Physics of Biology

   

Reconfigurable Electronics Wearable

Authors: George Rajna

Medical implants of the future may feature reconfigurable electronic platforms that can morph in shape and size dynamically as bodies change or transform to relocate from one area to monitor another within our bodies. [40] Researchers at Nanjing University in China have now made the first nanopore sensor that works optically and does not require any electrical connections. [39] An international research team around physicist Wolfgang Lang at the University of Vienna has succeeded in producing the world's densest complex nano arrays for anchoring flux quanta, the fluxons. [38] Optical properties of materials are based on their chemistry and the inherent subwavelength architecture, although the latter remains to be characterized in depth. [37]

Comments: 60 Pages.

Download: PDF

Submission history

[v1] 2019-09-11 01:41:38

Unique-IP document downloads: 3 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus