Data Structures and Algorithms


Robust Quaternion Estimation with Geometric Algebra

Authors: Mauricio Cele Lopez Belon

Robust methods for finding the best rotation aligning two sets of corresponding vectors are formulated in the linear algebra framework, using tools like the SVD for polar decomposition or QR for finding eigenvectors. Those are well established numerical algorithms which on the other hand are iterative and computationally expensive. Recently, closed form solutions has been proposed in the quaternion’s framework, those methods are fast but they have singularities i.e., they completely fail on certain input data. In this paper we propose a robust attitude estimator based on a formulation of the problem in Geometric Algebra. We find the optimal eigen-quaternion in closed form with high accuracy and with competitive performance respect to the fastest methods reported in literature.

Comments: 11 Pages. Submitted to Advances in Applied Clifford Algebras

Download: PDF

Submission history

[v1] 2019-11-07 02:38:29

Unique-IP document downloads: 33 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus