Condensed Matter

1209 Submissions

[4] viXra:1209.0091 [pdf] submitted on 2012-09-25 18:28:54

Physics of Cold Fusion by TSC Theory

Authors: Akito Takahashi
Comments: 6 Pages. Submittal to Proceedings of ICCF17

This paper gives explanation on the basic physics of cold fusion by the TSC (tetrahedral symmetric condensate) theory. Models of TSC formation conditions in condensed matter are first proposed. Secondly formulas for cold fusion rates per D(H)-cluster are explained with typical quantitative results. The 4D/TSC fusion and the 4H/TSC WS fusion are answers, respectively for the D (deuterium)-system and the H (protium)-system.
Category: Condensed Matter

[3] viXra:1209.0071 [pdf] submitted on 2012-09-20 14:27:56

Electrical Conductivity of Metals: a New Look at This Subject

Authors: P. R. Silva
Comments: 14 Pages. 1 table, no figures

Various parameters tied to the electrical conductivity of typical metals are estimated and are expressed in terms of universal constants. It happens that they are close to those found in metallic copper at room temperature. The fact that the realization of the model occurs at room temperature is explained by using the Landauer’s erasure principle. The averaged collision time of the electron of conduction is also thought as a particle lifetime. Finally an analogy is established between the motion of the electron of conduction and the cosmological constant problem, where a spherical surface of radius equal to the electron mean free path has been thought as a surface horizon for the charge carriers.
Category: Condensed Matter

[2] viXra:1209.0057 [pdf] replaced on 2012-09-19 22:40:06

Nucleon Halo Model of 8Be*

Authors: Akito Takahashi, Daniel Rocha
Comments: 22 Pages.

A model of final state interaction for 8Be* of 4D/TSC fusion is proposed. The 8Be*(Ex=47.6MeV) may damp its excited energy by major BOLEP (burst of low energy photons) process from nucleon-helion halo state to 8Be-ground state. Intermediate decay states from the nucleon-halo states are scaled by number of effective binding PEF values for mean strong field interaction. A complex decay scheme is proposed. Minor two-alpha break-up channels emit characteristic discrete kinetic energy alpha-particles, which meets wonderful coincidence with observed data by Roussetski et al. X-ray burst data observed by Karabut et al may be photons by BOLEP.
Category: Condensed Matter

[1] viXra:1209.0007 [pdf] replaced on 2015-01-24 06:35:37

Pd/Ni Clusters for D/H TSC Jitterbug Fusion

Authors: Frank Dodd Tony Smith Jr
Comments: 45 Pages.

Clusters of Palladium atoms (also clusters of atoms of Nickel and similar elements) have two basic structures: Icosahedral and Cuboctahedral 1 - Icosahedon <-> Cuboctahedron Jitterbug Transformation. 2 - Palladium clusters with absorbed Deuterium (PdDx) have two states: Icosahedral with Tetrahedral absorption sites Cuboctahedral with Octahedral absorption sites. 3 - Tetrahedral Symmetric Condensation (TSC) in PdDx produces Fusion. 4 - Icosahedra TSC Fusion Triggers Jitterbug to Cuboctahedra. 5 - Cuboctahedra Jitterbug back to Icosahedra and reload TSC sites. 6 - Repeat the Cycle. Version 2 adds a mechanical analogy with M1911 type semiauto Colt 10 mm Delta Elite. Version 3 adds Ni and H to the title and reorganizes to add details about cluster structure for TSC fusion. Version 4 adds a proposal for experimental test using 1.5 nm Pd clusters such as have been synthesized by Sandia/UNM. Version 5 revises (and hopefully clarifies) the graphic description of TSC Jitterbug fusion cyclic process. Version 6 adds revised TSC 8Be* decay model by Takahashi and experimental Zeolite results by Parchamazad. Version 7 adds Table of Contents and details of use of Zeolite in TSC-JItterbug Fusion of Deuterium-Loaded Palladium NanoClusters. Version 8 adds design for TSC-Jitterbug Zeolite Pd-D fusion heat engine. Version 9 discusses using D2O Heavy Water for heat extraction from Zeolite and using D2O steam to get useful energy. Version 10 (vA) adds material including conversion of fusion energy to zeolite capacitor electrical energy. Version 11 (vB) adds experimental details for fusion energy utilization by Zeolite-D20 steam and by Zeolite-Templated Carbon capacitor. Version 12 (vC) adds overview of energy sources and Schwinger Coherent Electron process for transferring fusion energy to Zeolite heat. Version 13 (vD) adds a 5-page introductory preface / preamble to the paper. Version 14 (vE) describes an alternative TSC geometry.
Category: Condensed Matter