC), or magnetic materials whose nanocrystals have been grown out of an amorphous matrix to create a two phase magnetic material that exploits both the attractive magnetic inductions of the nanocrystals and the large electrical resistance of a metallic glass. [26] The search and manipulation of novel properties emerging from the quantum nature of matter could lead to next-generation electronics and quantum computers. [25] A research team from Lab) has found the first evidence that a shaking motion in the structure of an atomically thin (2-D) material possesses a naturally occurring circular rotation. [24]
Category: Condensed Matter

[12] viXra:1805.0237 [pdf] submitted on 2018-05-11 10:08:46

Neglected Atomic Clock

Authors: George Rajna
Comments: 40 Pages.

Like watchmakers choosing superior materials to build a fine timepiece, physicists at the Centre for Quantum Technologies (CQT) at the National University of Singapore have singled out an atom that could allow them to build better atomic clocks. [25] Yale physicists have uncovered hints of a time crystal—a form of matter that "ticks" when exposed to an electromagnetic pulse—in the last place they expected: a crystal you might find in a child's toy. [24] The research shows that concentrated electrolytes in solution affect hydrogen bonding, ion interactions, and coordination geometries in currently unpredictable ways. [23] An exotic state of matter that is dazzling scientists with its electrical properties, can also exhibit unusual optical properties, as shown in a theoretical study by researchers at A*STAR. [22] The breakthrough was made in the lab of Andrea Alù, director of the ASRC's Photonics Initiative. Alù and his colleagues from The City College of New York, University of Texas at Austin and Tel Aviv University were inspired by the seminal work of three British researchers who won the 2016 Noble Prize in Physics for their work, which teased out that particular properties of matter (such as electrical conductivity) can be preserved in certain materials despite continuous changes in the matter's form or shape. [21] Researchers at the University of Illinois at Urbana-Champaign have developed a new technology for switching heat flows 'on' or 'off'. [20] Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive paint. [19] A team of researchers with the University of California and SRI International has developed a new type of cooling device that is both portable and efficient. [18] Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution and energy balance in systems ranging from astrophysical objects to fusion plasmas. [17] Researchers from the Theory Department of the MPSD have realized the control of thermal and electrical currents in nanoscale devices by means of quantum local observations. [16]
Category: Condensed Matter

[11] viXra:1805.0236 [pdf] submitted on 2018-05-11 10:30:38

Heat and Sound Wave Interactions

Authors: George Rajna
Comments: 42 Pages.

A solid can serve as a medium for heat and sound wave interactions just like a fluid does for thermoacoustic engines and refrigerators-resulting in leak-free machines that can stay operating longer. [26] Like watchmakers choosing superior materials to build a fine timepiece, physicists at the Centre for Quantum Technologies (CQT) at the National University of Singapore have singled out an atom that could allow them to build better atomic clocks. [25] Yale physicists have uncovered hints of a time crystal—a form of matter that "ticks" when exposed to an electromagnetic pulse—in the last place they expected: a crystal you might find in a child's toy. [24] The research shows that concentrated electrolytes in solution affect hydrogen bonding, ion interactions, and coordination geometries in currently unpredictable ways. [23] An exotic state of matter that is dazzling scientists with its electrical properties, can also exhibit unusual optical properties, as shown in a theoretical study by researchers at A*STAR. [22] The breakthrough was made in the lab of Andrea Alù, director of the ASRC's Photonics Initiative. Alù and his colleagues from The City College of New York, University of Texas at Austin and Tel Aviv University were inspired by the seminal work of three British researchers who won the 2016 Noble Prize in Physics for their work, which teased out that particular properties of matter (such as electrical conductivity) can be preserved in certain materials despite continuous changes in the matter's form or shape. [21] Researchers at the University of Illinois at Urbana-Champaign have developed a new technology for switching heat flows 'on' or 'off'. [20] Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive paint. [19] A team of researchers with the University of California and SRI International has developed a new type of cooling device that is both portable and efficient. [18] Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution and energy balance in systems ranging from astrophysical objects to fusion plasmas. [17]
Category: Condensed Matter

[10] viXra:1805.0210 [pdf] submitted on 2018-05-10 06:50:11

Molecular Soccer Balls

Authors: George Rajna
Comments: 50 Pages.

Fullerenes are composed of 60 carbon atoms joined together in hexagonal rings to form a sphere that resembles a soccer ball. [26] Researchers at the University of Tokyo used an efficient method to create chiral materials using circularly polarized light. [25] Yale physicists have uncovered hints of a time crystal—a form of matter that "ticks" when exposed to an electromagnetic pulse—in the last place they expected: a crystal you might find in a child's toy. [24] The research shows that concentrated electrolytes in solution affect hydrogen bonding, ion interactions, and coordination geometries in currently unpredictable ways. [23] An exotic state of matter that is dazzling scientists with its electrical properties, can also exhibit unusual optical properties, as shown in a theoretical study by researchers at A*STAR. [22] The breakthrough was made in the lab of Andrea Alù, director of the ASRC's Photonics Initiative. Alù and his colleagues from The City College of New York, University of Texas at Austin and Tel Aviv University were inspired by the seminal work of three British researchers who won the 2016 Noble Prize in Physics for their work, which teased out that particular properties of matter (such as electrical conductivity) can be preserved in certain materials despite continuous changes in the matter's form or shape. [21] Researchers at the University of Illinois at Urbana-Champaign have developed a new technology for switching heat flows 'on' or 'off'. [20] Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive paint. [19] A team of researchers with the University of California and SRI International has developed a new type of cooling device that is both portable and efficient. [18] Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution and energy balance in systems ranging from astrophysical objects to fusion plasmas. [17] Researchers from the Theory Department of the MPSD have realized the control of thermal and electrical currents in nanoscale devices by means of quantum local observations. [16]
Category: Condensed Matter

[9] viXra:1805.0196 [pdf] submitted on 2018-05-09 08:48:53

Highly Chiral Materials

Authors: George Rajna
Comments: 38 Pages.

Researchers at the University of Tokyo used an efficient method to create chiral materials using circularly polarized light. [25] Yale physicists have uncovered hints of a time crystal—a form of matter that "ticks" when exposed to an electromagnetic pulse—in the last place they expected: a crystal you might find in a child's toy. [24] The research shows that concentrated electrolytes in solution affect hydrogen bonding, ion interactions, and coordination geometries in currently unpredictable ways. [23] An exotic state of matter that is dazzling scientists with its electrical properties, can also exhibit unusual optical properties, as shown in a theoretical study by researchers at A*STAR. [22] The breakthrough was made in the lab of Andrea Alù, director of the ASRC's Photonics Initiative. Alù and his colleagues from The City College of New York, University of Texas at Austin and Tel Aviv University were inspired by the seminal work of three British researchers who won the 2016 Noble Prize in Physics for their work, which teased out that particular properties of matter (such as electrical conductivity) can be preserved in certain materials despite continuous changes in the matter's form or shape. [21] Researchers at the University of Illinois at Urbana-Champaign have developed a new technology for switching heat flows 'on' or 'off'. [20] Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive paint. [19] A team of researchers with the University of California and SRI International has developed a new type of cooling device that is both portable and efficient. [18] Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution and energy balance in systems ranging from astrophysical objects to fusion plasmas. [17] Researchers from the Theory Department of the MPSD have realized the control of thermal and electrical currents in nanoscale devices by means of quantum local observations. [16]
Category: Condensed Matter

[8] viXra:1805.0190 [pdf] submitted on 2018-05-09 10:41:19

Leaning Tower of Pisa Mystery

Authors: George Rajna
Comments: 23 Pages.

Why has the Leaning Tower of Pisa survived the strong earthquakes that have hit the region since the middle ages? [9] New insights into the properties of neutron stars have come from two independent analyses of gravitational waves from the GW170817 neutron-star merger. [8] Using data from the first-ever gravitational waves detected last year, along with a theoretical analysis, physicists have shown that gravitational waves may oscillate between two different forms called "g" and "f"-type gravitational waves. [7] Astronomy experiments could soon test an idea developed by Albert Einstein almost exactly a century ago, scientists say. [6] It’s estimated that 27% of all the matter in the universe is invisible, while everything from PB&J sandwiches to quasars accounts for just 4.9%. But a new theory of gravity proposed by theoretical physicist Erik Verlinde of the University of Amsterdam found out a way to dispense with the pesky stuff. [5]
Category: Condensed Matter

[7] viXra:1805.0142 [pdf] submitted on 2018-05-07 16:11:39

Defects in BCS-Theory/ Why a Theory of High-Tc-Superconductivity Can`t be Successful (At Now)?

Authors: Hans Christian Haunschild
Comments: 6 Pages.

In this work it will be shown that the BCS-Theory of Superconductivity contains two mistakes. Without deleting these mistakes no theory of High-temperature-superconductivity will be successful.
Category: Condensed Matter

[6] viXra:1805.0134 [pdf] submitted on 2018-05-06 04:59:35

Nanoscale Two-Photon Technique

Authors: George Rajna
Comments: 52 Pages.

Researchers at AMOLF and the University of Texas have circumvented this problem with a vibrating glass ring that interacts with light. They thus created a microscale circulator that directionally routes light on an optical chip without using magnets. [30] Researchers have discovered three distinct variants of magnetic domain walls in the helimagnet iron germanium (FeGe). [29] Magnetic materials that form helical structures—coiled shapes comparable to a spiral staircase or the double helix strands of a DNA molecule—occasionally exhibit exotic behavior that could improve information processing in hard drives and other digital devices. [28] In a new study, researchers have designed "invisible" magnetic sensors—sensors that are magnetically invisible so that they can still detect but do not distort the surrounding magnetic fields. [27] At Carnegie Mellon University, Materials Science and Engineering Professor Mike McHenry and his research group are developing metal amorphous nanocomposite materials (MANC), or magnetic materials whose nanocrystals have been grown out of an amorphous matrix to create a two phase magnetic material that exploits both the attractive magnetic inductions of the nanocrystals and the large electrical resistance of a metallic glass. [26] The search and manipulation of novel properties emerging from the quantum nature of matter could lead to next-generation electronics and quantum computers. [25] A research team from Lab) has found the first evidence that a shaking motion in the structure of an atomically thin (2-D) material possesses a naturally occurring circular rotation. [24] Topological effects, such as those found in crystals whose surfaces conduct electricity while their bulk does not, have been an exciting topic of physics research in recent years and were the subject of the 2016 Nobel Prize in physics. [23]
Category: Condensed Matter

[5] viXra:1805.0122 [pdf] submitted on 2018-05-06 00:24:40

The Two-Dimensional Vavilov-Cherenkov Effect with Radiative Corrections

Authors: Miroslav Pardy
Comments: 13 Pages. ----

We derive the photon power spectrum, including the radiative corrections, generated by charged particle moving within 2D graphene sheet with implanted ions forming dielectric medium. It enables the experimental realization of the Vavilov-Cherenkov radiation. The relation of the Vavilov-Cherenkov radiation to light emission diode (LED) is discussed. LED dielectric sheets can be the crucial components of detectors in experimental particle physics. So, the article represents the unification of graphene physics with the physics of elementary particles.
Category: Condensed Matter

[4] viXra:1805.0099 [pdf] submitted on 2018-05-04 01:23:36

Variants of Magnetic Domain Walls

Authors: George Rajna
Comments: 48 Pages.

Researchers have discovered three distinct variants of magnetic domain walls in the helimagnet iron germanium (FeGe). [29] Magnetic materials that form helical structures—coiled shapes comparable to a spiral staircase or the double helix strands of a DNA molecule—occasionally exhibit exotic behavior that could improve information processing in hard drives and other digital devices. [28] In a new study, researchers have designed "invisible" magnetic sensors—sensors that are magnetically invisible so that they can still detect but do not distort the surrounding magnetic fields. [27] At Carnegie Mellon University, Materials Science and Engineering Professor Mike McHenry and his research group are developing metal amorphous nanocomposite materials (MANC), or magnetic materials whose nanocrystals have been grown out of an amorphous matrix to create a two phase magnetic material that exploits both the attractive magnetic inductions of the nanocrystals and the large electrical resistance of a metallic glass. [26] The search and manipulation of novel properties emerging from the quantum nature of matter could lead to next-generation electronics and quantum computers. [25] A research team from the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) has found the first evidence that a shaking motion in the structure of an atomically thin (2-D) material possesses a naturally occurring circular rotation. [24]
Category: Condensed Matter

[3] viXra:1805.0094 [pdf] submitted on 2018-05-04 04:07:16

Atomically Thin Magnetic Device

Authors: George Rajna
Comments: 48 Pages.

A University of Washington-led team has now taken this one step further by encoding information using magnets that are just a few layers of atoms in thickness. [30] Single-molecule magnets (SMMs) have been attracting a lot of attention recently. This is because of the increased demand for faster, longer-lasting and lower-energy IT systems, and the need for higher data storage capacity. [29] Researchers have discovered that using an easily made combination of materials might be the way to offer a more stable environment for smaller and safer data storage, ultimately leading to miniature computers. [28] Employees of Kazan Federal University and Kazan Quantum Center of Kazan National Research Technical University demonstrated an original layout of a prototype of multiresonator broadband quantum-memory interface. [27] New nanoparticle-based films that are more than 80 times thinner than a human hair may help to fill this need by providing materials that can holographically archive more than 1000 times more data than a DVD in a 10-by-10-centimeter piece of film. [26] Researches of scientists from South Ural State University are implemented within this area. [25] Following three years of extensive research, Hebrew University of Jerusalem (HU) physicist Dr. Uriel Levy and his team have created technology that will enable computers and all optic communication devices to run 100 times faster through terahertz microchips. [24] When the energy efficiency of electronics poses a challenge, magnetic materials may have a solution. [23] An exotic state of matter that is dazzling scientists with its electrical properties, can also exhibit unusual optical properties, as shown in a theoretical study by researchers at A*STAR. [22] The breakthrough was made in the lab of Andrea Alù, director of the ASRC's Photonics Initiative. Alù and his colleagues from The City College of New York, University of Texas at Austin and Tel Aviv University were inspired by the seminal work of three British researchers who won the 2016 Noble Prize in Physics for their work, which teased out that particular properties of matter (such as electrical conductivity) can be preserved in certain materials despite continuous changes in the matter's form or shape. [21]
Category: Condensed Matter

[2] viXra:1805.0082 [pdf] submitted on 2018-05-02 13:46:12

Time Crystal

Authors: George Rajna
Comments: 37 Pages.

Yale physicists have uncovered hints of a time crystal—a form of matter that "ticks" when exposed to an electromagnetic pulse—in the last place they expected: a crystal you might find in a child's toy. [24] The research shows that concentrated electrolytes in solution affect hydrogen bonding, ion interactions, and coordination geometries in currently unpredictable ways. [23] An exotic state of matter that is dazzling scientists with its electrical properties, can also exhibit unusual optical properties, as shown in a theoretical study by researchers at A*STAR. [22] The breakthrough was made in the lab of Andrea Alù, director of the ASRC's Photonics Initiative. Alù and his colleagues from The City College of New York, University of Texas at Austin and Tel Aviv University were inspired by the seminal work of three British researchers who won the 2016 Noble Prize in Physics for their work, which teased out that particular properties of matter (such as electrical conductivity) can be preserved in certain materials despite continuous changes in the matter's form or shape. [21] Researchers at the University of Illinois at Urbana-Champaign have developed a new technology for switching heat flows 'on' or 'off'. [20] Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive paint. [19] A team of researchers with the University of California and SRI International has developed a new type of cooling device that is both portable and efficient. [18] Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution and energy balance in systems ranging from astrophysical objects to fusion plasmas. [17] Researchers from the Theory Department of the MPSD have realized the control of thermal and electrical currents in nanoscale devices by means of quantum local observations. [16] Physicists have proposed a new type of Maxwell's demon—the hypothetical agent that extracts work from a system by decreasing the system's entropy—in which the demon can extract work just by making a measurement, by taking advantage of quantum fluctuations and quantum superposition. [15]
Category: Condensed Matter

[1] viXra:1805.0031 [pdf] submitted on 2018-05-02 09:11:31

Ions Influence on Atomic Motions

Authors: George Rajna
Comments: 50 Pages.

In batteries, fuel cells or technical coatings, central chemical processes take place on the surface of electrodes which are in contact with liquids. During these processes, atoms move over the surface, but how this exactly happens has hardly been researched. [34] A team of scientists from across the U.S. has found a new way to create molecular interconnections that can give a certain class of materials exciting new properties, including improving their ability to catalyze chemical reactions or harvest energy from light. [33] A team of scientists including Carnegie's Tim Strobel and Venkata Bhadram now report unexpected quantum behavior of hydrogen molecules, H2, trapped within tiny cages made of organic molecules, demonstrating that the structure of the cage influences the behavior of the molecule imprisoned inside it. [32] A potential revolution in device engineering could be underway, thanks to the discovery of functional electronic interfaces in quantum materials that can self-assemble spontaneously. [31] Now, for the first time ever, researchers from Aalto University, Brazilian Center for Research in Physics (CBPF), Technical University of Braunschweig and Nagoya University have produced the superconductor-like quantum spin liquid predicted by Anderson. [30] Electrons in graphene—an atomically thin, flexible and incredibly strong substance that has captured the imagination of materials scientists and physicists alike—move at the speed of light, and behave like they have no mass. [29] In a series of exciting experiments, Cambridge researchers experienced weightlessness testing graphene's application in space. [28] Scientists from ITMO University have developed effective nanoscale light sources based on halide perovskite. [27] Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25] The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24]
Category: Condensed Matter