Artificial Intelligence

   

Walkrnn: Reading Stories from Property Graphs

Authors: Deborah Tylor, Joseph Haaga, Mirco Mannucci

WalkRNN, the approach described herein, leverages research in learning continuous representations for nodes in networks, layers in features captured in property graph attributes and labels, and uses Deep Learning language modeling via Recurrent Neural Networks to read the grammar of an enriched property graph. We then demonstrate translating this learned graph literacy into actionable knowledge through graph classification tasks.

Comments: 7 Pages.

Download: PDF

Submission history

[v1] 2019-10-19 20:41:22

Unique-IP document downloads: 27 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus