Physics of Biology

   

Interpretation of Action Potential Generation Mechanism in Cells by Potassium Channel "Origami Windmill" Model

Authors: Sun Zuodong

The mechanism of cell action potential was explained by using the principle of potassium channel "origami windmill" model. It is inferred that ion channels should include at least two categories: One kind of channel is "special ion channel", its structure is like an origami windmill model. All cations passing through this channel rotate into the interior from one-way, only in and no out. Compared with K+, they have two states of "open" and "closed", When they are "open", their aperture is not less than K+ diameter. When "closed", their aperture is smaller than K+ diameter, but not smaller than Na+ diameter. The other channel is the "universal ion channel". All Ions passing through this channel unidirectional flow too, only out and no in. Compared with K+, they have two states of "open" and "closed", When they are "open", their aperture is not less than K+ diameter. When "closed", their aperture is smaller than K+ diameter, but not smaller than Na+ diameter. This model reasonably explains the whole process of action potential occurrence, and supports Hodgkin, Huxley 's experimental the results of action potential. This model does not support their explanation of the mechanism of action potential generation in cells and the core ideas of "membrane theory" and "ion theory". It negates the selective filter atomic model and the propeller model established by MacKinnon et al. It is tiped that the main role of "sodium-potassium pump" or "ATPase" is not responsible for the transport of Na+ and K+ from the inside and outside of the cell and maintaining cell membrane potential. The channels through which ions enter and escape cells are independent. This suggests that most channels may be sharing in the same direction by other inorganic ions and organic molecules.

Comments: 9 Pages.

Download: PDF

Submission history

[v1] 2019-09-26 04:25:30

Unique-IP document downloads: 10 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus