Artificial Intelligence

1610 Submissions

[12] viXra:1610.0360 [pdf] submitted on 2016-10-30 02:33:09

Machine-Learning Decision Rationales

Authors: George Rajna
Comments: 28 Pages.

Researchers from MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) have devised a way to train neural networks so that they provide not only predictions and classifications but rationales for their decisions. [15] Physicists have shown that quantum effects have the potential to significantly improve a variety of interactive learning tasks in machine learning. [14] A Chinese team of physicists have trained a quantum computer to recognise handwritten characters, the first demonstration of " quantum artificial intelligence ". Physicists have long claimed that quantum computers have the potential to dramatically outperform the most powerful conventional processors. The secret sauce at work here is the strange quantum phenomenon of superposition, where a quantum object can exist in two states at the same time. [13] One of biology's biggest mysteries-how a sliced up flatworm can regenerate into new organisms-has been solved independently by a computer. The discovery marks the first time that a computer has come up with a new scientific theory without direct human help. [12] A team of researchers working at the University of California (and one from Stony Brook University) has for the first time created a neural-network chip that was built using just memristors. In their paper published in the journal Nature, the team describes how they built their chip and what capabilities it has. [11] A team of researchers used a promising new material to build more functional memristors, bringing us closer to brain-like computing. Both academic and industrial laboratories are working to develop computers that operate more like the human brain. Instead of operating like a conventional, digital system, these new devices could potentially function more like a network of neurons. [10] Cambridge Quantum Computing Limited (CQCL) has built a new Fastest Operating System aimed at running the futuristic superfast quantum computers. [9] IBM scientists today unveiled two critical advances towards the realization of a practical quantum computer. For the first time, they showed the ability to detect and measure both kinds of quantum errors simultaneously, as well as demonstrated a new, square quantum bit circuit design that is the only physical architecture that could successfully scale to larger dimensions. [8] Physicists at the Universities of Bonn and Cambridge have succeeded in linking two completely different quantum systems to one another. In doing so, they have taken an important step forward on the way to a quantum computer. To accomplish their feat the researchers used a method that seems to function as well in the quantum world as it does for us people: teamwork. The results have now been published in the "Physical Review Letters". [7] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.
Category: Artificial Intelligence

[11] viXra:1610.0359 [pdf] submitted on 2016-10-30 04:02:16

Machine Learning Understand Materials

Authors: George Rajna
Comments: 21 Pages.

Machine learning algorithms are designed to improve as they encounter more data, making them a versatile technology for understanding large sets of photos such as those accessible from Google Images. Elizabeth Holm, professor of materials science and engineering at Carnegie Mellon University, is leveraging this technology to better understand the enormous number of research images accumulated in the field of materials science. [13] With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. [12] The artificial intelligence system's ability to set itself up quickly every morning and compensate for any overnight fluctuations would make this fragile technology much more useful for field measurements, said co-lead researcher Dr Michael Hush from UNSW ADFA. [11] Quantum physicist Mario Krenn and his colleagues in the group of Anton Zeilinger from the Faculty of Physics at the University of Vienna and the Austrian Academy of Sciences have developed an algorithm which designs new useful quantum experiments. As the computer does not rely on human intuition, it finds novel unfamiliar solutions. [10] Researchers at the University of Chicago's Institute for Molecular Engineering and the University of Konstanz have demonstrated the ability to generate a quantum logic operation, or rotation of the qubit, that-surprisingly—is intrinsically resilient to noise as well as to variations in the strength or duration of the control. Their achievement is based on a geometric concept known as the Berry phase and is implemented through entirely optical means within a single electronic spin in diamond. [9] New research demonstrates that particles at the quantum level can in fact be seen as behaving something like billiard balls rolling along a table, and not merely as the probabilistic smears that the standard interpretation of quantum mechanics suggests. But there's a catch-the tracks the particles follow do not always behave as one would expect from "realistic" trajectories, but often in a fashion that has been termed "surrealistic." [8] Quantum entanglement—which occurs when two or more particles are correlated in such a way that they can influence each other even across large distances—is not an all-or-nothing phenomenon, but occurs in various degrees. The more a quantum state is entangled with its partner, the better the states will perform in quantum information applications. Unfortunately, quantifying entanglement is a difficult process involving complex optimization problems that give even physicists headaches. [7] A trio of physicists in Europe has come up with an idea that they believe would allow a person to actually witness entanglement. Valentina Caprara Vivoli, with the University of Geneva, Pavel Sekatski, with the University of Innsbruck and Nicolas Sangouard, with the University of Basel, have together written a paper describing a scenario where a human subject would be able to witness an instance of entanglement—they have uploaded it to the arXiv server for review by others. [6] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.
Category: Artificial Intelligence

[10] viXra:1610.0336 [pdf] submitted on 2016-10-27 21:31:21

Fuzzy Evidential Influence Diagram Evaluation Algorithm

Authors: Haoyang Zheng, Yong Deng
Comments: 38 Pages.

Fuzzy influence diagrams (FIDs) are one of the graphical models that combines the qualitative and quantitative analysis to solve decision-making problems. However, FIDs use an incomprehensive evaluation criteria to score nodes in complex systems, so that many different nodes got the same score, which can not reflect their differences. Based on fuzzy set and Dempster-Shafer (D-S) evidence theory, this paper changes the traditional evaluation system and modifies corresponding algorithm, in order that the influence diagram can more effectively reflect the true situation of the system, and get more practical results. Numerical examples and the real application in supply chain financial system are used to show the efficiency of the proposed influence diagram model.
Category: Artificial Intelligence

[9] viXra:1610.0314 [pdf] submitted on 2016-10-26 05:16:26

Artificial Intelligence Replaces Judges and Lawyers

Authors: George Rajna
Comments: 20 Pages.

An artificial intelligence method developed by University College London computer scientists and associates has predicted the judicial decisions of the European Court of Human Rights (ECtHR) with 79% accuracy, according to a paper published Monday, Oct. 24 in PeerJ Computer Science. [12] The artificial intelligence system's ability to set itself up quickly every morning and compensate for any overnight fluctuations would make this fragile technology much more useful for field measurements, said co-lead researcher Dr Michael Hush from UNSW ADFA. [11] Quantum physicist Mario Krenn and his colleagues in the group of Anton Zeilinger from the Faculty of Physics at the University of Vienna and the Austrian Academy of Sciences have developed an algorithm which designs new useful quantum experiments. As the computer does not rely on human intuition, it finds novel unfamiliar solutions. [10] Researchers at the University of Chicago's Institute for Molecular Engineering and the University of Konstanz have demonstrated the ability to generate a quantum logic operation, or rotation of the qubit, that-surprisingly—is intrinsically resilient to noise as well as to variations in the strength or duration of the control. Their achievement is based on a geometric concept known as the Berry phase and is implemented through entirely optical means within a single electronic spin in diamond. [9] New research demonstrates that particles at the quantum level can in fact be seen as behaving something like billiard balls rolling along a table, and not merely as the probabilistic smears that the standard interpretation of quantum mechanics suggests. But there's a catch-the tracks the particles follow do not always behave as one would expect from "realistic" trajectories, but often in a fashion that has been termed "surrealistic." [8] Quantum entanglement—which occurs when two or more particles are correlated in such a way that they can influence each other even across large distances—is not an all-or-nothing phenomenon, but occurs in various degrees. The more a quantum state is entangled with its partner, the better the states will perform in quantum information applications. Unfortunately, quantifying entanglement is a difficult process involving complex optimization problems that give even physicists headaches. [7] A trio of physicists in Europe has come up with an idea that they believe would allow a person to actually witness entanglement. Valentina Caprara Vivoli, with the University of Geneva, Pavel Sekatski, with the University of Innsbruck and Nicolas Sangouard, with the University of Basel, have together written a paper describing a scenario where a human subject would be able to witness an instance of entanglement—they have uploaded it to the arXiv server for review by others. [6] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.
Category: Artificial Intelligence

[8] viXra:1610.0281 [pdf] submitted on 2016-10-24 04:05:52

An Information Volume Measure

Authors: Yong Deng
Comments: 8 Pages.

How to measure the volume of uncertainty information is an open issue. Shannon entropy is used to represent the uncertainty degree of a probability distribution. Given a generalized probability distribution which means that the probability is not only assigned to the basis event space but also the power set of event space. At this time, a so called meta probability space is constructed. A new measure, named as Deng entropy, is presented. The results show that, compared with existing method, Deng entropy is not only better from the aspect of mathematic form, but also has the significant physical meaning.
Category: Artificial Intelligence

[7] viXra:1610.0249 [pdf] submitted on 2016-10-21 11:35:59

New Data Algorithms

Authors: George Rajna
Comments: 28 Pages.

Last year, MIT researchers presented a system that automated a crucial step in big-data analysis: the selection of a "feature set," or aspects of the data that are useful for making predictions. The researchers entered the system in several data science contests, where it outperformed most of the human competitors and took only hours instead of months to perform its analyses. [15] Physicists have shown that quantum effects have the potential to significantly improve a variety of interactive learning tasks in machine learning. [14] A Chinese team of physicists have trained a quantum computer to recognise handwritten characters, the first demonstration of " quantum artificial intelligence ". Physicists have long claimed that quantum computers have the potential to dramatically outperform the most powerful conventional processors. The secret sauce at work here is the strange quantum phenomenon of superposition, where a quantum object can exist in two states at the same time. [13] One of biology's biggest mysteries-how a sliced up flatworm can regenerate into new organisms-has been solved independently by a computer. The discovery marks the first time that a computer has come up with a new scientific theory without direct human help. [12] A team of researchers working at the University of California (and one from Stony Brook University) has for the first time created a neural-network chip that was built using just memristors. In their paper published in the journal Nature, the team describes how they built their chip and what capabilities it has. [11] A team of researchers used a promising new material to build more functional memristors, bringing us closer to brain-like computing. Both academic and industrial laboratories are working to develop computers that operate more like the human brain. Instead of operating like a conventional, digital system, these new devices could potentially function more like a network of neurons. [10] Cambridge Quantum Computing Limited (CQCL) has built a new Fastest Operating System aimed at running the futuristic superfast quantum computers. [9] IBM scientists today unveiled two critical advances towards the realization of a practical quantum computer. For the first time, they showed the ability to detect and measure both kinds of quantum errors simultaneously, as well as demonstrated a new, square quantum bit circuit design that is the only physical architecture that could successfully scale to larger dimensions. [8] Physicists at the Universities of Bonn and Cambridge have succeeded in linking two completely different quantum systems to one another. In doing so, they have taken an important step forward on the way to a quantum computer. To accomplish their feat the researchers used a method that seems to function as well in the quantum world as it does for us people: teamwork. The results have now been published in the "Physical Review Letters". [7] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.
Category: Artificial Intelligence

[6] viXra:1610.0169 [pdf] submitted on 2016-10-15 16:49:11

Band Gap Estimation Using Machine Learning Techniques

Authors: Anantha Natarajan S, R Varadhan, Ezhilvel ME
Comments: 3 Pages.

The purpose of this study is to build machine learning models to predict the band gap of binary compounds, using its known properties like molecular weight, electronegativity, atomic fraction and the group of the constituent elements in the periodic table. Regression techniques like Linear, Ridge regression and Random Forest were used to build the model. This model can be used by students and researchers in experiments involving unknown band gaps or new compounds.
Category: Artificial Intelligence

[5] viXra:1610.0142 [pdf] submitted on 2016-10-13 14:04:33

Google DeepMind Neural Networks

Authors: George Rajna
Comments: 24 Pages.

A team of researchers at Google's DeepMind Technologies has been working on a means to increase the capabilities of computers by combining aspects of data processing and artificial intelligence and have come up with what they are calling a differentiable neural computer (DNC.) In their paper published in the journal Nature, they describe the work they are doing and where they believe it is headed. To make the work more accessible to the public team members, Alexander Graves and Greg Wayne have posted an explanatory page on the DeepMind website. [13] Nobody understands why deep neural networks are so good at solving complex problems. Now physicists say the secret is buried in the laws of physics. [12] A team of researchers working at the University of California (and one from Stony Brook University) has for the first time created a neural-network chip that was built using just memristors. In their paper published in the journal Nature, the team describes how they built their chip and what capabilities it has. [11] A team of researchers used a promising new material to build more functional memristors, bringing us closer to brain-like computing. Both academic and industrial laboratories are working to develop computers that operate more like the human brain. Instead of operating like a conventional, digital system, these new devices could potentially function more like a network of neurons. [10] Cambridge Quantum Computing Limited (CQCL) has built a new Fastest Operating System aimed at running the futuristic superfast quantum computers. [9] IBM scientists today unveiled two critical advances towards the realization of a practical quantum computer. For the first time, they showed the ability to detect and measure both kinds of quantum errors simultaneously, as well as demonstrated a new, square quantum bit circuit design that is the only physical architecture that could successfully scale to larger dimensions. [8] Physicists at the Universities of Bonn and Cambridge have succeeded in linking two completely different quantum systems to one another. In doing so, they have taken an important step forward on the way to a quantum computer. To accomplish their feat the researchers used a method that seems to function as well in the quantum world as it does for us people: teamwork. The results have now been published in the "Physical Review Letters". [7] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.
Category: Artificial Intelligence

[4] viXra:1610.0110 [pdf] submitted on 2016-10-10 12:21:47

Neuro-Inspired Analog Computer

Authors: George Rajna
Comments: 23 Pages.

Researchers have developed a neuro-inspired analog computer that has the ability to train itself to become better at whatever tasks it performs. [13] A small, Santa Fe, New Mexico-based company called Knowm claims it will soon begin commercializing a state-of-the-art technique for building computing chips that learn. Other companies, including HP HPQ-3.45% and IBM IBM-2.10% , have already invested in developing these so-called brain-based chips, but Knowm says it has just achieved a major technological breakthrough that it should be able to push into production hopefully within a few years. [12] A team of researchers working at the University of California (and one from Stony Brook University) has for the first time created a neural-network chip that was built using just memristors. In their paper published in the journal Nature, the team describes how they built their chip and what capabilities it has. [11] A team of researchers used a promising new material to build more functional memristors, bringing us closer to brain-like computing. Both academic and industrial laboratories are working to develop computers that operate more like the human brain. Instead of operating like a conventional, digital system, these new devices could potentially function more like a network of neurons. [10] Cambridge Quantum Computing Limited (CQCL) has built a new Fastest Operating System aimed at running the futuristic superfast quantum computers. [9] IBM scientists today unveiled two critical advances towards the realization of a practical quantum computer. For the first time, they showed the ability to detect and measure both kinds of quantum errors simultaneously, as well as demonstrated a new, square quantum bit circuit design that is the only physical architecture that could successfully scale to larger dimensions. [8] Physicists at the Universities of Bonn and Cambridge have succeeded in linking two completely different quantum systems to one another. In doing so, they have taken an important step forward on the way to a quantum computer. To accomplish their feat the researchers used a method that seems to function as well in the quantum world as it does for us people: teamwork. The results have now been published in the "Physical Review Letters". [7] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.
Category: Artificial Intelligence

[3] viXra:1610.0074 [pdf] submitted on 2016-10-07 00:22:44

Belief Reliability Analysis and Its Application

Authors: Haoyang Zheng, Likang Yin, Tian Bian, Yong Deng
Comments: 24 Pages.

In reliability analysis, Fault Tree Analysis based on evidential networks is an important research topic. However, the existing EN approaches still remain two issues: one is the final results are expressed with interval numbers, which has a relatively high uncertainty to make a final decision. The other is the combination rule is not used to fuse uncertain information. These issues will greatly decrease the efficiency of EN to handle uncertain information. To address these open issues, a new methodology, called Belief Reliability Analysis, is presented in this paper. The combination methods to deal with series system, parallel system, series-parallel system as well as parallel-series system are proposed for reliability evaluation. Numerical examples and the real application in servo-actuation system are used to show the efficiency of the proposed Belief Reliability Analysis methodology.
Category: Artificial Intelligence

[2] viXra:1610.0029 [pdf] replaced on 2016-10-16 08:51:52

Associative Broadcast Neural Network

Authors: Aleksei Morozov
Comments: 5 Pages.

Associative broadcast neural network (aka Ether Neural Network) is an artificial neural network inspired by a hypothesis of broadcasting of neuron's output pattern in a biological neural network. Neuron has wire connections and ether connections. Ether connections are electrical. Wire connections provide a recognition functionality. Ether connections provide an association functionality.
Category: Artificial Intelligence

[1] viXra:1610.0028 [pdf] submitted on 2016-10-03 13:53:10

A New Belief Entropy: Possible Generalization of Deng Entropy, Tsallis Entropy and Shannon Entropy

Authors: Bingyi Kang, Yong Deng
Comments: 15 Pages.

Shannon entropy is the mathematical foundation of information theory, Tsallis entropy is the roots of nonextensive statistical mechanics, Deng entropy was proposed to measure the uncertainty degree of belief function very recently. In this paper, A new entropy H was proposed to generalize Deng entropy, Tsallis entropy and Shannon entropy. The new entropy H can be degenerated to Deng entropy, Tsallis entropy, and Shannon entropy under different conditions, and also can maintains the mathematical properity of Deng entropy, Tsallis entropy and Shannon entropy.
Category: Artificial Intelligence