Functions and Analysis


AMASING proof of the STRONG Riemman Hypothes (Gnembon's Theorem)

Authors: Gnet Gnembon

Le Riemman Hypothosos is an hypothes that has existsence sinse Reimman (1837). He said so: The zero of this fonktion $\sum_{n=1}^\infty1/k^z$ is 1/2 real. We now prov this and its stronger we be rich million prise thankyou clay intitut we want double prise sinse we prov strong hopotosos. We call it GNEMBON's THEOREM.

Comments: 3 Pages.

Download: PDF

Submission history

[v1] 2020-01-11 13:28:49

Unique-IP document downloads: 37 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus