Set Theory and Logic


A Flaw in Separation Axioms

Authors: Hannes Hutzelmeyer

The author has developed an approach to logics that comprises, but also goes beyond predicate logic. The FUME method contains two tiers of precise languages: object-language Funcish and metalanguage Mencish. It allows for a very wide application in mathematics from geometry, number theory, recursion theory and axiomatic set theory with first-order logic, to higher-order logic theory of real numbers etc. . The conventional treatment of axiomatic set theory (ZFC) is replaced by the abstract calcule sigma so that certain shortcomings can be avoided by the use of Funcish-Mencish language hierarchy: - precise talking about formula strings necessitates a formalized metalanguage - talking about open arities, general tuples, open dimensions of spaces, finite systems of open cardinality and so on necessitates a formalized metalanguage. 'dot dot dot … ' just will not do - the Axiom of Infinity is generalized in order to allow for certain other infinite sets besides the natural number representation according to von Neumann (i.e. general recursion) - the Axioms of Separation is modified as it seems more convenient - there are only enumerably many properties that can be constructed from formula strings, as these are finite strings of characters from a finite alphabet; this should be kept in mind in connection with the Axioms of Replacement - a new look at Cantor's continuum hypothesis in abstract axiomatic set theory leads to the question of so-called basis-incompleteness versus proof-incompleteness - the Axioms of Separation seem to have a flaw; there is a caveat for axiomatic set theory.

Comments: 18 Pages.

Download: PDF

Submission history

[v1] 2019-09-24 08:00:29

Unique-IP document downloads: 17 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus