Classical Physics

0909 Submissions

[1] viXra:0909.0011 [pdf] submitted on 3 Sep 2009

On Nonextensive Statistics, Chaos and Fractal Strings

Authors: Carlos Castro
Comments: 16 pages, This article appeared in Physica A 347 (2005) 184-204

Motivated by the growing evidence of universality and chaos in QFT and string theory, we study the Tsallis non-extensive statistics (with a non-additive q-entropy) of an ensemble of fractal strings and branes of different dimensionalities. Non-equilibrium systems with complex dynamics in stationary states may exhibit large fluctuations of intensive quantities which are described in terms of generalized statistics. Tsallis statistics is a particular representative of such class. The non-extensive entropy and probability distribution of a canonical ensemble of fractal strings and branes is studied in terms of their dimensional spectrum which leads to a natural upper cutoff in energy and establishes a direct correlation among dimensions, energy and temperature. The absolute zero temperature (Kelvin) corresponds to zero dimensions (energy) and an infinite temperature corresponds to infinite dimensions. In the concluding remarks some applications of fractal statistics, quasi-particles, knot theory, quantum groups and number theory are briefly discussed within the framework of fractal strings and branes.
Category: Classical Physics