Anomaly Detection for Cybersecurity: Time Series Forecasting and Deep Learning

Authors: Giordano Colò

Finding anomalies when dealing with a great amount of data creates issues related to the heterogeneity of different values and to the difficulty of modelling trend data during time. In this paper we combine the classical methods of time series analysis with deep learning techniques, with the aim to improve the forecast when facing time series with long-term dependencies. Starting with forecasting methods and comparing the expected values with the observed ones, we will find anomalies in time series. We apply this model to a bank cybersecurity case to find anomalous behavior related to branches applications usage.

Comments: 32 Pages.

Download: PDF

Submission history

[v1] 2020-01-03 14:40:30

Unique-IP document downloads: 258 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus