Artificial Intelligence

1710 Submissions

[15] viXra:1710.0336 [pdf] submitted on 2017-10-31 23:50:38

Scheme For Finding The Next Term Of A Sequence Based On Evolution. {Version 7}. ISSN 1751-3030

Authors: Ramesh Chandra Bagadi
Comments: 7 Pages.

In this research investigation, the author has detailed a novel method of finding the next term of a sequence based on Evolution.
Category: Artificial Intelligence

[14] viXra:1710.0324 [pdf] replaced on 2017-11-09 05:34:27

New Sufficient Conditions of Signal Recovery with Tight Frames Via $l_1$-Analysis

Authors: Jianwen Huang, Jianjun Wang, Feng Zhang, Wendong Wang
Comments: 18 Pages.

The paper discusses the recovery of signals in the case that signals are nearly sparse with respect to a tight frame $D$ by means of the $l_1$-analysis approach. We establish several new sufficient conditions regarding the $D$-restricted isometry property to ensure stable reconstruction of signals that are approximately sparse with respect to $D$. It is shown that if the measurement matrix $\Phi$ fulfils the condition $\delta_{ts}<t/(4-t)$ for $0<t<4/3$, then signals which are approximately sparse with respect to $D$ can be stably recovered by the $l_1$-analysis method. In the case of $D=I$, the bound is sharp, see Cai and Zhang's work \cite{Cai and Zhang 2014}. When $t=1$, the present bound improves the condition $\delta_s<0.307$ from Lin et al.'s reuslt to $\delta_s<1/3$. In addition, numerical simulations are conducted to indicate that the $l_1$-analysis method can stably reconstruct the sparse signal in terms of tight frames.
Category: Artificial Intelligence

[13] viXra:1710.0299 [pdf] submitted on 2017-10-27 04:13:49

Scheme For Finding The Next Term Of A Sequence Based On Evolution. {Version 6}. ISSN 1751-3030

Authors: Ramesh Chandra Bagadi
Comments: 6 Pages.

In this research investigation, the author has detailed a novel method of finding the next term of a sequence based on Evolution.
Category: Artificial Intelligence

[12] viXra:1710.0297 [pdf] submitted on 2017-10-25 03:57:32

Scheme For Finding The Next Term Of A Sequence Based On Evolution {File Closing Version 2}. ISSN 1751-3030

Authors: Ramesh Chandra Bagadi
Comments: 5 Pages.

In this research investigation, the author has detailed a novel method of finding the next term of a sequence based on Evolution.
Category: Artificial Intelligence

[11] viXra:1710.0294 [pdf] submitted on 2017-10-25 23:47:37

Scheme For Finding The Next Term Of A Sequence Based On Evolution {File Closing Version 3}. ISSN 1751-3030

Authors: Ramesh Chandra Bagadi
Comments: 5 Pages.

In this research investigation, the author has detailed a novel method of finding the next term of a sequence based on Evolution.
Category: Artificial Intelligence

[10] viXra:1710.0293 [pdf] submitted on 2017-10-26 01:24:46

Scheme For Finding The Next Term Of A Sequence Based On Evolution {File Closing Version 4}. ISSN 1751-3030

Authors: Ramesh Chandra Bagadi
Comments: 6 Pages.

In this research investigation, the author has detailed a novel method of finding the next term of a sequence based on Evolution.
Category: Artificial Intelligence

[9] viXra:1710.0289 [pdf] submitted on 2017-10-26 03:56:28

Scheme For Finding The Next Term Of A Sequence Based On Evolution {File Closing Version 5}. ISSN 1751-3030

Authors: Ramesh Chandra Bagadi
Comments: 6 Pages.

In this research investigation, the author has detailed a novel method of finding the next term of a sequence based on Evolution.
Category: Artificial Intelligence

[8] viXra:1710.0279 [pdf] submitted on 2017-10-24 04:45:19

Scheme For Finding The Next Term Of A Sequence Based On Evolution {File Closing Version 1}. ISSN 1751-3030

Authors: Ramesh Chandra Bagadi
Comments: 3 Pages.

In this research investigation, the author has detailed a novel method of finding the next term of a sequence based on Evolution.
Category: Artificial Intelligence

[7] viXra:1710.0271 [pdf] submitted on 2017-10-23 23:14:04

The Average Computed In Primes Basis {File Closing Version 2}. ISSN 1751-3030

Authors: Ramesh Chandra Bagadi
Comments: 2 Pages.

In this research investigation, the author has detailed a novel method of finding the average of a sequence in Primes Basis.
Category: Artificial Intelligence

[6] viXra:1710.0267 [pdf] submitted on 2017-10-23 06:21:13

The Average Computed In Primes Basis {File Closing Version 1}. ISSN 1751-3030

Authors: Ramesh Chandra Bagadi
Comments: 2 Pages.

In this research investigation, the author has detailed a novel method of finding the average of a sequence in Primes Basis.
Category: Artificial Intelligence

[5] viXra:1710.0259 [pdf] submitted on 2017-10-23 00:38:01

Universe’s Way Of Recursively Finding The Next Term Of Any Sequence {File Closing Version 3}. ISSN 1751-3030

Authors: Ramesh Chandra Bagadi
Comments: 3 Pages.

In this research investigation, the author has detailed a novel method of Universe’s Way Of Recursively Finding The Next Term Of Any Sequence.
Category: Artificial Intelligence

[4] viXra:1710.0208 [pdf] submitted on 2017-10-18 23:07:44

The Recursive Future Equation Based On The Ananda-Damayanthi Normalized Similarity Measure. {File Closing Version 4}. ISSN 1751-3030

Authors: Ramesh Chandra Bagadi
Comments: 4 Pages.

In this research Technical Note the author have presented a Recursive Future Average Of A Time Series Data Based on Cosine Similarity.
Category: Artificial Intelligence

[3] viXra:1710.0141 [pdf] submitted on 2017-10-12 10:42:50

Miguel A. Sanchez-Rey

Authors: Advances in the Collective Interface
Comments: 5 Pages.

A byproduct of 2AI.
Category: Artificial Intelligence

[2] viXra:1710.0139 [pdf] submitted on 2017-10-12 11:12:18

Advances in the Collective Interface

Authors: Miguel A. Sanchez-Rey
Comments: 5 Pages.

A byproduct of 2AI.
Category: Artificial Intelligence

[1] viXra:1710.0003 [pdf] submitted on 2017-10-01 06:54:11

Nature-Like Technology for Communication Network Selfactualization in the Mode Advancing Real-Time

Authors: Popov Boris
Comments: 7 Pages.

In order to provide control system operation in real-time mode, communication system should operate in the mode advancing real-time that can be achieved only by means of providing the communication system with mechanism for network structure forward adaptation to the variations in the user query topics and rates as well as their self-actualization. A technique for developing such nature-like technology that is based on fundamental natural inertia phenomenon and widespread symbiotic cooperation, distinguished by building-up (developing) resources being used, is proposed.
Category: Artificial Intelligence