Artificial Intelligence


RTOP: A Conceptual and Computational Framework for General Intelligence

Authors: Shilpesh Garg

A novel general intelligence model is proposed with three types of learning. A unified sequence of the foreground percept trace and the command trace translates into direct and time-hop observation paths to form the basis of Raw learning. Raw learning includes the formation of image-image associations, which lead to the perception of temporal and spatial relationships among objects and object parts; and the formation of image-audio associations, which serve as the building blocks of language. Offline identification of similar segments in the observation paths and their subsequent reduction into a common segment through merging of memory nodes leads to Generalized learning. Generalization includes the formation of interpolated sensory nodes for robust and generic matching, the formation of sensory properties nodes for specific matching and superimposition, and the formation of group nodes for simpler logic pathways. Online superimposition of memory nodes across multiple predictions, primarily the superimposition of images on the internal projection canvas, gives rise to Innovative learning and thought. The learning of actions happens the same way as raw learning while the action determination happens through the utility model built into the raw learnings, the utility function being the pleasure and pain of the physical senses.

Comments: 17 Pages.

Download: PDF

Submission history

[v1] 2019-10-22 00:14:26

Unique-IP document downloads: 14 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus