Condensed Matter

1803 Submissions

[22] viXra:1803.0737 [pdf] submitted on 2018-03-30 12:16:40

Molecular Cross-Linking

Authors: George Rajna
Comments: 47 Pages.

A team of scientists from across the U.S. has found a new way to create molecular interconnections that can give a certain class of materials exciting new properties, including improving their ability to catalyze chemical reactions or harvest energy from light. [33] A team of scientists including Carnegie's Tim Strobel and Venkata Bhadram now report unexpected quantum behavior of hydrogen molecules, H2, trapped within tiny cages made of organic molecules, demonstrating that the structure of the cage influences the behavior of the molecule imprisoned inside it. [32] A potential revolution in device engineering could be underway, thanks to the discovery of functional electronic interfaces in quantum materials that can self-assemble spontaneously. [31] Now, for the first time ever, researchers from Aalto University, Brazilian Center for Research in Physics (CBPF), Technical University of Braunschweig and Nagoya University have produced the superconductor-like quantum spin liquid predicted by Anderson. [30] Electrons in graphene—an atomically thin, flexible and incredibly strong substance that has captured the imagination of materials scientists and physicists alike—move at the speed of light, and behave like they have no mass. [29] In a series of exciting experiments, Cambridge researchers experienced weightlessness testing graphene's application in space. [28] Scientists from ITMO University have developed effective nanoscale light sources based on halide perovskite. [27] Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25] The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24] In a joint research project, scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Technische Universität Berlin (TU) and the University of Rostock have managed for the first time to image free nanoparticles in a laboratory experiment using a highintensity laser source. [23]
Category: Condensed Matter

[21] viXra:1803.0710 [pdf] submitted on 2018-03-29 08:57:21

Physics of Finance

Authors: George Rajna
Comments: 28 Pages.

Researchers at Tokyo Institute of Technology (Tokyo Tech) have brought the worlds of physics and finance one step closer to each other. [16] Such chirping signals a loss of heat that can slow fusion reactions, a loss that has long puzzled scientists. [15] Physicists from the Institute of Applied Physics of the Russian Academy of Sciences, researchers from Chalmers University of Technology and computer scientists from Lobachevsky University have developed a new software tool called PICADOR for numerical modeling of laser plasmas on modern supercomputers. [14]
Category: Condensed Matter

[20] viXra:1803.0386 [pdf] submitted on 2018-03-21 11:22:51

Weyl Semimetals

Authors: George Rajna
Comments: 36 Pages.

Weyl fermions are novel particles that were predicted to be seen in high-energy physics experiments but have not been observed. [24] The research shows that concentrated electrolytes in solution affect hydrogen bonding, ion interactions, and coordination geometries in currently unpredictable ways. [23] An exotic state of matter that is dazzling scientists with its electrical properties, can also exhibit unusual optical properties, as shown in a theoretical study by researchers at A*STAR. [22] The breakthrough was made in the lab of Andrea Alù, director of the ASRC's Photonics Initiative. Alù and his colleagues from The City College of New York, University of Texas at Austin and Tel Aviv University were inspired by the seminal work of three British researchers who won the 2016 Noble Prize in Physics for their work, which teased out that particular properties of matter (such as electrical conductivity) can be preserved in certain materials despite continuous changes in the matter's form or shape. [21] Researchers at the University of Illinois at Urbana-Champaign have developed a new technology for switching heat flows 'on' or 'off'. [20] Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive paint. [19] A team of researchers with the University of California and SRI International has developed a new type of cooling device that is both portable and efficient. [18] Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution and energy balance in systems ranging from astrophysical objects to fusion plasmas. [17] Researchers from the Theory Department of the MPSD have realized the control of thermal and electrical currents in nanoscale devices by means of quantum local observations. [16] Physicists have proposed a new type of Maxwell's demon—the hypothetical agent that extracts work from a system by decreasing the system's entropy—in which the demon can extract work just by making a measurement, by taking advantage of quantum fluctuations and quantum superposition. [15] Pioneering research offers a fascinating view into the inner workings of the mind of 'Maxwell's Demon', a famous thought experiment in physics. [14]
Category: Condensed Matter

[19] viXra:1803.0378 [pdf] submitted on 2018-03-21 05:39:01

Origin of Mass and a Unified Theory for Four Fundamental Forces in Nature

Authors: Gokaran Shukla
Comments: 7 Pages.

Atoms have the stationary orbits. Our solar-system also have the stationary orbits. Question arises that is there any similarity between atoms and our solar system? If yes then how do we know that? Can we prove it using some very fundamental rules which nature follows? Also, can we prove that what is the origin of mass? Can we provide one lines of thought and unified all forces (including the four fundamental forces) in nature? In this paper we will discuss about the origin of stationary orbits in an atom, origin of mass and origin of all forces (including the four fundamental forces namel;, gravitational, electrical, magnetic and nuclear force) in nature. We shall use Max Planck black-body idea, Brillouin zones construction rules and Bragg's diffraction conditions and will show that the origin of stationary orbit, origin of mass and origin of every force in nature arises due to quantum mechanical effect. We will use quantum mechanical rules and will explain that \textit{why} Venus, Uranus, Neptune and Pluto rotates clockwise about their axis while other planets rotates anti-clockwise.
Category: Condensed Matter

[18] viXra:1803.0315 [pdf] submitted on 2018-03-20 05:58:22

Origin of Color in Nature

Authors: Gokaran Shukla
Comments: 12 Pages.

Human minds are always curious about the different of colors that exist in nature. A number of efforts has been made to describes the origin of colors in different materials. Till now the explanations are mostly based on using reflectivity and emissivity of the materials using classical phenomenological models. In this paper we will discuss about the origin of color using the Brillouin zones and Bragg's diffraction conditions and will show that the origin of color is purely arises due to quantum mechanical effect. We will also show that the origin of finite conductivity in any material at an arbitrary electrochemical potential is also arises due to quantum mechanical effect. We will also show that the origin of anisotropy in conductivity and in effective mass of electron in any metal are arises due to the quantum mechanical effect as well.
Category: Condensed Matter

[17] viXra:1803.0311 [pdf] submitted on 2018-03-20 09:07:18

Mystery of Superconducting Dome

Authors: George Rajna
Comments: 28 Pages.

University of Groningen physicists, and colleagues from Nijmegen and Hong Kong, have induced superconductivity in a monolayer of tungsten disulfide. [35] One can also imagine making a superconducting transistor out of graphene, which you can switch on and off, from superconducting to insulating. That opens many possibilities for quantum devices." [34] A team of scientists has detected a hidden state of electronic order in a layered material containing lanthanum, barium, copper, and oxygen (LBCO). [33] Now in a new study, researchers have discovered the existence of a positive feedback loop that gratly enhances the superconductivity of cuprates and may shed light on the origins of high-temperature cuprate superconductivity— considered one of the most important open questions in physics. [33] Using ultracold atoms, researchers at Heidelberg University have found an exotic state of matter where the constituent particles pair up when limited to two dimensions. [32] Neutron diffraction at the Australian Centre for Neutron Scattering has clarified the absence of magnetic order and classified the superconductivity of a new next-generation of superconductors in a paper published in Europhysics Letters. [31] A potential new state of matter is being reported in the journal Nature, with research showing that among superconducting materials in high magnetic fields, the phenomenon of electronic symmetry breaking is common. [30] Researchers from the University of Geneva (UNIGE) in Switzerland and the Technical University Munich in Germany have lifted the veil on the electronic characteristics of high-temperature superconductors. Their research, published in Nature Communications, shows that the electronic densities measured in these superconductors are a combination of two separate effects. As a result, they propose a new model that suggests the existence of two coexisting states rather than competing ones postulated for the past thirty years, a small revolution in the world of superconductivity. [29]
Category: Condensed Matter

[16] viXra:1803.0291 [pdf] submitted on 2018-03-21 03:11:20

Impossibility of the Topological Insulators in Nature

Authors: Gokaran Shukla
Comments: 7 Pages.

In nature material only exist in \textit{metal}, \textit{semi-metal}, and in \textit{perfect-insulator}. Recently a new theory has been discovered and named it as a \textit{topological-insulator} theory after using the tight binding model, spin of electron and time reversal symmetry\cite{Halande} \cite{kosterlitz} \cite{noblelecture}. The discoverers \cite{Halande} \cite{kosterlitz}\cite{noblelecture} \textit{claims} that the new material should behaves like a conductor in surface, and insulators in bulk \textit{along the same principal-direction}. Inventors uses tight binding model, expanded Bloch wave-functions using atomic like basis functions, uses spin of electron, time reversal symmetry, and $punctured$ the band-gap which arises after single Bragg's plane diffraction condition. In this paper we will use the full Brillouin zones and Bragg's diffraction conditions and will show that there will $never$ be any topological insulator in nature, otherwise Bragg's diffractions condition will break-down! We will provide the fundamental difference between the topological insulators and in semi-metals, and will show that all the existing and $claimed$ topological insulators are semi-metals.
Category: Condensed Matter

[15] viXra:1803.0288 [pdf] submitted on 2018-03-21 03:40:23

Alternative Explanation of Magnetism Without Spin

Authors: Gokaran Shukla
Comments: 16 Pages.

Magnetic materials are known from ages. Spin of electrons has been used to explain the magnetism and classify the magnetic materials into different class. In this paper we will provide the alternative explanation of magnetism by using the Brillouin zones, Bragg's diffraction conditions, band-structure of materials and will explain that the fundamental origin of magnetism is same in all the three cases, namely; in ferromagnet (Fe, Co, Ni, Gd, Dy), magnetism arises due to the passing of electric current in metallic wire, and magnetism in every semiconductor or in perfect insulator after heavily doping by $p$-type dopant, so that the electrochemical potential (Fermi energy) of the material either cut or touch the valance-band maxima. We will explain that why iron have more than one valance electron at the Fermi-level using the Brillouin zones, Bragg's diffraction condition, and band-structures of iron. We will explain the origin of the exchange magnetic field that present in every magnetic materials. We will also explain that why $\mathrm{Fe, \enspace Co,\enspace Ni},$ and $\mathrm{Gd}$ behaves as a ferromagnet while $\mathrm{Cr}$ is anti-ferromagnet. We will develop a general rule which applicable to all crystal structure to classify them into a ferromagnetic, diamagnetic, paramagnetic, ferrimagnetic and anti-ferromagnetic in nature. We will use our developed rule and will explain the giant magneto-resistance (GMR), tunneling magneto-resistance (TMR), spin-transfer-torque random access memory (STT-RAM), and magnetic-cluster femto-second switching devices on equal footing. We will also discuss about the $flaw$ that exist in the current existing models which have been extensively used for the explaining the magnetic devices.
Category: Condensed Matter

[14] viXra:1803.0267 [pdf] submitted on 2018-03-19 04:29:40

Plasmons in Nanotube Quantum Wells

Authors: George Rajna
Comments: 67 Pages.

A novel quantum effect observed in a carbon nanotube film could lead to the development of unique lasers and other optoelectronic devices, according to scientists at Rice University and Tokyo Metropolitan University. [39] This "piezomagnetic" material changes its magnetic properties when put under mechanical strain. [38] Researchers have developed a new flexible sensor with high sensitivity that is designed to perform variety of chemical and biological analyses in very small spaces. [37] In a new paper published today in Science Advances, researchers under the direction of Columbia Engineering Professors Michal Lipson and Alexander Gaeta (Applied Physics and Applied Mathematics) have miniaturized dual-frequency combs by putting two frequency comb generators on a single millimeter-sized chip. [36] Researchers have, for the first time, integrated two technologies widely used in applications such as optical communications, bio-imaging and Light Detection and Ranging (LIDAR) systems that scan the surroundings of self-driving cars and trucks. [35] The unique platform, which is referred as a 4-D microscope, combines the sensitivity and high time-resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy. [34] The experiment relied on a soliton frequency comb generated in a chip-based optical microresonator made from silicon nitride. [33] This scientific achievement toward more precise control and monitoring of light is highly interesting for miniaturizing optical devices for sensing and signal processing. [32] It may seem like such optical behavior would require bending the rules of physics, but in fact, scientists at MIT, Harvard University, and elsewhere have now demonstrated that photons can indeed be made to interact-an accomplishment that could open a path toward using photons in quantum computing, if not in light sabers. [31] Optical highways for light are at the heart of modern communications. But when it comes to guiding individual blips of light called photons, reliable transit is far less common. [30] Theoretical physicists propose to use negative interference to control heat flow in quantum devices. [29]
Category: Condensed Matter

[13] viXra:1803.0266 [pdf] submitted on 2018-03-19 06:42:39

"Impossibility of the Simple Cubic Metal in Nature"

Authors: Gokaran Shukla
Comments: 12 Pages.

In nature, metal only exist in $bcc$, $fcc$ and $hcp$ crystal structure. Question arises that why we do not have simple cubic metal in nature. In this paper we will discuss about the impossibility of the existence of the simple cubic metal by using the Brillouin zones and Bragg's plane diffraction condition and will show that the ``impossibility'' arises due to pure quantum mechanical effect rather than the packing fraction. We will also show that $why$ certain material have the band-gap while others are not. We will develop a general rule applicable to all crystal structures to decide whether it will be insulator, semi-metal or metal in nature. For a test case we will use our developed rule and will explain the long lasting mysterious question in condense matter physics that $why$ boron is insulator while aluminum is metal although they belong to the same group in periodic table; why carbon is insulator in diamond cubic crystal structure while metal in graphite form; why antimony and bismuth are such a poor conductor (semi-metal); why $hcp$ crystal structure $\frac{c}{a}$ ratio must be distorted in-order to behaves like a metal.
Category: Condensed Matter

[12] viXra:1803.0257 [pdf] submitted on 2018-03-17 06:52:01

Piezomagnetic Materials

Authors: George Rajna
Comments: 64 Pages.

This "piezomagnetic" material changes its magnetic properties when put under mechanical strain. [38] Researchers have developed a new flexible sensor with high sensitivity that is designed to perform variety of chemical and biological analyses in very small spaces. [37] In a new paper published today in Science Advances, researchers under the direction of Columbia Engineering Professors Michal Lipson and Alexander Gaeta (Applied Physics and Applied Mathematics) have miniaturized dual-frequency combs by putting two frequency comb generators on a single millimeter-sized chip. [36] Researchers have, for the first time, integrated two technologies widely used in applications such as optical communications, bio-imaging and Light Detection and Ranging (LIDAR) systems that scan the surroundings of self-driving cars and trucks. [35] The unique platform, which is referred as a 4-D microscope, combines the sensitivity and high time-resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy. [34] The experiment relied on a soliton frequency comb generated in a chip-based optical microresonator made from silicon nitride. [33]
Category: Condensed Matter

[11] viXra:1803.0253 [pdf] submitted on 2018-03-17 07:30:16

Zero Field Switching

Authors: George Rajna
Comments: 65 Pages.

An unexpected phenomenon known as zero field switching (ZFS) could lead to smaller, lower-power memory and computing devices than presently possible. [39] This "piezomagnetic" material changes its magnetic properties when put under mechanical strain. [38] Researchers have developed a new flexible sensor with high sensitivity that is designed to perform variety of chemical and biological analyses in very small spaces. [37] In a new paper published today in Science Advances, researchers under the direction of Columbia Engineering Professors Michal Lipson and Alexander Gaeta (Applied Physics and Applied Mathematics) have miniaturized dual-frequency combs by putting two frequency comb generators on a single millimeter-sized chip. [36] Researchers have, for the first time, integrated two technologies widely used in applications such as optical communications, bio-imaging and Light Detection and Ranging (LIDAR) systems that scan the surroundings of self-driving cars and trucks. [35] The unique platform, which is referred as a 4-D microscope, combines the sensitivity and high time-resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy. [34] The experiment relied on a soliton frequency comb generated in a chip-based optical microresonator made from silicon nitride. [33] This scientific achievement toward more precise control and monitoring of light is highly interesting for miniaturizing optical devices for sensing and signal processing. [32] It may seem like such optical behavior would require bending the rules of physics, but in fact, scientists at MIT, Harvard University, and elsewhere have now demonstrated that photons can indeed be made to interact-an accomplishment that could open a path toward using photons in quantum computing, if not in light sabers. [31] Optical highways for light are at the heart of modern communications. But when it comes to guiding individual blips of light called photons, reliable transit is far less common. [30] Theoretical physicists propose to use negative interference to control heat flow in quantum devices. [29]
Category: Condensed Matter

[10] viXra:1803.0189 [pdf] submitted on 2018-03-13 07:52:17

Petahertz Electronics Milestone

Authors: George Rajna
Comments: 33 Pages.

In a semiconductor, electrons can be excited by absorbing laser light. [22] The breakthrough was made in the lab of Andrea Alù, director of the ASRC's Photonics Initiative. Alù and his colleagues from The City College of New York, University of Texas at Austin and Tel Aviv University were inspired by the seminal work of three British researchers who won the 2016 Noble Prize in Physics for their work, which teased out that particular properties of matter (such as electrical conductivity) can be preserved in certain materials despite continuous changes in the matter's form or shape. [21] Researchers at the University of Illinois at Urbana-Champaign have developed a new technology for switching heat flows 'on' or 'off'. [20] Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive paint. [19] A team of researchers with the University of California and SRI International has developed a new type of cooling device that is both portable and efficient. [18] Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution and energy balance in systems ranging from astrophysical objects to fusion plasmas. [17] Researchers from the Theory Department of the MPSD have realized the control of thermal and electrical currents in nanoscale devices by means of quantum local observations. [16] Physicists have proposed a new type of Maxwell's demon—the hypothetical agent that extracts work from a system by decreasing the system's entropy—in which the demon can extract work just by making a measurement, by taking advantage of quantum fluctuations and quantum superposition. [15] Pioneering research offers a fascinating view into the inner workings of the mind of 'Maxwell's Demon', a famous thought experiment in physics. [14] For more than a century and a half of physics, the Second Law of Thermodynamics, which states that entropy always increases, has been as close to inviolable as any law we know. In this universe, chaos reigns supreme. [13] Physicists have shown that the three main types of engines (four-stroke, twostroke, and continuous) are thermodynamically equivalent in a certain quantum regime, but not at the classical level. [12]
Category: Condensed Matter

[9] viXra:1803.0184 [pdf] submitted on 2018-03-13 10:43:42

Quantum Dot Lighting Technology

Authors: George Rajna
Comments: 37 Pages.

A "superacid" much stronger than automobile battery acid has enabled a key advance toward a new generation of LED lighting that's safer, less expensive and more user friendly. [27] Recent research from Kumamoto University in Japan has revealed that polyoxometalates (POMs), typically used for catalysis, electrochemistry, and photochemistry, may also be used in a technique for analyzing quantum dot (QD) photoluminescence (PL) emission mechanisms. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25] The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24] In a joint research project, scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Technische Universität Berlin (TU) and the University of Rostock have managed for the first time to image free nanoparticles in a laboratory experiment using a highintensity laser source. [23] For the first time, researchers have built a nanolaser that uses only a single molecular layer, placed on a thin silicon beam, which operates at room temperature. [22] A team of engineers at Caltech has discovered how to use computer-chip manufacturing technologies to create the kind of reflective materials that make safety vests, running shoes, and road signs appear shiny in the dark. [21] In the September 23th issue of the Physical Review Letters, Prof. Julien Laurat and his team at Pierre and Marie Curie University in Paris (Laboratoire Kastler Brossel-LKB) report that they have realized an efficient mirror consisting of only 2000 atoms. [20] Physicists at MIT have now cooled a gas of potassium atoms to several nanokelvins—just a hair above absolute zero—and trapped the atoms within a two-dimensional sheet of an optical lattice created by crisscrossing lasers. Using a high-resolution microscope, the researchers took images of the cooled atoms residing in the lattice. [19] Researchers have created quantum states of light whose noise level has been " squeezed " to a record low. [18] An elliptical light beam in a nonlinear optical medium pumped by " twisted light " can rotate like an electron around a magnetic field. [17]
Category: Condensed Matter

[8] viXra:1803.0182 [pdf] submitted on 2018-03-13 11:16:04

Strain Induced Electric Effects in Materials

Authors: Yuanjie Huang
Comments: 39 Pages.

In this work, we put forward Yuheng Zhang equation, a newly found law for condensed materials. Utilizing this law, we mainly investigate the mechanical-electric coupling effect in materials, which is named asYuheng Zhang effect. Through investigations, it is found that 1) under strain gradient, materials could behave as a p-n junction, exhibiting current-rectifying properties; 2) thermoelectric power or Seebeck coefficient of materials is contributed by thermal expansion (contraction) and Yuheng Zhang effect, which may be described by Yuheng Zhang coefficient; 3) this effect gives a new mechanism of electron-phonon interaction; 4) an electric field always accompanies defects in materials, such as dislocations, Abrikosov vortices and so on, and their electric field and related electrical potential are given; 5) strain gradient can cause an electric polarization in dielectric materials; 6) the gravity induced electric field persists within planets including the earth; 7) Yuheng Zhang effect may be the microscopic physical origin of flexoelectric effect and the flexoelectric coefficients can be derived by means of Yuheng Zhang equation; 8) microscopic theory of shock polarization, another long-standing problem in the world, may be clarified in terms of Yuheng Zhang effect. In all, Yuheng Zhang equation and Yuheng Zhang effect offer people new understanding of electric properties of strained materials, and may find various applications in multi-areas.
Category: Condensed Matter

[7] viXra:1803.0181 [pdf] submitted on 2018-03-13 11:32:25

Roton Excitation in Quantum Droplets

Authors: George Rajna
Comments: 44 Pages.

Quasiparticles called rotons have been seen for the first time in a Bose-Einstein condensate (BEC) of ultracold atoms. [30] Electrons in graphene—an atomically thin, flexible and incredibly strong substance that has captured the imagination of materials scientists and physicists alike—move at the speed of light, and behave like they have no mass. [29] In a series of exciting experiments, Cambridge researchers experienced weightlessness testing graphene's application in space. [28] Scientists from ITMO University have developed effective nanoscale light sources based on halide perovskite. [27] Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25] The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24] In a joint research project, scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Technische Universität Berlin (TU) and the University of Rostock have managed for the first time to image free nanoparticles in a laboratory experiment using a highintensity laser source. [23] For the first time, researchers have built a nanolaser that uses only a single molecular layer, placed on a thin silicon beam, which operates at room temperature. [22] A team of engineers at Caltech has discovered how to use computer-chip manufacturing technologies to create the kind of reflective materials that make safety vests, running shoes, and road signs appear shiny in the dark. [21]
Category: Condensed Matter

[6] viXra:1803.0168 [pdf] submitted on 2018-03-12 11:00:27

Crystallization in Real Time

Authors: George Rajna
Comments: 35 Pages.

The research shows that concentrated electrolytes in solution affect hydrogen bonding, ion interactions, and coordination geometries in currently unpredictable ways. [23] An exotic state of matter that is dazzling scientists with its electrical properties, can also exhibit unusual optical properties, as shown in a theoretical study by researchers at A*STAR. [22] The breakthrough was made in the lab of Andrea Alù, director of the ASRC's Photonics Initiative. Alù and his colleagues from The City College of New York, University of Texas at Austin and Tel Aviv University were inspired by the seminal work of three British researchers who won the 2016 Noble Prize in Physics for their work, which teased out that particular properties of matter (such as electrical conductivity) can be preserved in certain materials despite continuous changes in the matter's form or shape. [21] Researchers at the University of Illinois at Urbana-Champaign have developed a new technology for switching heat flows 'on' or 'off'. [20] Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive paint. [19] A team of researchers with the University of California and SRI International has developed a new type of cooling device that is both portable and efficient. [18] Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution and energy balance in systems ranging from astrophysical objects to fusion plasmas. [17] Researchers from the Theory Department of the MPSD have realized the control of thermal and electrical currents in nanoscale devices by means of quantum local observations. [16] Physicists have proposed a new type of Maxwell's demon—the hypothetical agent that extracts work from a system by decreasing the system's entropy—in which the demon can extract work just by making a measurement, by taking advantage of quantum fluctuations and quantum superposition. [15] Pioneering research offers a fascinating view into the inner workings of the mind of 'Maxwell's Demon', a famous thought experiment in physics. [14]
Category: Condensed Matter

[5] viXra:1803.0141 [pdf] submitted on 2018-03-10 09:10:54

Breakthrough in Circuit Design

Authors: George Rajna
Comments: 33 Pages.

The breakthrough was made in the lab of Andrea Alù, director of the ASRC's Photonics Initiative. Alù and his colleagues from The City College of New York, University of Texas at Austin and Tel Aviv University were inspired by the seminal work of three British researchers who won the 2016 Noble Prize in Physics for their work, which teased out that particular properties of matter (such as electrical conductivity) can be preserved in certain materials despite continuous changes in the matter's form or shape. [21] Researchers at the University of Illinois at Urbana-Champaign have developed a new technology for switching heat flows 'on' or 'off'. [20] Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive paint. [19] A team of researchers with the University of California and SRI International has developed a new type of cooling device that is both portable and efficient. [18] Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution and energy balance in systems ranging from astrophysical objects to fusion plasmas. [17] Researchers from the Theory Department of the MPSD have realized the control of thermal and electrical currents in nanoscale devices by means of quantum local observations. [16] Physicists have proposed a new type of Maxwell's demon—the hypothetical agent that extracts work from a system by decreasing the system's entropy—in which the demon can extract work just by making a measurement, by taking advantage of quantum fluctuations and quantum superposition. [15] Pioneering research offers a fascinating view into the inner workings of the mind of 'Maxwell's Demon', a famous thought experiment in physics. [14] For more than a century and a half of physics, the Second Law of Thermodynamics, which states that entropy always increases, has been as close to inviolable as any law we know. In this universe, chaos reigns supreme. [13] Physicists have shown that the three main types of engines (four-stroke, twostroke, and continuous) are thermodynamically equivalent in a certain quantum regime, but not at the classical level. [12]
Category: Condensed Matter

[4] viXra:1803.0140 [pdf] submitted on 2018-03-10 10:17:24

Quantum States on the Surface

Authors: George Rajna
Comments: 34 Pages.

An exotic state of matter that is dazzling scientists with its electrical properties, can also exhibit unusual optical properties, as shown in a theoretical study by researchers at A*STAR. [22] The breakthrough was made in the lab of Andrea Alù, director of the ASRC's Photonics Initiative. Alù and his colleagues from The City College of New York, University of Texas at Austin and Tel Aviv University were inspired by the seminal work of three British researchers who won the 2016 Noble Prize in Physics for their work, which teased out that particular properties of matter (such as electrical conductivity) can be preserved in certain materials despite continuous changes in the matter's form or shape. [21] Researchers at the University of Illinois at Urbana-Champaign have developed a new technology for switching heat flows 'on' or 'off'. [20] Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive paint. [19] A team of researchers with the University of California and SRI International has developed a new type of cooling device that is both portable and efficient. [18] Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution and energy balance in systems ranging from astrophysical objects to fusion plasmas. [17] Researchers from the Theory Department of the MPSD have realized the control of thermal and electrical currents in nanoscale devices by means of quantum local observations. [16] Physicists have proposed a new type of Maxwell's demon—the hypothetical agent that extracts work from a system by decreasing the system's entropy—in which the demon can extract work just by making a measurement, by taking advantage of quantum fluctuations and quantum superposition. [15] Pioneering research offers a fascinating view into the inner workings of the mind of 'Maxwell's Demon', a famous thought experiment in physics. [14] For more than a century and a half of physics, the Second Law of Thermodynamics, which states that entropy always increases, has been as close to inviolable as any law we know. In this universe, chaos reigns supreme. [13]
Category: Condensed Matter

[3] viXra:1803.0112 [pdf] submitted on 2018-03-08 06:01:11

Quantum Spin Liquid in Graphene

Authors: George Rajna
Comments: 41 Pages.

Electrons in graphene—an atomically thin, flexible and incredibly strong substance that has captured the imagination of materials scientists and physicists alike—move at the speed of light, and behave like they have no mass. [29] In a series of exciting experiments, Cambridge researchers experienced weightlessness testing graphene's application in space. [28] Scientists from ITMO University have developed effective nanoscale light sources based on halide perovskite. [27] Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25] The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24] In a joint research project, scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Technische Universität Berlin (TU) and the University of Rostock have managed for the first time to image free nanoparticles in a laboratory experiment using a highintensity laser source. [23] For the first time, researchers have built a nanolaser that uses only a single molecular layer, placed on a thin silicon beam, which operates at room temperature. [22] A team of engineers at Caltech has discovered how to use computer-chip manufacturing technologies to create the kind of reflective materials that make safety vests, running shoes, and road signs appear shiny in the dark. [21] In the September 23th issue of the Physical Review Letters, Prof. Julien Laurat and his team at Pierre and Marie Curie University in Paris (Laboratoire Kastler Brossel-LKB) report that they have realized an efficient mirror consisting of only 2000 atoms. [20] Physicists at MIT have now cooled a gas of potassium atoms to several nanokelvins—just a hair above absolute zero—and trapped the atoms within a two-dimensional sheet of an optical lattice created by crisscrossing lasers. Using a high-resolution microscope, the researchers took images of the cooled atoms residing in the lattice. [19] Researchers have created quantum states of light whose noise level has been " squeezed " to a record low. [18]
Category: Condensed Matter

[2] viXra:1803.0109 [pdf] submitted on 2018-03-08 06:46:16

Nano-Drops Technology

Authors: George Rajna
Comments: 61 Pages.

A revolutionary, cutting-edge technology, developed by researchers at Bar-Ilan University's Institute of Nanotechnology and Advanced Materials (BINA), has the potential to provide a new alternative to eyeglasses, contact lenses, and laser correction for refractive errors. [30] Electrons in graphene—an atomically thin, flexible and incredibly strong substance that has captured the imagination of materials scientists and physicists alike—move at the speed of light, and behave like they have no mass. [29] In a series of exciting experiments, Cambridge researchers experienced weightlessness testing graphene's application in space. [28] Scientists from ITMO University have developed effective nanoscale light sources based on halide perovskite. [27] Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25] The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24] In a joint research project, scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Technische Universität Berlin (TU) and the University of Rostock have managed for the first time to image free nanoparticles in a laboratory experiment using a highintensity laser source. [23] For the first time, researchers have built a nanolaser that uses only a single molecular layer, placed on a thin silicon beam, which operates at room temperature. [22] A team of engineers at Caltech has discovered how to use computer-chip manufacturing technologies to create the kind of reflective materials that make safety vests, running shoes, and road signs appear shiny in the dark. [21] In the September 23th issue of the Physical Review Letters, Prof. Julien Laurat and his team at Pierre and Marie Curie University in Paris (Laboratoire Kastler Brossel-LKB) report that they have realized an efficient mirror consisting of only 2000 atoms. [20] Physicists at MIT have now cooled a gas of potassium atoms to several nanokelvins—just a hair above absolute zero—and trapped the atoms within a two-dimensional sheet of an optical lattice created by crisscrossing lasers. Using a high-resolution microscope, the researchers took images of the cooled atoms residing in the lattice. [19] Researchers have created quantum states of light whose noise level has been “squeezed” to a record low. [18] An elliptical light beam in a nonlinear optical medium pumped by “twisted light” can rotate like an electron around a magnetic field. [17]
Category: Condensed Matter

[1] viXra:1803.0092 [pdf] submitted on 2018-03-06 12:43:00

Electron-Phonon Interactions in a Nanowire

Authors: George Rajna
Comments: 20 Pages.

Researchers use a cavity-coupled double quantum dot to study electron-phonon interactions in a nanowire. [13] Quantum behavior plays a crucial role in novel and emergent material properties, such as superconductivity and magnetism. [12] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10]
Category: Condensed Matter