1801 Submissions

[1] viXra:1801.0359 [pdf] submitted on 2018-01-26 11:46:09

1500 Chemical Reactions a Day

Authors: George Rajna
Comments: 40 Pages.

A team of researchers at Pfizer, the pharmaceutical giant, has developed an automated flow chemistry system that is capable of carrying out 1500 reactions over a 24-hour period. [29] Prof WANG Zhisong and his research team from the Department of Physics, NUS have developed two sets of conceptually new mechanisms that enable artificial nanowalkers to move in a self-guided direction using their internal mechanics. [28] Gene editing is one of the hottest topics in cancer research. A Chinese research team has now developed a gold-nanoparticle-based multifunctional vehicle to transport the "gene scissors" to the tumor cell genome. [27] Cells can be programmed like a computer to fight cancer, influenza, and other serious conditions – thanks to a breakthrough in synthetic biology by the University of Warwick. [26] This "robot," made of a single strand of DNA, can autonomously "walk" around a surface, pick up certain molecules and drop them off in designated locations. [25] The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24] In a joint research project, scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Technische Universität Berlin (TU) and the University of Rostock have managed for the first time to image free nanoparticles in a laboratory experiment using a highintensity laser source. [23] For the first time, researchers have built a nanolaser that uses only a single molecular layer, placed on a thin silicon beam, which operates at room temperature. [22] A team of engineers at Caltech has discovered how to use computer-chip manufacturing technologies to create the kind of reflective materials that make safety vests, running shoes, and road signs appear shiny in the dark. [21] In the September 23th issue of the Physical Review Letters, Prof. Julien Laurat and his team at Pierre and Marie Curie University in Paris (Laboratoire Kastler Brossel-LKB) report that they have realized an efficient mirror consisting of only 2000 atoms. [20] Physicists at MIT have now cooled a gas of potassium atoms to several nanokelvins—just a hair above absolute zero—and trapped the atoms within a two-dimensional sheet of an optical lattice created by crisscrossing lasers. Using a high-resolution microscope, the researchers took images of the cooled atoms residing in the lattice. [19]
Category: Biochemistry