Artificial Intelligence


A Deep Neural Network as Surrogate Model for Forward Simulation of Borehole Resistivity Measurements

Authors: M. Shahriari, D. Pardo, B. Moser

Inverse problems appear in multiple industrial applications. Solving such inverse problems require the repeated solution of the forward problem. This is the most time-consuming stage when employing inversion techniques, and it constitutes a severe limitation when the inversion needs to be performed in real-time. In here, we focus on the real-time inversion of resistivity measurements for geosteering. We investigate the use of a deep neural network (DNN) to approximate the forward function arising from Maxwell's equations, which govern the electromagnetic wave propagation through a media. By doing so, the evaluation of the forward problems is performed offline, allowing for the online real-time evaluation (inversion) of the DNN.

Comments: 7 Pages.

Download: PDF

Submission history

[v1] 2019-10-15 04:07:04

Unique-IP document downloads: 31 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus