Condensed Matter

   

Quantum Hall Edges of Graphene

Authors: George Rajna

Combining our nano-SQUID on tip with scanning gate measurements in the quantum Hall phase of graphene we were able to measure and identify work and heat dissipation processes separately. [22] Probing the properties of a Mott insulator, a team of researchers from Boston College, MIT, and U.C. Santa Barbara has revealed an elusive atomic-scale magnetic signal in the unique material as it transitions from insulator to a metal, the team reported recently in the journal Nature Physics. [21] UC Santa Barbara engineer Galan Moody, an assistant professor of electrical and computer engineering, has proposed a solution to overcome the poor efficiency and performance of existing quantum computing prototypes that use light to encode and process information. [20] JILA physicists and collaborators have demonstrated the first next-generation "time scale"-a system that incorporates data from multiple atomic clocks to produce a single highly accurate timekeeping signal for distribution. [19] Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. [18] Our researchers were the first to produce these knots as part of a collaboration between Aalto University and Amherst College, U.S., and they have now studied how the knots behave over time. [17] The groundbreaking result sheds light on an elusive phenomenon whose existence, a natural outcome of the hundred-year-old theory of superconductivity, has long been speculated, but never actually observed. [16] Now a team of researchers from the University of Maryland (UMD) Department of Physics together with collaborators has seen exotic superconductivity that relies on highly unusual electron interactions. [15] A group of researchers from institutions in Korea and the United States has determined how to employ a type of electron microscopy to cause regions within an iron-based superconductor to flip between superconducting and non-superconducting states. [14] In new research, scientists at the University of Minnesota used a first-of-its-kind device to demonstrate a way to control the direction of the photocurrent without deploying an electric voltage. [13]

Comments: 33 Pages.

Download: PDF

Submission history

[v1] 2019-10-22 06:40:43

Unique-IP document downloads: 12 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus