Artificial Intelligence

   

Intrusion Detection using Sequential Hybrid Model

Authors: Aditya Pandey, Abhishek Sinha, Aishwarya PS

A large amount of work has been done on the KDD 99 dataset, most of which includes the use of a hybrid anomaly and misuse detection model done in parallel with each other. In order to further classify the intrusions, our approach to network intrusion detection includes use of two different anomaly detection models followed by misuse detection applied on the combined output obtained from the previous step. The end goal of this is to verify the anomalies detected by the anomaly detection algorithm and clarify whether they are actually intrusions or random outliers from the trained normal (and thus to try and reduce the number of false positives). We aim to detect a pattern in this novel intrusion technique itself, and not the handling of such intrusions. The intrusions were detected to a very high degree of accuracy.

Comments: 6 Pages.

Download: PDF

Submission history

[v1] 2019-10-20 23:09:50
[v2] 2019-10-28 00:59:37

Unique-IP document downloads: 18 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus