Condensed Matter


Waves with Metamaterials

Authors: George Rajna

For Jordan Raney, assistant professor in the Department of Mechanical Engineering and Applied Mechanics, cutting-edge science sometimes involves whacking a rubber disc with a hammer. [40] Researchers at Nanjing University in China have now made the first nanopore sensor that works optically and does not require any electrical connections. [39] An international research team around physicist Wolfgang Lang at the University of Vienna has succeeded in producing the world's densest complex nano arrays for anchoring flux quanta, the fluxons. [38] Optical properties of materials are based on their chemistry and the inherent subwavelength architecture, although the latter remains to be characterized in depth. [37] More than 100 years ago, Albert Einstein and Wander Johannes de Haas discovered that when they used a magnetic field to flip the magnetic state of an iron bar dangling from a thread, the bar began to rotate. [36] Researchers at the Max Born Institute have now generated directed currents at terahertz (THz) frequencies, much higher than the clock rates of current electronics. [35] Researchers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have developed a simple yet accurate method for finding defects in the latest generation of silicon carbide transistors. [34] In 2017, University of Utah physicist Valy Vardeny called perovskite a "miracle material" for an emerging field of next-generation electronics, called spintronics, and he's standing by that assertion. [33] Scientists at Tokyo Institute of Technology proposed new quasi-1-D materials for potential spintronic applications, an upcoming technology that exploits the spin of electrons. [32] They do this by using "excitons," electrically neutral quasiparticles that exist in insulators, semiconductors and in some liquids. [31] Researchers at ETH Zurich have now developed a method that makes it possible to couple such a spin qubit strongly to microwave photons. [30] Quantum dots that emit entangled photon pairs on demand could be used in quantum communication networks. [29]

Comments: 59 Pages.

Download: PDF

Submission history

[v1] 2019-09-11 01:27:48

Unique-IP document downloads: 3 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus